
Analyzing and Integrating
Dependency Parsers

Ryan McDonald∗

Google Inc.

Joakim Nivre∗∗

Uppsala University

There has been a rapid increase in the volume of research on data-driven dependency parsers in
the past five years. This increase has been driven by the availability of treebanks in a wide variety
of languages—due in large part to the CoNLL shared tasks—as well as the straightforward
mechanisms by which dependency theories of syntax can encode complex phenomena in free word
order languages. In this article, our aim is to take a step back and analyze the progress that has
been made through an analysis of the two predominant paradigms for data-driven dependency
parsing, which are often called graph-based and transition-based dependency parsing. Our
analysis covers both theoretical and empirical aspects and sheds light on the kinds of errors each
type of parser makes and how they relate to theoretical expectations. Using these observations,
we present an integrated system based on a stacking learning framework and show that such a
system can learn to overcome the shortcomings of each non-integrated system.

1. Introduction

Syntactic dependency representations have a long history in descriptive and theoretical
linguistics and many formal models have been advanced, most notably Word Gram-
mar (Hudson 1984), Meaning-Text Theory (Mel’čuk 1988), Functional Generative De-
scription (Sgall, Hajičová, and Panevová 1986), and Constraint Dependency Grammar
(Maruyama 1990). Common to all theories is the notion of directed syntactic depen-
dencies between the words of a sentence, an example of which is given in Figure 1 for
the sentence A hearing is scheduled on the issue today, which has been extracted from the
Penn Treebank (Marcus, Santorini, and Marcinkiewicz 1993). A dependency graph of
a sentence represents each word and its syntactic modifiers through labeled directed
arcs, where each arc label comes from some finite set representing possible syntactic
roles. Returning to our example in Figure 1, we can see multiple instances of labeled
dependency relations such as the one from the finite verb is to hearing labeled SBJ
indicating that hearing is the head of the syntactic subject of the finite verb. An artificial
word has been inserted at the beginning of the sentence that will always serve as the
single root of the graph and is primarily a means to simplify computation.

∗ 76 Ninth Ave., New York, NY 10011. E-mail: ryanmcd@google.com.
∗∗ Department of Linguistics and Philology, Box 635, SE-75126 Uppsala, Sweden.

E-mail: joakim.nivre@lingfil.uu.se.

Submission received: 25 August 2009; revised submission received: 20 August 2010; accepted for publication:
7 October 2010.

© 2011 Association for Computational Linguistics

Computational Linguistics Volume 37, Number 1

Figure 1
Dependency graph for an English sentence.

Syntactic dependency graphs have recently gained a wide interest in the computa-
tional linguistics community and have been successfully employed for many problems
ranging from machine translation (Ding and Palmer 2004) to ontology construction
(Snow, Jurafsky, and Ng 2005). A primary advantage of dependency representations
is that they have a natural mechanism for representing discontinuous constructions,
which arise due to long-distance dependencies or in languages where grammatical
relations are often signaled by morphology instead of word order. This is undoubt-
edly one of the reasons for the emergence of dependency parsers for a wide range of
languages (Buchholz and Marsi 2006; Nivre et al. 2007). Thus, the example in Figure 1
contains an instance of a discontinuous construction through the subgraph rooted at
the word hearing. Specifically, the dependency arc from hearing to on spans the words
is and scheduled, which are not nodes in this subgraph. An arc of this kind is said to be
non-projective.

In this article we focus on a common paradigm called data-driven dependency
parsing, which encompasses parsing systems that learn to produce dependency graphs
for sentences from a corpus of sentences annotated with dependency graphs. The
advantage of such models is that they are easily ported to any domain or language
in which annotated resources exist. Many data-driven parsing systems are grammar-
less, in that they do not assume the existence of a grammar that defines permissible
sentences of the language. Instead, the goal of most data-driven parsing systems is to
discriminate good parses from bad for a given sentence, regardless of its grammaticality.
Alternatively, one can view such systems as parsers for a grammar that induces the
language of all strings.

The rise of statistical methods in natural language processing coupled with the
availability of dependency annotated corpora for multiple languages—most notably
from the 2006 and 2007 CoNLL shared tasks (Buchholz and Marsi 2006; Nivre et al.
2007)—has led to a boom in research on data-driven dependency parsing. Making sense
of this work is a challenging problem, but an important one if the field is to continue to
make advances. Of the many important questions to be asked, three are perhaps most
crucial at this stage in the development of parsers:

1. How can we formally categorize the different approaches to data-driven
dependency parsing?

2. Can we characterize the kinds of errors each category of parser makes
through an empirical analysis?

3. Can we benefit from such an error analysis and build improved parsers?

The organizers of the CoNLL-X shared task on dependency parsing (Buchholz and
Marsi 2006) point out that there are currently two dominant approaches for data-driven

198

McDonald and Nivre Analyzing and Integrating Dependency Parsers

dependency parsing. The first category parameterizes models over dependency sub-
graphs and learns these parameters to globally score correct graphs above incorrect
ones. Inference is also global, in that systems attempt to find the highest scoring graph
among the set of all graphs. We call such systems graph-based parsing models to
reflect the fact that parameterization is over the graph. Graph-based models are mainly
associated with the pioneering work of Eisner (Eisner 1996), as well as McDonald and
colleagues (McDonald, Crammer, and Pereira 2005; McDonald et al. 2005; McDonald
and Pereira 2006; McDonald, Lerman, and Pereira 2006) and others (Riedel, Çakıcı, and
Meza-Ruiz 2006; Carreras 2007; Koo et al. 2007; Nakagawa 2007; Smith and Smith 2007).
The second category of parsing systems parameterizes models over transitions from one
state to another in an abstract state-machine. Parameters in these models are typically
learned using standard classification techniques that learn to predict one transition from
a set of permissible transitions given a state history. Inference is local, in that systems
start in a fixed initial state and greedily construct the graph by taking the highest
scoring transitions at each state entered until a termination condition is met. We call
such systems transition-based parsing models to reflect the fact that parameterization
is over possible state transitions. Transition-based models have been promoted by
the groups of Matsumoto (Kudo and Matsumoto 2002; Yamada and Matsumoto 2003;
Cheng, Asahara, and Matsumoto 2006), Nivre (Nivre, Hall, and Nilsson 2004; Nivre and
Nilsson 2005; Nivre et al. 2006), and others (Attardi 2006; Attardi and Ciaramita 2007;
Johansson and Nugues 2007; Duan, Zhao, and Xu 2007; Titov and Henderson 2007a,
2007b).

It is important to note that there is no a priori reason why a graph-based pa-
rameterization should require global learning and inference, and a transition-based
parameterization would necessitate local learning and greedy inference. Nevertheless,
as observed by Buchholz and Marsi (2006), it is striking that recent work on data-driven
dependency parsing has been dominated by global, exhaustive, graph-based models, on
the one hand, and local, greedy, transition-based models, on the other. Therefore, a careful
comparative analysis of these model types appears highly relevant, and this is what we
will try to provide in this article. For convenience, we will use the shorthand terms
“graph-based” and “transition-based” for these models, although both graph-based
and transition-based parameterizations can be (and have been) combined with different
types of learning and inference. For example, the system described by Zhang and Clark
(2008) could be characterized as a transition-based model with global learning, and the
ensemble system of Zeman and Žabokrtskỳ (2005) as a graph-based model with greedy
inference.

Perhaps the most interesting reason to study the canonical graph-based and
transition-based models is that even though they appear to be quite different theoret-
ically (see Section 2), recent empirical studies show that both obtain similar parsing
accuracies on a variety of languages. For example, Table 1 shows the results of the two
top performing systems in the CoNLL-X shared task, those of McDonald, Lerman, and
Pereira (2006) (graph-based) and Nivre et al. (2006) (transition-based), which exhibit
no statistically significant difference in accuracy when averaged across all languages.
This naturally leads us to our Question 2, that is, can we empirically characterize the
errors of these systems to understand whether, in practice, these errors are the same
or distinct? Towards this end, Section 2 describes in detail the theoretical properties
and expectations of these two parsing systems and Section 4 provides a fine-grained
error analysis of each system on the CoNLL-X shared task data sets (Buchholz and
Marsi 2006). The result of this analysis strongly suggests that (1) the two systems do
make different, yet complementary, errors, which lends support to the categorization of

199

Computational Linguistics Volume 37, Number 1

Table 1
Labeled parsing accuracy for top-scoring systems at CoNLL-X (Buchholz and Marsi 2006).

Language Graph-based Transition-based
(McDonald, Lerman, and Pereira 2006) (Nivre et al. 2006)

Arabic 66.91 66.71
Bulgarian 87.57 87.41
Chinese 85.90 86.92
Czech 80.18 78.42
Danish 84.79 84.77
Dutch 79.19 78.59
German 87.34 85.82
Japanese 90.71 91.65
Portuguese 86.82 87.60
Slovene 73.44 70.30
Spanish 82.25 81.29
Swedish 82.55 84.58
Turkish 63.19 65.68

Average 80.83 80.75

parsers as graph-based and transition-based, and (2) the errors made by each system
are directly correlated with our expectations, based on their theoretical underpinnings.

This leads to our Question 3: Can we use these insights to integrate parsers and
achieve improved accuracies? In Section 5 we consider a simple way of integrating
graph-based and transition-based models in order to exploit their complementary
strengths and thereby improve parsing accuracy beyond what is possible by either
model in isolation. The method integrates the two models by allowing the output of one
model to define features for the other, which is commonly called “classifier stacking.”
This method is simple—requiring only the definition of new features—and robust by
allowing a model to learn relative to the predictions of the other. More importantly, we
rerun the error analysis and show that the integrated models do indeed take advantage
of the complementary strengths of both the graph-based and transition-based parsing
systems.

Combining the strengths of different machine learning systems, and even parsing
systems, is by no means new as there are a number of previous studies that have looked
at combining phrase-structure parsers (Henderson and Brill 1999), dependency parsers
(Zeman and Žabokrtskỳ 2005), or both (McDonald 2006). Of particular note is past work
on combining graph-based and transition-based dependency parsers. Sagae and Lavie
(2006) present a system that combines multiple transition-based parsers with a single
graph-based parser by weighting each potential dependency relation by the number of
parsers that predicted it. A final dependency graph is predicted by using spanning tree
inference algorithms from the graph-based parsing literature (McDonald et al. 2005).
Sagae and Lavie report improvements of up to 1.7 percentage points over the best single
parser when combining three transition-based models and one graph-based model for
unlabeled dependency parsing, evaluated on data from the Penn Treebank. The same
technique was used by Hall et al. (2007) to combine six transition-based parsers in the
best performing system in the CoNLL 2007 shared task.

Zhang and Clark (2008) propose a parsing system that uses global learning coupled
with beam search over a transition-based backbone incorporating both graph-based

200

McDonald and Nivre Analyzing and Integrating Dependency Parsers

and transition-based features, that is, features over both sub-graphs and transitions.
Huang and Sagae (2010) go even further and show how transition-based parsing can be
tabularized to allow for dynamic programming, which in turn permits an exponentially
larger search space. Martins et al. (2008) present a method for integrating graph-based
and transition-based parsers based on stacking, which is similar to the approach taken
in this work. Other studies have tried to overcome the weaknesses of parsing models
by changing the underlying model structure directly. For example, Hall (2007), Riedel,
Çakıcı, and Meza-Ruiz (2006), Nakagawa (2007), Smith and Eisner (2008), and Martins,
Smith, and Xing (2009) attempt to overcome local restrictions in feature scope for graph-
based parsers through both approximations and exact solutions with integer linear
programming.

Our work differs from past studies in that we attempt to quantify exactly the
types of errors these parsers make, tie them to their theoretical expectations, and show
that integrating graph-based and transition-based parsers not only increases overall
accuracy, but does so directly exploiting the strengths of each system. Thus, this is the
first large-scale error analysis of modern data-driven dependency parsers.1 The rest
of the article is structured as follows: Section 2 describes canonical graph-based and
transition-based parsing systems and discusses their theoretical benefits and limitations
with respect to one another; Section 3 introduces the experimental setup based on the
CoNLL-X shared task data sets that incorporate dependency treebanks from 13 diverse
languages; Section 4 gives a fine-grained error analysis for the two parsers in this setup;
Section 5 describes a stacking-based dependency parser combination framework;
Section 6 evaluates the stacking-based parsers in comparison to the original systems
with a detailed error analysis; we conclude in Section 7.

2. Two Models for Dependency Parsing

In this section we introduce central notation and define canonical graph-based and
transition-based dependency parsing at an abstract level. We further compare and
contrast their theoretical underpinnings with an eye to understanding the kinds of
errors each system is likely to make in practice.

2.1 Preliminaries

Let L = {l1, . . . , l|L|} be a set of permissible arc labels. Let x = w0, w1, . . . , wn be an input
sentence where w0 = ROOT. Formally, a dependency graph for an input sentence x is a
labeled directed graph G = (V, A) consisting of a set of nodes V and a set of labeled
directed arcs A ⊆ V × V × L; that is, if (i, j, l) ∈ A for i, j ∈ V and l ∈ L, then there is
an arc from node i to node j with label l in the graph. In terms of standard linguistic
dependency theory nomenclature, we say that (i, j, l) ∈ A if there is a dependency with
head wi, dependent wj, and syntactic role l.

A dependency graph G for sentence x must satisfy the following properties:

1. V = {0, 1, . . . , n}.

2. If (i, j, l) ∈ A, then j �= 0.

1 This work has previously been published partially in McDonald and Nivre (2007) and Nivre and
McDonald (2008).

201

Computational Linguistics Volume 37, Number 1

3. If (i, j, l) ∈ A, then for all arcs (i′, j, l′) ∈ A, i = i′ and l = l′.

4. For all j ∈ V − {0}, either (0, j, l) for some l ∈ L or there is a non-empty
sequence of nodes i1, . . . , im ∈ V and labels l1, . . . , lm+1 ∈ L such that
(0, i1, l1),(i1, i2, l2), . . . , (im, j, lm+1)∈A.

The first constraint states that the dependency graph spans the entire input. The sec-
ond constraint states that the node 0 is a root. The third constraint states that each
node has at most one incoming arc in the graph. The final constraint states that the
graph is connected through directed paths from the node 0 to every other node in
the graph. It is not difficult to show that a dependency graph satisfying these con-
straints is in fact a directed tree originating out of the root node 0 and we will use
the term dependency tree to refer to any valid dependency graph. The characterization
of syntactic dependency graphs as trees is consistent with most formal theories (e.g.,
Sgall, Hajičová, and Panevová 1986; Mel’čuk 1988). Exceptions include Word Grammar
(Hudson 1984), which allows a word to modify multiple other words in the sentence,
which results in directed acyclic graphs with nodes possibly having multiple incoming
arcs.

We define an arc (i, j, l) connecting words wi and wj as non-projective if at least
one word occurring between wi and wj in the input sentence is not a descendant of
wi (where “descendant” is the transitive closure of the arc relation). Alternatively, we
can view non-projectivity in trees as breaking the nested property, which can be seen
through the arcs that cross in the example in Figure 1. Non-projective dependencies
are typically difficult to represent or parse in phrase-based models of syntax. This can
either be due to nested restrictions arising in context-free formalisms or computationally
expensive operations in mildly context-sensitive formalisms (e.g., adjunction in TAG
frameworks).

2.2 Global, Exhaustive, Graph-Based Parsing

For an input sentence, x = w0, w1, . . . , wn consider the dense graph Gx = (Vx, Ax) de-
fined as:

1. Vx = {0, 1, . . . , n}.

2. Ax = {(i, j, l) | i, j ∈ Vx and l ∈ L}.

Let D(Gx) represent the subgraphs of graph Gx that are valid dependency graphs for the
sentence x, that is, dependency trees. Because Gx contains all possible labeled arcs, the
set D(Gx) must necessarily contain all dependency trees for x.

Assume that there exists a dependency arc scoring function, s : V × V × L → R.
Furthermore, define the score of a graph as the sum of its arc scores,

s(G = (V, A)) =
∑

(i,j,l)∈A

s(i, j, l)

The score of an arc, s(i, j, l) represents the likelihood of creating a dependency from
head wi to modifier wj with the label l in a dependency tree. This score is commonly
defined to be the product of a high dimensional feature representation of the arc and a

202

McDonald and Nivre Analyzing and Integrating Dependency Parsers

learned parameter vector, s(i, j, l) = w · f(i, j, l). If the arc score function is known, then
the parsing problem can be stated as

G∗ = arg max
G∈D(Gx)

s(G) = arg max
G∈D(Gx)

∑

(i,j,l)∈A

s(i, j, l) (1)

An example graph Gx and the dependency tree maximizing the scoring function are
given in Figure 2 for the sentence John saw Mary. We omit arcs into the root node for
simplicity.

McDonald et al. (2005) showed that this problem is equivalent to finding the highest
scoring directed spanning tree for the graph Gx originating out of the root node 0. It is
not difficult to see this, because both dependency trees and spanning trees must contain
all nodes of the graph and must have a tree structure with root 0. The directed spanning
tree problem (also known as the r-arborescence problem) can be solved for both the
labeled and unlabeled case using the Chu-Liu-Edmonds algorithm (Chu and Liu 1965;
Edmonds 1967), a variant of which can be shown to have an O(n2) runtime (Tarjan
1977). Non-projective arcs are produced naturally through the inference algorithm that
searches over all possible directed trees, whether projective or not.

Graph-based parsers are typically trained using structured learning algorithms
(McDonald, Crammer, and Pereira 2005; Koo et al. 2007; Smith and Smith 2007), which
optimize the parameters of the model to maximize the difference in score/probability
between the correct dependency graph and all incorrect dependency graphs for every
sentence in a training set. Such a learning procedure is global because model parameters
are set relative to the classification of the entire dependency graph, and not just over
single arc attachment decisions. Although a learning procedure that only optimizes the
score of individual arcs is conceivable, it would not be likely to produce competitive
results.

Going beyond arc-factored models, McDonald and Pereira (2006) presented a
system where scores are increased in scope to include pairs of adjacent arcs in the
dependency graph. In the case of projective dependency trees, polynomial time
parsing algorithms were shown to exist, but non-projective trees required approximate
inference that used an exhaustive projective algorithm followed by transformations
to the graph that incrementally introduce non-projectivity. In general, inference and
learning for graph-based dependency parsing is NP-hard when the score is factored

Figure 2
A graph-based parsing example. A dense graph Gx is shown on the left (arcs into the root are
omitted) with corresponding arc scores. On the right is the predicted dependency tree based on
Equation (1).

203

Computational Linguistics Volume 37, Number 1

over anything larger than arcs (McDonald and Satta 2007). Thus, graph-based parsing
systems cannot easily condition on any extended scope of the dependency graph
beyond a single arc, which is their primary shortcoming relative to transition-based
systems. McDonald, Crammer, and Pereira (2005) show that a rich feature set over
the input space, including lexical and surface syntactic features of neighboring words,
can partially alleviate this problem, and both Carreras (2007) and Koo et al. (2010)
explore higher-order models for projective trees. Additionally, work has been done on
approximate non-factored parsing systems (McDonald and Pereira 2006; Hall 2007;
Nakagawa 2007; Smith and Eisner 2008) as well as exact solutions through integer linear
programming (Riedel, Çakıcı, and Meza-Ruiz 2006; Martins, Smith, and Xing 2009).

The specific graph-based system studied in this work is that presented by
McDonald, Lerman, and Pereira (2006), which uses pairwise arc scoring and approx-
imate exhaustive search for unlabeled parsing. A separate arc label classifier is then
used to label each arc. This two-stage process was adopted primarily for computational
reasons and often does not affect performance significantly (see McDonald [2006] for
more). Throughout the rest of this study we will refer to this system as MSTParser (or
MST for short), which is also the name of the freely available implementation.2

2.3 Local, Greedy, Transition-Based Parsing

A transition system for dependency parsing defines

1. a set C of parser configurations, each of which defines a (partially built)
dependency graph G,

2. a set T of transitions, each of which is a partial function t : C → C,

3. for every sentence x = w0, w1, . . . , wn,

(a) a unique initial configuration cx,

(b) a set Cx of terminal configurations.

A transition sequence C0,m = (c0, c1, . . . , cm) for a sentence x = w0, w1, . . . , wn is a se-
quence of configurations such that c0 = cx, cm ∈ Cx, and, for every ci (1 ≤ i ≤ m), there
is a transition t ∈ T such that ci = t(ci−1). The dependency graph assigned to a sentence
x = w0, w1, . . . , wn by a sequence C0,m = (c0, c1, . . . , cm) is the graph Gm defined by the
terminal configuration cm.

Assume that there exists a transition scoring function, s : C × T → R. The score of a
transition t in a configuration c, s(c, t), represents the likelihood of taking transition t out
of configuration c in a transition sequence leading to the optimal dependency graph for
the given sentence. This score is usually defined by a classifier g taking as input a high
dimensional feature representation of the configuration, s(c, t) = g(f(c), t).

Given a transition scoring function, the parsing problem consists in finding a ter-
minal configuration cm ∈ Cx, starting from the initial configuration cx and taking the
optimal transition t∗ out of every configuration c:

t∗ = arg max
t∈T

s(c, t)

2 http://mstparser.sourceforge.net.

204

McDonald and Nivre Analyzing and Integrating Dependency Parsers

This can be seen as a greedy search for the optimal dependency graph, based on a
sequence of locally optimal decisions in terms of the transition system.

By way of example, we consider the transition system first presented in Nivre
(2003), where a parser configuration is a triple c = (σ, β, A), consisting of a stack σ

of partially processed nodes, a buffer β of remaining input nodes, and a set A of
labeled dependency arcs. The initial configuration for a sentence x = w0, w1, . . . , wn is
cx = ([0], [1, . . . , n], ∅) and the set of terminal configurations Cx contains all configu-
rations of the form c = (σ, [], A) (that is, all configurations with an empty buffer and
with arbitrary σ and A). The set T of transitions for this system is specified in Figure 3.
The transitions LEFT-ARCl and RIGHT-ARCl extend the arc set A with an arc (labeled l)
connecting the top node i on the stack and the first node j of the buffer. In the case of
LEFT-ARCl, the node i becomes the dependent and is also popped from the stack; in
the case of RIGHT-ARCl, the node j becomes the dependent and is also pushed onto the
stack. The REDUCE transition pops the stack (and presupposes that the top node has
already been attached to its head in a previous RIGHT-ARCl transition), and the SHIFT

transition extracts the first node of the buffer and pushes it onto the stack.
This system can derive any projective dependency tree G for an input sentence

x and in doing so always adds arcs as early as possible. For this reason, the system
is often referred to as arc-eager. When coupled with the greedy deterministic parsing
strategy, the system guarantees termination after at most 2n transitions (for a sentence
of length n), which means that the time complexity is O(n) given that transitions can be
performed in constant time. The dependency graph given at termination is guaranteed
to be acyclic and projective and to satisfy dependency graph conditions 1–3, which
means that it can always be turned into a well-formed dependency graph by adding
arcs (0, i, lr) for every node i �= 0 that is a root in the output graph (where lr is a spe-
cial label for root modifiers). Whereas the initial formulation in Nivre (2003) was lim-
ited to unlabeled dependency graphs, the system was extended to labeled graphs in
Nivre, Hall, and Nilsson (2004), and Nivre and Nilsson (2005) showed how the restric-
tion to projective dependency graphs could be lifted by using graph transformation

Figure 3
Transitions for dependency parsing (with preconditions).

205

Computational Linguistics Volume 37, Number 1

techniques to pre-process training data and post-process parser output, a technique
called pseudo-projective parsing. Transition systems that derive non-projective trees
directly have been explored by Attardi (2006) and Nivre (2007, 2009), among others.

To learn a scoring function, transition-based parsers use discriminative learning
methods, such as memory-based learning or support vector machines. The training
data are obtained by constructing transition sequences corresponding to gold standard
parses from a treebank. The typical learning procedure is local because only single
transitions are scored—not entire transition sequences—but more global optimization
methods have also been proposed. The primary advantage of these models is that the
feature representation is not restricted to a limited number of graph arcs but can take
into account the entire dependency graph built so far, including previously assigned
labels, and still support efficient inference and learning. The main disadvantage is that
the greedy parsing strategy may lead to error propagation as false early predictions can
eliminate valid trees due to structural constraints and are also used to create features
when making future predictions. Using beam search instead of strictly deterministic
parsing can to some extent alleviate this problem but does not eliminate it.

The specific transition-based system studied in this work is that presented by Nivre
et al. (2006), which uses the projective, arc-eager system described here in combina-
tion with pseudo-projective parsing, which uses support vector machines to learn the
scoring function for transitions and which uses greedy, deterministic one-best search at
parsing time. We will refer to this system as MaltParser (or Malt for short), which is also
the name of the freely available implementation.3

2.4 Comparison

In the previous two sections we have outlined the theoretical characteristics of canonical
graph-based and transition-based dependency parsing systems. From now on, our
experiments will rely on two standard implementations: MSTParser, a graph-based
system, and MaltParser, a transition-based system. Here we contrast the two parsing
systems with respect to how they are trained, how they produce dependency trees for
new sentences, and what kinds of features they use.

Training Algorithms. Both systems use large-margin learning for linear classifiers. MST-
Parser uses on-line algorithms (McDonald, Crammer, and Pereira 2005; Crammer et al.
2006) and MaltParser uses support vector machines (Cortes and Vapnik 1995). The
primary difference is that MaltParser trains the model to make a single classification
decision (create arc, shift, reduce, etc.), whereas MSTParser trains the model to maxi-
mize the global score of correct graphs relative to incorrect graphs. It has been argued
that locally trained algorithms can suffer from label bias issues (Lafferty, McCallum,
and Pereira 2001). However, it is expensive to train global models since the complexity
of learning is typically proportional to inference. In addition, MaltParser makes use of
kernel functions, which eliminates the need for explicit conjunctions of features.

Inference. MaltParser uses a transition-based inference algorithm that greedily chooses
the best parsing decision based on a trained classifier and current parser history. MST-
Parser instead uses exhaustive search over a dense graphical representation of the

3 http://w3.msi.vxu.se/users/nivre/research/MaltParser.html.

206

McDonald and Nivre Analyzing and Integrating Dependency Parsers

sentence to find the dependency graph that maximizes the score. On the one hand,
the greedy algorithm is far quicker computationally (O(n) vs. O(n2) for the Chu-Liu-
Edmonds algorithm and O(n3) for Eisner’s algorithm). On the other hand, it may be
prone to error propagation when early incorrect decisions negatively influence the
parser at later stages. In particular, MaltParser uses the projective arc-eager transition
system first described in Nivre (2003), which has consequences for the form of error
propagation we may expect to see because the system determines the order in which
arcs must be added to the graph. On the one hand, if an arc (i, m, l) covers another
arc (j, k, l′) (i.e., i ≤ j and k ≤ m), then the smaller arc (j, k, l′) has to be added to the
graph first (because of projectivity). On the other hand, if two arcs (i, j, l) and (k, m, l′)
do not overlap, then the leftmost arc has to be added first (because of arc-eagerness).
Therefore, we can expect error propagation from shorter to longer overlapping arcs and
from preceding to succeeding arcs.

Feature Representation. Due to the nature of their inference and training algorithms, the
feature representations of the two systems differ substantially. MaltParser can introduce
a rich feature space based on the history of previous parser decisions. This is because
the greedy nature of the algorithm allows it to fix the structure of the graph and
use this structure to help improve future parsing decisions. By contrast, MSTParser is
forced to restrict the scope of features to a single or pair of nearby parsing decisions
in order to make exhaustive inference tractable. As a result, the feature representation
available to the locally trained greedy models is much richer than the globally trained
exhaustive models. Concisely, we can characterize MSTParser as using global training
and inference with local features and MaltParser as using local training and inference
with global features. (For more information about the features used in the two systems,
see Sections 3.2 and 3.3.)

These differences highlight an inherent trade-off between exhaustive inference algo-
rithms plus global learning and expressiveness of feature representations. MSTParser
favors the former at the expense of the latter and MaltParser the opposite. When
analyzing, and ultimately explaining, the empirical difference between the systems,
understanding this trade-off will be of central importance.

3. Experimental Setup

The experiments presented in this article are all based on data from the CoNLL-X
shared task (Buchholz and Marsi 2006). In this section we first describe the task and the
resources created there and then describe how MSTParser and MaltParser were trained
for the task, including feature representations and learning algorithms.

3.1 The CoNLL-X Shared Task

The CoNLL-X shared task (Buchholz and Marsi 2006) was a large-scale evaluation
of data-driven dependency parsers, with data from 13 different languages and 19 par-
ticipating systems. The data sets were quite heterogeneous, both with respect to size
and with respect to linguistic annotation principles, and the best reported parsing
accuracy varied from 65.7% for Turkish to 91.7% for Japanese. The official evaluation
metric was the labeled attachment score (LAS), defined as the percentage of tokens,

207

Computational Linguistics Volume 37, Number 1

Table 2
Data sets. Tok = number of tokens (×1000); Sen = number of sentences (×1000); T/S = tokens per
sentence (mean); Lem = lemmatization present; CPoS = number of coarse-grained part-of-speech
tags; PoS = number of (fine-grained) part-of-speech tags; MSF = number of morphosyntactic
features (split into atoms); Dep = number of dependency types; NPT = proportion of
non-projective dependencies/tokens (%); NPS = proportion of non-projective dependency
graphs/sentences (%).

Language Tok Sen T/S Lem CPoS PoS MSF Dep NPT NPS

Arabic 54 1.5 37.2 yes 14 19 19 27 0.4 11.2
Bulgarian 190 14.4 14.8 no 11 53 50 18 0.4 5.4
Chinese 337 57.0 5.9 no 22 303 0 82 0.0 0.0
Czech 1,249 72.7 17.2 yes 12 63 61 78 1.9 23.2
Danish 94 5.2 18.2 no 10 24 47 52 1.0 15.6
Dutch 195 13.3 14.6 yes 13 302 81 26 5.4 36.4
German 700 39.2 17.8 no 52 52 0 46 2.3 27.8
Japanese 151 17.0 8.9 no 20 77 0 7 1.1 5.3
Portuguese 207 9.1 22.8 yes 15 21 146 55 1.3 18.9
Slovene 29 1.5 18.7 yes 11 28 51 25 1.9 22.2
Spanish 89 3.3 27.0 yes 15 38 33 21 0.1 1.7
Swedish 191 11.0 17.3 no 37 37 0 56 1.0 9.8
Turkish 58 5.0 11.5 yes 14 30 82 25 1.5 11.6

excluding punctuation, that are assigned both the correct head and the correct depen-
dency label.4

The outputs of all systems that participated in the shared task are available for
download and constitute a rich resource for comparative error analysis. In Section 4,
we will use the outputs of MSTParser and MaltParser for all 13 languages, together
with the corresponding gold standard graphs used in the evaluation, as the basis for an
in-depth error analysis designed to answer Question 2 from Section 1. In Section 6, we
will then evaluate our stacking-based parsers on the same data sets and repeat the error
analysis. This will allow us to compare the error profiles of the new and old systems at
a much finer level of detail than in standard evaluation campaigns.

Table 2 gives an overview of the training sets available for the 13 languages. First
of all, we see that training set size varies from over 1.2 million words and close to
73,000 sentences for Czech to only 29,000 words and 1,500 sentences for Slovene. We
also see that the average sentence length varies from close to 40 words for Arabic, using
slightly different principles for sentence segmentation than the other languages, to less
than 10 words for Japanese, where the data consist of transcribed spoken dialogues.
Differences such as these can be expected to have a large impact on the parsing accuracy
obtained for different languages, and it is probably significant that Japanese has the
highest top score of all languages, whereas Arabic has the second lowest. We also see
that the amount of information available in the input, in the form of lemmas (Lem),
coarse and fine part-of-speech tags (CPoS, PoS), and morphosyntactic features (MSF)
varies considerably, as does the granularity of the dependency label sets (Dep). Fi-
nally, the proportion of non-projective structures, whether measured on the token level
(NPT) or on the sentence level (NPS), is another important source of variation.

4 In addition, results were reported for unlabeled attachment score (UAS) (tokens with the correct head)
and label accuracy (LA) (tokens with the correct label).

208

McDonald and Nivre Analyzing and Integrating Dependency Parsers

The final test set for each language has been standardized in size to about 5,000
words, which makes it possible to evaluate the performance of a system over all lan-
guages by simply concatenating the system’s output for all test sets and comparing this
to the concatenation of the gold standard test sets. Thus, most of the statistics used in the
subsequent error analysis are based on the concatenation of all test sets. Because some of
the phenomena under study are relatively rare, this allows us to get more reliable esti-
mates, even though these estimates inevitably hide important inter-language variation.
Analyzing individual languages in more detail would be an interesting complementary
study but is beyond the scope of this article.

3.2 Training MSTParser

MSTParser operates primarily over arc-scores, s(i, j, l), which are parameterized by a
linear combination of a parameter vector, w, and a corresponding feature vector for the
arc, f(i, j, l). We use a two-stage approach to training. The first-stage learns a model to
predict unlabeled dependency trees for a sentence. Thus, arc scores do not condition
on possible labels and are parameterized by features only over the head-modifier pair,
s(i, j) = w · f(i, j). As a result, for the first stage of training the parser, we must define
the feature representation f(i, j), which is outlined in Table 3(a) and Table 3(b) for a
potential unlabeled arc (i, j). These features represent both information about the head
and modifier in the dependency relation as well as the context of the dependency via
local part-of-speech information. We include context part-of-speech features for both
the fine-grained and coarse-grained tags (when available).

As mentioned in Section 2.2, the implementation of MSTParser used in our exper-
iments also contains features over adjacent arcs, (i, j) and (i, k), which we will denote
compactly as (i, j � k). Scores for adjacent arcs are also defined as a linear combination
between weights and a feature vector s(i, j � k) = w · f(i, j � k), thus requiring us to de-
fine the feature representation f(i, j � k), which is outlined in Table 3(c). These features

Table 3
Features for MSTParser. ∧ indicates a conjunction of features. † indicates that all back-off
versions of a conjunction feature are included as well. A back-off version of a conjunction feature
is one where one or more base features are disregarded. ‡ indicates that all back-off versions are
included where a single base feature is disregarded.

Base features for sentence: x = w0, w1, . . . , wn
Lexical features: Identity of wi, wi ∈ x
Affix features: 3-gram lexical prefix/suffix identity of Pref(wi)/Suff(wi), wi ∈ x
Part-of-speech features: Identity of PoS(wi), wi ∈ x
Morphosyntactic features: For all morphosyntactic features MSFk for a word wi, identity of MSFk(wi), wi ∈ x
Label features: Identity of l in some labeled arc (i, j, l)

(a) Head-modifier features for unlabeled arc (i, j)
wi ∧ PoS(wi) ∧ wj ∧ PoS(wj) †
Pref(wi) ∧ PoS(wi) ∧ Pref(wj) ∧ PoS(wj) †
Suff(wi) ∧ PoS(wi) ∧ Suff(wj) ∧ PoS(wj) †
∀k, k′ : MSFk(wi) ∧ PoS(wi) ∧ MSFk′ (wj) ∧ PoS(wj) †

(b) PoS-context features for unlabeled arc (i, j)
∀k, i < k < j : PoS(wi) ∧ PoS(wk) ∧ PoS(wj)
PoS(wi−1) ∧ PoS(wi) ∧ PoS(wj−1) ∧ PoS(wj) ‡
PoS(wi−1) ∧ PoS(wi) ∧ PoS(wj) ∧ PoS(wj+1) ‡
PoS(wi) ∧ PoS(wi+1) ∧ PoS(wj−1) ∧ PoS(wj) ‡
PoS(wi) ∧ PoS(wi+1) ∧ PoS(wj) ∧ PoS(wj+1) ‡

(c) Head-modifier features for unlabeled arc pair (i, j
 k)
wj ∧ wk
wj ∧ PoS(wk)
PoS(wj) ∧ wk
PoS(wj) ∧ PoS(wk)
PoS(wi) ∧ PoS(wj) ∧ PoS(wk)

(d) Arc-label features for labeled arc (i, j, l)
wi ∧ PoS(wi) ∧ wj ∧ PoS(wj) ∧ l †
∀k, i < k < j : PoS(wi) ∧ PoS(wk) ∧ PoS(wj) ∧ l
PoS(wj−1) ∧ PoS(wj) ∧ PoS(wj+1) ∧ l †
PoS(wi−1) ∧ PoS(wi) ∧ PoS(wi+1) ∧ l †

209

Computational Linguistics Volume 37, Number 1

attempt to capture likely properties about adjacent arcs in the tree via their lexical and
part-of-speech information. Finally, all features in Table 3(a)–(c) contain two versions.
The first is the standard feature outlined in the table, and the second is the feature
conjoined with both the direction of dependency attachment (left or right) as well as the
bucketed distance between the head and modifier in buckets of 0 (adjacent), 1, 2, 3, 4,
5–9, and 10+.

For the second stage label classifier we use a log-linear classifier, which is again
parameterized by a vector of weights and a corresponding feature vector s(l|i, j) =
w · f(i, j, l), where the score of a label l is now conditioned on a fixed dependency arc
(i, j) produced from the first-stage unlabeled parser. The feature representation f(i, j, l) is
defined in Table 3(d). These features provide the lexical and part-of-speech context for
determining whether a given arc label is suitable for a given head and modifier. Each
feature in Table 3(d) again has two versions, except this time the second version is only
conjoined with attachment direction.

These feature representations were used to train an on-line large-margin unlabeled
dependency parser (McDonald, Crammer, and Pereira 2005; McDonald and Pereira
2006) and a log-linear arc-labeler (Berger, Pietra, and Pietra 1996) regularized with a
zero mean Gaussian prior with the variance hyper-parameter set to 1.0. The unlabeled
dependency parser was trained for 10 iterations and the log-linear arc-labeler was
trained for 100 iterations. The feature sets and model hyper-parameters were fixed for
all languages. The only exception is that features containing coarse part-of-speech or
morphosyntactic information were ignored if this information was not available in a
corresponding treebank.

3.3 Training MaltParser

Training MaltParser amounts to estimating a function for scoring configuration-
transition pairs (c, t), represented by a feature vector f(c, t) ∈ R

k. Features are defined
in terms of arbitrary properties of the configuration c, including the state of the stack
σc, the input buffer βc, and the partially built dependency graph Gc (represented in the
configuration by the arc set Ac). In particular, many features involve properties of the
two target tokens, the token on top of the stack σc (denoted σ

0
c) and the first token in

the input buffer βc (denoted β
0
c), which are the two tokens that may become connected

by a dependency arc through the transition out of c. The basic feature representation
used for all languages in the CoNLL-X shared task included three groups of features:5

� Part-of-speech features: Identity of PoS(w), w ∈ {σ0
c , σ1

c , β0
c , β1

c , β2
c , β3

c}.

� Lexical features: Identity of w, w ∈ {σ0
c , β0

c , β1
c} or (w, σ0

c , l) ∈ Gc.

� Arc features: Identity of l, (w, w′, l) ∈ Gc and w ∈ {σ0
c , β0

c} or w′ ∈ {σ0
c}.

Note in particular that features can be defined with respect to the partially built de-
pendency graph Gc. This is most obvious for the arc features, which extract the labels
of particular arcs in the graph, but it is also true of the last lexical feature, which picks
out the word form of the syntactic head of the word on top of the stack. This is pre-
cisely what gives transition-based parsers a richer feature space than their graph-based

5 We use the notation σ
i
c and β

i
c to denote the ith element from the top/head of the stack/buffer (with

index 0 for the first element).

210

McDonald and Nivre Analyzing and Integrating Dependency Parsers

counterparts, even though graph-defined features are usually limited to a fairly small
region of the graph around σ

0
c and β

0
c , such as their leftmost and rightmost dependents

and their syntactic head (if available).
Over and above the basic features described here, additional features were added

for some languages depending on availability in the training data. This included the
following:

� Coarse part-of-speech features: Identity of CPoS(w), w ∈ {σ0
c , β0

c , β1
c}.

� Lemma features: Identity of Lem(w), w ∈ {σ0
c , β0

c , β1
c}.

� Morphosyntactic features: Identity of MSF(w), w ∈ {σ0
c , β0

c , β1
c}.

Additional feature selection experiments were carried out for each language to the
extent that time permitted. Complete information about feature representations can be
found in Nivre et al. (2006) and on the companion web site.6

The feature representations described here were used to train support vector ma-
chines as implemented in the LIBSVM library (Chang and Lin 2001), with a quadratic
kernel K(xi, xj) = (γxT

i xj + r)2 and LIBSVM’s built-in one-versus-one strategy for multi-
class classification, converting symbolic features to numerical ones using the standard
technique of binarization.7 One thing to note is that the quadratic kernel implicitly adds
features corresponding to pairs of explicit features, thus obviating the need for explicit
feature conjunctions as seen in the feature representations of MSTParser.

4. Error Analysis

A primary goal of this study is to characterize the errors made by standard data-driven
dependency parsing models. To that end, this section presents a number of experiments
that relate parsing errors to a set of linguistic and structural properties of the input and
predicted/gold standard dependency trees. We argue throughout that the results of this
analysis can be correlated to specific theoretical aspects of each model—in particular the
trade-off previously highlighted in Section 2.4.

For simplicity, all experiments report labeled parsing metrics (either accuracy, preci-
sion, or recall). Identical experiments using unlabeled parsing accuracies did not reveal
any additional information. Statistical significance was measured—for each metric at
each point along the operating curve—by employing randomized stratified shuffling at
the instance level using 10,000 iterations.8 Furthermore, all experiments report aggre-
gate statistics over the data from all 13 languages together, as explained in Section 3.
Finally, in all figures and tables, MSTParser and MaltParser are referred to as MST and
Malt, respectively, for short.

4.1 Length Factors

It is well known that parsing systems tend to have lower accuracies for longer sentences.
This is primarily due to the increased presence of complex syntactic constructions

6 http://maltparser.org/conll/conllx.
7 For details about parameter settings, we again refer to Nivre et al. (2006) and the companion web site
http://maltparser.org/conll/conllx/.

8 This is the method used by the CoNLL-X shared task on dependency parsing.

211

Computational Linguistics Volume 37, Number 1

Figure 4
Accuracy relative to sentence length. Differences statistically significant (p < 0.05) at no
positions.

involving prepositions, conjunctions, and multi-clause sentences. Figure 4 shows the
accuracy of both parsing models relative to sentence length (in bins of size 10: 1–10,
11–20, etc.). System performance is almost indistinguishable, but MaltParser tends to
perform better on shorter sentences, which require the greedy inference algorithm to
make fewer parsing decisions. As a result, the chance of error propagation is reduced
significantly when parsing these sentences. However, if this was the only difference
between the two systems, we would expect them to have equal accuracy for shorter
sentences. The fact that MaltParser actually has higher accuracy when the likelihood
of error propagation is reduced is probably due to its richer feature space relative to
MSTParser.

Another interesting property is accuracy relative to dependency length as opposed
to sentence length. We define the length of a dependency from word wi to word wj
as equal to |i − j|. Longer dependencies typically represent modifiers of the root or
the main verb in a sentence. Shorter dependencies are often modifiers of nouns such
as determiners or adjectives or pronouns modifying their direct neighbors. Figure 5
measures the precision and recall for each system relative to dependency lengths in the
predicted and gold standard dependency graphs. Precision represents the percentage
of predicted arcs of length d that were correct. Recall measures the percentage of gold
standard arcs of length d that were predicted.

Here we begin to see separation between the two systems. MSTParser is far more
precise for longer dependency arcs, whereas MaltParser does better for shorter depen-
dency arcs. This behavior can be explained using the same reasoning as above: Shorter
dependency arcs are usually created first in the greedy parsing procedure of MaltParser
and are less prone to error propagation. In contrast, longer dependencies are typically
constructed at the later stages of the parsing algorithm and are affected more by error
propagation. Theoretically, MSTParser should not perform better or worse for arcs of
any length. However, due to the fact that longer dependencies are typically harder
to parse, there is still a degradation in performance for MSTParser—up to 20% in the

212

McDonald and Nivre Analyzing and Integrating Dependency Parsers

Figure 5
Dependency arc precision/recall relative to predicted/gold dependency length. Precision
statistically significant (p < 0.05) at 1, 2, 4, 7, 8, 10 through >14. Recall statistically significant
(p < 0.05) at >14.

extreme. However, the precision curve for MSTParser is much flatter than MaltParser,
which sees a drop of up to 40% in the extreme. Note that even though the area under the
curve is much larger for MSTParser, the number of dependency arcs with a length >10
is much smaller than the number with length <10, which is why the overall accuracy of
the two systems is nearly identical.

4.2 Graph Factors

The structure of the predicted and gold standard dependency graphs can also provide
insight into the differences between each model. For example, measuring accuracy for
arcs relative to their distance to the artificial root node will detail errors at different
levels of the dependency graph. For a given arc, we define this distance as the number
of arcs in the reverse path from the modifier of the arc to the root. For example, the
dependency arc from ROOT to is in Figure 1 would have a distance of 1 and the arc from
hearing to A a distance of 3. Figure 6 plots the precision and recall of each system for arcs
of varying distance to the root. Precision is equal to the percentage of dependency arcs

Figure 6
Dependency arc precision/recall relative to the predicted/gold distance to root. Precision
statistically significant (p < 0.05) at 1, 2, 4 through >6. Recall statistically significant (p < 0.05) at
1, 2, 3.

213

Computational Linguistics Volume 37, Number 1

in the predicted graph that are at a distance of d and are correct. Recall is the percentage
of dependency arcs in the gold standard graph that are at a distance of d and were
predicted.

Figure 6 clearly shows that for arcs close to the root, MSTParser is much more pre-
cise than MaltParser, and vice versa for arcs further away from the root. This is probably
the most compelling graph given in this study because it reveals a clear distinction:
MSTParser’s precision degrades as the distance to the root increases whereas Malt-
Parser’s precision increases. The plots essentially run in opposite directions crossing
near the middle. Dependency arcs further away from the root are usually constructed
early in the parsing algorithm of MaltParser. Again a reduced likelihood of error propa-
gation coupled with a rich feature representation benefits that parser substantially. Fur-
thermore, MaltParser tends to over-predict root modifiers, which comes at the expense
of its precision. This is because all words that the parser fails to attach as modifiers are
automatically connected to the root, as explained in Section 2.3. Hence, low precision
for root modifiers (without a corresponding drop in recall) is an indication that the
transition-based parser produces fragmented parses.

The behavior of MSTParser is a little trickier to explain. One would expect that
its errors should be distributed evenly over the graph. For the most part this is true,
with the exception of spikes at the ends of the plot. The high performance for root
modification (distance of 1) can be explained through the fact that this is typically a
low-entropy decision—usually the parsing algorithm has to determine the main verb
from a small set of possibilities. On the other end of the plot there is a slight downward
trend for arcs of distance greater than 3 from the root. An examination of dependency
length for predicted arcs shows that MSTParser predicts many more arcs of length 1
than MaltParser, which naturally leads to over-predicting more arcs at larger distances
from the root due to the presence of chains, which in turn will lower precision for these
arcs. In ambiguous situations, it is not surprising that MSTParser predicts many length-
1 dependencies, as this is the most common dependency length across treebanks. Thus,
whereas MaltParser pushes difficult parsing decisions higher in the graph, MSTParser
appears to push these decisions lower.

The final graph property we will examine aims to quantify the local neighborhood
of an arc within a dependency graph. Two dependency arcs, (i, j, l) and (i′, j′, l′), are clas-
sified as siblings if they represent syntactic modifications of the same word (i.e., i = i′).
In Figure 1 the arcs from the word is to the words hearing, scheduled, and the period are
all considered siblings under this definition. Figure 7 measures the precision and recall
of each system relative to the number of predicted and gold standard siblings of each
arc. There is not much to distinguish between the parsers on this metric. MSTParser is
slightly more precise for arcs that are predicted with more siblings, whereas MaltParser
has slightly higher recall on arcs that have more siblings in the gold standard tree. Arcs
closer to the root tend to have more siblings, which ties this result to the previous ones.

4.3 Linguistic Factors

It is important to relate each system’s accuracy to a set of linguistic categories, such
as parts of speech and dependency types. However, given the important typological
differences that exist between languages, as well as the diversity of annotation schemes
used in different treebanks, it is far from straightforward to compare these categories
across languages. Nevertheless, we have made an attempt to distinguish a few broad
categories that are cross-linguistically identifiable, based on the available documenta-
tion of the treebanks used in the shared task.

214

McDonald and Nivre Analyzing and Integrating Dependency Parsers

Figure 7
Dependency arc precision/recall relative to the number of predicted/gold siblings. Precision
statistically significant (p < 0.05) at 0, 4, 6, 7, 9. Recall statistically significant (p < 0.05) at 5, >9.

For parts of speech, we distinguish verbs (including both main verbs and auxil-
iaries), nouns (including proper names), pronouns (sometimes also including deter-
miners), adjectives, adverbs, adpositions (prepositions, postpositions), and conjunctions
(both coordinating and subordinating). For dependency types, we have only managed
to distinguish a general root category (for labels used on arcs from the artificial root,
including either a generic label or the label assigned to predicates of main clauses, which
are normally verbs), a subject category, and an object category (including both direct
and indirect objects). Unfortunately, we had to exclude many interesting types that
could not be identified with high enough precision across languages, such as adverbials,
which cannot be clearly distinguished in annotation schemes that subsume them under
a general modifier category, and coordinate structures, which are sometimes annotated
with special dependency types, sometimes with ordinary dependency types found also
in non-coordinated structures.

Table 4(a) shows the accuracy of the two parsers for different parts of speech.
This figure measures labeled dependency accuracy relative to the part of speech of
the modifier word in a dependency relation. We see that MaltParser has slightly better
accuracy for nouns and pronouns, and MSTParser does better on all other categories, in
particular conjunctions. This pattern is consistent with previous results insofar as verbs

Table 4
(a) Accuracy relative to dependent part of speech. (b) Precision/recall for different dependency
types.

Part of Speech MST Malt
Verb 82.6 81.9
Noun 80.0 80.7
Pronoun 88.4 89.2
Adjective 89.1 87.9
Adverb 78.3 77.4
Adposition 69.9 68.8
Conjunction 73.1 69.8

(a)

Dependency MST Malt
Type Precision/Recall Precision/Recall

Root 89.9 / 88.7 84.7 / 87.5
Subject 79.9 / 78.9 80.3 / 80.7
Object 76.5 / 77.7 77.2 / 77.6

(b)

215

Computational Linguistics Volume 37, Number 1

and conjunctions are often involved in dependencies closer to the root that span longer
distances, whereas nouns and pronouns are typically attached to verbs and therefore
occur lower in the graph and with shorter distances. Thus, the average distance to the
root is 3.1 for verbs and 3.8 for conjunctions, but 4.7 for nouns and 4.9 for pronouns;
the average dependency length is 4.2 for verbs, 4.8 for conjunctions, 2.3 for nouns,
and 1.6 for pronouns. Adverbs resemble verbs and conjunctions with respect to root
distance (3.7) but group with nouns and pronouns for dependency length (2.3), so it
appears that the former is more important here. Furthermore, adverb modifiers have
2.4 siblings on average, which is greater than the sibling average for conjunctions (2.1),
adpositions (1.9), pronouns (1.7), verbs (1.3), nouns (1.3), and adjectives (1.2). This
would be consistent with the graph in Figure 7.

Adpositions and especially adjectives constitute a puzzle. With a root distance of 4.4
and 5.2, respectively, a dependency length of 2.5/1.5 and a sibling average of 1.9/1.2, we
would expect MaltParser to do better than MSTParser for these categories. Adpositions
do tend to have a high number of siblings on average, which could explain MSTParser’s
performance on that category. However, adjectives on average occur the furthest away
from the root, have the shortest dependency length, and the fewest siblings. At present,
we do not have an explanation for this behavior.

Finally, in Table 4(b), we consider precision and recall for dependents of the root
node (mostly verbal predicates), and for subjects and objects. As already noted, MST-
Parser has considerably better precision (and slightly better recall) for the root category,
but MaltParser has an advantage for the nominal categories, especially subjects. A pos-
sible explanation for the latter result, in addition to the length-based and graph-based
factors invoked before, is that MaltParser integrates labeling into the parsing process,
which means that previously assigned dependency labels can be used as features.
This may sometimes be important to disambiguate subjects and objects, especially in
free-word order languages where a dependent’s position relative to the verb does not
determine its syntactic role.

4.4 Discussion

The experiments in this section highlight the fundamental trade-off between global
training and exhaustive inference on the one hand and expressive feature representa-
tions on the other. Error propagation is an issue for MaltParser, which typically performs
worse on long sentences, long dependency arcs, and arcs higher in the graphs. But this
is offset by the rich feature representation available to these models that result in better
decisions for frequently occurring classes of arcs like short dependencies or subject
and object modifiers. The errors for MSTParser are spread a little more evenly. This
is expected, as the inference algorithm and feature representation should not prefer one
type of arc over another.

What has been learned? It was already known that the two systems make different
errors through the work of Sagae and Lavie (2006). However, in that work an arc-based
majority voting scheme was used that took only limited account of the properties of
the words connected by a dependency arc (more precisely, the overall accuracy of each
parser for the part of speech of the dependent). The analysis in this work not only shows
that the errors made by each system are different, but that they are different in a way
that can be predicted and quantified. This is an important step in parser development.
By understanding the strengths and weaknesses of each model we have gained insights
towards new and better models for dependency parsing.

216

McDonald and Nivre Analyzing and Integrating Dependency Parsers

To get some upper bounds on the improvement that can be obtained by combining
the strengths of each model, we can perform two oracle experiments. Given the output
of the two systems, we can envision an oracle that can optimally choose which single
parse or combination of sub-parses to predict as a final parse. For the first experiment
the oracle is provided with the single best parse from each system, say G = (V, A) and
G′ = (V′, A′). The oracle chooses a parse that has the highest number of correctly pre-
dicted labeled dependency attachments. In this situation, the oracle labeled attachment
score is 84.5%. In the second experiment the oracle chooses the tree that maximizes the
number of correctly predicted dependency attachments, subject to the restriction that
the tree must only contain arcs from A ∪ A′. This can be computed by setting the weight
of an arc to 1 if it is in the correct parse and in the set A ∪ A′. All other arc weights are
set to negative infinity. One can then simply find the tree that has maximal sum of arc
weights using directed spanning tree algorithms. This technique is similar to the parser
voting methods used by Sagae and Lavie (2006). In this situation, the oracle accuracy
is 86.9%.

In both cases we see a clear increase in accuracy: 86.9% and 84.5% relative to 81%
for the individual systems. This indicates that there is still potential for improvement,
just by combining the two existing models. More interestingly, however, we can use
the analysis from this section to generate ideas for new models. Below we sketch some
possible new directions:

1. Ensemble systems: The error analysis presented in this article could be used
as inspiration for more refined weighting schemes for ensemble systems of
the kind proposed by Sagae and Lavie (2006), making the weights depend
on a range of linguistic and graph-based factors.

2. Integrated/Hybrid systems: Rather than using an ensemble of several
independent parsers, we may construct systems that trust different parsers
in different situations, possibly based on the characteristics of the input
and predicted dependency trees. The oracle results reported here show
that such an approach could potentially result in substantial
improvements.

3. Novel approaches: The theoretical analysis presented in this article reveals
that the two dominant approaches are each based on a particular
combination of training and inference methods, which raises the question
of which other combinations can fruitfully be explored. For example, can
we construct globally trained, greedy, transition-based parsers? Or
graph-based parsers with global features? To some extent the former
characterization fits the approach of Zhang and Clark (2008) and Huang
and Sagae (2010), and the latter that of Riedel and Clarke (2006),
Nakagawa (2007), and others. The analysis presented in this section
explains the relative success of such approaches.

In the next two sections we explore a model that falls into category 2. The system we
propose uses a two-stage stacking framework, where a second-stage parser conditions
on the predictions of a first-stage parser during inference. The second-stage parser is
also learned with access to the first-stage parser’s decisions and thus learns when to
trust the first-stage parser’s predictions and when to trust its own. The method is not a
traditional ensemble, because the parsers are not learned independently of one another.

217

Computational Linguistics Volume 37, Number 1

5. Integrated Models

As just discussed, there are many conceivable ways of combining the two parsers,
including more or less complex ensemble systems and voting schemes, which only
perform the integration at parsing time. However, given that we are dealing with data-
driven models, it should be possible to integrate at learning time, so that the two
complementary models can learn from one another. In this article, we propose to do this
by letting one model generate features for the other in a stacked learning framework.

Feature-based integration in this sense has previously been exploited for depen-
dency parsing by McDonald (2006), who trained an instance of MSTParser using fea-
tures generated by the parsers of Collins (1999) and Charniak (2000), which improved
unlabeled accuracy by 1.7 percentage points on data from the Penn Treebank. In other
NLP domains, feature-based integration has been used by Taskar, Lacoste-Julien, and
Klein (2005), who trained a discriminative word alignment model using features de-
rived from the IBM models, by Florian et al. (2004), who trained classifiers on auxiliary
data to guide named entity classifiers, and by others.

Feature-based integration also has points in common with co-training, which has
been applied to syntactic parsing by Sarkar (2001) and Steedman et al. (2003), among
others. The difference, of course, is that standard co-training is a weakly supervised
method, where the first-stage parser’s predictions replace, rather than complement, the
gold standard annotation during training. Feature-based integration is also similar to
parse reranking (Collins 2000), where one parser produces a set of candidate parses
and a second-stage classifier chooses the most likely one. However, feature-based in-
tegration is not explicitly constrained to any parse decisions that the first-stage parser
might make. Furthermore, as only the single most likely parse is used from the first-
stage model, it is significantly more efficient than reranking, which requires both com-
putationally and conceptually more complex parsing algorithms (Huang and Chiang
2005).

5.1 Parser Stacking with Rich Features

As explained in Section 2, both models essentially learn a scoring function s : X → R,
where the domain X is different for the two models. For the graph-based model, X is
the set of possible dependency arcs (i, j, l); for the transition-based model, X is the set of
possible configuration-transition pairs (c, t). But in both cases, the input is represented
by a k-dimensional feature vector f : X → R

k. In a stacked parsing system we simply
extend the feature vector for one model, called the base model, with a certain number
of features generated by the other model, which we call the guide model in this context.
The additional features will be referred to as guide features, and the version of the base
model trained with the extended feature vector will be called the guided model. The
idea is that the guided model should be able to learn in which situations to trust the
guide features, in order to exploit the complementary strength of the guide model, so
that performance can be improved with respect to the base model.

The exact form of the guide features depends on properties of the base model and
will be discussed in Sections 5.2–5.3, but the overall scheme for the stacked parsing

model can be described as follows. Assume as input a training set T = {(xt, Gxt
)}|T|t=1 of

input sentences xt and corresponding gold standard dependency trees Gxt
. In order to

train the guide model we use a cross-validation scheme and divide T into n different
disjoint subsets Ti (i.e., T =

⋃n
i=1 Ti). Let M[T] be the result of training the model M on T

218

McDonald and Nivre Analyzing and Integrating Dependency Parsers

and let M[T](x) be the result of parsing a new input sentence x with M[T]. Now, consider
a guide model C, base model B, and guided model BC. For each x in T, define

GC
x = C[T − Ti](x) if x ∈ Ti

GC
x is the prediction of model C on training input x when C is trained on all the subsets

of T, except the one containing x. The reason for using this cross-validation scheme is
that if C had been trained on all of T, then GC

x would not be representative of the types of
errors that C might make when parsing sentence x. Using cross-validation in this way is
similar to how it is used in parse reranking (Collins 2000). Now, define a new training set
of the form T′ = {(〈xt, G

C
xt
〉, Gxt

)}|T|t=1. That is, T′ is identical to T, except that each training
input x is augmented with the cross-validation prediction of model C. Finally, let

BC = B[T′]

This means that, for every sentence x ∈ T, BC has access at training time to both the
gold standard dependency graph Gx and the graph GC

x predicted by C. Thus, BC is able
to define guide features over GC

x , which can prove beneficial if features over GC
x can be

used to discern when parsing model C outperforms or underperforms parsing model
B. When parsing a new sentence x with BC, x is first parsed with model C[T] (this time
trained on the entire training set) to derive an input 〈x, GC

x 〉, so that the guide features
can be extracted also at parsing time. This input is then passed through model BC.

5.2 The Guided Graph-Based Model

The graph-based model, MSTParser, learns a scoring function s(i, j, l) ∈ R over labeled
dependencies. As described in Section 3.2, dependency arcs (or pairs of arcs) are repre-
sented by a high dimensional feature vector f(i, j, l) ∈ R

k, where f is typically a binary
feature vector over properties of the arc as well as the surrounding input (McDonald,
Crammer, and Pereira 2005; McDonald, Lerman, and Pereira 2006). For the guided
graph-based model, which we call MSTMalt, this feature representation is modified to
include an additional argument GMalt

x , which is the dependency graph predicted by
MaltParser on the input sentence x. Thus, the new feature representation will map an arc
and the entire predicted MaltParser graph to a high dimensional feature representation,
f(i, j, l, GMalt

x) ∈ R
k+m. These m additional features account for the guide features over

the MaltParser output. The specific features used by MSTMalt are given in Table 5.
All features are conjoined with the part-of-speech tags of the words involved in the

Table 5
Guide features for MSTMalt and MaltMST.

MSTMalt – defined over (i, j, l) MaltMST – defined over (c, t)
(∗ = any label/node) (∗ = any label/node)

Is (i, j, ∗) in GMalt
x ? Is (σ0

c , β0
c , ∗) in GMST

x ?
Is (i, j, l) in GMalt

x ? Is (β0
c , σ0

c , ∗) in GMST
x ?

Is (i, j, ∗) not in GMalt
x ? Head direction for σ

0
c in GMST

x (left/right/ROOT)
Is (i, j, l) not in GMalt

x ? Head direction for β
0
c in GMST

x (left/right/ROOT)
Identity of l′ such that (∗, j, l′) is in GMalt

x ? Identity of l such that (∗, σ0
c , l) is in GMST

x ?
Identity of l′ such that (i, j, l′) is in GMalt

x ? Identity of l such that (∗, β0
c , l) is in GMST

x ?

219

Computational Linguistics Volume 37, Number 1

dependency to allow the guided model to learn weights relative to different surface
syntactic environments. Features that include the arc label l are only included in the
second-stage arc-labeler. Though MSTParser is capable of defining features over pairs
of arcs, we restrict the guide features to single arcs as this resulted in higher accuracies
during preliminary experiments.

5.3 The Guided Transition-Based Model

The transition-based model, MaltParser, learns a scoring function s(c, t) ∈ R over con-
figurations and transitions. The set of training instances for this learning problem is the
set of pairs (c, t) such that t is the correct transition out of c in the transition sequence
that derives the correct dependency graph Gx for some sentence x in the training set
T. As described in Section 3.3, each training instance (c, t) is represented by a feature
vector f(c, t) ∈ R

k, where features are defined in terms of arbitrary properties of the
configuration c.

For the guided transition-based model, which we call MaltMST, training instances
are extended to triples (c, t, GMST

x), where GMST
x is the dependency graph predicted by

the graph-based MSTParser for the sentence x to which the configuration c belongs.
We define m additional guide features, based on properties of GMST

x , and extend the
feature vector accordingly to f(c, t, GMST

x) ∈ R
k+m. The specific features used by MaltMST

are given in Table 5. Unlike MSTParser, features are not explicitly defined to conjoin
guide features with part-of-speech features. These features are implicitly added through
the polynomial kernel used to train the SVM.

6. Integrated Parsing Experiments

In this section, we present an experimental evaluation of the two guided models fol-
lowed by a comparative error analysis including both the base models and the guided
models. The data sets used in these experiments are identical to those used in Section 4.
The guided models were trained according to the scheme explained in Section 5, with
two-fold cross-validation when parsing the training data with the guide parsers. Pre-
liminary experiments suggested that cross-validation with more folds had a negligible
impact on the results. Models are evaluated by their labeled attachment score on the test
set using the evaluation software from the CoNLL-X shared task with default settings.9

Statistical significance was assessed using Dan Bikel’s randomized parsing evaluation
comparator with the default setting of 10,000 iterations.10

6.1 Results

Table 6 shows the results, for each language and on average, for the two base models
(MST, Malt) and for the two guided models (MSTMalt, MaltMST). We also give oracle
combination scores based on both by taking the best graph or the best set of arcs
relative to the gold standard, as discussed in Section 4.4. First of all, we see that both
guided models show a consistent increase in accuracy compared to their base model,
even though the extent of the improvement varies across languages from about half a
percentage point (MaltMST on Chinese) up to almost four percentage points (MaltMST on

9 http://nextens.uvt.nl/∼conll/software.html.
10 http://www.cis.upenn.edu/∼dbikel/software.html.

220

McDonald and Nivre Analyzing and Integrating Dependency Parsers

Table 6
Labeled attachment scores for base parsers and guided parsers (improvement in percentage
points).

Oracle

Language MST MSTMalt Malt MaltMST graph arc

Arabic 66.91 68.64 (+1.73) 66.71 67.80 (+1.09) 70.3 75.8
Bulgarian 87.57 89.05 (+1.48) 87.41 88.59 (+1.18) 90.7 92.4
Chinese 85.90 88.43 (+2.53) 86.92 87.44 (+0.52) 90.8 91.5
Czech 80.18 82.26 (+2.08) 78.42 81.18 (+2.76) 84.2 86.6
Danish 84.79 86.67 (+1.88) 84.77 85.43 (+0.66) 87.9 89.6
Dutch 79.19 81.63 (+2.44) 78.59 79.91 (+1.32) 83.5 86.4
German 87.34 88.46 (+1.12) 85.82 87.66 (+1.84) 89.9 92.0
Japanese 90.71 91.43 (+0.72) 91.65 92.20 (+0.55) 93.2 94.1
Portuguese 86.82 87.50 (+0.68) 87.60 88.64 (+1.04) 90.0 91.6
Slovene 73.44 75.94 (+2.50) 70.30 74.24 (+3.94) 77.2 80.7
Spanish 82.25 83.99 (+1.74) 81.29 82.41 (+1.12) 85.4 88.2
Swedish 82.55 84.66 (+2.11) 84.58 84.31 (–0.27) 86.8 88.8
Turkish 63.19 64.29 (+1.10) 65.58 66.28 (+0.70) 69.3 72.6

Average 80.83 82.53 (+1.70) 80.75 82.01 (+1.27) 84.5 86.9

Slovene).11 It is thus quite clear that both models have the capacity to learn from features
generated by the other model. However, it is also clear that the graph-based MST model
shows a somewhat larger improvement, both on average and for all languages except
Czech, German, Portuguese, and Slovene. Finally, given that the two base models had
the best performance for these data sets at the CoNLL-X shared task, the guided models
achieve a substantial improvement of the state of the art.12 Although there is no statis-
tically significant difference between the two base models, they are both outperformed
by MaltMST (p < 0.0001), which in turn has significantly lower accuracy than MSTMalt
(p < 0.0005).

An extension to the models described so far would be to iteratively integrate the two
parsers in the spirit of pipeline iteration (Hollingshead and Roark 2007). For example,
one could start with a Malt model, use it to train a guided MSTMalt model, then use that
as the guide to train a MaltMSTMalt

model, and so forth. We ran such experiments, but
found that accuracy did not increase significantly and in some cases decreased slightly.
This was true regardless of which parser began the iterative process. In retrospect, this
result is not surprising. Because the initial integration effectively incorporates knowl-
edge from both parsing systems, there is little to be gained by adding additional parsers
in the chain.

6.2 Error Analysis

The experimental results presented so far show that feature-based integration (stacking)
is a viable approach for improving the accuracy of both graph-based and transition-
based models for dependency parsing, but they say very little about how the integration

11 The only exception to this pattern is the result for MaltMST on Swedish, where we see an unexpected drop
in accuracy compared to the base model.

12 Martins et al. (2008) and Martins, Smith, and Xing (2009) report additional improvements.

221

Computational Linguistics Volume 37, Number 1

benefits the two models and what aspects of the parsing process are improved as a
result. In order to get a better understanding of these matters, we replicate parts of
the error analysis presented in Section 4, but include both integrated models into the
analysis. As in Section 4, for each of the four models evaluated, we aggregate error
statistics for labeled attachment over all 13 languages together.

Figure 8 shows accuracy in relation to sentence length, binned into 10-word
intervals (1–10, 11-20, etc.). As mentioned earlier, Malt and MST have very similar
accuracy for short sentences but Malt degrades more rapidly with increasing sentence
length because of error propagation. The guided models, MaltMST and MSTMalt, behave
in a very similar fashion with respect to each other but both outperform their base
parser over the entire range of sentence lengths. However, except for the two extreme
data points (0–10 and 51–60) there is also a slight tendency for MaltMST to improve more
for longer sentences (relative to its base model) and for MSTMalt to improve more for
short sentences (relative to its base model). Thus, whereas most of the improvement for
the guided parsers seems to come from a higher accuracy in predicting arcs in general,
there is also some evidence that the feature-based integration allows one parser to
exploit the strength of the other.

Figure 9 plots precision (left) and recall (right) for dependency arcs of different
lengths (predicted arcs for precision, gold standard arcs for recall). With respect to recall,
the guided models appear to have a slight advantage over the base models for short and
medium distance arcs. With respect to precision, however, there are two clear patterns.
First, the graph-based models have better precision than the transition-based models
when predicting long arcs, as discussed earlier. Secondly, both the guided models have
better precision than their base model and, for the most part, also their guide model.
In particular MSTMalt outperforms MST for all dependency lengths and is comparable
to Malt for short arcs. More interestingly, MaltMST outperforms both Malt and MST for
arcs up to length 9, which provides evidence that MaltMST has learned specifically to

Figure 8
Accuracy relative to sentence length. Differences between MST+Malt and MST statistically
significant (p < 0.05) at all positions. Differences between Malt+MST and Malt statistically
significant (p < 0.05) at all positions. Differences between MST+Malt and Malt+MST
statistically significant (p < 0.05) at 11–20, 21–30, and 31–40.

222

McDonald and Nivre Analyzing and Integrating Dependency Parsers

Figure 9
Dependency arc precision/recall relative to predicted/gold for dependency length. Precision
between MST+Malt and MST statistically significant (p < 0.05) at 1–7, 9–12, 14, and >14.
Recall between MST+Malt and MST statistically significant (p < 0.05) at 1–7, 9, 14, and >14.
Precision between Malt+MST and Malt statistically significant (p < 0.05) at 1–8, 10–13,
and > 14. Recall between Malt+MST and Malt statistically significant (p < 0.05) at 1–12, 14,
and >14. Precision between MST+Malt and Malt+MST statistically significant (p < 0.05) at 1 and
9–>14. Recall between MST+Malt and Malt+MST statistically significant (p < 0.05) at 1, 2, 3, 14,
and >14.

trust the guide features from MST for longer dependencies (those greater than length 4)
and its own base features for shorter dependencies (those less than or equal to length 4).
However, for dependencies of length greater than 9, the performance of MaltMST begins
to degrade. Because the absolute number of dependencies of length greater than 9 in
the training sets is relatively small, it might be difficult for MaltMST to learn from the
guide parser in these situations. Interestingly, both models seem to improve most in
the medium range (roughly 8–12 words), although this pattern is clearer for MSTParser
than for MaltParser.

Figure 10 shows precision (left) and recall (right) for dependency arcs at different
distances from the root (predicted arcs for precision, gold standard arcs for recall).

Figure 10
Dependency arc precision/recall relative to predicted/gold for distance to root. Precision
between MST+Malt and MST statistically significant (p < 0.05) at 1–6. Recall between MST+Malt
and MST statistically significant (p < 0.05) at all positions. Precision between Malt+MST and
Malt statistically significant (p < 0.05) at 1–4. Recall between Malt+MST and Malt statistically
significant (p < 0.05) at all positions. Precision between MST+Malt and Malt+MST statistically
significant (p < 0.05) at 1, 2, 3, 6, and >6. Recall between MST+Malt and Malt+MST
statistically significant (p < 0.05) at 4 and >6.

223

Computational Linguistics Volume 37, Number 1

Again, we find the clearest patterns in the graphs for precision, where Malt has very
low precision near the root but improves with increasing depth, whereas MST shows
the opposite trend, as observed earlier. Considering the guided models, it is clear that
MaltMST improves in the direction of its guide model, with a five-point increase in
precision for dependents of the root and smaller improvements for longer distances
(where its base model is most accurate). Similarly, MSTMalt improves precision the
largest in the range where its base model is inferior to Malt (roughly distances of 2–
6) and is always superior to its base model. This again indicates that the guided models
are learning from their guide models as they improve the most in situations where the
base model has inferior accuracy.

Table 7 gives the accuracy for arcs relative to dependent part of speech. As observed
earlier, we see that MST does better than Malt for all categories except nouns and
pronouns. But we also see that the guided models in all cases improve over their base
model and, in most cases, also over their guide model. The general trend is that MST
improves more than Malt, except for adjectives and conjunctions, where Malt has a
greater disadvantage from the start and therefore benefits more from the guide features.
The general trend is that the parser with worse performance for a particular part-of-
speech tag improves the most in terms of absolute accuracy (5 out of 7 cases), again
suggesting that the guided models are learning when to trust their guide features. The
exception here is verbs and adverbs, where MST has superior performance to Malt, but
MSTMalt has a larger increase in accuracy than MaltMST.

Considering the results for parts of speech, as well as those for dependency length
and root distance, it is interesting to note that the guided models often improve even
in situations where their base models are more accurate than their guide models. This
suggests that the improvement is not a simple function of the raw accuracy of the guide
model but depends on the fact that labeled dependency decisions interact in inference
algorithms for both graph-based and transition-based parsing systems. Thus, if a parser
can improve its accuracy on one class of dependencies (for example, longer ones), then
we can expect to see improvements on all types of dependencies—as we do.

6.3 Discussion

In summation, it is clear that both guided models benefit from a higher accuracy in
predicting arcs in general, which results in better performance regardless of sentence
length, dependency length, or dependency depth. However, there is strong evidence
that MSTMalt improves in the direction of Malt, with a slightly larger improvement
compared to its base model for short sentences and short dependencies (but not for deep

Table 7
Accuracy relative to dependent part of speech (improvement in percentage points).

Part of Speech MST MSTMalt Malt MaltMST

Verb 82.6 85.1 (2.5) 81.9 84.3 (2.4)

Noun 80.0 81.7 (1.7) 80.7 81.9 (1.2)

Pronoun 88.4 89.4 (1.0) 89.2 89.3 (0.1)

Adjective 89.1 89.6 (0.5) 87.9 89.0 (1.1)

Adverb 78.3 79.6 (1.3) 77.4 78.1 (0.7)

Adposition 69.9 71.5 (1.6) 68.8 70.7 (1.9)

Conjunction 73.1 74.9 (1.8) 69.8 72.5 (2.7)

224

McDonald and Nivre Analyzing and Integrating Dependency Parsers

dependencies). Conversely, MaltMST improves in the direction of MST, with a larger
improvement for long sentences and for dependents of the root.

The question remains why MST generally benefits more from the feature-based
integration. The likely explanation is the previously mentioned interaction between
different dependency decisions at inference time. Because inference in MST is exact
(or nearly exact), an improvement in one type of dependency has a good chance of
influencing the accuracy of other dependencies, whereas in the transition-based model,
where inference is greedy, some of these additional benefits will be lost because of error
propagation. This is reflected in the error analysis in the following recurrent pattern:
Where Malt does well, MaltMST does only slightly better. But where MST is good,
MSTMalt is often significantly better. Furthermore, this observation easily explains the
limited increases in accuracy of words with verb and adverb modifiers that is observed
in MaltMST relative to MSTMalt (Table 7) as these dependencies occur close to the root
and have increased likelihood of being affected by error propagation.

Another part of the explanation may have to do with the learning algorithms used
by the systems. Although both Malt and MST use discriminative algorithms, Malt uses
a batch learning algorithm (SVM) and MST uses an on-line learning algorithm (MIRA).
If the original rich feature representation of Malt is sufficient to separate the training
data, regularization may force the weights of the guided features to be small (as they
are not needed at training time). On the other hand, an on-line learning algorithm will
recognize the guided features as strong indicators early in training and give them a high
weight as a result. Frequent features with high weight early in training tend to have the
most impact on the final classifier due to both weight regularization and averaging. This
is in fact observed when inspecting the weights of MSTMalt.

Finally, comparing the results of the guided models to the oracle results discussed
in Section 4.4, we see that there should be room for further improvement, as the best
guided parser (MSTMalt) does not quite reach the level of the graph selection oracle,
let alone that of the arc selection oracle. Further exploration of the space of possible
systems, as outlined in Section 6.3, will undoubtedly be necessary to close this gap.
As already noted, there are several recent developments in data-driven dependency
parsing, which can be seen as targeting the specific weaknesses of traditional graph-
based and transition-based models, respectively. For graph-based parsers, McDonald
and Pereira (2006), Hall (2007), Nakagawa (2007), and Smith and Eisner (2008) attempt
to overcome the limited feature scope of graph-based models by adding global features
in conjunction with approximate inference. Additionally, Riedel and Clarke (2006) and
Martins, Smith, and Xing (2009) integrate global features and maintain exact inference
through integer linear programming solutions. For transition-based models, the trend
is to alleviate error propagation by abandoning greedy, deterministic inference in fa-
vor of beam search with globally normalized models for scoring transition sequences,
either generative (Titov and Henderson 2007a, 2007b) or conditional (Duan, Zhao,
and Xu 2007; Johansson and Nugues 2007). In addition, Zhang and Clark (2008) has
proposed a learning method for transition-based parsers based on global optimization
similar to that traditionally used for graph-based parsers, albeit only with approxi-
mate inference through beam search, and Huang and Sagae (2010) has shown how a
subclass of transition-based parsers can be tabularized to permit the use of dynamic
programming.

One question that can be asked, given the correlation provided here between ob-
served errors and algorithmic expectations, is whether it is possible to characterize the
errors of a new parsing system simply by analyzing its theoretical properties. This is a
difficult question to answer. Consider a parsing system that uses greedy inference. One

225

Computational Linguistics Volume 37, Number 1

can speculate that it will result in error propagation and, as a result, a large number
of parsing errors on long dependencies as well as those close to the root. However,
if the algorithm is run on data that contains only deterministic local decisions and
complex global decisions, such a system might not suffer from error propagation. This
is because the early local decisions are made correctly. Furthermore, saying something
about specific linguistic constructions is also difficult, due to the wide spectrum of
difficulty when parsing certain phenomena across languages. Ultimately, this is an
empirical question. What we have shown here is that, on a number of data sets, our
algorithmic expectations about two widely used dependency parsing paradigms are
confirmed.

7. Conclusion

In this article, we have shown that the two dominant approaches to data-driven depen-
dency parsing—global, exhaustive, graph-based models and local, greedy, transition-
based models—have distinctive error distributions despite often having very similar
parsing accuracy overall. We have demonstrated that these error distributions can be
explained by theoretical properties of the two models, in particular related to the funda-
mental tradeoff between global learning and inference, traditionally favored by graph-
based parsers, and a rich feature space, typically found in transition-based parsers.
Based on this analysis, we have proposed new directions of research on data-driven
dependency parsing, some of which are already beginning to be explored.

We have also demonstrated how graph-based and transition-based models can be
integrated by letting one model learn from features generated by the other, using the
technique known as stacking in the machine learning community. Our experimental
results show that both models consistently improve their accuracy when given access
to features generated by the other model, which leads to a significant advancement
of the state of the art in data-driven dependency parsing. Moreover, a comparative
error analysis reveals that the improvements are predictable from the same theoretical
properties identified in the initial error analysis, such as the tradeoff between global
learning and inference, on the one hand, and rich feature representations, on the other.
On a more general note, we believe that this shows the importance of careful error
analysis, informed by theoretical predictions, for the further advancement of data-
driven methods in natural language processing.

Acknowledgments
We want to thank our collaborators for great
support in developing the parsing
technology, the organizers of the CoNLL-X
shared task for creating the data, and three
anonymous reviewers for their feedback that
substantially improved the article.

References
Attardi, Giuseppe. 2006. Experiments with a

multilanguage non-projective dependency
parser. In Proceedings of the 10th Conference
on Computational Natural Language
Learning (CoNLL), pages 166–170,
New York, NY.

Attardi, Giuseppe and Massimiliano
Ciaramita. 2007. Tree revision learning for
dependency parsing. In Proceedings of
Human Language Technologies: The Annual
Conference of the North American Chapter of
the Association for Computational Linguistics
(NAACL HLT), pages 388–395,
Rochester, NY.

Berger, Adam L., Stephen A. Della Pietra,
and Vincent J. Della Pietra. 1996. A
maximum entropy approach to natural
language processing. Computational
Linguistics, 22:39–71.

Buchholz, Sabine and Erwin Marsi. 2006.
CoNLL-X shared task on multilingual
dependency parsing. In Proceedings of the

226

McDonald and Nivre Analyzing and Integrating Dependency Parsers

10th Conference on Computational Natural
Language Learning (CoNLL), pages 149–164,
New York, NY.

Carreras, Xavier. 2007. Experiments with a
higher-order projective dependency
parser. In Proceedings of the CoNLL Shared
Task of EMNLP-CoNLL 2007,
pages 957–961, Prague.

Chang, Chih-Chung and Chih-Jen Lin. 2001.
LIBSVM: A Library for Support Vector
Machines. Software available at www.csie.
ntu.edu.tw/∼cjlin/libsvm.

Charniak, Eugene. 2000. A maximum-
entropy-inspired parser. In Proceedings of
the First Meeting of the North American
Chapter of the Association for Computational
Linguistics (NAACL), pages 132–139,
Seattle, WA.

Cheng, Yuchang, Masayuki Asahara, and
Yuji Matsumoto. 2006. Multi-lingual
dependency parsing at NAIST. In
Proceedings of the 10th Conference on
Computational Natural Language
Learning (CoNLL), pages 191–195,
New York, NY.

Chu, Yoeng-Jin and Tseng-Hong Liu. 1965.
On the shortest arborescence of a
directed graph. Scientia Sinica,
14:1396–1400.

Collins, Michael. 1999. Head-Driven
Statistical Models for Natural Language
Parsing. Ph.D. thesis, University of
Pennsylvania.

Collins, Michael. 2000. Discriminative
reranking for natural language parsing. In
Proceedings of the International Conference on
Machine Learning (ICML), pages 175–182,
Stanford, CA.

Cortes, Corinna and Vladimir Vapnik. 1995.
Support-vector networks. Machine
Learning, 20(3):273–297.

Crammer, Koby, Ofer Dekel, Joseph Keshet,
Shai Shalev-Shwartz, and Yoram Singer.
2006. Online passive-aggressive
algorithms. The Journal of Machine Learning
Research, 7:551–585.

Ding, Yuan and Martha Palmer. 2004.
Synchronous dependency insertion
grammars: A grammar formalism for
syntax based statistical MT. In Workshop
on Recent Advances in Dependency
Grammars (COLING), pages 90–97,
Geneva.

Duan, Xiangyu, Jun Zhao, and Bo Xu. 2007.
Probabilistic parsing action models for
multi-lingual dependency parsing. In
Proceedings of the CoNLL Shared Task
of EMNLP-CoNLL 2007, pages 940–946,
Prague.

Edmonds, Jack. 1967. Optimum branchings.
Journal of Research of the National Bureau of
Standards, 71B:233–240.

Eisner, Jason M. 1996. Three new
probabilistic models for dependency
parsing: An exploration. In Proceedings of
the 16th International Conference on
Computational Linguistics (COLING),
pages 340–345, Copenhagen.

Florian, Radu, Hany Hassan, Abraham
Ittycheriah, Hongyan Jing, Nanda
Kambhatla, Xiaoqiang Luo, Nicolas
Nicolov, and Salim Roukos. 2004. A
statistical model for multilingual entity
detection and tracking. In Proceedings of
Human Language Technology and the
Conference of the North American Chapter
of the Association for Computational
Linguistics (HLT-NAACL), pages 1–8,
Boston, MA.

Hall, Keith. 2007. K-best spanning tree
parsing. In Proceedings of the 45th
Annual Meeting of the Association for
Computational Linguistics (ACL),
pages 392–399, Prague.

Hall, Johan, Jens Nilsson, Joakim Nivre,
Gülsen Eryiğit, Beáta Megyesi, Mattias
Nilsson, and Markus Saers. 2007. Single
malt or blended? A study in multilingual
parser optimization. In Proceedings of the
CoNLL Shared Task of EMNLP-CoNLL 2007,
pages 933–939, Prague.

Henderson, John C. and Eric Brill. 1999.
Exploiting diversity in natural language
processing: Combining parsers. In
Proceedings of the Conference on Empirical
Methods in Natural Language Processing
(EMNLP), pages 188–194, College
Park, MD.

Hollingshead, Kristy and Brian Roark. 2007.
Pipeline iteration. In Proceedings of the
45th Annual Meeting of the Association for
Computational Linguistics (ACL),
pages 952–959, Prague.

Huang, Liang and David Chiang. 2005.
Better k-best parsing. In Proceedings of the
9th International Workshop on Parsing
Technologies (IWPT), pages 53–64,
Vancouver.

Huang, Liang and Kenjie Sagae. 2010.
Dynamic programming for linear-time
incremental parsing. In Proceedings of the
48th Annual Meeting of the Association for
Computational Linguistics (ACL),
pages 1077–1086, Uppsala.

Hudson, Richard A. 1984. Word Grammar.
Blackwell, Oxford.

Johansson, Richard and Pierre Nugues. 2007.
Incremental dependency parsing using

227

Computational Linguistics Volume 37, Number 1

online learning. In Proceedings of the
CoNLL Shared Task of EMNLP-CoNLL 2007,
pages 1134–1138, Prague.

Koo, Terry, Amir Globerson, Xavier
Carreras, and Michael Collins. 2010.
Efficient third-order dependency
parsers. In Proceedings of the 48th
Annual Meeting of the Association for
Computational Linguistics (ACL),
pages 1–11, Uppsala.

Koo, Terry, Amir Globerson, Xavier Carreras,
and Michael Collins. 2007. Structured
prediction models via the matrix-tree
theorem. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural
Language Processing and Computational
Natural Language Learning (EMNLP-
CoNLL), pages 141–150, Prague.

Kudo, Taku and Yuji Matsumoto. 2002.
Japanese dependency analysis using
cascaded chunking. In Proceedings of the
Sixth Workshop on Computational Language
Learning (CoNLL), pages 63–69, Edmonton.

Lafferty, John, Andrew McCallum, and
Fernando Pereira. 2001. Conditional
random fields: Probabilistic models for
segmenting and labeling sequence data. In
Proceedings of the International Conference on
Machine Learning (ICML), pages 282–289,
Williamstown, MA.

Marcus, Mitchell P., Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Building a
large annotated corpus of English: The
Penn Treebank. Computational Linguistics,
19:313–330.

Martins, Andre F. T., Dipanjan Das,
Noah A. Smith, and Eric P. Xing. 2008.
Stacking dependency parsers. In
Proceedings of the Conference on
Empirical Methods in Natural Language
Processing (EMNLP), pages 157–166,
Honolulu, HI.

Martins, Andre F. T., Noah A. Smith, and
Eric P. Xing. 2009. Concise integer linear
programming formulations for
dependency parsing. In Proceedings of the
Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint
Conference on Natural Language Processing of
the AFNLP (ACL-IJCNLP), pages 342–350,
Singapore.

Maruyama, Hiroshi. 1990. Structural
disambiguation with constraint
propagation. In Proceedings of the 28th
Meeting of the Association for Computational
Linguistics (ACL), pages 31–38,
Pittsburgh, PA.

McDonald, Ryan. 2006. Discriminative
Learning and Spanning Tree Algorithms for

Dependency Parsing. Ph.D. thesis,
University of Pennsylvania.

McDonald, Ryan, Koby Crammer, and
Fernando Pereira. 2005. Online
large-margin training of dependency
parsers. In Proceedings of the 43rd Annual
Meeting of the Association for Computational
Linguistics (ACL), pages 91–98,
Ann Arbor, MI.

McDonald, Ryan, Kevin Lerman, and
Fernando Pereira. 2006. Multilingual
dependency analysis with a two-stage
discriminative parser. In Proceedings of the
10th Conference on Computational Natural
Language Learning (CoNLL), pages 216–220,
New York, NY.

McDonald, Ryan and Joakim Nivre. 2007.
Characterizing the errors of data-driven
dependency parsing models. In Proceedings
of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing
and Computational Natural Language
Learning (EMNLP-CoNLL), pages 122–131,
Prague.

McDonald, Ryan and Fernando Pereira. 2006.
Online learning of approximate
dependency parsing algorithms. In
Proceedings of the 11th Conference of the
European Chapter of the Association for
Computational Linguistics (EACL),
pages 81–88, Trento.

McDonald, Ryan, Fernando Pereira,
Kiril Ribarov, and Jan Hajič. 2005.
Non-projective dependency parsing
using spanning tree algorithms. In
Proceedings of the Human Language
Technology Conference and the Conference on
Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 523–530,
Vancouver.

McDonald, Ryan and Giorgio Satta. 2007.
On the complexity of non-projective
data-driven dependency parsing. In
Proceedings of the 10th International
Conference on Parsing Technologies (IWPT),
pages 122–131, Prague.

Mel’čuk, Igor. 1988. Dependency Syntax:
Theory and Practice. State University of
New York Press.

Nakagawa, Tetsuji. 2007. Multilingual
dependency parsing using global features.
In Proceedings of the CoNLL Shared Task of
EMNLP-CoNLL 2007, pages 952–956,
Prague.

Nivre, Joakim. 2003. An efficient algorithm
for projective dependency parsing. In
Proceedings of the 8th International
Workshop on Parsing Technologies (IWPT),
pages 149–160, Nancy.

228

McDonald and Nivre Analyzing and Integrating Dependency Parsers

Nivre, Joakim. 2007. Incremental
non-projective dependency parsing.
In Proceedings of Human Language
Technologies: The Annual Conference
of the North American Chapter of the
Association for Computational Linguistics
(NAACL HLT), pages 396–403,
Rochester, NY.

Nivre, Joakim. 2009. Non-projective
dependency parsing in expected linear
time. In Proceedings of the Joint Conference
of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on
Natural Language Processing of the
AFNLP (ACL-IJCNLP), pages 351–359,
Singapore.

Nivre, Joakim, Johan Hall, Sandra Kübler,
Ryan McDonald, Jens Nilsson, Sebastian
Riedel, and Deniz Yuret. 2007. The CoNLL
2007 shared task on dependency parsing.
In Proceedings of the CoNLL Shared Task of
EMNLP-CoNLL 2007, pages 915–932,
Prague.

Nivre, Joakim, Johan Hall, and Jens Nilsson.
2004. Memory-based dependency parsing.
In Proceedings of the 8th Conference on
Computational Natural Language Learning,
pages 49–56, Boston, MA.

Nivre, Joakim, Johan Hall, Jens Nilsson,
Gülsen Eryiğit, and Svetoslav Marinov.
2006. Labeled pseudo-projective
dependency parsing with support vector
machines. In Proceedings of the 10th
Conference on Computational Natural
Language Learning (CoNLL), pages 221–225,
New York, NY.

Nivre, Joakim and Ryan McDonald.
2008. Integrating graph-based and
transition-based dependency parsers.
In Proceedings of the 46th Annual Meeting
of the Association for Computational
Linguistics (ACL), pages 950–958,
Columbus, OH.

Nivre, Joakim and Jens Nilsson. 2005.
Pseudo-projective dependency parsing. In
Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics
(ACL), pages 99–106, Ann Arbor, MI.

Riedel, Sebastian and James Clarke. 2006.
Incremental integer linear programming
for non-projective dependency parsing.
In Proceedings of the Conference on Empirical
Methods in Natural Language Processing
(EMNLP), pages 129–137, Sydney.

Riedel, Sebastian, Ruket Çakıcı, and Ivan
Meza-Ruiz. 2006. Multi-lingual
dependency parsing with incremental
integer linear programming. In Proceedings
of the 10th Conference on Computational

Natural Language Learning (CoNLL),
pages 226–230, New York, NY.

Sagae, Kenji and Alon Lavie. 2006. Parser
combination by reparsing. In Proceedings
of NAACL: Short Papers, pages 129–132,
New York, NY.

Sarkar, Anoop. 2001. Applying co-training
methods to statistical parsing. In
Proceedings of the Second Meeting of the
North American Chapter of the Association for
Computational Linguistics (NAACL),
pages 175–182, Pittsburgh, PA.

Sgall, Petr, Eva Hajičová, and Jarmila
Panevová. 1986. The Meaning of the
Sentence in Its Pragmatic Aspects. Reidel,
Dordrecht.

Smith, David A. and Jason Eisner. 2008.
Dependency parsing by belief
propagation. Proceedings of the Conference
on Empirical Methods in Natural Language
Processing (EMNLP), pages 145–156,
Honolulu, HI.

Smith, David A. and Noah A. Smith. 2007.
Probabilistic models of nonprojective
dependency trees. In Proceedings of the 2007
Joint Conference on Empirical Methods in
Natural Language Processing and
Computational Natural Language Learning
(EMNLP-CoNLL), pages 132–140, Prague.

Snow, Rion, Dan Jurafsky, and Andrew Y.
Ng. 2005. Learning syntactic patterns for
automatic hypernym discovery. In
Advances in Neural Information Processing
Systems (NIPS), pages 1297–1304,
Vancouver.

Steedman, Mark, Rebecca Hwa, Miles
Osborne, and Anoop Sarkar. 2003.
Corrected co-training for statistical
parsers. In Proceedings of the International
Conference on Machine Learning (ICML),
pages 95–102, Washington, DC.

Tarjan, Robert E. 1977. Finding optimum
branchings. Networks, 7:25–35.

Taskar, Ben, Simon Lacoste-Julien, and Dan
Klein. 2005. A discriminative matching
approach to word alignment. In
Proceedings of the Human Language
Technology Conference and the Conference on
Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 73–80,
Vancouver.

Titov, Ivan and James Henderson. 2007a.
Fast and robust multilingual dependency
parsing with a generative latent variable
model. In Proceedings of the CoNLL
Shared Task of EMNLP-CoNLL 2007,
pages 947–951, Prague.

Titov, Ivan and James Henderson. 2007b. A
latent variable model for generative

229

Computational Linguistics Volume 37, Number 1

dependency parsing. In Proceedings of the
10th International Conference on Parsing
Technologies (IWPT), pages 144–155,
Prague.

Yamada, Hiroyasu and Yuji Matsumoto.
2003. Statistical dependency analysis with
support vector machines. In Proceedings of
the 8th International Workshop on Parsing
Technologies (IWPT), pages 195–206,
Nancy.

Zeman, Daniel and Zdeněk Žabokrtskỳ.
2005. Improving parsing accuracy by

combining diverse dependency parsers.
Proceedings of the International Workshop
on Parsing Technologies, pages 171–178,
Vancouver.

Zhang, Yue and Stephen Clark. 2008.
A tale of two parsers: Investigating
and combining graph-based and
transition-based dependency parsing.
Proceedings of the Conference on
Empirical Methods in Natural Language
Processing (EMNLP), pages 562–571,
Honolulu, HI.

230

