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As in many natural language processing tasks, data-driven models based on supervised learning
have become the method of choice for semantic role labeling. These models are guaranteed to
perform well when given sufficient amount of labeled training data. Producing this data is
costly and time-consuming, however, thus raising the question of whether unsupervised methods
offer a viable alternative. The working hypothesis of this article is that semantic roles can
be induced without human supervision from a corpus of syntactically parsed sentences based
on three linguistic principles: (1) arguments in the same syntactic position (within a specific
linking) bear the same semantic role, (2) arguments within a clause bear a unique role, and
(3) clusters representing the same semantic role should be more or less lexically and distribu-
tionally equivalent. We present a method that implements these principles and formalizes the
task as a graph partitioning problem, whereby argument instances of a verb are represented as
vertices in a graph whose edges express similarities between these instances. The graph consists
of multiple edge layers, each one capturing a different aspect of argument-instance similarity,
and we develop extensions of standard clustering algorithms for partitioning such multi-layer
graphs. Experiments for English and German demonstrate that our approach is able to induce
semantic role clusters that are consistently better than a strong baseline and are competitive with
the state of the art.

1. Introduction

Recent years have seen increased interest in the shallow semantic analysis of natural
language text. The term is often used to describe the automatic identification and
labeling of the semantic roles conveyed by sentential constituents (Gildea and Jurafsky
2002). Semantic roles describe the relations that hold between a predicate and its
arguments (e.g., “who” did “what” to “whom”, “when”, “where”, and “how”)
abstracting over surface syntactic configurations. This type of semantic information
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is shallow but relatively straightforward to infer automatically and useful for the
development of broad-coverage, domain-independent language understanding
systems. Indeed, the analysis produced by existing semantic role labelers has been
shown to benefit a wide spectrum of applications ranging from information extraction
(Surdeanu et al. 2003) and question answering (Shen and Lapata 2007), to machine
translation (Wu and Fung 2009) and summarization (Melli et al. 2005).

In the example sentences below, window occupies different syntactic positions—it is
the object of broke in sentences (1a,b), and the subject in (1c). In all instances, it bears the
same semantic role, that is, the patient or physical object affected by the breaking event.
Analogously, ball is the instrument of break both when realized as a prepositional phrase
in (1a) and as a subject in (1b).

(1) a. [Jim]A0 broke the [window]A1 with a [ball]A2.

b. The [ball]A2 broke the [window]A1.

c. The [window]A1 broke [last night]TMP.

Also notice that all three instances of break in Example (1) have apparently similar
surface syntax with a subject and a noun directly following the predicate. However,
in sentence (1a) the subject of break expresses the agent role, in (1b) it expresses the
instrument role, and in (1c) the patient role.

The examples illustrate the fact that predicates can license several alternate map-
pings or linkings between their semantic roles and their syntactic realization. Pairs of
linkings allowed by a single predicate are often called diathesis alternations (Levin
1993). Sentence pair (1a,b) is an example of the instrument subject alternation, and
pair (1b,c) illustrates the causative alternation. Resolving the mapping between the
syntactic dependents of a predicate (e.g., subject, object) and the semantic roles that they
each express is one of the major challenges faced by semantic role labelers.

The semantic roles in the examples are labeled in the style of PropBank (Palmer,
Gildea, and Kingsbury 2005), a broad-coverage human-annotated corpus of semantic
roles and their syntactic realizations. Under the PropBank annotation framework each
predicate is associated with a set of core roles (named A0, A1, A2, and so on) whose
interpretations are specific to that predicate1 and a set of adjunct roles such as location or
time whose interpretation is common across predicates (e.g., last night in sentence (1c)).
The availability of PropBank and related resources (e.g., FrameNet; Ruppenhofer et al.
2006) has sparked the development of a variety semantic role labeling systems, most
of which conceptualize the task as a supervised learning problem and rely on role-
annotated data for model training. Most of these systems implement a two-stage ar-
chitecture consisting of argument identification (determining the arguments of the
verbal predicate) and argument classification (labeling these arguments with semantic
roles). Current approaches deliver reasonably good performance—a system will recall
around 81% of the arguments correctly and 95% of those will be assigned a correct
semantic role (see Màrquez et al. [2008] for details), although only on languages and
domains for which large amounts of role-annotated training data are available.

Unfortunately, the reliance on labeled data, which is both difficult and expensive
to produce, presents a major obstacle to the widespread application of semantic role
labeling across different languages and text genres. Although corpora with semantic

1 More precisely, A0 and A1 have a common interpretation across predicates as proto-agent and proto-patient
in the sense of Dowty (1991).
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role annotations exist nowadays in other languages (e.g., German, Spanish, Catalan,
Chinese, Korean), they tend to be smaller than their English equivalents and of limited
value for modeling purposes. Even within English, a language for which two major
annotated corpora are available, systems trained on PropBank demonstrate a marked
decrease in performance (approximately by 10%) when tested on out-of-domain data
(Pradhan, Ward, and Martin 2008). The data requirements for supervised systems and
the current paucity of such data has given impetus to the development of unsupervised
methods that learn from unlabeled data. If successful, unsupervised approaches could
lead to significant resource savings and the development of semantic role labelers
that require less engineering effort. Besides being interesting on their own right, from
a theoretical and linguistic perspective, unsupervised methods can provide valuable
features for downstream (supervised) processing and serve as a preprocessing step for
applications that require broad coverage understanding. In this article we study the
potential of unsupervised methods for semantic role labeling. As in the supervised case,
we decompose the problem into an argument identification step and an argument clas-
sification step. Our work primarily focuses on argument classification, which we term
role induction, because there is no predefined set of semantic roles in the unsupervised
case, and these must be induced from data. The goal is to assign argument instances to
clusters such that each cluster contains arguments corresponding to a specific semantic
role and each role corresponds to exactly one cluster.

Unsupervised learning is known to be challenging for many natural language
processing problems and role induction is no exception. Firstly, it is difficult to define
a learning objective function whose optimization will yield an accurate model. This
contrasts with the supervised setting, where the objective function can directly reflect
training error (i.e., some estimate of the mismatch between model output and the gold
standard) and the model can be tuned to replicate human output for a given input under
mathematical guarantees regarding the accuracy of the trained model. Secondly, it is
also more difficult to incorporate rich feature sets into an unsupervised model (Berg-
Kirkpatrick et al. 2010). Unless we explicitly know exactly how features interact, more
features may not necessarily lead to a more accurate model and may even decrease
performance. In the supervised setting, feature interactions relevant for a particular
learning task can be determined to a large extent automatically and thus a large number
of them can be included even if their significance is not clear a priori.

The lack of an extensional definition (in the form of training examples) of the target
concept makes a strong case for the development of unsupervised methods that use
problem specific prior knowledge. The idea is to derive a strong inductive bias (Gordon
and Desjardins 1995) based on this prior knowledge that will guide the learning towards
the correct target concept. For semantic role induction, we propose to build on the
following linguistic principles:

1. Semantic roles are unique within a particular frame.

2. Arguments occurring in a specific syntactic position within a specific linking
all bear the same semantic role.

3. The (asymptotic) distribution over argument heads is the same for two
clusters that represent the same semantic role.

We hypothesize that these three principles are, at least in theory, sufficient for
inducing high-quality semantic role clusters. A challenge, of course, lies in adequately
operationalizing them so that they guide the unsupervised learner towards meaningful
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solutions. The approach taken in this article translates these principles into estimates of
similarity (or dissimilarity) between argument instances and/or clusters of argument
instances. Principle (1) states that argument instances occurring in the same frame
(i.e., clause) cannot bear the same semantic role, and are thus dissimilar. From Prin-
ciple (2) it follows that arguments occurring in the same syntactic position within the
same linking can be considered similar (leaving aside for the moment the difficulty of
representing linkings through syntactic cues observable in a corpus). Principle (3) states
that two clusters of instances containing similar distributions over head words should
be considered similar.

Based on these similarity estimates we construct a graph whose vertices represent
argument instances and whose edges express similarities between these instances. The
graphs consist of multiple edge layers, each capturing one particular type of argument-
instance similarity. For example, one layer will be used to represent whether argument
instances occur in the same frame, and another layer will represent whether two argu-
ments have a similar head word, and so on. Given this graph representation of the data,
we formalize role induction as the problem of partitioning the graph into clusters of sim-
ilar vertices. We present two algorithms for partitioning multi-layer graphs, which are
adaptations of standard graph partitioning algorithms to the multi-layer setting. The al-
gorithms differ in the way they exploit the similarity information encoded in the graph.
The first one is based on agglomeration, where two clusters containing similar instances
are grouped into a larger cluster. The second one is based on propagation, where role-
label information is transferred from one cluster to another based on their similarity.

To understand how the aforementioned principles might allow us to handle the
ambiguity stemming from alternate linkings, consider again Example (1). The most
important thing to note is that, whereas the subject position is ambiguous with respect
to the semantic roles it can express (it can be A0, A1, or A2), we can resolve the
ambiguity by exploiting overt syntactic cues of the underlying linking. For example,
the predicate break is transitive in sentences (1a) and (1b), and intransitive in sentence
(1c). Thus, by taking into account the argument’s syntactic position and the predicate’s
transitivity, we can guess that the semantic role expressed by the subject in sentence (1c)
is different from the roles expressed by the subjects in sentences (1a,b). Now consider
the more difficult case of distinguishing between the subjects in sentences (1a) and (1b).
One linking cue that could help here is the prepositional phrase in sentence (1a), which
results in a syntactic frame different from sentence (1b). Were the prepositional phrase
omitted, we would attempt to disambiguate the linkings by resorting to lexical-semantic
cues (e.g., by taking into account whether the subject is animate). In sum, if we encode
sufficiently many linking cues, then the resulting fine-grained syntactic information will
discriminate ambiguous semantic roles. In cases where syntactic cues are not discerning
enough, we can exploit lexical information and group arguments together based on
their lexical content.

The remainder of this article is structured as follows. Section 2 provides an overview
of unsupervised methods for semantic role labeling. Sections 3 and 4 present the details
of our method, that is, how the graphs are constructed and partitioned. Role induction
experiments in English and German are described in sections 5 and 6, respectively.
Discussion of future work concludes in section 7.

2. Related Work

The bulk of previous work on semantic role labeling has focused on supervised methods
(Màrquez et al. 2008), although a few semi-supervised and unsupervised approaches
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have been proposed. The majority of semi-supervised models have been developed
within a framework known as annotation projection. The idea is to combine labeled
and unlabeled data by projecting annotations from a labeled source sentence onto
an unlabeled target sentence within the same language (Fürstenau and Lapata 2009)
or across different languages (Padó and Lapata 2009). Beyond annotation projection,
Gordon and Swanson (2007) propose to increase the coverage of PropBank to unseen
verbs by finding syntactically similar (labeled) verbs and using their annotations as
surrogate training data.

Swier and Stevenson (2004) were the first to introduce an unsupervised se-
mantic role labeling system. Their algorithm induces role labels following a boot-
strapping scheme where the set of labeled instances is iteratively expanded using
a classifier trained on previously labeled instances. Their method starts with a data
set containing no role annotations at all, but crucially relies on VerbNet (Kipper,
Dang, and Palmer 2000) for identifying the arguments of predicates and making
initial role assignments. VerbNet is a manually constructed lexicon of verb classes,
each of which is explicitly associated with argument realization and semantic role
specifications.

In this article we will not assume the availability of any role-semantic resources,
although we do assume that sentences are syntactically analyzed. There have been
two main approaches to role induction from parsed data. Under the first approach,
semantic roles are modeled as latent variables in a (directed) graphical model that
relates a verb, its semantic roles, and their possible syntactic realizations (Grenager
and Manning 2006). Role induction here corresponds to inferring the state of the
latent variables representing the semantic roles of arguments. Following up on this
work, Lang and Lapata (2010) reformulate role induction as the process of detecting
alternations and finding a canonical syntactic form for them. Verbal arguments are
then assigned roles, according to their position in this canonical form, because each
position references a specific role. Their model extends the logistic classifier with
hidden variables and is trained in a manner that takes advantage of the close re-
lationship between syntactic functions and semantic roles. More recently, Garg and
Henderson (2012) extend the latent-variable approach by modeling the sequential order
of roles.

The second approach is similarity-driven and based on clustering. Lang and Lapata
(2011a) propose an algorithm that first splits the set of all argument instances of a verb
according to their syntactic position within a particular linking and then iteratively
merges clusters. A different clusstering algorithm is adopted in Lang and Lapata
(2011b). Specifically, they induce semantic roles via graph partitioning: Each vertex
in the graph corresponds to an argument instance and edges represent a heuristically
defined measure of their lexical and syntactic similarity. The similarity-driven approach
has been recently adopted by Titov and Klementiev (2012a), who propose a Bayesian
clustering algorithm based on the Chinese Restaurant Process. In addition, they present
a method that shares linking preferences across verbs using a distance-dependent
Chinese Restaurant Process prior which encourages similar verbs to have similar
linking preferences. Titov and Klementiev (2012b) further introduce the use of multi-
lingual data for improving role induction.

There has also been work on unsupervised methods for argument identification.
Abend, Reichart, and Rappoport (2009) devise a method for recognizing the arguments
of predicates that relies solely on part of speech annotations, whereas Abend and
Rappoport (2010a) distinguish between core and adjunct roles, using an unsupervised
parser and part-of-speech tagger. More generally, shallow semantic representations
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induced from syntactic information are commonly used in lexicon acquisition and
information extraction tasks. For example, Lin and Pantel (2001) cluster syntactic re-
lations between pairs of words as expressed by parse tree paths into semantic relations
by exploiting lexical distributional similarity. Although not compatible with PropBank
or semantic roles as such, Poon and Domingos (2009) and Titov and Klementiev (2011)
also induce semantic information from dependency parses and apply it to a question
answering task for the biomedical domain. Another example is the work by Gamallo,
Agustini, and Lopes (2005), who cluster similar syntactic positions in order to develop
models of selectional preferences to be used for word sense induction and the resolution
of attachment ambiguities.

The work described here unifies the two clustering methods presented in Lang and
Lapata (2011a and 2011b) by reformulating them as graph partitioning algorithms. It
also extends them by utilizing multi-layer graphs which separate the similarities be-
tween instances on different features (e.g., part-of-speech, argument head) into different
layers. This has the advantage that similarity scores on individual features do not have
to be eagerly combined into a similarity score between instances. Instead, one can first
aggregate the similarity scores on each feature layer between two clusters and then
combine them into a similarity score between clusters. This is more robust, as the feature-
wise similarity scores between clusters can be computed in a principled way and the
heuristic combination step is deferred to the end (see Section 4 for details). Besides
providing a general modeling framework for semantic role induction, we discuss in
detail the linguistic principles guiding our modeling choices and assess their applica-
bility across languages. Specifically, we show that the framework presented here (and
the aforementioned principles) can be readily applied to English and German with
identical parametrizations for both languages and without fundamentally changing
the underlying model features, despite major syntactic differences between the two
languages.

3. Graph Construction

We begin by explaining how we construct a graph that represents verbs and their
arguments. Next, we describe how edge weights are computed—these translate to
similarity scores between argument instances—and then move on to provide the details
of our graph-partitioning algorithms.

As mentioned earlier, we formalize semantic role induction as a clustering problem.
Clustering algorithms (see Jain, Murty, and Flynn [1999] for an overview) commonly
take a matrix of pairwise similarity scores between instances as input and produce
a set of output clusters, often satisfying some explicitly defined optimality criterion.
The success or failure of the clustering approach is closely tied to the adequacy of
the employed similarity function for the task at hand. The graph partitioning view
of clustering (see Schaeffer [2007] for a detailed treatment) arises when instances are
represented as the vertices of a graph and the similarity matrix is interpreted as the
weight matrix of the graph. For semantic role induction, a straightforward application
of clustering would be to construct a graph for each verbal predicate such that vertices
correspond to argument instances of the verb and edge weights quantify the similarity
between these instances.

Lang and Lapata (2011b) hand-craft an instance similarity function by taking into
account different features such as the argument head or its syntactic position. Defin-
ing an appropriate instance-wise similarity function is nevertheless problematic as
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Figure 1
A multi-layer graph consists of multiple edge layers, one for each similarity feature. Multi-layer
graph partitioning algorithms exploit this representation by computing separate similarity
scores between clusters for each feature layer and then combining them into a single overall
similarity score. This is advantageous over single-layer graph partitioning because it avoids
eagerly combining the similarity scores for individual features into a heuristic instance-wise
similarity score.

weights have to be chosen heuristically. Instead, we will represent similarities with
respect to different features on separate edge layers in the graph. For example, one
layer will represent the similarity between the head words of arguments and another
one will represent the similarity between pars of speech. So, given M features, the
graph will consist of M layers, one for each feature. Edge weights on a particular
layer quantify the similarity between the instances with respect to that feature. This
is illustrated in Figure 1 for two argument instances and three features. Formally, a
multi-layer graph is defined as a pair (V, {E1, . . . , EM}) consisting of vertices V and
a set of edge layers Ef for f = 1 . . .M. The set of vertices V = {v1, . . . , vN} consists
of all N argument instances for a particular verb. The edge layer Ef for feature f
is constructed by connecting all vertex-pairs with non-zero similarity with respect
to f :

Ef = {(vi, vj) ∈ V × V|φf (vi, vj) �= 0}. (2)

where φf (vi, vj) is a similarity function for feature f , whose form will be discussed in the
next section. Each edge (vi, vj) ∈ Ef in layer f is weighted by φf (vi, vj).

3.1 Feature Similarity Functions

Similarities for a specific feature f are measured with a function φf (vi, vj) which assigns
a [−1, 1] value to any pair of instances (vi, vj). We assume similarities are measured on
an interval scale—that is, while sums, differences, and averages of the values of some
similarity function φf express meaningful quantities, products and ratios do not. More-
over, the values of two distinct similarity functions cannot necessarily be meaningfully
compared without rescaling. Positive similarity values indicate that the semantic roles
are likely to be the same, negative values indicate that roles are likely to differ, and zero
values indicate that there is no evidence for either case. The magnitude of φf expresses
the degree of confidence in the similarity judgment, with extreme values (i.e.,−1 and 1)
indicating maximal confidence.

In our model, we simply use indicator functions which output either 1 or −1 iff
feature values are equal and 0 otherwise. Specifically, we define four feature similarity
functions that we derive from the principles discussed in Section 1. Our similarity
functions are based on the following features: the argument head words and their parts
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of speech,2 the frame constraint, and the syntactic position within a particular linking.
We measure lexical and part-of-speech similarity as follows:

φlex(vi, vj) =

{
1 if vlex

i = vlex
j

0 otherwise
φpos(vi, vj) =

{
1 if vpos

i = vpos
j

0 otherwise.
(3)

The constraint that two argument instances vi and vj occurring in the same frame
cannot have the same semantic role is captured by the following similarity function:

φframe(vi, vj) =

{
−1 if vframe

i = vframe
j

0 otherwise.
(4)

Finally, we also measure syntactic similarity through an indicator function
φsyn(vi, vj), which assumes value 1 if two instances occur in the same syntactic position
within the same linking:

φsyn(vi, vj) =

{
1 if vsyn

i = vsyn
j

0 otherwise.
(5)

The syntactic position of an argument is directly given by the parse tree and can
be encoded, for example, by the full path from predicate to argument head, or for
practical purposes, in order to reduce sparsity, simply through the relation governing
the argument head and its linear position relative to the predicate (left or right). In
contrast, linkings are not directly observed, but we can resort to overt syntactic cues
as a proxy. Examples include the verb’s voice (active/passive), whether it is transitive,
the part-of-speech of the subject, and so on. We argue that in principle, if sufficiently
many cues are taken into account, they will capture one particular linking, although
there may be several encodings for the same linking. Note that syntactic similarity is
not used to construct another graph layer; rather, it will be used for deriving initial
clusters of instances, as we explain in Section 4.1.

4. Graph Partitioning

The graph partitioning problem consists of finding a set of clusters {c1, . . . , cS} that
form a partition of the vertex-set, namely, ∪ici = V and ci ∩ cj = ∅ for all i �= j, such that
(ideally) each cluster contains argument instances of only one particular semantic role,
and the instances for a particular role are all assigned to one and the same cluster. In the
following sections we provide two algorithms for multi-layer graph partitioning, based
on standard clustering algorithms for single-layer graphs. Both algorithms operate
on the same graph but differ in terms of the underlying clustering mechanism they
use. The first algorithm is an adaptation of agglomerative clustering (Jain, Murty, and
Flynn 1999) to the multi-layer setting: Starting from an initial clustering, the algorithm

2 We include parts of speech as a simple means of alleviating the sparsity of head words.
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iteratively merges vertex clusters in order to arrive at increasingly accurate representa-
tions of semantic roles. Rather than greedily merging clusters, our second algorithm is
based on propagating cluster membership information among the set of initial clusters
(Abney 2007).

4.1 Agglomerative Graph Partitioning

The agglomerative algorithm induces clusters in a bottom–up manner starting from an
initial cluster assignment that we will subsequently discuss in detail. Our initialization
results in a clustering that has high purity but low collocation, that is, argument
instances in each cluster tend to belong to the same role but argument instances of
a particular role are scattered among many clusters.3 The algorithm then improves
collocation by iteratively merging pairs of clusters. The agglomeration procedure is
described in Algorithm 1. As can be seen, pairs of clusters are merged iteratively until
a termination criterion is met. The decision of which cluster pair to merge at each
step is made by scoring a set of candidate cluster pairs and choosing the highest one
(line 5). The scoring function s(ci, cj′ ) quantifies how likely two clusters are to contain
arguments of the same role. A key question is how to define this scoring function on
the basis of the underlying graph representation, that is, with reference to the instance
similarities expressed by the edges. In order to collect evidence for or against a merge,
we take into account the connectivity of a cluster pair at each feature layer of the graph.
This crucially involves aggregating over all edges that connect the two clusters, and
allows us to infer a cluster-level similarity score from the individual instance-level
similarities encoded in the edges. The evidence collected at each layer is then combined
together in order to arrive at an overall decision (see Figure 1 for an illustration).

3 We define the terms purity and collocation more formally in Section 5.4.
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Although it would be possible to enumerate and score all possible cluster pairs
at each step, we apply a more efficient and effective procedure in which the set of
candidates consists of pairs formed by combining a fixed cluster ci with all clusters c′j
larger than ci. This requires comparing only O(|C|) rather than O(|C|2) scores and, more
importantly, it favors merges between large clusters whose score can be computed more
reliably. As mentioned earlier, our scoring function implements an averaging procedure
over the instances contained in the clusters, and thus yields less noisy scores when
clusters are large (i.e., contain many instances). This prioritization promotes reliable
merges over less reliable ones in the earlier phases of the algorithm with a positive
effect on merges in the later phases. Moreover, by keeping ci fixed, we only require that
scores s(ci, x) and s(ci, z) are comparable (i.e., where one cluster is argument in both
scores), rather than comparisons between arbitrary cluster pairs (e.g., s(w, x) and s(y, z)).
In the following, we will provide details on the initialization of the algorithm and the
computation of the similarity scoring function.

A standard agglomerative clustering algorithm forms clusters bottom–up by ini-
tially placing each item of interest in its own cluster. In our case, initializing the algo-
rithm with as many clusters as argument instances would result in a clustering with
maximal purity and minimal collocation. There are two reasons that justify a more
sophisticated initialization procedure for our problem. Firstly, the scoring function we
use is more reliable for larger clusters than for smaller clusters (see the subsequent
discussion). In fact, the standard initialization that creates clusters with a single instance
would not yield useful results as our scoring function crucially relies on initial clusters
containing several instances on average. Secondly, the similarity scores for different
features are not directly comparable. Recall from Section 3.1 that we introduced different
types of similarities based on the arguments’ head words (φlex), parts-of-speech (φpos),
syntactic positions (φsyn), and frame constraints (φframe). As discussed earlier, engineer-
ing a scoring function that integrates these into a single score without resorting to
heuristic judgments on how to weight them poses a major challenge. In particular, it
is difficult to weight the contribution of the two forms of positive evidence given by
lexical and syntactic similarity. This motivates the idea of using syntactic similarity
for initialization, and lexical similarity (as well as the frame constraint) for scoring.
This separation avoids the difficulty of defining the exact interaction between the two.
Specifically, we obtain an initial clustering by grouping together all instances which
occur in the same syntactic position within a linking—that is, all pairs (vi, vj) for which
φsyn(vi, vj) = 1 are grouped into the same cluster, assuming that arguments occurring in
a specific syntactic position under a specific linking share the same role.

We specify the syntactic position of an argument using four cues: the verb’s voice
(active/passive), the argument’s linear position relative to the predicate (left/right),
the syntactic relation of the argument to its governor (e.g., subject or object), and the
preposition used for realizing the argument (if any). Each argument is assigned a four-
tuple consisting of these cues and two syntactic positions are assumed equal iff they
agree on all cues.

Whereas the similarity functions defined in Section 3.1 measure role-semantic
similarity between instances on a particular feature, the scoring function measures role-
semantic similarity between clusters. Naturally, the similarity between two clusters is
defined in terms of the similarities of the instances contained in the clusters. This
involves two aggregation stages. Initially, instance similarities are aggregated in each
feature layer, resulting in an aggregate score for each feature. These layer-specific scores
are then integrated into a single score, which quantifies the overall similarity between
the two clusters (see Figure 1).

642



Lang and Lapata Similarity-Driven Semantic Role Induction via Graph Partitioning

An obvious way to determine the similarity between two clusters (with respect to
a particular feature f ) would be to analyze their connectivity. For example, we could
use edge density (Schaeffer 2007) to average over the weights of edges between two
clusters. However, edge density is an inappropriate measure of similarity in our case,
because we cannot assume that arbitrary pairs of instances are similar with respect to
a particular feature, even if two clusters represent the same semantic role. Consider for
example lexical similarity: Most head words will not agree (even within a cluster) and
therefore averaging between all pairs would yield low scores, regardless of whether
the clusters represent the same role or not. Analogously, the vast majority of instance
pairs from any two clusters will belong to different frames, and thus averaging over
all possible pairs of instances would not yield indicative scores.

We therefore adopt an averaging procedure which finds, for each instance in one
cluster, the instance in the other cluster that is maximally similar or dissimilar and
averages over the scores of these alignments:

sf (ck, cl) = 1
Nk + Nl

⎛
⎝∑

vi∈ck

abs max
vj∈cl

φf (vi, vj) +
∑
vj∈cl

abs max
vi∈ck

φf (vi, vj)

⎞
⎠ (6)

Here, abs max is a functional that returns the extreme value of its argument, either
positive or negative: abs maxx∈X g(x) = g(arg maxx∈X |g(x)|). Note that the alignments
are unconstrained in the sense that va ∈ ck can be aligned to vb ∈ cl in the first term
of Equation (6), while vb can be aligned to some other instance in the second term.
Moreover, alignments in each term are many-to-one, namely, multiple instances from ck
can be aligned to the same vb ∈ cl in the first term and likewise in the second term. This
means that score aggregation does not reflect the distributional properties of clusters
(e.g., the frequency of head words in each cluster). Consider for example two clusters
with an identical set of head words. Because many-to-one alignments are allowed, each
instance can be aligned with maximal score to some other instance regardless of the
frequencies of these words.

As an alternative, we also use the well-known cosine similarity function—although
only for the features based on argument head words (lex) and parts of speech (pos):

sf (ck, cl) =
x f

k · x
f
l

‖x f
k ‖‖x

f
l ‖

. (7)

Here x f
k and x f

l are vector representations of the cluster containing as components
the occurrence frequencies of a particular value of the feature f (i.e., lex and pos in
our case). Another solution would be to enforce one-to-one alignments and redefine
Equation (6) as the optimal bipartite matching between the two clusters. Although
this solution adheres to the graph formulation (in contrast to Equation (7)) we see no
theoretical reason that makes it superior to cosine similarity. Moreover, its computation
would require cubic runtime in the number of vertices using the Hungarian algorithm
(Munkres 1957), which is prohibitively slow for sufficiently large clusters.

Layer-specific similarity scores must be combined into an overall cluster similar-
ity score. Because similarity scores and their aggregates for different features are not
directly comparable, their combination through summation would require weighting
each layer score according to its relative strength. Due to the difficulty of specifying
these weights without access to labeled training data, we propose an alternative scheme
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that is based on the distinction between positive and negative evidence. Negative
evidence is used to rule out a merge, whereas positive evidence provided by the lexical
score is used to score merges that have not yet been ruled out:

s(ck, cl) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−1 if sframe(ck, cl) < α

−1 if spos(ck, cl) < β

slex(ck, cl) if slex(ck, cl) > γ

0 otherwise.

(8)

When the part-of-speech similarity is below a certain threshold β, or when clause-level
constraints are satisfied to a lesser extent than threshold α, the score takes value −1
and the merge is ruled out. If the merge is not ruled out, the lexical similarity score
determines the magnitude of the overall score, provided that it is above threshold γ.
Otherwise, the function returns 0, indicating that neither strong positive nor negative
evidence is available. The cluster-similarity scoring function can be viewed as the
decision function of a binary classifier for deciding on whether to merge a particular
pair of clusters. The classifier is informed by the similarity scores for each feature
layer and outputs a confidence-weighted decision (positive/negative), where the sign
sgn(φf (vi, vj)) indicates the decision and the absolute value |φf (vi, vj)| quantifies confi-
dence. The scoring function in Equation (8) essentially implements a simple decision list
classifier, whose decision rules are sequentially inspected from top to bottom, applying
the first matching rule.

Although our definition avoids weighting, it has introduced threshold parame-
ters α, β, and γ that we need to somehow estimate. We propose a scheme in which
parameters β and γ are iteratively adjusted, and α, the threshold determining the
extent to which the frame constraints can be violated, is kept fixed. We heuristically set
α to −0.05, based on the intuition that in principle frame constraints must be satisfied
although in practice, due to noise we expect a small number of violations (i.e., at most
5% of instances can violate the constraint). Parameters β and γ are initially set to their
maximal value 1, thereby ruling out all merges except those with maximal confidence.
The parameters then decrease iteratively according to a routine whose pseudo-code
is specified in Algorithm 2. The parameter β decreases at each iteration by a small
amount (0.025) until it reaches ε = 0.025, at which point its value is reset to 1.0 and γ
is discounted by a factor close to one (0.9). This is repeated until γ falls below ε, upon
which the algorithm terminates.
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Runtime Analysis. As described in the previous section, Algorithm 1 stops when the
threshold γ falls below some small value ε. Both γ and α iteratively decrease based on
a fixed scheme. The outer loop and starting in line 1 is therefore computed in constant
time T. Each pass through the inner loop starting at line 4 iterates over O(|C|) clusters
and for each one of them a score with O(|C|) other clusters is computed. Assume that
fi denotes the fraction of all V instances in cluster ci, namely, fiV = |ci| and

∑|C|
i=1 fi = 1.

Then, overall, the number of instance-wise similarities we need to evaluate is at most
O(|V|2):

|C|∑
i=1

|C|∑
j=i+1

(fi|V|)(fj|V|) = 1
2

|C|∑
i=1

|C|∑
j=1

(fi|V|)(fj|V|)− 1
2

|C|∑
i=1

(fi|V|)2

≤|V|2
|C|∑
i=1

|C|∑
j=1

fifj = |V|2
|C|∑
i=1

fi

|C|∑
j=1

fj = |V|2

The total runtime in terms of the input is therefore O(T · |V|2). Although this could be
prohibitively inefficient for large data sets, we did not observe long runtimes in our
experiments. Various optimizations are conceivable—for example, the cluster similarity
scores in line 5 of Algorithm 1 can be cached such that they only need to be recomputed
when a cluster changes (i.e., it is merged with another cluster).

4.2 Multi-Layer Label Propagation

Our second graph partitioning algorithm is based on the idea of propagating cluster
membership information along the edges of a graph, subsequently referred to as propa-
gation graph. As we explain in more detail subsequently, compared with agglomerative
clustering, this algorithm in principle is less prone to making false greedy decisions
that cannot be later revoked. Moreover, it has lower runtime and thus scales better to
larger data sets.

The propagation graph is created by collapsing vertices of the initial multi-layer
graph. Vertices in the propagation graph represent an atomic set of instances of the
original graph, that is, a group of instances that are always assigned to the same
cluster. For our induction problem, the vertices of the propagation graph correspond
to the initial clusters of the agglomerative algorithm discussed in Section 4.1. More
formally, let ai ∈ A denote the i-th vertex of the propagation graph, which references
an atomic cluster of vertices {vi1 . . . viNi

} of the original graph that occur in the same
syntactic position within the same linking. Because each vertex of the propagation graph
corresponds to a cluster of vertices in the original graph, the edges of the propagation
graph can be defined in terms of the edges between these vertices in the original graph.
We reuse Equations (6) and (7) to define the edge weights of the propagation graph
as aggregates over the edge weights in the original graph. For each feature layer we
define the set of edges as:

Bf = {(ai, aj) ∈ A× A|sf (ai, aj) �= 0} (9)

Each edge (ai, aj) ∈ Bf in layer f is accordingly weighted by sf (ai, aj). Each vertex ai
is associated with a label li, indicating the partition that ai and all the vertices in the
original graph that have been collapsed into ai belongs to.
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Note that the label propagation algorithm is informed by the same similarity func-
tions as agglomerative clustering and uses an identical initialization procedure but pro-
vides an alternative means of cluster inference. Initially, each vertex of the propagation
graph belongs to its own cluster, that is, we let the number of clusters L = |A| and set
li ← i. Given this initial vertex labeling, the algorithm proceeds by iteratively updating
the label for each vertex (lines 4–10 in Algorithm 3). This crucially relies on a scoring
procedure in which a score s(l) is computed for each possible label l. We discuss the
details of the scoring procedure below.

The label scoring procedure required in line 5 of Algorithm 3 has parallels to the
cluster pair scoring procedure of the agglomerative algorithm. It also consists of two
stages: Initially, evidence is collected independently on each feature layer by computing
label score aggregates with respect to each feature and then these feature scores are
combined in order to arrive at an overall score.

Assume we are updating vertex ai. The first step is to compute the score for each
feature f and each label l:

sf (l) =
∑

aj∈Ni(l)

sf (ai, aj) (10)

where Ni(l) = {aj|(ai, aj) ∈ Bf ∧ l = lj ∧ |aj| > |ai|} denotes the set of ai’s neighbors with
label l that are larger than ai. Intuitively, each neighboring vertex votes for the cluster it
is currently assigned to, where the strength of the vote is determined by the similarity
to the vertex (i.e., edge weight) being updated. The votes of all (larger) neighboring
vertices are counted together, resulting in a score for each possible label. The condition
of including only larger vertices for computing the score is analogous to the prioriti-
zation mechanism of the agglomerative algorithm (only merges with larger clusters are
considered for a given candidate cluster). We impose this restriction for the same reason,
namely, that scores for larger clusters are more reliable.

Given the scores sf (l) for a particular label l on each layer f , our goal then is to com-
bine them into a single overall score s(l) for the label. As in agglomerative partitioning,
combining these scores through summation is not possible without “guessing” their
weights, and therefore we use a sequential combination instead:

s(l) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−1 if sframe(l) < α

−1 if spos(l) < β

slex(l) if slex(l) > γ

0 otherwise.

(11)

Analogously to Equation (8), negative evidence that stems from part-of-speech informa-
tion or frame constraints can veto a propagation, whereas positive evidence stemming
from argument head words can promote a propagation. If neither strong evidence
(positive or negative) is available, the label is assigned a zero score. Note that the
scoring function has three parameters with an identical interpretation to those in the
scoring function of the agglomerative algorithm. The threshold update that takes place
in line 11 of Algorithm 3 is therefore the same as the one described in Section 4.1 for
the agglomerative algorithm.

We now analyze the runtime of our algorithm. Let T denote the number of iterations
of the outer loop starting at line 1 of Algorithm 3. The inner loop starting at line 4 iterates
over |A| clusters and for each one of them it has to evaluate at most |A| neighboring
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nodes. Additionally, there are the one-time costs of computing the similarities between
atomic clusters which take O(|V|2) time. The total runtime is therefore O(T|A|2 + |V|2).
Because |A|2 << |V|2, label propagation is substantially faster than agglomerative
clustering.

4.3 Relationship to Single-Layer Graph Partitioning

Clustering algorithms typically assume instance-wise similarities as input (i.e., single-
layer graphs). For our role induction problem, this would require a heuristically defined
similarity function that combines the similarities on individual features into a single
similarity score between instances. In other words, we would collapse the multiple
graph layers into a single layer and then partition the resulting single-layer graph
according to a standard clustering algorithm. A main difference between the two ap-
proaches is the order in which similarities are aggregated: Whereas multi-layer graph
partitioning aggregates similarities on each feature layer first and then combines them
into an overall cluster-wise similarity score, in the single-layer case feature similarities
are eagerly combined into an overall instance-wise similarity score and then aggregated.
Thus, in the multi-layer setting, aggregation can be done in a principled way by con-
sidering the individual feature layers in isolation. For large clusters the resulting scores
for each feature layer will provide reliable evidence for or against a merge. Combining
these cluster-wise similarity scores is much less error-prone than the eager combination
at the instance-level used by the single-layer approach. We experimentally confirm this
intuition (see Section 5.5) by comparing against the single-layer partitioning algorithm
presented in Lang and Lapata (2011b).

5. Role Induction Experiments on English

We adopt the general architecture of supervised semantic role labeling systems where
argument identification and argument classification are treated separately. Our role
labeler is fully unsupervised with respect to both tasks—it does not rely on any role
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annotated data or semantic resources. However, our system does not learn from raw
text. In common with most semantic role labeling research, we assume that the input is
syntactically analyzed. Our approach is not tied to a specific syntactic representation—
both constituent- and dependency-based representations can be used. The bulk of
our experiments focus on English data and a dependency-based representation that
simplifies argument identification considerably and is consistent with the CoNLL 2008
benchmark data set used for evaluation in our experiments. To show that our method
can be applied to other languages and across varying syntactic representations, we
also report experiments on German using a constituent-based representation (see
Section 6).

Given the parse of a sentence, our system identifies argument instances and as-
signs them to clusters. Thereafter, argument instances can be labeled with an identifier
corresponding to the cluster they have been assigned to, similar to PropBank core labels
(e.g., A0, A1). We view argument identification as a syntactic processing step that can be
largely undertaken deterministically through analysis of the syntactic tree. We therefore
use a small set of rules to detect arguments with high precision and recall. In the follow-
ing, we first describe the data set (Section 5.1) on which our experiments were carried
out. Next, we present the argument identification component of our system (Section 5.2)
and the method used for comparison with our approach. Finally, we explain how system
output was evaluated (Section 5.4).

5.1 Data

For evaluation purposes, we ran our method on the CoNLL 2008 shared task data set
(Surdeanu et al. 2008), which provides PropBank style gold standard annotations. As
our algorithm induces verb-specific roles, PropBank annotations are a natural choice of
gold standard for our problem. The data set contains annotations for verbal and nominal
predicate-argument constructions, but we only considered the former. The CoNLL data
set was taken from the Wall Street Journal portion of the Penn Treebank and converted
into a dependency format (Surdeanu et al. 2008). Input sentences are represented in
the dependency syntax specified by the CoNLL 2008 shared task (see Figure 2 for an
example). In addition to gold standard dependency parses, the data set also contains
automatic parses obtained from the MaltParser (Nivre et al. 2007), which we will use
as an alternative in our experiments in order to assess the impact of parse quality. For
each argument only the head word is annotated with the corresponding semantic role,
rather than the whole constituent. We assume that argument heads are content words
(e.g., the head of a prepositional phrase is the nominal head rather than the preposition).
We do not treat split arguments or co-referential arguments (e.g., in relative clauses).
Specifically, we ignore arguments with roles preceded by the C- or R- prefix in the
gold standard. All argument lemmas were normalized to lower case; we also replaced
numerical quantities with a placeholder; to further reduce data sparsity, we identified

Figure 2
A sample dependency parse with dependency labels SBJ (subject), OBJ (object), NMOD
(nominal modifier), OPRD (object predicative complement), PRD (predicative complement),
and IM (infinitive marker).
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Table 1
Argument identification rules for English.

1. Discard a candidate if it is a coordinating conjunction or punctuation.

2. Discard a candidate if the path of relations from predicate to candidate ends with
coordination, subordination, etc. (see Appendix A for the full list of relations).

3. Keep a candidate if it is the closest subject (governed by the subject-relation) to the left of
a predicate and the relations from predicate p to the governor g of the candidate are all
upward-leading (directed as g→ p).

4. Discard a candidate if the path between the predicate and the candidate, excluding the
last relation, contains a subject relation, adjectival modifier relation, etc. (see Appendix A
for the full list of relations).

5. Discard a candidate if it is an auxiliary verb.

6. Keep a candidate if it is directly connected to the predicate.

7. Keep a candidate if the path from predicate to candidate leads along several verbal nodes
(verb chain) and ends with an arbitrary relation.

8. Discard all remaining candidates.

the head of proper noun phrases heuristically as the most frequent lemma contained in
the phrase.

5.2 Argument Identification

In the supervised setting, a classifier is used in order to decide for each node in the parse
tree whether it represents a semantic argument or not. Nodes classified as arguments
are then assigned a semantic role. In the unsupervised setting, we slightly reformulate
argument identification as the task of discarding as many non-semantic arguments as
possible. This means that the argument identification component does not make a final
positive decision for any of the argument candidates; instead, this decision is deferred to
role induction.4 We assume here that predicate identification is a precursor to argument
identification and can be done relatively straightforwardly based on part-of-speech
information.

The rules given in Table 1 are used to discard or select argument candidates for
English. They primarily take into account the parts of speech and the syntactic relations
encountered when traversing the dependency tree from predicate to argument. A priori,
all words in a sentence are considered argument candidates for a given predicate. Then,
for each candidate, the rules are inspected sequentially and the first matching rule is
applied. We will exemplify how the argument identification component works for the
predicate expect in the sentence The company said it expects its sales to remain steady whose
parse tree is shown in Figure 2. Initially, all words except the predicate itself are treated
as argument candidates. Then, the rules from Table 1 are applied as follows. Firstly,
the words the and to are discarded based on their part of speech (Rule 1); then, remain
is discarded because the path ends with the relation IM and said is discarded as the

4 A few supervised systems implement a similar definition (Koomen et al. 2005), although in most cases
the argument identification component makes a final positive or negative decision regarding the status of
an argument candidate.
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path ends with an upward-leading OBJ relation (Rule 2). Rule 3 matches to it, which is
therefore added as a candidate. Next, steady is discarded because there is a downward-
leading OPRD relation along the path and the words company and its are also discarded
because of the OBJ relations along the path (Rule 4). Rule 5 does not apply but the word
sales is kept as a likely argument (Rule 6). Finally, Rule 7 does not apply, because there
are no candidates left.

On the CoNLL 2008 training set, our argument identification rules obtain a pre-
cision of 87.0% and a recall of 92.1% on gold standard parses. On automatic parses,
precision is 79.3% and recall 84.8%. Here, precision measures the percentage of selected
arguments that are actual semantic arguments, and recall measures the percentage of
actual arguments that are not filtered out.

Grenager and Manning (2006) also devise rules for argument identification, un-
fortunately without providing any details on their implementation. More recently, at-
tempts have been made to identify arguments without relying on a treebank-trained
parser (Abend and Rappoport 2010b; Abend, Reichart, and Rappoport 2009). The idea
is to combine a part-of-speech tagger and an unsupervised parser in order to identify
constituents. Likely arguments can be in turn identified based on a set of rules and
the degree of collocation with the predicate. Perhaps unsurprisingly, this method does
not match the quality of a rule-based component operating over trees produced by a
supervised parser.

5.3 Baseline Method for Semantic Role Induction

The linking between semantic roles and syntactic positions is not arbitrary; specific
semantic roles tend to map onto specific syntactic positions such as subject or object
(Levin and Rappaport 2005; Merlo and Stevenson 2001). We further illustrate this
observation in Table 2, which shows how often individual semantic roles map onto
certain syntactic positions. The latter are simply defined as the relations governing the
argument. The frequencies in the table were obtained from the CoNLL 2008 data set and
are aggregates across predicates. As can be seen, semantic roles often approximately
correspond to a single syntactic position. For example, A0 is commonly mapped onto
subject (SBJ), whereas A1 is often realized as object (OBJ).

This motivates a baseline that directly assigns instances to clusters according to
their syntactic position. The pseudo-code is given in Algorithm 4. For each verb we
allocate N = 22 clusters (the maximal number of gold standard clusters together with a
default cluster). Apart from the default cluster, each cluster is associated with a syntactic
position and all instances occurring in that position are mapped into the cluster. Despite
being relatively simple, this baseline has been previously used as a point of comparison
by other unsupervised semantic role labeling systems (Grenager and Manning 2006;
Lang and Lapata 2010) and shown difficult to outperform. This is partly due to the fact
that almost two thirds of the PropBank arguments are either A0 or A1. Identifying these
two roles correctly is therefore the most important distinction to make, and because this
can be largely achieved on the basis of the arguments’ syntactic position (see Table 2),
the baseline yields high scores.

5.4 Evaluation

In this section we describe how we assess the quality of a role induction method that
assigns labels to units that have been identified as likely arguments. We also discuss
how we measure whether differences in model performance are statistically significant.
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Table 2
Contingency table between syntactic position and semantic roles. Only the eight most frequent
syntactic positions and their labels are listed (i.e., SBJ (Subject), OBJ (Object), ADV (Adverbial),
TMP (Temporal), PMOD (Preposition and its child), OPRD (Object complement), LOC
(Location), DIR (Direction)). Counts were obtained from the CoNLL 2008 training data set using
gold standard parses. The marginals in the right-most column include all syntactic positions
(not only the eight most frequent ones). Boldface highlights the most frequent role per syntactic
position (e.g., SBJ is frequently A0, OBJ is A1).

SBJ OBJ ADV TMP PMOD OPRD LOC DIR Total

A0 50,473 3,350 145 4 2,464 28 12 0 60,398
A1 18,090 50,986 3,207 45 4,819 3,489 118 170 83,535
A2 1,344 2,741 6,413 74 774 2,440 606 800 19,585
A3 88 254 1,208 37 116 114 63 940 3,359
A4 6 20 351 7 79 34 28 2,089 2,687
A5 0 0 19 0 1 3 0 28 67
AA 10 1 0 0 1 0 0 0 13
ADV 7 46 7,364 33 55 31 103 2 8,070
CAU 3 6 215 14 5 0 8 0 1,178
DIR 0 3 304 2 5 1 19 639 1,123
DIS 0 3 3,326 47 2 0 15 0 4,823
EXT 1 6 418 0 6 3 23 4 621
LOC 18 32 358 15 127 2 5,076 9 5,831
MNR 7 54 2,285 22 59 36 154 6 6,238
MOD 9 2,130 77 22 69 3 6 0 9,030
NEG 0 0 3,078 39 0 0 0 0 3,172
PNC 1 11 458 4 4 292 8 4 2,231
PRD 0 2 41 0 0 11 2 0 66
PRT 0 0 0 0 0 0 0 0 2
REC 0 5 8 0 0 0 0 0 14
TMP 14 93 969 14,465 141 1 42 15 16,086

Total 70,071 59,744 30,248 14,830 8,730 6,488 6,285 4,706 228,129

Arguments are labeled based on the cluster they have been assigned to, which
means that in contrast to the supervised setting we cannot verify the correctness of
these labels directly (e.g., by comparing them to the gold standard). Instead, we will
look at the induced clusters as a whole and assess their quality in terms of how well
they reflect the assumed gold standard. Specifically, for each verb, we determine the
extent to which argument instances in the clusters share the same gold standard role
(purity) and the extent to which a particular gold standard role is assigned to a single
cluster (collocation).

More formally, for each group of verb-specific clusters we measure cluster purity
as the percentage of instances belonging to the majority gold class in their respective
cluster. Let N denote the total number of instances, Gj the set of instances belonging to
the j-th gold class, and Ci the set of instances belonging to the i-th cluster. Purity can be
then written as

PU = 1
N

∑
i

max
j
|Gj ∩ Ci| (12)

Collocation is the inverse of purity (van Rijsbergen 1974) and defined as follows.
For each gold role, we determine the cluster with the largest number of instances for
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that role (the role’s primary cluster) and then compute the percentage of instances that
belong to the primary cluster for each gold role:

CO = 1
N

∑
j

max
i
|Gj ∩ Ci| (13)

Per-verb scores are aggregated into an overall score by averaging over all verbs. We
use the micro-average obtained by weighting the scores for individual verbs propor-
tionately to the number of instances for that verb. Finally, we use the harmonic mean of
purity and collocation as a single measure of clustering quality:

F1 = 2·CO·PU
CO + PU (14)

Purity and collocation measure essentially the same data traits as precision and
recall, which in the context of clustering are, however, defined on pairs of instances
(Manning, Raghavan, and Schütze 2008), which makes them a bit harder to grasp
intuitively. We therefore prefer purity and collocation, arguing that these should be
assessed in combination or together with F1 because they can be traded off against each
other. Purity can be trivially maximized by mapping each instance into its own cluster,
and collocation can be trivially maximized by mapping all instances into a single cluster.

Although it is desirable to report performance with a single score such as F1, it
is equally important to assess how purity and collocation contribute to this score. In
particular, if a hypothetical system were to be used for automatically annotating data,
low collocation would result in higher annotation effort and low purity would result in
lower data quality. Therefore high purity is imperative for an effective system whereas
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high collocation contributes to efficient data labeling. For assessing our methods we
therefore introduce the following terminology. If a model attains higher purity than
the baseline, we will say that it is adequate, because it induced roles that adequately
represent semantic roles. If a model attains higher F1 than the baseline, we will say
that it is non-trivial, because it strikes a tradeoff between collocation and purity that is
non-trivial. Our goal then is to find models that are both adequate and non-trivial.

In order to assess whether differences in performance between two models are
statistically significant, we used a sign test. Specifically, we obtained a series of score
pairs by testing two methods on a subsample of the test data. Each subsample corre-
sponds to a random selection of M = 2, 000. We consider the resulting samples to be
“sufficiently” independent to obtain indicative results from the test. As null hypothesis
(H0) we assume that a model m attains scores equal to another model b. Under H0 the
probability that model m outperforms model b on a particular test set is 1

2 . The random
variable S counting the number of times that scorem > scoreb in a sample of N score pairs
is binomially distributed:

S =
N∑

i=1

1[score(i)
m > score(i)

b ] Bin( 1
2 , N) (15)

We can therefore use S as our test statistic and reject the null hypothesis H0 if S >> N
2 .

5.5 Results

Our results are summarized in Tables 3–5, which report cluster purity (PU), collocation
(CO), and their harmonic mean (F1) for the baseline and our two multi-layer graph
partitioning algorithms. We present scores on four data sets that result from the combi-
nation of automatic parses with automatically identified arguments (auto/auto), gold
parses with automatic arguments (gold/auto), automatic parses with gold arguments
(auto/gold), and gold parses with gold arguments (gold/gold). We show how per-
formance varies for our methods when measuring cluster similarity in the two ways
described above: (a) by finding for each instance in one cluster the instance in the
other cluster that is maximally similar or dissimilar and averaging over the scores of
these alignments (avgmax) and (b) by using cosine similarity (see Section 4.1). We also
report results for the single-layer algorithm proposed in Lang and Lapata (2011b).5

Given a verbal predicate, they construct a single-layer graph whose edge weights
express instance-wise similarities directly. The graph is partitioned into vertex clusters
representing semantic roles using a variant of Chinese Whispers, a graph clustering
algorithm proposed by Biemann (2006). The algorithm iteratively assigns cluster labels
to graph vertices by greedily choosing the most common label among the neighbors of
the vertex being updated.

Both agglomerative partitioning and multi-layered label propagation algorithms
systematically achieve higher F1 scores than the baseline—that is, induce non-trivial
clusterings and more adequate semantic roles (by attaining higher purity). For exam-
ple, on the auto/auto data set, the agglomerative algorithm using cosine similarity

5 The results in Table 5 differ slightly from those published in Lang and Lapata (2011b). This is due to a
small change in the preprocessing of the data. For all English experiments reported here, we removed
arguments with R- and C- role prefixes and replaced numbers with a placeholder.
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Table 3
Results for agglomerative partitioning (for avgmax and cosine similarity). F1 improvements
over the baseline are statistically significant in all settings (q < 0.001). Boldface highlights the
best performing system according to purity, collocation, and F1.

Parse/Arg Agglomerative
Baseline avgmax cosine

PU CO F1 PU CO F1 PU CO F1

auto/auto 68.3 72.1 70.1 75.3 69.2 72.1 75.5 69.5 72.4
gold/auto 74.9 78.5 76.6 80.3 73.8 76.9 80.7 74.0 77.2
auto/gold 77.0 71.5 74.1 84.9 70.8 77.2 85.6 71.9 78.1
gold/gold 81.6 78.1 79.8 87.4 75.3 80.9 87.9 75.6 81.3

Table 4
Results for multi-layered label propagation (for avgmax and cosine similarity). F1 improvements
over the baseline are statistically significant in all settings (q < 0.001). Boldface highlights the
best performing system according to purity, collocation, and F1.

Parse/Arg Multi-Layer Label Propagation
Baseline avgmax cosine

PU CO F1 PU CO F1 PU CO F1

auto/auto 68.3 72.1 70.1 73.8 70.3 72.0 74.0 70.3 72.1
gold/auto 74.9 78.5 76.6 78.8 74.3 76.5 79.2 74.3 76.7
auto/gold 77.0 71.5 74.1 82.9 72.8 77.5 83.6 73.1 78.0
gold/gold 81.6 78.1 79.8 85.6 75.8 80.4 86.3 76.1 80.9

Table 5
Results for single-layered label propagation using a heuristic similarity function.
F1 improvements over the baseline are statistically significant (q < 0.001) in the auto/gold
and gold/gold settings. Boldface highlights the best performing system according to purity,
collocation, and F1.

Parse/Arg Baseline Label Propagation
PU CO F1 PU CO F1

auto/auto 68.3 72.1 70.1 70.1 70.4 70.2
gold/auto 74.9 78.5 76.6 76.4 77.2 76.8
auto/gold 77.0 71.5 74.1 79.6 72.6 75.9
gold/gold 81.6 78.1 79.8 83.7 78.2 80.9

increases F1 by 2.3 points over the baseline and by 7.2 points in terms of purity. This
increase in purity is achieved by trading off against collocation, although in a favorable
ratio as indicated by the overall higher F1. All improvements over the baseline are
statistically significant (q < 0.001 according to the test described in Section 5.4). In
general, we observe that cosine similarity outperforms avgmax similarity. We conjecture
that cosine is a more appropriate measure of cluster similarity for features where it
is beneficial to capture the distributional similarity of clusters. The two algorithms
perform comparably—differences in F1 are not statistically significant (except in the
gold/auto setting). Nevertheless, agglomerative partitioning obtains higher purity and
F1 than label propagation. The latter trades off more purity and in return obtains
higher collocation. The single-layer method is inferior to the multi-layer algorithms,
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in particular because it is less robust to noise, as demonstrated by the markedly worse
results on automatic parses. On the auto/auto data set the single-layered algorithm is on
a par with the baseline and marginally outperforms it on the auto/gold and gold/gold
configurations.

To help put our results in context, we compare our methods with Titov
and Klementiev’s (2012a) Bayesian clustering models. They report results on the
CoNLL 2008 data sets with two model variants, a factored model that models each verb
independently and a coupled model where model parameters are shared across verbs.
In an attempt to reduce the sparsity of the argument fillers, they also present variants
of the factored and coupled models where the argument heads have been replaced by
lexical cluster ids stemming from Brown et al.’s (1992) clustering algorithm on the RCV1
corpus. In Table 6 we follow Titov and Klementiev (2012a) and show results on the
gold/gold and gold/auto settings. As can be seen, both the agglomerative clustering
and label propagation perform comparably to their coupled model, even though they
do not implement any specific mechanism for sharing clustering preferences across
verbs. Versions of their models that use Brown word clusters (i.e., Factored+Br and
Coupled+Br) yield overall best results. We expect this type of preprocessing to also
increase the performance of our models, however we leave this to future work. Finally,
we should point out that Titov and Klementiev (2012a) do not cluster adjunct-like
modifier arguments that are already explicitly represented in syntax (e.g., TMP, LOC,
DIR). Thus, their Coupled+Mods model is most comparable to ours in terms of the
clustering objective as it treats both core and adjunct arguments and does not make
use of the Brown clustering. Table 6 shows the performance of Coupled+Mods on the
gold/gold setting only because auto/gold results are not reported.

We further examined the output of the baseline and our best performing model
in order to better understand where the performance gains are coming from. Table 7
shows how the two approaches differ when it comes to individual roles. We observe
that the agglomerative clustering algorithm performs better than the baseline on all
core roles. There are some adjunct roles for which the baseline obtains a higher F1.
This is not surprising because the parser directly outputs certain labels such as LOC
and TMP which results in high baseline scores for these roles. A word of caution is
necessary here since core roles are defined individually for each verb and need not have
a uniform corpus-wide interpretation. Thus, conflating per-role scores across verbs is
only meaningful to the extent that these labels actually signify the same role (which is
mostly true for A0 and A1). Furthermore, the purity scores we provide in this context
are averages over the clusters for which the specified role is the majority role.

Table 6
Semantic role induction with graph partitioning and Bayesian clustering.

Model gold/gold auto/gold
PU CO F1 PU CO F1

Baseline 81.6 78.1 79.8 77.0 71.5 74.1
Agglomerative 87.9 75.6 81.3 85.6 71.9 78.1
Multi-Layer LP 86.3 76.1 80.9 83.6 73.1 78.0
Factored 88.1 77.1 82.2 85.1 71.8 77.9
Coupled 89.3 76.6 82.5 86.7 71.2 78.2
Coupled+Mods 89.2 74.0 80.9 — — —
Factored+Br 86.8 78.8 82.6 83.8 74.1 78.6
Coupled+Br 88.7 78.1 83.0 86.2 72.7 78.8
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Table 7
Results for individual roles on the auto/auto data set; comparison between the baseline and the
agglomerative clustering algorithm with the cosine similarity function. Boldface highlights the
best performing system according to purity, collocation, and F1.

Role Freq Baseline Agglomerative
PU CO F1 PU CO F1

A0 49,956 68.2 89.6 77.5 71.1 90.0 79.4
A1 72,032 77.5 75.2 76.3 80.7 76.9 78.7
A2 16,795 65.7 71.4 68.4 79.1 68.3 73.3
A3 2,860 45.4 81.8 58.4 71.7 80.1 75.7
A4 2,471 61.6 86.1 71.8 81.6 85.1 83.3
A5 44 46.4 59.1 52.0 92.5 84.1 88.1
AA 9 46.7 100.0 63.6 50.0 100.0 66.7
ADV 5,824 33.8 86.3 48.6 67.7 41.9 51.8
CAU 878 67.5 79.3 72.9 81.5 73.9 77.5
DIR 811 51.5 71.6 59.9 66.9 58.9 62.7
DIS 3,022 36.1 90.4 51.6 57.5 75.7 65.3
EXT 536 46.9 91.0 61.9 70.2 92.2 79.7
LOC 4,481 65.1 76.5 70.4 74.2 58.4 65.3
MNR 5,066 62.0 64.6 63.3 84.3 48.3 61.5
MOD 8,064 80.2 44.1 56.9 90.3 89.3 89.8
NEG 2,952 38.7 98.6 55.6 53.5 98.7 69.4
PNC 1,682 67.9 71.8 69.8 77.8 70.6 74.1
PRD 56 39.1 92.9 55.1 80.4 85.7 83.0
REC 9 25.0 100.0 40.0 75.0 100.0 85.7
TMP 12,928 71.1 78.7 74.7 73.1 43.1 54.2
NONE 49,663 57.1 47.3 51.8 71.6 44.8 55.1

We further investigated the degree to which the baseline and the agglomera-
tive clustering algorithm agree in their role assignments. The overall mean overlap
was 46.03%. Figure 3a shows the percentage of verbs for which the baseline and our
algorithm have no, some, or complete overlap. We discretized overlap into 10 bins of
equal size ranging from 0 to 100. We observe that the role assignments produced by
the two methods have nothing in common for approximately 13.6% verbs, whereas
assignments are identical for 18.1% verbs. Aside from these two bins (see 0 and 100
in Figure 3), a large number of verbs seems to exhibit overlap in the range of 40–60%.
Figure 3b shows how the overlap in the cluster assignments varies with verb frequency.
Perhaps unsurprisingly, we can see that overlap is higher for least frequent and there-
fore less ambiguous verbs. In general, although the two methods have some degree
of overlap, agglomerative clustering does indeed manage to change and improve the
original role assignments of the baseline.

An interesting question concerns precisely the type of changes affected by the
agglomerative clustering algorithm over the assignments of the baseline. To be able
to characterize these changes we first examined the consistency of the role assignments
created by the two algorithms. Specifically, we would expect a verb-argument pair to be
mostly assigned to the same cluster (i.e., an argument to bear the same role label for the
same verb). Of course this is not a hard constraint as arguments and predicates can be
ambiguous and their roles may vary in specific syntactic configurations and contexts.
To give an idea of an upper bound, in our gold standard, an argument instance of the
same verb bears on average 2.23 distinct roles. For comparison, the baseline creates
(on average) 2.9 role clusters for an argument, whereas agglomerative clustering yields
more consistent assignments, with an average of 2.34 role clusters per argument.
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Figure 3
Role assignment overlap between the baseline and agglomerative clustering on the auto/
auto data set. Figure 3a shows the percentage of verbs with no overlap (0%), 10% overlap,
20% overlap, 30% overlap, and so on. Figure 3b shows how role overlap varies with verb
frequency. Results are reported on the auto/auto data set.

We further grouped the verbs in our data set into different bins according to their
polysemy and allowable argument realizations. Specifically, we followed Levin’s (1993)
taxonomy and grouped verbs according to the number of semantic classes they inhabit
(e.g., one, two, and so on). We also binned verbs according to the number of alternations
they exhibit. To give an example, the verb donate is a member of the CONTRIBUTE class
and participates in the causative/inchoative and dative alternations, whereas the verb
shower is a member of four classes (i.e., SPRAY/LOAD, PELT, DRESS, and WEATHER) and
participates in the understood reflexive object and spray/load alternations. Figures 4a,b
show the overlap in role assignments between the baseline and agglomerative clus-
tering and how it varies according to verb class ambiguity and argument structure;
figures 4c,d illustrate the same for role assignments and their consistency. As can be
seen, there is less overlap between the two methods when the verbs in question are
more polysemous (Figures 4a) or exhibit more variation in their argument structure
(Figure 4b). As far as consistency in role assignments is concerned, agglomerative
clustering appears overall more consistent than the baseline. As expected, the mean
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role assignment is slightly higher for polysemous verbs because differences in meaning
manifest themselves in different argument realizations.

Figure 5 shows how purity, collocation, and F1 vary across alternations and verb
classes. Perhaps unsurprisingly, performance is generally better for least ambiguous
verbs exhibiting a small number of alternations. In general, agglomerative clustering
achieves higher purity across the board whereas the baseline achieves higher collo-
cation. Although agglomerative clustering achieves a consistently higher F1 over the
baseline, the performance of the two algorithms converges for the most polysemous
verbs (i.e., those inhabiting more than six semantic classes; see Figure 5f). Interestingly,
also note that F1 is comparable for verbs with less varied argument structure (i.e., verbs
inhabiting one alternation; see Figure 5c). For such verbs the performance gap between
the baseline and the agglomerative algorithm is narrower both in terms of purity and
collocation. Overall, we observe that agglomerative clustering is able to change some of
the role assignments of the baseline for verbs exhibiting a good degree of alternations
and polysemy.

Table 8 reports results for 12 individual verbs for the best performing method
(i.e., agglomerative partitioning using cosine similarity) on the auto/auto data set.
These verbs were selected so as to exhibit varied occurrence frequencies and alternation
patterns. As can be seen, the macroscopic result—higher F1 due to significantly higher
purity—seems to consistently hold also across verbs. An important exception is the verb

Figure 4
Comparison between the baseline and the agglomerative clustering algorithm in terms of
role assignment overlap (a and b) and consistency (c and d). Verbs are grouped according to
polysemy (a and c) and number of alternations (b and d). All results are reported on the
auto/auto data set.
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Figure 5
Comparison between the baseline and the agglomerative clustering algorithm across
alternations (a–c) and verb classes (d–f) using purity, collocation, and F1. All results are reported
on the auto/auto data set.

say, for which the baseline attains high scores due to little variation in its syntactic
realization within the corpus. Example output is given in Table 9, which shows the
five largest clusters produced by the baseline and agglomerative partitioning for the
verb increase. For each cluster we list the 10 most frequent argument head lemmas.
In this case, our method managed to induce an A0 cluster that is not present in the
top five clusters of the baseline, although the cluster also incorrectly contains some A1
arguments that stem from a false merge.

6. Role Induction Experiments on German

The applicability of our method to arbitrary languages is important from a theoretical
and practical perspective. On the one hand, linguistic theory calls for models which are
universal and generalize across languages. This is especially true for models operating
on the (frame-) semantic level, which is a generalization over surface structure and
should therefore be less language specific (Boas 2005). On the other hand, a language-
independent model can be applied to arbitrary languages, genres, and domains and
is thus of greater practical benefit. Because our approach is based on the language-
independent principles discussed in Section 1, we argue that it can easily generalize
to other languages. To test this claim, we further applied our methods to German data.
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Table 8
Results for individual verbs on the auto/auto data set; comparison between the baseline and our
agglomerative clustering algorithm with the cosine similarity function. Boldface highlights the
best performing system according to purity, collocation, and F1.

Verb Freq Baseline Agglomerative
PU CO F1 PU CO F1

say 16,698 86.7 90.8 88.7 85.8 90.4 88.0
make 4,589 63.3 71.0 67.0 66.4 71.0 68.6
go 2,331 47.3 56.0 51.3 55.7 55.3 55.5
increase 1,425 58.0 69.0 63.0 59.2 71.5 64.8
know 1,083 58.3 70.8 63.9 58.6 62.0 60.2
tell 969 59.0 76.8 66.7 71.4 68.0 69.7
consider 799 60.7 65.3 62.9 71.0 60.2 65.1
acquire 761 70.7 78.4 74.4 72.0 77.8 74.8
meet 616 70.0 72.2 71.1 78.9 68.3 73.2
send 515 68.3 67.4 67.9 75.9 64.9 70.0
open 528 55.3 67.8 60.9 61.9 55.1 58.3
break 274 51.1 59.1 54.8 62.8 55.8 59.1

Table 9
Five largest clusters created by the baseline and agglomerative partitioning for the verb increase.
Symbols $ and CD are used as placeholders for monetary units and cardinal numbers,
respectively.

Role Baseline

A0 it, sales, revenue, company, profit, rates, they, earnings, we, number
A1 number, reserves, stake, sales, costs, will, board, demand, rates, capacity
A4 $, %, CD, yen, cent, #, member, earlier, kronor, years
ADV $, not, CD, also, be, increase, greatly, month, %, thus
A2 %, $, CD, average, significantly, penny, yen, days, slightly, share

Role Agglomerative

A1 %, number, costs, sales, reserves, demand, stake, competition, pressure, size
A0 it, sales, revenue, company, profit, rates, earnings, we, they, line
A4 $, %, CD, yen, cent, member, result, #, kronor, barrels
A3 $, CD, %, yen, cent, earlier, period, #, member, quarter
TMP year, quarter, month, years, period, september, CD, week, example, instance

Although on a high-level, German clauses do not differ drastically from English
ones with respect to their frame-semantic make-up, there are differences in terms of
how frame elements are mapped onto specific positions on the linear surface structure
of a sentence, beyond any variations observed among English verbs. In general, German
places fewer constraints on word order (more precisely phrase order) and instead relies
on richer morphology to help disambiguate the grammatical functions of linguistic
units. In particular, verbal nominal arguments are marked with a grammatical case6

that directly indicates their grammatical function. Although in main declarative clauses
the inflected part of the verb has to occur in second position, German is commonly

6 German has (partially ambiguous) markers for Nominative, Accusative, Dative, and Genitive.
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considered a verb-final language. This is because the verb often takes the final position
in subordinate clauses, as do infinitive verbs (Brigitta 1996).

6.1 Data

We conducted our experiments on the SALSA corpus (Burchardt et al. 2006), a lexical
resource for German, which, like FrameNet for English, associates predicates with
frames. SALSA is built as an extra annotation layer over the TIGER corpus (Brants
et al. 2002), a treebank for German consisting of approximately 40,000 sentences (700,000
tokens) of newspaper text taken from the Frankfurter Rundschau, although to date not all
predicate-argument structures have been annotated. The frame and role inventory of
SALSA was taken from FrameNet, but has been extended and adapted where necessary
due to lack of coverage and cross-lingual divergences.

The syntactic structure of a sentence is represented through a constituent tree whose
terminal nodes are tokens and non-terminal nodes are phrases (see Figure 6). In addition
to labeling each node with a constituent type such as Sentence, Noun Phrase, and Verb
Phrase, the edges between a parent and a child node are labeled according to the function
of the child within the parent constituent, for example, Accusative Object, Noun Kernel,
or Head. Edges can cross, allowing local and non-local dependencies to be encoded in a
uniform way and eliminating the need for traces. This approach has significant advan-
tages for non-configurational languages such as German, which exhibit a rich inventory
of discontinuous constituents and considerable freedom with respect to word order
(Smith 2003). Compared with the Penn TreeBank (Marcus, Santorini, and Marcinkiewicz
1993), tree structures are relatively flat. For example, the tree does not encode whether
a constituent is a verbal argument or adjunct; this information is encoded through the
edge labels instead.

The frame annotations contained in SALSA do not cover all of the predicate-
argument structures of the underlying TIGER corpus. Only a subset of around
550 predicates with approximately 18,000 occurrences in the corpus have been an-
notated. Moreover, only core roles are annotated, whereas adjunct roles are not, re-
sulting in a smaller number of arguments per predicate (1.96 on average) compared
with the CoNLL 2008 data set (2.57 on average) described in section 5.1. Because our

Figure 6
A sample parse tree for the sentence Präsident Jelzin verliert die Mach ans Küchenkabinett und
wird die Wahlen kaum gewinnen können [translated in English as President Jelzin loses power to the
kitchen cabinet and will hardly be able to win the elections]. The parse tree contains phrase labels NP
(Noun Phrase), PP (Prepositional Phrase), VP (Verb Phrase), S (Sentence), and CS (Coordinated
Sentence). The dependency labels are NK (Noun Kernel), SB (Subject), AO (Object Accusative),
HD (Head), MO (Modifier), AC (Adpositional Case Marker), CJ (Conjunct), and OC (Clausal
Object).

661

http://www.mitpressjournals.org/action/showImage?doi=10.1162/COLI_a_00195&iName=master.img-312.jpg&w=344&h=107


Computational Linguistics Volume 40, Number 3

method is designed to induce verb-specific frames, we converted the SALSA frames
into PropBank-like frames by splitting each frame into several verb-specific frames and
accordingly mapping frame roles onto verb-specific roles. Our data set is comparable
to the German data set released as part of the CoNLL 2009 shared task (Hajič et al.
2009), which was also derived from the SALSA corpus. However, we did not convert
the original constituent-based SALSA representation into dependencies, as we wanted
to assess whether our methods are also compatible with phrase structure trees.

6.2 Experimental Set-up

Although we follow the same experimental set-up as described in Section 5 for En-
glish, there are some deviations due to differences in the data sets utilized for the two
languages. Firstly, in contrast to the CoNLL 2008 data set, the SALSA data set (and
the underlying TIGER corpus) does not supply automatic parse trees and we therefore
conducted our experiments on gold parses only. Moreover, because adjunct arguments
are not annotated in SALSA, and because argument identification is not the central issue
of this work, we chose to also consider only the gold argument identification. Thus,
all our experiments for German were carried out on the gold/gold data set.

A substantial linguistic difference between the German and English data sets is the
sparsity of the argument head lemmas, which is significantly higher for German than
for English: In the CoNLL 2008 data set, the average number of distinct head lemmas
per verb is only 3.69, whereas in the SALSA data set it is 20.12. This is partly due to
the fact that the Wall Street Journal text underlying the English data is topically more
focused than the Rundschau newspaper text, which covers a broader range of news
beyond economics and politics. Moreover, noun compounding is more commonly used
in German than in English (Corston-Oliver and Gamon 2004), which leads to higher
lexical sparsity.

Data sparsity affects our method, which crucially relies on lexical similarity for
determining the role-equivalence of clusters. Therefore, we reduced the number of
syntactic cues used for cluster initialization in order to avoid creating too many small
clusters for which similarities cannot be reliably computed. Specifically, only the syn-
tactic position and function word served as cues to initialize our clusters. Note that, as
in English, the relatively small number of syntactic cues that determine the syntactic
position within a linking is a consequence of the size of our evaluation data set (which
is rather small) and not an inherent limitation of our method. On larger data sets, more
syntactic cues could and should be incorporated in order to increase performance.

In our experiments we compared the baseline introduced in Section 5.3 against
agglomerative partitioning and the label propagation algorithm using both cosine- and
avgmax-similarity. The parameters α, β, and γ, which determine the thresholds used
in defining overall similarity scores, were set and updated identically as for English
(i.e., these parameters can be considered language-independent).

6.3 Results

Table 10 reports results for the baseline and our role induction methods, namely, ag-
glomerative clustering and multi-layered label propagation (using the avgmax and
cosine similarity functions) on the SALSA gold/gold data set. For comparison, we
also include results on the English CoNLL-2008 gold/gold data set. As can be seen,
the baseline obtains a similar F1 for German and English, although the contributions
of purity and collocation are different for the two languages. In English, purity is
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Table 10
Results of agglomerative partitioning and label propagation for cosine and avgmax similarity
on German. For comparison purposes results for English on the gold/gold data set are also
tabulated. All improvements over the baseline are statistically significant at significance level
q < 0.001.

Model German English
PU CO F1 PU CO F1

Baseline 75.0 81.7 78.2 81.6 78.1 79.8
Agglomerative (avgmax) 77.6 80.8 79.2 87.3 75.3 80.9
Agglomerative (cosine) 77.6 80.8 79.2 87.9 75.6 81.3
Label Propagation (avgmax) 77.4 80.9 79.1 85.6 75.8 80.4
Label Propagation (cosine) 77.5 81.0 79.2 86.3 76.0 80.9

noticeably higher than in German, whereas collocation is higher in German. This is not
surprising when taking into account the distribution of syntactic relations governing an
argument. A few frequent relation labels absorb most of the probability mass in German
(see Figure 7b), whereas the mass is distributed more evenly among the labels in English
(Figure 7a), thus leading to higher purity but lower collocation.

Figure 7
Distribution of syntactic relations governing an argument in English and German data sets.
Only the most frequent relations are shown (a key for the English relations is given in Table 2;
in German the relations are SB (Subject), OA (Object Accusative), CJ (Conjunct), DA (Dative),
CD (Coordinator), MO (Modifier), RE (Subordinate Clause), RS (Reported Speech), OC
(Object Clausal), OP (Object Prepositional), NK (Noun Kernel), and CVC (Collocational
Verb Construction).
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Table 11
Results for individual verbs on the gold/gold SALSA data set; comparison between the baseline
and the agglomerative clustering algorithm with the cosine similarity function.

Verb Freq Baseline Agglomerative (cosine)
PU CO F1 PU CO F1

sagen [say] 2,076 96.3 89.0 92.5 97.3 97.7 97.5
wissen [know] 487 79.7 76.0 77.8 80.1 80.3 80.2
berichten [report] 438 79.5 78.3 78.9 80.0 81.3 80.7
nehmen [take] 420 49.8 70.2 58.3 51.9 72.4 60.5
verurteilen [convict] 265 70.9 83.4 76.7 70.6 81.9 75.8
erhöhen [increase] 120 58.3 70.8 64.0 70.8 73.3 72.1
schließsen [close] 93 40.9 72.0 52.1 53.8 78.5 63.8
brechen [break] 45 40.0 91.1 55.6 44.4 91.1 59.7
schauen [watch] 35 82.9 91.4 86.9 85.7 71.4 77.9
plazieren [place] 18 55.6 83.3 66.7 66.7 61.1 63.8
treffen [meet] 14 100.0 100.0 100.0 100.0 100.0 100.0
regnen [rain] 12 66.7 83.3 74.1 83.3 50.0 62.5

In German, our role induction algorithms improve over the baseline in terms of
F1. All four methods perform comparably and manage to strike a tradeoff between
collocation and purity that is non-trivial and represents semantic roles adequately.
Compared with English, the difference between the baseline and our algorithms is
narrower. This is because we use fewer syntactic cues for initialization in German, due
to the increased data sparsity discussed in the previous section. This also explains why
there is little variation in the collocation and purity results across methods. However,
qualitatively the tradeoff between purity and collocation is the same as for English (i.e.,
purity is increased at the cost of collocation).

Tables 11 and 12 show per-verb and per-role results, respectively, for agglomerative
clustering using cosine similarity. We report per-verb scores for a selection of 10 verbs

Table 12
Results for individual roles on gold/gold SALSA data set; comparison between the baseline and
the agglomerative clustering algorithm with the cosine similarity function.

Role Freq Baseline Agglomerative (cosine)
PU CO F1 PU CO F1

Agent 1,908 70.4 92.8 80.1 70.5 93.9 80.5
Theme 1,637 69.1 79.2 73.8 69.2 79.7 74.1
Cognizer 1,244 75.7 94.3 84.0 76.2 94.6 84.4
Entity 1,195 79.7 85.9 82.7 78.6 86.7 82.4
Content 1,136 87.2 65.2 74.6 88.7 66.8 76.2
Goal 1,071 62.0 81.0 70.2 87.0 67.2 75.9
Topic 477 85.2 69.4 76.5 86.8 58.9 70.2
Source 267 71.6 94.0 81.3 66.1 76.0 70.7
Goods 171 73.0 68.4 70.6 74.8 66.7 70.5
Buyer 121 65.0 90.1 75.5 70.4 88.4 78.4
Employee 63 50.4 98.4 66.7 50.4 98.4 66.7
Required Situation 56 60.3 78.6 68.3 52.1 82.1 63.8
Opinion 50 66.7 50.0 57.1 69.0 62.0 65.3
Leader 29 86.7 69.0 76.8 86.7 65.5 74.6
Financed 25 79.3 64.0 70.8 80.0 64.0 71.1
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(see Table 12a), which in some cases are translations of the verbs used for English. With
respect to per-role scores, we make use of the fact that roles have a common meaning
across predicates (like A0 and A1 in PropBank), and report scores for a selection of
15 different roles (Table 12b) with varied occurrence frequencies. Per-verb results con-
firm that data sparsity affects performance in German. As can be seen, agglomerative
clustering outperforms the baseline on high-frequency verbs that are less affected by
sparsity, although this is not always the case on lower-frequency verbs. Analogously,
the method tends to perform better on high-frequency roles, whereas there is no clear
trend on lower-frequency roles. In contrast to English, for more than half of the verbs
the method manages to outperform the baseline in terms of both purity and collocation,
which is consistent with our macroscopic result, where the tradeoff between purity and
collocation is not as strong as for English.

The experiments show that our methods can be successfully applied to languages
other than English, thereby supporting the claim that they are based on a set of
language-independent assumptions and principles. Despite substantial differences be-
tween German and English grammar, both generally and in terms of the specific syn-
tactic representation that was used, our methods increased F1 over the baseline for both
languages and resulted in a similar tradeoff between purity and collocation. Improve-
ments were observed in spite of pronounced data sparsity in the case of German. Recall
that we had to reduce the number of syntactic initialization cues in order to be able
to obtain results on the relatively small amount of gold-standard data. We would also
like to note that porting our system to German did not require any additional feature
engineering or algorithmic changes.

7. Conclusions

In this article we described an unsupervised method for semantic role induction in
which argument-instance graphs are partitioned into clusters representing semantic
roles. A major hypothesis underlying our work has been that semantic roles can be
induced without human supervision from a corpus of syntactically parsed sentences
based on three linguistic principles : (1) arguments in the same syntactic position (within
a specific linking) bear the same semantic role, (2) arguments within a clause bear a
unique role, and (3) clusters representing the same semantic role should be more or less
lexically and distributionally equivalent. Based on these principles we have formulated
a similarity-driven model and introduced a multi-layer graph partitioning approach that
represents similarity between clusters on multiple feature layers, whose connectiv-
ity can be analyzed separately and then combined into an overall cluster-similarity
score.

Our work has challenged the established view that supervised learning is the
method of choice for the semantic role labeling task. Although the proposed unsuper-
vised models do yet achieve results comparable to their supervised counterparts, we
have been able to show that they consistently outperform the syntactic baseline across
several data sets that combine automatic and gold parses, with gold and automatic
argument identification in English and German. Our methods obtain F1 scores that are
systematically above the baseline and the purity of the induced clusters is considerably
higher, although in most cases this increase in purity is achieved by decreasing colloca-
tion. In sum, these results provide strong empirical evidence towards the soundness of
our method and the principles they are based on.

In terms of modeling, we have contributed to the body of work on similarity-
driven models by demonstrating their suitability for this problem, their effectiveness,
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and their computational efficiency. The models are based on judgments regarding
the similarity of argument instances with respect to their semantic roles. We showed
that these judgments are comparatively simple to formulate and incorporate into a
graph representation of the data. We have introduced the idea of separating different
similarity features into different graph layers, which resolves the problem faced by
many similarity-based approaches of having to heuristically define an instance-wise
similarity function and brings the advantage that cluster similarities can be computed
in a more principled way. Beyond semantic role labeling, we hope that the multi-layered
graph representation described here might be of relevance to other unsupervised prob-
lems such part-of-speech tagging or coreference resolution. The approach is general
and amenable to other graph partitioning algorithms besides agglomeration and label
propagation.

There are two forms of data sparsity that arise in the context of our work, namely,
the lexical sparsity of argument head lemmas and the sparsity of specific combinations
of linking and syntactic position. As our methods are unsupervised, the conceptually
simple solution to sparsity is to train on larger data sets. Because, with some modifica-
tions, our graph partitioning approaches could be scaled to larger data sets (in terms of
orders of magnitude), this is an obvious next step and would address both instances of
data sparsity. Firstly, it would allow us to incorporate a richer set of syntactic features
for initialization and would therefore necessarily result in initial clusterings of higher
purity. Secondly, the larger size of clusters would result in more reliable similarity
scores. Augmenting the data set would therefore almost surely increase the quality of
induced clusterings; however, we leave this to future work.

Another interesting future direction would be to eliminate the model’s reliance on a
syntactic parser that prohibits its application to languages for which parsing resources
are not available. It would therefore be worthwhile, albeit challenging, to build models
that operate on more readily available forms of syntactic analysis or even raw text. For
example, existing work (Abend and Rappoport 2010b; Abend, Reichart, and Rappoport
2009) attempts to identify arguments and distinguish them into core and adjunct ones
through unsupervised part of speech and grammar induction. As much as making our
model more unsupervised it would also be interesting to see whether some form of
weak supervision might help induce higher-quality semantic roles without incurring a
major labeling effort. The ideas conveyed in this article and the proposed methods
extend naturally to this setting: Introducing labels on some of the graph vertices would
translate into a semi-supervised graph-based learning task, akin to Zhu, Ghahramani,
and Lafferty (2003).

Appendix A. Argument Identification Rules

This appendix specifies the full set of relations used by Rules (2) and (4) of the argument
identification rules given for English in Section 5.2, Table 1. The symbols ↑ and ↓ denote
the direction of the dependency relation (upward and downward, respectively). The
dependency relations are explained in Surdeanu et al. (2008), in their Table 4.

The relations in Rule (2) from Table 1 are IM↑↓, PRT↓, COORD↑↓, P↑↓, OBJ↑, PMOD↑,
ADV↑, SUB↑↓, ROOT↑, TMP↑, SBJ↑, OPRD↑.

The relations in Rule (4) are ADV↑↓, AMOD↑↓, APPO↑↓, BNF↑↓-, CONJ↑↓, COORD↑↓,
DIR↑↓, DTV↑↓-, EXT↑↓, EXTR↑↓, HMOD↑↓, IOBJ↑↓, LGS↑↓, LOC↑↓, MNR↑↓, NMOD↑↓,
OBJ↑↓, OPRD↑↓, POSTHON↑↓, PRD↑↓, PRN↑↓, PRP↑↓, PRT↑↓, PUT↑↓, SBJ↑↓, SUB↑↓,
SUFFIX↑↓ TMP↑↓, VOC↑↓ .
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pages 121–141. Walter de Gruyter.

Brown, P. F., V. J. Della Pietra, P. V. deSouza,
J. C. Lai, and R. L. Mercer. 1992. Class-
based n-gram models of natural language.
Computational Linguistics, 18(4):283–298.

Burchardt, A., K. Erk, A. Frank, A. Kowalski,
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Màrquez, L., X. Carras, K. Litkowski,
and S. Stevenson. 2008. Semantic role
labeling: An introduction to the special

issue. Computational Linguistics,
34(2):145–159.

Melli, G., Y. Wang, Y. Liu, M. M. Kashani,
Z. Shi, B. Gu, A. Sarkar, and F. Popowich.
2005. Description of SQUASH, the SFU
question answering summary handler
for the DUC-2005 summarization task.
In Proceedings of the Human Language
Technology Conference and the Conference
on Empirical Methods in Natural Language
Processing Document Understanding
Workshop, Vancouver.

Merlo, P. and S. Stevenson. 2001. Automatic
verb classification based on statistical
distributions of argument structure.
Computational Linguistics, 27:373–408.

Munkres, J. 1957. Algorithms for the
assignment and transportation problems.
Journal of the Society for Industrial and
Applied Mathematics, 5(1):32–38.

Nivre, J., J. Hall, J. Nilsson, G. Eryigit,
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