
Treating Coordination in Logic Grammars

Veronica Dahl 1

Computing Sciences Department
Simon Fraser University
Burnaby, B.C. V5A 1S6

Michael C. McCord 2

Computer Science Department
University of Kentucky

Lexington, KY 40506

Logic grammars are grammars expressible in predicate logic. Implemented in the
programming language Prolog, logic grammar systems have proved to be a good basis for
natural language processing. One of the most difficult constructions for natural language
grammars to treat is coordination (construction with conjunctions like 'and'). This paper
describes a logic grammar formalism, modifier structure grammars (MSGs), together with an
interpreter written in Prolog, which can handle coordination (and other natural language
constructions) in a reasonable and general way. The system produces both syntactic
analyses and logical forms, and problems of scoping for coordination and quantifiers are
dealt with. The MSG formalism seems of interest in its own right (perhaps even outside
natural language processing) because the notions of syntactic structure and semantic
interpretation are more constrained than in many previous systems (made more implicit in
the formalism itself), so that less burden is put on the grammar writer.

1. Introduction

Since the development of the Prolog programming
language (Colmerauer 1973; Roussel 1975), logic
programming (Kowalski 1974, 1979; Van Emden
1975) has been applied in many different fields. In
natural language processing, useful grammar formal-
isms have been developed and incorporated in Prolog:
metamorphosis grammars, due to Colmerauer (1978),
and extraposition grammars, defined by F. Pereira
(1981); definite clause grammars (Pereira and Warren
1980) are a special case of metamorphosis grammars.
The first sizable application of logic grammars was a
Spanish/French-consultable data base system by Dahl
(1977, 1981), which was later adapted to Portuguese

l Visiting in the Compute r Science Depar tment , Universi ty of
Kentucky, during part of this research. Work partially supported by
Canad ian N S E R C Gran t A2436 and Simon Frase r P.R. Gran t
42406,

2 Current address: IBM Thomas J. Wa t son Research Center ,
P.O. Box 218, Yorktown Heights , NY 10598.

by L. Pereira and H. Coelho and to English by F.
Pereira and D. Warren. Coelho (1979) developed a
consulting system in Portuguese for library service,
and F. Pereira and D. Warren (1980) developed a
sizable English data base query system with facilities
for query optimization. McCord (1982, 1981) pres-
ented ideas for syntactic analysis and semantic inter-
pretation in logic grammars, with application to Eng-
lish grammar; some of these ideas are used in our
work described here.

Coordination (grammatical construction with the
conjunctions 'and', 'or', 'but') has long been one of
the most difficult natural language phenomena to han-
dle, because it can involve such a wide range of gram-
matical constituents (or non-constituent fragments),
and ellipsis (or reduction) can occur in the items con-
joined. In most grammatical frameworks, the grammar
writer desiring to handle coordination can get by rea-
sonably well by writing enough specific rules involving
particular grammatical categories; but it appears that a
proper and general treatment must recognize coordina-

Copyright 1983 by the Associat ion for Computa t iona l Linguistics. Permission to copy without fee all or part of this material is granted
provided that the copies are not made for direct commercial advantage and the Journal reference and this copyright notice are included on
the first page. To copy otherwise, or to republish, requires a fee a n d / o r specific permission.

0362-613X/83/020069-23 $03.00

American Journal of Computational Linguistics, Volume 9, Number 2, April-June 1983 69

Veronica Dahl and Michael C. McCord Treating Coordination in Logic Grammars

tion as a "me tag rammat i ca l " construction, in the sense
that metarules, general system operations, or " second-
pass" operat ions such as t ransformations, are needed
for its formulation.

Perhaps the most general and powerful metagram-
matical device for handling coordinat ion in computa-
t ional linguistics has been the SYSCONJ facility for
augmented transit ion networks (ATNs) (Woods 1973;
Bates 1978). The ATN interpreter with this facility
built into it can take an ATN that does not itself men-
tion conjunctions at all, and will parse reduced coordi-
nate constructions, which are of the form

A X and Y B,

for example,

John drove his car through and
A X

completely demolished a plate glass window.
Y B

where the unreduced deep structure corresponds to

A X B and A Y B.

The result of the parse is this unreduced structure.
SYSCONJ accomplishes this by t reat ing the conjunc-
tion as an interruption which causes the parser to back
up in its history of the parse. Before backing up, the
current conf igurat ion (immedia te ly before the inter-
ruption) is suspended for later merging. The backing
up is done to a point when the string X was being
parsed (this defines X), and with this configurat ion the
string Y is parsed. The parsing of Y stops when a
configurat ion is reached that can be merged with the
suspended configuration, whereupon B is parsed. The
choices made in this process can be deterministic or
non-determinist ic , and can be guided by syntactic or
semantic heuristics.

There are some problems with SYSCONJ, however.
It suffers f rom inefficiency, due to the combinator ial
explosion f rom all the choices it makes. Because of
this inefficiency, it in fact has not been used to a great
extent in ATN parsing. Ano the r p rob lem is that it
does not handle embedded complex structures. Fur-
thermore, it is not clear to us that SYSCONJ offers a
good basis for handling the scoping problems that arise
for semantic interpretat ion when conjunctions interact
with quantifiers (and other modifiers) in the sentence.
This latter problem is discussed in detail below.

In this paper we present a system for handling co-
ordination in logic grammars. The system consists of
three things:
(1) a new formal ism for logic grammars , which we

call modifier structure grammars (MSGs),
(2) an interpreter (or parser) for MSGs that takes all

the responsibili ty for the syntactic aspects of co-
ordination (as with SYSCONJ), and

(3) a semant ic in terpre ta t ion componen t that prod-
uces logical forms f rom the output of the parser
and deals with scoping problems for coordination.

The whole sys tem is implemented in Prolog-10
(Pereira, Pereira, and Warren 1978).

Coord ina t ion has of course received some t rea t -
ment in s tandard logic g rammars by the writ ing of
specific g rammar rules. The most extensive t rea tment
of this sort that we know of is in Pereira et al. (1982),
which also deals with ellipsis. However , we are aware
of no general, metagrammat ica l t rea tment of coordina-
tion in logic grammars previous to ours.

Modif ier structure grammars , described in detail in
Section 2, are true logic grammars , in that they can be
t rans la ted (compiled) directly into Horn clause sys-
tems, the p rogram fo rma t for Prolog. In fact , the
t r ea tmen t of ex t rapos i t ion in MSGs is based on F.
Pere i ra ' s (1981) ext rapos i t ion g rammars (XGs), and
MSGs can be compiled into XGs (which in turn can be
compiled into Horn clause systems). A new element
in MSGs is that the format ion of analysis structures of
sentences has been made largely implicit in the gram-
mar formalism. For previous logic g rammar formal-
isms, the format ion of analyses is entirely the responsi-
bility of the g rammar writer. Compil ing MSGs into
XGs consists in making this fo rmat ion of analyses
explicit.

Although MSGs can be compiled into XGs, it seems
difficult to do this in a way that treats coordinat ion
automatical ly (it appears to require more metalogical
facilities than are current ly available in Prolog sys-
tems). Therefore , we are using an interpreter for MSGs
(writ ten in Prolog).

For MSGs, the analysis structure associated (by the
sYstem) with a sentence is called the modifier structure
(MS) of the sentence. This structure can be consid-
ered an annota ted phrase structure tree, and in fact
the name "modif ie r structure g r ammar" is intended to
be parallel to "phrase structure g rammar" . If ext rapo-
sition and coordinat ion are neglected, there is a
con tex t - f ree phrase s t ructure g rammar under lying an
MSG; and the MS trees are indeed derivat ion trees for
this underlying grammar , but with extra in format ion
a t tached to the nodes.

In an MS tree, each node contains not only syntac-
tic information but also a term called a semantic item
(supplied in the g rammar) , which de te rmines the
node 's contr ibut ion to the logical fo rm of the sentence.
This contr ibut ion is for the node alone, and does not
refer to the daughters of the node, as in the approach
of Gazdar (1981). Through their semantic items, the
daughters of a node act as modifiers of the node, in a
fairly traditional sense made precise below - hence the
term "modif ier s t ructure".

The notion of modifier structure used here and the
semantic interpretat ion component , which depends on
it, are much the same as in previous work by McCord

70 American Journal of Computational Linguistics, Volume 9, Number 2, Apr i l -June 1983

Veronica Dahl and Michael C. McCord Treating Coordination in Logic Grammars

(1982, 1981), especially the latter paper. But new
elements are the notion of MSG (making modifier
structure implicit in the grammar), the MSG interpret-
er, with its t reatment of coordination, and the specific
rules for semantic interpretat ion of coordination.

The MSG interpreter is described in Section 3. As
indicated above, the interpreter completely handles the
syntax of coordination. The MSG grammar itself
should not mention conjunctions at all. The interpret-
er has a general facility for treating certain words as
demons (cf. Winograd 1972), and conjunct ions are
handled in this way. When a conjunction demon ap-
pears in a sentence

A X conj Y B,

a process is set off which in outline is like SYSCONJ,
in that backing up is done in the parse history in order
to parse Y parallel to X, and B is parsed by merger
with the state interrupted by the conjunction. Howev-
er, our system has the following interesting features:

(1) The MSG interpreter manipulates stacks in
such a way that embedded coordination (and coordi-
nation of more than two elements) and interactions
with extraposition are handled. (Examples are given
in the Appendix.)

(2) The interpreter produces a modifier structure
for the sentence

A X conj Y B

which remains close to the surface form, as opposed to
the unreduced structure

A X B conj A Y B

(but it does show all the pertinent semantic relations
through unification of variables). Not expanding to
the unreduced form is important for keeping the modi-
fier relationships straight, in particular, getting the
right quantifier scoping. Our system analyzes the sen-
tence

Each man drove a car through and
completely demolished a glass window,

producing the logical form

each(X,man(X),exists(Y,car(Y),
exists(Z,glass(Z)&window(Z),
drove_through(X,Y,Z)

&completely(demolished(X,Z)))))

This logical form would be difficult to recover from
the unreduced structure, because the quantified noun
phrases are repeated in the unreduced structure, and
the logical form that corresponds most naturally to the
unreduced structure is not logically equivalent to the
above logical form.

(3) In general, the use of modifier structures and
the associated semantic interpretat ion component per-

mits a good treatment of scoping problems involving
coordination. Examples are given below.

(4) The system seems reasonably efficient. For
example, the analysis of the example sentence under
(2) above (including syntactic analysis and semantic
interpretation) was done in 177 milliseconds. The
reader can examine analysis times for other examples
in the Appendix. One reason for the efficiency is just
that the system is formulated as a logic programming
system, and especially that it uses Prolog-10, with its
compiler. Another reason presumably lies in the de-
tails of the MSG interpreter. For example, the inter-
preter does not save the complete history of the parse,
so that the backing up necessary for coordination does
not examine as much.

(5) The code for the system seems short, and
most of it is listed in this paper.

The semantic interpretat ion component is described
in Section 4, but not in complete detail since it is tak-
en in the main from McCord (1982, 1981). Emphasis
is on the new aspects involving semantic interpretat ion
of coordinate modifiers.

Semantic interpretation of a modifier structure tree
is done in two stages. The first stage, called reshaping,
deals heuristically with the well-known scoping prob-
lem, which arises because of the discrepancies that can
exist between (surface) syntactic relations and intend-
ed semantic relations. Reshaping is a transformation
of the syntactic MS tree into another MS tree with the
(hopefully) correct modifier relations. The second
stage takes the reshaped tree and translates it into
logical form. The modifiers actually do their work of
modification in this second stage, through their seman-
tic items.

As an example of the effects of reshaping on coor-
dinate structures involving quantifiers, the sentence

Each man and each woman ate an apple

is given the logical form

each(X,man(X),exis ts (Y,apple(Y) ,a te(X,Y)))
& each(X,woman(X),exis ts (Y,apple(Y) ,a te(X,Y))) ,

whereas the sentence

A man and a woman sat at each table

is given the form

each(Y,table(Y), exis ts(X,man(X),sa t_at(X,Y))
& exis ts(X,woman(X),sat_at (X,Y))) .

Section 5 of the paper presents a short discussion
of possible improvements for the system, and Section
6 consists of concluding remarks. The Appendix to
the paper contains a listing of most of the system, a
sample MSG, and sample parses. The reader may wish
to examine the sample parses at this point.

American Journal of Computat ional Linguistics, Volume 9, Number 2, Apri l -June 1983 71

Veronica Dahl and Mlichael C. IVlcCord Treating Coordination in Logic Grammars

2. Modi f ier Structure Grammars

The most fundamenta l type of logic g rammar is
Co lmeraue r ' s (1978) me tamorphos i s g rammar (MG).
Grammars of this type can be viewed as generalized
type-0 phrase structure grammars in which the gram-
mar symbols (terminals and non-terminals) are terms
f rom predicate logic. In derivations, the rewriting of
symbol strings involves unification (Robinson 1965),
instead of simple replacement.

F. Pereira 's (1981) extraposi t ion grammars (XGs)
are essentially general izat ions of MGs designed to
handle (left) extraposition. In the lef t -hand side of an
XG rule, g rammar symbols can be connected by the
infix opera tor ' . . . ' , indicating a gap. When such a rule
is used in rewriting, the gaps appear ing in the left-
hand side may match arbi t rary strings of g rammar
symbols, and then the lef t -hand side is replaced by the
r ight -hand side fol lowed by the symbol strings
matched by the gaps (in the same order). For exam-
ple, the XG rule

a,b...c...d - - > e,f

is really a rule schema

a , b , X , c , Y , d - - > e,f ,X,Y

where X and Y stand for arbi trary g rammar symbol
s tr ings. There is a constraint on the use of gaps in
rewriting called the bracketing constraint, for which we
refer to F. Pereira (1981). However , our MSG inter-
preter includes XG interpretat ion, so the use of gaps is
in fact completely specified below.

In XG rules, symbols on the lef t-hand side follow-
ing gaps represent lef t -extraposed elements. For ex-
ample, the extraposi t ion of noun phrases to the front
of relative clauses (with replacement by relative pro-
nouns) can be handled by the XG rules:

relative clause - - > rel marker , sentence.
re l_marker . . . t race -- > r e l_pronoun .
n o u n p h r a s e - - > trace.

where ' t race ' marks the position out of which the noun
phrase is being moved, and is used by the second rule
above in conjunct ion with a relative marker to produce
(or analyze) a relative pronoun.

Pereira 's implementa t ion of XGs is a Prolog pro-
gram that compiles XGs to Horn clause systems, which
in turn can be run by Prolog for parsing sentences. In
the compiled systems, extraposi t ion is handled by the
manipula t ion of a stack called the extraposition list,
which is similar to the H O L D list for ATN's (Woods
1973). Elements (like ' t race ' above) on the lef t-hand
sides of XG rules following the initial symbol are in
effect put on the extraposi t ion list during parsing, and
can be taken off when they are required later by the
r ight-hand side of another rule. Our MSG interpreter
uses a reformulat ion of this same method.

Since the grammar symbols in XGs (and MGs) can
be arbi trary terms f rom predicate logic, they can con-
tain arguments. These arguments can be used to hold
useful information such as selectional restrictions and
analysis structures. For example, in the rule

sentence (s (Subj ,Pred)) -- >
noun_phrase (Sub j) ,ve rb_phrase (Pred)

each non- te rmina l is augmented with an a rgument
represent ing a syntact ic structure. (Here , following
Prolog-10 syntax, the capitalized items are variables.)
Manipulat ing such arguments is the only way of get-
ting analysis structures in XGs. As indicated in the
Introduct ion, a new ingredient in MSGs over XGs is to
au tomate this process, or to make it implicit in the
grammar.

MSG rules are of two forms. The basic form is

A : S e m - - > B.

where A - - > B is an XG rule and Sem is a te rm called a
semantic item, which plays a role in the semantic inter-
pretat ion of a phrase analyzed by applicat ion of the
rule. The semantic i tem is (as in McCord 1981) of
the form

O p e r a t o r - L o g i c a l F o r m

where, roughly, Logica lForm is the part of the logical
form of the sentence contr ibuted by the rule, and Op-
erator determines the way this partial structure com-
bines with others. Details on semantic items are post-
poned to Section 4 (on semantic interpretat ion) . Ac-
tually, the current section and Section 3 deal mainly
with syntactic construct ions which are independent of
the form of semantic items.

The second type of MSG rule looks exactly like an
XG rule (no Sem is exhibited), but the system takes
care of inserting a special " t r iv ia l" Sem, g-true. (Here
the '8 ' is the opera tor for left-conjoining, described in
Section 4.) Most MSG rules for higher (non-lexical)
types of phrases are of this type, but not all of them

are.
A simple example of an MSG is shown in Figure 1.

Following the notat ional convent ions of XGs (as well
as the simpler defini te clause g rammars built into
Prolog-10) , we indicate terminal symbols by enclosing
them in brackets []. Rules can contain tests on their
r ight-hand sides, enclosed in braces {}, which are Pro-
log goals. In this example, the tests are calls to the
lexicon, shown af ter the g rammar rules, which consists
of assertions (non-condi t ional Horn clauses).

This grammar, together with the semantic interpre-
tat ion component , will handle sentences like the fol-
lowing, producing the indicated logical forms:

72 American Journal of Computational Linguistics, Volume 9, Number 2, Apr i l -June 1983

Veronica Dahl and Mlichael C. IVlcCord Treating Coordination in Logic Grammars

s e n t - - > nounph(X) ,verbph(X) .

nounph(X) - -> de t (X) ,noun(X) .
nounph(X) - -> proper_noun(X) .

verbph(X) --> verb(X,Y),nounph(Y).

d e t (X) : S e m - - > [D],{d(D,X,Sem)}.

n o u n (X) : g - P r e d - - > [N],{n(N,X,Pred)}.

p roper_noun(N) - ->

verb (X,Y): g-Pred -- >

/* Lexical entries * /

[N],{npr(N)}.

[V],{v(V,X,Y,Pred) }.

n(man,X,man(X)) , n(woman,X,woman(X)) .

npr(john), npr(mary).

v(saw,X,Y,saw(X,Y)), v(heard,X,Y,heard(X,Y)) .

d (each ,X,P/Q-each(X,Q,P)) .
d(a ,X,P/Q-exis ts (X,Q,P)) .

Figure 1. A simple MSG with lexicon.

John saw Mary.
saw(john,mary).

John heard each woman.
each(Y,woman(Y),heard(john,Y)) .

Each man saw a woman.
each(X,man(X),exis ts(Y,woman(Y),saw(X,Y))) .

A larger example MSG is listed in the Appendix.
This grammar includes rules dealing with extraposition,
and the lexicon contains rules used by the MSG inter-
preter in handling coordination.

Now let us look at the formation of syntactic struc-
tures by the MSG system. As stated in the Introduc-
tion, syntactic structures are trees called modifier
structure (MS) trees.

Suppose that a phrase is analyzed by application of
an MSG rule

A:Sem --> B.

and further rule applications in an MSG. (The Sem
may be explicit or supplied by the system for the sec-
ond type of rule.) Then the modifier structure of the
phrase is a term of the form

syn(NT,Sem,Mods)

where NT is the leading symbol (a non-terminal) in A
and where Mods is the list of modifier structures of
the subphrascs analyzed with the right-hand side B of
the rule. The 'syn' structure is considered a tree node,
labeled with the two items NT and Sem, and having
daughter list Mods.

As an example, the MS tree for the sentence "Each
man saw a woman" produced by the grammar in Fig-
ure 1 is shown in Figure 2. This tree is printed by
displaying the first two fields of a 'syn' on one line
and then recursively displaying the daughters, indented
a fixed amount.

sent g-true
nounph(X) g-true

det(X) P /Q-each (X ,Q ,P)
noun(X) g-man(X)

verbph(X) g-true
verb(X,Y) g-saw(X,Y)
nounph(Y) g-true

det(Y) R/S-exis ts(Y,S,R)
noun(Y) g-woman(Y)

Figure 2. MS tree for " E a c h man saw a w o m a n . " .

Let us now indicate briefly how MSGs can be com-
piled into XGs so that these MS trees are produced as
analyses. This method of compiling does not handle
coordination metagrammatically (as does the interpret-
er), but it does seem to be of general interest for
MSGs.

In the compiled XG version of an MSG, each non-
terminal is given two additional arguments, added, say,
at the end. Each argument holds a list of modifiers.
If the original non-terminal is nt(X1 ,Xn), the new
non-terminal will look like

nt(X1 ,Xn,Modsl ,Mods2) .

When this non-terminal is expanded by a non-trivial
rule, then Mods l will differ f rom Mods2 by having
one additional modifier on the front, namely the modi-
fier contr ibuted by the rule application. A rule is
trivial if its right-hand side is empty. When a trivial
rule is used to expand 'nt ' above, Mods l will equal
Mods2.

As an example of rule translation, the first rule in
Figure l is translated to

sent([syn(sent ,g- t rue ,Modsl) I Mods],Mods) - ->
nounph(X,Mods 1,Mods2),verbph(X,Mods2,[]).

(Here [X] Y] denotes the list with first member X and
remainder Y.)

Any non-terminal on the left-hand side of an MSG
besides the leading non-terminal is given a pair of
identical Mods arguments (because it contr ibutes no
modifier by itself). For example, the MSG rule

rel mk(X). . . t race(X) - -> rel_pron.

would translate to

rel_mk(X,[syn(rel mk(X),g-true,Mods 1) I Mods],Mods)
. . . trace(X,Mods2,Mods2) - -> re l_pron(Modsl , []).

American Journal of Computational Linguistics, Volume 9, Number 2, Apri l -June 1983 73

Veronica Dahl and Michael C. McCord Treating Coordination in Logic Grammars

For parsing a sentence with respect to the grammar
in Figure 1, one would use

sent([MST],[])

as start symbol (with MST unknown) and the parse
would bind MST to the modifier structure tree of the
sentence.

Pairs of list arguments manipulated in the way just
outl ined are called "d i f f e rence lists", and the tech-
nique is common in logic programming. One part of
compiling MGs to Horn clauses is the addition to each
non- te rmina l of an a rgument pair for the terminal
strings being analyzed. Pereira 's compilat ion of XGs
to Horn clauses involves one more argument pair for
ext raposi t ion lists. So the compi la t ion of MSGs to
Horn clauses involves three argument pairs totally. In
the MSG interpreter , descr ibed in the next section,
only a single argument (not a pair) is needed for each
of these three lists.

3. The M S G In terpre ter and the Syntax of
Coord inat ion

Our MSG processor actually has a bit of compiler in it,
because there is a p reprocessor that t ranslates MSG
rules into a form more convenient for the interpreter
to use.

An MSG rule

A:Sem - - > B

is preprocessed into a term

rule (NT,Ext ,Sem,B 1)

where NT is the leading non-terminal in A, Ext is the
conversion of the remainder of A into an extraposition
list, and B1 is the conversion of B to list form.

The notion and representa t ion of extraposition lists
used here are just the same as F. Pereira 's (1981). A
node in such a list is of the form

x(Contex t ,Type ,Symbol ,Ext)

where Context is either 'gap ' or 'nogap ' , Type is either
' te rminal ' or 'nonterminal ' , Symbol is a g rammar sym-
bol, and Ext is the remainder of the list. We denote
the empty extraposi t ion list by 'nil ' (Pereira used []).

The " le f t -hand side remainder" in a g rammar rule
(the part after the leading symbol) is conver ted to an
ext raposi t ion list in a s t ra ight forward way, with one
node for each symbol in the remainder. The Context
says whether the symbol has a gap preceding it, and
the remaining fields of an 'x ' node have the obvious
meaning. For the rule

a , [b] . . . c - - > d

the extraposi t ion list would be

x(nogap, terminal ,b ,x(gap,nonterminal ,c ,ni l)) .

The r ight-hand side of an MSG rule is preprocessed
to a (simple) list form in the obvious way. Thus, a
r ight-hand side (d,e,f) is conver ted to the list [d,e,f],
and a r ight-hand side with a single element d is con-
verted to the list [d].

As a complete example, the MSG rule

a . . . b : e - p - - > [c],{d},e

is conver ted to

rule (a,x(gap,nonterminal ,b,ni l) ,e-p,[[c] ,{d} ,el).

If the MSG rule exhibits no semantic item, then the
preprocessor supplies the trivial i tem e-true.

The ' rule ' forms of the rules in an MSG are stored
as assertions in the Prolog data base, to be used by the
interpreter. One can unders tand

rule (NT,Ext ,Sem,B 1)

as the assertion: "There is a rule for the non-terminal
NT with extraposi t ion list Ext, e tc ."

The rule preprocessor is listed at the beginning of
the Appendix.

Now let us look at the interpreter itself, which is
listed af ter the preprocessor in the Appendix.

The top-level procedure is

parse (Str ing,NonTerminal ,Syn)

which takes a String of terminals and a t tempts to parse
it as a phrase of type NonTerminal , with the syntactic
structure Syn. We should comment that ' pa rse ' de-
fines a top-down parser.

This procedure calls the main working procedure

prs (BodyLis t ,Str ing,Mods,Par ,Mer ,Ext)

which parses String against a list BodyLis t of goals of
the type that can appear in the r ight-hand side (the
body) of a rule. The list of resulting syntactic struc-
tures is Mods (one modifier for each non-trivial ex-
pansion of a non- terminal in BodyList) . The remain-
ing three arguments of 'p rs ' are for stacks called the
parent stack, the merge stack, and the ext rapos i t ion
list. These are initialized to 'nil ' in the call of ' pa rse '
to 'prs ' .

The parent stack serves two purposes. One is to
control the recursion in the normal working of the
parser. (The parser is much like an interpreter for a
programming language - in fact, for a specialized ver-
sion of Prolog itself.) The other purpose is to provide
information for the coordinat ion demon, when it backs
up in (part of) the parse history.

A non-empty parent stack is a te rm of the fo rm

parent (BodyLis t ,Mods,Par)

where BodyList is a body list, Mods is a modif ier list,
and Par is again a parent stack. A new level gets
pushed onto the parent stack by the sixth rule for 'p rs '
and the ancillary procedure 'prspush ' . This happens

74 American Journal of Computational Linguistics, Volume 9, Number 2, April-June 1983

Veronica Dahl and Michael C. McCord Treating Coordination in Logic G r a m m a r s

when 'prs ' is looking at a body list of the form
[N T I B L] , where the initial e lement NT is a non-
terminal that can be expanded by a 'rule' entry. If
that rule is trivial (if its own body is empty), then no
actual push is done, and 'prs' continues with the re-
maining current body list BL. Otherwise, 'prspush'
goes to a lower level, to parse against the body of the
expanding rule. The items [N T I B L] and Mods from
the higher level are saved on the parent stack (Mods is
a variable for the remaining modifiers to be found on
the higher level).

Note that the body list [N T I B L] saved in the first
field of the 'parent ' term is more than is needed for
managing the recursive return to the higher level.
Only the remainder, BL, is needed for this, because
NT has already been used in the parse. In fact, the
rule that pops to the higher level (the eighth rule for
'prs') does ignore NT in doing the pop. The extra
information, NT, is saved for the second purpose of
the parent stack, the backing up by the coordination
demon.

Before going into the details of coordinat ion,
though, let us continue with the description of the
"normal" working of the parser.

In normal parsing, there is exactly one place where
a new 'syn' node is added to the MS trees being built.
This is in the second rule for 'prspush', which handles
non-trivial rule expansions. The addition of this node
is in accordance with the definition of modifier struc-
ture given in the preceding section.

The pushing rule of 'prs' (the sixth rule) also ma-
nipulates the extraposition stack. The extraposition
component of the expanding rule is concatenated onto
the front of the main extraposition list (being carried
in the last argument of 'prs ') . This is analogous to a
HOLD operation in ATNs. Of course, if no extraposi-
t ion is shown in the rule, the extraposi t ion list will
remain the same.

The third and fourth rules for 'prs' handle terminals
in the body list. The first of these tries to remove the
terminal from the string argument, and the second
tries to remove it from the extraposition list (as in a
VIR arc for ATNs).

The seventh 'prs ' rule tries to remove a non-
terminal from the extraposition list (again, like a VIR
arc).

The last 'prs' rule is the termination condition for
the parse. It just requires that all arguments be null.

Now we can discuss coordination demons. All the
rest of the interpreter rules deal with these.

The first 'prs' rule is the one that notices demon
words D. It calls a procedure 'demon' , passing D as
the first argument and all the rest of the information it
has in other arguments. 'demon' takes control of the
rest of the parse. In the listed interpreter there is only
one 'demon' rule, one that tests whether D is a con-
junction. It does this with the goal

conjunct ion(D,Cat ,Sem),

which gives the syntactic category Cat for the con-
junction D, and the semantic item Sem for a new mod-
ifier node to be constructed for the right conjunct .
The lexicon contains 'conjunct ion ' entries as asser-
tions.

For understanding what the conjunct ion demon
does, it is best to look at an example, as it would be
parsed for the grammar in the Appendix. We will use
the specific notation (for variables, etc.) given in the
demon rule, and the reader should refer to that rule in
the Appendix. It should be borne in mind that Prolog
is non-deterministic; we will only state what happens
on the successful path through the choices made.

The example is

John saw and Mary heard the train.

When the demon for 'and' is called, the current body
list is

BL= [comps([obj-Y])[.

The non-terminal comps(Comps) looks for a list
Comps of complements, and in this case there is to be
one complement, an object noun phrase. The MS tree
constructed so far is

sent e-true
nounph(X,def) @P-de f (X ,X=john ,P)
verbph(X) C-true

verb(X,[obj-Y]) g-saw(X,Y)
I Mods

I Mods2

Here the entry [Mods in the last daughter position for
the verb phrase indicates fur ther modifiers on that
level to be put in the unbound variable Mods. (This is
explicitly the same variable 'Mods' used in the demon
rule.) Similarly, I Mods2 represents the remaining
modifiers for 'sent ' node. The variable Mods2 does
not appear in the 'demon' rule, but will be referred to
below.

The parent stack Par available to the demon has
two levels, and the two body lists are

[verbph(X)],
[sent].

(Recall that we are describing the state of affairs in
the successful path through the search space.) The
recursive procedure 'backup' is called, which can look
any number of levels through the parent stack. It goes
to the second level, where the body list is [sent].
(Choosing the first level with [verbph(X)] would be
appropriate for the sentence " John saw and barely
heard the train".) In passing up a level, 'backup' re-
quires that the body list skipped over must be
'satisfied', which means that any pending goals in the
body list (members of its tail) are satisfiable by trivial

American Journal of Computational Linguistics, Volume 9, Number 2, April-June 1983 75

Veronica Dahl and Michael C. McCord Treating Coordination in Logic Grammars

rules. When 'backup' does pass up a level, the modifi-
er list for that level is closed off. Thus Mods in the
tree displayed above will be bound to the empty list.
(There are no more modifiers for that 'verbph' node.)

As a single remaining daughter for the level backed
up to, a new 'syn' node for the right conjunct is at-
tached by the demon. This means binding the variable
Mods2 in the above tree to the list consisting of this
node. Now our tree looks like

sent g-true
nounph(X,def) @P-de f (X ,X=john ,P)
verbph(X) g-true

verb(X,[obj-Y]) g-saw(X,Y)
conj(and) Q*R-(Q&R)

I Mods0

The variable Mods0 is to contain the list of modifiers
for the conjunction node. This list will turn out to
have a single element, a new 'sent ' node for the re-
mainder of the sentence, "Mary heard the train".

Backing up to the [sent] level makes the non-
terminal N T = s e n t available to the demon, and the
parent stack Par l at the [sent] level. The demon then
continues the parse by calling 'prs ' with body list
[NT]=[sent] , but with informat ion pushed onto the
merge stack. The main item stored on the merge stack
is the body list BL=[comps([ob j -Y])] , which was
pending at the time of interruption by the conjunction.
The items Pa r l , Ext, and of course the old merge
stack Mer are also pushed on.

So now we continue parsing "Mary heard the
train", but with another kind of demon lurking, the
interrupted goal BL. The second rule for 'prs' notices
this demon. When we are parsing and come to a goal
that can be unified with BL, then we can try merging.
This happens when we are looking for the comple-
ments of "heard" . This unification includes the unifi-
cation of the object variable Y of " saw" with the ob-
ject variable of "heard" , so that " the t ra in" will logi-
cally be the object of " saw" as well as "heard" .

The procedure 'cutoff ' called by the second 'prs'
rule requires that no new unsatisfied goals have devel-
oped in parsing the right conjunct (aside from the goal
BL to be merged) and also closes off modifier lists in
the local parent stack Par for the right conjunct.

Then the merged parse is cont inued by a call to
'prs', with BL as goal and with the parent stack, merge
stack, and extraposi t ion list popped from the merge
stack. When this is completed, our MS tree is as
shown in Figure 3.

The meanings of the semantic items used in this MS
tree, and their use in producing the logical form, will
be explained in the next section; but it is worth stating
now what the resulting logical form is:

def (Y,train(Y),saw(john,Y) &heard(mary,Y)).

The reader may examine the analyses produced for
other examples listed in the Appendix.

sent g-true
nounph(X,def) @P-de f (X ,X=john ,P)
verbph(X) g-true

verb(X,[obj-Y]) g-saw(X,Y)
conj(and) Q*R-(Q&R)

sent g-true
nounph(Z,def) @S-def (Z ,Z=mary ,S)
verbph(Z) g-true

comps([obj-Y]) g-true
comp(obj-Y) g-true

nounph(Y,def) g-true
det(Y,def) T / U - d e f (Y , U , T)
noun(Y,[]) g-train(Y)

Figure 3. MS tree for
"John saw and Mary heard the train."

4. S e m a n t i c In te rpre ta t ion and Coord ina t ion

The overall idea of the semantic in terpre ta t ion
component was given in the Introduction. The rule
system is listed complete ly in the Appendix. This
system is taken essentially from McCord (1981), with
some rules deleted (rules dealing with focus) , and
some rules added for coordination.

For a discussion of MS tree reshaping as a means of
handling scoping of modifiers, we refer to McCord
(1982, 1981). Also, the reader may examine the ex-
amples of reshaped trees given in the Appendix.

We will, however, review the second stage of se-
mantic interpretation, because the new rules for coor-
dination are added here and because it is more central
for understanding modifier structure. In this stage, the
reshaped MS tree is translated to logical form, and the
top-level procedure for this is ' translate' . This proce-
dure actually works only with the semantic-i tem com-
ponents of MS tree nodes. (Reshaping uses the first,
syntactic components .)

One semantic item can combine with (or modify) a
second semantic item to produce a third semantic item.
' t ranslate ' uses these combining operat ions in a
straightforward recursive fashion to produce the logi-
cal form of an MS tree. The ancillary procedure
(' t ransmod') that actually does the recursion produces
complete semantic items as translations, not just logi-
cal forms. For the top-level result, the operator com-
ponent is thrown away. ' t ransmod' works simply as
follows: The daughters (modifiers) of a tree node N
are t ranslated recursively (to semantic items) and
these items cumulatively modify the semantic item of
N, the leftmost acting as the outermost modifier, etc.

So the heart of the translat ion process is in the
rules that say how semantic items can combine with

76 American Journal of Computational Linguistics, Volume 9, Number 2, April-June 1983

Veronica Dahl and Michael C. McCord Treating Coordination in Logic Grammars

other semantic items. These are rules for the proce-
dure

trans(Sem0,Seml,Sem2)

which says that Sere0 combines with (modifies) Seml
to produce Sem2. In the typical case, this combination
depends only on the Operator component of Sem0;
but there are exceptional cases where it depends as
well on the operator in Seml. Furthermore, 'trans' is
free to create a new operator for the result, Sem2,
which can affect later operations. This happens with
coordinate modifiers. We often speak of Sem0
"operating on" Seml, but "combining with" is the
more accurate term generally.

The only operators appearing in the small sample
grammar in the Appendix are of the form g, @P, P /Q,
and P*Q. Here P and Q are variables standing for
logical forms. The listing for 'trans' in the Appendix
includes only rules for these operators and their auxili-
aries, although larger grammars involve other opera-
tors. We will elucidate the effects of these four opera-
tors with examples. The last one, P 'Q , is used for
coordination.

The operator 'g' is for left-conjoining. When
g-man(X) operates on g-see(X,Y), the result is
g-man(X)&see(X,Y).

The operator @P is used for substitutions in its
associated logical form. When @P-not(P) operates on
g-laugh(X), the result is g-not(laugh(X)).

The operator P / Q is used for forms that require
two substitutions. When

P/Q-each(X,Q,P)

operates on g-man(X), the result is

@P-each(X,man(X),P),

which in turn can operate by substituting for P.
Notice that @p and P / Q are similar to lambda(P)

and lambda(Q)lambda(P) respectively. But they also
interact with other operators in the system in specific
ways.

To show these first three operators working togeth-
er, let us look at the MS tree that would be produced
for the sentence "Each man laughed". (Reshaping
leaves this tree unaltered.) We throw away the syn-
tactic fields in the tree nodes (working only with the
semantic items), and show the successive stages in
producing the logical form in Figure 4. In following
the steps in Figure 4, the reader should refer to the
'trans' rules in the Appendix, which are numbered for
reference here. In each step of the translation, a node
combines with its parent, and the 'trans' rule used to
do this is indicated.

The operator P*Q appears in coordinate modifiers.
The first four 'trans' rules deal with it, and they create
auxiliary operators. The following example will make
clear how these are manipulated. The sentence is

(1) g-true
g-true

P/Q-each(X,Q,P)
g-man(X)

g-true
g-laughed(X) (Rule 7 applies)

(2) g-true
g-true

P/Q-each(X,Q,P)
g-man(X)

g-laughed(X) (Rule 7)

(3) g-laughed(X)
g-true

P/Q-each(X,Q,P)
g-man(X) (Rule 7)

(4) g-laughed(X)
g-man(X)

P/Q-each(X,Q,P) Rule 5)

(5) g-laughed(X)
@P-each(X,man(X),P) (Rule 6)

(6) g-each(X,man(X),laughed(X)).

Figure 4. The working of 'translate'.

"Each man ate an apple and a pear."

This example is shown in the Appendix, with the ini-
tial syntactic analysis and the reshaped tree. In the
reshaped tree, the 'sent' node has three daughters, the
first being for the simple noun phrase "each man", the
second for the conjoined noun phrase "an apple and a
pear", and the third for the verb phrase with the ob-
ject removed.

If we perform all the modifications that are possible
in this tree without involving the coordination opera-
tor, and if we remove the syntactic fields, then the tree
looks like the following:

g-ate(X,Y)
@P-each(X,man(X),P)
g-true

Q/R-exists(Y,R,Q)
g-apple(Y)
S*T-(S&T)

@U-exists(Y,pear(Y),U)

Now the first 'trans' rule can apply to the lowest pair
of nodes, and the tree becomes:

g-ate(X,Y)
@P-eaeh(X,man(X),P)
g-true

Q/R-exists(Y,R,Q)
g-apple(Y)
cbase 1 (@U-exists(Y,pear(Y),U),S,T)-(S&T)

American Journal of Computational Linguistics, Volume 9, Number 2, April-June 1983 77

Veronica Dahl and Michael C. McCord Treating Coordination in Logic Grammars

We have saved the modifier for "a pear" in the first
argument of the ' cbase l ' operator . Next, this item
operates on the g-true node, by application of the
second ' trans' rule, and we get the tree

g-ate(X,Y)
@P-each(X,man(X) ,P)
cbase2(g,@U-exis ts(Y,pear(Y),U),S,T,S&T)-true

Q/R-exis t s (Y,R,Q)
g-apple(Y)

Now, the third ' trans' rule is applied twice, to the two
daughters of the 'cbase2' node, and we get

g-ate(X,Y)
@P-each(X,man(X) ,P)
cbase2(@Q,@U-exis ts (Y,pear(Y) ,U) ,S ,T,S&T)

-exists(Y,apple(Y),Q)

Then, as the last step with coordination operators, the
fourth ' trans' rule is applied to let the 'cbase2' node
operate on the top node of the tree. This involves two
recursive calls to ' t rans ' , in which the two conjunct
noun phrases operate on the material in the scope of
the coordinate node. (In this case, the material in the
scope is ate(X,Y).) This material gets duplicated, be-
cause of the double application to it. The resulting
tree now is

g-exists(Y,apple(Y),ate(X,Y))&exists(Y,pear(Y),
a te(X,Y))

@P-each(X,man(X) ,P)

Finally, the @P node modifies the top node, and after
discarding the operator (an 'g') in the resulting item,
we get the logical form

each(X,man(X),exis ts(Y,apple(Y),a te(X,Y))
&exists(Y),pear(Y),ate(X,Y)))

Near the end of the Introduction, examples were
given of two syntactically similar sentences with coor-
dination, for which the produced logical forms are
quite different. For the sentence

"Each man and each woman ate an apple",

the reshaping stage produces a tree that in outline
looks like the following:

sent
nounph "each man"

conj(and)
nounph "each woman"

nounph "an apple"
verbph " a t e "

Then, the material for "a te an apple" will be in the
scope of the conjoined noun phrase and this material
gets duplicated, with the resulting logical form being

each(X,man(X),exis ts (Y,apple(Y) ,a te(X,Y)))
&each(X,woman(X),exis ts(Y,apple(Y),a te(X,Y))) .

On the other hand, for the sentence

"A man and a woman sat at each table",

reshaping moves the universally quantif ied noun
phrase to the left of the existentially quantified con-
joined noun phrase, and the tree is as follows:

sent
nounph "each table"
nounph "a man"

conj(and)
nounph "a woman"

verbph "sat a t"

Then the only material in the scope of the conjoined
noun phrase is for "sat at" , and only this gets dupli-
cated. (In fact, the scoping is like that for our earlier
example, "Each man ate an apple and a pear" .) The
complete logical form is

each(Y,table(Y), exis ts(X,man(X),sat a t (X,Y))
& exis ts (X,woman(X) ,sa t_at (X,Y))).

Notice that the logical forms for conjoined phrases
in the above analyses share variables. For instance,
the same variable X is used in both man(X) and
woman(X) in the last analysis. This sharing of varia-
bles arises naturally because of the unification of body
lists that is performed during parsing by the 'merge'
demon. It keeps things straight very nicely, because
the shared variables may appear in another predica-
tion, like sat_at(X,Y) above, which occurs only once,
outside the conjoined phrase, but is related logically to
both conjuncts.

This sharing of variables presents no problems as
long as the variables are quantified over (as they are
by the existential in the preceding example). But it
makes proper nouns less convenient to treat. If coor-
dination were not being considered, it would be con-
venient to parse proper nouns by the sort of rule listed
in Figure 1 in Section 2, where the proper noun gets
immediately unified with the variable X appearing in
nounph(X). But if such a rule is used with the MSG
parser, then a sentence as simple as " John and Mary
laughed" will not parse, because the parser at tempts to
unify the logical subject variable with both ' john' and
'mary' .

Therefore , as the semantic item for a proper noun
N, we use a quantified form, specifically

@ P - d e f (X , X = N , P) ,

and this is carried through in most of the processing.
However , the procedure ' translate ' , after it has carried
out all the modificat ion, calls a procedure 'simplify'
which simplifies the logical form. This gets rid of
some unnecessary ' t rue 's and it carries out the substi-
tutions implicit in the proper noun forms, by doing
some copying of structures and renaming of variables.

78 American Journal of Computational Linguistics, Volume 9, Number 2, April-June 1983

Veronica Dahl and Michael C. McCord Treating Coordination in Logic Grammars

For example, the logical fo rm for " J o h n and Mary
laughed" prior to simplification is essentially

d e f (X , X = john, laughed(X))
&def (X,X=mary , l aughed(X)) .

But after simplification, it is

laughed(john)&laughed(mary) .

In the sample analyses in the Appendix, we give in
some cases only the logical form and in other cases the
intermediate structures also (the syntactic analysis tree
and the reshaped tree). Analysis times are in milli-
seconds. These do not include times for I /O and con-
version of character strings to word lists. Variables
are printed by Prolog-10 in the form n , where n is an
integer.

5. Possible Extens ions

The main advantages of the formal ism presented
here are:
• automating the t rea tment of coordination,
• freeing the user of concern with structure-building,

and
• providing a modular t rea tment of semantics, based

upon information given locally in each rule.
While making a reasonable compromise be tween

power and elegance on the one hand, and efficiency
on the other, our present implementa t ion could be
improved in several ways. For instance, because the
parsing history is kept in a stack that is regularly pop-
ped - the Parent stack - some parsing states are no
longer available for backing up to, so the possibility
exists for some acceptable sentences not to be recog-
nized.

We have exper imented with modif icat ions of the
MSG interpreter in which more of the parse history is
saved, and have also considered compiling MSGs into
Prolog and using a general ' s ta te ' predicate which re-
turns the proof history, but we have not as yet ob-
tained sat isfactory results along these lines.

Another possible improvement is to use some se-
mantic guidance for the (at present blind) backing up
through parsing states. The parser a l ready carries
along semantic information (in semantic items) to be
used later on. Some of this information could perhaps
also be used during parsing, in order to improve the
backup. Research along these lines may well provide
some more insight into the di lemma of whether syntax
and semantics should be kept separate or intermingled.

It would also be interesting to include collective
and respective readings of coordinated noun phrases,
perhaps along the lines proposed in Dahl (1981).

We do not presume that our general t rea tment of
coordinat ion will work for all possible MSG grammars.
Care is necessary in writing an MSG, as with any other
formalism. What we do provide are enough elements
to arrive at a g rammar definition that can t reat most

s t ructure-bui lding and coordinat ion problems in a
modular and largely au tomated manner.

We have also investigated an alternative approach
to coordination, which is not metagrammat ica l but is
never theless more flexible than previous approaches ,
and involves still another g rammar formalism we be-
lieve worth studying in itself. We have named it the
gapping grammar (GG) formalism, as its main feature
is that it allows a g rammar rule to rearrange gaps in a
fairly arbi trary fashion. This will be the subject of a
for thcoming article.

6. Conc lud ing Remarks

We have described a new logic g rammar system for
handling coordinat ion metagrammat ica l ly , which also
automat ica l ly builds up the modif ier s t ructure of a
sentence during parsing. This structure, as we have
seen, can be considered an annota ted phrase structure
tree, but the underlying grammar - unlike other recent
approaches to NL processing - is not necessari ly
context - f ree . The rules accepted are general ized
type-0 rules that may include gaps (in view, for in-
stance, of left extraposi t ion), and semantic interpreta-
tion, as we have seen, is guided through the semantic
items, local to each rule, which help resolve scoping
problems. The system's semantic interpretat ion com-
ponent can in part icular deal with scoping problems
involving coordination.

While the t r ea tment of coordinat ion is the main
motivat ion for developing still another logic g rammar
formalism, we believe our notion of modifier structure
grammar to be particularly at tractive for allowing the
user to write grammars in a more s t raightforward man-
ner and more clearly. Also, because the semant ic
information about the structure being built up is de-
scribed modular ly in the g rammar rules, it becomes
easier to adapt the parser to a l ternat ive domains of
application: modifying the logical represen ta t ion ob-
tained need only involve the semantic items in each
rule. A related but less flexible idea was independent-
ly developed for Restr ict ion Grammars by Hirshman
and Puder (1982). RGs are also logic grammars in the
sense that they are based on Prolog, but they deal only
with context- f ree definitions augmented by restrictions
(which are procedures at tached to the rules). In RGs,
a tree record of the context - f ree rules applied is auto-
matically generated during the parse. More evolved
representa t ions for the sentence, however , are again
the user ' s responsibi l i ty and require processing this
automatical ly generated parse tree.

Another important point, in our view, is the fact
that our system does not preclude context-sensi t ive
rules, t ransformations, or gaps. This is contrary to
what seems to be the general tendency today, both in
theoretical linguistics (for example, Gazdar 1981) and
in computa t iona l linguistics (for example , H i r shman
and Puder 1982, Joshi and Levy 1982, Robinson

American Journal of Computational Linguistics, Volume 9, Number 2, April-June 1983 79

Veronica Dahl and Michael C. McCord Treating Coordination in Logic Grammars

1982, Schubert and Pelletier 1982) , towards using
context - free grammars (which, however , are of ten
augmented in some way - through restrictions, local
constraints, rule schemata, metarules, etc. - compen-
sating for the lack of expressiveness in simple context-
free grammars). This approach was largely motivated
by the need to provide alternatives to transformational
grammar, which on the one hand was felt by AI re-
searchers to deal insufficiently with semantics and with
sentence analysis, and on the other hand, as observed
by Gazdar (1981) , could not offer linguistically ade-
quate explanat ions for important constructs , such as
coordinat ion and unbounded dependencies . Further
arguments supporting this approach include claims of
more efficient parsability, simplicity, and modularity.

From the particular point of v iew of logic gram-
mars, more evolved grammar formalisms make a great
deal of sense for various reasons. In the first place,
they provide various advantages that have been illus-
trated in Dahl (1981) , namely modularity and concise-
ness, clarity and efficiency. A detailed discussion of
these advantages with respect to augmented transition
networks can be found in Pereira and Warren (1980) .

Furthermore, they include lower- level grammars as
a special case. In particular, context- free rules aug-
mented with procedures may be written, since even the
simplest logic grammar defined to date (DCGs) al lows
Prolog calls to be interspersed with the rules. The
greater expressive power a l lowed by more evo lved
formalisms, then, can only represent a gain, since it
does not preclude more e lementary approaches. Logic
grammars, in short, seem to be developing - like other
computer formalisms - into higher- level tools that
al low the user to avoid mechanizable effort in order to
concentrate on as yet unmechanizable , creative tasks.
MSGs are intended as a contribution in this direction.

7. Re fe rences

Bates, M. 1978 The Theory and Practice of Augmented Transition
Network Grammars. in Bolc, L., Ed., Natural Language Com-
munication with Computers. Springer-Verlag, New York: 191-
259.

Coelho, H.M.F. 1979 A Program Conversing in Portuguese Provid-
ing a Library Service. Ph.D. thesis, University of Edinburgh.

Colmerauer, A. 1973 Un systeme de communication homme-machine
in francais. Groupe d' Intelligence Artificielle, Universit6 d'Aix-
Marseille.

Colmerauer, A. 1978 Metamorphosis Grammars. In Bolc, L., Ed.,
Natural Language Communication with Computers. Springer-
Verlag, New York: 133-189.

Dahl, V. 1977 Un Systeme Deductif d'Interrogation de Banques de
Donnees en Espagnol. Th6se de Doctorat de Sp6cialit6,
Universit6 d'Aix-Marsielle.

Dahl, V. 1981 Translating Spanish into Logic through Logic.
American Journal of Computational Linguistics 13 : 149-164.

Gazdar, G. 1981 Unbounded Dependencies and Coordinate Struc-
ture. Linguistic Inquiry 12(2): 155-184.

Hirshman, L. and Puder, K. 1982 Restriction Grammar in Prolog.
Proc. First International Logic Programming Conference. Mars-
eille, France: 85-90.

Joshi, A. and Levy, L.S. 1982 Phrase Structure Trees Bear More
Fruit than You Would Have Thought. American Journal of
Computational Linguistics 8:1-11.

Kowalski, R.A. 1974 Predicate Logic as a Programming Language.
Proc. IFIP 74. North-Holland, Amsterdam, The Netherlands:
569-574.

Kowalski, R.A. 1979 Logic for Problem Solving. North-Holland,
New York, New York.

McCord, M.C. 1982 Using Slots and Modifiers in Logic Grammars
for Natural Language. Artificial Intelligence 18: 327-367.

McCord, M.C. 1981 Focalizers, the Scoping Problem, and Seman-
tic Interpretation Rules in Logic Grammars. Technical Report,
University of Kentucky. To appear in Warren, D. and van
Caneghem, M., Eds., Logic Programming and its Applications.

Pereira, F. 1981 Extraposition Grammars. American Journal of
Computational Linguistics 7: 243-256.

Pereira, F. and Warren, D. 1980 Definite Clause Grammars for
Language Analysis - a Survey of the Formalism and a Compari-
son with Transition Networks. Artificial Intelligence 13: 231-
278.

Pereira, F. and Warren, D. 1982 An Efficient Easily Adaptable
System for Interpreting Natural Language Queries. American
Journal of Computational Linguistics 8:110-122.

Pereira, L.M. et al. 1982 ORBI - An Expert System for Environ-
mental Resource Evaluation through Natural Language. Univer-
sidade Nova de Lisboa.

Pereira, L.; Pereira, F.; and Warren, D. 1978 User's Guide to DEC
System-lO Prolog. Department of Artificial Intelligence, Univer-
sity of Edinburgh.

Robinson, J. 1982 Diagram: a Grammar for Dialogues. Comm.
ACM 25: 27-47.

Robinson, J.A. 1965 A Machine-Oriented Logic Based on the
Resolution Principle. J. ACM 12: 23-41.

Roussel, P.L. 1975 Prolog Manuel de Reference et d'Utilisation.
Universit6 d'Aix-Marseille.

Schubert, L. and Pelletier, F. 1982 From English to Logic:
Context-Free Computation of 'Conventional ' Logical Transla-
tion. American Journal of Computational Linguistics 8 (1) : 27-44.

Van Emden, M.H. 1975 Programming with Resolution Logic.
Machine Intelligence, 8. John Wiley, New York, New York.

Winograd, T. 1972. Understanding Natural Language. Academic
Press, New York. New York.

Woods, W.A. 1973 An Experimental Parsing System for Transition
Network Grammars. In Rustin, R., Ed., Natural Language
Processing. Algorithmics Press, New York, New York: 145-149.

80 American Journal of Computational Linguistics, Volume 9, Number 2, April-June 1983

Veronica Dahl and Michael C. McCord Treating Coord ina t ion in Logic Grammars

A P P E N D I X

/* Grammar rule preprocessor . */

• - public readRules/0,parse/3,go/0.

:- op(1000,xfy,(...)).
:- op(1100,xfy,:).

readRules :-
tell(metgrr),
repeat,
read(Rule),
process(Rule).

process(endRules) :-!,told.
process(Rule) :-!,

parts (Rule,Head,Sem,Body),
makex(Head,NT,Ext),
makelist (Body,Body 1),
write(rule(NT,Ext,Sem,Body 1)),write ('.'),
nl,nl,
fail.

process(Clause) :-
assertz(Clause),
fail.

parts((Head:Sem--> Body),Head,Sem,Body) :-!.
parts((Head --> Body),Head,e-true,Body).

makelist((X,L),[X I L 1]) :-!,makelist(L,L1).
makelist([],[]):-!.
makelist(X,[X]).

makex((NT,L),NT,Ext) :- !,makexl(nogap,L,Ext).
makex((NT...L),NT,Ext) :- !,makexl(gap,L,Ext).
makex(NT,NT,nil).

makexl (CT,(S,L),x(CT,Type,S1,X)) :-!,
type (S,S 1,Type),
makex 1 (nogap,L ,X).

makexl (CT,(S...L),x(CT,Type,S1,X)) :-!,
type(S,S 1,Type),
makexl (gap,L,X).

makexl (CT,S,x(CT,Type,S 1 ,nil)) :-
type(S,S1,Type).

type([S],S,terminal) :-!.
type (S,S,nonterminal).

/* Parser */

parse(String,NonTerminal,Syn) :-
prs([NonTerminal],String,[Syn],nil,nil,nil),!.

prs(BL,[D I X],Mods,Par,Mer,Ext) :-
demon(D,BL,X,Mods,Par,Mer,Ext).

prs(BL,X,Mods,Par,merge (BL,Par 1,Mer,Ext),nil) :-
cutoff(Par),
prs(BL,X,Mods,Parl,Mer,Ext).

prs([[W] I BL],[W I X],Mods,Par,Mer,Ext) :-
gap (Ext),prs(BL,X,Mods,Par,Mer,Ext).

prs([[W] I BL],X,Mods,Par,Mer,x(_,terrninal,W,Ext)) :-
prs (BL,X,Mods,Par,Mer,Ext).

Amer ican Journal of Computa t iona l Linguist ics, Vo lume 9, Number 2, Apr i l -June 1983 81

Veronica Dahl and Michael C. McCord Treat ing Coord ina t ion in Logic Grammars

prs([{B} I BL],X,Mods,Par,Mer,Ext) :-!,
B,prs(BL,X,Mods,Par,Mer,Ext).

prs([NT I BL],X,Mods,Par,Mer,Ext) :-
rule(NT,Ext0,Sem,Body),
stack(Ext0,Ext,Extl),
prspush(Body,NT,BL,Sem,X,Mods,Par,Mer,Ext 1).

prs([NT I BL],X,Mods,Par,Mer,x(_,nonterminal,NT,Ext)) :-
prs (BL,X,Mods,Par,Mer,Ext).

prs([],X,[],parent([_ I BL],Mods,Par),Mer,Ext) :-
prs(BL,X,Mods,Par,Mer,Ext).

prs([],[],[],nil,nil,nil).

prspush([],_,BL,_,X,Mods,Par,Mer,Ext) :-!,
prs(BL,X,Mods,Par,Mer,Ext).

prspush(Body,NT,BL,Sem,X,[syn(NT,Sem,Mods 1)] Mods],Par,Mer,Ext) :-
prs(Body,X,Modsl ,parent([NT I BL],Mods,Par),Mer,Ext).

gap(x(gap, , ,)).
gap(nil).

stack(nil,X,X).
stack(x(C,T,S,X1),X2,x(C,T,S,X3)) :- stack(X1,X2,X3).

cutoff(parent([_ I BL],[],Par)) :- satisfied(BL), cutoff(Par).
cutoff(nil).

demon(D,BL,X,Mods,Par,Mer,Ext) :-
conjunction(D,Cat,Sem),
backup(Par,Mods,[syn(Cat,Sem,Mods0)],[NT I _],Parl),
prs ([NT] ,X ,Mods0 ,nil ,merge (BL ,Par 1 ,Mer,Ext) ,nil).

backup(parent (BL,Mods,Par) ,Mods0,Mods0,BL,parent (BL,Mods,Par)).
backup(parent ([I BL],Mods,Par),[],Mods0,BL1,Parl) :-

satisfied(BL),
backup (Par,Mods,Mods0,BL 1 ,Par 1).

satisfied([]) :-!.
satisfied([NT t BL]) :- rule(NT, , ,[]),I,satisfied(BL).

/ * Semantic Interpretation Rules * /

:- op(400,xfy,&).
:- op(300,fx,@).

/* Reshaping Rules */

reshape(Tree,Sisters,Tree 1) :-
daughters (Tree,Daus),
reshapelist(Daus,Daus 1),
reorder(Dausl,Daus2),
raise (Daus2,Tree,Sisters,Daus3),
newdaus(Tree,Daus3,Treel).

reshapelist([Tree I Trees],Trees2) :-!,
reshapelist (Trees,Trees 1),
reshape(Tree,Sisters,Tree 1),
concat(Sisters,[Tree 1 I Trees 1],Trees2).

reshapelist([],[]).

reorder([A I L],M) :-
reorder(L,L1),
insert(A,L1,M).

reorder([],[]).

82 Amer ican Journal of Computa t iona l Linguist ics, Vo lume 9, Number 2, Apr i l -June 1983

Veronica Dahl and Michael C. McCord Treat ing Coordinat ion in Logic Grammars

insert(A,[B I L],M) :-
prec(A,PA),prec(B,PB),
(PB>PA,!,M=[B I L1],insert(A,L,L1) I

M=[A,B I L]).
insert(A,[],[A]).

raise([Dau I Daus],Tree,[Dau I Sisters],Dausl) :-
above(Dau,Tree),!,
raise (Daus,Tree,Sisters,Daus 1).

raise([Dau I Daus],Tree,Sisters,[Dau I Dausl]) :-
raise(Daus,Tree,Sisters,Daus 1).

raise([],Tree,[],[]).

daughters (syn(_,_,Daus),Daus).

newdaus (syn(NT,Sem,_),Daus,syn(NT,Sem,Daus)).

cat(syn(NT, ,),NT).

prec(Syn,P) :- stype(Syn,S),precl (S,P),!.
prec(_,0).

stype(syn(nounph(_,Stype), ,),Stype).

precl (def,6).
precl (all,6).
precl (indef,4).

above(Synl,Syn2) :-
cat(Synl,nounph(,)),cat(Syn2,Cat),

-,+ (Cat=relative(_) I Cat=conj(_)).

/* Translation Rules */

translate(Syn,LogForml) :-
transmod(Syn,8-true,8-LogForm),
simplify(LogForm,[],LogForml).

transmods([Mod I Mods],Sem 1,Sem3) :-
transmods(Mods,Seml,Sem2),
transmod(Mod,Sem2,Sem3).

transmods([],Sem,Sem).

transmod(syn(_,Sem,Mods),Sem 1,Sem2):-
transmods(Mods,Sem,Sem0),
trans(Sem0,Seml,Sem2).

/* Rules for 'trans' are numbered for convenient reference in the text.

/ * 1 " / trans(Sem,C*D-P,cbasel(Sem,C,D)-P) :-!.
/ *2* / trans(cbasel (Sem,C,D)-P,Op-Q,

cbase2 (Op,Sem,C,D,R)-true) :-!,
conj(P,Q,R).

/ *3* / trans(Op-P,cbase2(Op 1,Sem,C,D,B)-P 1,
cbase2 (Op2,Sem,C,D,B)-P2) :-!,

trans(Op-P,Op 1-P1,Op2-P2).
/ *4* / trans(cbase2(Op,Seml,C,D,B)-P,Sem2,Opl-B) :-!,

trans(Op-P,Sem2,Opl-C),
trans(Seml,Sem2,Opl-D).

/ *5* / trans(P/Q-R,Op-Q,@P-R).
/ *6* / trans(@P-Q,Op-P,Op-Q).
/ *7* / trans(¢-P,Op-Q,Op-R) :- conj(P,Q,R).
/ *8* / trans(r-P,Op-Q,Op-R) :- conj(Q,P,R).
/*9*/ trans(subst(X)-X,Sem,Sem).
/* 10"/ trans(id-P,Sem,Sem).

*/

American Journal of Computational Linguistics, Volume 9, Number 2, Apr i l -June 1983 83

Veronica Dahl and Michael C. McCord Treating Coordination in Logic Grammars

conj(true,Q,Q) :-!.
conj(P,true,P) :-!.
conj(P,Q,P&Q).

/* Simplification Rules */

simplify(X,D,Y) :- var(X),!,find(X,D,Y).
simplify(E,_,E) :- atomic(E),!.
simplify(def(X,X=Y,E),D,E 1) :-!, simplify(E,[X=Y I D],E 1).
simplify(true&E,D,E 1) :-!, simplify(E,D,E 1).
simplify(E&true,D,E 1) :-!, simplify(E,D,E 1).
simplify(E,D,E1) :-

E=..[P I Args],
simplist(Args,D,Args 1),
EI=. . [P I Argsl].

find(X,[X1 =Y I _],Y) :- X= =XI,!.
find(X,[_ I D],Y) :- find(X,D,Y),!.
find(X,[],X).

simplist([E] L],D,[E1 I L1]) :-
simplify(E,D,E 1),
simplist (L,D,L 1).

simplist([],_,[]).

/* Syntax */

:- readRules.

sent--> nounph(X,_),verbph(X).

nounph(X,def):@P-def(X,X=N,P) --> [N],{prop(N)}.
nounph(X,Stype) -->

det(X,Stype),adj (X),noun(X,Comps),comps(Comps),relative(X).
nounph(X,_) --> trace(X).

det(X,Stype):Sem --> [D],{deter(D,X,Stype,Sem)}.

adj(_) --> [].
adj (X):Sem -- > [Adj], { adjec(Adj,X,Sem) }.

noun(X,Comps):e-Pred --> [N],{n(N,X,Comps,Pred) }.

relative(X) --> [].
relative(X) --> open,rel_mk(X),sent,close.

open.. .close--> [].

rel mk(X)...trace(X) --> [N],{rel_pro(N)}.
rel_mk(X).. .[P],trace(X)--> [P],{prep(P)},[N],{rel_pro(N)}.

verbph(X) --> advl,verb(X,Comps),comps(Comps).

advl - -> [].
advl:Sem--> [Adv],{adverb(Adv,Sem)}.

verb(X,Comps) :~-Pred -- > [V],{v(V,Pred,X,Comps) }.

comps([]) - - > [].
eomps([X I L]) --> comp(X),comps(L).

comp(obj-X) --> nounph(X,_).
comp(pobj(Prep)-X) --> [Prep],nounph(X,_).

endRules.

84 American Journal of Computational Linguistics, Volume 9, Number 2, April-June 1983

Veronica Dahl and Michael C. McCord Treating Coordination in Logic Grammars

/* Lexicon */

conjunction(and,conj(and),P*Q-(P&Q)).
conjunction(or,conj(or),P*Q-(P;Q)).
conjunction(but,conj (but),P*Q-but(P,Q)).

prop(john).
prop(bill).
prop(mary).

deter(a,X,indef,Q/P-exists(X,P,Q)).
deter (an,X,indef,Q/P-exists(X,P,Q)).
deter(the,X,def,Q/P-def(X,P,Q)).
deter (each,X,all,Q/P-each(X,P,Q)).
deter (every,X,all,Q/P-every(X,P,Q)).

adjec(red,X,g-red(X)).
adjec(blue,X,8-blue(X)).
adjec(glass,X,g-glass (X)).

n(man,X,[],man(X)).
n(woman,X,[],woman(X)).
n(car,X,[],car(X)).
n(train,X,[],train(X)).
n(book,X,[],book(X)).
n(pencil,X,[],pencil(X)).
n(table,X,[],table(X)).
n(window,X,[],window(X)).
n(father,X,[pobj(of)-Y],father(X,Y)).
n(friend,X,[pobj(of)-Y],friend(X,Y)).
n(apple,X,[],apple(X)).
n(pear,X,[],pear(X)).

v(saw,saw(X,Y),X,[obj-Y]).
v(heard,heard(X,Y),X,[obj-Y]).
v(demolished,demolished(X,Y),X,[obj-Y]).
v(laughed,laughed(X),X,[]).
v(drove,drove_through(X,Y,Z) ,X,[obj-Y,pobj (through)-Z]).
v(gave,gave(X,Y,Z),X,[obj-Y,pobj(to)-Z]).
v(ate,ate(X,Y),X,[obj-Y]).
v(sat,sat_at(X,Y),X,[pobj(at)-Y]).

adverb(completely,@P-completely(P)).
adverb (finally, @ P-finally (P)).

rel_pro(who).
rel_pro(whom).
rel_pro(that).
rel_pro(which).

prep(to).
prep(from).
prep(with).
prep(of).
prep(through).

American Journal of Computational Linguistics, Volume 9, Number 2, April-June 1983 85

Veronica Dahl and M i c h a e l C. McCord Treat ing Coordinat ion in Logic Grammars

EXAMPLES

1:Prolog-10 version 3

Input sentence:
]: each man ate an apple and a pear.

Syntactic analysis, time = 143 msec.

sent g-true
nounph(_l,all) e-true

det(_l,all) 2 / 3-each(1, 3, 2)
noun(_l,[]) g-man(_l)

verbph(_l) g-true
verb(_l,[obj-_4]) g-ate(1, 4)
comps([obj-_4]) g-true

comp(obj-_4) g-true
nounph(_4,indef) e-true

det(_4,indef) 5/ 6-exists(4, 6, 5)
noun(_4,[]) g-apple(_4)
conj(and) 7* 8- 7& 8

nounph(_4,indef) g-true
det(_4,indef) 9/ 10-exists(4, 10, 9)
noun(_4,[]) g-pear(_4)

Reshaping tree, time = 16 msec.

sent e-true
nounph(_l,all) g-true

det(_l,all) 2 / 3-each(1, 3, 2)
noun(_l,[]) e-man(_l)

nounph(_4,indef) e-true
det(_4,indef) 5/ 6-exists(4, 6, 5)
noun(_4,[]) g-apple(_4)
conj(and) 7* 8- 7& 8

nounph(_4,indef) e-true
det(_4,indef) 9 / 10-exists(4, 10,_9)
noun(_4,[]) g-pear(_4)

verbph(_l) g-true
verb(_l,[obj-_4]) g-ate(1, 4)
comps([obj-_4]) e-true

comp(obj-_4) g-true

Semantic analysis, time = 22 msec.

each(_l,man(_l),exists(_2,apple(_2),ate(1, 2))
&exists(_2,pear(_2),ate(1, 2)))

Input sentence:
1: john ate an apple and a pear.

Syntactic analysis, time = 144 msec.
Reshaping tree, time = 35 msec.
Semantic analysis, time = 11 msec.

exists(_l ,apple(_l) ,ate(john,_l))&exists(_l,pear(_l) ,ate(john,_l))

Input sentence:
] : a man and a woman saw each train.

Syntactic analysis, time = 94 msec.

sent g-true
nounph(_l,indef) e-true

86 American Journal of Computat ional Linguistics, Volume 9, Number 2, Apr i l -June 1983

Veronica Dahl and Michael C. McCord Treating Coordination in Logic Grammars

det(_l,indef) 2/ 3-exists(1, 3, 2)
noun(_l,[]) g-man(_l)
conj(and) 4* 5- 4& 5

nounph(_l,indef) g-true
det(_l,indef) 6/ 7-exists(1, 7, 6)
noun(_l,[]) g-woman(_l)

verbph(_l) g-true
verb(_l,[obj-_8]) g-saw(1, 8)
comps([obj-_8]) g-true

comp(obj-_8) g-true
nounph(_8,all) g-true

det(_8,all) 9/ 10-each(8, 10, 9)
noun(_8,[]) g-train(_8)

Reshaping tree, time = 24 msec.

sent g-true
nounph(_l,all) g-true

det(_l,all) 2/ 3-each(1, 3, 2)
noun(_l,[]) g-train(_l)

nounph(_4,indef) g-true
det(_4,indef) 5/ 6-exists(4, 6, 5)
noun(_4,[]) g-man(_4)
conj(and) 7* 8- 7& 8

nounph(_4,indef) g-true
det(_4,indef) 9/ 10-exists(4, 10, 9)
noun(_4,[]) g-woman(_4)

verbph(_4) g-true
verb(_4,[obj-_l]) g-saw(4, 1)
comps([obj-_l]) g-true

comp(obj-_l) g-true

Semantic analysis, time = 16 msec.

each(_l,train(_l),exists(_2,man(_2),saw(2, 1))
&exists(_2,woman(_2),saw(2, 1)))

Input sentence:
I: each man and each woman ate an apple.

Syntactic analysis, time = 78 msec.

sent g-true
nounph(_l,all) g-true

det(_l,all) 2/ 3-each(1, 3, 2)
noun(_l,[]) g-man(_l)
conj(and) 4* 5- 4& 5

nounph(_l,all) g-true
det(_l,all) 6/ 7-each(1, 7, 6)
noun(_l,[]) g-woman(_l)

verbph(_l) g-true
verb(_l,[obj-_8]) g-ate(1, 8)
comps([obj-_8]) g-true

comp(obj-_8) g-true
nounph(_8,indef) g-true

det(_8,indef) 9/ 10-exists(8, 10, 9)
noun(_8,[]) g-apple(_8)

Reshaping tree, time = 14 msec.

American Journal of Computational Linguistics, Volume 9, Number 2, April-June 1983 87

Veronica Dahl and Michael C. McCord Treat ing Coord ina t ion in Logic Grammars

sent g-true
nounph(_l,all) g-true

det(_l,all) 2/ 3-each(1, 3, 2)
noun(_1,[]) g-man(_l)
conj(and) 4* 5- 4& 5

nounph(_l,all) g-true
det(_l,all) 6/ 7-each(1, 7, 6)
noun(_l,[]) g-woman(_l)

nounph(8,indef) g-true
det(_8,indef) 9/ 10-exists(8, 10,_9)
noun(_8,[]) g-apple(_8)

verbph(_l) g-true
verb(_l,[obj-_8]) g-ate(1, 8)
comps([obj-_8]) g-true

comp(obj-_8) g-true

Semantic analysis, time = 20 msec.

each(_l,man(_l),exists(2,apple(_2),ate(1, 2)))
&each(_l,woman(_l),exists(_2,apple(_2),ate(1, 2)))

Input sentence:
I : john saw and the woman heard a man that laughed.

Syntactic analysis, time - 182 msec.

sent g-true
nounph(_l,def) @_2-def(1, l=john,_2)
verbph(_l) g-true

verb(_l,[obj-_3]) g-saw(1, 3)
conj(and) 4* 5- 4& 5

sent g-true
nounph(_6,def) g-true

det(_6,def) 7/ 8-def(6, 8, 7)
noun(_6,[]) g-woman(_6)

verbph(_6) g-true
verb(_6,[obj-_3]) g-heard(6, 3)
comps(lob j- 3]) g-true

comp(obj-_3) g-true
nounph(_3,indef) g-true

det(_3,indef) 9/ 10-exists(3, 10, 9)
noun(_3,[]) g-man(_3)
relative(_3) g-true

rel_mk(_3) g-true
sent g-true

nounph(3, 11) g-true
verbph(_3) g-true

verb(_3,[]) g-laughed(_3)

Reshaping tree, time = 24 msec.

sent g-true
nounph(_l,def) @_2-def(1, l=john,_2)
verbph(_l) g-true

verb(_l,[obj-_3]) g-saw(1, 3)
conj(and) 4* 5- 4& 5

nounph(_6,def) g-true
det(_6,def) 7/ 8-def(6, 8, 7)
noun(_6,[]) g-woman(_6)

nounph(_3,indef) g-true

88 Amer ican Journal of Computa t iona l Linguist ics, Vo lume 9, Number 2, Apr i l -June 1983

Veronica Dahl and Michael C. McCord Treat ing Coordinat ion in Logic Grammars

det(_3,indef) 9/ 10-exists(3, 10, 9)
noun(_3,[]) g-man(_3)
relative(_3) g-true

nounph(3,wh) g-true
rel_mk(_3) g-true
sent g-true

verbph(_3) g-true
verb(_3,[]) g-laughed(_3)

sent g-true
verbph(_6) g-true

verb(_6,[obj-_3]) g-heard(6, 3)
comps([obj-_3]) g-true

comp(obj-_3) g-true

Semantic analysis, time = 18 msec.

def (_ 1, woman (_ 1), exists (_2 ,man (_2) &laughed (_2),
saw(john,_2)&heard(1, 2)))

Input sentence:
I: john drove the car through and completely demolished a window.

Syntactic analysis, time = 80 msec.

sent g-true
nounph(_l,def) @_2-def(1, l=john, 2)
verbph(_l) g-true

verb(_l,[obj-_3,pobj(through)-_4]) g-drove_through(1, 3, 4)
comps([obj-_3,pobj (through)-_4]) g-true

comp(obj-_3) g-true
nounph(_3,def) g-true

det(3,def) 5/ 6-def(3, 6, 5)
noun(_3,[]) g-car(_3)

comps ([pobj (through)-_4]) g-true
comp(pobj (through)-_4) g-true

conj(and) 7* 8- 7& 8
verbph(_l) g-true

advl @_9-completely(_9)
verb(_l,[obj-_4]) g-demolished(1, 4)
comps([obj-_4]) g-true

comp(obj-_4) g-true
nounph(_4,indef) g-true

det(_4,indef)_10/_ll-exists(4, 11, 10)
noun(_4,[]) g-window(_4)

Reshaping tree, time - 22 msec.

sent g-true
nounph(_l,def) @ 2-def(1, l=john,_2)
nounph(3,def) g-true

det(_3,def) 4/ 5-def(3, 5, 4)
noun(_3,[]) g-car(_3)

verbph(_l) g-true
verb(_l,[obj-_3,pobj(through)-_6]) g-drove_through(1, 3, 6)
comps([obj-_3,pobj(through)-_6]) g-true

comp(obj-_3) g-true
comps([pobj (through)-_6]) g-true

comp(pobj (through)-_6) g-true
conj(and) 7* 8- 7& 8

nounph(_6,indef) g-true

American Journal of Computat ional Linguistics, Volume 9, Number 2, Apr i l -June 1983 89

Veronica Dahl and Michael C. McCord Treating Coordination in Logic Grammars

det(_6, indef) 9 / 10-exists(6, 10, 9)
noun(_6,[]) 8-window(_6)

ve rbph (_ l) 8-true
advl @_11-comple te ly (_ l 1)
verb(_ l , [ob j -_6]) C-demolished(1, 6)
comps([obj-_6]) e-true

comp(obj-_6) e-true

Semantic analysis, time = 9 msec.

de f (_ l , ca r (_ l) , ex i s t s (_2 ,window(_2) ,
drove_through(john, 1, 2)&completely(demolished(john,_2))))

Input sentence:
I: the woman who gave a book to john and

drove a car through a window laughed.

Syntactic analysis, time = 250 msec.
Reshaping tree, time = 108 msec.
Semantic analysis, time = 28 msec.

de f (_ l ,woman(_ l) &exists(_2,book(_2),
exis ts(_3,car(_3) ,exis ts(_4,window(_4) ,gave(1, 2,john)&

drove_through(1, 3, 4)))) , l aughed(_ l))

Input sentence:
I: john saw the man that mary saw and bill heard.

Syntactic analysis, time = 87 msec.
Reshaping tree, time = 27 msec.
Semantic analysis, time = 25 msec.

de f (_ l ,man(_ l)&saw(mary ,_ l)&hea rd (b i l l , _ l) , s aw(john ,_ l))

Input sentence:
I: john saw the man that heard the woman that laughed and saw bill.

Syntactic analysis, time = 174 msec.
Reshaping tree, time = 101 msec.
Semantic analysis, time = 23 msec.

de f (_ l ,man(_ 1)&def(_2,woman(_2)&laughed(_2)&
saw(_2,bil l) ,heard(1, 2)) , saw(john ,_ l))

Input sentence:
I: the man that mary saw and john heard and bill gave a book to laughed.

Syntactic analysis, time = 1199 msec.
Reshaping tree, time = 106 msec.
Semantic analysis, time = 40 msec.

de f (_ l ,man(_ 1)&saw(mary,_l) &exists (_2 ,book(_2) ,
heard(john,_l)&gave(bi l l , 2, 1)) , l aughed(_ l))

Input sentence:
I: the man that mary saw and heard gave an apple to each woman.

Syntactic analysis, time = 144 msec.

sent e-true
nounph(_ l , de f) e-true

de t (_ l ,de f) 2 / 3-def(1, 3, 2)
noun(_ l , []) e - m a n (_ l)
re la t ive(_ l) e-true

r e l_mk(_ l) e-true

90 Amer ican Journal of Computa t iona l Linguist ics, Vo lume 9, Number 2, Apr i l -June 1983

Veronica Dahl and Michael C. McCord Treat ing Coordinat ion in Logic Grammars

sent 8-true
nounph(_4,def) @_5-def(4, 4=mary,_5)
verbph(4) C-true

verb(_4,[obj-_l]) E-saw(4, 1)
conj(and) 6* 7- 6& 7

verb(_4,[obj-_l]) C-heard(4, 1)
comps([obj- 1]) 8-true

comp(obj-_l) E-true
nounph(1, 8) C-true

verbph(1) f-true
verb(_l,[obj-_9,pobj(to)-_10]) E-gave(1, 9, 10)
comps([obj-_9,pobj(to)-_l 0]) C-true

comp(obj-_9) E-true
nounph(_9,indef) C-true

det(_9,indef) ll/_12-exists(9, 12,_11)
noun(9,[]) 7-apple(_9)

comps ([pobj-(to)-_ 10]) E-true
comp (pobj (to)-_ 10) g-true

nounph(_10,all) 8-true
det(_10,all) 13/_14-each(10, 14, 13)
noun(_10,[]-) E-woman(_10)

Reshaping tree, time = 26 msec.

sent C-true
nounph(1,def) g-true

det(_l,def) 2/ 3-def(1, 3, 2)
noun(_l,[]) g-man(_l)
relative(_l) g-true

nounph(_l,wh) g-true
nounph(_4,def) @_5-def(4, 4=mary,_5)
rel_mk(_l) g-true
sent g-true

verbph(_4) e-true
verb(_4,[obj-_l]) g-saw(4, 1)

conj(and) 6* 7- 6& 7
verb(_4,[obj-_l]) t-heard(4, 1)

comps([obj-_l]) t-true
comp(obj-_l) g-true

nounph(8,all) e-true
det(_8,all) 9/ 10-each(8, 10, 9)
noun(_8,[]) g-woman(_8)

nounph(11,indef) g-true
det(_ll,indef) 12/ 13-exists(11, 13,_12)
noun(_l 1,[]) ~-app]-e(_l 1)

verbph(_l) t-true
verb(1,[obj-_ll,pobj(to)-_8]) g-gave(1, 11,_8)
comps([obj-_l 1,pobj(to)-_8]) e-true

comp(obj-_l 1) g-true
comps([pobj(to)-_8]) t-true

comp(pobj(to)-_8) t-true

Semantic analysis, time = 22 msec.

def(_l,man(_l)&heard(mary,_l)&saw(mary,_l),
each(_2,woman(_2),exists(_3,apple(_3),gave(1, 3, 2))))

American Journal of Computat ional Linguistics, Volume 9, Number 2, Apr i l -June 1983 91

