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This article describes a framework for incorporating referential semantic information from a
world model or ontology directly into a probabilistic language model of the sort commonly
used in speech recognition, where it can be probabilistically weighted together with phonological
and syntactic factors as an integral part of the decoding process. Introducing world model
referents into the decoding search greatly increases the search space, but by using a single
integrated phonological, syntactic, and referential semantic language model, the decoder is able to
incrementally prune this search based on probabilities associated with these combined contexts.
The result is a single unified referential semantic probability model which brings several kinds
of context to bear in speech decoding, and performs accurate recognition in real time on large
domains in the absence of example in-domain training sentences.

1. Introduction

The capacity to rapidly connect language to referential meaning is an essential aspect
of communication between humans. Eye-tracking studies show that humans listening
to spoken directives are able to actively attend to the entities that the words in these
directives might refer to, even while the words are still being pronounced (Tanenhaus
et al. 1995; Brown-Schmidt, Campana, and Tanenhaus 2002). This timely access to
referential information about input utterances may allow listeners to adjust their pref-
erences among likely interpretations of noisy or ambiguous utterances to favor those
that make sense in the current environment or discourse context, before any lower-level
disambiguation decisions have been made. This same capability in a spoken language
interface system could allow reliable human–machine interaction in the idiosyncratic
language of day-to-day life, populated with proper names of co-workers, objects, and
events not found in broad training corpora. When domain-specific training corpora are
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not available, a referential semantic interface could still exploit its model of the world:
the data to which it is an interface, and patterns characterizing these data.

This article describes a framework for incorporating referential semantic informa-
tion from a world model or ontology directly into a statistical language model of the
sort commonly used in speech recognition, where it can be probabilistically weighted
together with phonological and syntactic factors as an integral part of the decoding
process. Introducing world model referents into the decoding search greatly increases
the search space, but by using a single integrated phonological, syntactic, and referential
semantic language model, the decoder is able to incrementally prune this search based
on probabilities associated with these combined contexts.

Semantic interpretation is defined dynamically in this framework, in terms of transi-
tions over time from less constrained referents to more constrained referents. Because it
is defined dynamically, interpretation in this framework can incorporate dependencies
on referential context—for example, constraining interpretations to a presumed set of
entities, or a presumed setting—which may be fixed prior to recognition, or dynam-
ically hypothesized earlier in the recognition process. This contrasts with other recent
systemswhich interpret constituents only given fixed inter-utterance contexts or explicit
syntactic arguments (Schuler 2001; DeVault and Stone 2003; Gorniak and Roy 2004; Aist
et al. 2007). Moreover, because it is defined dynamically, in terms of transitions, this
context-dependent interpretation framework can be directly integrated into a Viterbi
decoding search, like ordinary state transitions in a Hidden Markov Model. The result
is a single unified referential semantic probability model which brings several kinds
of referential semantic context to bear in speech decoding, and performs accurate
recognition in real time on large domains in the absence of example domain-specific
training sentences.

The remainder of this article is organized as follows: Section 2 will describe related
approaches to interleaving semantic interpretation with speech recognition. Section 3
will provide definitions for worldmodels used in semantic interpretation, and language
models used in speech decoding, which will form the basis of a referential semantic
language model, defined in Section 4. Then Section 5 will describe an evaluation of this
model in a sample spoken language interface application.

2. Related Work

Early approaches to incremental interpretation (Mellish 1985; Haddock 1989) apply
semantic constraints associated with each word in a sentence to progressively winnow
the set of individuals that could serve as referents in that sentence. These incrementally
constrained referents are then used to guide the syntactic analysis of the sentence, dis-
preferring analyses with empty interpretations in the current environment or discourse
context. Similar approaches were applied to broad-coverage text processing, querying a
large commonsense knowledge base as a world model (Martin and Riesbeck 1986). But
this winnowing is done deterministically, invoking default assumptions and potentially
exponential backtracking when default assumptions fail.

The idea of basing analysis decisions on constrained sets of referent individuals
was later extended to pursue multiple interpretations at once by exploiting polynomial
structure-sharing in a dynamic programming parser (Schuler 2001; DeVault and Stone
2003; Gorniak and Roy 2004; Aist et al. 2007). The resulting shared interpretation is
similar to underspecified semantic representations (Bos 1996), except that the rep-
resentation mainly preserves syntactic ambiguity rather than semantic (e.g., quanti-
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fier scoping) ambiguity, and the size complexity of the parser chart representation is
polynomially bounded. This approach was further extended to support hypothetical
referents (DeVault and Stone 2003), domains with continuous relations (Gorniak and
Roy 2004), and updates to the shared parser chart by components handling other levels
of linguistic analysis in parallel, during real-time recognition (Aist et al. 2007).

The advantage of this use of the parser chart is that it allows a straightforward
mapping between syntax and semantics using familiar compositional semantic rep-
resentations. But the standard dynamic programming algorithm for parsing derives
its complexity bounds from the fact that each recognized constituent can be analyzed
independently of every other constituent. These independence assumptions must be
relaxed if dynamic context dependencies are to be applied across sibling constituents
(e.g., in the package data directory, open . . . , where the files to be opened should be
restricted to the contents of the package data directory). More importantly, from an
engineering perspective, the dynamic programming algorithm for parsing runs in cubic
time, not linear, which means this interpretation framework cannot be directly applied
to continuous audio streams. Interface systems therefore typically perform utterance
or sentence segmentation as a stand-alone pre-process, without integrating syntactic or
referential semantic dependencies into this decision.

Finally, some speech recognition systems employ inter-utterance context-dependent
language models that are pre-compiled into word n-grams for particular discourse or
environment states, and swapped out between utterances (Young et al. 1989; Lemon
and Gruenstein 2004; Seneff et al. 2004). But in some cases accurate interpretation will
require spoken language interfaces to exploit context continuously during utterance
recognition, not just between utterances. For example, the probability distribution over
the next word in the utterance go to the package data directory and get the . . . (or in the
package data directory get the . . . ) will depend crucially on the linguistic and environment
context leading up to this point: the meaning of package data directory in the first part of
this directive, as well as the objects that will be available once this part of the directive
has been carried out. Moreover, in rich environments pre-compilation to word n-grams
can be expensive, since all referents in the world model must be considered to build
accurate n-grams. This will not be practical if environments change frequently.

3. Background

In contrast to the approaches described in Section 2, this article proposes an incremental
interpretation framework which is entirely contained within a single-pass probabilistic
decoding search. Essentially, this approach directly integrates model theoretic seman-
tics, summarized in Section 3.1, with conventional probabilistic time-series models used
in speech recognition, summarized in Section 3.2.

3.1 Referential Semantics

Semantic interpretation requires a framework within which a speaker’s intended mean-
ings can be formalized. Sections 3.1.1 and 3.1.2 describe a model theoretic approach
to semantic interpretation that will later be extended in Section 4.1. The referential
states defined here will then be incorporated into a representation of nested syntactic
constituents in a hierarchic time-series model in Section 4.2. Some of the notation
introduced here is summarized later in Table 1 (Section 4).

315



Computational Linguistics Volume 35, Number 3

Figure 1
A subsumption lattice (laid on its side) over the power set of a domain containing three
individuals: ι1, ι2, and ι3. Subsumption relations are represented as gray arrows from supersets
(or super-concepts) to subsets (or sub-concepts).

3.1.1 Model Theory. The language model described in this article defines semantic ref-
erents in terms of a world model M. In model theory (Tarski 1933; Church 1940), a
world model is defined as a tuple M = 〈E , �·�〉 containing a domain of individuals E =
{ι1, ι2, . . . } and an interpretation function �·� to interpret expressions in terms of those
individuals. This interpretation function accepts expressions φ of various types: logical
statements, of simple type TTT (for example, the demo file is writable) which may be true
or false; references to individuals, of simple type EEE (for example, the demo file) which
may refer to any individual in the world model; or functors of complex type 〈α,β〉,
which take an argument of type α and produce output of type β. Functor expressions φ
of type 〈α,β〉 can be applied to other expressions ψ of type α as arguments to yield
expressions φ(ψ) of type β (for example, writablemay take the demo file as an argument
and return true). By nesting functors, complex expressions can be defined, denoting
sets or properties of individuals: 〈EEE, TTT〉 (for example, writable), relations over individual
pairs: 〈EEE, 〈EEE, TTT〉〉 (for example, contains), or first-order functors over sets: 〈〈EEE, TTT〉, 〈EEE, TTT〉〉
(for example, a comparative adjective like larger).

3.1.2 Ontological Promiscuity. First-order or higher models (in which functors can take
sets as arguments) can be mapped to equivalent zero-order models (with functors
defined only on entities). This is generally motivated by a desire to allow sets of
individuals to be described in much the same way as individuals themselves (Hobbs
1985). Entities in a zero-order model M can be defined from individuals in a higher-
order model M∗ by mapping or reifying each set S = {ι1, ι2, . . . } in P (EM∗ ) (or each
set of sets in P (P (EM∗ )), etc.) as an entity eS in a new domain EM.1 Relations l inter-
preted as zero-order functors inM can be defined directly from relations l∗ interpreted
as higher-order functors (over sets) in M∗ by mapping each instance of 〈S1,S2〉 in
�l∗�M∗ : P (EM∗ )×P (EM∗ ) to a corresponding instance of 〈eS1 , eS2〉 in �l�M : EM×EM. Set
subsumption inM∗ can then be defined on entities made from reified sets inM, similar
to ‘ISA’ relations over concepts in knowledge representation systems (Brachman and
Schmolze 1985).

These subset or subsumption relations can be represented in a subsumption lattice,
as shown in Figure 1, with supersets to the left connecting to subsets to the right. This
representation will be used in Section 4 to define weighted transitions over first-order
referents in a statistical time-series model of interpretation.

1 Here, P (X) is the power set of X, containing the set of all subsets.
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3.2 Language Modeling for Speech Recognition

The referential semantic language model described in this article is based on Hierar-
chic Hidden Markov Models (HHMMs), an existing extension of the standard Hidden
Markov Model (HMM) language modeling framework used in speech recognition,
which has been factored to represent hierarchic information about language structure
over time. This section will review HMMs (Section 3.2.1) and Hierarchic HMMs (Sec-
tions 3.2.2 and 3.2.3). This underlying framework will then be extended to include
random variables over semantic referents in Section 4.2.

3.2.1 HMMs and Language Models. The model described in this article is a specialization
of the HMM framework commonly used in speech recognition (Baker 1975; Jelinek,
Bahl, and Mercer 1975). HMMs characterize speech as a sequence of hidden states ht
(which may consist of speech sounds, words, or other hypothesized syntactic or se-
mantic information), and observed states ot (typically finite, overlapping frames of an
audio signal) at corresponding time steps t. A most-probable sequence of hidden states
ĥ1..T can then be hypothesized given any sequence of observed states o1..T, using Bayes’
Law (Equation 2) and Markov independence assumptions (Equation 3) to define the
full probability P(h1..T | o1..T ) as the product of a Language Model (LM) prior proba-
bility P(h1..T )

def
=
∏
t PΘLM

(ht | ht−1) and an Acoustic Model (AM) likelihood probability
P(o1..T | h1..T )

def
=
∏
t PΘAM

(ot | ht):

ĥ1..T = argmax
h1..T

P(h1..T | o1..T ) (1)

= argmax
h1..T

P(h1..T ) · P(o1..T | h1..T ) (2)

def
= argmax

h1..T

T∏
t=1

PΘLM
(ht | ht−1) · PΘAM

(ot | ht) (3)

The initial hidden state h0 may be defined as a constant.2 HMM transitions can be
modeled using Weighted Finite State Automata (WFSAs), corresponding to regular
expressions. An HMM state ht may then be defined as a WFSA state, or a symbol
position in a corresponding regular expression.

3.2.2 Hierarchic HMMs. Language model transitions PΘLM
(σt |σt−1) over internally

structured hidden states σt can be modeled using synchronized levels of stacked-
up component HMMs in an HHMM (Murphy and Paskin 2001), generalized here
as an abstract topology over unspecified random variables ρ and σ. In this topol-
ogy, HHMM transition probabilities are calculated in two phases: a “reduce” phase
(resulting in an intermediate, marginalized state ρt at time step t), in which compo-
nent HMMs may terminate; and a “shift” phase (resulting in a modeled state σt),
in which unterminated HMMs transition, and terminated HMMs are re-initialized
from their parent HMMs. Variables over intermediate and modeled states are factored

2 It is also common to define a prior distribution over initial states at h0, but this is not necessary here.
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into sequences of depth-specific variables—one for each of D levels in the HHMM
hierarchy:

ρt = 〈ρ1t . . . ρ
D
t 〉 (4)

σt = 〈σ1t . . . σ
D
t 〉 (5)

Transition probabilities are then calculated as a product of transition probabilities at
each level, using level-specific “reduce” Θρ and “shift” Θσ models:

PΘLM
(σt |σt−1) =

∑
ρt

P(ρt |σt−1) · P(σt |ρt σt−1) (6)

def
=

∑
ρ1
t ...ρ

D
t

(
D∏
d=1

PΘρ
(ρdt |ρ

d+1
t σ

d
t−1σ

d−1
t−1 )

)
·

(
D∏
d=1

PΘσ
(σdt |ρ

d+1
t ρ

d
t σ
d
t−1σ

d−1
t )

)

(7)

with ρD+1t and σ0t defined as constants. In Viterbi (maximum likelihood) decoding, the
marginals (sums) in this equation may be approximated using an argmax operator. A
graphical representation of the dependencies in this model is shown in Figure 2.

3.2.3 Simple Hierarchic HMMs. The previous generalized definition can be considered a
template for factoring HMMs into synchronized levels, using σ and ρ as parameters.
The specific Murphy–Paskin definition of HHMMs can then be considered a “simple”
instantiation of this template using FSA states for σ and switching variables for ρ. In
Section 4, this instantiation will be augmented (or further factored) to incorporate addi-
tional variables over semantic referents at each depth and time step, without changing
the overall topology of the model.

Figure 2
Graphical representation of a HHMMwith D = 3 hidden levels. Circles denote random
variables, and edges denote conditional dependencies. Shaded circles denote variables
with observed values.
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In simple HHMMs, each intermediate state variable ρdt is a boolean switching vari-
able f dρ,t ∈ {0, 1} and each modeled state variable σdt is a syntactic, lexical, or phonetic

FSA state qdσ,t:

ρ
d
t = f dρ,t (8)

σ
d
t = qdσ,t (9)

Instantiating Θρ as ΘSimple-ρ, f
d is deterministic: true (equal to 1) with probability 1 if

there is a transition at the level immediately below d and the stack element qd
σ,t−1 is a

final state, and false (equal to 0) with probability 1 otherwise:3

PΘSimple-ρ
(ρdt |ρ

d+1
t σ

d
t−1σ

d−1
t−1 )

def
=



if f d+1

ρ,t = 0 : [f dρ,t= 0]
if f d+1

ρ,t = 1, q
d
σ,t−1 ∈Final : [f

d
ρ,t= 0]

if f d+1
ρ,t = 1, q

d
σ,t−1∈Final : [f

d
ρ,t= 1]

(10)

where f D+1
ρ,t = 1 and q0σ,t = ROOT.

Shift probabilities at each level (instantiating Θσ as ΘSimple-σ) are defined using
level-specific transition ΘSimple-Trans and expansion ΘSimple-Init models:

PΘSimple-σ
(σdt |ρ

d+1
t ρ

d
t σ
d
t−1σ

d−1
t )

def
=



if f d+1

ρ,t = 0, f
d
ρ,t= 0 : [q

d
σ,t= q

d
σ,t−1]

if f d+1
ρ,t = 1, f

d
ρ,t= 0 : PΘSimple-Trans

(qdσ,t | q
d
σ,t−1)

if f d+1
ρ,t = 1, f

d
ρ,t= 1 : PΘSimple-Init

(qdσ,t | q
d−1
σ,t )

(11)

where f D+1
ρ,t = 1 and q0σ,t = ROOT. This model is conditioned on final-state switching

variables at and immediately below the current HHMM level: If there is no final state
immediately below the current level (the first case above), it deterministically copies the
current FSA state forward to the next time step; if there is a final state immediately below
the current level (the second case presented), it transitions the FSA state at the current
level, according to the distribution ΘSimple-Trans; and if the state at the current level is
final (the third case presented), it re-initializes this state given the state at the level
above, according to the distribution ΘSimple-Init. The overall effect is that higher-level
HMMs are allowed to transition only when lower-level HMMs terminate. An HHMM
therefore behaves like a probabilistic implementation of a pushdown automaton (or
“shift–reduce” parser) with a finite stack, where the maximum stack depth is equal to
the number of levels in the HHMM hierarchy.

Like HMM states, the states at each level in a simple HHMM also correspond to
weighted FSA (WFSA) states or symbol positions in regular expressions, except that
some states can be nonterminal states, which introduce corresponding sub-expressions
or sub-WFSAs governing state transitions at the level below. The process of expanding
each nonterminal state qd−1

σ,t to a sub-expression or WFSA (with start state qdσ,t) is
modeled in ΘSimple-Init. Transitions to adjacent (possibly final) states within each
expression or WFSA are modeled in ΘSimple-Trans.

3 Here [·] is an indicator function: [φ] = 1 if φ is true, 0 otherwise.
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For example, a simple HHMMmay factor a language model into word (q1σ,t), phone
(q2σ,t), and subphone (q

3
σ,t) levels, where a word state may be a single word, a phone state

may be a position in a sequence of phones corresponding to a word, and a subphone
state may be a position in a sequence of subphone states (e.g., onset, middle, and end)
corresponding to a phone. In this case, ΘSimple-Init would define a prior model over
words at level 1, a pronunciation model of phone sequences for each word at level 2,
and a state-sequence model of subphone states for each phone at level 3; andΘSimple-Trans

would define a word bigram model at level 1, and would deterministically advance
along phone and subphone sequences at levels 2 and 3 (Bilmes and Bartels 2005).

This hierarchy of regular expressions may also be viewed as a probabilistic im-
plementation of a cascaded FSA, used for modeling syntax in information extraction
systems such as FASTUS (Hobbs et al. 1996).

4. A Referential Semantic Language Model

A referential semantic language model can now be defined as an instantiation of an
HHMM (as described in Section 3.2), interpreting directives in a reified world model
(as described in Section 3.1). This interpretation framework is novel in that it is defined
dynamically in terms of transitions over referential states—evocations of entity referents
from a (e.g., first-order) world model—stacked up in a Hierarchic HMM. This allows
(1) a straightforward fast implementation of semantic interpretation (as transition) that
is compatible with conventional time-series models used in speech recognition; and (2)
a broader notion of semantic composition that exploits referential context in time order
(from previous constituents to later constituents) as well as bottom-up (from component
constituents to composed constituents).

First, Section 4.1 will describe a definition of semantic constraints as transitions in
a time-series model. Then Section 4.2 will apply these transitions to nested referents
in a Hierarchic HMM. Section 4.3 will introduce a state-based syntactic representa-
tion to link this semantic representation with recognized words. Finally, Section 4.4
will demonstrate the expressive power of this model on some common linguistic
constructions.

Because this section combines notation from different theoretical frameworks (in
particular, from formal semantics and statistical time-series modeling), a notation
summary is provided in Table 1.

4.1 Dynamic Relations

Semantic interpretationmay be easily integrated into a probabilistic time-series model if
it is formulated as a type of transition, from source to destination referents of equivalent
type at adjacent time steps. In other words, while relations in an ordinary Montagovian
interpretation framework (Montague 1973) may be functions from entity referents to
truth value referents, all relations in the world model defined here must be transition
functions from entity referents to entity referents.

One-place properties l may be modeled in this system by defining transitions from
preceding, unconstrained referents to referents constrained by l. The unconstrained
referents can be thought of as context arguments: For example, in the context of the
set of user-writable files, a property like EXECUTABLE evokes the subset of writable
executables. In the subsumption lattice shown in Figure 1, this will define a rightward
transition from each set referent to some subset referent, labeled with the traversed
relation (see Figure 4 in Section 4.4).
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Table 1
Summary of notation used in Section 4.

Model theory (see Section 3.1)
M : a world model
EM : the domain of individuals in world modelM
ι : an individual
�·�M : an interpretation function from logical symbols (e.g., relation labels)

to logical functions over individuals, sets of individuals, etc.
variables with asterisks : refer to an initial world model prior to reification

Type theory (see Section 3.1.1)
EEE : the type of an individual
TTT : the type of a truth value
〈α,β〉 : the type of a function from type α to type β (variables over types)

Set theory (see Section 4.1)
S : a set of individuals
R : a relation over tuples of individuals

Random variables (see Sections 3.2 and 4.2)
h : a hidden variable in a time-series model
o : an observed variable in a time-series model,

(in this case, a frame of the acoustical signal)
ρ : a complex variable occurring in the reduce phase of processing;

for example, composed of 〈eρ, fρ〉
σ : a complex variable occurring in the shift phase of processing;

for example, composed of 〈eσ, qσ〉
f : a random variable over final state status; for example, with value 1 or 0
q : a random variable over FSA (syntax) states,

in this case compiled from regular expressions; for example, with value q1q1q1 or q2q2q2
e : a random variable over referent entities; for example, with value e{ι1ι2ι3}
l : a random variable over relation labels; for example, with value EXECUTABLE

(see Section 4.1)

t : a time step, from 1 to the end of the utterance T
d : a depth level, from 1 to the maximum depth level D
Θ : a probability model mapping variable values to probabilities

(real numbers form 0.0 to 1.0)
L : functions from FSA (syntax) states to relation labels

variables in boldface : instances or values of a random variable
non-bold variables with single subscripts : are specific to a time step; for example, ρt
non-bold variables with double subscripts : are specific to a reduce or shift phase within

a time step; for example, eρ,t, qσ,t
non-bold variables with superscripts : are specific to a depth level; for example, ρdt , e

d
ρ,t

General n-ary semantic relations l in this framework are therefore formulated as a
type of multi-source transition, distinguishing one argument of an original, ordinary
relation l∗ as an output (destination) and leaving the rest as input (source); then intro-
ducing a context referent as an additional input. Instead of defining simple transition
arcs on a subsumption lattice, n-ary relations more accurately define hyperarcs, with
multiple source referents: zero or more conventional arguments and one additional con-
text referent, leading to a destination referent intersectively constrained to this context.

321



Computational Linguistics Volume 35, Number 3

This model of interpretation as transition also allows referential semantic con-
straints to be applied that occur prior to hypothesized constituents, in addition to those
that occur as arguments. For example, in the sentence go to the package data directory
and hide the executable file, the phrase go to the package data directory provides a powerful
constraint on the referent of the executable file, although it does not occur as an argument
sub-constituent of this noun phrase. In this framework, the referent of the package data
directory (as a set of files) can be passed as a context argument to intersectively constrain
the interpretation of the executable file.

Recall the definition in Section 3.1.2 of a zero-order model M with refer-
ents e{ι1,ι2,...} reified from sets of individuals {ι1, ι2, . . . } in some original first- or
higher-order modelM∗. The referential semantic language model described in this arti-
cle interacts with this reified world modelM through queries of the form �l�M(eS1 , eS2 ),
where l is a relation, eS1 is an argument referent, and eS2 is a context referent (or eS1 is a
context referent if there is no argument). Each query returns a destination referent eS
such that S is a subset of the context set in the original world model M∗. These
context-dependent relations l inM are then defined in terms of corresponding ordinary
relations l∗ of various types in the original world modelM∗ as follows:

�l�M(eS1 , eS2 ) = eS s.t.



if �l∗�M∗ is type 〈EEE, TTT〉 : S = S1 ∩ �l∗�M∗

if �l∗�M∗ is type 〈EEE, 〈EEE, TTT〉〉 : S = S2 ∩ (S1 · �l∗�M∗ )
if �l∗�M∗ is type 〈〈EEE, TTT〉, 〈EEE, TTT〉〉 : S = S2 ∩ �l∗�M∗ (S1)

(12)

where relation products are defined to resemble matrix products:

S · R = {ι′′ | ι′∈S, 〈ι′, ι′′〉∈R} (13)

For example, a property like EXECUTABLE would ordinarily bemodeled as a functor
of type 〈EEE, TTT〉: given an individual, it would return true if the individual can be executed.
The first case in Equation (12) casts this as a transition from an argument set S1 to
the set of individuals within S1 that are executable. On the other hand, a relation like
CONTAINS would ordinarily be modeled as 〈EEE, 〈EEE, TTT〉〉: given an individual and then
another individual, it would return true if the relation holds over the pair. The second
case in Equation (12) casts this as a transition from a set of containers S1, given a context
set S2, to the subset of this context that are contained by an individual in S1. Finally, a
first-order functor like LARGEST would ordinarily be modeled as 〈〈EEE, TTT〉, 〈EEE, TTT〉〉: given
a set of individuals and then another individual, it would return true if the individual
belongs to the (singleton) set of things that are the largest in the argument set. The last
case in Equation (12) casts this as a transition from a set S1, given a context set S2, to
the (singleton) subset of this context that are members of S1 and are larger than all other
individuals in S1. More detailed examples of each relation type in Equation (12) are
provided in Section 4.4.

Relations in this world model have the character of being context-dependent in the
sense that relations like CAPTAIN that are traditionally one-place (denoting a set of enti-
ties with rank captain) are now two-place, dependent on an argument superconcept in
the subsumption lattice. Relations can therefore be given different meanings at different
places in the world model: in the context of a particular football team, CAPTAIN will
refer to a particular player; in the context of a different team, it will refer to someone
else. One-place relations can still be defined using a subsumption lattice root concept
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‘�’ as a context argument of course, but this will increase the perplexity (number of
choices) at the root concept, making recognition less reliable.

In this definition, referents e are similar to the information states in Dynamic Predi-
cate Logic (Groenendijk and Stokhof 1991), except that only limited working memory
for information states is assumed, containing only one referent (or variable binding in
DPL terms) per HHMM level.

4.2 Referential Semantic HHMM

Like the simple HHMM described in Section 3.2.3, the referential semantic language
model described in this article (henceforth RSLM), is defined by instantiating the gen-
eral HHMM “template” defined in Section 3.2.2. This RSLM instantiation incorporates
both the switching variables f ∈{0, 1} and FSA state variables q of the simple HHMM,
and adds variables over semantic referents e to the “reduce” and “shift” phases at each
level. Thus, the RSLM decomposes each HHMM reduce variable ρdt into a joint variable
subsuming an intermediate referent edρ,t and a final-state switching variable f dρ,t; and
decomposes each HHMM shift variable σdt into a joint variable subsuming a modeled
referent edσ,t and an ordinary FSA state qdσ,t:

ρ
d
t = 〈edρ,t, f

d
ρ,t〉 (14)

σ
d
t = 〈edσ,t, q

d
σ,t〉 (15)

A graphical representation of this referential semantic language model is shown in
Figure 3.

The intermediate referents edρ,t in this framework correspond to the traditional notion
of compositional semantics (Frege 1892), in which meanings of composed constituents
(at higher levels in the HHMM hierarchy) are derived from meanings of component
constituents (at lower levels in the hierarchy). However, in addition to the referents

Figure 3
A graphical representation of the dependencies in the referential semantic language model
described in this article (compare with Figure 2). Again, circles denote random variables
and edges denote conditional dependencies. Shaded circles denote random variables with
observed values.
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of their component constituents, the intermediate referents in this framework are also
constrained by the referents at the same depth in the previous time step—the referen-
tial context described in Section 4.1. The modeled referents edσ,t in this framework then
correspond to a snapshot at each time step of the referential state of the recognizer,
after all completed constituents have been composed (or reduced), and after any new
constituents have been introduced (or shifted).

Both intermediate and modeled referents are constrained by labeled relations l
in �·�M associated with ordinary FSA states. Thus, relation labels are defined for “re-
duce” and “shift” HHMM operations via label functions Lρ and Lσ, respectively, which
map FSA states q to relation labels l.

Entity referents edρ at each reduce phase of this HHMM are constrained by the pre-
vious FSA state qdt-1 using a reduce relation l

d
ρ,t = Lρ(q

d
σ,t-1), such that e

d
ρ = �ldρ�M(ed+1ρ , edt-1).

Reduce probabilities at each level (instantiating Θρ as ΘRSLM-ρ) are therefore:
4

PΘRSLM-ρ
(ρdt |ρ

d+1
t σ

d
t-1σ
d-1
t-1 )

def
=



if f d+1

ρ,t = 0 : [f dρ,t= 0] · [e
d
ρ,t= e

d
σ,t]

if f d+1
ρ,t = 1, q

d
σ,t-1 ∈Final : [f

d
ρ,t= 0] · [e

d
ρ,t= e

d+1
ρ,t ]

if f d+1
ρ,t = 1, q

d
σ,t-1∈Final : [f

d
ρ,t= 1] ·

[edρ,t= �ldρ,t�M(ed+1
ρ,t , e

d-1
σ,t-1)]

(16)

where ρD+1
ρ,t = 〈eD

σ,t-1, 1〉 and σ
0
σ,t = 〈e�,ROOT〉. Here, it is assumed that Lρ(q

d
σ,t-1) pro-

vides a non-trivial constraint only when qdσ,t is a final state; otherwise it returns an
IDENTITY relation such that �IDENTITY�M(e, e′) = e.

Entity referents edσ,t at each shift phase of this HHMM are constrained by the cur-
rent FSA state qdσ,t using a shift relation ldσ,t = Lσ(q

d
σ,t), such that edσ,t = �ldσ,t�M(ed-1σ,t, e�).

Shift probabilities at each level (instantiating Θσ as ΘRSLM-σ) then generate relation
labels using a “description” model ΘRef-Init, with referents edσ,t and state transitions qdσ,t
conditioned on (or deterministically dependent on) these labels. The probability distri-
bution over modeled variables is therefore

PΘRSLM-σ
(σdt |ρ

d+1
t ρ

d
t σ
d
t-1σ
d-1
t )

def
=




if f d+1
ρ,t = 0, f

d
ρ,t= 0 : [e

d
σ,t= e

d
ρ,t] · [q

d
σ,t= q

d
σ,t-1]

if f d+1
ρ,t = 1, f

d
ρ,t= 0 : [e

d
σ,t= e

d
ρ,t] · PΘSyn-Trans

(qdσ,t | q
d
σ,t-1)

if f d+1
ρ,t = 1, f

d
ρ,t= 1 :

∑
ld
σ,t

PΘRef-Init
(ldσ,t | e

d-1
σ,t q

d-1
σ,t)

·[edσ,t= �ldσ,t�M(ed-1σ,t, e�)]
·PΘSyn-Init

(qdσ,t | l
d
σ,t q

d-1
σ,t)

(17)

where ρD+1
ρ,t = 〈eD

σ,t-1, 1〉 and σ
0
σ,t = 〈e�,ROOT〉. Here, it is assumed that Lσ(q

d
σ,t) pro-

vides a non-trivial constraint only when qdσ,t is an initial state; otherwise it returns an
IDENTITY relation such that �IDENTITY�M(e, e′) = e. The probability modelsΘRef-Init and
ΘSyn-Init are induced from corpus observations or defined by hand.

The cases in this equation, conditioned on final-state switching variables f d+1
ρ,t

and f dρ,t, correspond to those in Equation (11) in Section 3.2.3. In the first case, where
there is no final state immediately below the current level, referents and FSA states are
simply propagated forward. In the second case, where there is a final state immediately
below the current level, referents are propagated forward and the FSA state is advanced

4 Again, [·] is an indicator function: [φ] = 1 if φ is true, 0 otherwise.

324



Schuler, Wu, and Schwartz A Framework for Fast Incremental Interpretation

according to the distribution ΘSyn-Trans. In the third case, where the current FSA state is
final and must be re-initialized, a new referent and FSA state are chosen by:

1. selecting, according to a “description” model ΘRef-Init, a relation label l
d
σ,t

with which to constrain the current referent,

2. deterministically generating a referent edσ,t given this label and the referent
at the level above, and

3. selecting, according to a “lexicalization” model ΘSyn-Init, an FSA state qdσ,t
that is compatible with this label (i.e., has Lσ(q

d
σ,t) = ldσ,t).

4.3 Associating Semantic Relations with Syntactic Expressions

In this framework, semantic referents are constrained over time by instances of seman-
tic relations lllσ and lllρ. These relations are determined by instances of syntactic FSA
states qqq1, . . . ,qqqn, themselves expanded from higher-level FSA states qqq. These associa-
tions between syntactic and semantic random variable values can be represented in
expansion rules of the form

qqq � qqq1 . . . qqqn; with lllσ = Lσ(qqq1) and lllρ = Lρ(qqqn) (18)

where qqq1 . . . qqqn may be any regular expression initiating at state qqq1 and culminating at
(final) state qqqn. Note that regular expressions must therefore begin with shift relations
and end with reduce relations. This is in order to keep the syntactic and referential
semantic expansions synchronized.

These hierarchic regular expressions are defined to resemble expansion rules in
a context free grammar (CFG). However, unlike CFGs, HHMMs have memory limits
on nesting, in the form of a maximum depth D beyond which no expansion may take
place. As a result, the expressive power of an HHMM is restricted to the set of regular
languages, whereas CFGs may recognize the set of context-free languages; and HHMM
recognition is worst-case linear on the length of an utterance, whereas CFG recognition
is cubic.5 Similar limits have been proposed on syntax in natural languages, motivated
by limits on short term memory observed in humans (Miller and Chomsky 1963;
Pulman 1986). These have been applied to obtain memory-limited parsers (e.g., Marcus
1980), and depth-limited right-corner grammars that are equivalent to CFGs, except
that they restrict the number of internally recursive expansions allowed in recognition
(Schuler and Miller 2005).

4.4 Expressivity

The language model described herein defines referential semantics purely in terms of
HHMM shift and reduce operations over referent entities, made from reified sets of
individuals in some original world model. This section will show that this basic model
is sufficiently expressive to represent many commonly occurring linguistic phenomena,

5 When expressed as a function of the size of the grammar, HHMM recognition is asymptotically
exponential on D, whereas CFG recognition is cubic regardless of depth. In practice, however, exact
inference using either formalism is impractical, so approximate inference is used instead (e.g.,
maintaining a beam at each time step or at each constituent span in CFG parsing).
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Figure 4
A subsumption lattice (laid on its side, in gray) over the power set of a domain containing three
files: f1 (a writable executable), f2 (a read-only executable), and f3 (a read-only data file).
“Reference paths” made up of conjunctions of relations l (directed arcs, in black) traverse the
lattice from left to right toward the empty set, as referents (e{...}, corresponding to sets of files)
are incrementally constrained by intersection with each �l�M. (Some arcs are omitted for clarity.)

including intersective modifiers (e.g., adjectives like executable), multi-argument rela-
tions (e.g., prepositional phrases or relative clauses, involving trajector and landmark
referents), negation (as in the adverb not), and comparatives over continuous properties
(e.g., larger).

4.4.1 Properties. Properties (traditionally unary relations like EXECUTABLE or WRITABLE)
can be represented in theworldmodel as labeled edges lt from supersets et−1 to subsets et
defined by intersecting the set et−1 with the set �lt�M satisfying the property lt. Recall that
a reified world model can be cast as a subsumption lattice as described in Section 3.1.2.
The result of conjoining a property l with a context set e can therefore be found by
downward traversal of an edge in this lattice labeled l and departing from e.6

Thus, in Figure 4, the set of executables that are read-only would be reachable by
traversing a READ-ONLY relation from the set of executables, or by traversing an EX-
ECUTABLE relation from the set of read-only objects, or by a composed path READ-
ONLY◦EXECUTABLE or EXECUTABLE◦READ-ONLY from e�. The resulting set may then
serve as context for subsequent traversals. Property relations may also result in self-
traversals (e.g., DATAFILE◦READ-ONLY in Figure 4) or traversals to the empty set e⊥
(e.g., DATAFILE◦WRITABLE). Property relations like EXECUTABLE can be defined using
the dynamic relations in the first case of Equation (12) in Section 4.1, which simply
ignore the non-context argument.

A general template for intersective nouns and modifiers can be expressed as a noun
phrase (NP) expansion using the following regular expression (where lllσ and lllρ indicate
relation labels constraining referents at the beginning and end of the NP):

NP → Det
(
Adj

)∗
Noun

(
PP |RC

)∗
; with lllσ = IDENTITY and lllρ = IDENTITY (19)

6 Although properties (and later, n-ary relations) are defined in terms of an exponentially large
subsumption lattice, this lattice need not be an actual data structure. If the world model is queried from a
decoder trellis with a beam filter rather than from a complete search, only those lattice relations that are
phonologically, syntactically, and semantically most likely (in other words, those that are on this beam)
will be explored.
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in which referents are successively constrained by the semantics of relations associated
with adjective and noun expansions:

Adj → executable; with lllσ = EXECUTABLE and lllρ = IDENTITY (20)

Noun → executable; with lllσ = EXECUTABLE and lllρ = IDENTITY (21)

(and are also constrained by the prepositional phrase (PP) and relative clause (RC)
modifiers, as described below). Here the relation EXECUTABLE traverses from refer-
ent e{f1f2f3} to referent e{f1f2}, a subset of e{f1f2f3} satisfying �EXECUTABLE∗�M∗ .

4.4.2 n-ary Relations. Sequences of properties (traditionally unary relations) can be inter-
preted as simple nonbranching paths from referent to referent in a subsumption lattice,
but higher-arity relations define more complex paths that fork and rejoin. For example,
the referent of the directory containing the executable in Figure 5 would be reachable only
by:

1. storing the original set of directories e{d1d2d3} as a top-level referent in the
HHMM hierarchy, then

2. traversing a CONTAIN relation departing e{d1d2d3} to obtain the contents of
those directories e{f2f3}, then

3. traversing an EXECUTABLE relation departing e{f2f3} to constrain this set to
the set of contents that are also executable: e{f2}, then

4. traversing the inverse CONTAIN′ of relation CONTAIN to obtain the
containers of these executables, then constraining the original set of
directories e{d1d2d3} by intersection with this resulting set to yield the
directories containing executables: e{d2}.

This ‘forking’ of referential semantic paths is handled via syntactic recursion: one path is
explored by the recognizer while the other waits on the HHMM hierarchy (essentially

Figure 5
Reference paths for a relation containing in the directory containing the executable file. A reference
path forks to specify referents using a two-place relation CONTAIN in a domain of directories
d1, d2, d3 and files f1, f2, f3. Here, d2 contains f2 and d3 contains f3, and f1 and f2 are executable. The
ellipsis in the referent set indicates the presence of additional individuals that are not directories.
Again, subsumption is represented in gray and relations are represented in black. (Portions of
the complete subsumption lattice and relation graph are omitted for clarity.)
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functioning as a stack). A sample template for branching reduced relative clauses (or
prepositional phrases) that exhibit this forking behavior can be expressed as below:

RC → containing NP; with lllσ = CONTAIN and lllρ = CONTAIN′ (22)

where the inverse relation CONTAIN′ is applied when the NP expansion concludes or
reduces (when the forked paths are re-joined). Relations like CONTAIN are covered in
the second case of Equation (12) in Section 4.1, which define transitions from sets of
individuals associated with one argument of an original relation CONTAIN∗ to sets of
individuals associated with the other argument of this relation, in the presence of a
context set, which is a superset of the destination. The calculation of semantic tran-
sition probabilities for n-ary relations thus resembles that for properties, except that
the probability term associated with the relation lσ and the inverse relation lρ would
depend on both context and argument referents (to its left and below it, in the HHMM
hierarchy).

Note that there is ultimately a singleton referent {f2} of the executable file in Figure 5,
even though there are two executable files in the world model used in these examples.
This illustrates an important advantage of a dynamic context-dependent (three referent)
model of semantic composition over the strict compositional (two referent) model. In a
dynamic context model, the executable file is interpreted in the context of the files that are
contained in a directory. In a strict compositional model, the executable file is interpreted
only in the context of fixed constraints covering the entire utterance, and the constraints
related to the relation containing are applied only to the directories. This means that a
generative model based on strict composition will assign some probability to an infi-
nitely recursive description the directories containing executables contained by directories . . .
In generation systems, this problem has been addressed by adding machinery to keep
track of redundancy (Dale and Haddock 1991). But in this framework, a description
model (ΘRef-Init) which is sensitive to the sizes of its source referent and destination ref-
erent at the end of each departing labeled transition will be able to disprefer referential
transitions that attempt to constrain already singleton referents, or that provide only
trivial or vacuous (redundant) constraints in general. This solution is therefore more in
line with graph-basedmodels of generation (Krahmer, van Erk, and Verleg 2003), except
that the graphs proposed here are over reified sets rather than individuals, and the goal
is a generative probability model of language rather than generation per se.

4.4.3 Negation. Negation can be modeled in this framework as a relation between sets.
Although it does not require any syntactic memory, negation does require referential
semantic memory, in that the complement of a specified set must be intersected with
some initial context set. Files that are not writable must still be files after all; only the
writable portion of this description should be negated.

A regular expression for negation of adjectives is

Adj → not Adj; with lllσ = IDENTITY and lllρ = NOT (23)

and is applied to a world model in Figure 6. Relations like NOT are covered in the third
case of Equation (12) in Section 4.1, which define transitions between sets in an original
relation NOT∗.

4.4.4 Comparatives, Superlatives, and Subsective Modifiers. Comparatives (e.g., larger),
superlatives (e.g., largest), and subsective modifiers (e.g., large, relative to some context
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Figure 6
Reference paths for negation in files that are not writable, using a world model with files f1, f2,
and f3 of which only f1 is writable. The recognizer first forks a copy of the set of files {f1, f2, f3}
using the relation IDENTITY, then applies the adjective relation WRITABLE to yield {f1}. The
complement of this set {f2, f3, . . . } is then intersected with the stored top-level referent
set {f1, f2, f3} to produce the set of files that are not writable: {f2, f3}. Ellipses in referent sets
indicate the presence of additional individuals that are not files.

set) define relations from sets to sets, or from sets to individuals (singleton sets). They
can be handled in much the same way as negation. Here the context is provided from
previous words and from sub-structure, in contrast to DeVault and Stone (2003), which
define the context of a comparative either from fixed inter-utterance constraints or as the
referent of the portion of the noun phrase dominated by the comparative (in addition
to inter-utterance constraints). One advantage of dynamic (time-order) constraints is
that implicit comparatives (in the Clark directory, select the file that is larger, with no
complement) can be modeled with no additional machinery. If substructure context is
not needed, then no additional HHMM storage is necessary.

A regular expression for superlative adjectives is

Noun → largest Noun; with lllσ = IDENTITY and lllρ = LARGEST (24)

and is applied to a world model in Figure 7. Relations like LARGEST are also covered
in the third case of Equation (12), which defines transitions between sets in an original
relation LARGEST∗.

5. Evaluation in a Spoken Language Interface

Much of the motivation for this approach has been to develop a human-like model of
language processing. But there are practical advantages to this approach as well. One
of the main practical advantages of the referential semantic language model described

Figure 7
Reference paths for a comparative in the largest executable; this forks a copy of the referent set
{f1, f2, f3} using the relation IDENTITY, applies EXECUTABLE to the forked set to obtain {f1, f2},
and returns the referent {f2}with the largest file size using LARGEST.
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in this article is that it may allow spoken language interfaces to be applied to content-
creation domains that are substantially developed by individual users themselves. Such
domains may include scheduling or reminder systems (organizing items containing
idiosyncratic person or event names, added by the user), shopping lists (containing
idiosyncratic brand names, added by the user), interactive design tools (containing new
objects designed and named by the user), or programming interfaces for home or small
business automation (containing new actions, defined by the user). Indeed, computers
are frequently used for content creation as well as content browsing; there is every
reason to expect that spoken language interfaces will be used this way as well.

But the critical problem of applying spoken language interfaces to these kinds of
content-creation domains is that the vocabulary of possible proper names that users
may add or invent is vast. Interface vocabularies in such domains must allow new
words to be created, and once they are created, these new words must be incorpo-
rated into the recognizer immediately, so that they can be used in the current context.
The standard tactic of training language models on example sentences prior to use
is not practical in such domains—except for relatively skeletal abstractions, example
sentences will often not be available. Even very large corpora gleaned from Internet
documents are unlikely to provide reliable statistics for users’ made-up names with
contextually appropriate usage, as a referential semantic language model provides.

Content-creation applications such as this may have considerable practical value as
a means of improving accessibility to computers for disabled users. These domains also
provide an ideal proving ground for a referential semantic language model, because
directives in these domains mostly refer to a world model that is shared by the user
and the interfaced application, and because the idiosyncratic language used in such
domains makes it more resistant to domain-independent corpus training than other
domains. In contrast, domains such as database query (e.g., of airline reservations),
dictation, or information extraction are less likely to benefit from a referential semantic
language model, because the world model in such domains is not shared by either the
speaker (in database query) or by the interfaced application (in dictation or information
extraction),7 or because these domains are relatively fixed, so the expense ofmaintaining
linguistic training corpora in these domains can often be justified.

This section will describe an evaluation of an implementation of the referential
semantic language model as a spoken language interface in a very basic content-
creation domain: that of a file organizer, similar to a Unix shell.8 The performance of the
model on this domain will be evaluated in large environments containing thousands
of entities; more than will fit on the beam used in the Viterbi decoding search in this
implementation.

The experiments described in Sections 5.1 through 5.8 were conducted to investigate
the effect on recognition time and accuracy of using a referential semantic language
model to recognize common types of queries, generated by an experimenter and read by
several speakers. A thorough evaluation of the possible coverage of this kind of system
on spontaneous input (e.g., in usability experiments) would require a rich syntactic
representation and attention to disfluencies and speech repairs which are beyond the
scope of this article (see Section 6).

7 Techniques based on abductive reasoning may mitigate this problem of incomplete model sharing
(Hobbs et al. 1993), but this would require considerable extensions to the proposed model, and is
beyond the scope of this article.

8 This is also similar to a spoken language version of Wilensky’s Unix consultant (Wilensky, Arens, and
Chin 1984).
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5.1 Ontology Navigation Test Domain

To evaluate the contribution to recognition accuracy of referential semantics over that of
syntax and phonology alone, a baseline (syntax only) and test (baseline plus referential
semantics) recognizer were run on sample ontology manipulation directives in a “stu-
dent activities” domain. This domain has the form of a simple tree-like taxonomy, with
some cross-listings (for example, studentsmay be listed in homerooms and in activities).

Taxonomic ontologies (e.g., for organizing biological classifications or computer file
directories) can be mapped to reified world models of the sort described in Section 3.1.2.
Concepts C in such an ontology define sets of individuals described by that concept:
{ι|C(ι)}. Subconcepts C′ of a concept C then define subsets of individuals: {ι|C′(ι)} ⊆
{ι|C(ι)}. These sets and subsets can be reified as referent entities and arranged on
a subsumption lattice as described in Section 3.1.2. A sample taxonomic ontology is
shown in Figure 8a (tilted on its side tomatch the subsumption lattices shown elsewhere
in this article). Thus defined, such ontologies can be navigated using referent transitions
described in Section 4.1 by entering concept referents via “downward” (rightward in the
figure) transitions, and leaving concept referents via “upward” (leftward) transitions.
For example, this ontology can be manipulated using directives such as:

(1) set Crookston campus homeroom two Clark to sports football captain

which are incrementally interpreted by transitioning down the subsumption lattice (e.g.,
from sports to football to captain) or forking to another part of the lattice (e.g., from Clark
to sports).

As an ontology like this is navigated in spoken language, there is a sense in which
other referents e′ at the same level of the ontology as the most recently described refer-
ent e, or at higher levels of the ontology than the most recently described entity, should
be semantically accessible without restating the ontological context (the path from the
root concept e�) shared by e′ and e. Thus, in the context of having recently referred
to someone in Homeroom 2 at a particular campus in a school activities database,
other students in the same homeroom or other activities at the same campus should
be accessible without giving an explicit back up directive at each branch in the ontology.
To see the value of implicit upward transitions, compare Example (1) to a directive that
makes upward transitions explicit using the keyword back (similar to ‘..’ in the syntax of
Unix paths) to exit the homeroom two and Clark folders:

(2) set Crookston campus homeroom two Clark to back back sports football captain

or if starting from the Duluth campus sports football directory:

(3) set back back back Crookston campus homeroom two Clark to back back sports
football captain

Instead of requiring explicit back keywords, these upward transitions can be implic-
itly composed with downward transitions, resulting in transitions from source eS1 to
destination eS via some ancestor eS0 :

�UP-l�M(eS1 , eS2 ) = eS s.t. ∃eS0 S0⊇S1, S0⊇S, �l�M(eS0 , e�) = eS (25)

The composed transition function finds a referent eS0 which subsumes both eS1 and eS,
then finds an ordinary (downward) transition l connecting eS0 to eS. The result is a UP-l
transition to every immediate child of an ancestor a referent (or in genealogical terms,
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Figure 8
Upward and downward transitions in a sample student activities world model. Downward
transitions (a) define basic sub-type relations. Upward transitions (b) relate sibling, ancestor, and
(great-great-...-)aunt/uncle concepts. The entire model is reachable from any given referent via
these two kinds of transitions.

to every sibling, ancestor, and sibling of ancestor), making these contextually salient
concepts immediately accessible without explicit back-stepping (see Figure 8b).

Downward transitions are ordinary properties, as defined in the first case of
Equation (12) in Section 4.1.

5.2 Scaling to Richer Domains

Although navigation in this domain is constrained to tree-like graphs, this domain tests
all of the features of a referential semantic language model that would be required
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in richer domains. As described in Section 4, rich domains (in particular, first-order
domains, in which users can describe sets of individuals as referents) are mapped to
transition edges on a simple graph, similar to the tree-like graphs used in this ontology.
In first-order domains, the size of this graph may be exponential on the number of
individuals in the world model. But once the number of referents exceeds the size of the
decoder beam, the time performance of the recognizer is constrained not by the number
of entities in the world model, but by the beam width and the number of outgoing
relations (labels) that can be traversed from each hypothesis. In a first-order system, just
as in the simple ontology navigation system evaluated here, this number of relations
is constrained to the set of words defined by the user up to that point. In both cases,
although the interface may be used to describe any one of an arbitrarily large set of
referents, the number of referents that can be evoked at the next time step is bounded by
a constant.

When this model is extended to first-order or continuous domains, the time re-
quired to calculate sets of individuals or hypothetical planner states that result from
a transition may be nontrivial, because it may not be possible in such domains to retain
the entire referent transition model in memory. In first-order domains, for example, this
may require evaluating certain binary relations over all pairs of individuals in the world
model, with time complexity proportional to the square of the size of the world model
domain. Fortunately the model described herein, like most generative languagemodels,
hypothesizes words before recognizing them. This means a recognizer based on this
model will be able to compute transitions thatmight follow a hypothesizedword during
the time that word is being recognized. If just the current set of possible transitions
is known (say, these have already been pre-fetched into a cache), the set of outgoing
transitions that will be required at some time following one of these current transitions
can be requested as soon as the beginning of this transition is hypothesized—as soon
as any word associated with this transition makes its way onto the decoder beam.
From this point, the recognizer will have the entire duration of the word to compute
(in parallel, in a separate thread, or on a separate server) the set of outgoing transitions
that may follow this word. In other words, the model described herein may be scaled to
richer domains because it is amenable to parallelization.

5.3 World Model

The student activities ontology used in this evaluation is a taxonomic world model
definedwith upward and downward transitions as described in Section 5.1. It organizes
extracurricular activities under subcategories (e.g., offense ⊂ football ⊂ sports), and
organizes students into homerooms, in which context they can be identified by a single
(first or last) name. Every student or activity is an entity e in the set of entities E , and
relations l are subcategory labels or student names.

5.3.1 World Model M240. In the original student activities world model M240, a total
of 240 entities were created in E : 158 concepts (groups or positions) and 82 instances
(students), each connected via a labeled arc from a parent concept.

Because a world model in this framework is a weighted set of labeled arcs, it is
possible to calculate a meaningful perplexity statistic for transitions in this model,
assuming all referents are equally likely to be a source. The perplexity of this world
model (the average number of departing arcs) is 16.79, after inserting “UP” arcs as
described in Section 5.1.
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5.3.2 WorldModelM4175.An expanded version of the students ontology,M4175, includes
4,175 entities from 717 concepts and 3,458 instances. This model contains M240 as a
subgraph, so that the same directives may be used in either domain; but it expands
M240 from above, with additional campuses and schools, and below, with additional
students in each class. The perplexity of this world model was 37.77, after inserting
“UP” arcs as described in Section 5.1.

5.4 Test Corpus

A corpus of 144 test sentences (no training sentences) was collected from seven native
English speakers (5male, 2 female), whowere asked tomake specific edits to the student
activities ontology described previously. The subjects were all graduate students and
native speakers of English, from various parts of the United States. The edit directives
were recorded as isolated utterances, not as part of an interactive dialogue, and the
target concepts were identified by name in written prompts, so the corpus has much of
the character of read speech. The average sentence length in this collection is 7.17 words.

5.5 Acoustic Model

Baseline and test versions of this system were run using a Recurrent Neural Network
(RNN) acoustic model (Robinson 1994). This acoustic model performs competitively
with multi-state triphone models based on multivariate Gaussian mixtures, but has the
advantage of using only uniphones with single subphone states. As a result, less of the
HMM trellis beam is occupied with subphone variations, so that a larger number of
semantically distinct hypotheses may be considered at each frame.

Each model was evaluated using parameters trained from the TIMIT corpus of
read speech (Fisher et al. 1987). This corpus yields several thousand examples for each
of the relatively small set of single-state uniphones used in the RNN model. Read
speech is also appropriate training data for this evaluation, because the test subjects
are constrained to perform fixed edit tasks given written prompts, and the number of
reasonable ways to perform these tasks is limited by the ontology, so hesitations and
disfluencies are relatively rare.

5.6 Phone and Subphone Models

The language model used in these experiments is decomposed into five hierarchic
levels, each with referent e and ordinary FSA state q components, as described in
Section 4.2. The top three levels of this model represent syntactic states as q (derived
from regular expressions defined in Section 4.3) and associated semantic referents as e.
The bottom two levels represent pronunciation and subphone states as q, and ignore e.

Transitions across pronunciation states are defined in terms of sequences of phones
associated with a word via a pronunciation model. The pronunciation model used in
these experiments is taken from the CMU ARPABET dictionary (Weide 1998). Transi-
tions across subphone states are defined in terms of sequences of subphones associated
with a phone. Because this evaluation used an acoustic model trained on the TIMIT
corpus (Fisher et al. 1987), the TIMIT phone set was used as subphones. In most cases,
these subphones map directly to ARPABET phones, so each subphone HMM consists of
a single, final state; but in cases of plosive phones (B, D, G, K, P, and T), the subphone
HMM consists of a stop subphone (e.g., bcl) followed by a burst subphone (e.g., b).
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Referents are ignored in both the phone and subphone models, and therefore do not
need to be calculated.

State transitions within the phone level PΘPron-Trans (q
4
σ,t | q

4
σ,t−1) deterministically ad-

vance along a sequence of phones in a pronunciation; and initial phone sequences de-
pend on words in higher-level syntactic states q3σ,t, via a pronunciation model ΘPron-Init:
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(26)

The student activities domain was developed with no synonymy—only one word de-
scribes each semantic relation. Alternate pronunciations are modeled using a uniform
distribution over all listed pronunciations.

Initialization and transition of subphone sequences depend on the phone at the
current time step and the subphone at the previous time step. This model was trained
directly using relative frequency estimation on the TIMIT corpus itself:
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6
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5
t σ
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4
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def
= P̃(q5σ,t | q

4
σ,t q

5
σ,t−1) (27)

5.7 Syntax and Reference Models

The three upper levels of the HHMM comprise the syntactic and referential portion of
the language model. Concept error rate tests were performed on three baseline and test
versions of this portion of the language model, using the same acoustic, phone, and
subphone models, as described in Sections 5.5 and 5.6.

5.7.1 Language Model ΘLM-Sem. First, the syntactic and referential portion of the language
model was implemented as described in Section 4.2. A subset of the regular expres-
sion grammar appears in Figure 9. Any nondeterminism resulting from disjunction or
Kleene-star repetition in the regular expressions was handled inΘSyn-Trans using uniform
distributions over all available following states. Distributions over regular expression
expansions in ΘSyn-Init were uniform over all available expansions. Distributions over
labels inΘRef-Init were also uniform over all labels departing the entity referent condition
that were compatible with the FSA state category generated by ΘSyn-Init.

Figure 9
Sample grammar for student activities domain. Relations lllσ, lllρ = IDENTITY unless otherwise
specified.
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5.7.2 Language Model ΘLM-NoSem. Second, in order to evaluate the contribution of refer-
ential semantics to recognition, a baseline version of the model was tested with all
relations defined to be equivalent to NIL, returning e� at each depth and time step,
with all relation labels reachable in M from e�. This has the effect of eliminating all
semantic constraints from the recognizer, while preserving the relation labels of the
original model as a resource from which to calculate concept error rate. The decoding
equations and grammar inModelΘLM-NoSem are therefore the same as inModelΘLM-Sem;
only the domain of possible referents is restricted.

Again, distributions over state transitions, expansions, and outgoing labels in
ΘSyn-Trans, ΘSyn-Init, and ΘRef-Init are uniform over all available options.

5.7.3 Language Model ΘLM-Trigram. Finally, the referential semantic language model (Lan-
guage Model ΘLM-Sem) was compiled into a word trigram model, in order to test how
well the model would function as a pre-process to a conventional trigram-based speech
recognizer. This was done by iterating over all possible sequences of hidden state
transitions starting from every possible configuration of referents and FSA states on
a stack of depth D (where D = 3):

ht = 〈wt−1,wt〉 (28)

P(ht | ht−1) = P(wt−1 wt |wt−2 wt−1) = P(wt |wt−2 wt−1) (29)

def
=
∑

σt−2..t

∑
wt−2,wt−1

PΘUniform
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σ,t−2)]
·PΘLM-Sem
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(σt |σt−1) · [wt=W(q1..Dσ,t )]

(30)

First, every valid combination of syntactic categories was calculated in a depth-
first search using ΘLM-NoSem. Then every combination of three referents from M240 was
hypothesized as a possible referent configuration. A complete set of possible initial
values for σt−2 was then filled with combinations from the set of syntactic category
configuration crossed with the set of referent configurations. From each possible σt−2,
ΘLM-Sem was consulted to give a distribution over σt−1 (assuming a word-level transition
occurs, with f 4

ρ,t−1 = 1), and then again from each possible configuration of σt−1 to give
a distribution over σt (again assuming a word-level transition). The product of these
transition probabilities was then calculated and added to a trigram count, based on the
words wt−2, wt−1, and wt occurring in σt−2, σt−1, and σt. These trigram counts were then
normalized over wt−2 and wt−1 to give P(wt |wt−2 wt−1).

5.8 Results

The following results report Concept Error Rate (CER), as the sum of the percentages of
insertions, deletions, and substitutions required to transform the most likely sequence
of relation labels hypothesized by the system into the hand-annotated transcript, ex-
pressed as a percentage of the total number of labels in the hand-annotated transcript.
Because there are few semantically unconstrained function words in this domain, this is
essentially word error rate, with a few multi-word labels (e.g., first chair, homeroom two)
concatenated together.

5.8.1 Language Model ΘLM-Sem and World Model M240. Results using Language Model
ΘLM-Sem with the 240-entity world model (M240) show an overall 17.1% CER (Table 2).
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Table 2
Per-subject results for Language Model ΘLM-Sem withM240.

subject % correct % substitute % delete % insert CER %

0 83.8 14.1 2.1 2.8 19.0
1 73.2 20.3 6.5 5.8 32.7
2 90.2 7.8 2.0 0.7 10.5
3 88.1 9.3 2.7 0.7 12.6
4 88.4 10.3 1.4 3.4 15.1
5 90.8 8.5 0.7 7.0 16.2
6 90.6 8.6 0.7 3.6 12.9

all 86.4 11.3 2.3 3.4 17.1

Table 3
Per-subject results for Language Model ΘLM-Sem withM4175.

subject % correct % substitute % delete % insert CER %

0 85.2 14.1 0.7 2.1 16.9
1 70.6 25.5 3.9 7.2 36.6
2 86.9 9.2 3.9 3.9 17.0
3 86.8 11.3 2.0 2.0 15.2
4 83.6 14.4 2.1 6.9 23.3
5 89.4 9.9 0.7 3.5 14.1
6 89.9 9.4 0.7 5.0 15.1

all 84.5 13.5 2.1 4.4 19.9

Here the size of the vocabulary was roughly equal to the number of referents in the
world model. The sentence error rate for this experiment was 59.44%.

5.8.2 Language Model ΘLM-Sem and World ModelM4175.With the number of entities (and
words) increased to 4,175 (M4175), the CER increases slightly to 19.9% (Table 3). Here
again, the size of the vocabulary was roughly equal to the number of referents in the
world model. The sentence error rate for this experiment was 62.24%. Here, the use of a
world model (Language Model ΘLM-Sem) with no linguistic training data is comparable
to that reported for other large-vocabulary systems (Seneff et al. 2004; Lemon and
Gruenstein 2004), which were trained on sample sentences.

5.8.3 LanguageModelΘLM-NoSem with noWorldModel. In comparison, a baseline using only
the grammar and vocabulary from the students domainM240 without any world model
information and no linguistic training data (Language Model ΘLM-NoSem) scores 43.5%
(Table 4).9 The sentence error rate for this experiment was 93.01%.

Ignoring the world model significantly raises error rates compared to Model
ΘLM-Sem (p < 0.01 using pairwise t-test against Language model ΘLM-Sem with M240,
grouping scores by subject), suggesting that syntactic constraints are poor predictors of

9 Ordinarily a syntactic model would be interpolated with word n-gram probabilities derived from corpus
training, but in the absence of training sentences these statistics cannot be included.
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Table 4
Per-subject results for Language Model ΘLM-NoSem.

subject % correct % substitute % delete % insert CER %

0 57.0 35.9 7.0 12.7 55.6
1 49.0 41.2 9.8 13.7 64.7
2 71.9 18.3 9.8 6.5 34.6
3 69.5 26.5 4.0 9.3 39.7
4 67.8 28.8 3.4 13.7 45.9
5 79.6 19.0 1.4 7.0 27.5
6 75.5 22.3 2.2 10.8 35.3

all 67.1 27.5 5.5 10.5 43.5

concepts without considering reference. But this is not surprising: because the grammar
by itself does not constrain the set of ontology labels that can be used to construct a
path, the perplexity of this model is 240 (reflecting a uniform distribution over nearly
the entire lexicon), whereas the perplexity ofM240 is only 16.79.

5.8.4 Language Model ΘLM-Trigram and World Model M240. In order to test how well the
model would function as a pre-process to a conventional trigram-based speech recog-
nizer, the referential semantic languagemodel (LanguageModelΘLM-Sem) was compiled
into a word trigram model. This word trigram language model (Language Model
ΘLM-Trigram), compiled from the referential semantic model (in the 240-entity domain),
shows a concept error rate of 26.6% on the students experiment (Table 5). The sentence
error rate for this experiment was 66.43%.

Using trigram context (Language Model ΘLM-Trigram) similarly shows statistically
significant increases in error over Language Model ΘLM-Sem with M240 (p = 0.01 using
pairwise t-test, grouping scores by subject), showing that referential context is also
more predictive than word n-grams derived from referential context. Moreover, the
compilation to trigrams required to build Language Model ΘLM-Trigram is expensive
(requiring several hours of pre-processing) because it must consider all combinations
of entities in the world model. This would make the pre-compiled model impractical in
mutable domains.

Table 5
Per-subject results for Language Model ΘLM-Trigram withM240.

subject % correct % substitute % delete % insert CER %

0 76.1 19.0 4.9 5.6 29.6
1 56.9 24.8 18.3 12.4 44.4
2 81.7 9.2 9.2 0.0 18.3
3 83.4 13.9 2.7 2.0 18.5
4 79.5 13.0 7.5 11.0 31.5
5 86.6 10.6 2.8 0.7 14.1
6 83.5 14.4 2.2 0.7 17.3

all 78.1 15.0 6.9 4.7 26.6
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Table 6
Experimental results with four model configurations.

experiment correct substitute delete insert CER

ΘLM-Sem,M240 86.4 11.3 2.3 3.4 17.1
ΘLM-Sem,M4175 84.5 13.5 2.1 4.4 19.9
ΘLM-NoSem 67.1 27.5 5.5 10.5 43.5
ΘLM-Trigram,M240 78.1 15.0 6.9 4.7 26.6

5.8.5 Summary of Results. Results in Table 6 summarize the results of the four
experiments.

Some of the erroneously hypothesized directives in this domain described im-
plausible edits: for example, making one student a subset of another student. Domain
information or meta-data could eliminate some of these kinds of errors, but in content-
creation applications it is not always possible to provide this information in advance;
and given the subtle nature of the effect of this information on recognition, it is not clear
that users would want to manage it themselves, or allow it to be automatically induced
without supervision.10 In any case, the comparison described in this section to a non-
semantic modelΘLM-NoSem suggests that the worldmodel by itself is able to apply useful
constraints in the absence of domain knowledge. This suggests that, in an interpolated
approach, direct world model information may relieve some of the burden on authored
or induced domain knowledge to perform robustly, so that this domain knowledge may
be authored more sparsely or induced more conservatively than it otherwise might.

All evaluations ran in real time on a 4-processor dual-core 2.6GHz server, with a
beam width of 1,000 hypotheses per frame. Differences in runtime performance were
minimal, even between the simple trigrammodel and HHMM-based referential seman-
tic language models. This was due to two factors:

1. All recognizers were run with the same beam width. Although it might
be possible to narrow the beam width to produce faster than real-time
performance for some models, widening the beam beyond 1,000 did not
return significant reductions in CER in the experiments described herein.

2. The implementation of the Viterbi decoder used in these experiments was
optimized to skip combinations of joint variable values that would result
in zero probability transitions (which is a reasonable optimization for any
factored time-series model), significantly decreasing runtime for HHMM
recognition.

5.8.6 Statistical Significance vs. Magnitude of Gain. The experiments described in this
article show a statistically significant increase in accuracy due to the incorporation of
referential semantic information into speech decoding. But these results should not be
interpreted to demonstrate any particular magnitude of error reduction (as might be
claimed for the introduction of head words into parsing models, for example).

10 Ehlen et al. (2008) provide an example of a user interface for managing imperfect automatically-induced
information about task assignments from meeting transcripts, which is much more concrete than the kind
of domain knowledge inference considered here.
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First, this is because the acoustic model used in these experiments was trained on
a relatively small corpus (6,000 utterances), which introduces the possibility that the
acoustic model was under-trained. As a result, the error rates for both baseline and
test systems may be greater here than if a larger training corpus had been used, so the
performance gain due to the introduction of referential semantics may be overstated.

Second, these experiments were designed with relatively strong referential con-
straints (a tree-like ontology, with a perplexity of about 17 for M240) and relatively
weak syntactic constraints (allowing virtually any sequence of relation labels, with a
much higher perplexity of about 240), in order to highlight differences due to referential
semantics. In general use, recognition accuracy gains due to the incorporation of ref-
erential semantic information will depend crucially on the relative perplexity of the
referential constraints combined with syntactic constraints, compared to that of syntac-
tic constraints alone. This paper has argued that in content-creation applications this
difference can be manipulated and exploited—in fact, by reorganizing folders into a
binary branching tree (with perplexity 2), a user could achieve nearly perfect speech
recognition—but in applications involving fixed ontologies and purely hypothetical
directives, as in database query applications, gains may be minimal or nonexistant.

6. Conclusion and Future Work

This article has described a referential semantic language model that achieves recogni-
tion accuracy favorably comparable to a pre-compiled trigram baseline in user-defined
domains with no available domain-specific training corpora, through the use of ex-
plicit hypothesized semantic referents. This architecture requires that the interfaced
application make available a queryable world model, but the combined phonological,
syntactic, and referential semantic decoding process ensures the world model is only
queriedwhen necessary, allowing accurate real time performance even in large domains
containing several thousand entities.

The framework described in this article is defined over first-order sets (of individu-
als), making transition functions over referents equivalent to expressions in first-order
logic. This framework can be extended to model other kinds of references (e.g., to time
intervals or events) by casting them as individuals (Hobbs 1985).

The system as defined herein also has some ability to recognize referents con-
strained by quantifiers: for example, the directory containing two files. Because its referents
are reified sets, the system can naturally model relations that are sensitive to cardinality
(self-transitioning if the set has N or greater individuals, transitioning to e⊥ otherwise).
But a dynamic view of the referential semantics of nested quantifiers requires referents
to be indexed to particular iterations of quantifiers at higher levels of nesting in the
HHMM hierarchy (corresponding to higher-scoping quantifiers). Extending the system
to dynamically interpret nested quantifiers therefore requires that all semantic opera-
tions preserve an “iteration context” of nested outer-quantified individuals for each
inner-quantified individual. This is left for future work.

Some analyses of phenomena like intensional or non-inherent adjectives—for ex-
ample, toy in toy guns, which are not actually guns; or old in old friends, who are
not necessarily elderly (Peters and Peters 2000)—involve referents corresponding to
second-order sets (this allows these adjectives to be composed before being applied to
a noun: old but casual friend). Unfortunately, extending the framework described in this
article to use a similarly explicit representation of second- or higher-order sets would
be impractical. Not only would the number of possible second- or higher-order sets
be exponentially larger than the number of possible first-order sets (which is already
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exponential on the number of individuals), but the length of the description of each
referent itself would be exponential on the number of individuals (whereas the list of
individuals describing a first-order referent is merely linear).

The definition of semantic interpretation as a transition function does support
interesting extensions to hypothetical reasoning and planning beyond the standard
closed-world model-theoretic framework, however. Recall the sentence go to the package
data directory and hide the executable files, or equivalently, in the package data directory,
hide the executable files, exemplifying the continuous context-sensitivity of the referential
semantic language model. Here, the system focuses on the contents of this directory
because a sequence of transitions resulting from the combined phonological, syntactic,
and referential semantic context of the sentence led it to this state. One may characterize
the referential semantic transitions leading to this state as a hypothetical sequence of
change directory actions moving the active directory of the interface to this directory (for
the purpose of understanding the consequences of the first part of this directive). The
hypothesized context of this directory is then a world state or planning state resulting
from these actions. Thus characterized, the referential semantic decoder is performing
a kind of statistical plan recognition (Blaylock and Allen 2005). By viewing referents
as world states, or as having world-state components, it would then be possible to use
logical conclusions of other types of actions as implicit constraints—e.g., unpack the tar
file and hide the executable [which will result from this unpacking]—without adding extra
functionality to the recognizer implementation. Similarly, referents for hypothetical
objects like the noun phrase a tar file in the directive create a tar file, are not part of the
world model when the user describes them.

Recognizing references to these hypothetical states and objects requires a capacity
to dynamically generate referents not in the current world model. The domain of
referents in this extended system is therefore unbounded. Fortunately, as mentioned
in Section 5.2, the number of referents that can be generated at each time step is still
bounded by a constant, equal to the recognizer’s beam width multiplied by the num-
ber of traversable relation labels. This means that distributions over outgoing relation
labels are still well-defined for each referential state. The only difference is that, when
modeling hypothetical referents, these distributions must be calculated dynamically.

Finally, this article has primarily focused on connecting an explicit representation
of referential semantics to speech recognition decisions. Ordinarily this is thought of
as being mediated by syntax, which is covered in this article only through a rela-
tively simple framework of bounded recursive HHMM state transitions. However, the
bounded HHMM representation used in this paper has been applied (without seman-
tics) to rich syntactic parsing as well, using a transformed grammar to minimize stack
usage to cases of center-expansion (Schuler et al. 2008). Coverage experiments with this
transformed grammar demonstrated that over 97% of the large syntactically annotated
Penn Treebank (Marcus, Santorini, andMarcinkiewicz 1994) could be parsed using only
three elements of stack memory, with four elements giving over 99% coverage. This
suggests that the relatively tight bounds on recursion described in this paper might be
expressively adequate if syntactic states are defined using this kind of transform.

This transform model (again, without semantics) was then further applied to pars-
ing speech repairs, in which speakers repeat or edit mistakes in their directives: for
example, select the red, uh, the blue folder (Miller and Schuler 2008). The resulting system
models incomplete disfluent constituents using transitions associated with ordinary
fluent speech until the repair point (the uh in the example), then processes the speech
repair using only a small number of learned repair reductions. Coverage results for
the same transform model on the Penn Treebank Switchboard Corpus of transcribed
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spontaneous speech showed a similar three- to four-element memory requirement. If
this HHMM speech repair model were combined with the HHMM model of referen-
tial semantics described in this article, referents associated with ultimately disfluent
constituents could similarly be recognized using referential transitions associated with
ordinary fluent speech until the repair point, then reduced using a repair rule that
discards the referent. These results suggest that an HHMM-based semantic framework
such as the one described in this article may be psycholinguistically plausible.
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