
Book Reviews

Computational Semantics with Functional Programming

© 2012 Association for Computational Linguistics

Jan van Eijck∗ and Christina Unger‡

(∗CWI, Amsterdam and Utrecht University; ‡University of Bielefeld)

Cambridge: Cambridge University Press, 2010, xv+405 pp; hardbound,
ISBN 978-0-521-76030-0, $99.00; paperbound, ISBN 978-0-521-75760-7, $40.00

Reviewed by
Robin Cooper
University of Gothenburg

There has been a recent intensification of interest in “semantics” in computational
linguistics. I write the word in scare quotes because there are very different views of
what computational semantics is. Broadly, it divides into the view that word meaning
can be modeled in distributional terms and the view that meaning is to be viewed in
terms of model theory of the kind employed in formal semantics deriving from the
seminal work of Richard Montague (1974). This book is firmly placed in the latter logic-
based semantics camp.

If you want to learn about the logical approach to computational semantics there
are three basic texts you can go to: Blackburn and Bos (2005), which uses Prolog; Bird,
Klein, and Loper (2009, chapter 10), which covers the essential aspects of Blackburn
and Bos using Python within the popular Natural Language Toolkit (NLTK); and the
present book, which uses the functional programming language Haskell. All three of
these references will teach you both semantics and the required programming skills at
the same time. So how do you choose between them?

One relevant issue is the choice of programming language. Prolog, a logic program-
ming language, seems like a natural choice for logic-based semantics and, indeed, as
Blackburn and Bos show, it provides support for writing concise and transparent code
which is close to the kind of formalism used in theoretical logic-based semantics. It is not
without its problems, however. Prolog variables are associated with unification-based
binding, which is not the same as the kind of binding by quantifiers and operators that
is used in logic. A second problem is that Prolog is a relation-based language and does
not have a direct implementation of functions that return a value. Formal semantics
building on Montague’s work makes heavy use of the λ-calculus with λ-expressions
denoting functions, and semantic composition is largely defined in terms of function-
argument application. Blackburn and Bos implement a version of the λ-calculus in
Prolog but this leads to a third problem: Formal semantics uses a typed version of
the λ-calculus, yet standard Prolog is not a typed language (apart from making basic
distinctions between integers, lists, etc.). Python, being object-oriented, allows a partial
solution to the typing problem and it also has functions. It is a very flexible language
and allows transparent coding of semantic formalisms by its powerful string processing.
But coding semantic formalisms in terms of strings, although providing a great deal of
flexibility, does not give you the feeling that the language is providing support for or
insight into the logical operations that are being performed.

Van Eijck and Unger’s book enters into this discussion with Haskell, a language
based on the λ-calculus, with a strict typing system that requires the programmer
to declare the types of all objects that are to be used in a program. As a functional

Computational Linguistics Volume 38, Number 2

programming language (in the sense of being based on functions that take arguments
and return values) it comes with a proper logical notion of variable binding rather than
the unification variety. Furthermore, it has static typing, which means that it checks
your program for type errors at compile time. This means that if you have made an
error you do not have to wait until it shows up in some particular example at run time
(perhaps after you have delivered your system to your client). The core of this language
then provides exactly the tools that the logical semanticist needs. Here the semanticist
is getting real support from the language, not just the flexibility to implement what she
needs. A few words of caution are appropriate, however. If the type system that you
want to implement does not exactly match the type system of the programming lan-
guage, you may well be better off doing your implementation in a non-typed language
so that the two type systems do not interfere with each other, though how you feel about
this issue depends very much on your programming background and preferences.
Van Eijck and Unger show, in my view magnificently, that Haskell’s type system does
match the type system used in the classical approach to formal semantics. Some might
feel that there is a slight cost, in that direct implementation in Haskell involves using
Haskell’s syntax, which is a bit different from the kind of notation used in classical
formal semantics. Haskell’s syntax is extremely slick and concise. For example, it seems
to follow the philosophy: “Don’t put any kind of brackets around expressions, when
you could simply write them next to each other and the context will determine what
that means.” This can be initially unnerving to linguists used to more florid notations
with an element of redundancy.

One of the great contributions that Blackburn and Bos made was showing how
logic-based computational semantics can be connected to off-the-shelf first-order the-
orem provers and model builders such as Prover9 and Mace and showing how this
connection can be exploited in semantics and discourse processing. This work has also
been incorporated into the NLTK version of semantics. Although you will find discus-
sion of inference in van Eijck and Unger’s book, you will not find accounts of how to
connect to external theorem provers. This is probably a principled decision. If you learn
semantics from the Blackburn and Bos or NLTK texts you might be forgiven for coming
to the conclusion that the main aim of using the λ-calculus in linguistic semantics is to
get a compositional treatment that will always allow you to reduce a first-order formula
that can be sent off to a fast first-order theorem prover or model builder and you may
just miss their occasional references to the fact that not all natural language sentences
correspond to first-order formulae. This means that you will not be able to adequately
treat sentences containing certain generalized quantifiers such as most in most customers
prefer this product or intensional verbs such as want in I want to go to Chicago. Van
Eijck and Unger, on the other hand, have a fairly detailed discussion of generalized
quantifiers in Chapter 7 and devote the whole of Chapter 8 to intensionality. Although
it would, of course, be a challenge to cover all the major results of formal semantics
within a single introductory textbook on computational semantics, at the end of this
book one has the impression that we have the tools we need to go further, whereas with
the other introductions we have the impression that computational semantics deals with
expressions of natural language whose interpretations can be represented in first-order
logic.

In general, van Eijck and Unger place semantics in a broader philosophical and
logical setting. Chapter 1 deals with the formal, logical approach to natural language,
and Chapter 2 with the tools used in functional programming. Chapter 3 provides a
practical introduction to the parts of the programming language Haskell that you need
to know in order to be able to follow the book. Chapters 4 and 5 deal, respectively, with

448

Book Reviews

syntax and semantics for fragments. The intention here was, I imagine, to introduce
things gently by starting with the syntax of games rather than of languages. I was
not sure that this was the most useful way to introduce things for linguists. It was not
entirely clear to me what the syntax of a game was meant to represent (the game itself?,
the language you use when playing the game or when describing the game?) and this
was not helped by having the semantics coming in the next chapter after discussing the
syntax of a fragment of English, propositional logic, predicate logic, and an extension
of predicate logic with function symbols. Chapter 6 deals with model checking with
predicate logic, and finally with Chapter 7 we get down to some serious compositional
semantics for natural language. The remaining chapters build on this and deal with
more advanced topics: intensionality in Chapter 8, parsing in Chapter 9, quantifier
scope in Chapter 10, continuation semantics in Chapter 11, discourse representation
in Chapter 12, and communication and information in Chapter 13. If you make it to the
end, the Afterword tells you to treat yourself to a beer as a reward.

As stated in the Preface, the book is directed to linguists, logicians, and functional
programmers and provides basically all you need to know if you are coming from one
of these areas and do not know about the other two. This is a major achievement and
practically everything you need is there, clearly and concisely expressed. The learning
curve is steep, however, and there is a great deal of complex material to digest. If you
are on your own without a sympathetic teacher, you might feel that you have earned
something stronger than a beer by the time you get to the end.

This book was developed over a period of about ten years and, besides being an
introductory textbook to computational semantics that every serious student of the
field should study, it represents a mature major research contribution demonstrat-
ing the close relationship between classical formal semantics and modern functional
programming.

References
Bird, Steven, Ewan Klein, and Edward

Loper. 2009. Natural Language
Processing with Python: Analyzing
Text with the Natural Language
Toolkit. O’Reilly Media,
Sebastopol, CA.

Blackburn, Patrick and Johan Bos.
2005. Representation and Inference

for Natural Language: A First Course in
Computational Semantics. CSLI Studies
in Computational Linguistics. CSLI
Publications, Stanford, CA.

Montague, Richard. 1974. Formal Philosophy:
Selected Papers of Richard Montague. Edited
and with an introduction by Richmond H.
Thomason. Yale University Press,
New Haven, CT.

Robin Cooper is Professor of Computational Linguistics at the University of Gothenburg and direc-
tor of the Swedish National Graduate School of Language Technology. His address is Department
of Philosophy, Linguistics and Theory of Science, University of Gothenburg, Box 200, S-405 30
Göteborg, Sweden; e-mail: cooper@ling.gu.se.

449

