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Current investigations in data-driven models of parsing have shifted from purely syntactic anal-
ysis to richer semantic representations, showing that the successful recovery of the meaning of
text requires structured analyses of both its grammar and its semantics. In this article, we report
on a joint generative history-based model to predict the most likely derivation of a dependency
parser for both syntactic and semantic dependencies, in multiple languages. Because these two
dependency structures are not isomorphic, we propose a weak synchronization at the level of
meaningful subsequences of the two derivations. These synchronized subsequences encompass
decisions about the left side of each individual word. We also propose novel derivations for
semantic dependency structures, which are appropriate for the relatively unconstrained nature
of these graphs. To train a joint model of these synchronized derivations, we make use of a
latent variable model of parsing, the Incremental Sigmoid Belief Network (ISBN) architecture.
This architecture induces latent feature representations of the derivations, which are used to
discover correlations both within and between the two derivations, providing the first application
of ISBNs to a multi-task learning problem. This joint model achieves competitive performance
on both syntactic and semantic dependency parsing for several languages. Because of the general
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nature of the approach, this extension of the ISBN architecture to weakly synchronized syntactic-
semantic derivations is also an exemplification of its applicability to other problems where two
independent, but related, representations are being learned.

1. Introduction

Success in statistical syntactic parsing based on supervised techniques trained on a
large corpus of syntactic trees—both constituency-based (Collins 1999; Charniak 2000;
Henderson 2003) and dependency-based (McDonald 2006; Nivre 2006; Bohnet and
Nivre 2012; Hatori et al. 2012)—has paved the way to applying statistical approaches
to the more ambitious goals of recovering semantic representations, such as the logical
form of a sentence (Ge and Mooney 2005; Wong and Mooney 2007; Zettlemoyer and
Collins 2007; Ge and Mooney 2009; Kwiatkowski et al. 2011) or learning the proposi-
tional argument-structure of its main predicates (Miller et al. 2000; Gildea and Jurafsky
2002; Carreras and Màrquez 2005; Màrquez et al. 2008; Li, Zhou, and Ng 2010). Moving
towards a semantic level of representation of language and text has many potential
applications in question answering and information extraction (Surdeanu et al. 2003;
Moschitti et al. 2007), and has recently been argued to be useful in machine translation
and its evaluation (Wu and Fung 2009; Liu and Gildea 2010; Lo and Wu 2011; Wu et al.
2011), dialogue systems (Basili et al. 2009; Van der Plas, Henderson, and Merlo 2009),
automatic data generation (Gao and Vogel 2011; Van der Plas, Merlo, and Henderson
2011) and authorship attribution (Hedegaard and Simonsen 2011), among others.

The recovery of the full meaning of text requires structured analyses of both its
grammar and its semantics. These two forms of linguistic knowledge are usually
thought to be at least partly independent, as demonstrated by speakers’ ability to
understand the meaning of ungrammatical text or speech and to assign grammatical
categories and structures to unknown words and nonsense sentences.

These two levels of representation of language, however, are closely correlated.
From a linguistic point of view, the assumption that syntactic distributions will be
predictive of semantic role assignments is based on linking theory (Levin 1986). Linking
theory assumes the existence of a ranking of semantic roles that are mapped by default
on a ranking of grammatical functions and syntactic positions, and it attempts to predict
the mapping of the underlying semantic component of a predicate’s meaning onto the
syntactic structure. For example, Agents are always mapped in syntactically higher
positions than Themes. Linking theory has been confirmed statistically (Merlo and
Stevenson 2001).

It is currently common to represent the syntactic and semantic role structures of a
sentence in terms of dependencies, as illustrated in Figure 1. The complete graph of both
the syntax and the semantics of the sentences is composed of two half graphs, which

Figure 1
A semantic dependency graph labeled with semantic roles (lower half) paired with a syntactic
dependency tree labeled with grammatical relations.
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share all their vertices—namely, the words. Internally, these two half graphs exhibit
different properties. The syntactic graph is a single connected tree. The semantic graph
is just a set of one-level treelets, one for each proposition, which may be disconnected
and may share children. In both graphs, it is not generally appropriate to assume inde-
pendence across the different treelets in the structure. In the semantic graph, linguistic
evidence that propositions are not independent of each other comes from constructions
such as coordinations where some of the arguments are shared and semantically paral-
lel. The semantic graph is also generally assumed not to be independent of the syntactic
graph, as discussed earlier. As can be observed in Figure 1, however, arcs in the semantic
graph do not correspond one-to-one to arcs in the syntactic graph, indicating that a
rather flexible framework is needed to capture the correlations between graphs.

Developing models to learn these structured analyses of syntactic and shallow
semantic representations raises, then, several interesting questions. We concentrate on
the following two central questions.

� How do we design the interface between the syntactic and the semantic
parsing representations?

� Are there any benefits to joint learning of syntax and semantics?

The answer to the second issue depends in part on the solution to the first issue, as in-
dicated by the difficulty of achieving any benefit of joint learning with more traditional
approaches (Surdeanu et al. 2008; Hajič et al. 2009; Li, Zhou, and Ng 2010). We begin
by explaining how we address the first issue, using a semi-synchronized latent-variable
approach. We then discuss how this approach benefits from the joint learning of syntax
and semantics.

1.1 The Syntactic-Semantic Interface

The issue of the design of the interface between the syntactic and the semantic represen-
tations is central for any system that taps into the meaning of text. Standard approaches
to automatic semantic role labeling use hand-crafted features of syntactic and semantic
representations within linear models trained with supervised learning. For example,
Gildea and Jurafsky (2002) formulate the shallow semantic task of semantic role label-
ing (SRL) as a classification problem, where the semantic role to be assigned to each
constituent is inferred on the basis of its co-occurrence counts with syntactic features
extracted from parse trees. More recent and accurate SRL methods (Johansson and
Nugues 2008a; Punyakanok, Roth, and Yih 2008) use complex sets of lexico-syntactic
features and declarative constraints to infer the semantic structure. Whereas supervised
learning is more flexible, general, and adaptable than hand-crafted systems, linear
models require complex features and the number of these features grows with the com-
plexity of the task. To keep the number of features tractable, model designers impose
hard constraints on the possible interactions within the semantic or syntactic structures,
such as conditioning on grandparents but not great-great-grandparents. Likewise, hard
constraints must be imposed on the possible interactions between syntax and semantics.

This need for complete specification of the allowable features is inappropriate for
modeling syntactic–semantic structures because these interactions between syntax and
semantics are complex, not currently well understood, and not identical from language
to language. This issue is addressed in our work by developing a loosely coupled
architecture and developing an approach that automatically discovers appropriate
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features, thus better modeling both our lack of knowledge and the linguistic variability.
We use latent variables to model the interaction between syntax and semantics. Latent
variables serve as an interface between semantics and syntax, capturing properties of
both structures relevant to the prediction of semantics given syntax and, conversely,
syntax given semantics. Unlike hand-crafted features, latent variables are induced
automatically from data, thereby avoiding a priori hard independence assumptions.
Instead, the structure of the latent variable model is used to encode soft biases towards
learning the types of features we expect to be useful.

We define a history-based model (Black et al. 1993) for joint parsing of semantic and
syntactic structures. History-based models map structured representations to sequences
of derivation steps, and model the probability of each step conditioned on the entire
sequence of previous steps. There are standard shift-reduce algorithms (Nivre, Hall,
and Nilsson 2004) for mapping a syntactic dependency graph to a derivation sequence,
and similar algorithms can be defined for mapping a semantic dependency graph to a
derivation sequence, as discussed subsequently. But defining a joint syntactic–semantic
derivation presents a challenge. Namely, given the complex nature of correspondences
between the structures, it is not obvious how to synchronize individual semantic–
syntactic steps in the derivation. Previous joint statistical models of dependency syn-
tax and SRL have either ignored semantic arcs not corresponding to single syntactic
arcs (Thompson, Levy, and Manning 2003; Titov and Klementiev 2011) or resorted to
pre-/post-processing strategies that modify semantic or syntactic structures (Lluı́s and
Màrquez 2008; Lang and Lapata 2011; Titov and Klementiev 2012). In a constituency
setting, Li, Zhou, and Ng (2010) explore different levels of coupling of syntax and
semantics, and find that only explicit interleaving or explicit feature selection yield
improvements in performance.

Instead of synchronizing individual steps, we (1) decompose both the syntactic
derivation and the semantic derivation into subsequences, where each subsequence
corresponds to a single word in the sentence, and then (2) synchronize syntactic and
semantic subsequences corresponding to the same word with each other. To decide
which steps correspond to a given word, we use a simple deterministic rule: A step
of a derivation corresponds to the word appearing at the front of the queue prior to
that step. For shift-reduce derivations, this definition breaks derivations into contiguous
subsequences in the same order as the words of the sentence, both for syntax and
for semantics. Each subsequence forms a linguistically meaningful chunk in that it
includes all the decisions about the arcs on the left side of the associated word, both its
parents and its children. Thus, synchronizing the syntactic and semantic subsequences
according to their associated word places together subsequences that are likely to be
correlated. Note that such pairs of syntactic and semantic subsequences will, in general,
have different numbers of steps on each side and these numbers of steps are, in general,
unbounded. Therefore, instead of defining atomic synchronized rules as in synchronous
grammars (Wu 1997; Chiang 2005), we resort to parametrized models that exploit the
internal structure of the paired subsequences.

This derivational, joint approach to handling these complex representations leads
to a new proposal on how to learn them, which avoids extensive and complex feature
engineering, as discussed in the following.

1.2 Joint Learning of Syntax and Semantics

Our probabilistic model is learned using Incremental Sigmoid Belief Networks (ISBNs)
(Henderson and Titov 2010), a recent development of an early latent variable model
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for syntactic structure prediction (Henderson 2003), which has shown very good per-
formance for both constituency (Titov and Henderson 2007a) and dependency parsing
(Titov and Henderson 2007d). Instead of hand-crafting features of the previous parsing
decisions, as is standard in history-based models, ISBNs estimate the probability of the
next parsing actions conditioned on a vector of latent-variable features of the parsing
history. These features are induced automatically to maximize the likelihood of the
syntactic–semantics graphs given in the training set, and therefore they encode impor-
tant correlations between syntactic and semantic decisions. This makes joint learning of
syntax and semantics a crucial component of our approach.

The joint learning of syntactic and semantic latent representations makes our ap-
proach very different from the vast majority of the successful SRL methods. Most of
these approaches not only learn syntactic and semantic representations independently,
but also use pipelines at testing time. Therefore, in these methods semantic information
does not influence syntactic parsing (Punyakanok, Roth, and Yih 2008; Toutanova,
Haghighi, and Manning 2008). Some of the recent successful methods learn their syn-
tactic and semantic parsing components separately, optimizing two different functions,
and then combine syntactic and semantic predictions either by simple juxtaposition or
by checking their coherence in a final step (Chen, Shi, and Hu 2008; Johansson and
Nugues 2008b).

A few other approaches do attempt joint learning of syntax and grammatical func-
tion or semantics (Lluı́s and Màrquez 2008; Hall and Nivre 2008; Morante, Van Asch,
and van den Bosch 2009; Tsarfaty, Sima’an, and Scha 2009; Li, Zhou, and Ng 2010).
Although these approaches recognize that joint learning requires treating the represen-
tations as correlated, they do not exploit the intuition that successful methods need,
implicitly or explicitly, to tackle a number of sub-problems that are common across the
goal problems. For instance, some way of modeling selectional preferences is arguably
necessary both for semantic role labeling and for syntactic parse disambiguation, and
therefore the corresponding component should probably be shared between the syn-
tactic and semantic models.

In machine learning, the issue of joint learning of models for multiple, non-trivially
related tasks is called multi-task learning. Though different multi-task learning meth-
ods have been developed, the underlying idea for most of them is very similar. Multi-
task learning methods attempt to induce a new, less sparse representation of the initial
features, and this representation is shared by the models for all the considered tasks.
Intuitively, for any given set of primary tasks, if one were to expect that similar latent
sub-problems needed to be solved to find a solution for these primary tasks, then one
would expect an improvement from inducing shared representations.

Multi-task learning methods have been shown to be beneficial in many domains,
including natural language processing (Ando and Zhang 2005a, 2005b; Argyriou,
Evgeniou, and Pontil 2006; Collobert and Weston 2008). Their application in the context
of syntactic-semantic parsing has been very limited, however. The only other such
successful multi-task learning approach we are aware of targets a similar, but more
restricted, task of function labeling (Musillo and Merlo 2005). Musillo and Merlo
(2005) conclusively show that jointly learning functional and syntactic information can
significantly improve syntax. Our joint learning approach is an example of a multi-task
learning approach in that the induced representations in the vectors of latent variables
can capture hidden sub-problems relevant to predicting both syntactic and semantic
structures.

The rest of this article will first describe the data that are used in this work and their
relevant properties. We then present our probabilistic model of joint syntactic parsing
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and semantic role labeling. We introduce the latent variable architecture for structured
prediction, before presenting our application of this architecture to modeling the dis-
tributions for the parsing model, and investigate a few variations. We then present the
results on syntactic and semantic parsing of English, which we then extend to several
languages. Finally, we discuss, compare to related work, and conclude.

2. Representations and Formulation of the Problem

The recovery of shallow meaning, and semantic role labels in particular, has a long
history in linguistics (Fillmore 1968). Early attempts at systematically representing
lexical semantics information in a precise way usable by computers, such as Levin’s
classification or WordNet, concentrated on defining semantic properties of words and
classes of words in the lexicon (Miller et al. 1990; Levin 1993). But only recently has
it become feasible to tackle these problems by using machine learning techniques,
because of the development of large annotated databases, such as VerbNet (Kipper et al.
2008) and FrameNet (Baker, Fillmore, and Lowe 1998), and corpora, such as PropBank
(Palmer, Gildea, and Kingsbury 2005). OntoNotes (Pradhan et al. 2007) is a current large-
scale exercise in integrated annotation of several semantic layers.

Several corpus annotation efforts have been released, including FrameNet and
PropBank. FrameNet is a large-scale, computational lexicography project (Baker,
Fillmore, and Lowe 1998), which includes a set of labeled examples that have been
used as a corpus. FrameNet researchers work at a level of representation called the
frame, which is a schematic representation of situations involving various participants,
or representations of objects involving their properties. The participants and properties
in a frame are designated with a set of semantic roles called frame elements. One
example is the MOTION DIRECTIONAL frame, and its associated frame elements include
the THEME (the moving object), the GOAL (the ultimate destination), the SOURCE,
and the PATH. The collection of sentences used to exemplify frames in the English
FrameNet has been sampled to produce informative lexicographic examples, but no
attempt has been made to produce representative distributions. The German SALSA
corpus (Burchardt et al. 2006), however, has been annotated with FrameNet annotation.
This extension to exhaustive corpus coverage and a new language has only required
a few novel frames, demonstrating the cross-linguistic validity of this annotation
scheme. FrameNets for other languages, Spanish and Japanese, are also under
construction.

Another semantically annotated corpus—the one we use in this work for ex-
periments on English—is called Proposition Bank (PropBank) (Palmer, Gildea, and
Kingsbury 2005). PropBank is based on the assumption that the lexicon is not a list
of irregularities, but that systematic correlations can be found between the meaning
components of words and their syntactic realization. It does not incorporate the rich
frame typology of FrameNet, because natural classes of predicates can be defined based
on syntactic alternations, and it defines a limited role set. PropBank encodes proposi-
tional information by adding a layer of argument structure annotation to the syntactic
structures of verbs in the Penn Treebank (Marcus, Santorini, and Marcinkiewicz 1993).
Arguments of verbal predicates in the Penn Treebank (PTB) are annotated with abstract
semantic role labels (A0 through A5 or AA) for those complements of the predicative
verb that are considered arguments. Those complements of the verb labeled with a
semantic functional label in the original PTB receive the composite semantic role label
AM-X, where X stands for labels such as LOC, TMP, or ADV, for locative, temporal, and
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Figure 2
An example sentence from Penn Treebank annotated with constituent syntactic structure along
with semantic role information provided in PropBank.

adverbial modifiers, respectively. A tree structure, represented as a labeled bracketing,
with PropBank labels, is shown in Figure 2.

PropBank uses two levels of granularity in its annotation, at least conceptually.
Arguments receiving labels A0–A5 or AA are specific to the verb, so these labels do not
necessarily express consistent semantic roles across verbs, whereas arguments receiving
an AM-X label are supposed to be adjuncts, and the roles they express are consistent
across all verbs. A0 and A1 arguments are annotated based on the proto-role theory pre-
sented in Dowty (1991) and correspond to proto-agents and proto-patients, respectively.
Although PropBank, unlike FrameNet, does not attempt to group different predicates
evoking the same prototypical situation, it does distinguish between different senses of
polysemous verbs, resulting in multiple framesets for such predicates.

NomBank annotation (Meyers et al. 2004) extends the PropBank framework to an-
notate arguments of nouns. Only the subset of nouns that take arguments are annotated
in NomBank and only a subset of the non-argument siblings of nouns are marked as
ARG-M. The most notable specificity of NomBank is the use of support chains, marked
as SU. Support chains are needed because nominal long distance dependencies are not
captured under the Penn Treebank’s system of empty categories. They are used for all
those cases in which the nominal argument is outside the noun phrase. For example, in
a support verb construction, such as Mary took dozens of walks, the arcs linking walks to
of , of to dozens, and dozens to took are all marked as support.

The data we use for English are the output of an automatic process of con-
version of the original PTB, PropBank, and NomBank into dependency structures,
performed by the algorithm described in Johansson and Nugues (2007). These are
the data provided to participants to the CoNLL-2008 and CoNLL-2009 shared tasks
(http://ifarm.nl/signll/conll/). An example is shown in Figure 3. This represen-
tation encodes both the grammatical functions and the semantic labels that describe
the sentence.

Argument labels in PropBank and NomBank are assigned to constituents, as shown
in Figure 2. After the conversion to dependency the PropBank and NomBank labels

Figure 3
An example from the PropBank corpus of verbal predicates and their semantic roles (lower half)
paired with syntactic dependencies derived from the Penn Treebank.
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are assigned to individual words. Roughly, for every argument span, the preprocessing
algorithm chooses a token that has the syntactic head outside of the span, though
additional modifications are needed to handle special cases (Johansson and Nugues
2007; Surdeanu et al. 2008). This conversion implies that the span of words covered by
the subtree headed by the word receiving the label can often be interpreted as receiving
the semantic role label. Consequently, for the dependency-based representation, the
syntactic and the semantic graphs jointly define the semantic role information. This is
coherent with the original PropBank annotation, which is to be interpreted as a layer
of annotation added to the Penn Treebank. Note, however, that the coherence of the
syntactic annotation and the semantic role labels is not evaluated in the dependency-
based SRL tasks (CoNLL-2008 and CoNLL-2009), so the two half-graphs are, in practice,
considered independently.

Unfortunately, mapping from the dependency graphs to the argument spans is
more complex than just choosing syntactic subtrees of headwords. This over-simplistic
rule would result in only 88% of PropBank arguments correctly recovered (Choi and
Palmer 2010). For example, it would introduce overlapping arguments or even cases
where the predicate ends up in the argument span; both these situations are impossible
under the PropBank and NomBank guidelines. These problems are caused by relative
clauses, modals, negations, and verb chains, among others. A careful investigation (Choi
and Palmer 2010), however, showed that a set of heuristics can be used to accurately
retrieve the original phrase boundaries of the semantic arguments in PropBank from the
dependency structures. This observation implies that both representations are nearly
equivalent and can be used interchangeably.1

Several data sets in this format for six other languages were released for the
CoNLL-2009 shared task. These resources were in some cases manually constructed
in dependency format, and in some cases they were derived from existing resources,
such as the data set for Czech, derived from the tectogrammatic Prague Dependency
Treebank (Hajič et al. 2006), or a data set for German derived from the FrameNet-style
SALSA corpus (Burchardt et al. 2006). Not only are these resources derived from dif-
ferent methodologies and linguistic theories, but they are also adapted to very different
languages and different sizes of data sets. For the discussion of the conversion process,
we refer the reader to the original shared task description (Surdeanu et al. 2008).

The two-layer graph representation, which was initially developed for English
and then adapted to other languages, enables these very different encodings to be
represented in the same form. The properties of these different data sets, though, are
rather different, in some important respects. As can be clearly seen from Table 1 and
as indicated in the Introduction, the properties of syntactic dependency graphs are very
different from semantic dependency graphs: The former give rise to a tree, and the latter
are a forest of treelets, each representing a proposition. The amount of crossing arcs are
also different across the different data sets in the various languages.

The problem we need to solve consists of producing a syntactic–semantic graph
given an input word string. Our formulation of this problem is very general: It does not
assume that the two-half-graphs are coupled, nor that they form a single tree or a graph
without crossing arcs. Rather, it considers that the syntactic and the semantic graphs are

1 Note though that the study in Choi and Palmer (2010) was conducted using gold-standard syntactic
dependencies in the heuristics. Recovery of argument spans based on predicted syntactic analyses
is likely to be a harder problem. Extending the heuristics in Choi and Palmer to recover the spans
of the semantic arguments in NomBank also appears to be a challenging problem.
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Table 1
For each language, percentages of training sentences with crossing arcs in syntax and semantics,
and percentages of training sentences with semantic arcs forming a tree whose root immediately
dominates the predicates.

Syntactic Semantic Semantic
crossings crossings tree

Catalan 0.0 0.0 61.4
Chinese 0.0 28.0 28.6
Czech 22.4 16.3 6.1
English 7.6 43.9 21.4
German 28.1 1.3 97.4
Japanese 0.9 38.3 11.2
Spanish 0.0 0.0 57.1

only loosely coupled, and share only the vertices (the words). The next section presents
how we model these graph structures.

3. Modeling Synchronized Derivations

We propose a joint generative probabilistic model of the syntactic and semantic depen-
dency graphs using two synchronized derivations. In this section, we describe how the
probability of the two half-graphs can be broken down into the conditional probabilities
of parser actions. The issue of how to estimate these conditional probabilities without
making inappropriate independence assumptions will be addressed in Section 4, where
we explain how we exploit induced latent variable representations to share infor-
mation between action choices.

Our joint probability model of syntactic and semantic dependencies specifies the
two dependency structures as synchronized sequences of actions for a parser that oper-
ates on two different data structures. The probabilities of the parser actions are further
broken down to probabilities for primitive actions similar to those used in previous
dependency parsing work. No independence assumptions are made in the probability
decomposition itself. This allows the probability estimation technique (discussed in
Section 4) to make maximal use of its latent variables to learn correlations between the
different parser actions, both within and between structures.

3.1 Synchronized Derivations

We first specify the syntactic and semantic derivations separately, before specifying how
they are synchronized in a joint generative model.

The derivations for syntactic dependency trees are based on a shift-reduce style
parser (Nivre et al. 2006; Titov and Henderson 2007d). The derivations use a stack and
an input queue. There are actions for creating a leftward or rightward arc between the
top of the stack and the front of the queue, for popping a word from the stack, and for
shifting a word from the queue to the stack.

A syntactic configuration of the parser is defined by the current stack, the queue
of remaining input words, and the partial labeled dependency structure constructed by
previous parser actions. The parser starts with an empty stack and terminates when it
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reaches a configuration with an empty queue. The generative process uses four types of
actions:

1. The action Left-Arcr adds a dependency arc from the next input word wj to
the word wi on top of the stack, selects the label r for the relation between
wi and wj, and finally pops the word wi from the stack.

2. The action Right-Arcr adds an arc from the word wi on top of the stack to
the next input word wj and selects the label r for the relation between wi
and wj.

3. The action Reduce pops the word wi from the stack.

4. The action Shiftwj+1
shifts the word wj from the input queue to the stack

and predicts the next word in the queue wj+1.2

The derivations for semantic dependencies also use a stack and an input queue, but
there are three main differences between the derivations of the syntactic and semantic
dependency graphs. The actions for semantic derivations include the actions used for
syntactic derivations, but impose fewer constraints on their application because a word
in a semantic dependency graph can have more than one parent. Namely, unlike the
algorithm used for syntax, the Left-Arcr action does not pop a word from the stack. This
modification allows a word to have multiple parents, as required for non-tree parsing.
Also, the Reduce action does not require the word to have a parent, thereby allowing
for disconnected structure. In addition, two new actions are introduced for semantic
derivations:

5. The action Predicates selects a frameset s for the predicate wj at the front of
the input queue.

6. The action Swap swaps the two words at the top of the stack.

The Swap action, introduced to handle non-planar structures, will be discussed in
more detail in Section 3.2.

One of the crucial intuitions behind our approach is that the parsing mechanism
must correlate the two half-graphs, but allow them to be constructed separately as they
have very different properties. Let Td be a syntactic dependency tree with derivation
D1

d, . . . , Dmd
d , and Ts be a semantic dependency graph with derivation D1

s , . . . , Dms
s . To

define derivations for the joint structure Td, Ts, we need to specify how the two deriva-
tions are synchronized, and in particular make the important choice of the granularity
of the synchronization step. Linguistic intuition would perhaps suggest that syntax and
semantics are connected at the clause level—a big step size—whereas a fully integrated
system would synchronize at each parsing decision, thereby providing the most com-
munication between these two levels. We choose to synchronize the construction of
the two structures at every word—an intermediate step size. This choice is simpler,
as it is based on the natural total order of the input, and it avoids the problems of the
more linguistically motivated choice, where chunks corresponding to different semantic
propositions would be overlapping.

2 For clarity, we will sometimes write Shiftj instead of Shiftwj+1 .
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We divide the two derivations into the sequence of actions, which we call chunks,
between shifting each word onto the stack, ct

d = Dbt

d , . . . , Det

d and ct
s = Dbt

s , . . . , Det

s , where
Dbt−1

d = Dbt−1
s = Shiftt−1 and Det+1

d = Det+1
s = Shiftt. Then the actions of the synchro-

nized derivations consist of quadruples Ct = (ct
d, Switch, ct

s, Shiftt), where Switch means
switching from syntactic to semantic mode. A word-by-word illustration of this syn-
chronized process is provided in Figure 4. This gives us the following joint probability
model, where n is the number of words in the input.

P(Td, Ts) = P(C1, . . . , Cn)

=
∏

t

P(Ct|C1, . . . , Ct−1) (1)

Chunk probabilities are then decomposed into smaller steps. The probability of
each synchronized derivation chunk Ct is the product of four factors, related to the
syntactic level, the semantic level, and the two synchronizing steps. An illustration of
the individual derivation steps is provided in Figure 5.

P(Ct|C1, . . . , Ct−1) = P(ct
d|C1, . . . , Ct−1)×

P(Switch|ct
d, C1, . . . , Ct−1)×

P(ct
s|Switch, ct

d, C1, . . . , Ct−1)×
P(Shiftt|ct

d, ct
s, C1, . . . , Ct−1)

(2)

These synchronized derivations C1, . . . , Cn only require a single input queue, since
the Shift operations are synchronized, but they require two separate stacks, one for the
syntactic derivation and one for the semantic derivation.

ROOT Hope

Figure 4
A word-by-word illustration of a joint synchronized derivation, where the blue top half is the
syntactic tree and the green bottom half is the semantic graph. The word at the front of the queue
and the arcs corresponding to the current chunk are shown in bold.
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ROOT Hope

ROOT Hope seems

ROOT Hope seems

Figure 5
A joint, synchronized derivation, illustrating individual syntactic and semantic steps. The results
of each derivation step are shown in bold, with the blue upper arcs for syntax and the green
lower arcs for semantics. Switch and Reduce actions are not shown explicitly.
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The probability of ct
d is decomposed into the probabilities of the derivation

actions Di
d

P(ct
d|C1, . . . , Ct−1) =

∏
bt

d≤i≤et
d

P(Di
d|D

bt
d

d , . . . , Di−1
d , C1, . . . , Ct−1) (3)

and then the probability of ct
s is decomposed into the probabilities of the derivation

actions Di
s

P(ct
s|Switch, ct

d, C1, . . . , Ct−1) =
∏

bt
s≤i≤et

s

P(Di
s|D

bt
s

s , . . . , Di−1
s , Switch, ct

d, C1, . . . , Ct−1) (4)

Note that in all these equations we have simply applied the chain rule, so all equalities
are exact. The order in which the chain rule has been applied gives us a complete
ordering over all decisions in C1, . . . , Cn, including all the decisions in D1

d, . . . , Dmd
d and

D1
s , . . . , Dms

s . For notational convenience, we refer to this complete sequence of decisions
as D1, . . . , Dm, allowing us to state

P(Td, Ts) =
∏

i

P(Di|D1, . . . , Di−1) (5)

Instead of treating each Di as an atomic decision, it will be convenient in the
subsequent discussion to sometimes split it into a sequence of elementary decisions
Di = di

1, . . . , di
m:

P(Di|D1, . . . , Di−1) =
∏

k

P(di
k|hist(i, k)) (6)

where hist(i, k) denotes the parsing history D1, . . . , Di−1, di
1, . . . , di

k−1. Each conditional
distribution is estimated using the latent variable model, ISBN, which we will describe
in Section 4.1.

This way of synchronizing the syntactic and semantic derivations is not formally
equivalent to a synchronous grammar. A synchronous grammar would generate the
sequence of synchronized steps C1, . . . , Cn, which would require a finite vocabulary of
possible synchronized steps Ci. But these synchronized steps Ci are themselves specified
by a generative process which is capable of generating arbitrarily long sequences of
actions. For example, there may be an unbounded number of Reduce actions in between
two Shift actions. Thus there are an infinite number of possible synchronized steps Ci,
and the synchronous grammar would itself have to be infinite.

Instead, we refer to this model as “semi-synchronized.” The two derivations are
synchronized on the right-hand side of each dependency (the front of the queue), but
not on the left-hand side (the top of the stack). This approach groups similar depen-
dencies together, in that they all involve the same right-hand side. But the lack of re-
strictions on the left-hand side means that this approach does not constrain the possible
structures or the relationship of syntax to semantics.
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3.2 Planarization of Dependencies

Without including the Swap action, the derivations described above could only specify
planar syntactic or semantic dependency graphs. Planarity requires that the graph can
be drawn in the semi-plane above the sentence without any two arcs crossing, and
without changing the order of words.3

Exploratory data analysis indicates that many instances of non-planarity in the
complete graph are due to crossings of the syntactic and semantic graphs. For in-
stance, in the English training set, there are approximately 7.5% non-planar arcs in
the joint syntactic–semantic graphs, whereas summing the non-planarity within each
graph gives us only roughly 3% non-planar arcs in the two separate graphs. Because
our synchronized derivations use two different stacks for the syntactic and semantic
dependencies, respectively, we only require each individual graph to be planar.

The most common approach to deal with non-planarity transforms crossing arcs
into non-crossing arcs with augmented labels (Nivre and Nilsson 2005). This is called
the pseudo-projective parsing with HEAD encoding method (HEAD for short, see
Section 6). We use this method to projectivize the syntactic dependencies. Despite the
shortcomings that will be discussed later, we adopt this method because the amount of
non-planarity in syntactic structures is often small: only 0.39% of syntactic dependency
arcs in the English training set are non-planar. Therefore, choice of the planarization
strategy for syntactic dependencies is not likely to seriously affect the performance of
our method for English.

One drawback of this approach is theoretical. Augmented structures that do not
have any interpretation in terms of the original non-planar trees receive non-zero prob-
abilities. When parsing with such a model, the only computationally feasible search
consists of finding the most likely augmented structure and removing inconsistent
components of the dependency graph (Nivre et al. 2006; Titov and Henderson 2007d).
But this practically motivated method is not equivalent to a statistically motivated—but
computationally infeasible—search for the most probable consistent structure. More-
over, learning these graphs is hard because of the sparseness of the augmented labels.
Empirically, it can be observed that a parser that uses this planarization method tends
to output only a small number of augmented labels, leading to a further drop of recall
on non-planar dependencies.

Applying the same planarization approach to semantic dependency structures
is not trivial and would require a novel planarization algorithm, because semantic
dependency graphs are highly disconnected structures, and direct application of any
planarization algorithm, such as the one proposed in Nivre and Nilsson (2005), is un-
likely to be appropriate. For instance, a method that extends the planarization method
to semantic predicate-argument structures by exploiting the connectedness of the
corresponding syntactic dependency trees has been tried in Henderson et al. (2008).
Experimental results reported in Section 6 indicate that the method that we will illus-
trate in the following paragraphs yields better performance.

A different way to tackle non-planarity is to extend the set of parsing actions to a
more complex set that can parse any type of non-planarity (Attardi 2006). This approach
is discussed in more detail in Section 7. We adopt a conservative version of this approach

3 Note that this planarity definition is stricter than the definition normally used in graph theory where the
entire plane is used. Some parsing algorithms require projectivity: this is a stronger requirement than
planarity and the notion of projectivity is only applicable to trees (Nivre and Nilsson 2005).
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Figure 6
A non-planar semantic dependency graph whose derivation is the sequence of operations
1:Shift(1), 2:LeftArc(1,2), 3:Shift(2), 4:Shift(3), 5:Reduce(3), 6:Swap(1,2), 7:LeftArc(1,4), 8:Shift(4),
9:Shift(5), 10:Reduce(5), 11:RightArc(4,6), 12:Reduce(4), 13:Reduce(1), 14:RightArc(2,6). In the
figure, these steps are associated with either the created arc or the resulting top of the stack.

as described in Titov et al. (2009). Specifically, we add a single action that is able to
handle most crossing arcs occurring in the training data. The decision Swap swaps the
two words at the top of the stack.

The Swap action is inspired by the planarization algorithm described in Hajičová
et al. (2004), where non-planar trees are transformed into planar ones by recursively
rearranging their sub-trees to find a linear order of the words for which the tree is
planar (also see the discussion of Nivre [2008], Nivre, Kuhlmann, and Hall [2009] in
Section 7). Important differences exist, however, because changing the order of adjacent
nodes in the stack is not equivalent to changing the order of adjacent phrases in the
word sequences. In our method, nodes can appear in different orders at different steps
of the derivation, so some arcs can be specified using one ordering, then other arcs can
be specified with another ordering.4 This makes our algorithm more powerful than just
a single adjacent transposition of sub-trees.

In our experiments on the CoNLL-2008 shared task data set (Surdeanu et al. 2008),
reported subsequently, introducing this action was sufficient to parse the semantic
dependency structures of 37,768 out of 39,279 training sentences (96%).

Moreover, among the many linguistic structures which this parsing algorithm can
handle, one of the frequent ones is coordination. The algorithm can process non-
planarity introduced by coordination of two conjuncts sharing a common argument
or being arguments of a common predicate (e.g., Sequa makes and repairs jet engines),
as well as similar structures with three verb conjuncts and two arguments (e.g., Sequa
makes, repairs, and sells jet engines). The derivation of a typical non-planar semantic graph
involving coordination is illustrated in Figure 6. Inspection of example derivations
also indicates that swaps occur frequently after verbs like expect to, thought to, and
helped, which take a VP complement in a dependency representation. This is a coherent
set of predicates, suggesting that swapping enables the processing of constructions
such as John expects Bill to come that establish a relation between the higher verb and
the lower infinitival head word (to), but with an intervening expressed subject (Bill).
This is indeed a case in which two predicate-argument structures cross in the CoNLL
shared task representation. More details and discussion on this action can be found in
Titov et al. (2009).

The addition of the Swap action completes the specification of our semi-
synchronized derivations for joint syntactic–semantic parsing. We now present the

4 Note that we do not allow two Swap actions in a row, which would return to an equivalent parser
configuration. All other actions make an irreversible change to the parser configuration, so by
requiring at least one other action between any two Swap actions, we prevent infinite loops.
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latent variable method that allows us to accurately estimate the conditional probabilities
of these parser actions.

4. The Estimation Method

The approach of modeling joint syntactic–semantic dependency parsing as a semi-
synchronized parsing problem relies crucially on an estimation architecture that is
flexible enough to capture the correlations between the two separate structures. For
problems where multiple structured representations are learned jointly, and syntactic
and semantic parsing in particular, it is often very difficult to precisely characterize
the complex interactions between the two tasks. Under these circumstances, trying
to design by hand features that capture these interactions will inevitably leave out
some relevant features, resulting in independence assumptions that are too strong. We
address this problem by using a learning architecture that is able to induce appropriate
features automatically using latent variables.

Latent variables are used to induce features that capture the correlations between
the two structures. Alternatively, these latent variables can be regarded as capturing
correlations between the parsing tasks, as needed for effective multi-task learning.
Roughly, we can assume that there exist some sub-problems that are shared between
the two tasks, and then think of the latent variables as the outputs of classifiers for
these sub-problems. For example, latent variables may implicitly encode if a word on
top of the stack belongs to a specific cluster of semantically similar expressions.5 This
information is likely to be useful for both parsing tasks.

We use the Incremental Sigmoid Belief Network (ISBN) architecture (Henderson
and Titov 2010) to learn latent variable models of our synchronized derivations of
syntactic–semantic parsing. ISBNs postulate a vector of latent binary features associated
with each state in each derivation. These features represent properties of the derivation
history at that state which are relevant to future decisions. ISBNs learn these features as
part of training the model, rather than a designer specifying them by hand. Instead,
the designer specifies which previous states are the most relevant to a given state,
based on locality in the structures being built by the derivation, as discussed later in
this section. By conditioning each state’s latent features on the latent features of these
locally relevant states, ISBNs tend to learn correlations that are local in the structures.
But by passing information repeatedly between latent features, the learned correlations
are able to extend within and between structures in ways that are not constrained by
independence assumptions.

In this section we will introduce ISBNs and specify how they are used to model the
semi-synchronized derivations presented in the previous section. ISBNs are Bayesian
networks based on sigmoid belief networks (Neal 1992) and dynamic Bayesian net-
works (Ghahramani 1998). They extend these architectures by allowing their model
structure to be incrementally specified based on the partial structure being built by
a derivation. They have previously been applied to constituency and dependency
parsing (Titov and Henderson 2007a, 2007b). We successfully apply ISBNs to a more
complex, multi-task parsing problem without changing the machine learning methods.

5 Development of methods for making explicit the regularities encoded in distributed latent
representations remains largely an open problem, primarily due to statistical dependencies between
individual latent variables. Therefore, we can only speculate about the range of modeled phenomena
and cannot reliably validate our hypotheses.
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4.1 Incremental Sigmoid Belief Networks

Like all Bayesian networks, ISBNs provide a framework for specifying a joint probabil-
ity model over many variables. The conditional probability distribution of each variable
is specified as a function of the other variables that have edges directed to it in the
Bayesian network. Given such a joint model, we can then infer specific probabilities,
such as computing the conditional probability of one variable given values for other
variables.

This section provides technical details about the ISBN architecture. It begins with
background on Sigmoid Belief Networks (SBNs) and Dynamic SBNs, a version of SBNs
developed for modeling sequences. Then it introduces the ISBN architecture and the
way we apply it to joint syntactic–semantic dependency parsing. Throughout this article
we will use edge to refer to a link between variables in a Bayesian network, as opposed
to arc for a link in a dependency structure. The pattern of edges in a Bayesian network is
called the model structure, which expresses the types of correlations we expect to find
in the domain.

4.1.1 Sigmoid Belief Networks. ISBNs are based on SBNs (Neal 1992), which have binary
variables si ∈ {0, 1} whose conditional probability distributions are of the form

P(si = 1|Par(si)) = σ(
∑

sj∈Par(si )

Jijsj) (7)

where Par(si) denotes the variables with edges directed to si, σ denotes the logistic
sigmoid function σ(x) = 1/(1 + e−x), and Jij is the weight for the edge from variable
sj to variable si.6 Each such conditional probability distribution is essentially a logistic
regression (also called maximum-entropy) model, but unlike standard logistic regres-
sion models where the feature values are deterministically computable (i.e., observable),
here the features may be latent. SBNs are also similar to feed-forward neural networks,
but, unlike neural networks, SBNs have a precise probabilistic semantics for their
hidden variables.

In ISBNs we consider a generalized version of SBNs where we allow variables with
any range of discrete values. The normalized exponential function is used to define the
conditional probability distributions at these variables:

P(si = v|Par(si)) =
exp(

∑
sj∈Par(si ) Wi

vjsj)∑
v′ exp(

∑
sj∈Par(si ) Wi

v′jsj)
(8)

where Wi is the weight matrix for the variable si.

4.1.2 Dynamic Sigmoid Belief Networks. SBNs can be easily extended for processing arbi-
trarily long sequences, for example, to tackle the language modeling problem or other
sequential modeling tasks.

Such problems are often addressed with dynamic Bayesian networks (DBN)
(Ghahramani 1998). A typical example of DBNs is the first-order hidden Markov model

6 For convenience, where possible, we will not explicitly include bias terms in expressions, assuming that
every latent variable in the model has an auxiliary parent variable set to 1.
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(HMM) which models two types of distributions, transition probabilities correspond-
ing to the state transitions and emission probabilities corresponding to the emission
of words for each state. In a standard HMM these distributions are represented as
multinomial distributions over states and words for transition and emission distribu-
tions, respectively, and the parameters of these distributions are set to maximize the
likelihood of the data. The Dynamic SBNs (Sallans 2002) instead represent the states
as vectors of binary latent variables Si = (si

1, . . . , si
n), and model the transitions and the

emission distributions in the log-linear form, as in Equations (7) and (8). Formally, the
distribution of words x given the state is given by

P(xi = x|Si) ∝ exp(
∑

j

Wxjsi
j) (9)

The distributions of the current state vector Si given the previous vector Si−1 is defined
as a product of distributions for individual components si

j, and the distributions of these
components is defined as in Equation (7):

P(si
j = 1|Si−1) = σ(

∑
j′

Jjj′s
i−1
j′ ) (10)

Note that the same weight matrices are reused across all the positions due to the
stationarity assumption. These weight matrices can be regarded as a template applied
to every position of the sequence. A schematic representation of such a dynamic SBN is
given in Figure 7.

As with HMMs, all the standard DBNs only allow edges between adjacent (or a
bounded window of) positions in the sequence. This limitation on the model structure
imposes a Markov assumption on statistical dependencies in the Bayesian network,
which would only be appropriate if the derivation decision sequences were Markovian.
But derivations for the syntactic and semantic structures of natural language are clearly
not Markovian in nature, so such models are not appropriate. ISBNs are not limited to
Markovian models because their model structure is specified incrementally as a function
of the derivation.

4.1.3 Incrementally Specifying Model Structure. Like DBNs, ISBNs model unboundedly
long derivations by connecting together unboundedly many Bayesian network
templates, as illustrated in the final graph of Figure 8. But unlike DBNs, the way these
templates are connected depends on the structure specified by the derivation. For

Figure 7
An example of a Dynamic Sigmoid Belief Network.
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Figure 8
Illustration of the derivation of a syntactic output structure and its associated incremental
specification of an ISBN model structure (ordered top-to-bottom, left-to-right). The blue dot
indicates the top of the syntactic derivation’s stack and the bold word indicates the front of the
input queue. New model structure edges are labeled with the relationship between their source
state and the current state, respectively, with Q for queue front, S for stack top, HS for head of
stack top, LQ for leftmost child of queue front, and LS for leftmost child of stack top.

parsing problems, this means that the structure of the model depends on the structure
of the output of parsing. This allows us to build models which reflect the fact that
correlations in natural language parsing tend to be local in the syntactic and semantic
structures.

In order to have edges in the Bayesian network that reflect locality in the output
structure, we need to specify edges based on the actual outputs of the decision sequence
D1, . . . , Dm, not just based on adjacency in this sequence. In ISBNs, the incoming edges
for a given position are a discrete function of the sequence of decisions that precede
that position, or, equivalently, a discrete function of the partial parse constructed by
the previous actions of the parsers. This is why ISBNs are called “incremental” models,
not just dynamic models; the structure of the model is determined incrementally as the
decision sequence proceeds.
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Intuitively, defining this discrete function is very similar to defining a set of his-
tory features in a traditional history-based model. In such methods, a model designer
decides which previous decisions are relevant to the current one, whereas for ISBNs
one needs to define which previous latent parsing states are relevant to the current
decision. The crucial difference is that when making this choice in a traditional history-
based model, the model designer inevitably makes strong independence assumptions
because features that are not included are deemed totally irrelevant. In contrast, ISBNs
can avoid such a priori independence assumptions because information can be passed
repeatedly from latent variables to latent variables along the edges of the graphical
model.7 Nonetheless, the learning process is biased towards learning correlations with
latent states that are close in the chain of edges, so the information that is passed tends
to be information which was also useful for the decision made at the previous state.
This inductive bias allows the model designer to encode knowledge about the domain
in soft biases instead of hard constraints. In the final trained model, the information that
is passed to a decision is determined in part on the basis of the data, not entirely on the
basis of the model design. The flexibility of this latent variable approach also helps when
building new models, such as for new languages or treebanks. The same model can be
applied successfully to the new data, as demonstrated in the multilingual experiments
that follow, whereas porting the traditional methods across languages would often
require substantial feature-engineering effort.

This notion of incremental specification of the model structure is illustrated for
syntactic parsing in Figure 8 (the blue directed graphs at the bottom of each panel),
along with the partial output structures incrementally specified by the derivation (the
black dependency trees in the upper portion of each panel). In Figure 8, the partial
output structure also indicates the state of the parser, with the top of the parser’s stack
indicated by the blue dot and the front of the input queue indicated by the bold word.
Red arcs indicate the changes to the structure that result from the parser action chosen in
that step. The associated model is used to estimate the probability of this chosen parser
action, also shown in red. The edges to the state that is used to make this decision are
specified by identifying the most recent previous state that shares some property with
this state. In Figure 8, these edges are labeled with the property, such as having the same
word on the top of the stack (S=S) or the top of the stack being the same as the current
leftmost child of the top of the stack (S=LS).

The argument for the incremental specification of model structure can be applied
to any Bayesian network architecture, not just SBNs (e.g., Garg and Henderson 2011).
We focus on ISBNs because, as shown in Section 4.1.5, they are closely related to the
empirically successful neural network models of Henderson (2003), and they have
achieved very good results on the sub-problem of parsing syntactic dependencies (Titov
and Henderson 2007d).

4.1.4 ISBNs for Derivations of Structures. The general form of ISBN models that have
been proposed for modeling derivations of structures is illustrated in Figure 9. Figure 9
illustrates a situation where we are given a derivation history preceding the elementary
decision di

k in decision Di, and we wish to compute a probability distribution for the
decision di

k, P(di
k|hist(i, k)). Variables whose values are given are shaded, and latent

7 In particular, our ISBN model for syntactic and semantic derivations makes no hard independence
assumptions, because every previous latent state is connected, possibly via intermediate latent
variable vectors, to every future state.
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Figure 9
An ISBN for estimating P(di

k|hist(i, k))—one of the elementary decisions. Variables whose values
are given in hist(i, k) are shaded, and latent and current decision variables are unshaded.

and current decision variables are left unshaded. Arrows show how the conditional
probability distributions of variables depend on other variables. As discussed earlier,
the model includes vectors Si of latent variables si

j, which represent features of the
parsing history relevant to the current and future decisions.

As illustrated by the arrows in Figure 9, the probability of each latent variable si
j

depends on all the variables in a finite set of relevant previous latent and decision
vectors, but there are no direct dependencies between the different variables in a single
latent vector Si. As discussed in Section 4.1.3, this set of previous latent and decision
vectors is specified as a function of the partial parse and parser configuration resulting
from the derivation history D1, . . . , Di−1. This function returns a labeled list of positions
in the history that are connected to the current position i. The label of each position i−c
in the list represents a relation between the current position i and the positions i−c in
the history. We denote this labeled list of positions as {R1(i), . . . , Rm(i)}, where Rr(i) is
the position for relation label r. For example, r could be the most recent state where the
same word was on the top of the parser’s stack, and a decision variable representing
that word’s part-of-speech tag. Each such selected relation has its own distinct weight
matrix for the resulting edges in the graph, but the same weight matrix is used at each
position where the relation is relevant (see Section 4.2 for examples of relation types we
use in our experiments).

We can write the dependency of a latent variable component si
j on previous latent

variable vectors and the decision history:

P(si
j = 1|S1, . . . , Si−1, hist(i, 1)) = σ


 ∑

r:∃Rr(i)

∑
j′

Jr
jj′s

Rr(i)
j′ +

∑
k

Brk
idRr (i)

k


 (11)

where Jr
jj′ is the latent-to-latent weight matrix and Brk

idRr (i)
k

is the decision-to-latent weight

matrix for relation r. If there is no previous step that is in relation r to the time step i,
then the corresponding index is skipped in the summation, as denoted by the predicate
∃Rr(i). For each relation r, the weight Jr

jj′ determines the influence of j′th variable
sRr(i)

j′ in the related previous latent vector SRr(i) on the distribution of the jth vari-
able si

j of the considered latent vector Si. Similarly, Brk
idRr (i)

k
defines the influence of the

past decision dRr(i)
k on the distribution of the considered latent vector component si

j.
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As indicated in Figure 9, the probability of each elementary decision di
k depends

both on the current latent vector Si and on the previously chosen elementary action
di

k−1 from Di. This probability distribution has the normalized exponential form:

P(di
k= d|Si, di

k−1) =
Φhist(i,k)(d) exp(

∑
j Wdjsi

j)∑
d′ Φhist(i,k)(d

′) exp(
∑

j Wd′jsi
j)

(12)

where Φhist(i,k) is the indicator function of the set of elementary decisions that can
possibly follow the last decision in the history hist(i, k), and the Wdj are the weights
of the edges from the latent variables. Φ is essentially switching the output space
of the elementary inference problems P(di

k = d|Si, di
k−1) on the basis of the previous

decision. For example, in our generative history-based model of parsing, if decision
di

1 was to create a new node in the tree, then the next possible set of decisions defined
by Φhist(i,2) will correspond to choosing a node label, whereas if decision di

1 was to
generate a new word then Φhist(i,2) will select decisions corresponding to choosing
this word.

4.1.5 Approximating Inference in ISBNs. Computing the probability of a derivation, as
needed in learning, is straightforward with ISBNs, but not tractable. Inference involves
marginalizing out the latent variables, that is, a summation over all possible variable
values for all the latent variable vectors. The presence of fully connected latent variable
vectors does not allow us to use efficient belief propagation methods (MacKay 2003).
Even in the case of dynamic SBNs (i.e., Markovian models), the large size of each
individual latent vector would not allow us to perform the marginalization exactly. This
makes it clear that we need methods for approximating the inference problems required
for parsing.

Previous work on approximate inference in ISBNs has used mean field approxi-
mations (Saul, Jaakkola, and Jordan 1996; Titov and Henderson 2007c). In mean field
approximations, the joint distribution over all latent variables conditioned on observ-
able variables is approximated using independent distributions for each variable. The
parameters that define these individual distributions (the variable’s mean values) are
set to make the approximate joint distribution as similar as possible to the true joint
distribution in terms of the Kullback-Leibler divergence. Unfortunately, there is no
closed form solution to finding these means and an iterative estimation procedure
involving all the means would be required.

Work on approximate inference in ISBNs has developed two mean field approxi-
mations for estimating the decision probabilities P(di

k|hist(i, k)) (Titov and Henderson
2007c), one more accurate and one more efficient. Titov and Henderson (2007c) show
that their more accurate approximation leads to more accurate parsers, but the improve-
ment is small and the computational cost is high. Because we need to build larger more
complex models than those considered by Titov and Henderson (2007c), in this article
we only make use of the more efficient approximation.

The more efficient approximation assumes that each variable’s mean can be effec-
tively tuned by only considering the means of its parent variables (i.e., the variables
with edges directed to the variable in question). This assumption leads to a closed
form solution to minimizing the Kullback-Leibler divergence between the approximate
and true distributions. This closed form solution replicates exactly the computation
of the feed-forward neural network model of Henderson (2003), where the neural
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network hidden unit activations are the means of the individual variable’s distribu-
tions. So, instead of Equations (11) and (12), the computations of the approximate
model are

µi
j = σ


 ∑

r:∃Rr(i)

∑
j′

Jr
jj′µ

Rr(i)
j′ +

∑
k

Brk
idRr (i)

k


 (13)

P(di
k = d|Si, di

k−1) =
Φhist(i,k)(d) exp(

∑
j Wdjµ

i
j)∑

d′ Φhist(i,k)(d
′) exp(

∑
j Wd′jµ

i
j)

(14)

where µj is the mean parameter of the latent variables sj. Consequently, the neural net-
work probability model can be regarded as a fast approximation to the ISBN graphical
model.

This feed-forward approximation does not update the latent vector means for
positions i′ ≤ i after observing a decision di

k, so information about decision di
k does

not propagate back to its associated latent vector Si. In the model design, edges from
decision variables directly to subsequent latent variables (see Figure 9) are used to
mitigate this limitation. We refer the interested reader to Garg and Henderson (2011)
for a discussion of this limitation and an alternative architecture that avoids it.

4.2 ISBNs for Syntactic–Semantic Parsing

In this section we describe how we use the ISBN architecture to design a joint model of
syntactic–semantic dependency parsing. In traditional fully supervised parsing models,
designing a joint syntactic–semantic parsing model would require extensive feature
engineering. These features pick out parts of the corpus annotation that are relevant to
predicting other parts of the corpus annotation. If features are missing then predicting
the annotation cannot be done accurately, and if there are too many features then the
model cannot be learned accurately. Latent variable models, such as ISBNs and Latent
PCFGs (Matsuzaki, Miyao, and Tsujii 2005; Petrov et al. 2006), have the advantage
that the model can induce new, more predictive, features by composing elementary
features, or propagate information to include predictive but non-local features. These
latent annotations are induced during learning, allowing the model to both predict
them from other parts of the annotation and use them to predict the desired corpus
annotation. In ISBNs, we use latent variables to induce features of the parse history
D1, . . . , Di−1 that are used to predict future parser decisions Di, . . . , Dm.

The main difference between ISBNs and Latent PCFGs is that ISBNs have vectors
of latent features instead of latent atomic categories. To train a Latent PCFG, the learn-
ing method must search the space of possible latent atomic categories and find good
configurations of these categories in the different PCFG rules. This has proved to be
difficult, with good performance only being achieved using sophisticated induction
methods, such as split-merge (Petrov et al. 2006). In contrast, comparable accuracies
have been achieved with ISBNs using simple gradient descent learning to induce
their latent feature spaces, even with large numbers of binary features (e.g., 80 or
100) (Henderson and Titov 2010). This ability to effectively search a large informative
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space of latent variables is important for our model because we are relying on the
latent variables to capture complex interactions between and within the syntactic and
semantic structures.

The ability of ISBNs to induce features of the parse history that are relevant to
the future decisions avoids reliance on the system designer coming up with hand-
crafted features. ISBNs still allow the model designer to influence the types of features
that are learned through the design of the ISBN model structure, however—illustrated
as arrows in Figure 9 and as the blue arrows between states in Figure 8. An arrow
indicates which properties of the derivation history D1, . . . , Di−1 are directly input to the
conditional probability distribution of a vector of latent variables Si. There are two types
of properties: predefined features extracted from the previous decisions D1, . . . , Di−1,
and latent feature vectors computed at a previous position i−c of the derivation. In
either case, there are a fixed number of these relevant properties.

Choosing the set of relevant previous latent vectors is one of the main design
decisions in building an ISBN model. By connecting to a previous latent vector, we
allow the model to directly exploit features that have been induced for making that
latent vector’s decision. Therefore, we need to choose the set of connected latent vectors
in accordance with our prior knowledge about which previous decisions are likely to
induce latent features that are particularly relevant to the current decision. This design
choice is illustrated for dependency parsing in Figure 8, where the model designer
has chosen to condition each latent vector on previous latent vectors whose associated
partial parse and parser configuration share some property with the current partial
parse and parser configuration.

For syntactic-semantic dependency parsing, each of the two individual derivations
is mapped to a set of edges in the ISBN in a similar way to that for syntactic dependency
parsing. In addition, there are edges that condition each of the two derivations on
latent representations and decisions from the other derivation. Both these types of
connections are shown in Figure 10. Conditioning on latent representations from the
other task allows the correlations between derivations to be captured automatically. In
addition, by training the two derivations jointly, the model is able to share induced
representations of auxiliary subproblems between the two tasks. For example, many
selectional preferences for the syntactic arguments of verbs are semantic in nature, and
inducing these semantic distinctions may be easier by combining evidence from both
syntax and semantic roles. The presence of these edges between semantic and syntactic
states enables our systems to learn these common representations, as needed for multi-
task learning.

Figure 10
Illustration of the final state of a derivation of a syntactic–semantic structure and the associated
ISBN model structure. Only the vectors of latent variables are shown in the model structure.
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For the synchronized shift-reduce dependency structure derivations presented in
Section 3.1, we distinguish between syntactic states (positions where syntactic deci-
sions are considered, shown in blue, the upper row, in Figure 10) and semantic states
(positions where semantic decisions are considered, shown in green, the lower row, in
Figure 10). For syntactic states, we assume that the induced latent features primarily
relate to the word on the top of the syntactic stack and the word at the front of the queue.
Similarly, for semantic states, we assume that the induced latent features primarily
relate to the word on the top of the semantic stack and the word at the front of the
queue. To decide which previous state’s latent features are most relevant to the current
decision, we look at these words and words that are structurally local to them in the
current partial dependency structure specified by the derivation history. For each such
word that we choose as relevant to the current decision, we look for previous states
where the stack top or the queue front was the same word. If more than one previous
state matches, then the latent vector of the most recent one is used. If no state matches,
then no connection is made.

The specific connections between latent vectors that we use in our experiments are
specified in Table 2. The second column specifies the relevant word from the current
partial dependency structure. The first column specifies what role that word needs
to have played at the previous state. For example, the first row indicates edges be-
tween the current latent vector and the most recent previous latent vector (if any) that
had the same queue front as the current one. The remaining columns distinguish be-
tween the cases where the previous and/or current states are for making syntactic
and/or semantic decisions, with a “+” indicating that, for the column’s state types,
the row’s relation type is included in the model. For example, the first row indicates
that these edges exist within syntactic states, from semantic to syntactic states, within
semantic states, and from syntactic to semantic states. As another example, the third cell
of the third row indicates that there are edges in the ISBN between the current semantic
state and the most recent semantic state where the top of the semantic stack was the
same word as the current rightmost dependent of the current top of the semantic stack.
Each cell of this table has a distinct weight matrix for the resulting edges in the ISBN,
but the same weight matrix is used at each state where the relation applies. Training and
testing times asymptotically scale linearly with the number of relations.

In addition to these latent-to-latent edges, the ISBN also conditions latent feature
vectors on a set of predefined features extracted from the history of previous decisions.
These features are specified in Table 3. They are lexical and syntactic features of the top
of the stack and front of the queue, and their respective heads, children, and siblings
in the syntactic dependency structure. For the semantic stack, the position immediately

Table 2
Latent-to-latent variable connections. Queue = front of the input queue; Top = top of the stack.

Closest Current Syn-Syn Sem-Syn Sem-Sem Syn-Sem

Queue Queue + + + +
Top Top + + + +
Top Rightmost right dependent of top + +
Top Leftmost left dependent of top + +
Top Head of top + +
Top Leftmost dependent of queue + +
Queue Top +
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Table 3
Predefined features. The syntactic features must be interpreted as applying only to the nodes on
the syntactic stack, and the semantic features apply only to the nodes on the semantic stack.
Queue = front of the input queue; Top = top of stack; Top−1 = the element immediately below
the top of stack. LEX = word; POS = part of speech; DEP = dependency label; FRAMESET =
predicate sense.

State Syntactic step features

LEX POS DEP

Queue + +
Top + +
Top−1 +
Head of top +
Rightmost dependent of top +
Leftmost dependent of top +
Leftmost dependent of queue +

State Semantic step features

LEX POS DEP FRAMESET

Queue + + + +
Top + + + +
Top−1 + + +
Leftmost dependent of queue +

Head of top/top−1 + + +
Head of queue + + +

Rightmost dependent of top/top−1 +
Leftmost dependent of top/top−1 +

Left sibling of top/top−1 + +
Left sibling of queue + +
Right sibling of top/top−1 + +
Right sibling of queue + +

below the top of the stack is also very important, because of the Swap operation. To
capture the intuition that the set of arguments in a given predicate-argument structure
should be learned jointly because of the influence that each argument has on the
others, we introduce siblings as features of the node that is being attached. The model
distinguishes argument role labels for nominal predicates from argument role labels for
verbal predicates.

We investigated the contribution of the features, to test whether all the features indi-
cated in Table 3 are actually useful. We tried several different groups of features. The dif-
ferent groups are as indicated in the table with additional spacing between lines. These
groups are to be interpreted inclusively of that group and all preceding groups. So we
tried groups of features concerning top, top−1, and front of the queue; features of these
elements and also of their heads; features of the nodes and their heads as well as their
children; and finally we also added features that make reference to the siblings. We
found that the best performing feature set is the most complete. This result confirms
linguistic properties of semantic role assignment that would predict that semantic roles
benefit from knowledge about siblings. It also confirms that the best results are obtained
when assigning SRL jointly to all arguments in a proposition (Toutanova, Haghighi,
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and Manning 2008). In all the experiments reported in Section 6, we use the complete
feature set.

5. Learning and Parsing

In this section we briefly describe how we estimate the parameters of our model, and
how we search for the most probable syntactic–semantic graph given the trained model.

5.1 Learning

We train the ISBN to maximize the fit of the approximate model to the data. Thus, both at
parsing time and at training time, the parameters of the model are interpreted according
to the feed-forward approximation discussed in Section 4.1.5, and not according to the
exact latent variable interpretation of ISBNs. We train these parameters to optimize a
maximum likelihood objective function, log P(Td, Ts). We use stochastic gradient de-
scent, which requires computing the derivative of the objective function with respect to
each parameter, for each training example.

For the feed-forward approximation we use, computation of these derivatives is
straightforward, as in neural networks (Rumelhart, Hinton, and Williams 1986). Thus,
we use the neural network Backpropagation algorithm for training. The error from all
decisions is propagated back through the structure of the graphical model and used
to update all parameters in a single pass, so Backpropagation is linear in derivation
length. Standard techniques for improving Backpropagation, such as momentum and
weight decay regularization, are also used. Momentum makes the gradient descent less
stochastic, thereby speeding convergence. Weight decay regularization is equivalent to
a Gaussian prior over parameter values, centered at zero. Bias terms are not regularized.

5.2 Parsing

ISBNs define a probability model that does not assume independence between any
decision variables, because ISBNs induce latent variables that might capture any such
statistical dependency. This property leads to the complexity of complete search being
exponential in the number of derivation steps. Fortunately, for many problems, such
as natural language parsing, efficient heuristic search methods are possible.

Given a trained ISBN as our probability estimator, we search for the most probable
joint syntactic–semantic dependency structure using a best-first search with the search
space pruned in two different ways. First, only a fixed beam of the most probable partial
derivations are pursued after each word Shift operation. That is, after predicting each
chunk,8 we prune the set of partial analyses to some fixed beam width K1. This width
K1 can be kept small (under 100) without affecting accuracies, and very small beams
(under 5) can be used for faster parsing. Even within each chunk (i.e., between Shift
operations), however, it is hard to use the exhaustive search as each of the K1 partial
analyses can be expanded in an unbounded number of ways. So, we add a second
pruning stage. We limit the branching factor at each considered parsing action. That
is, for every partial analysis, we consider only K2 possible next actions. Again this
parameter can be kept small (we use 3) without affecting accuracies.

8 See Section 3.1 for our definition of a chunk.
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Global constraints (such as uniqueness of certain semantic arguments) are not
enforced by the parsing strategy. The power of the ISBN architecture seems to allow
the model to learn to enforce these constraints itself, which Merlo and Musillo (2008)
found to be adequate. Also, the parsing strategy does not attempt to sum over different
derivations for the same structure, and does not try to optimize any measure other than
exact match for the complete syntactic–semantic structure.

6. Monolingual and Multilingual Experiments

To test the design of the syntax semantic interface and the use of a latent variable model,
we train and evaluate our models on data provided for the CoNLL-2008 shared task on
joint learning of syntactic and semantic dependencies for English. Furthermore, we test
the cross-linguistic generality of these models on data from the CoNLL-2009 shared task
for seven languages.9

In our experiments, we use the measures of performance used in the CoNLL-2008
and CoNLL-2009 shared tasks, typical of dependency parsing and semantic role label-
ing. Syntactic performance is measured by the percentage of correct labeled attachments
(LAS in the tables). Semantic performance is indicated by the F-measure on precision
and recall on semantic arcs plus predicate sense labels (indicated as Semantic measures
in the table). For the CoNLL-2008 scores the predicate sense labeling includes predicate
identification, but for the CoNLL-2009 scores predicate identification was given in the
task input. The syntactic LAS and the semantic F1 are then averaged with equal weight
to produce an overall score called Macro F1.10 When we evaluate the impact of the
Swap action on crossing arcs, we also calculate precision, recall, and F-measure on
pairs of crossing arcs.11 In our experiments, the statistical significance levels we report
are all computed using a stratified shuffling test (Cohen 1995; Yeh 2000) with 10,000
randomized trials.

6.1 Monolingual Experimental Set-up

We start by describing the monolingual English experiments. We train and evaluate our
English models on data provided for the CoNLL-2008 shared task on joint learning of
syntactic and semantic dependencies. The data is derived by merging a dependency
transformation of the Penn Treebank with PropBank and NomBank (Surdeanu et al.
2008). An illustrative example of the kind of labeled structures that we need to parse
is given in Figure 3. Training, development, and test data follow the usual partition as
sections 02–21, 24, and 23 of the Penn Treebank, respectively. More details and references
on the data, on the conversion of the Penn Treebank format to dependencies, and on the
experimental set-up are given in Surdeanu et al. (2008).

We set the size of the latent variable vector to 80 units, and the word frequency
cut-off to 20, resulting in a vocabulary of only 4,000 words. These two parameters were
chosen initially based on previous experience with syntactic dependency parsing (Titov

9 Code and models for the experiments on the CoNLL-2009 shared task data are available at
http://clcl.unige.ch/SOFTWARE.html.

10 It should be pointed out that, despite the name, this Macro F1 is not a harmonic mean. Also, this measure
does not evaluate the syntactic and semantic parts jointly, hence it does not guarantee coherence of the
two parts. In practice, the better the syntactic and semantic parts, the more they will be coherent,
as indicated by the exact match measure.

11 In the case of multiple crossings, an arc can be a member of more than one pair.
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and Henderson 2007b, 2007d). Additionally, preliminary experiments on the develop-
ment set indicated that larger cut-offs and smaller dimensionality of the latent variable
vector results in a sizable decrease in performance. We did not experiment with decreas-
ing cut-off parameters or increasing the latent space dimensionality beyond these values
as it would adversely affect the efficiency of the model. The efficiency of the model is
discussed in more detail in Section 6.5.

We use a beam size of 50 to prune derivations after each Shift operation, and a
branching factor of 3. Larger beam sizes, within a tractable range, did not seem to result
in any noticeable improvement in performance on the held-out development set. We
compare several experiments in which we manipulate the connectivity of the model
and the allowed operations.

6.2 Joint Learning and the Connectivity of the Model

The main idea inspiring our model of parsing syntactic and semantic dependencies
is that these two levels of representations are closely correlated and that they should
be learned together. Moreover, because the exact nature of these correlations is not
always understood or is too complex to annotate explicitly, we learn them through
latent variables. Similarly, we argued that the latent representation can act as a shared
representation needed for successful multi-task learning.

The first set of monolingual experiments, then, validates the latent-variable model,
specifically its pattern of connectivity within levels of representation and across levels.
We tested three different connectivity models by performing two ablation studies. In
these experiments, we compare the full connectivity and full power of latent variable
joint learning to a model where the connections from syntax to semantics, indicated as
the Syn-Sem connections in Table 2, were removed, and to a second model where all the
connections to the semantic layer—both those coming from syntax and those between
semantic decisions, indicated as the Sem-Sem and Syn-Sem connections in Table 2—
were removed. While in all these models the connections between the latent vectors
specified in Table 2 were modified, the set of explicit features defined in Table 3 was
left unchanged. This is a rich set of explicit features that includes features of the syntax
relevant to semantic decisions, so, although we expect a degradation, we also expect
that it is still possible, to a certain extent, to produce accurate semantic decisions without
exploiting latent-to-latent connections. Also, for all these models, parsing searches for
the most probable joint analysis of syntactic and semantic dependencies.

Results of these experiments are shown in Table 4, indicating that there is a degra-
dation in performance in the ablated models. Both the differences in the Semantic recall
and F1 scores and the differences in the Macro recall and F1 scores between the fully
connected model (first line) and the model with semantic connections only (second line)

Table 4
Scores on the development set of the CoNLL-2008 shared task (percentages).

Syntactic Semantic Macro

LAS P R F1 P R F1

Fully connected 86.6 79.6 73.1 76.2 83.1 79.9 81.5
No connections syntax to semantics 86.6 79.5 70.9 74.9 83.0 78.8 80.8
No connections to semantics 86.6 79.5 70.1 74.5 83.0 78.3 80.6
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are statistically significant at p = 0.05. Between the model with no connections from
syntax (second line) and the one where all the connections to semantics are removed
(third line), the differences between the Semantic recall and F1 scores and the difference
between the Macro F1 scores are statistically significant at p = 0.05.

These results enable us to draw several conclusions. First, the fact that the model
with the full connections reaches better performance than the ablated one with no
connections from syntax to semantics shows that latent variables do facilitate the joint
learning of syntax and semantics (Table 4, first vs. second line). This result shows
that joint learning can be beneficial to parsing syntactic and semantic representations.
Only the fully connected model allows the learning of the two derivations to influence
each other; without the latent-to-latent connections between syntax and semantics,
each half of the model can be trained independently of the other. Also, this result
cannot be explained as an effect of joint decoding, because both models use a parsing
algorithm that maximizes the joint probability. Secondly, the second ablation study
indicates that semantic connections do not help much above the presence of a rich set
of semantic and syntactic features (Table 4, second vs. third line). Also, the fact that
the degradation of the ablated models results mostly in a decrease in recall indicates
that, in a situation of more limited information, the system is choosing the safer option
of not outputting any label. This is the default option as the semantic annotation is
very sparse.

We also find that joint learning does not significantly degrade the accuracy of the
syntactic parsing model. To test this, we trained a syntactic parsing model with the
same features and the same pattern of interconnections as used for the syntactic states
in our joint model. The resulting labeled attachment score was non-significantly better
(0.2%) than the score for the joint model. Even if this difference is not noise, it could
easily be explained as an effect of joint decoding, rather than joint learning, because
decoding with the syntax-only model optimizes just the syntactic probability. Indeed,
Henderson et al. (2008) found a larger degradation in syntactic accuracy as a direct
result of joint decoding, and even a small improvement in syntactic accuracy as a result
of joint learning with semantic roles if decoding optimizes just the syntactic probability,
by marginalizing out the semantics during decoding with the joint model.12

The standard measures used in the CoNLL-2008 and CoNLL-2009 shared tasks to
evaluate semantic performance score semantic arcs independently of one another and
ignored the whole propositional argument-structure of the predicates. As suggested
in Toutanova, Haghighi, and Manning (2008), such measures are only indirectly relevant
to those potential applications of semantic role labeling such as information extraction
and question answering that require the whole propositional content associated with a
predicate to be recovered in order to be effective.

To address this issue with the standard measures of semantic performance and
further clarify the differences in performance between the three distinct connectivity
models, we report precision, recall, and F-measure on whole propositions consisting of
a predicate and all its core arguments and modifiers. These measures are indicated as
Proposition measures in Table 5. According to these measures, a predicted proposition
is correct only if it exactly matches a corresponding proposition in the gold-standard
data set.

12 This result was for a less interconnected model than the one we use here. This allowed them to compute
the marginalization efficiently, whereas this would not be possible in our model. Hence, we did not
attempt to perform this type of decoding for our joint model.
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Table 5
Proposition scores on the development set of the CoNLL-2008 shared task (percentages).

Proposition

P R F1

Fully connected 49.0 46.5 47.7
No connections syntax to semantics 48.0 44.3 46.1
No connections within semantics 45.8 42.2 43.9

These results are reported in Table 5. The differences in precision, recall, and F1 are
all statistically significant at p = 0.05. These results clearly indicate that the connectivity
of latent vectors both within representational layers and across them influences the
accuracy of recovering the whole propositional content associated with predicates. In
particular, our model connecting the latent vectors within the semantic layer signifi-
cantly improves both the precision and the recall of the predicted propositions over
the model where these connections are removed (second vs. third line). Furthermore,
the model integrating both the connections from syntax to semantics and the connec-
tions within semantics significantly outperforms the model with no connections from
syntax to semantics (first vs. second line). Overall, these results suggest that whole
propositions are best learned jointly by connecting latent vectors, even when these
latent vectors are conditioned on a rich set of predefined features, including semantic
siblings.

Table 4 and Table 5 together suggest that although the three models output a similar
number of correct argument labels (semantic P column of Table 4), the mistakes are
not uniformly distributed across sentences and propositions in the three models. We
hypothesize that the ablated models are more often correct on the easy cases, whereas
the fully connected model is more able to learn complex regularities.

To test this intuition we develop a measure of sentence complexity, and we disag-
gregate the accuracy results according to the different levels of complexity. Sentence
complexity is measured in two different ways, as the total number of propositions in a
sentence, and as the total number of arguments and predicates in the sentence. We also
vary the measure of performance: We calculate the F1 of correct propositions and the
usual arguments and predicates semantic F1 measure.

Results are reported in Figure 11, which plots the F1 values against the sentence
complexity measures. Precision and recall are not reported as they show the same
trends. These results confirm that there is a trend for better performance in the complex
cases for the full model compared with the other two models. For simpler sentences,
the explicit features are apparently adequate to perform at least as well as the full
model, and sometimes better. But for complex sentences, the ability to pass information
through the latent variables gives the full model an advantage. The effect is robust as it
is confirmed for both methods of measuring complexity and both methods of measuring
performance.

From this set of experiments and analyses, we can conclude that our system suc-
cessfully learns a common hidden representation for this multitask learning problem,
and thereby achieves important gains from joint parameter estimation. We found these
gains only in semantic role labeling. Although the syntactic parses produced were
different for the different models, in these experiments the total syntactic accuracy was
on average the same across models. This does not imply, however, that joint learning of
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Figure 11
Plots of how the parser accuracy varies as the semantic complexity of sentences vary. The y-axis
values are calculated by binning sentences according to their x-axis values, with the plotted
points showing the maximum value of each bin.

the syntactic latent representations was not useful. The fact that adding connections to
semantics from the syntactic latent variables results in changes in syntactic parses and
large gains in semantic accuracy suggests that joint learning adapts the syntactic latent
variables to the needs of semantic parsing decisions.

6.3 Usefulness of the Swap Operation

One specific adaptation of our model to processing the specific nature of semantic
dependency graphs was the introduction of the new Swap action. To test the usefulness
of this additional action, we compare several experiments in which we manipulate
different variants of on-line planarization techniques for the semantic component of
the model. These experiments were run on the development set. The models are listed
in Table 6. We compare the use of the Swap operation to two baselines. The first baseline
(second line) uses Nivre and Nilsson’s (2005) HEAD label propagation technique to
planarize the syntactic tree, extended to semantic graphs following Henderson et al.
(2008). The second baseline is an even simpler baseline that only allows planar graphs,
and therefore fails on non-planar graphs (third line). In training, if a model fails to parse
an entire sentence, it is still trained on the partial derivation.

The results of these experiments are shown in Table 6. The results are clear. If we
look at the left panel of Table 6 (CoNLL Measures), we see that the Swap operation per-
forms the best, with this on-line planarization outperforming the extension of Nivre’s
HEAD technique to semantic graphs (second line) and the simplistic baseline. Clearly,
the improvement is due to better recall on the crossing arcs, as shown by the right-hand
panel.
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Table 6
Scores on the development set (percentages).

CONLL MEASURES CROSSING ARCS

TECHNIQUE Syntactic Semantic Macro Semantics
LAS F1 F1 P R F1

Swap 86.6 76.2 81.5 61.5 25.6 36.1
HEAD 86.7 73.3 80.1 78.6 2.2 4.2
PLANAR 85.9 72.8 79.4 undefined 0 undefined

6.4 Monolingual Test Set Results

The previous experiments were both run on the development set. The best performing
model used the full set of connections and the Swap operation. This model was then
tested on the test set from the CoNLL-2008 shared task. Results of all the experiments
on the test sets are summarized in Table 7. These results on the complete test set
(WSJ+Brown) are compared with some models that participated in the CoNLL-2008
shared task in Table 8. The models listed were chosen among the 20 participating
systems either because they had better results or because they learned the two repre-
sentations jointly, as will be discussed in Section 7.

One comparison in Table 8 that is relevant to the discussion of the properties of
our system is the comparison to our own previous model, which did not use the Swap
operation, but used the HEAD planarization method instead (Henderson et al. 2008).
Although the already competitive syntactic performance is not significantly degraded
by adding the Swap operation, there is a large improvement of 3% on the semantic
graphs. This score approaches those of the best systems. As the right-hand panel on
crossing arcs indicates, this improvement is due to better recall on crossing arcs.

In this article, we have explored the hypothesis that complex syntactic–semantic
representations can be learned jointly and that the complex relationship between these
two levels of representation and between the two tasks is better captured through latent
variables. Although these experiments clearly indicate that, in our system, joint learning
of syntax and semantics performs better than the models without joint learning, four
systems in the CoNLL-2008 shared task can report better performance for English than
what is described in this article. These results are shown in the CoNLL Measures column
of Table 8.

The best performing system learns the two representations separately, with a
pipeline of state-of-the-art systems, and then reranks the joint representation in a

Table 7
Scores of the fully connected model on the final testing sets of the CoNLL-2008 shared task
(percentages).

Syntactic Semantic Macro
LAS P R F1 P R F1

WSJ 88.4 79.9 75.5 77.6 84.2 82.0 83.0
Brown 80.4 65.9 60.8 63.3 73.1 70.6 71.8
WSJ+Brown 87.5 78.4 73.9 76.1 83.0 80.7 81.8
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Table 8
Comparison with other models on the CoNLL-2008 test set (percentages).

CONLL MEASURES CROSSING ARCS

MODEL Synt Semantic Macro Semantics
LAS F1 F1 P R F1

Johansson and Nugues (2008b) 89.3 81.6 85.5 67.0 44.5 53.5
Ciaramita et al. (2008) 87.4 78.0 82.7 59.9 34.2 43.5
Che et al. (2008) 86.7 78.5 82.7 56.9 32.4 41.3
Zhao and Kit (2008) 87.7 76.7 82.2 58.5 36.1 44.6
This article 87.5 76.1 81.8 62.1 29.4 39.9
Henderson et al. (2008) 87.6 73.1 80.5 72.6 1.7 3.3
Lluı́s and Màrquez (2008) 85.8 70.3 78.1 53.8 19.2 28.3

final step (Johansson and Nugues 2008b). Similarly, Che et al. (2008) also implement
a pipeline consisting of state-of-the-art components where the final inference stage
is performed using Integer Linear Programming to ensure global coherence of the
output. The other two better performing systems use ensemble learning techniques
(Ciaramita et al. 2008; Zhao and Kit 2008). Comparing our system to these other
systems on a benchmark task for English, we can confirm that joint learning is a
promising technique, but that on this task it does not outperform reranking or en-
semble techniques. Our system’s architecture is, however, simpler, in that it consists
of a single generative model. We conjecture that the total development time for our
system is consequently much lower, if the development time for all the components are
added up.

These competitive results, despite using a relatively simple architecture and a rel-
atively small vocabulary, indicate the success of our approach of synchronizing two
separate derivations and using latent variables to learn the correlations. This success
is achieved despite the model’s fairly weak assumptions about the nature of these
correlations, thus demonstrating that this architecture is clearly very adaptive and
provides a strong form of smoothing. These are important properties, particularly when
developing new systems for languages or annotations that have not received the inten-
sive development effort that has English Penn Treebank syntactic parsing and English
PropBank semantic role labeling. In the next section, we test the extent of this robustness
by using the same approach to build parsers for several languages, and compare against
other approaches when they are required to produce systems for multiple languages
and annotations.

6.5 Multilingual Experiments

The availability of syntactically annotated corpora for multiple languages (Nivre et al.
2007) has provided a new opportunity for evaluating the cross-linguistic validity of sta-
tistical models of syntactic structure. This opportunity has been significantly expanded
with the creation and annotation of syntactic and semantic resources in seven languages
(Hajič et al. 2009) belonging to several different language families. This data set was
released for the CoNLL-2009 shared task.

To evaluate the ability of our model to generalize across languages, we take the
model as it was developed for English and apply it directly to all of the six other

982



Henderson et al. Joint Syntactic and Semantic Parsing

languages.13 The only adaptation of the code was done to handle differences in the data
format. Although this consistency across languages was not a requirement of the shared
task—individual-language optimization was allowed, and indeed was performed by
many teams—the use of latent variables to induce features automatically from the data
gives our method the adaptability necessary to perform well across all seven languages,
and demonstrates the lack of language specificity in the models.

The data and set-up correspond to the joint task of the closed challenge of the
CoNLL-2009 shared task, as described in Hajič et al. (2009).14 The scoring measures are
the same as those for the previous experiments.

We made two modifications to reflect differences in the annotation of these data
from the experiments reported in the previous section (based on CoNLL-2008 shared
task data). The system was adapted to use two features not provided in the previous
shared task: automatically predicted morphological features15 and features specifying
which words were annotated as predicates.16 Both these features resulted in improved
accuracy for all the languages. We also made use of one type of feature that had
previously been found not to result in any improvement for English, but resulted in
some overall improvement across the languages.17

Also, in comparison with previous experiments, the search beam used in the pars-
ing phase was increased from 50 to up to 80, producing a small improvement in the
overall development score. The vocabulary frequency cut-off was also changed to 5,
from 20. All the development effort to change from the English-only 2008 task to the
multilingual 2009 task took about two person-months, mostly by someone who had no
previous experience with the system. Most of this time was spent on the differences in
the task definition between the 2008 and 2009 shared tasks.

The official results on the testing set and out of domain data are shown in Tables 9,
10, and 11. The best results across systems participating in the CoNLL-2009 shared task
are shown in bold. There was only a 0.5% difference between our average macro F1
score and that of the best system, and there was a 1.29% difference between our score
and the fourth ranked system. The differences between our average scores reported in
Tables 9, 10, and 11 and the average scores achieved by the other systems participating
in the shared task are all statistically significant at p = 0.05.

13 An initial report on this work was presented in the CoNLL-2009 Shared Task volume (Gesmundo et al.
2009).

14 The data sets used in this challenge are described in Taulé, Martı̀, and Recasens (2008) (Catalan and
Spanish), Xue and Palmer (2009) (Chinese), Hajič (2004), Čmejrek, Hajič, and Kuboň (2004) (Czech),
Surdeanu et al. (2008) (English), Burchardt et al. (2006) (German), and Kawahara, Sadao, and Hasida
(2002) (Japanese).

15 Morphological features of a word are not conditionally independent. To integrate them into a generative
model, one needs to either make some independence assumptions or model sets of features as atomic
feature bundles. In our model, morphological features are treated as an atomic bundle, when computing
the probability of the word before shifting the previous word to the stack. When estimating probabilities
of future actions, however, we condition latent variables on elementary morphological features of the
words.

16 Because the testing data included a specification of which words were annotated as predicates, we
constrained the parser’s output so as to be consistent with this specification. For rare predicates, if the
predicate was not in the parser’s lexicon (extracted from the training set), then a frameset was taken from
the list of framesets reported in the resources available for the closed challenge. If this information was
not available, then a default frameset name was constructed based on the automatically predicted lemma
of the predicate.

17 When predicting a semantic arc between the word on the front of the queue and the word on the top of
the stack, these features explicitly specify any syntactic dependency already predicted between the same
two words.
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Table 9
The three main scores for our system. Rank indicates ranking in the CoNLL 2009 shared task.
Best results across systems are marked in bold.

Rank Average Catalan Chinese Czech English German Japanese Spanish

Macro F1 3 82.14 82.66 76.15 83.21 86.03 79.59 84.91 82.43
Syntactic LAS 1 85.77 87.86 76.11 80.38 88.79 87.29 92.34 87.64
Semantic F1 3 78.42 77.44 76.05 86.02 83.24 71.78 77.23 77.19

Table 10
Semantic precision and recall and macro precision and recall for our system. Rank indicates
ranking in the CoNLL-2009 shared task. Best results across systems are marked in bold.

Rank Ave Catalan Chinese Czech English German Japanese Spanish

semantic Prec 3 81.60 79.08 80.93 87.45 84.92 75.60 83.75 79.44
semantic Rec 3 75.56 75.87 71.73 84.64 81.63 68.33 71.65 75.05
macro Prec 2 83.68 83.47 78.52 83.91 86.86 81.44 88.05 83.54
macro Rec 3 80.66 81.86 73.92 82.51 85.21 77.81 81.99 81.35

Table 11
Results on out-of-domain for our system. Rank indicates ranking in the CoNLL-2009 shared
task. Best results across systems are marked in bold.

Rank Ave Czech-ood English-ood German-ood

Macro F1 3 75.93 80.70 75.76 71.32
Syntactic LAS 2 78.01 76.41 80.84 76.77
Semantic F1 3 73.63 84.99 70.65 65.25

Despite the good results, a more detailed analysis of the source of errors seems
to indicate that our system is still having trouble with crossing dependencies, even
after the introduction of the Swap operation. In Table 8, our recall on English crossing
semantic dependencies is relatively low. Some statistics that illustrate the nature of the
input and could explain some of the errors are shown in Table 12. As can be observed,
semantic representations often have many more crossing arcs than syntactic ones, and
they often do not form a fully connected tree, as each proposition is represented by an
independent treelet. We observe that, with the exception of German, we do relatively
well on those languages that do not have crossing arcs, such as Catalan and Spanish, or
have even large amounts of crossing arcs that can be parsed with the Swap operation,
such as Czech. As indicated in Table 12, only 2% of Czech sentences are unparsable,
despite 16% requiring the Swap action.

6.6 Experiments on Training and Parsing Speed

The training and parsing times for our models are reported in Table 13, using the same
meta-parameters (discussed subsequently) as for the accuracies reported in the previous
section, which optimize accuracy at the expense of speed. Training times are mostly
affected by data-set size, which increases the time taken for each iteration. This is not
only because the full training set must be processed, but also because a larger data set
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Table 12
For each language, percentage of training sentences with crossing arcs in syntax and semantics,
with semantic arcs forming a tree, and which were not parsable using the Swap action, as well as
the performance of our system in the CoNLL-2009 shared task by syntactic accuracy and
semantic F1.

Syntactic Semantic Semantic Not Macro LAS Sem
crossings crossings tree parsable F1 (rank) F1 (rank)

Catalan 0.0 0.0 61.4 0.0 82.7 87.9 (1) 77.4 (2)
Chinese 0.0 28.0 28.6 9.5 76.1 76.1 (4) 76.1 (4)
Czech 22.4 16.3 6.1 1.8 83.2 80.4 (1) 86.0 (2)
English 7.6 43.9 21.4 3.9 83.2 88.8 (3) 83.2 (4)
German 28.1 1.3 97.4 0.0 79.6 87.3 (2) 71.8 (5)
Japanese 0.9 38.3 11.2 14.4 84.9 92.3 (2) 77.2 (4)
Spanish 0.0 0.0 57.1 0.0 82.4 87.6 (1) 77.2 (2)

Table 13
Parsing and training times for different languages, run on a 3.4 GHz machine with 16 GB of
memory. Parsing times computed on the test set. Indicators of SRL complexity provided for
comparison.

Average Catalan Chinese Czech English German Japanese Spanish

Training time (hours, full set) 21.28 12.76 33.31 46.27 22.91 14.58 5.02 14.12
(sec, per word per iteration) 0.0033 0.0032 0.0043 0.0048 0.0026 0.0021 0.0030 0.0030

Parsing time (sec, per sentence) 4.415 3.257 11.119 6.985 5.443 0.805 1.006 2.293
(sec, per word per beam) 0.0032 0.0019 0.0049 0.0041 0.0028 0.0013 0.0037 0.0020

Training words 542,657 390,302 609,060 652,393 958,167 648,677 112,555 427,442
Parsing words per sentence 22.4 30.8 28.2 16.8 25.0 16.0 26.4 30.4

SRL complexity (% predicates) 20.6 9.6 16.9 63.5 18.7 2.7 22.8 10.3
(% crossing) 18.3 0.0 28.0 16.3 43.9 1.3 38.3 0.0

tends to result in more parameters to train, including larger vocabulary sizes. Also,
larger data sets tend to result in more iterations of training, which further increases
training times. Normalizing for data-set size and number of iterations (second row of
Table 13), we get fairly consistent speeds across languages. The remaining differences
are correlated with the number of parameters in the model, and with the proportion
of words which are predicates in the SRL annotation, shown in the bottom panel of
Table 13.

Parsing times are more variable, even when normalizing for the number of sen-
tences in the data set, as shown in the third row of Table 13. As discussed earlier, this
is in part an effect of the different beam widths used for different languages, and the
different distributions of sentence lengths. If we divide times by beam width and by
average sentence length (fourth row of Table 13), we get more consistent numbers, but
still with a lot of variation.18 These differences are in part explained by the relative
complexity of the SRL annotation in the different languages. They are correlated with
both the percentage of words that are predicates and the percentage of sentences that

18 Dividing by the average square of the sentence length does not result in more consistent values than
dividing by the average length.
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Figure 12
The parsing time for each sentence in the English development set, with a search beam width of
80, plotted against its length (up to length 70). The curve is the best fitting quadratic function
with zero intercept.

have crossing arcs in the SRL, shown in the bottom panel of Table 13. Crossing arcs
result in increased parsing times because choosing when to apply the Swap action is
difficult and complicates the search space.

As discussed in Section 5.2, the parsing strategy prunes to a fixed beam of alter-
natives only after the shifting of each word, and between shifts it only constrains the
branching factor of the search. Because of this second phase, parsing time is quadratic
as a function of sentence length. As a typical example, the distribution of parsing times
for English sentences is shown in Figure 12. The function of sentence length that best
fits this distribution of seconds per sentence is the quadratic function 0.078n + 0.0053n2,
also shown in Figure 12. In this function, the linear factor is 15 times larger than the
quadratic factor. Fitting a cubic function does not account for any more variance than
this quadratic function. The best fitting function for Catalan is −0.0040n + 0.0031n2, for
Chinese is 0.16n + 0.0057n2, for Czech is −0.00068n + 0.012n2, for German is 0.020n +
0.0015n2, for Japanese is −0.0013n + 0.0011n2, and for Spanish is 0.0083n + 0.0018n2. As
with English, Chinese and German have larger linear terms, but the second-order term
dominates for Catalan, Czech, Japanese, and Spanish. It is not clear what causes these
differences in the shape of the curve.

One of the characteristics of our model is that it makes no independence assump-
tions and deals with the large space of alternatives by pruning. The size of the pruning
beam determines speed and accuracy. Figure 13 shows how the accuracy of the parser
degrades as we speed it up by decreasing the search beam used in parsing, for each lan-
guage’s development set. For some languages, a slightly smaller search beam is actually
more accurate, and we used this smaller beam when running the given evaluations on
the testing set. But in each case the beam was set to maximize accuracy at the expense
of speed, without considering beam widths greater than 80. For some languages, in
particular Czech and Chinese, the accuracy increase from a larger beam is relatively
large. It is not clear whether this is due to the language, the annotation, or our definition
of derivations. For smaller beams the trade-off of accuracy versus words-per-second is
roughly linear. Comparing parsing time per word directly to beam width, there is also
a linear relationship, with a zero intercept.19

19 When discussing timing, we use “word” to refer to any token in the input string, including punctuation.
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Figure 13
Difference in development set macro F1 as the search beam is decreased from 80 to 40, 20, 10,
and 5, plotted against parser speed.

It is possible to increase both parsing and training speeds, potentially at the expense
of some loss in parsing accuracy, by decreasing the size of the latent variable vectors,
and by increasing the vocabulary frequency threshold. For all the results reported in
this section, all languages used a latent vector size of 80 and a vocabulary frequency
threshold of 5, which were set to be large enough not to harm accuracy. Figure 14
summarizes the speed–accuracy trade-off for parsing English as these parameters are
varied. Training times were more variable due to differences in the number of iterations
and the decreases tended to be smaller. As Figure 14 shows, some speed-up can be
achieved with little change in accuracy by using smaller latent vectors and smaller
vocabularies, but the accuracy quickly drops when these parameters are set too low.
For this data set, there is actually a small increase in accuracy with a small decrease
in the vocabulary size, probably due to smoothing effects, but this trend is limited
and variable. In contrast, much larger efficiency gains can be achieved by reducing
the search beam width. Varying the parameters together produced a range of similar

Figure 14
The parsing speed-accuracy trade-off when changing the meta-parameters of the model, on the
English CoNLL-2009 development set. The vocabulary frequency threshold is increased from 5
to 10, 20, 30, 40, 60, 80, 120, and 160. The latent vector size is reduced from 80 to 70, 60, 50, and
40. The search beam width is reduced from 80 to 40, 20, 10, 5, and 3. The best combination keeps
the vocabulary frequency threshold at 10 and reduces the search beam width as above.
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curves, bounded by the “best combination” shown. These experiments achieved a 96%
reduction in parsing time with an absolute reduction in parsing accuracy of only 0.2%,
which is not generally considered a meaningful difference. This results in a parsing
speed of 0.010 seconds per word. All other things being equal, both training and parsing
times asymptotically scale quadratically with the latent vector size, due to the latent-to-
latent connections in the model. Training and parsing times asymptotically scale linearly
with vocabulary size, and vocabulary size can be expected to increase superlinearly
with the value of the frequency threshold.

7. Related Work

In this article, we report on a joint generative history-based model to predict the most
likely derivation of a dependency parser for both syntactic and semantic dependencies.
In answer to the first question raised in the Introduction, we provide a precise proposal
for the interface between syntactic dependencies and semantic roles dependencies,
based on a weak synchronization of meaningful subsequences of the two derivations.
We also propose a novel operation for semantic dependency derivations. In answer
to the second question raised in the Introduction, we investigate issues related to the
joint learning of syntactic and semantic dependencies. To train a joint model of their
synchronized derivations, we make use of latent variable models of parsing and of
estimation methods adapted to these models. Both these contributions have a rich
context of related work that is discussed further here.

7.1 The Syntactic–Semantic Interface

The main feature of our proposal about the syntactic–semantic interface is based on the
observation that the syntactic and the semantic representations are not isomorphic. We
propose therefore a weak form of synchronization based on derivation subsequences.
These synchronized subsequences encompass decisions about the left side of each
individual word.

Other work has investigated the complex issue of the syntax–semantics interface.
Li, Zhou, and Ng (2010) systematically explore different levels of integration of phrase-
structure syntactic parsing and SRL for Chinese. Although the syntactic representations
are too different for a direct comparison to our Chinese results, they provide results
of general interest. Li, Zhou, and Ng compare two models of tight coupling of syntax
and semantics and show that both joint approaches improve performance compared
to a strong n-best pipeline approach. The first model interleaves SRL labeling at each
completed constituent of a bottom–up multi-pass parser, inspired by Ratnaparkhi’s
(1999) model. This model thus learns the conditional probability of each individual
semantic role assignment, conditioned on the whole portion of the syntactic structure
that is likely to affect the assignment (as indicated by the fact that the value of the
features is the same as when the whole tree is available). This model improves on the
n-best pipeline model, although the improvement on parsing is not significant. A second
model manages the harder task of improving the syntactic score, but requires feature
selection from the SRL task. These best-performing features are then added to the
syntactic parser by design. Although these results confirm the intuition that syntactic
and semantic information influence each other, they also, like ours, find that it is not
trivial to develop systems that actually succeed in exploiting this intuitively obvious
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correlation. Li, Zhou, and Ng’s approach is also different from ours in that they do not
attempt to induce common representations useful for both tasks or for many languages,
and as such cannot be regarded as multi-task, nor as multilingual, learning.

Synchronous grammars provide an elegant way to handle multiple levels of repre-
sentation. They have received much attention because of their applications in syntax-
based statistical machine translation (Galley et al. 2004; Chiang 2005; Nesson and
Shieber 2008) and semantic parsing (Wong and Mooney 2006, 2007). Results indicate
that these techniques are among the best both in machine translation and in the database
query domain. Our method differs from those techniques that use a synchronous
grammar, because we do not rewrite pairs of synchronized non-terminals, but instead
synchronize chunks of derivation sequences. This difference is in part motivated by
the fact that the strings for our two structures are perfectly aligned (being the same
string), so synchronizing on the chunks of derivations associated with individual words
eliminates any further alignment issues.

We have also proposed novel derivations for semantic dependency structures,
which are appropriate for the relatively unconstrained nature of these graphs. Our
Swap operation differs from the reordering that occurs in synchronous grammars in
that its goal is to uncross arcs, rather than to change the order of the target string. The
switching of elements of the semantic structure used in Wong and Mooney (2007) is
more similar to the word reordering technique of Hajičová et al. (2004) than to our Swap
operation, because the reordering occurs before, rather than during, the derivation. The
notion of planarity has been widely discussed in many works cited herein, and in the
dependency parsing literature. Approaches to dealing with non-planar graphs belong
to two conceptual groups: those that manipulate the graph, either by pre-processing
or by post-processing (Hall and Novak 2005; McDonald and Pereira 2006), and those
that adapt the algorithm to deal with non-planarity. Among the approaches that, like
ours, devise an algorithm to deal with non-planarity, Yngve (1960) proposed a limited
manipulation of registers to handle discontinuous constituents, which guaranteed that
parsing/generation could be performed with a stack of very limited depth. An ap-
proach to non-planar parsing that is more similar to ours has been proposed in Attardi
(2006). Attardi’s dependency parsing algorithm adds six new actions that allow this
algorithm to parse any type of non-planar tree. Our Swap action is related to Attardi’s
actions Left2 and Right2, which create dependency arcs between the second element on
the stack and the front of the input queue. In the Attardi algorithm, every attachment to
an element below the top of the stack requires the use of one of the new actions, whose
frequency is much lower than the normal attachment actions, and therefore harder
to learn. This contrasts with the Swap action, which handles reordering with a single
action, and the normal attachment operations are used to make all attachments to the
reordered word. Though much simpler, this single action can handle the vast majority of
crossing arcs that occur in the data. Nivre (2008, 2009) presents the formal properties of
a Swap action for dependency grammars that enables parsing of non-planar structures.
The formal specifications of this action are different from the specifications of the action
proposed here. Nivre’s action can swap terminals repeatedly and move them down to
an arbitrary point into the stack. This Swap action can potentially generate word orders
that cannot be produced by only swapping the two top-most elements in the stack.
When defining the oracle parsing order for training, however, Nivre (2008, 2009) as-
sumes that the dependency structure can be planarized by changing the order of words.
This is not true for many of the semantic dependency graphs, because they are not trees.
More recently, Gómez-Rodrı́guez and Nivre (2010) proposed to use two stacks to parse
non-planar graphs. Though the resulting automata is probably expressive enough to
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handle complex semantic structures, predicting decisions in this representation can be
a challenging task.

7.2 Multi-task Learning and Latent Variables

In answer to the second question raised in the Introduction, we investigate issues related
to the joint learning of syntactic and semantic dependencies for these synchronized
derivations.

To train a joint model of these synchronized derivations, we make use of a latent
variable model of parsing. The ISBN architecture induces latent feature representations
of the derivations, which are used to discover correlations both within and between the
two derivations. This is the first application of ISBNs to a multi-task learning problem.
The automatic induction of features is particularly important for modeling the correla-
tions between the syntactic and semantic structures, because our prior knowledge about
the nature of these correlations is relatively weak compared to the correlations within
each single structure.

Other joint models do not perform as well as our system. In Lluı́s and Màrquez
(2008), a fully joint model is developed that learns the syntactic and semantic depen-
dencies together as a single structure whose factors are scored using a combination
of syntactic and semantic scores. This differentiates their approach from our model,
which learns two separate structures, one for syntax and one for semantics, and relies
on latent variables to represent the interdependencies between them. It is not clear
whether it is this difference in the way the models are parametrized or the difference
in the estimation techniques used that gives us better performance, but we believe
it is the former. These experimental results may be explained by theoretical results
demonstrating that pipelines can be preferable to joint learning when no shared hidden
representation is learned (Roth, Small, and Titov 2009). Previous work on joint phrase-
structure parsing and semantic role labeling also suggests that joint models of these two
tasks can achieve competitive results when latent representations are induced to inform
both tasks, as shown in Musillo and Merlo (2006) and Merlo and Musillo (2008).

The relevance of latent representations to joint modeling of NLP tasks is further
demonstrated by Collobert and Weston (2007, 2008). They propose a deep learning
architecture to solve a task closely related to semantic role labeling. This task is defined
as a tagging task: Those words in a sentence that correspond to an argument of a
predicate are all tagged with the semantic role label assigned to that argument and
those words that do not correspond to any argument of a predicate are tagged with
the null label. The accuracy for this sequence labeling task is defined as the proportion
of correctly tagged words. The learning architecture of Collobert and Weston (2008) is
designed to jointly learn word features across a variety of related tasks. Large gains
in accuracy for this semantic role tagging task are obtained when word features are
jointly learned with other tasks such as part-of-speech tagging, chunking, and language
modeling that are annotated on the same training data. Direct comparison with their
work is problematic as we focused in this article on the supervised setting and a
different form of semantic role labeling (predicting its dependency representation).20

Note, however, that our model can be potentially extended to induce a latent word

20 More recent work (Collobert et al. 2011) has evaluated a similar multi-task learning model in terms of
standard SRL evaluation measures, where they reach 74% F1 on the CoNLL-2005 data set without using
syntactic information and 76% F1 when they exploit a syntactic parse.
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representation shared across different tasks by introducing an additional layer of latent
variables, as for Collobert and Weston (2008).

Latent variable models that induce complex representations without estimating
them from equally complex annotated data have also been shown to be relevant
to single-structure prediction NLP tasks such as phrase-structure syntactic parsing
(Matsuzaki, Miyao, and Tsujii 2005; Prescher 2005; Petrov et al. 2006; Liang et al.
2007). Latent representations of syntactic structures are induced by decorating the
non-terminal symbols in the syntactic trees with hidden variables. The values of
these hidden variables thus refine the non-terminal labels, resulting in finer-grained
probabilistic context-free grammars than those that can be read off treebanks. Work
by Petrov et al. (2006) shows that state-of-the-art results can be achieved when the
space of grammars augmented with latent annotations is searched with the split-merge
heuristics. In contrast, our ISBN latent variable models do not require heuristics to
control the complexity of the augmented grammars or to search for predictive latent
representations. Furthermore, probabilistic context-free grammars augmented with
latent annotations do impose context-free independence assumptions between the
latent labels, contrary to our models. Finally, our ISBN models have been successfully
applied to both phrase-structure and dependency parsing. State-of-the-art results on
unlexicalized dependency parsing have recently been achieved with latent variable
probabilistic context-free grammars (Musillo and Merlo 2008; Musillo 2010). These
latent variable grammars are compact and interpretable from a linguistic perspective,
and they integrate grammar transforms that constrain the flow of latent information,
thereby drastically limiting the space of latent annotations. For example, they encode
the notion of X-bar projection in their constrained latent variables.

8. Conclusions and Future Work

The proposed joint model achieves competitive performance on both syntactic and
semantic dependency parsing for several languages. Our experiments also demonstrate
the benefit of joint learning of syntax and semantics. We believe that this success is due
to both the linguistically appropriate design of the synchronous parsing model and the
flexibility and power of the machine learning method.

This joint model of syntax and semantics has recently been applied to problems
where training data with gold annotation is available only for the syntactic side, while
the semantic role side is produced by automatic annotations, projected from a different
language (Van der Plas, Merlo, and Henderson 2011). The results show that joint learn-
ing can improve the quality of the semantic annotation in this setting, thereby extending
the range of techniques available for tasks and languages for which no annotation
exists.

The success of the proposed model also suggests that the same approach should
be applicable to other complex structured prediction tasks. In particular, this extension
of the ISBN architecture to weakly synchronized syntactic–semantic derivations is also
applicable to other problems where two independent, but related, representations are
being learned, such as syntax-based statistical machine translation.
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Maria Antònia Martı́, Lluı́s Màrquez,
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