
Stochastic Language Generation in Dialogue
Using Factored Language Models

François Mairesse∗
University of Cambridge

Steve Young∗∗
University of Cambridge

Most previous work on trainable language generation has focused on two paradigms: (a) using a
statistical model to rank a set of pre-generated utterances, or (b) using statistics to determine the
generation decisions of an existing generator. Both approaches rely on the existence of a hand-
crafted generation component, which is likely to limit their scalability to new domains. The first
contribution of this article is to present BAGEL, a fully data-driven generation method that treats
the language generation task as a search for the most likely sequence of semantic concepts and
realization phrases, according to Factored Language Models (FLMs). As domain utterances are
not readily available for most natural language generation tasks, a large creative effort is required
to produce the data necessary to represent human linguistic variation for nontrivial domains.
This article is based on the assumption that learning to produce paraphrases can be facilitated by
collecting data from a large sample of untrained annotators using crowdsourcing—rather than
a few domain experts—by relying on a coarse meaning representation. A second contribution
of this article is to use crowdsourced data to show how dialogue naturalness can be improved
by learning to vary the output utterances generated for a given semantic input. Two data-
driven methods for generating paraphrases in dialogue are presented: (a) by sampling from the
n-best list of realizations produced by BAGEL’s FLM reranker; and (b) by learning a structured
perceptron predicting whether candidate realizations are valid paraphrases. We train BAGEL on
a set of 1,956 utterances produced by 137 annotators, which covers 10 types of dialogue acts
and 128 semantic concepts in a tourist information system for Cambridge. An automated eval-
uation shows that BAGEL outperforms utterance class LM baselines on this domain. A human
evaluation of 600 resynthesized dialogue extracts shows that BAGEL’s FLM output produces ut-
terances comparable to a handcrafted baseline, whereas the perceptron classifier performs worse.
Interestingly, human judges find the system sampling from the n-best list to be more natural than
a system always returning the first-best utterance. The judges are also more willing to interact
with the n-best system in the future. These results suggest that capturing the large variation
found in human language using data-driven methods is beneficial for dialogue interaction.

∗ The author’s present address is Amazon.com, 101 Main Street, Suite 900, Cambridge, MA 02142, USA.
E-mail: francois.mairesse@gmail.com. This research was done at the University of Cambridge.

∗∗ Cambridge University Engineering Department, Trumpington Street, Cambridge, CB2 1PZ, UK.
E-mail: sjy@eng.cam.ac.uk.

Submission received: 12 June 2011; revised version received: 12 November 2013; accepted for publication:
21 December 2013.

doi:10.1162/COLI a 00199

© 2014 Association for Computational Linguistics

Computational Linguistics Volume 40, Number 4

1. Introduction

The field of natural language generation (NLG) was one of the last areas of compu-
tational linguistics to embrace statistical methods, perhaps because of the difficulty of
collecting semantically annotated corpora. Over the past decade, statistical NLG has
followed two lines of research. The first, pioneered by Langkilde and Knight (1998),
introduces statistics in the generation process by training a model that reranks can-
didate outputs of a handcrafted generator. Their HALOGEN system uses an n-gram
language model trained on news articles. HALOGEN is thus domain-independent, and
it was successfully ported to a specific dialogue system domain (Chambers and Allen
2004). However, its performance depends largely on the granularity of the underlying
meaning representation, which typically includes syntactic and lexical information. A
major issue with data-driven NLG systems is that collecting fine-grained semantic an-
notations requires a large amount of time and expertise. For most domains, handcrafting
templates remains a more cost-effective solution.

More recent work has investigated other types of reranking models, such as hierar-
chical syntactic language models (Bangalore and Rambow 2000), discriminative models
trained to replicate user ratings of utterance quality (Walker, Rambow, and Rogati 2002),
or language models trained on speaker-specific corpora to model linguistic alignment
(Isard, Brockmann, and Oberlander 2006). However, a major drawback of the utterance-
level overgenerate and rank approach is its inherent computational cost. In contrast,
this article proposes a method in which local overgeneration can be made tractable
through beam pruning.

A second line of research has focused on introducing statistics at the generation-
decision level by training models that find the set of generation parameters maximizing
an objective function, for example, producing a target linguistic style (Paiva and Evans
2005; Mairesse and Walker 2008), generating the most likely context-free derivations
given a corpus (Belz 2008), or maximizing the expected reward using reinforcement
learning (Rieser and Lemon 2010). Although such methods do not suffer from the com-
putational cost of an overgeneration phase, they still require a handcrafted generator
to define the generation decision space within which statistics can be used to find an
optimal solution. Recently, research has therefore focused on reducing the amount of
handcrafting required by learning to infer generation rules from data (see Section 2).

This article presents BAGEL, an NLG system that can be fully trained from utter-
ances aligned with coarse-grained semantic concepts. BAGEL aims to produce natural
utterances within a large dialogue system domain while minimizing the overall de-
velopment effort. Because repetitions are common in human–computer interactions—
especially when facing misunderstandings—a secondary objective of this article is to
improve dialogue naturalness by learning to generate paraphrases from data. Although
domain experts can be used to annotate data, domain utterances are not readily avail-
able for most NLG tasks, hence a creative process is required for generating these
utterances as well as matching semantics. The difficulty of this process is increased for
systems aiming at producing a large amount of linguistic variation, because it requires
enumerating a large set of paraphrases for each domain input. This article is based
on the assumption that learning to produce paraphrases can be facilitated by collect-
ing data from a large sample of annotators. However, this requires that the meaning
representation should (a) be simple enough to be understood by untrained annotators,
and (b) provide useful generalization properties for generating unseen inputs. Section 3
describes BAGEL’s meaning representation, which satisfies both requirements. Section 4
then details how our meaning representation is mapped to a phrase sequence, using

764

Mairesse and Young Stochastic Language Generation in Dialogue Using FLMs

cascaded Factored Language Models with back-off smoothing. Section 5 presents two
methods for using BAGEL’s probabilistic output for paraphrase generation in dialogue.
Section 6 illustrates how semantically aligned training utterances for a large tourist
information domain were collected using crowdsourcing. Section 7 then evaluates the
trained models in a dialogue setting, by showing that (a) BAGEL performs comparably
to a handcrafted rule-based generator; and (b) human judges prefer systems sampling
from the n-best output over systems always selecting the top ranked utterance. Finally,
Section 8 discusses the implication of these results as well as future work.

2. Related Work

Although statistics have been widely used to tune NLG systems, most previous work on
trainable NLG has relied on a pre-existing handcrafted generator (Langkilde and Knight
1998; Walker, Rambow, and Rogati 2002). Only recently has research started to develop
NLG models trained from scratch, without any handcrafting beyond the definition of
the semantic annotations.

In order to reduce complexity, previous work has split the NLG task into two
phases: (a) sentence planning and (b) surface realization. The sentence planning phase
maps input semantic symbols to an intermediary tree-like or template structure repre-
senting the utterance; then the surface realization phase converts it into the final text. As
developing a sentence planner capable of overgeneration typically requires a substantial
amount of handcrafting (Walker, Rambow, and Rogati 2002; Stent, Prasad, and Walker
2004), Stent and Molina (2009) have proposed a method that learns sentence plan-
ning rules from a corpus of utterances labeled with Rhetorical Structure Theory (RST)
discourse relations (Mann and Thompson 1988). Although additional handcrafting is
needed to map the sentence plan to a valid syntactic form by aggregating the syntactic
structures of the relations arguments, we believe RST offers a promising framework for
improving the expressiveness of statistical generators. Section 8 discusses how BAGEL’s
expressiveness could be improved by including RST relations.

Language models (LMs) have previously been used for language generation in
order to remove the need for a handcrafted overgeneration phase (Oh and Rudnicky
2002; Ratnaparkhi 2002). Oh and Rudnicky’s (O&R) approach trains a set of word-
based n-gram LMs on human–human dialogues, one for each utterance class in their
corpus. An utterance class corresponds to the intent and zero or more slots in the input
dialogue act. At generation time, the corresponding LM is used for overgenerating a
set of candidate utterances, from which the final utterance is selected based on a set of
reranking rules. Ratnaparkhi addresses some limitations of the overgeneration phase
by comparing systems casting the NLG task as (a) a search over a word sequence
based on an n-gram probabilistic model, and (b) as a search over syntactic dependency
trees based on models predicting words given its syntactic parent and sibling nodes
(Ratnaparkhi 2002). O&R’s method represents the first line of research on NLG that
limits the amount of handcrafting to a small set of post-processing rules in order to
facilitate the development of a dialogue system’s NLG component. Section 7.1 there-
fore compares BAGEL’s performance with O&R’s utterance class LM approach, and
discusses differences between the two techniques.

Data-driven NLG research has also been inspired by research on semantic parsing
and machine translation. The WASP−1 generator combines a language model with
an inverted synchronous context-free grammar parsing model, effectively casting the
generation task as a translation problem from a meaning representation to natural
language (Wong and Mooney 2007). WASP−1 relies on GIZA++ to align utterances with

765

Computational Linguistics Volume 40, Number 4

derivations of the meaning representation (Och and Ney 2003). Although early exper-
iments showed that GIZA++ did not perform well on our data—possibly because of
the coarse granularity of our semantic representation—future work should evaluate the
generalization performance of synchronous context-free grammars in a dialogue system
domain. Lu, Ng, and Lee (2009) show that Tree Conditional Random Fields (CRFs)
outperform WASP−1 and their own inverted semantic parser, based on automated
evaluation metrics, although their system remains to be evaluated by human judges
(Lu, Ng, and Lee 2009). Similarly to the perceptron reranking approach presented here,
Tree CRFs learn a log linear model, estimating the conditional probability of semantic
tree/phrase alignments given an input semantic tree. Although this line of research is
promising, the two data sets evaluated—GEOQUERY and ROBOCUP—contain a large
number of utterances that only differ by the proper name used. For example, 17 out
of the 880 instances of the GEOQUERY data set match the template what is the capital
of $STATE. Such instances are therefore likely to occur simultaneously in the training
and test partitions. In contrast, in our evaluation such templates are mapped to the
same meaning representation, and we enforce the condition that the generated meaning
representation was not seen during training.

Angeli, Liang, and Klein (2010) propose a simpler framework in which the genera-
tion task is cast as a sequence of generation decisions selecting either: (a) a database
record to express (e.g., the temperature); (b) a set of fields for that record (e.g., the
minimum, maximum); and (c) a template realizing those fields (e.g., with a low around
$MINIMUM). They train a set of log-linear models predicting individual generation
decisions given the previous ones, using domain-independent features capturing the
lexical context as well as content selection. The templates are extracted from data
aligned with the input records using expectation maximization. This approach offers
the benefit of allowing predictions to be made given generation decisions that are
arbitrarily far in the past. However, long-range feature dependencies make a Viterbi
search intractable, hence the authors use a greedy search, which produces state-of-
the-art results on the ROBOCUP data set and two weather domains. More recently,
Kondadadi, Howald, and Schilder (2013) also decouple the NLG task as a template
extraction and ranking problem, and show that an SVM reranker can produce outputs
comparable to human-authored texts for weather reports and short biographies.1

Konstas and Lapata (2012) jointly model content selection and surface realization by
training a forest of PCFGs expressing the relation between records, fields, and words. A
Viterbi search is used to find the optimal derivations at generation time; however, the
PCFG weights are rescored using an averaged structured perceptron using both content
selection and lexical features. The authors show that their approach outperforms Angeli,
Liang, & Klein’s (2010) method on the air transport query domain (ATIS data set). This
article evaluates the same averaged structured perceptron algorithm within the BAGEL
framework (see Sections 5.2 and 7.2).

Most other work on data-driven NLG has focused on learning to map syntax to text.
The surface realization task is an attractive research topic as it is not tied to a specific
application domain. Factored language models have been used for surface realization
within the OpenCCG framework (White, Rajkumar, and Martin 2007; Espinosa, White,
and Mehay 2008). More generally, chart generators for different grammatical formalisms
have been trained from syntactic treebanks (Nakanishi, Miyao, & Tsujii 2005; Cahill and

1 These papers were published after the main BAGEL development and thus no detailed comparisons are
offered in this article.

766

Mairesse and Young Stochastic Language Generation in Dialogue Using FLMs

van Genabith 2006; White, Rajkumar, and Martin 2007), as well as from semantically
annotated treebanks (Varges and Mellish 2001). Because manual syntactic annotation is
costly and syntactic parsers do not necessarily perform well at labeling spoken language
utterances, the present work focuses on the generation of surface forms directly from
semantic concepts. Future work should investigate whether explicit syntactic modeling
improves performance (e.g., by conditioning the realization FLMs on part-of-speech
information).

Previous studies have shown that paraphrasing improves performance in auto-
mated tutoring dialogues (Pon-Barry et al. 2006), and suggested that users prefer di-
alogue systems in which repetitions are signaled (e.g., as I said before), even though that
preference was not significant (Foster and White 2005). However, we do not know of
any research applying statistical paraphrasing techniques to dialogue. Most research on
paraphrasing has focused on unsupervised techniques for extracting paraphrases from
a corpus of written text. Proposed techniques learn to identify phrase templates, which
tend to have the same arguments in a monolingual corpus (Lin and Pantel 2001), or to
detect variations between translations of the same text (Barzilay and McKeown 2001;
Bannard and Callison-Burch 2005). Although these methods could be used to enrich an
existing generator, they do not model semantics; hence they cannot be applied directly
to NLG. Statistical reranking models have been used for over a decade for language
generation (Langkilde and Knight 1998); however, we do not know of any evaluation
of their paraphrasing power. Whereas linguistic variation is typically ignored in NLG
systems, a recent line of research has started investigating how to control a generator
to convey a specific style—for example, to generate language with a target linguistic
genre (Paiva and Evans 2005), to convey a specific personality trait (Mairesse and
Walker 2008, 2011), or to align with their conversational partner (Isard, Brockmann, and
Oberlander 2006). These systems use statistics for controlling the style of their output;
however, they require an existing handcrafted generator, and they were not evaluated
within a dialogue context. We believe that the techniques presented here can also be
used for stylistic control by including stylistic elements in our stack-based semantic
representation; however, we leave this to future work.

Another line of work has used NLG paraphrase mechanisms to show that jointly
optimizing NLG and speech synthesis can improve human perceptions of voice quality.
This was achieved by finding the candidate paraphrase yielding the lowest speech unit
concatenation cost using weighted finite state transducers (Bulyko and Ostendorf 2002)
or by using a discriminative reranker trained to predict human judgments of synthesis
quality (Nakatsu and White 2006). Similarly, Stone et al. (2004) propose a method
using dynamic programming for simultaneously optimizing NLG, speech synthesis,
and gesture in animated characters. Although all three approaches learn the paraphrase
selection step from data, they rely on handcrafted NLG for producing candidates.
Hence future work should investigate whether voice quality could also be improved
by composing the n-best paraphrases generated by BAGEL with a prosodic reranker.

3. Phrase-Based Generation from Semantic Stacks

BAGEL uses a stack-based semantic representation to constrain the sequence of semantic
concepts to be searched. This representation can be seen as a linearized semantic tree
similar to the one previously used for natural language understanding in the Hidden
Vector State model (He and Young 2005). A stack representation provides useful gen-
eralization properties, and it allows for efficient sequential decoding using dynamic
programming. In the context of dialogue systems, Figures 1 and 2 illustrate how the

767

Computational Linguistics Volume 40, Number 4

Figure 1
Example utterance for the inform dialogue act type, with aligned semantic tree and
corresponding stack sequence in boxes. Mandatory stacks are in bold.

input dialogue act (i.e., a semantic tree) is mapped to a set of stacks of semantic
concepts (represented as boxes) and aligned with a phrase sequence, resulting in one
stack/phrase pair per time frame. The root concept of the semantic tree (i.e., the bottom
concept in each stack) expresses the overall communicative goal of the utterance and is
referred to as a dialogue act type. For example, the inform dialogue act type in Figure 1
indicates that the utterance provides information about an entity matching the user’s
constraints; the dialogue act type informall in Figure 2 indicates that all the entities
matching some of the user’s constraints also satisfy other constraints. In contrast, the
reject dialogue act type indicates that the system cannot find an entity matching the
specified constraints. See Table 4 in Section 6 for more example dialogue act types.
Non-root semantic concepts include attributes of that entity under consideration (e.g.,
name, food, and area at frame 1, 3, and 9 in Figure 1), values for those attributes
(e.g., respectively, name(Jinling), food(Chinese), and area(centre) in Figure 1), as
well as special symbols for logical quantifiers (e.g., all in Figure 2), negations (not), or

Figure 2
Example utterance for the informall dialogue act type, with aligned semantic tree and
corresponding stack sequence in boxes. Mandatory stacks are in bold.

768

Mairesse and Young Stochastic Language Generation in Dialogue Using FLMs

specifying that an attribute is irrelevant (dontcare). Punctuation symbols are modeled
using the semantic concept punct, as in frame 7 in Figure 1.

The generator’s goal is thus to find the most likely realization given an unordered
collection of mandatory semantic stacks Sm derived from the input dialogue act. Manda-
tory stacks are represented in bold in Figure 1, such as inform(area(centre)) in
frame 9. While mandatory stacks must all be conveyed in the output realization, Sm
does not contain the optional filler stacks Si that can refer to (a) general attributes of the
object under discussion (e.g., inform(area) in frame 8); (b) concepts that are not in the
input at all, which are associated with the singleton stack inform (e.g., phrases specific
to a dialogue act type such as ‘is a’ in Figure 1, or clause aggregation operations such as
‘and’); or (c) punctuation symbols (e.g., inform(punct) in frame 7).

The general philosophy behind our semantic formalism is to match the practical re-
quirements of an information presentation dialogue system; that is, a dialogue manager
typically returns a tree-like structure of coarse-grained semantic concepts describing (a)
the overall dialogue act type, (b) the constraints over entities stored in a domain-specific
database, as well as (c) logical modifiers expressing relations between sets of domain
entities, depending on the dialogue act type. A major advantage of our formalism com-
pared with more fine-grained formalisms (e.g., lambda calculus) is that it can be easily
understood by human annotators. We believe that this is a crucial point for collecting
the range of utterances required for learning to generate natural paraphrases in large
domains (see Section 6). Furthermore, Section 8 discusses how its expressiveness could
be extended by including additional discourse structures.

BAGEL’s granularity is defined by the semantic annotation in the training data,
rather than external linguistic knowledge about what constitutes a unit of meaning;
namely, contiguous words belonging to the same semantic stack are modeled as an
atomic observation unit or phrase.2 In contrast with word-level language models, a
major advantage of phrase-based generation models is that they can model long-range
dependencies and domain-specific idiomatic phrases with fewer parameters.

4. FLM-Based Statistical NLG

In order to find the optimal stack and realization phrase sequences given an input
dialogue act, we cast the generation task as a search over Factored Language Models
(FLMs), which were introduced by Bilmes and Kirchhoff (2003). FLMs extend tradi-
tional language models by allowing predicted variables to be conditioned on differ-
ent utterance contexts, depending on whether they were sufficiently observed in the
training data. This approach is equivalent to a dynamic Bayesian network in which
the probability of child nodes are estimated by interpolating over different parent
nodes. Dynamic Bayesian networks have been used successfully for speech recognition,
natural language understanding, dialogue management, and text-to-speech synthesis
(Rabiner 1989; Tokuda et al. 2000; He and Young 2005; Lefèvre 2006; Thomson and
Young 2010). Such models provide a principled framework for predicting elements
in a large structured space, such as required for non-trivial NLG tasks. Additionally,
their probabilistic nature makes them suitable for modeling linguistic variation—that
is, there can be multiple valid paraphrases for a given input.

2 The term phrase is thus defined here as any sequence of one or more words.

769

Computational Linguistics Volume 40, Number 4

4.1 NLG as a Viterbi-Search Pipeline

BAGEL models the generation task as finding the most likely sequence of realization
phrases R∗ = (r1...rL) given an input dialogue act. Each dialogue act is represented as
a set of mandatory semantic stacks Sm (unordered), with |Sm| ≤ L. BAGEL must thus
derive the optimal sequence of semantic stacks S∗ that will appear in the utterance
given Sm, that is, by inserting filler stacks if needed and by performing content ordering.
Let us define the set of mandatory stack orderings as Order(Sm). Any number of filler
stacks can be inserted between two consecutive mandatory stacks, as long as all their
concepts are included in either the previous or following mandatory stack, and as long
as each stack transition leads to a different stack (see example in figures 1 and 2). For
each mandatory stack sequence Sm in Order(Sm), let us define the set of all possible stack
sequences matching the filler insertion constraints as Fill(Sm).

Ideally, we would like to learn a model that estimates the probability of a realization
given a dialogue act P(R|Sm) from a training set of realization phrases aligned with
semantic stack sequences. During the generation process, the realization probability can
be computed by marginalizing over all possible semantic stack sequences satisfying the
dialogue act constraints:

P(R|Sm) =
∑

Sm∈Order(Sm)

∑

S∈Fill(Sm)

P(R, S, Sm|Sm)

=
∑

Sm∈Order(Sm)

∑

S∈Fill(Sm)

P(R|S, Sm,Sm)P(S|Sm,Sm)P(Sm|Sm)

=
∑

Sm∈Order(Sm)

P(Sm|Sm)
∑

S∈Fill(Sm)

P(R|S)P(S|Sm) (1)

Inference over such a model would require the decoding algorithm to consider all
possible underlying stack sequences together with all possible realizations, which is
intractable for non-trivial domains. Because a key requirement of this work was to
develop data-driven techniques that can be used to generate utterances in real-time, the
generation task is approximated by splitting it into three sequential decoding steps,
illustrated in Figure 3:

1. The ordering of mandatory stacks Sm is predicted independently from the
filler stacks and the realization phrases. This model can be seen as a
high-level content ordering model. For example, it learns whether or not
the information about the venue’s area should follow the information

Figure 3
Architecture of an FLM-based statistical generator with three decoding stages.

770

Mairesse and Young Stochastic Language Generation in Dialogue Using FLMs

about nearby venues. In order to limit the impact of this approximation,
the top n sequences are selected as candidate inputs to the following step
(argmaxN), rather than only the first-best. Hence the first generation step
requires computing:

S∗
m = argmaxN

Sm∈Order(Sm)
P(Sm|Sm) (2)

2. The resulting n-best mandatory stack sequences S∗
m are used to constrain

the search for the full stack sequence S (i.e., by inserting filler stacks
between consecutive mandatory stacks). For example, given that the
information about the area follows the information about nearby venues,
the model might predict that the actual area needs to be introduced by an
area-specific expression (see filler stack at time t = 8 in Figure 1). Hence for
the second generation step we compute:

S∗ = argmaxN
S∈Fill(S∗

m)
P(S|S∗

m) (3)

3. The resulting n-best full stack sequences S∗ are used to condition the
search for the realization phrase sequence R. For example, the realization
phrase model is likely to predict that in the and centre of town should be
associated with the two semantic stacks characterizing the area (see
phrases at t = 8 and t = 9 in Figure 1). Hence the third generation step
requires computing:

R∗ = argmaxN
R=(r1...rL)

P(R|S∗) (4)

Each decoding step can be computed using dynamic programming; however, the de-
coding efficiency depends highly on the locality of context features. In the basic decoder,
we factorize our models by conditioning the realization phrase at time t on the previous
phrase rt−1, and the previous, current, and following semantic stacks. The semantic
stack st at time t is assumed to depend only on the previous two stacks:

P(Sm|Sm) =

⎧
⎨

⎩

∏T
t=1 P(st|st−1, st−2)

if Sm ∈ Order(Sm)
0 otherwise

(5)

P(S|S∗
m) =

⎧
⎨

⎩

∏T
t=1 P(st|st−1, st−2)

if S ∈ Fill(S∗
m)

0 otherwise
(6)

P(R|S∗) =
T∏

t=1

P(rt|rt−1, s∗t−1, s∗t , s∗t+1) (7)

As dynamic Bayesian networks typically require sequential inputs, some process-
ing is needed to learn to map a set of semantic stacks to a phrase sequence. This is
achieved by keeping track of the mandatory stacks that were visited in the current
sequence and pruning any sequence that has not included all mandatory input stacks on

771

Computational Linguistics Volume 40, Number 4

reaching the final frame. Because the number of filler stacks is not known at decoding
time, the network is unrolled for a fixed number of frames T defining the maximum
number of phrases that can be generated (e.g., T = 50). The end of the stack sequence
is then determined by a special end symbol, which can only be emitted within the T
frames once all mandatory stacks have been visited. The probability of the resulting
utterance is thus computed over all frames up to the end symbol, which determines
the length L of S∗ and R∗. Whereas the decoding constraints enforce that L > |Sm|, the
search for S∗ requires comparing sequences of different lengths. A consequence is that
shorter sequences containing only mandatory stacks are likely to be favored. Future
work should investigate length normalization strategies, but we find that the learned
transition probabilities are skewed enough to favor stack sequences that include filler
stacks.

BAGEL solves Equations (2), (3), and (4) by doing three pipelined Viterbi searches
to find the optimal sequence of output symbols (mandatory semantic stacks, filler
stacks, and realization phrases) given the input (unordered mandatory stacks, ordered
mandatory stacks, and the full stack sequence, respectively). Our initial generator thus
consists of a pipeline of three FLMs, as illustrated in Figure 3. In terms of compu-
tational complexity, the number of stack sequences Order(Sm) to search over during
the first decoding step increases exponentially with the number of input mandatory
stacks. However, the proposed three-stage architecture allows for tractable decoding
by (a) pruning low probability paths during each Viterbi search, and (b) pruning low
probability sequences from the output n-best list of each component.

4.2 Generalization to Unseen Contexts

FLMs allow predicted symbols to be conditioned on any contextual feature. Further-
more, if a feature was not observed during training time, the FLM can back off to more
general features according to a predefined back-off strategy. This section shows how the
generation process can be made more robust to unseen dialogue acts by factoring the
semantic stack and realization phrase variables.

4.2.1 Partial Stack Modeling. A robust language generator should be able to infer
that some stack sequences are more likely than others even if they were only par-
tially observed during training, based on co-occurrences on individual stack concepts.
For example, such a generator should learn that inform(type(restaurant)) is
likely to follow inform(pricerange(cheap)) based on the observation of inform

(pricerange(cheap)) followed by inform(type(hotel)). However, if inform(type
(restaurant)) has not been seen during training, it will be assigned a low prob-
ability regardless of its context. This can be alleviated by factorizing the stack
variable into underspecified stack configurations—that is, model the probability of
observing a stack st as the probability of observing the tail of the stack lt as well
as the head of the stack ht given its tail. In other words, the probability of a
stack occurrence given the previous stack is factorized as P(st|st−1) = P(ht, lt|st−1) =
P(lt|st−1)P(ht|lt, st−1). As a result, the probability that inform(pricerange(cheap)) is
followed by inform(type(restaurant)) will be high even if inform(type(restaurant))
was not observed, as long as inform(pricerange(cheap)) is frequently followed by the
tail symbol inform(type(SOMETHING)) in the training data.

Although the proposed factorization does not entirely resolve the data spar-
sity issue, it limits its impact to a single factor. In the example above, inform

(type(restaurant)) has not been seen during training; hence there is no data to estimate

772

Mairesse and Young Stochastic Language Generation in Dialogue Using FLMs

(a) Semantic stack head ht and
tail lt factor decomposition. The
full stack probability is obtained
by multiplying both factors using
the chain rule.

(b) Realization phrase rt given previous phrase rt−1 and se-
mantic context st−1, st, st+1. At each parallel back-off step (2,
4, and 5), the probability of the most likely back-off path is
used.

Figure 4
Back-off graphs for (a) the semantic stack FLMs and (b) the realization phrase FLM.

the probability that the head symbol restaurant governs inform(type(SOMETHING)) in
the second factor. A solution is to back off to the probability of restaurant occurring
in a more general context (e.g., ignoring the underlying stack concepts). The back-off
graphs of the two factors are illustrated in Figure 4(a), and an example sequence of
back-off variables is shown in the right column of Table 1.

This example shows how a partial stack representation can improve semantic stack
ordering, but it can also be used to assign non-zero probabilities to realization phrases
observed in unseen semantic contexts by backing off to the head and the tail of the
stack. This process is illustrated by the second and third back-off steps of the real-
ization back-off graph in Figure 4(b). The neighboring semantic stacks st−1 and st+1
are first replaced by their stack tails lt−1 and lt+1, respectively (step 2). If none of the
three resulting contexts were observed during training, the current semantic stack st

Table 1
Example utterance annotation used to estimate the conditional probability distributions in
figures 4 and 6 (rt = realization phrase, st = semantic stack, ht = stack head, lt = stack tail).

rt st ht lt

<s> START START START
The Rice Boat inform(name(X)) X inform(name)
is a inform inform EMPTY
restaurant inform(type(restaurant)) restaurant inform(type)
in the inform(area) area inform
riverside inform(area(riverside)) riverside inform(area)
area inform(area) area inform
that inform inform EMPTY
serves inform(food) food inform
French inform(food(French)) French inform(food)
food inform(food) food inform
</s> END END END

773

Computational Linguistics Volume 40, Number 4

is replaced by its stack head ht (step 3). If this context was not observed either, the
variables the farthest away are dropped in the following back-off steps. In extreme
cases, the realization probability is approximated by the unigram count P(rt) in step 7.
This mechanism provides BAGEL with the ability to generalize lexical realizations across
contexts. For example, if reject(area(centre)) was never observed at training time,
P(rt = centre of town|st = reject(area(centre))) can be estimated by backing off to
P(rt = centre of town|ht = centre) in step 6. BAGEL can thus generate there are no venues
in the centre of town if the phrase centre of town was associated with the concept centre
in a different context, such as inform(area(centre)).

4.2.2 Partial Phrase Modeling. The robustness of FLM-based generation models can also
be improved by allowing the realization model to back off to partial phrase contexts. For
example, even if the phrase sequence located in the and centre of town has not been seen
during training, it would be desirable for it to have a higher probability than located in
followed by centre of town, which misses a determiner. This can be achieved by backing
off to the last words of the preceding phrase (e.g., in the or the), which are more likely
to precede centre of town in the data. Hence FLMs can learn to predict function words
without allocating them an explicit time frame during decoding. In our experiments, we
sequentially back off to the last two words and the last word of the preceding phrase.

The back-off graphs in Figure 4 illustrate the factorization and back-off strategies of
BAGEL’s decoding models, and Table 1 shows an instantiation of the back-off variables
for an example utterance. The predictions of FLMs can be improved by smoothing
their probability estimate over different contexts by interpolating between different
back-off probability distributions (Bilmes and Kirchhoff 2003). In our experiments, the
conditional probability distributions of the three models in Figure 3 are smoothed
using Witten–Bell interpolated back-off smoothing, according to the back-off graphs in
Figure 4. Generally, variables that are the farthest away in time are dropped first, and
partial stack variables are dropped last, as they are observed the most. As the optimal
back-off strategy can vary depending on the context, the realization model implements
parallel back-off strategies (see steps 2, 4, and 5 in Figure 4(b))—that is, multiple back-off
paths are explored at run-time, and the probability of each back-off node is computed
as the maximum probability of all outgoing paths.

4.2.3 High Cardinality Concept Abstraction. Although we should expect a trainable gener-
ator to learn multiple lexical realizations for a given semantic concept, learning lexical
realizations for high-cardinality database entries (e.g., proper names) would increase
the number of model parameters prohibitively. We thus divide pre-terminal concepts in
the semantic stacks into two types: (a) enumerable attributes whose values are associated
with distinct semantic stacks in our model (e.g., inform(pricerange(cheap))), and (b)
non-enumerable attributes whose values are replaced by a generic symbol before training
in both the utterance and the semantic stack (e.g., inform(name(X)). These symbolic
values are then replaced in the surface realization by the corresponding value in the
input specification. A consequence is that our model can only learn synonymous lexical
realizations for enumerable attributes.

4.3 Scaling to Large Domains Using Large-Context Reranking FLMs

A major inconvenience of the proposed approach is that the performance of the three
Viterbi decoding steps is highly dependent on the size of the context of the predicted
variable. For example, a trigram phrase model with a vocabulary of size V requires

774

Mairesse and Young Stochastic Language Generation in Dialogue Using FLMs

searching over V symbols times V2 paths leading to that symbol at every time step.
Generating utterances for real-time interaction in a realistic domain typically limits
context features to a single neighboring time frame (i.e., bigram) for both the semantic
stack and realization models, which results in poor modeling accuracy. In order to
model longer contexts while maintaining acceptable decoding performance, we use a
cascaded reranking approach in which the n-best output of each Viterbi search is reranked
by an FLM. The complexity of the reranking steps grows linearly with n and does not
depend on V; hence its impact on performance is minimal compared with the decoding
steps. Figure 5 illustrates the resulting pipeline of FLM models.

Early experimentation has led us to use the back-off strategies illustrated in Figure 6
for our reranking models, as they offer a rich context while maintaining acceptable real-
time performance. The semantic reranking models are dependent on three preceding
time frames, and the realization reranking model is dependent on the two previous
and two following phrases. Reranking back-off strategies can be more complex than the
strategies used during search, as they are only called over a small number of candidate
sequences. For example, the realization reranking strategy in Figure 6(b) makes use of
parallel back-off to learn patterns such as serves X food or is an X restaurant. This can
be achieved by allowing the probability of a phrase to depend on the phrase at time
t− 2 rather than on the preceding phrase (see right branch in Figure 6(b)). Hence if the
pattern exists in the training data, p(rt|lt−1, rt−2) is likely to be preferred over p(lt−1, rt−1)
during reranking, for example, giving a large probability of rt =‘food’ if rt−2 =‘serves’
and lt−1 =inform(food(SOMETHING)).

5. Stochastic Paraphrase Generation

Because a dialogue act can typically be conveyed in a large number of ways, it seems
natural to model the NLG task as a one-to-many mapping. However, previous work on
statistical NLG has typically focused on evaluating the top ranked utterance, without
evaluating whether the generator can produce paraphrases matching a reference para-
phrase set (Langkilde-Geary 2002; Reiter and Belz 2009). Although single-output NLG
is acceptable for one-off text generation, NLG systems used within long-term human–
computer interaction are likely to benefit from modeling the paraphrasal variation
found in human language (e.g., by reducing the repetitiveness of dialogue system
utterances or by improving the chances of successful dialogue clarifications).

However, learning to map a single input to a set of surface realizations is a nontrivial
machine learning problem. One advantage of casting the NLG task as search over
FLMs is that the final n-best list of surface realizations can be used to constrain the
search for valid paraphrases. See Table 2 for examples of BAGEL’s n-best outputs in the

Figure 5
Architecture of an FLM-based statistical generator using cascaded large context reranking FLMs.

775

Computational Linguistics Volume 40, Number 4

(a) Semantic stack head ht and tail lt given
previous stacks st−1, st−2, st−3. The full stack
probability is obtained by multiplying both
factors using the chain rule.

(b) Realization phrase rt given surrounding
phrases rt−1, rt−2, rt+1, rt+2, semantic context
st, lt−1, lt+1, and preceding words w−1

t−1, w−2
t−1.

Figure 6
Back-off graphs for (a) both semantic stack reranking FLMs and (b) the realization phrase
reranking FLM.

tourist information domain. This section proposes two methods using those outputs to
generate paraphrases that can be used interchangeably in dialogue.

5.1 n-best Selection Beam for Paraphrasing

We first propose taking a sample from the top of the n-best list produced by BAGEL’s
realization reranking FLM shown in Table 2. However, to avoid sampling from the long
tail of low-probability utterances, we only consider utterances whose probability lies
within a selection beam relative to the probability first-best utterance p1; that is, only
the utterances generated with a probability above

pmin = p1 · (1− selection beam)

are kept. The top utterances are typically grammatical and natural; however, determin-
ing a cut-off threshold that captures some of the linguistic variation found in the data
without introducing disfluencies is a nontrivial problem. Because many system acts are
associated with multiple reference paraphrases in our data, the BLEU score (Papineni
et al. 2002) can be used to tune the threshold value. BLEU is a corpus-level metric that is
typically used to evaluate a test corpus against a set of reference paraphrases. In order to
evaluate the worth of the predicted set of utterances, each utterance within the selection
beam is considered as part of the test corpus, thus favoring models generating multiple
utterances matching any of the reference paraphrases rather than a single utterance.
Figure 7(a) shows the BLEU score of paraphrase sets generated using different n-best
selection beams, averaged over a 10-fold cross-validation over 1,646 distinct dialogue

776

Mairesse and Young Stochastic Language Generation in Dialogue Using FLMs

Table 2
Example n-best lists produced by BAGEL with FLM reranking (after normalizing the
probabilities to 1, but before thresholding).

n-best list Prob

inform(name(X) area(centre) food(Y))
X serves Y food in the city centre. 0.044
X is an Y restaurant in the city centre. 0.035
X serves Y food in the centre of town. 0.033
X serves Y food in the centre of the city. 0.033
X is a Y restaurant in the city centre. 0.029
X is a Y food in the city centre. 0.028

inform(name(X) area(centre) seetype(architecture))
X is an architectural building in the city centre area. 0.025
X is an architectural building in the city centre. 0.024
X is an architectural building. It is located in the centre of the city. 0.022
X is an architectural building in the centre of town. 0.022
X is an architectural building in the centre of the city. 0.022
X is an architectural building. It is located in the city centre. 0.020

request(area)
Whereabouts were you thinking of? 0.141
In which area of town would you like to eat? 0.136
What type of area are you looking for? 0.020
What type of area would you like? 0.020
What kind of? Area are you looking for? 0.019
Whereabouts are you looking for? 0.018

reject(near(X) unitype(department))
There are no university departments near X. 0.091
Unfortunately, there are no university departments near X. 0.031
I’m sorry, there are no university departments near X. 0.028
Unfortunately, there are no, there are no university departments near X. 0.026
I’m sorry, there are no, there are no university departments near X. 0.024
I am sorry, there are no university departments near X. 0.023
I’m sorry, but there are no, there are no university departments near X. 0.020

act and paraphrase set pairs collected through crowdsourcing. The data collection
process is detailed in Section 6. It is important to note that none of the dialogue acts
used for testing were seen at training time. The BLEU score was computed by treating
all predicted paraphrases as a whole document. We find that including the top 6% of the
n-best list produces a higher BLEU score than using the first-best utterance only (BLEU =
.39 vs .37). As a high level of overlap with a reference utterance does necessarily result in
grammatical or natural outputs, Figure 7(b) also looks at the precision and recall of the
generated paraphrase set given the reference set (i.e., only considering exact utterance
matches). Although exact matches are rare on unseen inputs, we find that the optimal
F-measure is obtained when considering the top 8% of the probability mass of the
n-best list, which corresponds to an average of 2.1 paraphrases, according to Fig-
ure 8. Both evaluation metrics suggest that generating paraphrases improves linguistic
variation without affecting grammaticality, hence potentially improving naturalness in
dialogue. Unless stated otherwise, we use a selection beam of 8% in our experiments.

Table 2 also provides some insight into the potential limitations leading to unnatural
outputs. We find that some errors arise from the separation between the semantic stack
decoding step and the realization step, together with an excess of smoothing. For

777

Computational Linguistics Volume 40, Number 4

(a) Average BLEU score of the predicted para-
phrase sets

(b) Precision, recall, and F-measure (exact match)

Figure 7
Automated evaluation of BAGEL’s predicted paraphrase sets for different n-best selection beams.
Results are averaged over a 10-fold cross-validation.

example, X is a Y food in the city centre in the first section of Table 2 was associated with
a non-zero probability because the phrase sequence X serves Y food occurs frequently
in the data, hence allowing the stack inform(food(Y)) to be followed by inform(food)
rather than inform(type(restaurant)). At the realization stage, the is a realization
phrase is associated with a high probability, given an inform stack following a restau-
rant name and a sentence start symbol, while the phrase food following is a Y is allowed
because the unseen context gets dropped by the back-off strategy. Similarly, the example
unfortunately, there are no, there are no university departments near X in the last section of
Table 2 is associated with a non-zero probability because the semantic stack decoding
step predicted multiple reject stacks followed by a punctuation mark because the
non-adjacent stack context was smoothed away, leading to phrase repetitions at the
realization stage. Although these type of errors are typical of sequential models trained
on a limited amount of data, they tend to be associated with a lower probability than the
top hypotheses, and additional data would make such errors less likely by allowing for

Figure 8
Mean size of the predicted paraphrase sets for different FLM selection beams. Results are
averaged over a 10-fold cross-validation.

778

Mairesse and Young Stochastic Language Generation in Dialogue Using FLMs

larger contextual dependencies to be modeled without back off. However, FLMs will
always associate a small probability to a large range of utterances; hence there is a need
for selecting paraphrases based on a selection beam or statistical classification methods.

5.2 Structured Perceptrons for Paraphrase Classification

FLMs can be trained easily by estimating conditional probabilities from feature counts
over a corpus, and they offer efficient decoding techniques for real-time generation.
However, FLMs do not scale well to large feature sets (i.e., contexts), as each additional
feature increases the amount of data required to accurately estimate the FLM’s con-
ditional probability distribution. Backing off as described in Section 4.2 alleviates this
issue, although finding the optimal back-off strategy is nontrivial even for small feature
sets (e.g., 10 features). Furthermore, FLMs are trained to maximize the likelihood of
the training data; hence utterances containing frequent phrases are more likely to be
generated than utterances containing infrequent phrases, even if the latter is part of
the training set. Whereas in the previous section, a selection beam was optimized for
selecting paraphrases, it is learned once and for all regardless of the input. This section
therefore investigates whether performance can be improved through discriminative
training, by rescoring the list of candidate semantic stack and realization sequences
produced by the FLMs based on binary classification models predicting whether each
candidate sequence is a valid paraphrase. We propose a training method inspired by
Collins’ work on discriminative reranking for part-of-speech tagging and syntactic
parsing, which uses the structured perceptron on-line algorithm to learn to rerank the
output of a generatively trained model (Collins 2002a, 2002b; Collins and Roark 2004).
The structured perceptron algorithm learns a linear discriminant function of the fea-
tures Φ(x, y) of both the input structure x and the output structure y (e.g., semantic
stack and realization phrase sequences, respectively) by iteratively updating its feature
weights α each time it wrongly predicts a training example. Each update makes the
weight vector closer to the features of the training example, and further away from the
incorrect prediction. A crucial point is that each prediction requires finding the output
z that maximizes the discriminant function given the input x. As a Viterbi search is not
tractable because of the large context dependencies of the features, we limit our search
to sequences in the n-best list GEN(x) produced by the short context FLMs.

Although structured perceptrons were previously used to learn a reranking func-
tion (Collins 2002a; Collins and Roark 2004), the resulting scores cannot be used directly
to select multiple valid paraphrases among the candidates. Rather than learning a cut-
off threshold as done in Section 5.1, we cast the perceptron reranking step as a binary
classification task, by updating the perceptron’s weight vector accordingly each time
(a) a reference realization is classified negatively and (b) a non-reference realization in
GEN(x) is classified positively. The main difference with Collins’ reranking model is
that the zero of the discriminant function is trained to act as a classification threshold.
At generation time, the learned model classifies each candidate realization of GEN(x)
to determine whether it should be included in the paraphrase set from which the final
utterance can be selected. It is important to note that this approach iterates over training
pairs generated from the same input dialogue act. A consequence is that the data is
no longer independently and identically distributed, thus potentially increasing the
generalization error of the models.

The resulting kernelized structured perceptron algorithm adapted to our task is given
in Table 3, which learns a set of feature vectors and their corresponding weights. To
facilitate understanding, Table 3 also presents the simplified algorithm in the case of a

779

Computational Linguistics Volume 40, Number 4

Table 3
The generic kernelized perceptron training algorithm for structured prediction, as well as the
simplified version using a linear kernel. Both algorithms were adapted to the NLG reranking
task.

Input: T training iterations, n training examples associating each input xi with an
output set Yi (i.e., semantic stack or realization sequences). GEN(xi) returns the
n-best output sequences for input xi based on a Viterbi search using the corre-
sponding FLM, in which n depends on a pruning beam and a maximum value.
Φ(xi, y) is a sparse feature vector of dimensionality d representing the number of
occurrences of specific combinations of realization phrases and/or semantic stacks
in (xi, y), with an entry for each instantiation in the training data of each node of
the backoff graph of the large context FLM in Figure 6.

Output: a collection V of feature vectors in R
d and their respective weights α in

R
|V|. Using a linear kernel, the algorithm is simplified as the weighted feature

vectors can be represented as a single weight vector w =
∑|V|

j=1 αjVj in R
d.

Linear kernel algorithm:
w = �0
For t = 1...T, i = 1...n

For z in GEN(xi)−Yi
If w.Φ(xi, z) ≥ 0 then w← w− Φ(xi, z) // incorrect positive prediction

For y in Yi
If w.Φ(xi, y) < 0 then w← w +Φ(xi, y) // incorrect negative prediction

Kernelized algorithm with kernel function K : Rd × R
d → R:

V = [�0] α = [0]
For t = 1...T, i = 1...n

For z in GEN(xi)−Yi

If
∑|V|

j=1 αjK(Φ(xi, z), Vj) ≥ 0 then // incorrect positive prediction
append Φ(xi, z) to V // weigh instance negatively
append -1 to α

For y in Yi

If
∑|V|

j=1 αjK(Φ(xi, y), Vj) < 0 then // incorrect negative prediction
append Φ(xi, y) to V // weigh instance positively
append 1 to α

linear kernel, in which the weighted feature vectors are collapsed into a single weight
vector. In our experiments, we use a polynomial kernel of degree 3. The feature vectors
represent the number of occurrences of specific combinations of realization phrases
and/or semantic stacks in the input and output sequences, with an entry for each
instantiation in the training data of each node of the back-off graph of the large context
FLM in Figure 6. For example, the back-off node rt|lt−1, rt−2 in Figure 6(b) is used to
derive a feature characterizing the number of occurrences of the phrase has followed by
the stack tail inform(food(SOMETHING)) followed by the phrase food.

780

Mairesse and Young Stochastic Language Generation in Dialogue Using FLMs

Figure 9
Online discriminative training of an FLM-based statistical generator using cascaded reranking
perceptrons. The only differences between the training and generation process is that (a) weights
are not updated at generation time and (b) only one reranking step is performed after each
decoding stage.

Rather than using the final weight vector to make predictions at generation time,
using the averaged weight vector over all updates was shown to generalize better to un-
seen examples (Collins 2002a). Collins has shown that structured perceptrons can out-
perform boosting and SVM-based models, with a training complexity growing linearly
with the training set size (as opposed to a cubic complexity for large-margin classifiers).

The resulting NLG pipeline is illustrated in Figure 9, with a perceptron model
reranking the output of each FLM decoding model. All perceptron models are trained
simultaneously by iteratively generating each training example, and updating each
reranking model if its first-best sequence differs from the reference sequence. This
results in three instantiations of the perceptron algorithm in Table 3. As the output
of the first model in the pipeline affects the training process of subsequent models,
the candidate n-best list is reranked twice: (a) before updating the perceptron’s weight
vector in order to find whether the current best hypothesis matches the reference, and
(b) after updating the weight vector to maximize the accuracy of the input to subsequent
models in the pipeline.

6. Corpus Collection

Our target domain is a large-scale spoken tourist information system for Cambridge.
Table 4 illustrates the 10 types of dialogue acts that are produced by the dialogue
manager. Because each dialogue act type exhibits different stack ordering patterns, they
require distinct semantic stack prediction models. Some of the communicative goals
include logical operators, such as global negations and logical quantifiers (e.g., rows 2,
4, and 5 in Table 4), each of which require a specific dialogue act type. Figures 103 and 11
illustrate the ontology of our domain, which results in 128 distinct semantic stack con-
cepts (e.g., characterizing whether a venue is a bar, museum, cinema, but also whether
it is cheap, near another venue, whether it has Internet, parking space, or whether it
allows children). Because our approach targets dialogue applications, BAGEL’s semantic
representation is defined by the domain ontology itself; hence the semantic concepts
typically correspond to constraints used to narrow down the user goal. In information
presentation systems, such concepts are typically associated with database attributes of

3 This figure is included to indicate the complexity of the ontology; it is not intended that the detail
be legible.

781

Computational Linguistics Volume 40, Number 4

Table 4
Example realizations for the 10 dialogue act types supported by BAGEL.

Dialogue act and first-best realization

1.a confirm(eattype(pub) hasfood)
To confirm, you are looking for a pub that serves food?

1.b confirm(dontcare(area) drinktype(bar))
Could you confirm that you want a bar in any area?

2.a reject(area(X) sport(gym) type(sportsvenue))
There are no sports centres with a gym in X.

2.b reject(known(hasinternet) near(X) type(placetodrink))
Unfortunately, there are no bars for which i have information about the internet near X.

3 inform(name(X) unknown(childrenallowed) drinktype(bar) hasmusic unknown(hastv))
X is a bar with music, but there is no information on whether children are allowed or whether it
has television.

4 informall(all(eattype(restaurant) food(X)) area(riverside))
All the restaurants serving X food are in the riverside area.

5 informonly(only(name(X)) eattype(restaurant) near(Y) pricerange(moderate))
X is the only moderately priced restaurant near Y.

6 suggest(pricerange(cheap) pricerange(expensive) pricerange(moderate))
For example, you can have somewhere cheap, expensive, or somewhere in the middle.

7.a request(pricerange)
What kind of price range would you like?

7.b request(hasparking)
Would you like a place with a parking space?

8.a select(type(placetodrink) type(placetosee))
Do you want to find somewhere to get a drink or go and find somewhere to see?

8.b select(area(X) dontcare(area))
Would you like that to be in the X area or would you like me to search all areas?

9 repeat()
Could you please repeat that?

10 reqmore()
Can I help you with anything else?

the entities of interest. In our framework, the ontology is shared between the dialogue
manager, the language understanding component, and the NLG component. Our
ontology was thus refined over a long period of time prior to this work. The manual
effort required for defining an ontology for a new domain is highly dependent on the
domain granularity. While automatically deriving ontologies for complex domains
remains an unsolved problem, in recent work an ontology for a bus transportation
dialogue system was handcrafted in a matter of days (Thomson et al. 2010).

Because there is no feedback between the language generator and the dialogue man-
ager, the NLG component is expected to handle any combination of dialogue act type
and semantic concept arguments. The main advantage of data-driven methods over
handcrafted methods is their potential for scaling to such large domains by shifting
the bulk of the development effort from manual tuning to data collection. However, a
major issue is that such methods typically require semantically annotated data, which is
costly to collect. Furthermore, domain data is rarely available; hence a creative process is
required for generating a wide range of domain utterances. This article is based on the
assumption that learning to produce paraphrases can be facilitated by collecting data

782

Mairesse and Young Stochastic Language Generation in Dialogue Using FLMs

Fi
gu

re
10

Fu
ll

on
to

lo
gy

of
th

e
C

am
br

id
ge

To
ur

is
tI

nf
or

m
at

io
n

Sy
st

em
(C

am
In

fo
).

783

Computational Linguistics Volume 40, Number 4

Figure 11
Partial ontology for places to eat. All relations are pointing downwards. Attributes at higher
level are inherited for entities matching specific attribute values (dashed lines); for example,
all entities with attribute eattype set to restaurant have the attributes food, price, phone,
and so on.

from a large sample of annotators. However, this requires that the meaning represen-
tation should be simple enough to be understood by untrained annotators. This section
describes how we make use of BAGEL’s coarse-grained semantics to collect data from a
large sample of untrained annotators, using Amazon’s Mechanical Turk.

A crucial aspect of data collection for NLG is to ensure that the annotators under-
stand the meaning of the semantics to be conveyed. Annotators were first asked to
provide an utterance matching an abstract description of the dialogue act, regardless
of the order in which the constraints are presented (e.g., Offer the venue Taj Mahal and
provide the information type(restaurant), area(riverside), food(Indian), near(The Red Lion)).
The order of the constraints in the description was randomized to reduce the effect
of priming. The annotators were then asked to align the attributes (e.g., Indicate the
region of the utterance related to the concept ‘area’), and the attribute values (e.g., Indi-
cate only the words related to the concept ‘riverside’). The total input semantic space is
approximated by the set of system dialogue acts produced during 250,000 simulated
dialogues between our statistical dialogue manager (Young et al. 2010) and an agenda-
based user simulator (Schatzmann et al. 2007). In order to build the training set, we
started with a set of utterances collected for a small subset of our domain (Mairesse et al.
2010). We then ordered the dialogue acts based on their frequency of occurrence in the
simulated dialogues. In order to ensure that each semantic stack defined by the domain
ontology occurs at least once in our data, we expanded our training set by iteratively
adding the most frequent unseen act which contains an unseen mandatory semantic
stack. The resulting data set consists of 1,646 unique dialogue acts after replacing non-
enumerable values by a generic symbol. Each dialogue act contains an average of 3.27

784

Mairesse and Young Stochastic Language Generation in Dialogue Using FLMs

mandatory semantic stacks. We generally collected one utterance per act, although two
paraphrases per act were collected during our initial experiment. The resulting data set
contains a total of 1,956 aligned utterances produced by 137 native speakers of English.
After manually checking and normalizing the data set,4 the layered annotations were
automatically mapped to phrase-level semantic stacks by splitting the utterance into
phrases at annotation boundaries. Each annotated utterance is then converted into a
sequence of symbols such as in Table 1, which are used to estimate the conditional
probability distributions defined in figures 4 and 6. The resulting vocabulary consists
of 864 distinct semantic stacks and 1,180 distinct realization phrases, with an average of
7.35 phrase/stack pairs per utterance.

7. Evaluation

This section evaluates BAGEL in the tourist information domain, using an automated
metric as well as human judgments of resynthesized dialogues. Our objective is not only
to evaluate the naturalness of the generated utterances for different training methods,
but also to assess whether the linguistic variation found in BAGEL’s outputs improves
the naturalness of the overall dialogue interaction.

7.1 Comparison with Utterance Class Language Models

As Oh and Rudnicky’s LM-based approach is the first statistical NLG method that
requires almost no handcrafting (Oh and Rudnicky 2002), we first compare their method
to BAGEL in our domain and discuss the differences between both approaches.

7.1.1 Utterance Class LM Baseline. Oh and Rudnicky’s (O&R) approach trains a set of
word-based n-gram language models (LMs) after replacing slot values by placeholder
variables. In order to bias the LMs towards specific intents, the LMs are trained on sub-
sets of the data referred to as utterance classes. An utterance class is the set of utterances
matching a specific dialogue act type and a set of zero or more slots. For example,
inform(near(X)) would be a valid utterance class, characterizing all the utterances
with the inform dialogue act type and at least one near slot. Given large domains, eval-
uating all possible utterance class partitions of the data is not tractable: In their experi-
ments in the air travel domain, O&R limit their utterance classes to at most one slot. In
order to identify how to partition our data, we investigate a number of utterance classes:
(a) using dialogue act types only; and (b) including one or more slots. Because deciding
what slot to include is a nontrivial problem, we include slots based on their frequency
of occurrence in the utterance class. The utterance class nomatch(eattype(restaurant)
near(X)) for instance indicates that eattype(restaurant) and near(X) are the two
most frequent slots for the dialogue act type. Note that such an utterance class can
also generate other slots besides those belonging to the class, the main difference being
that those other slots act as run-time constraints in the overgeneration phase, whereas
utterance class slots constrain the model’s training data.

At generation time, the LM for the utterance class matching the input is used to
overgenerate a set of candidate utterances in a depth-first fashion by sampling from the
LM distribution, one word after the other. Because BAGEL relies on the prediction of an

4 The manual verification took around 15 person-hours for 1,956 utterances. It involved correcting English
disfluencies and semantic misinterpretations. No samples were deleted.

785

Computational Linguistics Volume 40, Number 4

end symbol, we extend O&R’s model with an end symbol determining when to end the
utterance. In addition to random sampling, we also implemented a deterministic ver-
sion of the algorithm that generates all words that followed the utterance context in the
training data, as long as they do not violate input constraints (i.e., generate unspecified
slots). Decoding was halted if the utterance generated more than 20 words. Although
it was not needed on our data set, it is important to note that such a greedy search is
likely to require beam pruning on larger data sets. We find that the deterministic version
both improves performance and makes it more comparable with BAGEL’s decoding
algorithm. Additionally, in order to investigate the effect of the granularity of emission
symbols on performance, we also train a phrase-based version of the baseline in which
the LMs are trained to predict symbols representing contiguous words either within
or between surface slots. In all baselines, the final utterance is selected based on an
implementation of the rescoring rules used in O&R, which rescore the utterance based
on whether:

1. The utterance is too short or too long. The probability of the generated
utterance is weighted by the probability of the utterance length given the
utterance class according to the training data.

2. The utterance contains repetitions of any of the slots.

3. The utterance contains slots for which there is no valid value in the input.

4. The utterance lacks any of the required slots.

The last three rules result in a multiplicative weight of 10−9, that is, the utterance would
only be chosen if no other candidates satisfy the slot constraints. The system returns the
most highly scored utterance over 10,000 iterations for the sampling baseline (vs. 50 in
O&R’s experiments). Additionally, our implementation of O&R’s method keeps track
of visited slots during generation, hence pruning paths that generate a slot placeholder
which is not part of the input, or generate a slot more times than specified in the input.

We train models on the same 10-fold cross-validation folds as in Section 5.1, namely,
partitioning the 1,646 distinct dialogue acts for which we collected one or more utter-
ances. None of the test dialogue acts are present in the training folds. Results report the
BLEU scores averaged over the 10 test folds.

7.1.2 Results. A first result shown in Table 5 is that O&R’s original sampling approach
does not perform as well as the deterministic algorithm, while being more computa-
tionally expensive. A paired t-test over the 10 cross-validation folds reveals that the dif-
ference is significant for all configurations (p < 0.01 or lower, two-tailed). The sampling
size used is much larger than in O&R’s experiment, suggesting that sampling does not
scale well to larger domains. The rest of this section refers to the deterministic approach.

We also find that none of the phrase-based O&R models produce BLEU scores above
.10. We believe this is due to the lack of semantic labels besides slot values, which causes
phrases to be very long and unlikely to occur both in the training and test folds. The rest
of this section therefore refers to O&R’s word-based approach.

Table 5 shows that on our data set O&R’s method is sensitive to the granularity
of the utterance class. The trigram model performs best without including any slot
in the utterance class, with a mean BLEU score of .28. In contrast, BAGEL produces a
score of .37 on the same data (using the most likely utterance only). A paired t-test
shows that this score is significantly higher (two-tailed, p < 0.0001). The configuration

786

Mairesse and Young Stochastic Language Generation in Dialogue Using FLMs

Table 5
BLEU score of the word-based utterance class LMs for different n-gram sizes and different
number of slots included in the utterance class (most frequent first). Best performing parameters
are in bold. The BLEU score is averaged over all cross-validation folds. See figures 12 and 13
for results using other parameter configurations.

System n-gram BLEU BLEU BLEU
configuration size no slot 1 slot 2 slots

O&R deterministic 2 .25 .06 .05
O&R deterministic 3 .28 .02 .01
O&R deterministic 4 .25 .01 .00

O&R sampling 2 .25 .03 .03
O&R sampling 3 .27 .02 .01
O&R sampling 4 .23 .01 .00

Bagel n/a .37

in which the utterance class consists of the dialogue act type only (i.e., no slots) is
the only one producing an output utterance for almost all unseen inputs in the test
folds (99% for bigram LMs, 93% for trigram). Figure 12 illustrates results for additional
slot combinations, showing that adding more slots consistently decreases performance.
Figure 13 shows that this performance decrease can also be observed when using
sampling.

Figure 12
BLEU score of the word-based utterance class LMs with deterministic decoding for different
n-gram sizes and different number of slots included in the utterance class (most frequent first).
The BLEU score is averaged over all cross-validation folds. Bagel indicates the best performing
BAGEL configuration on the same folds.

787

Computational Linguistics Volume 40, Number 4

Figure 13
BLEU score of the word-based utterance class LMs with sampling for different n-gram sizes and
different number of slots included in the utterance class (most frequent first). The BLEU score is
averaged over all cross-validation folds. The scores obtained with the best deterministic version
are included for comparison.

We find that the addition of the most frequent slot to the utterance class decreases
performance significantly with a BLEU score of .06 with a bigram model and .02
with a trigram model (p < 0.0001 for both, two-tailed). Figure 12 suggests that per-
formance decreases further with larger n-gram sizes. This decrease is likely to be due
to the fragmentation of the training data illustrated in Figure 14, as sparser probability
counts make the generation process less likely to find a path satisfying the global slot
constraints. For instance, adding the most frequent slot in the training data as part of
the utterance class causes more than half of the test input to produce no prediction
using a bigram model. Although removing the decoding constraints is not tractable, we
can estimate the performance of O&R’s method given unlimited computing power by
only evaluating it on the subset of the data for which the constraints are not violated—
that is, on the test data which does produce an output utterance. In this case the best
O&R baseline yields a score of .32 on successful predictions (69% of the data) using the
5-gram model with no slots, whereas the same model yields a score of .20 when taking
all test utterances into account.

A general issue is that although a broad utterance class reduces data sparsity, it
learns a model more likely to produce the most frequent patterns in the utterance class,
making it difficult to model specific slot combinations correctly. An utterance class
including many slots can model those slots more accurately; however, it can only be
trained on the fraction of the data matching that class, creating data sparsity issues.

Regardless of the utterance class size, we find that O&R’s baseline performance
decreases for contexts larger than trigrams. For example, Figure 12 shows that the
BLEU score decreases significantly from .28 for trigrams to .24 and .20 for 4-grams and

788

Mairesse and Young Stochastic Language Generation in Dialogue Using FLMs

5-grams, respectively (p < 0.0001 for all differences, no slots in the utterance class). This
decrease in performance is likely to be due to overfitting. Larger n-grams are less fertile
because they result in fewer non-zero transitions from a given context; hence they are
less likely to produce an utterance satisfying the slot constraints. This particular issue
could be alleviated by investigating different smoothing strategies.

Given the large differences in BLEU score observed and the limited resources avail-
able, we did not evaluate O&R’s approach using human judges. It is important to note
that a human evaluation would be desirable to strengthen our findings. Additionally,
future work should evaluate whether the difference in performance holds for larger
data sets.

7.1.3 Discussion. Like BAGEL, O&R’s method uses a search over a sequential probabilistic
model of a phrase given its context. However, a major difference with our approach is
that semantic concepts are only explicitly modeled through slot placeholders and the
utterance class. A limitation is therefore that it requires the definition of an optimal
utterance class partition before training, namely, determining what slots the words
should be conditioned on, if any. Including all slots as part of the utterance class would
highly fragment the data, whereas using only the dialogue act type is likely to reduce the
model’s capability of producing slot-specific phrasings. As shown in our experiments,
the choice of what slots to include in the utterance class has a large impact on the quality
of the output utterances. BAGEL mitigates this by not conditioning the generated words
on a global utterance class value, but by conditioning the individual words on elements
of a generated sequence of semantic symbols. Given that the number of semantic
concepts is lower than the vocabulary size, using an explicit semantic representation can
reduce the number of parameters to estimate during training compared with systems
relying on various word contexts. In some cases, however, the previous words provide

Figure 14
Mean number of training utterances per utterance class for different number of slots included in
the class (most frequent slot first). Without any slot the utterance class consists of the dialogue
act type.

789

Computational Linguistics Volume 40, Number 4

additional useful information (e.g., for local agreement); hence there is value in taking
both the semantic and word context into account whenever needed. Factored language
models provide a way for the learner to choose what context to rely on.

Finally, another difference with our approach is that the lack of hierarchical seman-
tics implies that each lexical item realizing an input slot value has to be specified in the
input. This is a valid approach for domains in which slot values are limited to numerical
values or proper nouns, but not for domains in which semantic concepts need to be
realized differently, depending on the context and the dialogue act type. For example,
compare how BAGEL realizes the area semantic concept in the query Whereabouts were
you thinking of? as opposed to in the statement Char Sue is located in the Arbury area.
Requiring each slot value to be realized using the same lexical item regardless of the
context is likely to be impossible for large domains, especially with multiple dialogue
act types. This limitation could be alleviated by including the n slots for which we
want to control the lexical realization as part of the utterance class. However, this is
not tractable as it would require fragmenting the data further to produce all 2n slot
combinations as distinct utterance classes. Sharing data across utterance classes or using
hierarchical class-based language models could mitigate this issue, but this is beyond
the scope of this article.

This section has shown that BAGEL’s FLM approach significantly outperforms
utterance class-based LM methods on our data using automated evaluation metrics.
We now evaluate BAGEL using human judgments.

7.2 Human Evaluation from Text Samples

Although automated metrics provide useful information for tuning model param-
eters, they only correlate moderately with human naturalness ratings (Papineni et al.
2002). We therefore evaluate the methods presented in the previous sections through
a subjective rating experiment, using Amazon’s Mechanical Turk services. For each
dialogue act in our unseen test set, we generate a set of paraphrases with each of
the following system configurations: (a) using large context reranking FLMs (FLM);
(b) using perceptron reranking (perceptron); and (c) using the output of the decoding
models directly (no reranking). In order to validate the paraphrasing FLM threshold
analysis presented in Section 5.1, we evaluate utterances generated within a selection
beam of 8% and 15% relative to the probability of the top hypothesis (FLM8 and
FLM15), as well as a system returning the top hypothesis only (FLM0). For each con-
figuration, we either train all decoding and reranking models on distinct data sets
for each dialogue act type in Table 4, or we train a single realization model on all
dialogue act types (global). Although a global realization model can potentially gen-
eralize across dialogue act types (e.g., not requiring each top semantic concept to be
seen with each act type during training), performance is likely to be affected by the
resulting increase in vocabulary size and the reduction in consistency between training
examples.

Concerning the perceptron reranking algorithm, we use a kernelized perceptron
with a polynomial kernel of degree 3 as it performed best in preliminary experiments
on a subset of our training data. We evaluate all the paraphrases classified as positive
by the model for a given input act. Our experiment compares two variants of the
perceptron model: (a) using the weights of the last perceptron update (Last); and (b)
taking the average of each weight update weighted by the number of instances for
which the weight vector was left unchanged during training (Avg). In order to account

790

Mairesse and Young Stochastic Language Generation in Dialogue Using FLMs

Figure 15
Human evaluation interface for text-based utterance evaluation. The generated utterances are
presented in random order.

for differences in computational resources needed by each system, we set the pruning
thresholds such that each paraphrase set is generated within 0.5 seconds on a Pentium
4.2 GHz. For each input dialogue act, a maximum of 100 realizations were reranked in
our experiments. These were derived from up to five semantic stack sequences, each
generating up to 20 realization phrase sequences.

For the purpose of the evaluation, the generated paraphrase sets for all systems are
combined and presented in random order, for four dialogue acts at a time. Participants
were told that each utterance was meant to have the same meaning, and they were
asked to evaluate their naturalness on a 5-point Likert scale, as illustrated in Figure 15.
Naturalness is defined as whether the utterance could have been produced by a human.
Each utterance is taken from the test folds of the cross-validation experiment presented
in Section 5.1—that is, the models are trained on up to 90% of the data and the training
set does not contain any of the generated dialogue acts.

7.2.1 Results. Table 6 presents the average naturalness rating for each configuration
(Nat). A Wilcoxon rank sum test shows that all systems outperform the FLM system
returning the top hypothesis of the search models, with no reranking (p < 0.0001,

Table 6
Evaluation results for different reranking configurations. Beam = paraphrase selection beam
(% of first best probability); Mean n = mean number of paraphrases per act; Total n = total
number of paraphrases used for evaluation; Nat = mean naturalness rating over the generated
paraphrase set. The last 3 columns indicate the significance of the difference in naturalness
according to a two-tailed Wilcoxon rank sum test (*p < 0.05, **p < 0.01, ***p < 0.001).

Reranking method Beam Mean n Total n Nat pbase pFLM0
pFLM8

No reranking (base) 0% 1.05 723 3.16 n/a *** ***
FLM0 0% 1.08 744 3.83 *** n/a
FLM8 8% 1.59 1,097 3.78 *** n/a
FLM15 15% 2.12 1,465 3.67 *** *** *
FLM15 global 15% 2.03 1,405 3.68 *** ** *
Avg perceptron n/a 1.46 1,012 3.68 *** ** *
Last perceptron n/a 1.91 1,317 3.53 *** *** ***

791

Computational Linguistics Volume 40, Number 4

two-tailed).5 We find that the best performance is obtained using the FLM reranking
models, with an average naturalness of 3.83 when only considering the top hypothesis
(FLM0), compared with 3.16 without any reranking (base). Whereas the automated eval-
uation in Section 5.1 predicted an optimal selection beam of 8%, we find that the average
naturalness decreases to 3.78 when taking the average over all paraphrases within
that beam; however, the decrease in naturalness is not significant over 1,097 samples
(p = 0.33). Because these results do not take the coverage of the generated paraphrase set
into account, such a nonsignificant decrease in naturalness is encouraging, as it suggests
that the naturalness of the paraphrases produced are close to the first-best. Using a
larger selection beam of 15% increases coverage further but produces a significantly
lower naturalness than both the FLM0 and FLM8 systems (p < 0.01 and p < 0.05,
respectively). While we expected that sharing realization models across dialogue act
types would help generalize, overall we find that using one realization model per
dialogue act type does not perform significantly worse than global realization models
(FLM15 global), although the former greatly reduces the number of model parameters.

Results show that the perceptron rerankers significantly improve naturalness over
the no reranking baseline (p < 0.0001). We find that using the averaged weight vector
produces a smaller set of paraphrases that are perceived as more natural (p < 0.01),
confirming the improvement previously observed for the part-of-speech tagging task
(Collins 2002a). However, results show that both the FLM0 and FLM8 systems out-
perform the perceptron-based systems (p < 0.01 and p < 0.05, respectively), and the
FLM8 system produces slightly more paraphrases. We find that the averaged perceptron
reranking model produces utterances that are comparable to an FLM selection beam of
15%; although for the same level of naturalness, the thresholded FLM produces 2.03
utterances on average, as opposed to 1.46 for the perceptron.

Overall, this first human evaluation suggests that the FLM reranker with an 8%
selection beam offers the best trade-off between utterance naturalness and paraphrasal
variation.

7.3 Human Evaluation from Dialogue Extracts

Although a text-based evaluation gives a good insight into the level of naturalness of
a generated paraphrase set, it does not evaluate whether differences in naturalness
can be perceived in a spoken dialogue context, nor does it evaluate the effect of the
linguistic variation resulting from the use of multiple paraphrases within a dialogue.
In this regard, this section evaluates the following three hypotheses: (a) the learned
generators can produce language perceived as natural in a dialogue context; (b) vary-
ing the paraphrases used throughout the dialogue improves the system’s naturalness;
and (c) this increase in naturalness makes the user more willing to interact with the
system.

We test these hypotheses by conducting a series of observer-based listening tests
comparing dialogue extracts in which the system utterances have been regenerated and
resynthesized. The original dialogues were collected over the phone during a task-based
evaluation of the Hidden Information State dialogue manager (Young et al. 2010) on the
CamInfo domain, using a handcrafted rule-based language generator. Each utterance is

5 Note that a Wilcoxon signed rank paired test cannot be used because each system can produce a different
number of utterances. As a result the reported significance is an approximation, since the samples may
include examples generated from the same input.

792

Mairesse and Young Stochastic Language Generation in Dialogue Using FLMs

synthesized using an HMM-based text-to-speech engine trained on the AWB voice of
the ARCTIC data set using the HTS toolkit (Tokuda et al. 2000).

Our evaluation first compares different generation methods in a pairwise fashion:
(a) the FLM reranking method with n-best outputs sampled from an 8% selection beam
(FLM n-best); (b) the averaged kernelized perceptron reranking method with uniform
sampling over positive predictions (Perceptron); and (c) the single output of the hand-
crafted rule-based generator (Handcrafted). The handcrafted generator is an extension of
the SPaRKy sentence planner (Stent, Prasad, and Walker 2004), which associates each
dialogue act with a content plan tree combining syntactic templates with rhetorical
structure relations. The syntactic templates are aggregated two-by-two in a bottom–up
fashion by trying different clause-combining operations (e.g., by inserting a conjunction,
merging identical subjects, or associating each template with distinct sentences). The
aggregated syntactic tree is then converted into a flat string using the RealPro surface
realizer (Lavoie and Rambow 1997). The handcrafted generator has been tuned over
several months to produce natural utterances for all possible input acts; we therefore
treat it as a gold standard in our evaluation.

We also compare the FLM reranking approach with n-best outputs with an identical
system that always selects the top realization at each turn (FLM first-best). In order to
maximize the effect of generated linguistic variation, we do not sample paraphrases
that were already chosen during the previous dialogue turns, unless there are no re-
maining paraphrases for that dialogue act. A total of 255 dialogues were regenerated
for each system. In order to facilitate the listener’s task while maintaining some aspect
of the dialogue context, the dialogues were split into chunks consisting of the two
consecutive system turns, concatenated with the corresponding prerecorded user turn.
In order to make the dialogue extracts more intelligible, regenerated system turns are
concatenated with the user turns with no speech overlap.

For each system pair, 600 dialogue extracts were randomly selected for evaluation
out of all the regenerated dialogues. The raters are presented with four pairs of dialogue
extracts at a time, which only differ by their system prompts. For each dialogue pair,
they are asked to listen to both sound clips and evaluate (a) which system is the most
natural (naturalness score), and (b) which system they would rather interact with (user
preference score), as illustrated in Figure 16. Participants were native speakers of English
recruited through Amazon Mechanical Turk, and geographically restricted to the USA.
Although the British TTS voice used might affect overall perceptions of naturalness of
U.S. judges, it should not introduce any bias within the system comparison as the same
voice was used for each system. Each dialogue extract was rated by a single participant,
and each participant could rate between 4 and 100 dialogue extract pairs. As a result,
between 55 and 64 participants took part in the evaluation of each system pair.

7.3.1 Results. Table 7 summarizes the results of the preference tests. The naturalness
and user preference scores represent the percentage of times the judges selected a
given system over the other. A binomial test suggests that the judges did not prefer

Figure 16
Human evaluation interface for comparing resynthesized dialogue extracts. Each crowdsourced
evaluation task consisted of four pairwise system comparisons.

793

Computational Linguistics Volume 40, Number 4

Table 7
Naturalness and user preference percentage of the best performing systems for each pairwise
system comparison (winners in bold). Significance was computed using a two-tailed binomial
test (*p < 0.05, **p < 0.01, ***p < 0.001).

System A System B Nat Pref

FLM n-best Handcrafted 52.2 52.3
FLM n-best FLM 1-best 57.3*** 54.2*
FLM n-best Perceptron 51.2 52.7
Perceptron Handcrafted 54.2* 54.2*

the handcrafted gold over the FLM reranker with n-best outputs, as no significance
was reached over 600 comparisons (p < 0.05). However, the judges preferred the hand-
crafted generator over the perceptron reranker, possibly because it was also perceived
as significantly more natural (p < 0.05). No significance was found when comparing the
FLM reranker with the perceptron reranker, although most judges preferred the former,
hence confirming results from the text-based evaluation. Finally, the FLM reranker with
n-best outputs was perceived as significantly more natural than the same system with
first-best output only (p < 0.001). Furthermore, results confirm that the judges would
rather interact with the n-best system (p < 0.05). This result is interesting, as the n-best
generation approach has a higher risk of selecting ungrammatical outputs compared
with the first-best approach. However, our results show that despite that risk, judges
prefer the n-best system, which suggests that data-driven paraphrase generation is
beneficial in dialogue.

It is important to note that crowdsourced evaluations can lead to additional noise
compared with standard lab-based evaluation, mostly due to the possibility of uncoop-
erative evaluators. However, the randomization of the order of the evaluated utterances
ensures that such noise does not bias the results towards one system. It is therefore likely
that a more controlled evaluation would have revealed even more significant results.

8. Discussion and Conclusion

This article presents and evaluates BAGEL, a statistical language generator that can be
trained entirely from data, with no handcrafting required beyond the semantic anno-
tation. All the required subtasks (i.e., content ordering, aggregation, lexical selection,
and realization) are performed implicitly through a search over Factored Language
Models. We propose a stack-based semantic representation at the phrase level, which is
expressive enough to generate natural utterances from unseen inputs, yet simple enough
for data to be collected from a large set of untrained annotators with minimal manual
correction and normalization. Results show that this approach outperforms utterance
class LM methods on our data.

In order to make the Viterbi decoding tractable for real world dialogue applications,
we limit the context-size of the decoding FLMs and rerank their n-best output using
large-context reranking models. We investigate two types of reranking models, namely,
(a) generatively trained FLM rerankers and (b) discriminatively trained structured per-
ceptron models. The perceptron learns a discriminant function weighting local feature
counts over the full utterance. By kernelizing the perceptron algorithm, the discriminant
function is implicitly made dependent on a larger set of feature combinations (e.g., a
polynomial kernel contains the products of each FLM context feature). Although our

794

Mairesse and Young Stochastic Language Generation in Dialogue Using FLMs

results show that the perceptron reranking step is a viable alternative, we find that the
large context FLM generalizes better on unseen data. This could be a consequence of the
fact that some of the training examples of our algorithm are generated from the same
input, and non-independently distributed data is likely to affect generalization error.
A possible solution to this issue is to only allow a single weight update per input by
moving the weight vector closer to the features of the lowest ranked reference para-
phrase, and away from the highest ranked non-reference utterance. However, selecting
the final paraphrase set would require a cut-off threshold that would need to be learned
separately. Future work should also investigate the use of the large margin criterion
instead of the perceptron criterion, which is more costly to compute but less likely to
overfit; and it can minimize arbitrary loss functions (Tsochantaridis et al. 2004). Finally,
the decoding models could also be learned discriminatively, for example, by learning
to predict phrase sequences using maximum entropy Markov models or conditional
random fields.

It is important to note that the n-best system evaluated in Section 7.3 is biased
against exact repetitions (i.e., verbatim repetitions are prohibited unless all paraphrases
have been generated). Our n-best system does not model the case in which verbatim
repetitions could be used as an emphasis device. This could be addressed by adding
a semantic element specifying that a specific phrase should be repeated for emphasis
purposes. Because the n-best system did not implement that functionality, we believe
that the preference for the n-best system could be increased when modeling exact
repetitions. Apart from the case of emphasis, we believe that paraphrasing is generally
more natural in dialogue contexts. Although this claim is difficult to evaluate, Torrance,
Lee, and Olson (1992) have shown that children under 6 fail to distinguish between
verbatim repetitions and paraphrases (i.e., before they learn to read). This result sug-
gests that there might not be any additional cognitive load from using paraphrases in
dialogue.

An important aspect of this work is that BAGEL’s coarse-grained semantics allowed
us to use crowdsourcing to collect semantically annotated utterances from untrained
annotators. A first implication is that such methods could dramatically reduce devel-
opment time of NLG systems, while improving scalability to large domains. Future
work should therefore evaluate whether the same performance can be achieved in other
task-oriented domains. Furthermore, although this work treats the training set as fixed,
recent work has shown that active learning can further improve the efficiency of the
data collection process (Mairesse et al. 2010).

We believe that the granularity of our semantic representation—which is defined
by the attributes of the entity of interest in our domain—is expressive enough for a
large range of information presentation systems. Although it is not as expressive as
first-order logic, BAGEL implements the all, none, and only quantifiers by treating the
quantifier as any other stack concept (see Figure 2 and rows 4 and 5 in Table 4). A
limitation is that currently BAGEL can only present entities satisfying the same set of
constraints within a dialogue act, for example, X and Y are French restaurants near King’s
College. Future work should focus on extending our semantic representation to include
contrastive or justificative statements by allowing the presentation of entity-dependent
attributes; for example, X is near King’s College however Y is close to the train station or You
might be interested in X because it is cheap and near the VUE cinema. Previous work in NLG
has represented such statements using discourse relations from Mann and Thompson’s
Rhetorical Structure Theory (1988) as part of the sentence planning process (Walker,
Rambow, and Rogati 2002; Stent, Prasad, and Walker 2004; Stent and Molina 2009).
Hence BAGEL’s expressiveness could be improved by including discourse relations as

795

Computational Linguistics Volume 40, Number 4

part of the semantic tree and corresponding stack sequence. For example, Charlie Chan
is located near the Regal however Jinling is near King’s College could be represented by
including a CONTRAST discourse relation to produce the tree in Figure 17. As this would
require increasing the stack depth, experiments with new back-off strategies are likely to
be required to confirm that BAGEL can generalize to support such discourse relations.
Although adopting a formalism such as RST would increase BAGEL’s expressiveness,
it is also important to note that it would also raise the level of expertise required
for annotating training utterances, thus potentially making it more difficult to rely on
crowdsourcing for collecting training examples. There is thus a trade-off between the
complexity of the semantic annotation and the amount of annotated data that can be
realistically collected. While we believe the granularity of our semantic scheme offers
a good balance for dialogue system applications, more research is needed to establish
whether more fine-grained semantics can yield a sufficient amount of data in arbitrary
domains.

The generation of utterances from arbitrary semantic symbols can be difficult for
annotators. The BAGEL framework requires the ontology to be designed such that
it can be easily annotated. Note that the same requirement exists for collecting data
for the system’s natural language understanding component. Annotation errors can
typically be smoothed out by the statistical model; however, systematic errors due to
ambiguities in the annotation schema can affect system performance. A consequence
is that the annotation schema might require multiple iterations, based on the observed
performance. We believe that most misunderstandings can be resolved by renaming
semantic concepts, or by presenting example utterances to the annotators.

Crowdsourcing our data collection from a large range of annotators also provides
us with a varied set of training paraphrases. Even without explicitly collecting multiple
utterances for a single dialogue act, identical semantic concepts are typically associated
with different realization phrases across dialogue acts. We believe that statistical NLG
methods have the potential to learn to reproduce that variability at no extra cost. A
further contribution of this article is therefore to present and evaluate two methods
for learning to generate paraphrases in dialogue: (a) by thresholding the n-best output
of FLM reranking models and (b) by using a perceptron reranker to learn a decision
boundary between negative and positive utterances in the training set. Whereas
NLG components are typically evaluated from text outputs only, we evaluate both

Figure 17
Example utterance and semantic alignment including a contrastive discourse relation.
Mandatory stacks are in bold.

796

Mairesse and Young Stochastic Language Generation in Dialogue Using FLMs

paraphrase generation methods within the context of dialogue system interaction.
A first result is that human judges do not perceive the resynthesized outputs as
significantly less natural than the outputs of a highly tuned handcrafted gold standard.
This result confirms that BAGEL can successfully learn to generate utterances over a
large, real-world domain. Furthermore, we find that a system varying its output by
sampling from a thresholded n-best list is perceived more favorably than a system
always returning the first-best utterance. These results need to be confirmed by a task-
based dialogue system evaluation; but they suggest that users prefer systems producing
varied linguistic outputs, which is contrary to the intuition that users are more
comfortable with machines conversing in a predictable, repetitive, machine-like way.

Acknowledgments
This research was partly funded by
the EU FP7 Programme under grant
agreement 216594 (CLASSiC project:
www.classic-project.org).

References
Angeli, Gabor, Percy Liang, and Dan Klein.

2010. A simple domain-independent
probabilistic approach to generation. In
Proceedings of EMNLP, pages 502–512,
Cambridge, MA.

Bangalore, Srinivas and Owen Rambow.
2000. Exploiting a probabilistic hierarchical
model for generation. In Proceedings
of the 18th International Conference on
Computational Linguistics (COLING),
pages 42–48, Saarbrücken.

Bannard, Colin and Chris Callison-Burch.
2005. Paraphrasing with bilingual parallel
corpora. In Proceedings of the 43rd Annual
Meeting of the Association for Computational
Linguistics (ACL), pages 597–604,
Ann Arbor, MI.

Barzilay, Regina and Kathleen McKeown.
2001. Extracting paraphrases from a
parallel corpus. In Proceedings of the
39th Annual Meeting of the Association
for Computational Linguistics (ACL),
pages 50–57, Toulouse.

Belz, Anja. 2008. Automatic generation
of weather forecast texts using
comprehensive probabilistic
generation-space models. Natural
Language Engineering, 14(4):431–455.

Bilmes, Jeff and Katrin Kirchhoff. 2003.
Factored language models and
generalized parallel backoff. In Proceedings
of HLT-NAACL, Short Papers, pages 4–6,
Edmonton.

Bulyko, Ivan and Mari Ostendorf. 2002.
Efficient integrated response generation
from multiple targets using weighted finite
state transducers. Computer Speech and
Language, 16(3-4):533–550.

Cahill, Aoife and Josef van Genabith.
2006. Robust PCFG-based generation
using automatically acquired LFG
approximations. In Proceedings of the
44th Annual Meeting of the Association
for Computational Linguistics (ACL),
pages 1,033–1,044, Sydney.

Chambers, Nathanael and James Allen.
2004. Stochastic language generation in
a dialogue system: Toward a domain
independent generator. In Proceedings
5th SIGdial Workshop on Discourse and
Dialogue, pages 9–18, Cambridge, MA.

Collins, Michael. 2002a. Discriminative
training methods for hidden Markov
models: Theory and experiments with
perceptron algorithm. In Proceedings of
EMNLP, pages 1–8, Philadelphia, PA.

Collins, Michael. 2002b. Ranking algorithms
for named-entity extraction: Boosting and
the voted perceptron. In Proceedings of
the 40th Annual Meeting of the Association
for Computational Linguistics (ACL),
pages 489–496, Philadelphia, PA.

Collins, Michael and Brian Roark. 2004.
Incremental parsing with the perceptron
algorithm. In Proceedings of the 42nd Annual
Meeting of the Association for Computational
Linguistics (ACL), pages 111–118,
Barcelona.

Espinosa, Dominic, Michael White, and
Dennis Mehay. 2008. Hypertagging:
Supertagging for surface realization with
CCG. In Proceedings of the 46th Annual
Meeting of the Association for Computational
Linguistics (ACL), pages 183–191,
Columbus, OH.

Foster, Mary Ellen and Michael White.
2005. Assessing the impact of adaptive
generation in the COMIC multimodal
dialogue system. In Proceedings of the IJCAI
Workshop on Knowledge and Reasoning in
Practical Dialogue Systems, pages 24–31,
Edinburgh.

He, Yulan and Steve Young. 2005. Semantic
processing using the Hidden Vector State

797

http://www.mitpressjournals.org/action/showLinks?crossref=10.1017%2FS1351324907004664
http://www.mitpressjournals.org/action/showLinks?crossref=10.1017%2FS1351324907004664
http://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2FS0885-2308%2802%2900023-2
http://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2FS0885-2308%2802%2900023-2

Computational Linguistics Volume 40, Number 4

model. Computer Speech & Language,
19(1):85–106.

Isard, Amy, Carsten Brockmann, and Jon
Oberlander. 2006. Individuality and
alignment in generated dialogues. In
Proceedings of INLG, pages 22–29, Sydney.

Kondadadi, Ravi, Blake Howald, and
Frank Schilder. 2013. A statistical NLG
framework for aggregated planning and
realization. In Proceedings of the 51st Annual
Meeting of the Association for Computational
Linguistics (ACL), pages 1,406–1,415, Sofia.

Konstas, Ioannis and Mirella Lapata.
2012. Concept-to-text generation via
discriminative reranking. In Proceedings
of the 50th Annual Meeting of the Association
for Computational Linguistics (ACL),
pages 369–378, Jeju Island.

Langkilde, Irene and Kevin Knight. 1998.
Generation that exploits corpus-based
statistical knowledge. In Proceedings of
the 36th Annual Meeting of the Association
for Computational Linguistics (ACL),
pages 704–710, Montreal.

Langkilde-Geary, Irene. 2002. An empirical
verification of coverage and correctness for
a general-purpose sentence generator. In
Proceedings of the International Conference on
Natural Language Generation, pages 17–24,
Harriman, NY.

Lavoie, Benoit and Owen Rambow.
1997. A fast and portable realizer for text
generation systems. In Proceedings
of the 3rd Conference on Applied Natural
Language Processing, pages 265–268,
Washington, DC.

Lefèvre, Fabrice. 2006. A DBN-based
multi-level stochastic spoken language
understanding system. In Proceedings of
SLT, pages 78–81, Palm Beach, Aruba.

Lin, Dekang and Patrick Pantel. 2001.
DIRT—discovery of inference rules from
text. In Proceedings of ACM SIGKDD
Conference on Knowledge Discovery & Data
Mining, pages 323–328, San Francisco, CA.

Lu, Wei, Hwee Tou Ng, and Wee Sun Lee.
2009. Natural language generation
with tree conditional random fields.
In Proceedings of EMNLP, pages 400–409,
Edinburgh.

Mairesse, François, Milica Gašić, Filip
Jurčı́ček, Simon Keizer, Blaise Thomson,
Kai Yu, and Steve Young. 2010.
Phrase-based statistical language
generation using graphical models and
active learning. In Proceedings of the
48th Annual Meeting of the Association
for Computational Linguistics (ACL),
pages 1,552–1,561, Uppsala.

Mairesse, François and Marilyn A. Walker.
2008. Trainable generation of Big-Five
personality styles through data-driven
parameter estimation. In Proceedings of
the 46th Annual Meeting of the Association
for Computational Linguistics (ACL),
pages 165–173, Columbus, OH.

Mairesse, François and Marilyn A. Walker.
2011. Controlling user perceptions of
linguistic style: Trainable generation
of personality traits. Computational
Linguistics, 37(3):455–488.

Mann, William C. and Sandra A. Thompson.
1988. Rhetorical structure theory. Toward
a functional theory of text organization.
Text, 8(3):243–281.

Nakanishi, Hiroko, Yusuke Miyao, and
Jun’ichi Tsujii. 2005. Probabilistic methods
for disambiguation of an HPSG-based
chart generator. In Proceedings of the
9th International Workshop on Parsing
Technology, pages 93–102, Vancouver.

Nakatsu, Crystal and Michael White. 2006.
Learning to say it well: Reranking
realizations by predicted synthesis
quality. In Proceedings of the 44th Annual
Meeting of the Association for Computational
Linguistics (ACL), pages 1,113–1,120,
Sydney.

Och, Franz Josef and Hermann Ney. 2003.
A systematic comparison of various
statistical alignment models. Computational
Linguistics, 29(1):19–51.

Oh, Alice H. and Alexander I. Rudnicky.
2002. Stochastic natural language
generation for spoken dialog systems.
Computer Speech and Language, 16:387–407.

Paiva, Daniel S. and Roger Evans. 2005.
Empirically-based control of natural
language generation. In Proceedings of
the 43rd Annual Meeting of the Association
for Computational Linguistics (ACL),
pages 58–65, Ann Arbor, MI.

Papineni, Kishore, Salim Roukos, Todd
Ward, and Wei-Jing Zhu. 2002. BLEU:
A method for automatic evaluation of
machine translation. In Proceedings of
the 40th Annual Meeting of the Association
for Computational Linguistics (ACL),
pages 311–318, Philadelphia, PA.

Pon-Barry, Heather, Karl Schultz,
Elizabeth Owen Bratt, Brady Clark, and
Stanley Peters. 2006. Responding to
student uncertainty in spoken tutorial
dialogue systems. International Journal
of Artificial Intelligence in Education,
16:171–194.

Rabiner, Lawrence R. 1989. Tutorial on
Hidden Markov Models and selected

798

http://www.mitpressjournals.org/action/showLinks?system=10.1162%2F089120103321337421
http://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2Fj.csl.2004.03.001
http://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2FS0885-2308%2802%2900012-8
http://www.mitpressjournals.org/action/showLinks?system=10.1162%2FCOLI_a_00063
http://www.mitpressjournals.org/action/showLinks?system=10.1162%2FCOLI_a_00063
http://www.mitpressjournals.org/action/showLinks?system=10.1162%2F089120103321337421

Mairesse and Young Stochastic Language Generation in Dialogue Using FLMs

applications in speech recognition.
Proceedings of the IEEE, 77(2):257–285.

Ratnaparkhi, Adwait. 2002. Trainable
approaches to surface natural language
generation and their application to
conversational dialog systems. Computer
Speech and Language, 16(3-4):435–455.

Reiter, Ehud and Anja Belz. 2009. An
investigation into the validity of some
metrics for automatically evaluating
natural language generation systems.
Computational Linguistics, 25:529–558.

Rieser, Verena and Oliver Lemon, 2010.
Natural language generation as planning
under uncertainty for spoken dialogue
systems. In E. Krahmer & M. Theune,
editors, Empirical Methods in Natural
Language Generation, Springer, Heidelberg,
pages 105–120.

Schatzmann, Jost, Blaise Thomson, Karl
Weilhammer, Hui Ye, and Steve Young.
2007. Agenda-based user simulation for
bootstrapping a POMDP dialogue system.
In Proceedings of HLT-NAACL, Short Papers,
pages 149–152, Rochester, NY.

Stent, Amanda and Martin Molina. 2009.
Evaluating automatic extraction of
rules for sentence plan construction.
In Proceedings of the SIGdial Conference on
Discourse and Dialogue, pages 290–297,
London.

Stent, Amanda, Rashmi Prasad, and
Marilyn A. Walker. 2004. Trainable
sentence planning for complex
information presentation in spoken
dialog systems. In Proceedings of the
42nd Annual Meeting of the Association
for Computational Linguistics (ACL),
pages 79–86, Barcelona.

Stone, Matthew, Doug DeCarlo, Insuk Oh,
Christian Rodriguez, Adrian Stere,
Alyssa Lees, and Chris Bregler. 2004.
Speaking with hands: Creating
animated conversational characters
from recordings of human performance.
In Proceedings of SIGGRAPH,
pages 506–513, Los Angeles, CA.

Thomson, Blaise and Steve Young. 2010.
Bayesian update of dialogue state:
A POMDP framework for spoken
dialogue systems. Computer Speech &
Language, 24(4):562–588.

Thomson, Blaise, Kai Yu, Simon Keizer,
Milica Gašić, Filip Jurčı́ček, François

Mairesse, and Steve Young. 2010. Bayesian
dialogue system for the Let’s Go spoken
dialogue challenge. In Proceedings of SLT,
Special Session: The Spoken Dialogue
Challenge, pages 460–465, Berkeley, CA.

Tokuda, Keiichi, Takayoshi Yoshimura,
Takashi Masuko, Takao Kobayashi, and
Tadashi Kitamura. 2000. Speech parameter
generation algorithms for HMM-based
speech synthesis. In Proceedings of ICASSP,
pages 1,315–1,318, Istanbul.

Torrance, Nancy, Elizabeth Lee, and David
R. Olson. 1992. The development of the
distinction between paraphrase and exact
wording in the recognition of utterances.
In Proceedings of the Annual Meeting of the
American Educational Research Association,
pages 1–11, San Francisco, CA.

Tsochantaridis, Ioannis, Thomas Hofmann,
Thorsten Joachims, and Yasemin Altun.
2004. Support vector learning for
interdependent and structured
output spaces. In Proceedings of ICML,
pages 104–112, Bauff.

Varges, Sebastian and Chris Mellish.
2001. Instance-based natural language
generation. In Proceedings of the Annual
Meeting of the North American Chapter
of the ACL (NAACL), pages 1–8,
Pittsburgh, PA.

Walker, Marilyn A., Owen Rambow, and
Monica Rogati. 2002. Training a sentence
planner for spoken dialogue using
boosting. Computer Speech and Language,
16(3-4):409–433.

White, Michael, Rajakrishnan Rajkumar,
and Scott Martin. 2007. Towards broad
coverage surface realization with CCG.
In Proceedings of the Workshop on Using
Corpora for NLG: Language Generation
and Machine Translation, pages 22–30,
Copenhagen.

Wong, Yuk Wah and Raymond J. Mooney.
2007. Generation by inverting a semantic
parser that uses statistical machine
translation. In Proceedings of HLT-NAACL,
pages 172–179, Rochester, NY.

Young, Steve, Milica Gašić, Simon Keizer,
François Mairesse, Jost Schatzmann, Blaise
Thomson, and Kai Yu. 2010. The Hidden
Information State model: A practical
framework for POMDP-based spoken
dialogue management. Computer Speech
and Language, 24(2):150–174.

799

http://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2Fj.csl.2009.07.003
http://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2Fj.csl.2009.07.003
http://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2Fj.csl.2009.04.001
http://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2Fj.csl.2009.04.001
http://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2FS0885-2308%2802%2900025-6
http://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2FS0885-2308%2802%2900025-6
http://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2FS0885-2308%2802%2900027-X
http://www.mitpressjournals.org/action/showLinks?crossref=10.1109%2F5.18626
http://www.mitpressjournals.org/action/showLinks?system=10.1162%2Fcoli.2009.35.4.35405

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for submission to The Sheridan Press. Configured for Adobe Acrobat Distiller v8.0 02-28-07.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

