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Logic grammars are grammars expressible in predicate logic. Implemented in the 
programming language Prolog, logic grammar systems have proved to be a good basis for 
natural language processing. One of the most difficult constructions for natural language 
grammars to treat is coordination (construction with conjunctions like 'and'). This paper 
describes a logic grammar formalism, modifier structure grammars (MSGs), together with an 
interpreter written in Prolog, which can handle coordination (and other natural language 
constructions) in a reasonable and general way. The system produces both syntactic 
analyses and logical forms, and problems of scoping for coordination and quantifiers are 
dealt with. The MSG formalism seems of interest in its own right (perhaps even outside 
natural language processing) because the notions of syntactic structure and semantic 
interpretation are more constrained than in many previous systems (made more implicit in 
the formalism itself), so that less burden is put on the grammar writer. 

1. Introduction 

Since the development of the Prolog programming 
language (Colmerauer 1973; Roussel 1975), logic 
programming (Kowalski 1974, 1979; Van Emden 
1975) has been applied in many different fields. In 
natural language processing, useful grammar formal- 
isms have been developed and incorporated in Prolog: 
metamorphosis grammars, due to Colmerauer (1978), 
and extraposition grammars, defined by F. Pereira 
(1981); definite clause grammars (Pereira and Warren 
1980) are a special case of metamorphosis grammars. 
The first sizable application of logic grammars was a 
Spanish/French-consultable data base system by Dahl 
(1977, 1981), which was later adapted to Portuguese 
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by L. Pereira and H. Coelho and to English by F. 
Pereira and D. Warren. Coelho (1979) developed a 
consulting system in Portuguese for library service, 
and F. Pereira and D. Warren (1980) developed a 
sizable English data base query system with facilities 
for query optimization. McCord (1982, 1981) pres- 
ented ideas for syntactic analysis and semantic inter- 
pretation in logic grammars, with application to Eng- 
lish grammar; some of these ideas are used in our 
work described here. 

Coordination (grammatical construction with the 
conjunctions 'and', 'or', 'but') has long been one of 
the most difficult natural language phenomena to han- 
dle, because it can involve such a wide range of gram- 
matical constituents (or non-constituent fragments), 
and ellipsis (or reduction) can occur in the items con- 
joined. In most grammatical frameworks, the grammar 
writer desiring to handle coordination can get by rea- 
sonably well by writing enough specific rules involving 
particular grammatical categories; but it appears that a 
proper and general treatment must recognize coordina- 
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tion as a "me tag rammat i ca l "  construction,  in the sense 
that  metarules,  general system operations,  or " second-  
pass"  operat ions such as t ransformations,  are needed 
for its formulation.  

Perhaps the most  general and powerful  metagram-  
matical device for handling coordinat ion in computa-  
t ional linguistics has been  the SYSCONJ facility for  
augmented transit ion networks (ATNs) (Woods 1973; 
Bates 1978). The ATN interpreter  with this facility 
built into it can take an ATN that does not itself men-  
tion conjunctions at all, and will parse reduced coordi-  
nate constructions,  which are of the form 

A X and Y B, 

for example,  

John drove his car through and 
A X 

completely demolished a plate glass window. 
Y B 

where the unreduced deep structure corresponds to 

A X B and A Y B. 

The result  of the parse is this unreduced structure.  
SYSCONJ accomplishes  this by t reat ing the conjunc-  
tion as an interruption which causes the parser  to back  
up in its history of the parse. Before  backing up, the 
current  conf igurat ion ( immedia te ly  before  the inter-  
ruption) is suspended for later merging. The backing 
up is done to a point when the string X was being 
parsed (this defines X),  and with this configurat ion the 
string Y is parsed. The parsing of Y stops when a 
configurat ion is reached that  can be merged with the 
suspended configuration,  whereupon B is parsed. The 
choices made in this process can be deterministic or 
non-determinist ic ,  and can be guided by syntactic or 
semantic  heuristics. 

There  are some problems with SYSCONJ, however.  
It  suffers f rom inefficiency, due to the combinator ial  
explosion f rom all the choices it makes.  Because of 
this inefficiency, it in fact  has not been used to a great 
extent  in ATN parsing. Ano the r  p rob lem is that  it 
does not handle embedded  complex structures. Fur-  
thermore,  it is not clear to us that SYSCONJ offers a 
good basis for handling the scoping problems that  arise 
for semantic  interpretat ion when conjunctions interact  
with quantifiers (and other modifiers)  in the sentence.  
This latter problem is discussed in detail below. 

In this paper  we present  a system for handling co- 
ordination in logic grammars.  The system consists of 
three things: 
(1) a new formal ism for  logic grammars ,  which we 

call modifier structure grammars (MSGs), 
(2) an interpreter  (or parser)  for  MSGs that  takes all 

the responsibili ty for the syntactic aspects of co- 
ordination (as with SYSCONJ), and 

(3) a semant ic  in terpre ta t ion  componen t  that  prod-  
uces logical forms f rom the output  of the parser  
and deals with scoping problems for coordination.  

The whole sys tem is implemented  in Prolog-10 
(Pereira, Pereira, and Warren  1978). 

Coord ina t ion  has of course received some t rea t -  
ment  in s tandard  logic g rammars  by  the writ ing of 
specific g rammar  rules. The most  extensive t rea tment  
of this sort that  we know of is in Pereira et al. (1982),  
which also deals with ellipsis. However ,  we are aware 
of no general,  metagrammat ica l  t rea tment  of coordina-  
tion in logic grammars  previous to ours. 

Modif ier  structure grammars ,  described in detail in 
Section 2, are true logic grammars ,  in that  they can be 
t rans la ted  (compiled)  directly into Horn  clause sys- 
tems,  the p rogram fo rma t  for  Prolog. In fact ,  the 
t r ea tmen t  of ex t rapos i t ion  in MSGs is based  on F. 
Pere i ra ' s  (1981)  ext rapos i t ion  g rammars  (XGs),  and 
MSGs can be compiled into XGs (which in turn can be 
compiled into Horn  clause systems).  A new element  
in MSGs is that  the format ion  of analysis structures of 
sentences has been  made largely implicit in the gram- 
mar  formalism. For  previous logic g rammar  formal-  
isms, the format ion  of analyses is entirely the responsi-  
bility of the g rammar  writer. Compil ing MSGs into 
XGs consists in making this fo rmat ion  of analyses 
explicit. 

Although MSGs can be compiled into XGs, it seems 
difficult to do this in a way that  treats coordinat ion 
automatical ly (it appears  to require more metalogical  
facilities than  are current ly  available in Prolog sys- 
tems).  Therefore ,  we are using an interpreter for  MSGs 
(writ ten in Prolog).  

For  MSGs, the analysis structure associated (by the 
sYstem) with a sentence is called the modifier structure 
(MS) of the sentence. This structure can be consid- 
ered an annota ted  phrase structure tree, and in fact  
the name "modif ie r  structure g r ammar"  is intended to 
be parallel to "phrase  structure g rammar" .  If  ext rapo-  
sition and coordinat ion  are neglected,  there is a 
con tex t - f ree  phrase  s t ructure  g rammar  under lying an 
MSG; and the MS trees are indeed derivat ion trees for 
this underlying grammar ,  but  with extra  in format ion  
a t tached to the nodes. 

In an MS tree, each node contains not only syntac-  
tic information but also a term called a semantic item 
(supplied in the g rammar) ,  which de te rmines  the 
node 's  contr ibut ion to the logical fo rm of the sentence.  
This contr ibut ion is for  the node alone, and does not 
refer  to the daughters  of the node, as in the approach  
of Gazdar  (1981).  Through their semantic  items, the 
daughters  of a node act as modifiers of the node, in a 
fairly traditional sense made precise below - hence the 
term "modif ier  s t ructure".  

The notion of modifier  structure used here and the 
semantic  interpretat ion component ,  which depends on 
it, are much the same as in previous work by McCord  
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(1982, 1981), especially the latter paper. But new 
elements are the notion of MSG (making modifier  
structure implicit in the grammar),  the MSG interpret-  
er, with its t reatment of coordination, and the specific 
rules for semantic interpretat ion of coordination. 

The MSG interpreter is described in Section 3. As 
indicated above, the interpreter completely handles the 
syntax of coordination.  The MSG grammar itself 
should not mention conjunctions at all. The interpret-  
er has a general facility for treating certain words as 
demons (cf. Winograd 1972), and conjunct ions are 
handled in this way. When a conjunction demon ap- 
pears in a sentence 

A X conj Y B, 

a process is set off which in outline is like SYSCONJ, 
in that backing up is done in the parse history in order 
to parse Y parallel to X, and B is parsed by merger 
with the state interrupted by the conjunction. Howev- 
er, our system has the following interesting features: 

(1) The MSG interpreter  manipulates stacks in 
such a way that embedded coordination (and coordi- 
nation of more than two elements)  and interactions 
with extraposition are handled. (Examples are given 
in the Appendix.) 

(2) The interpreter produces a modifier structure 
for the sentence 

A X conj Y B 

which remains close to the surface form, as opposed to 
the unreduced structure 

A X B conj A Y B 

(but it does show all the pertinent semantic relations 
through unification of variables). Not expanding to 
the unreduced form is important for keeping the modi- 
fier relationships straight, in particular, getting the 
right quantifier scoping. Our system analyzes the sen- 
tence 

Each man drove a car through and 
completely demolished a glass window, 

producing the logical form 

each(X,man(X),exists(Y,car(Y),  
exists(Z,glass(Z)&window(Z), 
drove_through(X,Y,Z)  

&completely(demolished(X,Z)) ))) 

This logical form would be difficult to recover from 
the unreduced structure, because the quantified noun 
phrases are repeated in the unreduced structure, and 
the logical form that corresponds most naturally to the 
unreduced structure is not logically equivalent to the 
above logical form. 

(3) In general, the use of modifier structures and 
the associated semantic interpretat ion component  per- 

mits a good treatment  of scoping problems involving 
coordination. Examples are given below. 

(4) The system seems reasonably efficient. For  
example, the analysis of the example sentence under 
(2) above (including syntactic analysis and semantic 
interpretation) was done in 177 milliseconds. The 
reader can examine analysis times for other  examples 
in the Appendix. One reason for the efficiency is just 
that the system is formulated as a logic programming 
system, and especially that it uses Prolog-10, with its 
compiler. Another  reason presumably lies in the de- 
tails of the MSG interpreter.  For  example, the inter- 
preter  does not save the complete history of the parse, 
so that the backing up necessary for coordination does 
not examine as much. 

(5) The code for the system seems short,  and 
most of it is listed in this paper. 

The semantic interpretat ion component  is described 
in Section 4, but not in complete detail since it is tak- 
en in the main from McCord (1982, 1981). Emphasis 
is on the new aspects involving semantic interpretat ion 
of coordinate modifiers. 

Semantic interpretation of a modifier structure tree 
is done in two stages. The first stage, called reshaping, 
deals heuristically with the well-known scoping prob- 
lem, which arises because of the discrepancies that can 
exist between (surface) syntactic relations and intend- 
ed semantic relations. Reshaping is a transformation 
of the syntactic MS tree into another  MS tree with the 
(hopefully)  correct  modifier  relations. The second 
stage takes the reshaped tree and translates it into 
logical form. The modifiers actually do their work of 
modification in this second stage, through their seman- 
tic items. 

As an example of the effects of reshaping on coor- 
dinate structures involving quantifiers, the sentence 

Each man and each woman ate an apple 

is given the logical form 

each(X,man(X),exis ts (Y,apple(Y) ,a te(X,Y)))  
& each(X,woman(X),exis ts (Y,apple(Y) ,a te(X,Y))) ,  

whereas the sentence 

A man and a woman sat at each table 

is given the form 

each(Y,table(Y),  exis ts(X,man(X),sa t_at(X,Y))  
& exis ts(X,woman(X),sat_at  (X,Y))) .  

Section 5 of the paper presents a short discussion 
of possible improvements for the system, and Section 
6 consists of concluding remarks. The Appendix to 
the paper contains a listing of most of the system, a 
sample MSG, and sample parses. The reader may wish 
to examine the sample parses at this point. 
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2. Modi f ier  Structure Grammars 

The most  fundamenta l  type of logic g rammar  is 
Co lmeraue r ' s  (1978)  me tamorphos i s  g rammar  (MG). 
Grammars  of this type can be viewed as generalized 
type-0 phrase structure grammars  in which the gram- 
mar  symbols (terminals and non-terminals)  are terms 
f rom predicate logic. In derivations, the rewriting of 
symbol  strings involves unification (Robinson  1965),  
instead of simple replacement.  

F. Pereira 's  (1981) extraposi t ion grammars  (XGs) 
are essentially general izat ions of MGs designed to 
handle (left) extraposition. In the lef t -hand side of an 
XG rule, g rammar  symbols can be connected by the 
infix opera tor  ' . . . ' ,  indicating a gap. When such a rule 
is used in rewriting, the gaps appear ing  in the left-  
hand side may match  arbi t rary  strings of g rammar  
symbols,  and then the lef t -hand side is replaced by the 
r ight -hand side fol lowed by the symbol  strings 
matched by the gaps (in the same order).  For  exam- 
ple, the XG rule 

a,b...c...d - - >  e,f 

is really a rule schema 

a , b , X , c , Y , d - - >  e,f ,X,Y 

where X and Y stand for arbi trary g rammar  symbol  
s tr ings.  There  is a constraint  on the use of gaps in 
rewriting called the bracketing constraint, for  which we 
refer  to F. Pereira (1981).  However ,  our MSG inter- 
preter  includes XG interpretat ion,  so the use of gaps is 
in fact completely specified below. 

In XG rules, symbols on the lef t-hand side follow- 
ing gaps represent  lef t -extraposed elements.  For  ex- 
ample, the extraposi t ion of noun phrases to the front  
of relative clauses (with replacement  by relative pro- 
nouns) can be handled by the XG rules: 

relative clause - - >  rel marker ,  sentence.  
re l_marker . . . t race  -- > r e l_pronoun .  
n o u n p h r a s e  - - >  trace. 

where ' t race '  marks the position out of which the noun 
phrase is being moved,  and is used by the second rule 
above in conjunct ion with a relative marker  to produce 
(or analyze) a relative pronoun.  

Pereira 's  implementa t ion of XGs is a Prolog pro-  
gram that  compiles XGs to Horn  clause systems, which 
in turn can be run by Prolog for parsing sentences.  In 
the compiled systems, extraposi t ion is handled by the 
manipula t ion  of a stack called the extraposition list, 
which is similar to the H O L D  list for ATN's (Woods 
1973). Elements  (like ' t race '  above)  on the lef t-hand 
sides of XG rules following the initial symbol  are in 
effect  put on the extraposi t ion list during parsing, and 
can be taken off when they are required later by the 
r ight-hand side of another  rule. Our MSG interpreter  
uses a reformulat ion of this same method.  

Since the grammar  symbols in XGs (and MGs) can 
be arbi trary terms f rom predicate logic, they can con- 
tain arguments.  These arguments  can be used to hold 
useful information such as selectional restrictions and 
analysis structures. For  example,  in the rule 

sentence (s (Subj ,Pred))  -- > 
noun_phrase (Sub j ) ,ve rb_phrase (Pred)  

each non- te rmina l  is augmented  with an a rgument  
represent ing  a syntact ic  structure.  (Here ,  following 
Prolog-10 syntax, the capitalized items are variables.)  
Manipulat ing such arguments  is the only way of get- 
ting analysis structures in XGs. As indicated in the 
Introduct ion,  a new ingredient in MSGs over  XGs is to 
au tomate  this process,  or to make  it implicit  in the 
grammar.  

MSG rules are of two forms. The basic form is 

A : S e m - - >  B. 

where A - - > B  is an XG rule and Sem is a te rm called a 
semantic item, which plays a role in the semantic  inter- 
pretat ion of a phrase analyzed by applicat ion of the 
rule. The semantic  i tem is (as in McCord  1981) of 
the form 

O p e r a t o r - L o g i c a l F o r m  

where, roughly, Logica lForm is the part  of the logical 
form of the sentence contr ibuted by the rule, and Op-  
erator  determines the way this partial structure com- 
bines with others. Details on semantic  items are post-  
poned to Section 4 (on semantic  interpretat ion) .  Ac- 
tually, the current  section and Section 3 deal mainly 
with syntactic construct ions which are independent  of 
the form of semantic  items. 

The second type of MSG rule looks exactly like an 
XG rule (no Sem is exhibited),  but the system takes 
care of inserting a special " t r iv ia l"  Sem, g-true. (Here  
the '8 '  is the opera tor  for left-conjoining,  described in 
Section 4.) Most  MSG rules for higher (non-lexical) 
types of phrases are of this type,  but not all of them 

are. 
A simple example of an MSG is shown in Figure 1. 

Following the notat ional  convent ions  of XGs (as well 
as the simpler defini te clause g rammars  built into 
Prolog-10) ,  we indicate terminal symbols  by enclosing 
them in brackets  [ ]. Rules can contain tests on their 
r ight-hand sides, enclosed in braces {}, which are Pro-  
log goals. In this example,  the tests are calls to the 
lexicon, shown af ter  the g rammar  rules, which consists 
of assertions (non-condi t ional  Horn  clauses). 

This grammar,  together  with the semantic  interpre-  
tat ion component ,  will handle sentences like the fol- 
lowing, producing the indicated logical forms: 
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s e n t - - >  nounph(X) ,verbph(X) .  

nounph(X)  - ->  de t (X) ,noun(X) .  
nounph(X)  - ->  proper_noun(X) .  

verbph(X) --> verb(X,Y),nounph(Y).  

d e t ( X ) : S e m - - >  [D],{d(D,X,Sem)}. 

n o u n ( X ) : g - P r e d - - >  [N],{n(N,X,Pred)}. 

p roper_noun(N)  - ->  

verb (X,Y): g-Pred -- > 

/*  Lexical entries * /  

[N],{npr(N)}. 

[V],{v(V,X,Y,Pred) }. 

n(man,X,man(X)) ,  n(woman,X,woman(X)) .  

npr(john),  npr(mary).  

v(saw,X,Y,saw(X,Y)),  v(heard,X,Y,heard(X,Y)) .  

d (each ,X,P/Q-each(X,Q,P) ) .  
d(a ,X,P/Q-exis ts (X,Q,P)) .  

Figure 1. A simple MSG with lexicon.  

John saw Mary. 
saw(john,mary).  

John heard each woman. 
each(Y,woman(Y),heard( john,Y)) .  

Each man saw a woman. 
each(X,man(X),exis ts(Y,woman(Y),saw(X,Y))) .  

A larger example MSG is listed in the Appendix. 
This grammar includes rules dealing with extraposition, 
and the lexicon contains rules used by the MSG inter- 
preter in handling coordination. 

Now let us look at the formation of syntactic struc- 
tures by the MSG system. As stated in the Introduc- 
tion, syntactic structures are trees called modifier 
structure (MS) trees. 

Suppose that a phrase is analyzed by application of 
an MSG rule 

A:Sem --> B. 

and further rule applications in an MSG. (The Sem 
may be explicit or supplied by the system for the sec- 
ond type of rule.) Then the modifier structure of the 
phrase is a term of the form 

syn(NT,Sem,Mods) 

where NT is the leading symbol (a non-terminal) in A 
and where Mods is the list of modifier structures of 
the subphrascs analyzed with the right-hand side B of 
the rule. The 'syn' structure is considered a tree node, 
labeled with the two items NT and Sem, and having 
daughter list Mods. 

As an example, the MS tree for the sentence "Each  
man saw a woman"  produced by the grammar in Fig- 
ure 1 is shown in Figure 2. This tree is printed by 
displaying the first two fields of a 'syn'  on one line 
and then recursively displaying the daughters, indented 
a fixed amount. 

sent g-true 
nounph(X)  g-true 

det(X) P /Q-each (X ,Q ,P )  
noun(X) g-man(X) 

verbph(X) g-true 
verb(X,Y) g-saw(X,Y) 
nounph(Y) g-true 

det(Y) R/S-exis ts(Y,S,R) 
noun(Y) g-woman(Y) 

Figure 2. MS tree for  " E a c h  man  saw a w o m a n . " .  

Let us now indicate briefly how MSGs can be com- 
piled into XGs so that these MS trees are produced as 
analyses. This method of compiling does not handle 
coordination metagrammatically (as does the interpret-  
er), but it does seem to be of general interest  for  
MSGs. 

In the compiled XG version of an MSG, each non- 
terminal is given two additional arguments, added, say, 
at the end. Each argument holds a list of modifiers. 
If the original non-terminal is nt(X1 .... ,Xn), the new 
non-terminal will look like 

nt(X1 .... ,Xn,Modsl ,Mods2) .  

When this non-terminal  is expanded by a non-trivial 
rule, then Mods l  will differ  f rom Mods2 by having 
one additional modifier on the front,  namely the modi- 
fier contr ibuted by the rule application. A rule is 
trivial if its right-hand side is empty. When a trivial 
rule is used to expand 'nt '  above, Mods l  will equal 
Mods2. 

As an example of rule translation, the first rule in 
Figure l is translated to 

sent([syn(sent ,g- t rue ,Modsl)  I Mods],Mods) - ->  
nounph(X,Mods 1,Mods2),verbph(X,Mods2,[  ]). 

(Here [X ] Y] denotes the list with first member X and 
remainder Y.) 

Any non-terminal  on the left-hand side of an MSG 
besides the leading non-terminal  is given a pair of 
identical Mods arguments (because it contr ibutes  no 
modifier by itself). For  example, the MSG rule 

rel mk(X). . . t race(X) - ->  rel_pron. 

would translate to 

rel_mk(X,[syn(rel  mk(X),g-true,Mods 1 ) I Mods],Mods) 
. . . trace(X,Mods2,Mods2) - ->  re l_pron(Modsl , [  ]). 
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For  parsing a sentence with respect  to the grammar  
in Figure 1, one would use 

sent([MST],[  ]) 

as start  symbol  (with MST unknown)  and the parse 
would bind MST to the modifier structure tree of the 
sentence. 

Pairs of list arguments  manipulated in the way just 
outl ined are called "d i f f e rence  lists",  and the tech-  
nique is common in logic programming.  One part  of 
compiling MGs to Horn  clauses is the addition to each 
non- te rmina l  of an a rgument  pair  for the terminal  
strings being analyzed. Pereira 's  compilat ion of XGs 
to Horn  clauses involves one more argument  pair for 
ext raposi t ion  lists. So the compi la t ion of MSGs to 
Horn  clauses involves three argument  pairs totally. In 
the MSG interpreter ,  descr ibed in the next  section, 
only a single argument  (not a pair) is needed for each 
of these three lists. 

3. The  M S G  In terpre ter  and the  Syntax  of 
Coord inat ion  

Our MSG processor  actually has a bit of compiler  in it, 
because  there is a p reprocessor  that  t ranslates  MSG 
rules into a form more convenient  for the interpreter  
to use. 

An MSG rule 

A:Sem - - >  B 

is preprocessed into a term 

rule (NT,Ext ,Sem,B 1 ) 

where NT is the leading non-terminal  in A, Ext  is the 
conversion of the remainder  of A into an extraposition 
list, and B1 is the conversion of B to list form. 

The notion and representa t ion of extraposition lists 
used here are just the same as F. Pereira 's  (1981).  A 
node in such a list is of the form 

x(Contex t ,Type ,Symbol ,Ext )  

where Context  is either 'gap '  or 'nogap ' ,  Type  is either 
' te rminal '  or 'nonterminal ' ,  Symbol  is a g rammar  sym- 
bol, and Ext  is the remainder  of the list. We denote  
the empty  extraposi t ion list by 'nil '  (Pereira used [ ]). 

The " le f t -hand  side remainder"  in a g rammar  rule 
(the part  after  the leading symbol)  is conver ted  to an 
ext raposi t ion list in a s t ra ight forward way, with one 
node for each symbol  in the remainder.  The Context  
says whether  the symbol  has a gap preceding it, and 
the remaining fields of an 'x '  node have the obvious 
meaning. For  the rule 

a , [ b ] . . . c - - >  d 

the extraposi t ion list would be 

x(nogap, terminal ,b ,x(gap,nonterminal ,c ,ni l ) ) .  

The r ight-hand side of an MSG rule is preprocessed 
to a (simple) list form in the obvious way. Thus,  a 
r ight-hand side (d,e,f) is conver ted  to the list [d,e,f], 
and a r ight-hand side with a single element  d is con- 
verted to the list [d]. 

As a complete  example,  the MSG rule 

a . . . b : e - p - - >  [c],{d},e 

is conver ted  to 

rule (a,x(gap,nonterminal ,b,ni l) ,e-p,[[c] ,{d} ,el). 

If  the MSG rule exhibits no semantic  item, then the 
preprocessor  supplies the trivial i tem e-true. 

The ' rule '  forms of the rules in an MSG are stored 
as assertions in the Prolog data base,  to be used by the 
interpreter.  One can unders tand 

rule (NT,Ext ,Sem,B 1 ) 

as the assertion: "There  is a rule for the non-terminal  
NT with extraposi t ion list Ext, e tc ."  

The rule preprocessor  is listed at the beginning of 
the Appendix.  

Now let us look at the interpreter  itself, which is 
listed af ter  the preprocessor  in the Appendix.  

The top-level  procedure  is 

parse (Str ing,NonTerminal ,Syn) 

which takes a String of terminals and a t tempts  to parse 
it as a phrase of type NonTerminal ,  with the syntactic 
structure Syn. We should comment  that  ' pa rse '  de- 
fines a top-down parser.  

This procedure calls the main working procedure  

prs (BodyLis t ,Str ing,Mods,Par ,Mer ,Ext)  

which parses String against a list BodyLis t  of goals of 
the type that  can appear  in the r ight-hand side (the 
body)  of a rule. The list of resulting syntactic struc- 
tures is Mods (one modifier  for each non-trivial  ex- 
pansion of a non- terminal  in BodyList) .  The remain-  
ing three arguments  of 'p rs '  are for stacks called the 
parent stack,  the merge stack,  and the ext rapos i t ion  
list. These are initialized to 'nil '  in the call of ' pa rse '  
to 'prs ' .  

The parent  stack serves two purposes.  One is to 
control  the recursion in the normal  working of the 
parser. (The parser  is much like an interpreter  for  a 
programming language - in fact,  for  a specialized ver-  
sion of Prolog itself.) The other  purpose  is to provide 
information for the coordinat ion demon,  when it backs 
up in (part  of) the parse history. 

A non-empty  parent  stack is a te rm of the fo rm 

parent  (BodyLis t ,Mods,Par)  

where BodyList  is a body  list, Mods  is a modif ier  list, 
and Par is again a parent  stack. A new level gets 
pushed onto the parent  stack by the sixth rule for  'p rs '  
and the ancillary procedure  'prspush ' .  This happens  

74 American Journal of Computational Linguistics, Volume 9, Number 2, April-June 1983 



Veronica Dahl and Michael C. McCord Treating Coordination in Logic G r a m m a r s  

when 'prs '  is looking at a body list of the form 
[ N T I B L ] ,  where the initial e lement  NT is a non- 
terminal that can be expanded by a 'rule' entry. If 
that rule is trivial (if its own body is empty),  then no 
actual push is done, and 'prs' continues with the re- 
maining current  body list BL. Otherwise,  'prspush'  
goes to a lower level, to parse against the body of the 
expanding rule. The items [ N T I B L ]  and Mods from 
the higher level are saved on the parent  stack (Mods is 
a variable for the remaining modifiers to be found on 
the higher level). 

Note  that the body list [ N T I B L ]  saved in the first 
field of the 'parent '  term is more than is needed for 
managing the recursive return to the higher level. 
Only the remainder,  BL, is needed for this, because 
NT has already been used in the parse. In fact, the 
rule that pops to the higher level (the eighth rule for 
'prs') does ignore NT in doing the pop. The extra 
information, NT, is saved for the second purpose of 
the parent stack, the backing up by the coordination 
demon. 

Before going into the details of coordinat ion,  
though, let us continue with the description of the 
"normal"  working of the parser. 

In normal parsing, there is exactly one place where 
a new 'syn'  node is added to the MS trees being built. 
This is in the second rule for 'prspush', which handles 
non-trivial rule expansions. The addition of this node 
is in accordance with the definition of modifier struc- 
ture given in the preceding section. 

The pushing rule of 'prs'  (the sixth rule) also ma- 
nipulates the extraposition stack. The extraposition 
component  of the expanding rule is concatenated onto 
the front of the main extraposition list (being carried 
in the last argument of 'prs ') .  This is analogous to a 
HOLD operation in ATNs. Of course, if no extraposi- 
t ion is shown in the rule, the extraposi t ion list will 
remain the same. 

The third and fourth rules for 'prs' handle terminals 
in the body list. The first of these tries to remove the 
terminal from the string argument,  and the second 
tries to remove it from the extraposition list (as in a 
VIR arc for ATNs). 

The seventh 'prs '  rule tries to remove a non- 
terminal from the extraposition list (again, like a VIR 
arc). 

The last 'prs' rule is the termination condition for 
the parse. It just requires that all arguments be null. 

Now we can discuss coordination demons. All the 
rest of the interpreter rules deal with these. 

The first 'prs' rule is the one that notices demon 
words D. It calls a procedure 'demon' ,  passing D as 
the first argument and all the rest of the information it 
has in other arguments. 'demon'  takes control of the 
rest of the parse. In the listed interpreter  there is only 
one 'demon'  rule, one that tests whether D is a con- 
junction. It does this with the goal 

conjunct ion(D,Cat ,Sem),  

which gives the syntactic category Cat for the con- 
junction D, and the semantic item Sem for a new mod- 
ifier node to be constructed for the right conjunct .  
The lexicon contains 'conjunct ion '  entries as asser- 
tions. 

For  understanding what the conjunct ion demon 
does, it is best to look at an example, as it would be 
parsed for the grammar in the Appendix. We will use 
the specific notation (for variables, etc.) given in the 
demon rule, and the reader should refer to that rule in 
the Appendix. It should be borne in mind that Prolog 
is non-deterministic; we will only state what happens 
on the successful path through the choices made. 

The example is 

John saw and Mary heard the train. 

When the demon for 'and'  is called, the current body 
list is 

BL=  [comps([obj-Y])[.  

The non-terminal  comps(Comps)  looks for a list 
Comps of complements,  and in this case there is to be 
one complement,  an object noun phrase. The MS tree 
constructed so far is 

sent e-true 
nounph(X,def)  @P-de f (X ,X=john ,P )  
verbph(X) C-true 

verb(X,[obj-Y])  g-saw(X,Y) 
I Mods 

I Mods2 

Here the entry [ Mods in the last daughter position for 
the verb phrase indicates fur ther  modifiers on that 
level to be put in the unbound variable Mods. (This is 
explicitly the same variable 'Mods'  used in the demon 
rule.) Similarly, I Mods2 represents  the remaining 
modifiers for 'sent '  node. The variable Mods2 does 
not appear in the 'demon'  rule, but will be referred to 
below. 

The parent stack Par available to the demon has 
two levels, and the two body lists are 

[verbph(X)],  
[sent]. 

(Recall that we are describing the state of affairs in 
the successful path through the search space.) The 
recursive procedure 'backup'  is called, which can look 
any number of levels through the parent  stack. It goes 
to the second level, where the body list is [sent]. 
(Choosing the first level with [verbph(X)] would be 
appropriate  for the sentence " John  saw and barely 
heard the train".)  In passing up a level, 'backup'  re- 
quires that the body list skipped over must be 
'satisfied', which means that any pending goals in the 
body list (members of its tail) are satisfiable by trivial 
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rules. When 'backup'  does pass up a level, the modifi- 
er list for that level is closed off. Thus Mods in the 
tree displayed above will be bound to the empty list. 
(There are no more modifiers for that 'verbph'  node.) 

As a single remaining daughter for the level backed 
up to, a new 'syn'  node for the right conjunct is at- 
tached by the demon. This means binding the variable 
Mods2 in the above tree to the list consisting of this 
node. Now our tree looks like 

sent g-true 
nounph(X,def)  @P-de f (X ,X=john ,P )  
verbph(X) g-true 

verb(X,[obj-Y])  g-saw(X,Y) 
conj(and) Q*R-(Q&R) 

I Mods0 

The variable Mods0 is to contain the list of modifiers 
for the conjunction node. This list will turn out to 
have a single element,  a new 'sent '  node for the re- 
mainder of the sentence, "Mary  heard the train". 

Backing up to the [sent] level makes the non-  
terminal N T = s e n t  available to the demon,  and the 
parent  stack Par l  at the [sent] level. The demon then 
continues the parse by calling 'prs '  with body list 
[NT]=[sent ] ,  but  with informat ion pushed onto the 
merge stack. The main item stored on the merge stack 
is the body list BL=[comps( [ob j -Y] ) ] ,  which was 
pending at the time of interruption by the conjunction. 
The items Pa r l ,  Ext,  and of course the old merge 
stack Mer are also pushed on. 

So now we continue parsing "Mary  heard the 
train",  but with another  kind of demon lurking, the 
interrupted goal BL. The second rule for 'prs'  notices 
this demon. When we are parsing and come to a goal 
that can be unified with BL, then we can try merging. 
This happens when we are looking for the comple- 
ments of "heard" .  This unification includes the unifi- 
cation of the object  variable Y of " saw"  with the ob- 
ject variable of "heard" ,  so that " the  t ra in"  will logi- 
cally be the object of " saw"  as well as "heard" .  

The procedure 'cutoff '  called by the second 'prs'  
rule requires that no new unsatisfied goals have devel- 
oped in parsing the right conjunct  (aside from the goal 
BL to be merged) and also closes off  modifier lists in 
the local parent stack Par for the right conjunct.  

Then  the merged parse is cont inued by a call to 
'prs',  with BL as goal and with the parent  stack, merge 
stack, and extraposi t ion list popped from the merge 
stack. When this is completed,  our MS tree is as 
shown in Figure 3. 

The meanings of the semantic items used in this MS 
tree, and their use in producing the logical form, will 
be explained in the next section; but it is worth stating 
now what the resulting logical form is: 

def (Y,train(Y),saw(john,Y) &heard(mary,Y)).  

The reader  may examine the analyses produced for 
other  examples listed in the Appendix. 

sent g-true 
nounph(X,def)  @P-de f (X ,X=john ,P )  
verbph(X) g-true 

verb(X,[obj-Y])  g-saw(X,Y) 
conj(and)  Q*R-(Q&R) 

sent g-true 
nounph(Z,def)  @S-def (Z ,Z=mary ,S)  
verbph(Z)  g-true 

comps([obj-Y]) g-true 
comp(obj-Y)  g-true 

nounph(Y,def)  g-true 
det(Y,def)  T / U - d e f ( Y , U , T )  
noun(Y,[  ]) g-train(Y) 

Figure 3. MS tree for 
"John saw and Mary heard the train." 

4. S e m a n t i c  In te rpre ta t ion  and Coord ina t ion  

The overall idea of the semantic in terpre ta t ion 
component  was given in the Introduction.  The rule 
system is listed complete ly  in the Appendix.  This 
system is taken essentially from McCord (1981),  with 
some rules deleted (rules dealing with focus) ,  and 
some rules added for coordination. 

For  a discussion of MS tree reshaping as a means of 
handling scoping of modifiers,  we refer  to McCord  
(1982, 1981). Also, the reader  may examine the ex- 
amples of reshaped trees given in the Appendix. 

We will, however,  review the second stage of se- 
mantic interpretation, because the new rules for coor- 
dination are added here and because it is more central 
for understanding modifier structure. In this stage, the 
reshaped MS tree is translated to logical form, and the 
top-level procedure for this is ' translate' .  This proce- 
dure actually works only with the semantic-i tem com- 
ponents of MS tree nodes. (Reshaping uses the first, 
syntactic components . )  

One semantic item can combine with (or modify) a 
second semantic item to produce a third semantic item. 
' t ranslate '  uses these combining operat ions in a 
straightforward recursive fashion to produce the logi- 
cal form of an MS tree. The ancillary procedure  
( ' t ransmod')  that actually does the recursion produces 
complete semantic items as translations, not just logi- 
cal forms. For  the top-level result, the operator  com- 
ponent  is thrown away. ' t ransmod'  works simply as 
follows: The daughters (modifiers) of a tree node N 
are t ranslated recursively (to semantic items) and 
these items cumulatively modify the semantic item of 
N, the leftmost acting as the outermost  modifier, etc. 

So the heart  of the translat ion process is in the 
rules that say how semantic items can combine with 
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other semantic items. These are rules for the proce- 
dure 

trans(Sem0,Seml,Sem2) 

which says that Sere0 combines with (modifies) Seml 
to produce Sem2. In the typical case, this combination 
depends only on the Operator component of Sem0; 
but there are exceptional cases where it depends as 
well on the operator in Seml. Furthermore, 'trans' is 
free to create a new operator for the result, Sem2, 
which can affect later operations. This happens with 
coordinate modifiers. We often speak of Sem0 
"operating on" Seml, but "combining with" is the 
more accurate term generally. 

The only operators appearing in the small sample 
grammar in the Appendix are of the form g, @P, P /Q,  
and P*Q. Here P and Q are variables standing for 
logical forms. The listing for 'trans' in the Appendix 
includes only rules for these operators and their auxili- 
aries, although larger grammars involve other opera- 
tors. We will elucidate the effects of these four opera- 
tors with examples. The last one, P 'Q ,  is used for 
coordination. 

The operator 'g' is for left-conjoining. When 
g-man(X) operates on g-see(X,Y), the result is 
g-man(X)&see(X,Y). 

The operator @P is used for substitutions in its 
associated logical form. When @P-not(P) operates on 
g-laugh(X), the result is g-not(laugh(X)). 

The operator P / Q  is used for forms that require 
two substitutions. When 

P/Q-each(X,Q,P) 

operates on g-man(X), the result is 

@P-each(X,man(X),P), 

which in turn can operate by substituting for P. 
Notice that @p and P / Q  are similar to lambda(P) 

and lambda(Q)lambda(P) respectively. But they also 
interact with other operators in the system in specific 
ways. 

To show these first three operators working togeth- 
er, let us look at the MS tree that would be produced 
for the sentence "Each man laughed". (Reshaping 
leaves this tree unaltered.) We throw away the syn- 
tactic fields in the tree nodes (working only with the 
semantic items), and show the successive stages in 
producing the logical form in Figure 4. In following 
the steps in Figure 4, the reader should refer to the 
'trans' rules in the Appendix, which are numbered for 
reference here. In each step of the translation, a node 
combines with its parent, and the 'trans' rule used to 
do this is indicated. 

The operator P*Q appears in coordinate modifiers. 
The first four 'trans' rules deal with it, and they create 
auxiliary operators. The following example will make 
clear how these are manipulated. The sentence is 

(1) g-true 
g-true 

P/Q-each(X,Q,P) 
g-man(X) 

g-true 
g-laughed(X) (Rule 7 applies) 

(2) g-true 
g-true 

P/Q-each(X,Q,P) 
g-man(X) 

g-laughed(X) (Rule 7) 

(3) g-laughed(X) 
g-true 

P/Q-each(X,Q,P) 
g-man(X) (Rule 7) 

(4) g-laughed(X) 
g-man(X) 

P/Q-each(X,Q,P) Rule 5) 

(5) g-laughed(X) 
@P-each(X,man(X),P) (Rule 6) 

(6) g-each(X,man(X),laughed(X)). 

Figure 4. The working of 'translate'. 

"Each man ate an apple and a pear." 

This example is shown in the Appendix, with the ini- 
tial syntactic analysis and the reshaped tree. In the 
reshaped tree, the 'sent' node has three daughters, the 
first being for the simple noun phrase "each man", the 
second for the conjoined noun phrase "an apple and a 
pear", and the third for the verb phrase with the ob- 
ject removed. 

If we perform all the modifications that are possible 
in this tree without involving the coordination opera- 
tor, and if we remove the syntactic fields, then the tree 
looks like the following: 

g-ate(X,Y) 
@P-each(X,man(X),P) 
g-true 

Q/R-exists(Y,R,Q) 
g-apple(Y) 
S*T-(S&T) 

@U-exists(Y,pear(Y),U) 

Now the first 'trans' rule can apply to the lowest pair 
of nodes, and the tree becomes: 

g-ate(X,Y) 
@P-eaeh(X,man(X),P) 
g-true 

Q/R-exists(Y,R,Q) 
g-apple(Y) 
cbase 1 (@U-exists(Y,pear(Y),U),S,T)-(S&T) 
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We have saved the modifier for "a  pear"  in the first 
argument of the ' cbase l '  operator .  Next,  this item 
operates on the g-true node,  by application of the 
second ' trans'  rule, and we get the tree 

g-ate(X,Y) 
@P-each(X,man(X) ,P)  
cbase2(g,@U-exis ts(Y,pear(Y),U),S,T,S&T)-true 

Q/R-exis t s (Y,R,Q)  
g-apple(Y) 

Now, the third ' trans'  rule is applied twice, to the two 
daughters of the 'cbase2'  node, and we get 

g-ate(X,Y) 
@P-each(X,man(X) ,P)  
cbase2(@Q,@U-exis ts (Y,pear(Y) ,U) ,S ,T,S&T) 

-exists(Y,apple(Y),Q) 

Then, as the last step with coordination operators,  the 
fourth ' trans'  rule is applied to let the 'cbase2'  node 
operate on the top node of the tree. This involves two 
recursive calls to ' t rans ' ,  in which the two conjunct  
noun phrases operate on the material in the scope of 
the coordinate node. (In this case, the material in the 
scope is ate(X,Y).)  This material gets duplicated, be- 
cause of the double application to it. The resulting 
tree now is 

g-exists(Y,apple(Y),ate(X,Y))&exists(Y,pear(Y),  
a te(X,Y))  

@P-each(X,man(X) ,P)  

Finally, the @P node modifies the top node, and after 
discarding the operator  (an 'g') in the resulting item, 
we get the logical form 

each(X,man(X),exis ts(Y,apple(Y),a te(X,Y))  
&exists(Y),pear(Y),ate(X,Y)) ) 

Near the end of the Introduction,  examples were 
given of two syntactically similar sentences with coor- 
dination, for which the produced logical forms are 
quite different. For  the sentence 

"Each  man and each woman ate an apple",  

the reshaping stage produces a tree that in outline 
looks like the following: 

sent 
nounph "each  man"  

conj(and) 
nounph "each  woman"  

nounph "an  apple" 
verbph " a t e "  

Then, the material for "a te  an apple" will be in the 
scope of the conjoined noun phrase and this material 
gets duplicated, with the resulting logical form being 

each(X,man(X),exis ts (Y,apple(Y) ,a te(X,Y)))  
&each(X,woman(X),exis ts(Y,apple(Y),a te(X,Y))) .  

On the other hand, for the sentence 

"A man and a woman sat at each table",  

reshaping moves the universally quantif ied noun 
phrase to the left of the existentially quantified con- 
joined noun phrase, and the tree is as follows: 

sent 
nounph "each  table"  
nounph "a  man"  

conj(and) 
nounph "a  woman"  

verbph "sat  a t"  

Then the only material in the scope of the conjoined 
noun phrase is for  "sat  at" ,  and only this gets dupli- 
cated. (In fact, the scoping is like that for our earlier 
example, "Each  man ate an apple and a pear" . )  The 
complete logical form is 

each(Y,table(Y),  exis ts(X,man(X),sat  a t (X,Y))  
& exis ts (X,woman(X) ,sa t_at (X,Y))  ). 

Notice that the logical forms for conjoined phrases 
in the above analyses share variables. For  instance, 
the same variable X is used in both  man(X)  and 
woman(X)  in the last analysis. This sharing of varia- 
bles arises naturally because of the unification of body 
lists that is performed during parsing by the 'merge'  
demon. It keeps things straight very nicely, because 
the shared variables may appear in another  predica- 
tion, like sat_at(X,Y) above, which occurs only once, 
outside the conjoined phrase, but is related logically to 
both conjuncts. 

This sharing of variables presents no problems as 
long as the variables are quantified over (as they are 
by the existential in the preceding example).  But it 
makes proper  nouns less convenient  to treat. If coor- 
dination were not being considered, it would be con- 
venient to parse proper  nouns by the sort of rule listed 
in Figure 1 in Section 2, where the proper  noun gets 
immediately unified with the variable X appearing in 
nounph(X).  But if such a rule is used with the MSG 
parser, then a sentence as simple as " John  and Mary 
laughed" will not parse, because the parser at tempts to 
unify the logical subject variable with both ' john'  and 
'mary' .  

Therefore ,  as the semantic item for a proper  noun 
N, we use a quantified form, specifically 

@ P - d e f ( X , X = N , P ) ,  

and this is carried through in most of the processing. 
However ,  the procedure ' translate ' ,  after  it has carried 
out all the modificat ion,  calls a procedure  'simplify'  
which simplifies the logical form. This gets rid of 
some unnecessary ' t rue 's  and it carries out the substi- 
tutions implicit in the proper  noun forms, by doing 
some copying of structures and renaming of variables. 
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For  example,  the logical fo rm for  " J o h n  and Mary  
laughed" prior to simplification is essentially 

d e f ( X , X =  john, laughed(X))  
&def (X,X=mary , l aughed(X)) .  

But after  simplification, it is 

laughed(john)&laughed(mary) .  

In the sample analyses in the Appendix,  we give in 
some cases only the logical form and in other cases the 
intermediate structures also (the syntactic analysis tree 
and the reshaped tree). Analysis times are in milli- 
seconds. These do not include times for I /O  and con- 
version of character  strings to word lists. Variables 
are printed by Prolog-10 in the form n ,  where n is an 
integer. 

5. Possible Extens ions  

The main advantages  of the formal ism presented  
here are: 
• automating the t rea tment  of coordination,  
• freeing the user of concern with structure-building, 

and 
• providing a modular  t rea tment  of semantics,  based 

upon information given locally in each rule. 
While making a reasonable  compromise  be tween  

power and elegance on the one hand, and efficiency 
on the other,  our present  implementa t ion  could be 
improved in several ways. For  instance, because the 
parsing history is kept  in a stack that  is regularly pop-  
ped - the Parent  stack - some parsing states are no 
longer available for backing up to, so the possibility 
exists for some acceptable sentences not to be recog- 
nized. 

We have exper imented  with modif icat ions of the 
MSG interpreter  in which more of the parse history is 
saved, and have also considered compiling MSGs into 
Prolog and using a general ' s ta te '  predicate which re- 
turns the proof  history, but we have not as yet ob- 
tained sat isfactory results along these lines. 

Another  possible improvement  is to use some se- 
mantic guidance for the (at present  blind) backing up 
through parsing states. The parser  a l ready carries 
along semantic information (in semantic items) to be 
used later on. Some of this information could perhaps 
also be used during parsing, in order to improve the 
backup. Research along these lines may well provide 
some more insight into the di lemma of whether  syntax 
and semantics should be kept  separate  or intermingled. 

It  would also be interesting to include collective 
and respective readings of coordinated noun phrases,  
perhaps along the lines proposed in Dahl (1981).  

We do not presume that  our general t rea tment  of  
coordinat ion will work for all possible MSG grammars.  
Care is necessary in writing an MSG, as with any other  
formalism. What  we do provide are enough elements 
to arrive at a g rammar  definition that  can t reat  most  

s t ructure-bui lding and coordinat ion  problems in a 
modular  and largely au tomated  manner.  

We have also investigated an alternative approach 
to coordination,  which is not metagrammat ica l  but is 
never theless  more flexible than previous approaches ,  
and involves still another  g rammar  formalism we be- 
lieve worth studying in itself. We have named it the 
gapping grammar (GG) formalism, as its main feature 
is that it allows a g rammar  rule to rearrange gaps in a 
fairly arbi trary fashion. This will be the subject of a 
for thcoming article. 

6. Conc lud ing  Remarks  

We have described a new logic g rammar  system for 
handling coordinat ion metagrammat ica l ly ,  which also 
automat ica l ly  builds up the modif ier  s t ructure of a 
sentence during parsing. This structure, as we have 
seen, can be considered an annota ted  phrase structure 
tree, but the underlying grammar  - unlike other recent  
approaches  to NL processing - is not necessari ly 
context - f ree .  The rules accepted  are general ized 
type-0 rules that may include gaps (in view, for in- 
stance, of left extraposi t ion),  and semantic  interpreta-  
tion, as we have seen, is guided through the semantic  
items, local to each rule, which help resolve scoping 
problems.  The system's  semantic  interpretat ion com- 
ponent  can in part icular  deal with scoping problems 
involving coordination. 

While the t r ea tment  of  coordinat ion is the main 
motivat ion for developing still another  logic g rammar  
formalism, we believe our notion of modifier structure 
grammar  to be particularly at tractive for allowing the 
user to write grammars  in a more s t raightforward man-  
ner and more  clearly. Also, because  the semant ic  
information about  the structure being built up is de- 
scribed modular ly  in the g rammar  rules, it becomes  
easier to adapt  the parser  to a l ternat ive domains  of 
application: modifying the logical represen ta t ion  ob- 
tained need only involve the semantic items in each 
rule. A related but less flexible idea was independent-  
ly developed for Restr ict ion Grammars  by Hirshman 
and Puder  (1982). RGs are also logic grammars  in the 
sense that they are based on Prolog, but they deal only 
with context- f ree  definitions augmented by restrictions 
(which are procedures at tached to the rules). In RGs, 
a tree record of the context - f ree  rules applied is auto- 
matically generated during the parse. More evolved 
representa t ions  for  the sentence,  however ,  are again 
the user ' s  responsibi l i ty and require processing this 
automatical ly generated parse tree. 

Another  important  point, in our view, is the fact  
that  our system does not preclude context-sensi t ive 
rules, t ransformations,  or gaps. This is contrary  to 
what  seems to be the general tendency today,  both  in 
theoretical  linguistics (for example,  Gazdar  1981) and 
in computa t iona l  linguistics (for  example ,  H i r shman  
and Puder  1982, Joshi and Levy  1982, Robinson  
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1982,  Schubert and Pelletier 1982) ,  towards using 
context - free  grammars (which,  however ,  are of ten  
augmented in some way - through restrictions, local 
constraints,  rule schemata,  metarules,  etc. - compen-  
sating for the lack of  expressiveness  in simple context-  
free grammars).  This approach was largely motivated 
by the need to provide alternatives to transformational  
grammar, which on the one hand was felt by AI re- 
searchers to deal insufficiently with semantics  and with 
sentence  analysis, and on the other hand, as observed 
by Gazdar (1981) ,  could not offer linguistically ade- 
quate explanat ions  for important  constructs ,  such as 
coordinat ion  and unbounded  dependencies .  Further 
arguments supporting this approach include claims of 
more efficient parsability, simplicity, and modularity.  

From the particular point of  v iew of  logic gram- 
mars, more evolved grammar formalisms make  a great 
deal of  sense for various reasons.  In the first place, 
they provide various advantages that have been illus- 
trated in Dahl (1981) ,  namely modularity and concise-  
ness, clarity and efficiency.  A detailed discussion of 
these advantages with respect to augmented transition 
networks  can be found in Pereira and Warren (1980) .  

Furthermore,  they include lower- level  grammars as 
a special case. In particular, context- free  rules aug- 
mented with procedures may be written, since even the 
simplest logic grammar defined to date (DCGs) al lows 
Prolog calls to be interspersed with the rules. The 
greater expressive  power  a l lowed by more evo lved  
formalisms,  then, can only represent a gain, since it 
does  not preclude more e lementary approaches.  Logic  
grammars, in short, seem to be developing - like other 
computer  formalisms - into higher- level  tools  that 
al low the user to avoid mechanizable  effort in order to 
concentrate  on as yet unmechanizable ,  creative tasks. 
MSGs are intended as a contribution in this direction. 
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A P P E N D I X  

/* Grammar rule preprocessor .  */ 

• - public readRules/0,parse/3,go/0. 

:- op(1000,xfy,(...)). 
:- op(1100,xfy,:). 

readRules :- 
tell(metgrr), 
repeat, 
read(Rule), 
process(Rule). 

process(endRules) :-!,told. 
process(Rule) :-!, 

parts (Rule,Head,Sem,Body), 
makex(Head,NT,Ext), 
makelist (Body,Body 1 ), 
write(rule(NT,Ext,Sem,Body 1)),write ('.'), 
nl,nl, 
fail. 

process(Clause) :- 
assertz(Clause), 
fail. 

parts((Head:Sem--> Body),Head,Sem,Body) :-!. 
parts((Head --> Body),Head,e-true,Body). 

makelist((X,L),[X I L 1 ]) :-!,makelist(L,L1). 
makelist([ ],[ ]):-!. 
makelist(X,[X]). 

makex((NT,L),NT,Ext) :- !,makexl(nogap,L,Ext). 
makex((NT...L),NT,Ext) :- !,makexl(gap,L,Ext). 
makex(NT,NT,nil). 

makexl (CT,(S,L),x(CT,Type,S1,X)) :-!, 
type (S,S 1,Type), 
makex 1 (nogap,L ,X ). 

makexl (CT,(S...L),x(CT,Type,S1,X)) :-!, 
type(S,S 1,Type), 
makexl (gap,L,X). 

makexl (CT,S,x(CT,Type,S 1 ,nil)) :- 
type(S,S1,Type). 

type([S],S,terminal) :-!. 
type (S,S,nonterminal). 

/* Parser */ 

parse(String,NonTerminal,Syn) :- 
prs([NonTerminal],String,[Syn],nil,nil,nil),!. 

prs(BL,[D I X],Mods,Par,Mer,Ext) :- 
demon(D,BL,X,Mods,Par,Mer,Ext). 

prs(BL,X,Mods,Par,merge (BL,Par 1,Mer,Ext),nil) :- 
cutoff(Par), 
prs(BL,X,Mods,Parl,Mer,Ext). 

prs([[W] I BL],[W I X],Mods,Par,Mer,Ext) :- 
gap (Ext),prs(BL,X,Mods,Par,Mer,Ext). 

prs([[W] I BL],X,Mods,Par,Mer,x(_,terrninal,W,Ext)) :- 
prs (BL,X,Mods,Par,Mer,Ext). 
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prs([{B} I BL],X,Mods,Par,Mer,Ext) :-!, 
B,prs(BL,X,Mods,Par,Mer,Ext). 

prs([NT I BL],X,Mods,Par,Mer,Ext) :- 
rule(NT,Ext0,Sem,Body), 
stack(Ext0,Ext,Extl), 
prspush(Body,NT,BL,Sem,X,Mods,Par,Mer,Ext 1). 

prs([NT I BL],X,Mods,Par,Mer,x(_,nonterminal,NT,Ext)) :- 
prs (BL,X,Mods,Par,Mer,Ext). 

prs([ ],X,[ ],parent([_ I BL],Mods,Par),Mer,Ext) :- 
prs(BL,X,Mods,Par,Mer,Ext). 

prs([ ],[ ],[ ],nil,nil,nil). 

prspush([ ],_,BL,_,X,Mods,Par,Mer,Ext) :-!, 
prs(BL,X,Mods,Par,Mer,Ext). 

prspush(Body,NT,BL,Sem,X,[syn(NT,Sem,Mods 1) ] Mods],Par,Mer,Ext) :- 
prs(Body,X,Modsl ,parent([NT I BL],Mods,Par),Mer,Ext). 

gap(x(gap, , , )). 
gap(nil). 

stack(nil,X,X). 
stack(x(C,T,S,X1),X2,x(C,T,S,X3)) :- stack(X1,X2,X3). 

cutoff(parent([_ I BL],[ ],Par)) :- satisfied(BL), cutoff(Par). 
cutoff(nil). 

demon(D,BL,X,Mods,Par,Mer,Ext) :- 
conjunction(D,Cat,Sem), 
backup(Par,Mods,[syn(Cat,Sem,Mods0)],[NT I _],Parl ), 
prs ( [NT] ,X ,Mods0 ,nil ,merge ( BL ,Par 1 ,Mer,Ext) ,nil ). 

backup(parent (BL,Mods,Par) ,Mods0,Mods0,BL,parent (BL,Mods,Par)). 
backup(parent ( [  I BL],Mods,Par),[ ],Mods0,BL1,Parl) :- 

satisfied(BL), 
backup (Par,Mods,Mods0,BL 1 ,Par 1 ). 

satisfied([ ]) :-!. 
satisfied([NT t BL]) :- rule(NT, , ,[ ]),I,satisfied(BL). 

/ *  Semantic Interpretation Rules * /  

:- op(400,xfy,&). 
:- op(300,fx,@). 

/* Reshaping Rules */ 

reshape(Tree,Sisters,Tree 1) :- 
daughters (Tree,Daus), 
reshapelist(Daus,Daus 1), 
reorder(Dausl,Daus2), 
raise (Daus2,Tree,Sisters,Daus3), 
newdaus(Tree,Daus3,Treel). 

reshapelist([Tree I Trees],Trees2) :-!, 
reshapelist (Trees,Trees 1 ), 
reshape(Tree,Sisters,Tree 1), 
concat(Sisters,[Tree 1 I Trees 1 ],Trees2). 

reshapelist([ ],[ ]). 

reorder([A I L],M) :- 
reorder(L,L1), 
insert(A,L1,M). 

reorder([ ],[ ]). 
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insert(A,[B I L],M) :- 
prec(A,PA),prec(B,PB), 
(PB>PA,!,M=[B I L1],insert(A,L,L1) I 

M=[A,B I L]). 
insert(A,[ ],[A]). 

raise([Dau I Daus],Tree,[Dau I Sisters],Dausl) :- 
above(Dau,Tree),!, 
raise (Daus,Tree,Sisters,Daus 1 ). 

raise([Dau I Daus],Tree,Sisters,[Dau I Dausl]) :- 
raise(Daus,Tree,Sisters,Daus 1). 

raise([ ],Tree,[ ],[ ]). 

daughters (syn(_,_,Daus),Daus). 

newdaus (syn(NT,Sem,_),Daus,syn(NT,Sem,Daus)). 

cat(syn(NT, , ),NT). 

prec(Syn,P) :- stype(Syn,S),precl (S,P),!. 
prec(_,0). 

stype(syn(nounph(_,Stype), , ),Stype). 

precl (def,6). 
precl (all,6). 
precl (indef,4). 

above(Synl,Syn2) :- 
cat(Synl,nounph( , )),cat(Syn2,Cat), 

-,+ (Cat=relative(_) I Cat=conj(_)).  

/* Translation Rules */ 

translate(Syn,LogForml) :- 
transmod(Syn,8-true,8-LogForm), 
simplify(LogForm,[ ],LogForml). 

transmods([Mod I Mods],Sem 1,Sem3) :- 
transmods(Mods,Seml,Sem2), 
transmod(Mod,Sem2,Sem3). 

transmods([ ],Sem,Sem). 

transmod(syn(_,Sem,Mods),Sem 1,Sem2):- 
transmods(Mods,Sem,Sem0), 
trans(Sem0,Seml,Sem2). 

/* Rules for 'trans' are numbered for convenient reference in the text. 

/ * 1 " /  trans(Sem,C*D-P,cbasel(Sem,C,D)-P) :-!. 
/ *2* /  trans(cbasel (Sem,C,D)-P,Op-Q, 

cbase2 (Op,Sem,C,D,R)-true) :-!, 
conj(P,Q,R). 

/ *3* /  trans(Op-P,cbase2(Op 1,Sem,C,D,B)-P 1, 
cbase2 (Op2,Sem,C,D,B)-P2) :-!, 

trans(Op-P,Op 1-P1,Op2-P2). 
/ *4* /  trans(cbase2(Op,Seml,C,D,B)-P,Sem2,Opl-B) :-!, 

trans(Op-P,Sem2,Opl-C), 
trans(Seml,Sem2,Opl-D). 

/ *5* /  trans(P/Q-R,Op-Q,@P-R). 
/ *6* /  trans(@P-Q,Op-P,Op-Q). 
/ *7* /  trans(¢-P,Op-Q,Op-R) :- conj(P,Q,R). 
/ *8* /  trans(r-P,Op-Q,Op-R) :- conj(Q,P,R). 
/*9*/ trans(subst(X)-X,Sem,Sem). 
/* 10"/ trans(id-P,Sem,Sem). 

*/ 
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conj(true,Q,Q) :-!. 
conj(P,true,P) :-!. 
conj(P,Q,P&Q). 

/* Simplification Rules */ 

simplify(X,D,Y) :- var(X),!,find(X,D,Y). 
simplify(E,_,E) :- atomic(E),!. 
simplify(def(X,X=Y,E),D,E 1 ) :-!, simplify(E,[X=Y I D],E 1 ). 
simplify(true&E,D,E 1) :-!, simplify(E,D,E 1). 
simplify(E&true,D,E 1) :-!, simplify(E,D,E 1 ). 
simplify(E,D,E1) :- 

E=..[P I Args], 
simplist(Args,D,Args 1 ), 
EI=. . [P  I Argsl]. 

find(X,[X1 =Y I _],Y) :- X= =XI,!.  
find(X,[_ I D],Y) :- find(X,D,Y),!. 
find(X,[ ],X). 

simplist([E ] L],D,[E1 I L1]) :- 
simplify(E,D,E 1 ), 
simplist (L,D,L 1 ). 

simplist([ ],_,[ ]). 

/*  Syntax */ 

:- readRules. 

sent--> nounph(X,_),verbph(X). 

nounph(X,def):@P-def(X,X=N,P) --> [N],{prop(N)}. 
nounph(X,Stype) --> 

det(X,Stype),adj (X),noun(X,Comps),comps(Comps),relative(X). 
nounph(X,_) --> trace(X). 

det(X,Stype):Sem --> [D],{deter(D,X,Stype,Sem)}. 

adj(_) --> [ ]. 
adj (X):Sem -- > [Adj], { adjec(Adj,X,Sem) }. 

noun(X,Comps):e-Pred --> [N],{n(N,X,Comps,Pred) }. 

relative(X) --> [ ]. 
relative(X) --> open,rel_mk(X),sent,close. 

open.. .close--> [ ]. 

rel mk(X)...trace(X) --> [N],{rel_pro(N)}. 
rel_mk(X).. .[P],trace(X)--> [P],{prep(P)},[N],{rel_pro(N)}. 

verbph(X) --> advl,verb(X,Comps),comps(Comps). 

advl - ->  [ ]. 
advl:Sem--> [Adv],{adverb(Adv,Sem)}. 

verb(X,Comps) :~-Pred -- > [V],{v(V,Pred,X,Comps) }. 

comps([ ] ) - - > [  ]. 
eomps([X I L]) --> comp(X),comps(L). 

comp(obj-X) --> nounph(X,_). 
comp(pobj(Prep)-X) --> [Prep],nounph(X,_). 

endRules. 
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/* Lexicon */ 

conjunction(and,conj(and),P*Q-(P&Q)). 
conjunction(or,conj(or),P*Q-(P;Q)). 
conjunction(but,conj (but),P*Q-but(P,Q)). 

prop(john). 
prop(bill). 
prop(mary). 

deter(a,X,indef,Q/P-exists(X,P,Q)). 
deter (an,X,indef,Q/P-exists(X,P,Q)). 
deter(the,X,def,Q/P-def(X,P,Q)). 
deter (each,X,all,Q/P-each(X,P,Q)). 
deter (every,X,all,Q/P-every(X,P,Q)). 

adjec(red,X,g-red(X)). 
adjec(blue,X,8-blue(X)). 
adjec(glass,X,g-glass (X)). 

n(man,X,[ ],man(X)). 
n(woman,X,[ ],woman(X)). 
n(car,X,[ ],car(X)). 
n(train,X,[ ],train(X)). 
n(book,X,[ ],book(X)). 
n(pencil,X,[ ],pencil(X)). 
n(table,X,[ ],table(X)). 
n(window,X,[ ],window(X)). 
n(father,X,[pobj(of)-Y],father(X,Y)). 
n(friend,X,[pobj(of)-Y],friend(X,Y)). 
n(apple,X,[ ],apple(X)). 
n(pear,X,[ ],pear(X)). 

v(saw,saw(X,Y),X,[obj-Y]). 
v(heard,heard(X,Y),X,[obj-Y]). 
v(demolished,demolished(X,Y),X,[obj-Y]). 
v(laughed,laughed(X),X,[ ]). 
v(drove,drove_through(X,Y,Z) ,X,[obj-Y,pobj (through)-Z]). 
v(gave,gave(X,Y,Z),X,[obj-Y,pobj(to)-Z]). 
v(ate,ate(X,Y),X,[obj-Y]). 
v(sat,sat_at(X,Y),X,[pobj(at)-Y]). 

adverb(completely,@P-completely(P)). 
adverb (finally, @ P-finally (P)). 

rel_pro(who). 
rel_pro(whom). 
rel_pro(that). 
rel_pro(which). 

prep(to). 
prep(from). 
prep(with). 
prep(of). 
prep(through). 
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EXAMPLES 

1:Prolog-10 version 3 

Input sentence: 
]: each man ate an apple and a pear. 

Syntactic analysis, time = 143 msec. 

sent g-true 
nounph(_l,all) e-true 

det(_l,all) 2 /  3-each( 1, 3, 2) 
noun(_l,[  ]) g-man(_l)  

verbph(_l) g-true 
verb(_l,[obj-_4]) g-ate( 1, 4) 
comps([obj-_4]) g-true 

comp(obj-_4) g-true 
nounph(_4,indef) e-true 

det(_4,indef) 5/  6-exists( 4, 6, 5) 
noun(_4,[ ]) g-apple(_4) 
conj(and) 7* 8- 7& 8 

nounph(_4,indef) g-true 
det(_4,indef) 9/  10-exists( 4, 10, 9) 
noun(_4,[ ]) g-pear(_4) 

Reshaping tree, time = 16 msec. 

sent e-true 
nounph(_l,all) g-true 

det(_l,all) 2 /  3-each( 1, 3, 2) 
noun(_l,[  ]) e-man(_l)  

nounph(_4,indef) e-true 
det(_4,indef) 5/  6-exists( 4, 6, 5) 
noun(_4,[ ]) g-apple(_4) 
conj(and) 7* 8- 7& 8 

nounph(_4,indef) e-true 
det(_4,indef) 9 /  10-exists( 4, 10,_9) 
noun(_4,[ ]) g-pear(_4) 

verbph(_l) g-true 
verb(_l,[obj-_4]) g-ate( 1, 4) 
comps([obj-_4]) e-true 

comp(obj-_4) g-true 

Semantic analysis, time = 22 msec. 

each(_l,man(_l),exists(_2,apple(_2),ate( 1, 2)) 
&exists(_2,pear(_2),ate( 1, 2))) 

Input sentence: 
1: john ate an apple and a pear. 

Syntactic analysis, time = 144 msec. 
Reshaping tree, time = 35 msec. 
Semantic analysis, time = 11 msec. 

exists(_l ,apple(_l) ,ate(john,_l))&exists(_l,pear(_l) ,ate(john,_l))  

Input sentence: 
] : a man and a woman saw each train. 

Syntactic analysis, time = 94 msec. 

sent g-true 
nounph(_l,indef) e-true 
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det(_l,indef) 2/  3-exists( 1, 3, 2) 
noun(_l,[ ]) g-man(_l) 
conj(and) 4* 5- 4& 5 

nounph(_l,indef) g-true 
det(_l,indef) 6/ 7-exists( 1, 7, 6) 
noun(_l,[ ]) g-woman(_l) 

verbph(_l) g-true 
verb(_l,[obj-_8]) g-saw( 1, 8) 
comps([obj-_8]) g-true 

comp(obj-_8) g-true 
nounph(_8,all) g-true 

det(_8,all) 9/ 10-each( 8, 10, 9) 
noun(_8,[ ]) g-train(_8) 

Reshaping tree, time = 24 msec. 

sent g-true 
nounph(_l,all) g-true 

det(_l,all) 2/ 3-each( 1, 3, 2) 
noun(_l,[ ]) g-train(_l) 

nounph(_4,indef) g-true 
det(_4,indef) 5/ 6-exists( 4, 6, 5) 
noun(_4,[ ]) g-man(_4) 
conj(and) 7* 8- 7& 8 

nounph(_4,indef) g-true 
det(_4,indef) 9/ 10-exists( 4, 10, 9) 
noun(_4,[ ]) g-woman(_4) 

verbph(_4) g-true 
verb(_4,[obj-_l]) g-saw( 4, 1) 
comps([obj-_l]) g-true 

comp(obj-_l) g-true 

Semantic analysis, time = 16 msec. 

each(_l,train(_l),exists(_2,man(_2),saw( 2, 1)) 
&exists(_2,woman(_2),saw( 2, 1))) 

Input sentence: 
I: each man and each woman ate an apple. 

Syntactic analysis, time = 78 msec. 

sent g-true 
nounph(_l,all) g-true 

det(_l,all) 2/ 3-each( 1, 3, 2) 
noun(_l,[ ]) g-man(_l) 
conj(and) 4* 5- 4& 5 

nounph(_l,all) g-true 
det(_l,all) 6/ 7-each( 1, 7, 6) 
noun(_l,[ ]) g-woman(_l) 

verbph(_l) g-true 
verb(_l,[obj-_8]) g-ate( 1, 8) 
comps([obj-_8]) g-true 

comp(obj-_8) g-true 
nounph(_8,indef) g-true 

det(_8,indef) 9/ 10-exists( 8, 10, 9) 
noun(_8,[ ]) g-apple(_8) 

Reshaping tree, time = 14 msec. 
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sent g-true 
nounph(_l,all) g-true 

det(_l,all) 2/ 3-each( 1, 3, 2) 
noun(_1,[ ]) g-man(_l) 
conj(and) 4* 5- 4& 5 

nounph(_l,all) g-true 
det(_l,all) 6/ 7-each( 1, 7, 6) 
noun(_l,[ ]) g-woman(_l) 

nounph(8,indef) g-true 
det(_8,indef) 9/ 10-exists( 8, 10,_9) 
noun(_8,[ ]) g-apple(_8) 

verbph(_l) g-true 
verb(_l,[obj-_8]) g-ate( 1, 8) 
comps([obj-_8]) g-true 

comp(obj-_8) g-true 

Semantic analysis, time = 20 msec. 

each(_l,man(_l),exists( 2,apple(_2),ate( 1, 2))) 
&each(_l,woman(_l),exists(_2,apple(_2),ate( 1, 2))) 

Input sentence: 
I : john saw and the woman heard a man that laughed. 

Syntactic analysis, time - 182 msec. 

sent g-true 
nounph(_l,def) @_2-def( 1, l=john,_2) 
verbph(_l) g-true 

verb(_l,[obj-_3]) g-saw( 1, 3) 
conj(and) 4* 5- 4& 5 

sent g-true 
nounph(_6,def) g-true 

det(_6,def) 7/ 8-def( 6, 8, 7) 
noun(_6,[ ]) g-woman(_6) 

verbph(_6) g-true 
verb(_6,[obj-_3]) g-heard( 6, 3) 
comps(lob j- 3]) g-true 

comp(obj-_3) g-true 
nounph(_3,indef) g-true 

det(_3,indef) 9/ 10-exists( 3, 10, 9) 
noun(_3,[ ]) g-man(_3) 
relative(_3) g-true 

rel_mk(_3) g-true 
sent g-true 

nounph( 3, 11) g-true 
verbph(_3) g-true 

verb(_3,[ ]) g-laughed(_3) 

Reshaping tree, time = 24 msec. 

sent g-true 
nounph(_l,def) @_2-def( 1, l=john,_2) 
verbph(_l) g-true 

verb(_l,[obj-_3]) g-saw( 1, 3) 
conj(and) 4* 5- 4& 5 

nounph(_6,def) g-true 
det(_6,def) 7/ 8-def( 6, 8, 7) 
noun(_6,[ ]) g-woman(_6) 

nounph(_3,indef) g-true 
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det(_3,indef) 9/  10-exists( 3, 10, 9) 
noun(_3,[ ]) g-man(_3) 
relative(_3) g-true 

nounph(3,wh) g-true 
rel_mk(_3) g-true 
sent g-true 

verbph(_3) g-true 
verb(_3,[ ]) g-laughed(_3) 

sent g-true 
verbph(_6) g-true 

verb(_6,[obj-_3]) g-heard( 6, 3) 
comps([obj-_3]) g-true 

comp(obj-_3) g-true 

Semantic analysis, time = 18 msec. 

def (_ 1, woman (_ 1 ), exists (_2 ,man ( _2 ) &laughed ( _2 ), 
saw(john,_2)&heard( 1, 2))) 

Input sentence: 
I: john drove the car through and completely demolished a window. 

Syntactic analysis, time = 80 msec. 

sent g-true 
nounph(_l,def) @_2-def( 1, l=john, 2) 
verbph(_l) g-true 

verb(_l,[obj-_3,pobj(through)-_4]) g-drove_through( 1, 3, 4) 
comps([obj-_3,pobj (through)-_4]) g-true 

comp(obj-_3) g-true 
nounph(_3,def) g-true 

det(3,def)  5/ 6-def( 3, 6, 5) 
noun(_3,[ ]) g-car(_3) 

comps ([pobj (through)-_4]) g-true 
comp(pobj (through)-_4) g-true 

conj(and) 7* 8- 7& 8 
verbph(_l) g-true 

advl @_9-completely(_9) 
verb(_l,[obj-_4]) g-demolished( 1, 4) 
comps([obj-_4]) g-true 

comp(obj-_4) g-true 
nounph(_4,indef) g-true 

det(_4,indef)_10/_ll-exists( 4, 11, 10) 
noun(_4,[ ]) g-window(_4) 

Reshaping tree, time - 22 msec. 

sent g-true 
nounph(_l,def) @ 2-def( 1, l=john,_2) 
nounph(3,def) g-true 

det(_3,def) 4/ 5-def( 3, 5, 4) 
noun(_3,[ ]) g-car(_3) 

verbph(_l) g-true 
verb(_l,[obj-_3,pobj(through)-_6]) g-drove_through( 1, 3, 6) 
comps([obj-_3,pobj(through)-_6]) g-true 

comp(obj-_3) g-true 
comps([pobj (through)-_6]) g-true 

comp(pobj (through)-_6) g-true 
conj(and) 7* 8- 7& 8 

nounph(_6,indef) g-true 
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det(_6, indef)  9 /  10-exists( 6, 10, 9) 
noun(_6,[  ]) 8-window(_6) 

ve rbph (_ l )  8-true 
advl @_11-comple te ly (_ l  1) 
verb(_ l , [ob j -_6] )  C-demolished( 1, 6) 
comps([obj-_6])  e-true 

comp(obj-_6)  e-true 

Semantic analysis, time = 9 msec. 

de f (_ l , ca r (_ l ) , ex i s t s (_2 ,window(_2) ,  
drove_through(john,  1, 2)&completely(demolished(john,_2))))  

Input sentence: 
I: the woman who gave a book to john and 

drove a car through a window laughed. 

Syntactic analysis, time = 250 msec. 
Reshaping tree, time = 108 msec. 
Semantic analysis, time = 28 msec. 

de f (_ l  ,woman(_ l  ) &exists(_2,book(_2),  
exis ts(_3,car(_3) ,exis ts(_4,window(_4) ,gave(  1, 2,john)& 

drove_through(  1, 3, 4 ) ) ) ) , l aughed(_ l ) )  

Input sentence: 
I: john saw the man that mary saw and bill heard. 

Syntactic analysis, time = 87 msec. 
Reshaping tree, time = 27 msec. 
Semantic analysis, time = 25 msec. 

de f (_ l ,man(_ l )&saw(mary ,_ l )&hea rd (b i l l , _ l ) , s aw( john ,_ l ) )  

Input sentence: 
I: john saw the man that heard the woman that laughed and saw bill. 

Syntactic analysis, time = 174 msec. 
Reshaping tree, time = 101 msec. 
Semantic analysis, time = 23 msec. 

de f (_ l  ,man(_ 1)&def(_2,woman(_2)&laughed(_2)& 
saw(_2,bil l) ,heard( 1, 2 ) ) , saw( john ,_ l ) )  

Input sentence: 
I: the man that mary saw and john heard and bill gave a book to laughed. 

Syntactic analysis, time = 1199 msec. 
Reshaping tree, time = 106 msec. 
Semantic analysis, time = 40 msec. 

de f (_ l  ,man(_ 1 )&saw(mary,_l  ) &exists (_2 ,book(_2) ,  
heard(john,_l)&gave(bi l l ,  2, 1 ) ) , l aughed(_ l ) )  

Input sentence: 
I: the man that mary saw and heard gave an apple to each woman. 

Syntactic analysis, time = 144 msec. 

sent e-true 
nounph(_ l , de f )  e-true 

de t (_ l ,de f )  2 /  3-def( 1, 3, 2) 
noun(_ l , [  ]) e - m a n ( _ l )  
re la t ive(_ l )  e-true 

r e l_mk(_ l )  e-true 
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sent 8-true 
nounph(_4,def) @_5-def( 4, 4=mary,_5) 
verbph(4) C-true 

verb(_4,[obj-_l]) E-saw( 4, 1) 
conj(and) 6* 7- 6& 7 

verb(_4,[obj-_l]) C-heard( 4, 1) 
comps([obj- 1]) 8-true 

comp(obj-_l) E-true 
nounph( 1, 8) C-true 

verbph(1) f-true 
verb(_l,[obj-_9,pobj(to)-_10]) E-gave( 1, 9, 10) 
comps([obj-_9,pobj(to)-_l 0]) C-true 

comp(obj-_9) E-true 
nounph(_9,indef) C-true 

det(_9,indef) ll/_12-exists( 9, 12,_11) 
noun( 9,[ ]) 7-apple(_9) 

comps ([pobj-(to)-_ 10]) E-true 
comp (pobj (to)-_ 10) g-true 

nounph(_10,all) 8-true 
det(_10,all) 13/_14-each( 10, 14, 13) 
noun(_10,[ ]-) E-woman(_10) 

Reshaping tree, time = 26 msec. 

sent C-true 
nounph(1,def) g-true 

det(_l,def) 2/ 3-def( 1, 3, 2) 
noun(_l,[ ]) g-man(_l) 
relative(_l) g-true 

nounph(_l,wh) g-true 
nounph(_4,def) @_5-def( 4, 4=mary,_5) 
rel_mk(_l) g-true 
sent g-true 

verbph(_4) e-true 
verb(_4,[obj-_l]) g-saw( 4, 1) 

conj(and) 6* 7- 6& 7 
verb(_4,[obj-_l]) t-heard( 4, 1) 

comps([obj-_l ]) t-true 
comp(obj-_l) g-true 

nounph(8,all) e-true 
det(_8,all) 9/ 10-each( 8, 10, 9) 
noun(_8,[ ]) g-woman(_8) 

nounph(11,indef) g-true 
det(_ll,indef) 12/ 13-exists( 11, 13,_12) 
noun(_l 1,[ ]) ~-app]-e(_l 1) 

verbph(_l) t-true 
verb(1,[obj-_ll,pobj(to)-_8]) g-gave( 1, 11,_8) 
comps([obj-_l 1,pobj(to)-_8]) e-true 

comp(obj-_l 1) g-true 
comps([pobj(to)-_8]) t-true 

comp(pobj(to)-_8) t-true 

Semantic analysis, time = 22 msec. 

def(_l,man(_l)&heard(mary,_l)&saw(mary,_l), 
each(_2,woman(_2),exists(_3,apple(_3),gave( 1, 3, 2)))) 
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