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Agreement on unitizing, where several annotators freely put units of various sizes and categories
on a continuum, is difficult to assess because of the simultaneaous discrepancies in positioning
and categorizing. The recent agreement measure γ offers an overall solution that simultaneously
takes into account positions and categories. In this article, I propose the additional coefficient
γcat, which complements γ by assessing the agreement on categorization of a continuum, putting
aside positional discrepancies. When applied to pure categorization (with predefined units), γcat
behaves the same way as the famous dedicated Krippendorff’s α, even with missing values, which
proves its consistency. A variation of γcat is also proposed that provides an in-depth assessment
of categorizing for each individual category. The entire family of γ coefficients is implemented in
free software.

1. Introduction

Agreement measures are commonly used in computational linguistics to assess the reli-
ability of annotation processes, in particular in the case of categorization of predefined
items, with well-known chance corrected coefficients such as π (Scott 1955), κ (Cohen
1960, 1968), K-Fleiss (Fleiss 1971), or α (Krippendorff 1980, 2013). However, when deal-
ing with unitizing, where annotators have to put units of different sizes and categories
on a continuum (text, audio, video) by themselves, fewer agreement measures are
available and popular. Fortunately, Krippendorff has paved the way since 1995 with
the first chance-corrected dedicated measures, from the first αU (Krippendorff 1995) to
a whole family of five coefficients for unitizing (Krippendorff et al. 2016), denoted as
the αs hereafter.

Recently, Mathet, Widlöcher, and Métivier (2015) introduced the new coefficient
γ, which relies on different assumptions from the αs and thus better corresponds to
computational linguistics annotation efforts. In particular, whereas αs rely on the
number of intersections between any pair of units from different annotators, γ builds
and relies on an alignment between units that ultimately says which unit from one
annotator corresponds to which unit from another annotator, if any. In simple words,
γ is designed for tasks for which the very notion is unit rather than occupied space:
A unit is considered as a whole (i.e., a contiguous entity), not just a portion of the
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continuum, and small units are as important as large ones. Moreover, γ is the only
measure that copes with overlapping units (intersecting or even nested units). It has
also been demonstrated by Mathet, Widlöcher, and Métivier that γ shows a more
homogeneous behavior through different kinds of disagreement (position, category,
false positive, false negative) than other methods.

However, γ is an overall coefficient for all unitizing discrepancies at the same time.
When its value is close to 1, annotations can be trusted as reliable, but when that is not
the case, this coefficient does not provide an insight into the kind(s) of discrepancy(ies)
between annotators: We know the annotations are not reliable, but we do not know
what to focus on to improve them.

This article provides an additional coefficent to γ, named γcat, which focuses on
the categorizing part of disagreement between annotators, leaving aside, as much as
possible, the unitizing part (in particular, positional discrepancies). In simple words, γcat
tries to answer the question: If annotators had not had to unitize the continuum (put
units by themselves and categorize them), but only to categorize predefined units on
the continuum, what would have been their agreement? It shares the same goal as
cuα, the measure belonging to the αs dedicated to categorization of a continuum, but
relies on the same assumptions as γ. In particular, it shares the same alignment method,
before it does a specific computation focused on categories.

In addition, an even more in-depth coefficient, named γk, is provided that focuses
on the agreement on each individual category. It helps to know if a low or moderate γcat
value comes from discrepancies on some particular categories, and so may be useful
in order to modify the annotation model or to enhance the annotation instructions. This
additional coefficient corresponds to the recent kα from Krippendorff et al. (2016), which
replaces a first attempt (Krippendorff 2004).

Section 2 introduces the main requirements for a measure for categorization of
a continuum for computational linguistics efforts: Insensitivity to positional discre-
pancies; insensivity to false positives/negatives; and insensitivity to size of units.

Section 3 addresses the question of how best to cope with missing values in cate-
gorization tasks (when an annotator does not categorize an item whereas some others
do), which is a more general (and rarely discussed) question concerning any measure.
It will also constitute an additional requirement for γcat.

Section 4 explains the design of γcat and γk in two main steps: First, it uses the
aligning procedure of γ; second, it makes a special computation based on the alignment
but focused on categories (or on a given category in the case of γk). To finish, γcat and γk
are benchmarked and compared with the corresponding αs in Section 5. The software
is introduced in Section 6.

2. Main Requirements: What Should a Categorial Measure Account For?

In this section, we will see how γcat should complement γ. The very objective is that
γcat be insensitive to disagreements that involve other aspects of unitizing than catego-
rization (positions, lengths, etc.), contrary to γ. All the points introduced subsequently
are benchmarked in section 5.

2.1 Positional Discrepancies Should Not Impact Categorial Agreement

Because γcat aims at providing the agreement on categorization only, it is important
that it does not take disagreements on positioning into account. This sounds obvious,
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Figure 1
Positional discrepancies but perfect agreement on categories.

but it is not straightforward with unitizing. Figure 1 shows a case of perfect agreement
on categories that comes with some disagreement on positions: Both annotators have
identified three units at about, but not exactly, the same positions, and totally agree on
categorizing these units (respectively, with category “1,” “4,” and “2”). Hence, a mea-
sure focused on categorization should provide total agreement in such a configuration.

However, measures based on intersections, like the αs, or on atomization of the
continuum (a workaround method discussed later), will find a part of the continuum
with categorial disagreement, since there is an intersection between units of categories
“4” and “1,” and between units of categories “4” and “2.” This is reported at the bottom
of Figure 1: There are five intersections, three of them corresponding to correct com-
parisons, and two of them corresponding to unfortunate comparisons. This leads here
to about 20% fake categorial disagreement, according to corresponding intersection
lengths.

What a categorial measure should do here is to compare each unit from annotator A
to the corresponding one from annotator B (if any), as reported in Figure 1 by the three
gray arrows “1-1,” “4-4,” and “2-2,” and assess here a total agreement. This is typically
what the γ family is designed to do, thanks to its alignment capability.

2.2 False Negatives/Positives Should Not Impact Categorial Agreement

We have to be cautious concerning the terminology. A false negative occurs when an
annotator fails to put a unit where she should, namely, where the reference (if any) tells
us there should be a unit, and a false positive is the opposite situation. However, no
reference exists in the case of agreement measures, and there is a symmetry between
false positives and false negatives: If annotator 1 puts a unit where annotator 2 doesn’t,
it is a false positive if we consider annotator 2 as the reference, or a false negative if we
consider annotator 1 as the reference. However, to make this discussion more simple, we
will extend the meaning of false positives/negatives to the field of agreement measures.

Here again, such disagreements should not be taken into account by a measure fo-
cused on categorization. For instance, such a measure should provide a total agreement
if annotator A identifies and categorizes 100 units, and annotator B identifies only 50 of
them but agrees with A on categories.

2.3 Length of Units Should Not Be Taken Into Account

For categorization of predefined units, all known coefficients (κ, α, etc.) give the same
importance to each item. Why should it be different for unitizing?
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Barack Hussein Obama II is the 44th  and current (…). In 2004, Obama received national (…)

Barack Hussein Obama II is the 44th  and current (…). In 2004, Obama received national (…)

Figure 2
Units of different lengths, but of the same importance (in Named Entity Recognition).

In Figure 2 (text from Wikipedia), which is an example of a Named Entity Recog-
nition effort, both annotators identified two units, containing, respectively, “Barack
Hussein Obama II” and “Obama.” They agree on the category of the first one, and dis-
agree on the category of the second one. This leads to an observed categorial agreement
of 50% if we consider, as measures do with predefined units, that all units are of the
same importance. However, if we rely on unit lengths, the first unit counts four times as
much as the second one (if we work at word level), and the observed agreement would
artificially reach 80% (instead of 50%). This does not make sense for most computational
linguistics annotation tasks. In this example, it is the same entity that is referred to by a
long or a short expression, which confirms, if necessary, that the annotations are of the
same importance.

In the same manner, in Sentiment Analysis, it is as important to correctly assess the
short “Yes” answer as the twice as long “For sure” one, or as the even longer one “I am
absolutely convinced of that.”

3. How Best to Handle Missing Values?

In categorization tasks, there is a so-called “missing value” (a.k.a. “missing data”) when
an annotator does not provide a value to a given item, like a “no opinion” answer. They
are inherently and frequently present in unitizing: Because annotators have to put units
by themselves on a continuum, it is part of the game that they do not put units where
others do. However, this question goes beyond the scope of unitizing, and the results
of this section concern any categorization measure.

The conceptualization problem here is how to handle the fact that the number of
values may differ from one item to another. It is hardly addressed in the literature: Not
only do annotation software and annotating formats not always provide this possibility
to annotators, but many popular coefficients simply cannot handle such data, and even
in the reference survey by Artstein and Poesio (2008) this notion is mentioned once but
never discussed. As a precursor, Krippendorff’s α coefficient was inherently conceived
to cope with missing values as early as in 1980 (Krippendorff 1980). More recently, Gwet
(2012) wrote the third version of his handbook specifically to provide answers to this
question. Each of them provides solutions, as we will see below, but as far as I know the
present study is the first attempt to compare different approaches.

I will consider in this study that the observed agreement is computed from pairwise
comparisons. This is the way most coefficients work, including kappas, alphas, and
also gamma, even if exceptions exist, like Lotus (Fretwurst 2015). For instance, if a
given predefined item is categorized, respectively, A, A, and B by three annotators, the
resulting observed agreement is 33.3%. Indeed, there are three combinatory pairs : A-A
(1 with 2), A-B (1 with 3), and A-B (2 with 3), and so there is one agreement for two
disagreements (on the contrary, Lotus would consider that the “most commonly coded
value” is A, and that two annotators agree with this value, hence 66.6% of agreement,
but a discussion of this would be out of the scope of this article).
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Table 1
Item, value, and pair weight comparisons in the case of five annotators with missing values
(denoted by “.”)

item 1 item 2 item 3 item 4

Mary noun noun noun noun
Paul noun noun noun noun
Suzan noun noun verb .
Jack noun noun . .
Robert noun . . .

nv = number of values 5 4 3 2
np = number of pairs 10 6 3 1

wu(IL) : item weight in IL 1 1 1 1
wu(VL) : item weight in VL 5/2 2 3/2 1
wu(PL) : item weight in PL 10 6 3 1

wv(IL) = 2wu(IL)/nv : value weight in IL 2/5 1/2 2/3 1
wv(VL) = 2wu(VL)/nv : value weight in VL 1 1 1 1
wv(PL) = 2wu(PL)/nv : value weight in PL 4 3 2 1

wp(IL) = wu(IL)/np : pair weight in IL 1/10 1/6 1/3 1
wp(VL) = wu(VL)/np : pair weight in VL 1/4 1/3 1/2 1
wp(PL) = wu(PL)/np : pair weight in PL 1 1 1 1

There are in the literature three very different ways to natively consider missing
values in agreement coefficients, and a workaround method introduced just after:

1) item level (IL). In this conception, all items are given the same weight. Conse-
quently, item 4 from Table 1 is given the same weight as item 1, which is equivalent to
considering that Suzan, Jack, and Robert said “noun” for item 4 although they did not
say anything.

2) value level (VL). This intermediate conception gives the same importance to any
pairable value. Because in an item having nv values, each value can be paired with
nv − 1 other values, each pair is weighted 1

nv−1 so that the total weight of the value
is 1.

3) pair level (PL). At the extreme opposite end of IL, this conception considers
any pair of values as having the same weight as any other, whatever the item they
belong to. For instance, when Mary says “noun” for item 1 (giving rise to four pairs),
this weighs four times as much as when she says “noun” for item 4 (giving rise to one
pair).

To better understand the differences between these three conceptions, Table 1
shows1 for each of them the item weight wu, the value weight wv, and the pair
weight wp.

Key facts are: (1) wu is steady for IL by design, whereas it grows linearly with
nv for VL, and with nv(nv−1)

2 for PL. (2) wv reveals the opposite conceptions of IL
and PL, the first decreasing and the second increasing with nv, while wv is steady by

1 Notice that the values, being relative weights, are comparable only within a given row (since rows have
different sums). Accordingly, wv values are multiplied by 2 for better readability.
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Table 2
Standard deviation of different methods when coping with missing values.

# annotators observed missing % σ(VL) σ(IL) σ(PL) σ(RM)

6 0.567 25% 0.073 0.077 0.089 0.285
6 0.567 12.5% 0.050 0.051 0.061 0.230
6 0.567 4% 0.028 0.029 0.034 0.100

3 0.905 10% 0.031 0.036 0.038 0.058
3 0.476 5% 0.040 0.051 0.041 0.058

design. (3) Because agreement measures rely on pairwise comparisons, wp discloses the
very differences between them. There is up to a ratio of 1 to 10 between the different
conceptions, which shows the importance of making the best choice among them.

Besides, a workaround method (rather than a real conception of missing values)
to use measures such as κ on such data, which is called RM (for “ReMove”) hereafter,
is simply to remove items that are not valued by all the annotators. In our example,
items 2 to 4 would simply be discarded before computation by a standard measure.

In addition to these comparisons, to make an objective choice between these dif-
ferent conceptions (and the workaround method), I have designed a specific experi-
ment, reported in Table 2. Consider a set of items fully annotated by n ≥ 3 annotators
(column 1). This leads to a given observed pairwise agreement (column 2). Now con-
sider the same initial set of items but with some randomly chosen missing values (with
respect to the percentage shown in column 3), and apply the different conceptions of
missing values to these data. The better the conceptualization of missing data, the lesser
the results should diverge from complete data. The standard deviation of each conception
is reported2 in columns 4 to 7 for 1,000,000 tests from a given set of data, each row
corresponding to certain initial data. Obviously, VL steadily shows less deviation than
all other conceptions, which makes this conception the best (known) choice under any
circumstances. At the opposite end, RM (i.e., removing the whole item when value(s)
is (are) missing) is the worst choice. To finish, IL and PL rank differently depending on
the number of annotators and the initial observed agreement.

The α measure for predefined units was natively designed to cope with missing
values according to VL, as explained by Krippendorff (2013, page 284): “The number
of pairs of values from the values-by-units matrix [is] weighted by 1

(nu.−1) so that
each pairable value in the reliability data adds exactly one to its total count.” As a
consequence, it is the measure of choice for predefined units with missing values. As
a matter of fact, Krippendorff wished to have cuα behave as a generalization of α for
a continuum, but he failed on this point because cuα deeply relies on independent
pairwise comparisons of (intersections of) units with no notion corresponding to items:
“While cuα ignores gaps between units, it does it unlike how α ignores missing values.”
More precisely, cuα unfortunately relies on PL, whereas α relies on VL. Finally, Gwet,
in his attempt to adapt classical coefficients to missing values, uses IL, as we can see in
equation 2.9 of Gwet (2012, page 31).

2 The average result of each method is not reported because, interestingly, they all provide the exact initial
result, on average.
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Of course, γcat relies on the same conception of missing values as α, namely, VL,
since we have just seen that it is the best known choice. This is made possible, as we
will see, thanks to its alignment process.

4. The New Coefficient γcat

The new coefficient being a complement to γ, it is necessary to understand the main
principles of the latter, which are summed up in Section 4.1.

First of all, γ (and γcat) is a “chance-corrected coefficient” based on the notion of
“disorder,” which assesses the level of disagreement among annotators. Hence, like
other chance-corrected coefficients, it computes two values, the “observed” one, and
the “expected” one, corresponding to the value we can expect under a model of chance.
The observed disorder is denoted δ, and the expected disorder δe. Then, the corrected
agreement is given by:

γ = 1− δ
δe

(1)

δe is computed by resampling the annotations randomly a sufficient number of
times, and for each sample the disorder is computed exactly the same way as for δ, as
explained in Mathet, Widlöcher, and Métivier (2015). Consequently, we will now focus
only on the computation of the disorder δ, for γ, γcat, and γk.

4.1 γ in a Nutshell

Unitizing is difficult to assess because we do not exactly know what to compare from
one annotator to what from another annotator. Categorization of predefined items is
much easier to assess because, by definition, items are predefined and so we know that
we have to compare the first item from annotator 1 to the first item from annotator 2,
and so on. But with unitizing, units from two annotators may be at the same position,
or at slightly different positions, or at very different positions, as shown in Figure 3.
Moreover, with some annotation material, a unit from annotator 1 may intersect with
several units from annotator 2. Hence, the very first question to address is what to
compare to what.

A possible method, which I will call atomization of the continuum, is to compare
each atom of the continuum (for instance, at word level) from one annotator to the
corresponding atom from another annotator. However, this deeply changes the nature
of the data (the contiguity of units), and has severe limitations, as demonstrated in
Section 3.4.1 of Mathet, Widlöcher, and Métivier (2015).

A

B

A

B

B

C

annotator 1

annotator 2

annotator 3

Figure 3
Free unitinzing by three annotators.
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Figure 4
Unitary alignments computed by γ in a holistic way.

A better method is to observe lengths of intersections between units from different
annotators, as does Krippendorff with his αs for unitizing, but this does not overcome
all the limitations of atomization (contiguity of units is not fully kept), as detailed in
Section 6.1 of Mathet, Widlöcher, and Métivier (2015).

When designing γ, we considered that the best method is to compare units to units,
not atoms to atoms, nor intersecting parts of units. This ultimately consists of using an
alignment of units from different annotators, as shown in Figure 4. The question is then:
How do we build such an alignment? Aligning two units from two annotators consists
of considering that they intended to express the same phenomenon, possibly with some
discrepancies. Maybe they failed to locate the phenomenon on the exact same portion
of the continuum, maybe they failed to agree on the category, maybe both, but we may
consider these units to be aligned. The reason for that is that the lesser the positional
discrepancy, the lesser the categorial discrepancy, the better the probability the two
annotators intended to express the same thing. Of course, aligning units is a bet: Except
when units completely correspond to each other both in position and category, it is not
possible to affirm that they correspond to the same annotation intention. Consequently,
an important idea of γ is to maximize the overall probability that all alignments are
relevant.

To do so, γ uses at first the notion of “dissimilarity,” which tells how different
two units are, and defines two types of dissimilarities: dpos, the positional dissimilarity,
computed, for instance, as the squared relative distance between bounds of compared
units, which equals zero only when positions exactly correspond, and dcat, the categorial
dissimilarity, which equals zero only when categories are the same, and which may be
chosen between different options like other weighted coefficients (categories considered
as nominal, as values on a scale, and so on). The dissimilarity is computed for each pair
of units from different annotators.

Then, γ considers unitary alignments between annotators, which account for the
fact that units from different annotators are considered as aligned, as shown in Figure 4.
A unitary alignment contains one or zero unit of each annotator. A “disorder” is com-
puted for each unitary alignment as the average of the dissimilarities of its pairs of units.
Of course, if the units all have the same position and the same category, the disorder
equals zero. When a unitary alignment does not contain any unit from an annotator, γ
creates a fake “empty unit” for that annotator, so that all unitary alignments have the
same number of units (true or fake), and attributes a dissimilarity of value 1 for each
pair containing an empty unit.
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Finally, γ defines an alignment as a subset of unitary alignments that constitues a
partition of the set of units (each unit appears in one and only one of the chosen unitary
alignments), and the disorder of an alignment as the average disorder of its unitary
alignments. Among the huge number of possible alignments, it finally retains as the
best possible alignment the one that minimizes the disorder.

This is shown in Figure 4: From the data collected in Figure 3, and after a combi-
natory process, γ ended by creating three unitary alignments and some empty units.
In detail, γ considers that the three annotators agree on the fact there is a first unit on
the left of the continuum, but do not fully agree on its category (A, B, and A), that
two annotators only consider that there is a unit in the middle of the continuum, of
category B, and that only one annotator found a third unit of category C at the end of
the continuum. Consequently, γ has created three empty units, one because annotator 3
missed the second unit, and two because annotators 1 and 2 missed (compared with 3)
the third unit. If the second unit from annotator 3 were positioned sufficiently in the
center of the continuum, γwould have chosen to generate only two unitary alignments
instead of three.

A very important feature of γ is that it is “unified”: It builds an alignment in the
same time as it computes the agreement, because these two tasks are interlaced and
based on the same assumptions. This ensures a strong consistency of the results: When
the method hesitates between aligning two units or not, then the resulting computed
agreements corresponding to the two choices are very close.

4.2 Introducing γcat

As already mentioned, we focus here only on the computation of the disorder of γcat,
which is used to calculate the observed and the expected values. To do so, γcat uses
a four-step process, as detailed in the following sections. The main idea is to rely on
an alignment of units (provided by γ) to compare the categories used by different
annotators to assess the same items. In addition, γcat uses special features to cope with
the VL conception of missing values and to improve its accuracy thanks to statistical
considerations.

4.2.1 Obtaining an Alignment of the Units from γ. For its first step, γcat uses the align-
ment provided by γ, which seemingly transforms a difficult unitizing problem into the
simpler question of categorizing predefined items, as shown in Figure 5.3

Each unitary alignment translates into a column of a matrix, and each unit be-
longing to this unitary alignment gives its category as a value in this column. Hence
we obtain a very usual matrix similar to those used for predefined items. To sum up,
what is usually called an “item” (and sometimes a “unit”) with predefined items corre-
sponds here to a unitary alignment, and what is usually called a “value” corresponds
here to the category of a unit. Of course, empty units generated by γ translate into
missing values. The remaining work of γcat resembles what the usual α (which copes
with missing values) does, but there are two important differences, as I will point out in
Section 4.2.6.

3 The reason for using the alignment from γ instead of creating an alignment that maximizes the score of
γcat is that a correct alignment relies both on positions and categories.
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A B .

B B .

A . C
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annotator 1

annotator 2

annotator 3

missing values
(from empty units)

Figure 5
Resulting units/values matrix from unitary alignments.

4.2.2 Value Weight: Giving the Same Importance to Each Value. As we have seen in section 3,
it is important that γcat relies on VL conception of missing values. This is done in a
simple way here, now that unitary alignments have been translated in kind of pre-
defined items with possibly missing values: we just have to count the number nv of
values in a column, and weight 1

nv−1 each of its pairs.

4.2.3 Confidence Weight: Enhancing the Accuracy of δ. γcat relies on an alignment, but as
we have seen in Section 4.1, aligning is a bet, and even if γ was designed to obtain the
most likely overall alignment, it cannot ensure that a particular given pair of aligned
units from two annotators really corresponds to the same intent of both of them. More
precisely, some pairs are aligned with great confidence (because they correspond both
in position and category) whereas others are hardly aligned (γ hesitates to align them).
Given this, how do we obtain the most accurate value of the (categorial) disorder δ from
our data? We could think about two opposite methods: (1) keeping only pairs of total
confidence, hence relying on a trusted but very reduced set of data, or (2) considering
that all pairs are of the same importance, and thus relying on fake data as much as on
trusted data.

However, statistics provide a third method, through the notion of conditional ex-
pectation, which takes the best from these two naive methods. To simplify the problem,
let us put aside missing values, just addressed in the previous section, and consider
that we have full alignments with no empty units. Under these conditions, VL, IL, and
PL conceptions are equivalent, and if we had predefined units, the categorial disorder
would correspond to the average categorial dissimilarity between all pairs of units.

In the context of unitizing, let {pairi} be the set of pairs of units aligned by γ, let
δi = dcat(pairi) be the categorial dissimilarity of pairi, and let pi be the probability of the
event called truePair that pairi really corresponds to a same annotation intent for both
annotators.

Let D be the random variable defined as the function of dissimilarity between pairs
of units from different annotators. The categorial disorder δ we want to estimate is
the average value taken by D for true pairs only, which formally corresponds to the
conditional expectation of D given the event truePair, and is given by Equation (2):

δ = E(D|truePair) = 1∑
i(pi)

·
∑

i

(pi · δi) (2)

In other words, what we really get from an alignment is a “fuzzy set” of true pairs rather
than a classical set, and the best estimate of δ we can get from this data is the weighted
(by pi) average value of {δi}.
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For our purpose, I built the probability pi on positional ground only, because taking
categories into account would bias the results: Agreements (on categories) would be
more weighted than disagreements, which would lead to a lowered overall disorder
value. Consequently, the probability pi is designed so that it equals 1 for two units
positioned at the exact same location (dpos = 0), and so that it reaches 0 when γ begins
to prefer not aligning them because of too much difference in positions (that is to say,
when dpos reaches 1): for pairi = (uj, uk), pi = max(0, 1− dpos(uj, uk)).

I call this value “pairing confidence,” and it is a second weight that will be
taken into account in the global computation. Experiments with the Corpus Shuffling
Tool (introduced later) have confirmed the benefits of using the notion of confidence
weight, which provides an agreement value of 0 with random annotations (which is
correct), whereas when not using it, agreement may be slightly below 0 (which is not
desirable).

4.2.4 Total Weight of a Pair of Units. Figure 6 illustrates both the value weight and the
pairing confidence weight for each pair of units (i.e., for each pair of values in the
table) for the data coming from Figure 3. The total weight for a given pair of units
is the product of its value weight and its confidence weight. For instance, the total
weight for the pair annotator 1 with annotator 3 of item 1 is 0.5 (because there are three
values for this item) multiplied by 0.98 (because of the slight positional discrepancy),
which is 0.49.

4.2.5 The Algorithm to Compute the Disorder of γcat. We can now formally define all the
steps of the computation of the disorder of γcat. The detailed procedure is provided in
Algorithm 1.

First of all, let us recap the γ terminology: â is the best possible alignment com-
puted by γ—that is which minimizes the total disorder of its unitary alignments. The
unitary alignments are denoted ă, and each of them contains one or zero unit from each
annotator, denoted u1 to unv .

The first step, at line 1, is to obtain â exactly as γ does.
Then, a loop, from line 4 to line 14, computes the contribution of each unitary align-

ment to the total disorder. To do so, it considers the number of true units (i.e., not empty
ones) contained in the unitary alignment, and then computes the 1

nv−1 weight shared by
all pairs of units. Then, it uses a sub-loop to enumerate each possible pair of units of the
unitary alignment. For each of them, it computes its (categorial) dissimilarity, its own
confidence weight, and thus obtains its resulting weight (product of the shared weight
and the confidence weight) and its disorder contribution.

At the end of the main loop, we obtain the total disorder contribution and the total
weight, hence the total disorder.

A B .

B B .

A . C

item 1 item 2 item 3

annotator 1

annotator 2

annotator 3

0.94
0.98

1

0.98

positional weights of pairs of values: 

0.5

0.5

1
0.5

1/(n-1) weight: 

Figure 6
Adding weights for VL conception and for pairing confidence.
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Algorithm 1 Computation of the total disorder
1: Compute an alignment â by using the normal γ dissimilarity dcombi = dpos + dcat
2: disordertotal ← 0
3: weighttotal ← 0
4: for all ă ∈ â do
5: nv ← number of real units in ă (exluding u∅)
6: weightbase ← 1

nv−1
7: for all (ui, uj) ∈ ă do
8: weightconfidence ← max(0, 1− dpos(ui, uj))
9: weight← weightbase × weightconfidence

10: dissimilarity← dcat(ui, uj)
11: disordertotal ← disordertotal + dissimilarity× weight
12: weighttotal ← weighttotal + weight
13: end for
14: end for
15: return disordertotal/weighttotal

4.2.6 Discussion: Why We Should Not Use a Naive Two-Step Method. Of course, to build
such a coefficient, one might think to use a naive method that consists, first, in gen-
erating an alignment thanks to γ, and second, in applying the α measure (for pre-
defined units) to the resulting matrix (as the one shown in Figure 5). However, doing
so, we would miss two important points: (1) Obviously, we would not benefit from
the statistical enhancement provided by the confidence weight; (2) A more hidden
problem is that the expected value computed by αwould be biased. Indeed, when units
are of different lengths, mixing tabulated values coming from an alignment is not the
same as resampling unitized units and then aligning them. For instance, in the example
of Figure 7 (left: unitizing, right: resulting matrix), the naive method would provide
an expected value δe = 0.5 (what we obtain in average from 50% of A and 50% of B),
whereas γcat would provide δe = 1, since A and B would never be aligned because
of too much difference in lengths, and so only A-A and B-B pairs would occur when
resampling unitized units.

4.3 The In-depth Coefficient γk that Focuses on Each Category

γk works the same way as γcat does, except for the fact that it focuses on each particular
category, and so provides not just one agreement value, but as many agreement values
as the number of categories. For instance, if there are three categories A, B, and C in
the annotations, γk will provide three agreements, namely, γk(A), γk(B), and γk(C). I have
chosen the letter “k” by reference to kα from Krippendorff, which shares the same goal.

A

A

B

B

annotator 1

annotator 2

A B

A B

item 1 item 2

Figure 7
Computing the expected value is not the same for unitzing (left) and for predefined items (right).
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By focusing on a given category, for instance A, this measure will only look at what
a unit of type A is combined with: in our example, A with A, A with B, A with C, but
not B with C. Hence, it is γcat reduced to a subset of pairs of units, only the ones that
contain at least one unit of type A.

It is very simple to design γk from γcat: We just have to add one condition in
Algorithm 1 so that we keep only relevant pairs of units. More precisely, we add the
condition (cat(ui) = k) ∨ (cat(uj) = k) to line 7 to focus on pairs that concern (at least)
one unit of category k only:

7: for all (ui, uj) ∈ ă | (cat(ui) = k ∨ cat(uj) = k) do

Of course, the computation is done as many times as the number of categories,
because several agreement values are provided: γk is in fact a set of measures.

4.4 Overview and Dependencies of the Gamma Family

Now that γcat and γk have been introduced on the basis of γ, let us recap the links
between the three measures, as illustrated in Figure 8.

From the multi-annotator annotations, the unified and holist method is used to
compute γ and to generate an alignment at the same time. This process relies on an
overall dissimilarity that combines positional and categorial dissimilarities. Then, from
the alignment and the confidence weights which have been computed by γ, and using
only the categorial dissimilarity from the previous step, γcat and γk are computed.

5. Benchmarking

The benchmarking is organized as follows: First, I confirm that γcat behaves the correct
way when dealing with missing values in Section 5.1. Second, I make an in-depth com-
parison between γcat and cuα, the first and only other measure devoted to categorization
of a continuum, in Section 5.2. Third, from Section 5.3 to Section 5.8, I propose six
experiments using the Corpus Shuffling Tool from Mathet et al. (2012) to observe how
γcat responds to different kinds of discrepancies. This tool and the associated kinds of
experiments are fully described in Mathet, Widlöcher, and Métivier (2015, page 467),
the paper in which γwas benchmarked this way.

Alignment & Measure
using

positional+categorial 
dissimilarity

Ɣ 

Aligned
annotations

(with confidence
weights)

Annotations
Measure

using categorial 
dissimilarity (and 

confidence weights)

 Ɣcat

 Ɣkeach category

all categories

Figure 8
Overview of the γ family.
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5.1 Start Point: Predefined Items with Missing Values

γcat being a coefficient for categorization of a continuum, I designed it to be a gen-
eralization to a continuum of what I consider to be the best available measure for
categorization of predefined items with missing values, namely, α.

To do so, I have done experiments with predefined data translated into a continuum
in a simple manner: The first item occupies position 0 to position 1 of the continuum,
the second one position 1 to position 2, and so forth. Each time, γcat obtains exactly the
same observed value as α, and an approximate value of the expected value of α for
sampling reasons, as explained in Mathet, Widlöcher, and Métivier (2015). For instance,
with the example from Krippendorff (2011, page 9) as shown in the screenshot of
Figure 9, with 4 annotators, 12 items, and 7 missing units, α = 0.743 and 0.74 < γcat <
0.76, with the same observed disagreement 0.2. Hence, γcat proves to be a good approx-
imate generalization of α to unitizing.

On the other hand, because it relies on PL, as discussed in Section 3, cuα provides
an agreement value of 0.715, and confirms that it fails to generalize α, being here more
conservative, but possibly less conservative with other data. In particular, its observed
disagreement is 0.218 instead of 0.2 forα and γcat, which confirms a structural difference
of how to take missing values into account.

5.2 A Detailed Illustration of the Differences Between γcat and cuα

It is illuminating to see some important differences between the conceptions of γcat
and cuα, with the data from Figure 3.

cuα computes all intersections between units from different annotators, as shown
in Figure 10, with a total intersection length of 31. Then, the contribution of a pair of
categories in the computation of the coefficient is given by its relative total size. For
instance, for B with B pairs, the total intersection length is 3, hence a contribution of
3/31 = 9.7%. In a radically different way, γcat combines two weights, one for taking
into account missing values, the other for pairing confidence, as shown in Figure 6.

Figure 9
A predefined unit corpus translated to a continuum.

A-A

A-B

B-A

B-B

B-C

B-C

Figure 10
Resulting intersections of units from different annotators.
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Table 3
Comparison of the relative contribution, in percent, of each category pair for γcat and cuα.

A with A B with B A with B B with C A with C

γcat 20.2 38.8 40.9 - -
cuα 25.8 9.7 54.8 9.7 -

For instance, for B with B, we get a contribution of 0.94× 1 = 0.94, out of a total weight
of 2.42 (not detailed here), hence a contribution of 38.8%.

The results of all pairs of categories are given in Table 3. We can see very deep
differences between the two conceptions. It is particularly striking that for cuα, there is
as much agreement thanks to B with B as there is disagreement because of B with C, both
at 9.7%, whereas for γcat, there is 38.8% agreement from B with B, and no disagreement
from B with C. The reason is that the two units of type B that intersect are small, hence
their low contribution to cuα. Since these two units are not being aligned with a third
one, the VL coefficient 1

nv−1 = 1 of this pair is twice as much as the 1
nv−1 = 1

2 coefficient
of the other pairs from the three aligned units.

In addition, for the same reasons, B with B is about twice as much as A with A for
γcat, and it is the contrary for cuα.

Finally, for all these reasons, γcat and cuα show very different agreement values on
this example of, respectively, 0.36 for γcat and 0.08 (almost no agreement at all) for cuα.
Moreover, it is particularly striking that k(B)α = −0.149 (worse than by chance), whereas
γk(B) = 0.484, which makes a huge difference of 0.633.

5.3 Categorial Stability to Positional Discrepancies

A very important feature of a categorial measure for unitizing is its stability to positional
discrepancies: The very aim of such a measure is not to respond at all to discrepancies
that are not categorial. It is the first requirement introduced in Section 2.

The shuffling tool was set with a pure positional shuffling: Units from the reference
are moved (the higher the magnitude, the more the shifts) but the categories are pre-
served. It is important to understand that a so-called pure positional shuffling ends up
having consequences on categories: If we move two very distant units (from two anno-
tators) very much, their new positions may superimpose. Hence, in the range of high
magnitudes (from 0.75 to 1), many pairs of units are concerned by this phenomenon and
it is normal that this shuffling ends up affecting categorial measures.

Three measures have been submitted: γcat, γ, and cuα, as shown in Figure 11.
γcat clearly shows the best behavior. It remains at 1 up to magnitude 0.55, and is still

above 0.9 at high magnitude 0.8.
On the contrary, cuα starts to decrease at very low magnitudes, almost linearly,

and is already at 0.5 at magnitude 0.8. This is the consequence of what is shown in
Figure 15 later in this article: As soon as two units start to overlap, cuα considers the
resulting intersection as an intent of the annotators to categorize the same object (a
portion of the continuum), whereas γcat (and also γ) only compares aligned units, not
sets of intersections.

It is also instructive to compare γcat to the measure it aims to complement, namely,
γ. The latter steadily decreases from 1 to 0, which is desirable for an overall measure.
Hence, the two measures complement each other: A very high γcat value indicates that
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Figure 11
Categorial stability to positional discrepancies.

the γ value corresponds to positional (and false negatives/positives, see next section)
discrepancies.

5.4 Categorial Stability to False Negatives/Positives

For this test, the shuffling tool was set with false negatives only, because false positives
may bring some overlapping units, but for symmetry reasons (a false positive from one
annotator corresponds to a false negative from another), there is no real difference with
false positives for the measures.

Both γcat and cuα are at 1, which is desirable and easy to understand (some units
are removed, but the remaining ones are unchanged), and γ is about the same as for
positional discrepancies (no figure is needed here). This confirms the complementarity
of γ and γcat.

5.5 Categorial Discrepancies

In order to be accurate and progressive in the benchmarking of measures, I address here
the question of categorial discrepancies of units of homogeneous sizes. Indeed, we will
see in a further section that size may affect cuα.

Figure 12 shows that γcat and cuα are about the same, decreasing quite regularly
from 1 to 0, as expected. On the contrary, γ goes from 1 to 0.35, because positions are
still correct. The two gammas are once again complementary: A γ value higher than the
γcat value means that the disagreement is mainly due to categorization.

5.6 Categorial Plus Positional Discrepancies

To refine the results, we can combine categorial and positional discrepancies in the
shuffling tool, as reported in Figure 13.

A first important result is that γcat is almost exactly the same as in Figure 12, which
confirms the categorial stability demonstrated in the previous sections. This is one of the
most important features of γcat, because it corresponds to the most frequent situations
(annotators usually combine different kinds of discrepancies), and proves that this
measure is fully focused on categorization.
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Figure 12
Categorial discrepancies.

Figure 13
Categorial plus positional discrepancies.

A second point is that cuα does not show the same stability, and is lowered by the
positional discrepancies. In particular, from magnitudes 0.1 to 0.6, there is a difference of
up to 0.06, which is not negligible. These differences, though, are much lower than with
positional discrepancies (cf. Figure 11) mainly because, the values being much lower,
and the differences being proportional to the values, they are also much lower.

Third, γ is now clearly lower than γcat because it depends on the two kinds of
discrepancies used here, instead of one for γcat.

5.7 Units of Various Sizes

γcat was designed not to be dependent on size of units, contrary to cuα. To confirm this
conceptual difference with the shuffling tool, I have set two experiments in which there
are four categories, and where annotators make more and more confusions within the
three categories A, B, and C, but keep making no mistake for category D. In the first
experiment, all units are of size 5. In the second experiment, units of categories A, B,
and C still are of size 5, but those of category D are of size 20.

As expected, γcat is not sensitive at all to size of units (Figure 14). The two curves
(named “γcat” and “γcat long” in the legend) superimpose. On the other hand, cuα reacts
differently in the two experiments. In the first one, it is about the same as γcat, but in
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Figure 14
Length variations on categorial discrepancies.

the second one, it is much higher, being twice as much as γcat at magnitude 1 (0.54
versus 0.27).

5.8 Benchmarking γk

To finish, for this experiment dedicated to test γk, I have once again used four categories
A, B, C, and D, with no mistake for category D. Of course, γk(D) remains at 1, and γk(A),
γk(B), and γk(C) decrease from 1 to about 0.1 (Figure 15). We may wonder why they do
not reach 0, but this is normal and the reason is that there is no confusion between each
for these categories and category D, contrary to what happens for the expected value
which has this additional discrepancy.

γcat reaches about 0.33 at magnitude 1, but this overall result would not reveal by
itself the fact that only three categories out of four are confusing for the annotators.
Hence the usefulness of the additional coeffcient γk is demonstrated.

6. Software

The full implementation of the γ family (γ, γcat, and γk) is provided as free software
on the http://gamma.greyc.fr Web site. It is a standalone application written in Java,

Figure 15
Benchmarking γk.

678



Mathet Assessing Categorization of a Continuum with γcat

which runs on any platform, and successfully tested on Mac OS X, Windows, and Linux.
It is also available as a Web service for those who do not want to install it. It is compatible
with annotations created with the Glozz Annotation Platform (Widlöcher and Mathet
2012), and with annotations generated by the Corpus Shuffling Tool (Mathet et al. 2012).
Because these formats rely on simple and public comma-separated value specifications,
it is easy to translate other formats to these.

The application comes with a graphical user interface, as shown in the screenshot
of Figure 16. The window is divided into three panels, respectively, from top to bottom,
the settings, the results, and the annotations. In the Settings panel, one can choose
the measure(s) to apply, either γ, or both γcat and γk. One may also set the desired
precision to compute the expected value, because, as explained in Mathet, Widlöcher,
and Métivier (2015, page 460), the latter is computed by sampling. In the Results panel,
all the results are detailed: the agreement, observed and expected values, and also the
number of unitary alignments found. In the example, the user chose 2% of precision for
the expected value, hence γcat is known to be between 0.34 and 0.37 with a 95% degree of
confidence. Also, the values of γk are provided for the three categories, and γk(C) is not
available (NA) because there is no pair of units containing at least one unit of category
C. When the user loads a new file of annotations, or when she changes a setting, the
computation is automatically relaunched, so that the results always correspond to what
is shown in the interface.

In our example, γcat is quite low at 0.36, because of confusions between categories
A and B, since category C does not contribute to the result as we have just seen. To
go deeper into details, γk shows us that this low agreement is due more to category A
(γk(A) = 0.335) than to category B (γk(B) = 0.494). Moreover, γ = 0.29 (not visible in the
screenshot because one has to click on “Gamma” to make it appear) is quite close to γcat,
which tells us that the annotators have to improve both unitizing and categorization.

Figure 16
The γ family software.
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7. Conclusions

In computational linguistics, when annotation efforts are relative to a continuum rather
than to predefined items, researchers are not typically provided with methods and tools
to assess the agreement among several annotators. Recently, γ proposed an overall
solution that takes into account all kinds of discrepancies (categories, positions, false
positives, and false negatives) in order to assess whether the multi-annotations are
reliable or not. However, when the agreement is not as good as is wished, the researchers
would like to have more details about the discrepancies, in order to better understand
the difficulties and thus to enhance the annotation model or the annotation manual. In
particular, is a given overall low agreement due to poor specification of categories? Or
even of some particular categories?

The aim of this work is to provide such complements to γ, with two additional
coefficients γcat and γk, which focus on the categorization part of the agreement, with
the expectation that they also fulfill three important requirements for computational
linguistics: (1) Positional discrepancies should not impact categorial agreement; (2)
Length of units should not be taken into account; (3) Missing values should be tackled
appropriately.

Finally, this research addresses a neglected question: How do we assess the reliabil-
ity of annotators to categorize a continuum, whatever their discrepancies in positioning
units. Only Krippendorff proposes solutions, with his coefficients cuα and kα, but with
different assumptions from the ones we posit for computational linguistics needs. In
particular, relying on intersections rather than on an alignment, these coefficients mostly
compare quantities of occupied space rather than genuine units.

γcat was designed not only as a complement to γ, but also with the same conception
of how to handle unitizing, and with a common alignment process. Relying on an
alignment, it compares genuine units and so ensures requirements (1) and (2).

Because the aim of γcat is somehow to extend what agreement measures do for pre-
defined items to the case of unitizing a continuum, it was important that γcat perform as
well as the best specialized measures. Moreover, the context of free unitizing leads to a
great number of so-called missing values (when some annotators put units where others
do not), which led me to frontally study this other neglected question for requirement
(3): How should a measure natively handle missing values? I made a thorough analysis
of the question and formulated a clear answer: The best solution is to do as the classic
α measures does (and as cuα unfortunately fails to do). This is also a result that goes
beyond the scope of this article focused on unitizing. γcat manages to do (almost) exactly
the same as αwhen restrained to the simpler case of predefined units, which constitutes
a strong basis.

Finally, γcat fulfills all the requirements expressed for computational linguistics.
Experiments with the shuffling tool confirm all these capabilities, as well as the fact
that the three coefficients γ, γcat, and γk are complementary.

These coefficients are already implemented, ready to use, and freely available.
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