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We propose a method for learning dialogue management policies from a fixed data set. The method
addresses the challenges posed by Information State Update (ISU)-based dialogue systems, which
represent the state of a dialogue as a large set of features, resulting in a very large state space
and a huge policy space. To address the problem that any fixed data set will only provide
information about small portions of these state and policy spaces, we propose a hybrid model that
combines reinforcement learning with supervised learning. The reinforcement learning is used
to optimize a measure of dialogue reward, while the supervised learning is used to restrict the
learned policy to the portions of these spaces for which we have data. We also use linear function
approximation to address the need to generalize from a fixed amount of data to large state spaces.
To demonstrate the effectiveness of this method on this challenging task, we trained this model
on the COMMUNICATOR corpus, to which we have added annotations for user actions and In-
formation States. When tested with a user simulation trained on a different part of the same data
set, our hybrid model outperforms a pure supervised learning model and a pure reinforcement
learning model. It also outperforms the hand-crafted systems on the COMMUNICATOR data,
according to automatic evaluation measures, improving over the average COMMUNICATOR

system policy by 10%. The proposed method will improve techniques for bootstrapping and
automatic optimization of dialogue management policies from limited initial data sets.

1. Introduction

In the practical development of dialogue systems it is often the case that an initial
corpus of task-oriented dialogues is collected, either using “Wizard of Oz” methods
or a prototype system deployment. This data is usually used to motivate and inspire
a new hand-built dialogue system or to modify an existing one. However, given the
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existence of such data, it should be possible to exploit machine learning methods to
automatically build and optimize a new dialogue system. This objective poses two
questions: what machine learning methods are effective for this problem? and how
can we encode the task in a way which is appropriate for these methods? For the
latter challenge, we exploit the Information State Update (ISU) approach to dialogue
systems (Bohlin et al. 1999; Larsson and Traum 2000), which provides the kind of rich
and flexible feature-based representations of context that are used with many recent
machine learning methods, including the linear function approximation method we
use here. For the former challenge, we propose a novel hybrid method that combines
reinforcement learning (RL) with supervised learning (SL).

The focus of this article is to establish effective methods for using fixed corpora
of dialogues to automatically optimize complex dialogue systems. To avoid the need
for extensive hand-crafting, we allow rich representations of context that include all
the features that might be relevant to dialogue management decisions, and we allow
a broad set of dialogue management decisions with very few constraints on when a
decision is applicable. This flexibility simplifies system design, but it leads to a huge
space of possible dialogue management policies, which poses severe difficulties for
existing approaches to machine learning for dialogue systems (see Section 1.1). Our pro-
posed method addresses these difficulties without the use of user simulations, feature
engineering, or further data collections.

We demonstrate the effectiveness of the proposed method on the COMMUNICA-
TOR corpora of flight-booking dialogues. Our method (“hybrid learning” with linear
function approximation) can learn dialogue strategies that are better than those learned
by standard learning methods, and that are better than the (in this case hand-coded)
strategies present in the original corpora, according to a variety of metrics. To evaluate
learned strategies we run them with simulated users that are also trained on (differ-
ent parts of) the COMMUNICATOR corpora, and automatically score the simulated
dialogues based on how many information “slots” they manage to collect from users
(“filled slots”), whether those slots were confirmed (“confirmed slots”), and how many
dialogue turns were required to do so. Later work has shown these metrics to correlate
strongly with task completion for real users of the different policies (Lemon, Georgila,
and Henderson 2006).

The main contributions of the work are therefore in empirically demonstrating that:

� limited initial data sets can be used to train complex dialogue policies,
using a novel combination of supervised and reinforcement learning; and

� large, feature-based representations of dialogue context can be used
in tractable learning of dialogue policies, using linear function
approximation.

In this article, after a discussion of related work, we outline the annotations we have
added to the COMMUNICATOR data, then present the proposed learning method, and
describe our evaluation method. Finally, we present the evaluation results and discuss
their implications.

1.1 Related Work

As in previous work on learning for dialogue systems, in this article we focus on
learning dialogue management policies. Formally, a dialogue management policy is a
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mapping from a dialogue context (a.k.a. a state) to an action that the system should
take in that context. Because most previous work on dialogue systems has been done in
the context of hand-crafted systems, we use representations of the dialogue context and
the action set based on previous work on hand-crafted dialogue systems. Our main
novel contribution is in the area of learning, where we build on previous work on
automatically learning dialogue management policies, discussed subsequently.

The ISU approach to dialogue (Bohlin et al. 1999; Larsson and Traum 2000) employs
rich representations of dialogue context for flexible dialogue management. Information
States are feature structures intended to record all the information about the preceding
portion of the dialogue that is relevant to making dialogue management decisions. An
example of some of the types of information recorded in our Information States is shown
in Figure 1, including filled slots, confirmed slots, and previous speech acts. Previous
work has raised the question of whether dialogue management policies can be learned
(Levin and Pieraccini 1997) for systems that have only a limited view of the dialogue
context, for example, not including prior speech act history (see the following).

One prominent representation of the set of possible system actions is the DATE
scheme (Walker and Passonneau 2001). In particular, this representation is used in the
COMMUNICATOR corpus annotation (Walker, Passonneau, and Boland 2001), discussed
herein. The DATE scheme classifies system actions in terms of their Conversational
Domain, Speech Act, and Task. For example, one possible system action is 〈about task,

Figure 1
Example fields from an Information State annotation. User-provided information is in
square brackets.
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request info, dest city〉, which corresponds to a system utterance such as What is
your destination city? The specific instantiation of this scheme, and our extensions to it,
are discussed in Section 1.2.

Machine-learning approaches to dialogue management attempt to learn optimal
dialogue policies from corpora of simulated or real dialogues, or by generating such
data during automatic trial-and-error exploration of possible policies. Automatic op-
timization is desirable because of the high cost of developing and maintaining hand-
coded dialogue managers, and because there is no guarantee that hand-coded dialogue
management strategies are good. Several research groups have developed reinforce-
ment learning approaches to dialogue management, starting with Levin and Pieraccini
(1997) and Walker, Fromer, and Narayanan (1998). Previous work has been restricted
to limited dialogue context representations and limited sets of actions to choose among
(Walker, Fromer, and Narayanan 1998; Goddeau and Pineau 2000; Levin, Pieraccini, and
Eckert 2000; Roy, Pineau, and Thrun 2000; Scheffler and Young 2002; Singh et al. 2002;
Williams and Young 2005; Williams, Poupart, and Young 2005a).

Much of the prior work in RL for dialogue management focuses on the problem
of choosing among a particular limited set of actions (e.g., confirm, don’t confirm)
in specific problematic states (see, e.g., Singh et al. 2000a). This approach augments,
rather than replaces, hand-crafted dialogue systems, because the vast majority of deci-
sions, which are not learned, need to be specified by hand. In contrast, we tackle the
problem of learning to choose among any possible dialogue actions for almost every
possible state.

In addition, all prior work has used only a limited representation of the dialogue
context, often consisting only of the states of information slots (e.g., destination city
filled with high confidence) in the application (Goddeau and Pineau 2000; Levin,
Pieraccini, and Eckert 2000; Singh et al. 2000a, 2000b, 2002; Young 2000; Scheffler and
Young 2002; Williams, Poupart, and Young 2005a, 2005b; Williams and Young 2005;
Pietquin and Dutoit 2006b), with perhaps some additional low-level information (such
as acoustic features [Pietquin 2004]). Only recently have researchers experimented with
using enriched representations of dialogue context (Gabsdil and Lemon 2004; Lemon
et al. 2005; Frampton and Lemon 2006; Rieser and Lemon 2006c), as we do in this
article. From this work it is known that adding context features leads to better dialogue
strategies, compared to, for example, simply using the status of filled or confirmed
information slots as has been studied in all prior work (Frampton and Lemon 2006).
In this article we explore methods for scalable, tractable learning when using all the
available context features.

Reinforcement Learning requires estimating how good different actions will be
in different dialogue contexts. Because most previous work has only differentiated
between a small number of possible dialogue contexts, they have been able to per-
form these estimates for each state independently (e.g., Singh et al. 2002; Pietquin
2004). In contrast, we use function approximation to allow generalization to states
that were not in the training data. Function approximation was also applied to RL by
Denecke, Dohsaka, and Nakano (2005), but they still use a relatively small state space
(6 features, 972 possible states). They also only exploit data for the 50 most frequent
states, using what is in effect a Gaussian kernel to compute estimates for the remaining
states from these 50 states. This is a serious limitation to their method, because a large
percentage of the data is likely to be from less frequent states, and thus would be
ignored. In our data set, we found that state frequencies followed a Zipfian (i.e., large-
tailed) distribution, with 61% of the system turns having states that only occurred once
in the data.
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Another source of variation between learning approaches is the extent to which they
train on data from simulated users of different kinds, rather than train on data gathered
from real user interactions (as is done in this article). Simulated users are generally
preferred due to the much smaller development effort involved, and the fact that trial-
and-error training with humans is tedious for the users. However, the issues of how
to construct and then evaluate simulated users are open problems. Clearly there is a
dependency between the accuracy of the simulation used for training and the eventual
dialogue policy that is learned (Schatzmann et al. 2005). Current research attempts to
develop metrics for user simulation that are predictive of the overall quality of the
final learned dialogue policy (Schatzmann, Georgila, and Young 2005; Schatzmann
et al. 2005; Georgila, Henderson, and Lemon 2005; Georgila, Henderson, and Lemon
2006; Rieser and Lemon 2006a; Schatzmann et al. 2006; Williams 2007). Furthermore,
several approaches use simple probabilistic simulations encoded by hand, using intu-
itions about reasonable user behaviors (e.g., Pietquin 2004; Frampton and Lemon 2005;
Pietquin and Dutoit 2006a), whereas other work (e.g., Scheffler and Young 2001, 2002;
Georgila, Henderson, and Lemon 2005; Georgila, Henderson, and Lemon 2006; Rieser
and Lemon 2006a) builds simulated users from dialogue corpora. We use the latter
approach, but only in the evaluation of our learned policies.

No matter which method is chosen for user simulation, a simulated user is still
clearly different from a human user. Therefore, it is important to learn as much as possi-
ble from the data we have from human users. In addition, the huge policy space makes
policy exploration with simulated users intractable, unless we can initialize the system
with a good policy and constrain the policy exploration. This also requires learning as
much as possible from the initial set of data. Therefore, in this article we investigate
using a fixed corpus of dialogues to automatically optimize dialogue systems. No user
simulation is involved in training, thus avoiding the issue of dependency on the quality
and availability of user simulations.

Previous work on RL has made use of policy exploration (Sutton and Barto 1998),
where new data is generated for each policy that is considered during the course
of learning (for example using simulated users). Indeed, this is often considered an
integral part of RL. In contrast, we choose to learn from a fixed data set, without
policy exploration. This is motivated by the fact that real dialogue corpora are very
expensive to produce, and it is often not practical to produce new real dialogues during
the course of learning. Singh et al. (2002) manage to perform one iteration of policy
exploration with real data, but most work on RL requires many thousands of iterations.
As discussed previously, this motivates using simulated data for training, but even if
accurate dialogues can be automatically generated with simulated users, training on
simulated dialogues does not replace the need to fully exploit the real data, and does
not solve the sparse data problems that we address here. With a very large state space,
it will never be tractable for policy exploration to test a new policy on even a reasonable
proportion of the states. Thus we will inevitably need to stop policy exploration with
a policy that has not been sufficiently tested. In this sense, we will be in a very similar
situation to learning from a fixed data set, where we don’t have the option of generating
new data for new states. For this reason, the solution we propose for learning from fixed
data sets is also useful for learning with policy exploration.

There have been some proposals in RL for learning a policy that is different from
that used to generate the data (called “off-policy” learning), but these methods have
been found not to work well with linear function approximation (Sutton and Barto
1998). They also do not solve the problem of straying from the region of state space
that has been observed in the data, discussed subsequently.
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1.2 The COMMUNICATOR Domain and Data Annotation

To empirically evaluate our proposed learning method, we apply it to the COMMU-
NICATOR domain using the COMMUNICATOR corpora. The COMMUNICATOR corpora
(2000 [Walker et al. 2001] and 2001 [Walker et al. 2002b]) consist of human–machine
dialogues (approximately 2,300 dialogues in total). The users always try to book a flight,
but they may also try to select a hotel or car rental. The dialogues are primarily “slot-
filling” dialogues, with some information being presented to the user after the system
thinks it has filled (or confirmed) the relevant slots. These corpora have been previously
annotated using the DATE scheme, for the Conversational Domain, Speech Act, and
Task of each system utterance (Walker and Passonneau 2001; Walker, Passonneau, and
Boland 2001). In addition, the results of user questionnaires are available, but only for
the 2001 corpus.

Table 1 shows some statistics for the two collections. In the 2000 collection each turn
contains only one utterance but in the 2001 corpus a turn may contain more than one
utterance. More details about the COMMUNICATOR corpora can be found in Walker,
Passonneau, and Boland (2001) and Walker et al. (2001, 2002a).

We used a hand-crafted automatic system (Georgila, Lemon, and Henderson 2005;
Georgila et al., submitted) to assign Speech Acts and Tasks to the user utterances, and to
compute state representations for each point in the dialogue (i.e., after every utterance).
Although we annotated the whole 2000 and 2001 corpora, because we need the results
of user questionnaires (as discussed subsequently), we only make use of the 2001 data
for the experiments reported here. The 2001 data has eight systems, 1,683 dialogues, and
125,388 total states, two thirds of which result from system actions and one third from
user actions. The annotation system is implemented using DIPPER (Bos et al. 2003) and
OAA (Cheyer and Martin 2001), using several OAA agents (see Georgila, Lemon, and
Henderson, 2005, and Georgila et al., submitted, for more details). Following the ISU
approach, we represented states using Information States, which are feature structures
intended to record all the information about the preceding portion of the dialogue that
is relevant to making dialogue management decisions. An example of some of the types
of information recorded in an Information State is shown in Figure 1, including filled
slots, confirmed slots, and previous speech acts.

Given this corpus, we need to learn a dialogue management policy that maps these
state representations to effective system actions. As the example in Figure 1 illustrates,
there are a large number of features in dialogue states that are potentially relevant to

Table 1
Statistics for the 2000 and 2001 COMMUNICATOR data.

Year

2000 2001 Total

Number of dialogues 648 1683 2331
Number of turns 24,728 78,718 103,446
Number of system turns 13,013 39,419 52,432
Number of user turns 11,715 39,299 51,014
Number of utterances 24,728 89,666 114,394
Number of system utterances 13,013 50,159 63,172
Number of user utterances 11,715 39,507 51,222
Number of system dialogue acts 22,752 85,881 108,633
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dialogue management, and thus should not be excluded from the state representations
we use in learning. This leads to a very large space of possible states (over 10386 states are
theoretically possible in our model), with a very high chance that a state encountered
in testing will not be exactly the same as any state encountered in training. This fact
motivates, if not requires, the use of approximation methods.

The complexity of the COMMUNICATOR domain is alsomanifested in the large num-
ber of system actions that the dialogue management policy needs to choose between.
The DATE scheme representation of system actions implies that each possible triple of
values for the Conversational Domain, Speech Act, and Task is a different action. In
addition, we have added release turn and end dialogue actions. There are a total of
74 system actions that occur in the annotated COMMUNICATOR data.

2. Reinforcement Learning with a Fixed Data Set

We use the annotated COMMUNICATOR data to train a Reinforcement Learning system.
In RL, the objective of the system is to maximize the reward it gets during entire dia-
logues. Rewards are defined to reflect how successful a dialogue was, so by maximizing
the total reward the system optimizes the quality of dialogues. The difficulty is that, at
any point in the dialogue, the system cannot be sure what will happen in the remainder
of the dialogue, and thus cannot be sure what effect its actions will have on the total
reward at the end of the dialogue. Thus the system must choose an action based on the
average reward it has observed previously after it has performed that action in states
similar to the current one. This average is the expected future reward.

The core component of any RL system is the estimation of the expected future
reward (called the Q-function). Given a state and an action that could be taken in that
state, the Q-function tells us what total reward, on average, we can expect between
taking that action and the end of the dialogue.1 Once we have this function, the optimal
dialogue management policy reduces to simply choosing the action that maximizes the
expected future reward for the current state.

Our proposal for RL with fixed data sets uses two main techniques. The first is the
use of function approximation to estimate the expected future reward. We claim that
linear function approximation is an effective way to generalize from a limited data set
to a large space of state–action pairs. The second technique is a novel hybrid learning
method that combines RL with supervised learning (SL). SL is used to characterize how
much data we have for each area of the state–action space (also using linear function
approximation). Our hybrid policy uses SL to avoid state–action pairs for which we do
not have enough data, while using RL to maximize reward within the parts of the space
where we do have enough data. We claim that this is an effective solution to the problem
of learning complex tasks from fixed data sets.

2.1 Defining Dialogue Reward

To apply RL to the COMMUNICATOR data, we first have to define a mapping r(d, i) from
a dialogue d and a position in that dialogue i to a reward value. This reward function is
computed using the reward level of annotation in the COMMUNICATOR data, which was

1 The expected future reward also depends on the dialogue management policy that the system will use in
the future. This self-referential nature of RL is the topic of much RL research, and will be discussed more
in the following.
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extracted from user questionnaires and task completion measures. For all states other
than the final state, we provide a reward of −1 if the state follows a system action, and
0 otherwise. This encodes the idea that, all other things being equal, short dialogues
are better than long ones. For the final state we provide a reward that is the sum of
the rewards for each feature in the reward annotation. “Actual Task Completion” and
“Perceived Task Completion” are both worth a reward of 100 if they are non-zero (i.e.,
true), and 0 otherwise. The remaining reward features have values ranging from 1 to 5
in the annotation (where 5 is the best), which we rescale to the range 0 to 1 (1 converts
to 0, 5 converts to 1). Their reward is their rescaled value times the weight shown in
Table 2. The relative values of these later weights were determined by the empirical
analysis reported in Walker et al. (2001) within the PARADISE evaluation framework
(Walker, Kamm, and Litman 2000).

2.2 Estimating the Expected Future Reward

Given this definition of reward, we want to find an estimate Q(si, a) of the expected
future reward, which is the expected value (“E[ ]” in Equation 1) of the total reward
between taking action a in state si and the end of the dialogue. This expectation is a sum
over all possible future dialogues d, weighted by the probability of the dialogue given
that we have performed action a in state si.

Q(si, a) ≈ Ed|si,a[
∑

j>i

r(d, j)] =
∑

d

(P(d|si, a)
∑

j>i

r(d, j)) (1)

Given that the number of possible future dialogues d = 〈si+1, . . . , snd〉 is exponential in
the length of the sequences, it is not surprising that estimating the expected reward over
these sequences can be very difficult.

The ISU framework is significantly different from the frameworks used in previous
work on reinforcement learning for dialogue management, in that the rich context
representation makes the number of possible states extremely large. Having a large
number of states is a more realistic scenario for practical, flexible, and generic dialogue
systems, but it also makes many RL approaches intractable. In particular, with a large
number of states it is not possible to learn estimates of the expected future reward for
every state, unless we can exploit commonalities between different states. The feature-
based nature of ISU state representations expresses exactly these commonalities be-
tween states through the features that the states share. There are a number of techniques
that could be used for RL with feature-based representations of states, but the simplest
and most efficient is linear function approximation.

Table 2
The weights used to compute a dialogue’s final reward value, multiplied by values between 0
and 1 computed from user responses.

Actual task completion 100
Perceived task completion 100
Task ease 36
Comprehension ease 28
System behaved as expected 32
Future use 36
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We use linear function approximation to map from a vector of real valued features
f (s) for the state s to a vector of estimates Q(s, a), one estimate for each a. The trained
parameters of the linear function are a vector of weights wa for each action a. Given
weights trained on a given data set, an estimate Qdata(s, a) of the expected future reward
given a state s and an action a is the inner product of the state vector f (s) and the weight
vector wa.

2

Qdata(s, a) = f (s)Twa =
∑

i

fi(s)wai (2)

This approximation method has the effect of treating two states as similar if they
share features. During learning, updating the estimate Qdata(s, a) for one observed state
s will also update the estimate Qdata(s

′, a) for all other states s′ to the extent that s′

shares features with s. This updating happens via the weights wa; if s has feature i then
updating the estimate Qdata(s, a) will change wai, which will in turn change Qdata(s

′, a) for
any s′ that also has feature i. Thus each feature represents a dimension with respect to
which two states can be similar or different. This similarity measure is known as a linear
kernel.

This is the first time that linear function approximation has been used for learning
dialogue strategies. Denecke, Dohsaka, and Nakano (2005) also use function approxi-
mation, but there the notion of similarity used during learning is Euclidean distance,
rather than shared features. In effect, Denecke, Dohsaka, and Nakano use a Gaussian
kernel, whereas we use a linear kernel.

To train the weights of the linear approximation Qdata(s, a), we employed a standard
RL learning method called SARSA(λ) (Sutton and Barto 1998). This method learns
based on two criteria, with a parameter λ used to weight their relative influence. The
first criterion comes from temporal-difference learning: the current estimate for the
Q-function should (on average) equal the reward from the next state plus the estimate
for the expected future reward at the next state. The second criterion comes directly
from the observed reward: The current estimate for the Q-function should (on average)
equal the reward observed for the remainder of the dialogue. The combination of these
two criteria makes learning faster than using either one alone. Gradient descent learning
is applied to the weights; at each step of learning, the weights are updated so as to make
the Q-function better fit this combined criterion.

Whereas the weights wa are learned from data, the mapping f (s) from states to vec-
tors must be specified beforehand. Because each value fi(s) in these vectors represents a
possible commonality between states, it is through the definition of f (s) that we control
the notion of similarity that will be used by the linear function approximation. The
definition of f (s) we are currently using is a straightforward mapping from attribute–
value pairs in the Information State s to values in the vector f (s).

The state vector mapping f (s) was computed using the first four levels of our state
annotations for the COMMUNICATOR data (i.e., the Dialogue, Task, Low, and History
levels shown in Figure 1). The values of the attributes in these annotations were con-
verted to features of three types. For attributes that take numbers as values, we used
a simple function to map these numbers to a real number between 0 and 1, with the
absence of any value being mapped to 0 (resulting in six features, e.g., StateNumber).

2 We will use the notation xTy to denote the inner product between vectors x and y (i.e., “x transpose
times y”). wai is the ith element of the vector wa.
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For attributes that can have arbitrary text as their values, we used 1 to represent the
presence of text and 0 to represent no value (resulting in two features, e.g., AsrInput).
The remaining attributes all have either a finite set of possible values, or a list of such
values.

The vast majority of our features are constructed from this third set of attributes.
First, to reflect the importance of speech act–task pairs (which we use to define both
system and user actions), we construct a new SpeechAct-Task attribute whose value
is the concatenation of the values for the SpeechAct and Task attributes. The same is
done for the SpeechActsHist and TasksHist attributes. Second, attributes with a list
value (i.e., the . . .Hist and . . .Status attributes, plus user actions3) are converted to a
set of attribute–value pairs consisting of the attribute and each value in the list (result-
ing in 509 features, e.g., FilledSlotsStatus:[orig city]). Note that this conversion
loses the ordering between the values in the list. In the case of SpeechAct, Task, and
SpeechAct-Task attributes that have list values (which result from turns in which a
user performs more than one action), we also include the whole list as a value for
the attribute4 (resulting in 364 features, e.g., SpeechAct:[no answer,provide info]).
Finally, attributes with single values are assigned features (which result in 401 features,
e.g., Speaker:user).

From this set of potential features, we only use those that occur in the data at least
five times.5 (Only these features are included in the feature counts given previously.)
Each feature is assigned an element of the vector f (s) that is 1 if that feature is present in
the state and 0 if it is not. In total there are 1,282 features.

One advantage of using linear function approximation is that the learning method
can be kept fairly simple, while still incorporating domain knowledge in the design
of the mapping to feature vectors. One area of future research is to investigate more
complicated mappings to feature vectors f (s). This would involve making use of kernel-
based methods. Kernels are used to compensate for the oversimplicity of linear func-
tions, and can be used to express more complicated notions of commonality between
states (Shawe-Taylor and Cristianini 2004).

2.3 Pure RL and SL Policies

Given the estimate of the expected future reward Qdata(s, a) discussed in the previous
section, one obvious approach would use this estimate to define the dialogue policy.
This “pure RL” policy simply selects the action a with the highest Qdata(s, a) given the
state s. As demonstrated by the evaluation in Section 3, this policy performs very badly.

Inspection of the actions chosen by the pure RL policy indicates that this policy is
very different from the policy observed in the COMMUNICATOR data; the pure RL policy
almost never chose the same action as was in the data. This means that the actions that
have been learned to have the best future reward for a state are not the ones that were

3 Because in the 2001 COMMUNICATOR data users may perform more than one action in a single turn, a
user’s action is potentially a list of speech act–task pairs. These are annotated as lists of speech acts plus
lists of tasks, to which we add lists of speech act–task pairs. Histories of these lists (i.e., lists of lists) are
first flattened and then treated like other lists.

4 These “list” values are more accurately described as set values, because we do not encode the ordering
of the values in the list.

5 We also do not include the . . .Value. . . attributes, such as FilledSlotValue, which specify the actual
fillers for slots.
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typically chosen by the COMMUNICATOR systems in that state. This difference results in
two problems:

� such atypical actions then lead to states unlike anything observed in the
data,

� the policy that the system will use for future actions is different from that
observed in the data, and

The first problem makes the Qdata(s, a) estimates for the visited states highly unreliable,
because we don’t have data for these states. Because the future reward depends on the
policy that the systemwill use in the future, the second problemmeans that the estimate
Qdata(s, a) is not even relevant to the expected future reward of the pure RL policy.Wewill
return to these problems when we develop our proposed method in Section 2.4.

These problems are a result of the fact that we are training on a fixed data set,
and therefore cannot generate new data that is appropriate for the new policy. The
solution to these problems that is typically used in RL research is to generate new
data as learning progresses and the policy changes, as discussed in Section 1.1. The RL
system can thus explore the space of possible policies and states, generating new data
that is relevant to each explored policy and its states. The problem with learning with
policy exploration, even when using simulated users, is that it is not tractable with a
large state space and action set. Consider that with 10386 states and 74 actions, there are
7410

386
possible policies. If we were able to explore policies at a rate of 1 policy a second,

after 1 year we would have visited only one policy in every 7410
385.6

policies. Policy
exploration algorithms are only partially random, so to some extent they can make
accurate choices about which parts of the policy space to explore and which to ignore,
but these numbers are indicative of the scale of the problem faced by policy exploration.
In addition, experiments with a random policy achieved an average score of −66,
showing that the vast majority of policies are very bad. This indicates that starting
policy exploration with a random policy would require an extremely large amount of
exploration to move from there to a policy which is as good as the policy found with
the proposal discussed herein (which achieved a score of 140, out of a maximum 197).
Therefore it is crucial that exploratory learning at least be initialized with a policy that
we already know to be good. The method proposed in this article for learning a policy
from a pre-existing corpus of dialogues can be used to find such an initial policy.

Given these problems with using RL with a fixed data set, an obvious alternative
would be to simply train a policy to mimic the policies of the systems used to generate
the data. One reason for training a policy, rather than using one of the original policies,
is that learning allows us to merge the policies from all the different systems, which
can lead to a better policy than any one system (as we will show in Section 3). Another
reason is that learning results in a policy that generalizes from the original policies in
interesting ways. Most notably, our learning method can be used to define a probabilis-
tic policy, not just the (presumably) deterministic policies used to generate the data. A
third reason could be (as in our case) that we do not have access to any of the original
systems that generated the data. In some sense we can use learning to reverse engineer
the systems.

We train a policy to mimic the policy observed in the data using supervised learning
with linear function approximation. This “pure SL” policy simply selects the action
a with the highest probability P(a|s) of being chosen given the state s. We estimate
P(a|s) with linear function approximation, just as for Qdata(s, a), except that a normalized
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exponential function (a.k.a. “softmax”) is used so that the result is a probability distri-
bution over actions a.

P(a|s) ≈ Sdata(s, a) =
exp( f (s)Tw′

a)∑
a′ exp( f (s)

Tw′
a′ )

(3)

This gives us a log-linear model, also known as a maximum entropy model. The
parameters of this model (thew′

a) are trained using supervised learning on the COMMU-
NICATOR data. As with the Q-function, the use of linear function approximation means
that we have estimates for P(a|s) even for states s that have never occurred in the data,
based on similar states that did occur.

2.4 A Hybrid Approach to RL

In this work we focus on solving the first of the two problems we have discussed,
namely, preventing the system from straying into portions of the state space for which
we do not have sufficient data. To do this, we propose a novel hybrid approach that
combines RL with supervised learning. SL is used to model which actions will take the
system into a portion of the state space for which we don’t have sufficient data. RL
is used to choose between the remaining actions. A discriminant function Qhybrid(s, a) is
derived that combines these two criteria in a principled way. The resulting policy can be
adjusted to be as similar as necessary to the policy in the data, thereby also addressing
the second problem discussed previously.

As with the pure SL policy, supervised learning is used to model the policy that
the systems in the data actually use. Because in general multiple policies were used,
we model the data’s policy as a probabilistic policy, using the estimate Sdata(s, a) of P(a|s)
presented in the previous section. Sdata(s, a) is an estimate of the probability that a random
system selected from those that generated the data would choose action a given that it is
in state s. Because we are using function approximation to learn Sdata(s, a) from the data,
it will generalize (or “smooth”) the policies actually used to generate the data so that
similar states will allow similar sets of actions.6

The hybrid approach we have investigated is based on the assumption that the Q-
function trained on the data is a poor model of the expected future reward for states
in the portion of the state space not covered by the data. Thus we need an alternative
method for estimating the future reward for these unobserved states. We have exper-
imented with two such methods. The first method simply specifies a fixed reward U
for these states. By setting this fixed reward to a low value, it amounts to a penalty for
straying from the observed portion of the state space.

The second method estimated the reward for unobserved states by adding a fixed
reward offset UO to the reward estimates for ending the dialogue immediately. This
method compensates for the use of a dialogue-final reward scheme, where many things
that the dialogue has already accomplished aren’t reflected in the reward given so far.
For example, in our reward scheme, filling a slot does not result in immediate reward,
but instead results in reward at the end of the dialogue if it leads to a successful
dialogue. The estimated reward for ending the dialogue immediately reflects howmuch

6 For this reason, we will get a probabilistic policy even if only a single deterministic policy is used
to generate the data. This makes this method applicable even for data sets generated with a single
deterministic prototype system.
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reward is stored up in the state in this way. If the fixed reward added to this estimate is
set to negative, then we can be sure that the reward estimated for unobserved states is
always less than that for the best observed state, so this method also results in a penalty
for straying from the observed portion of the state space.

Given an estimated reward u for unobserved states, the expected future reward is
then the average between u for the cases where performing a in s leads to an unobserved
state and the expected reward Qdata(s, a) for the cases where it leads to an observed state.
Formally, this average is a mixture of the estimate u with the estimate Qdata(s, a), where
the mixture coefficient is the probability Pobserved(s, a) that performing a in swill lead to an
observed state.

Ed|si,a[
∑

j>i r(d, j)]
≈ Qdata(s, a)Pobserved(s, a)+ u(1− Pobserved(s, a))

(4)

Because this estimate of the expected future reward is only needed for choosing
the next action given the current state s, we only need to estimate a function that dis-
criminates between different actions in the same way as this estimate. To derive such a
discriminant function, we first approximate Pobserved(s, a) with a first-order approximation
in terms of the probability distribution in the data P(s, a) and the size of the data set N,
under the assumption that the number of possible state–action pairs is much larger than
the size of the data set (so P(s, a)N	 1).

Pobserved(s, a) = 1− (1− P(s, a))N

≈ P(s, a)N ≈ Sdata(s, a)P(s)N
(5)

Given this approximation, the discriminant function needs to order two actions a1, a2 in
the same way as this estimate of the expected future reward.

Qdata(s, a1)Sdata(s, a1)P(s)N + u(1− Sdata(s, a1)P(s)N)
≤ Qdata(s, a2)Sdata(s, a2)P(s)N + u(1− Sdata(s, a2)P(s)N)

if and only if

Sdata(s, a1)(Qdata(s, a1)− u) ≤ Sdata(s, a2)(Qdata(s, a2)− u)

(6)

We call this discriminant function Qhybrid(s, a).

Qhybrid(s, a) = Sdata(s, a)(Qdata(s, a)− u) (7)

We use thisQhybrid(s, a) function to choose the actions for our hybrid policy. By adjust-
ing the value of the unobserved state penalty u, we can adjust the extent to which this
model follows the supervised policy defined by Sdata(s, a) or the reinforcement learning
policy defined by Qdata(s, a). In particular, if u is very low, then maximizing Qhybrid(s, a) is
equivalent to maximizing Sdata(s, a). Thus a very low u is equivalent to the policy that
always chooses the most probable action, which we will call the “SL policy.”

The procedure for trainingQhybrid(s, a) is simply to trainQdata(s, a) with RL and Sdata(s, a)
with SL. These two models are then combined using Equation (7), given a value for u
computed with one of the two methods presented previously. Both of these methods
involve setting a constant that determines the relative importance of RL versus SL. In
the next section we will empirically investigate good values for these constants.
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3. Empirical Evaluation

We evaluate the trained dialogue management policies by running them against trained
user simulations. The policies and the user simulations were trained using different
parts of the annotated COMMUNICATOR data (using two-fold and five-fold cross val-
idation). We compare our results against each other and against the performance of
the eight COMMUNICATOR systems, using an evaluation metric discussed subsequently.
The Information States for the simulated dialogues were computed with the same rules
used to compute the Information States for the annotated data.

3.1 The Testing Setup

For these experiments, we restrict our attention to users who only want single-leg
and return flight bookings. This allows us to do the evaluation using only the four
essential slots included in both these types of bookings: origin city, destination city,
departure date, and departure time. To achieve this restriction, we first selected all those
COMMUNICATOR dialogues that consisted only of single-leg or return flight bookings.
This subset contained 217 ATT dialogues, 116 BBN dialogues, 126 CMU dialogues, 159
Colorado dialogues, 77 IBM dialogues, 192 Lucent dialogues, 180 MIT dialogues, and
185 SRI dialogues, for a total of 1,252 dialogues (out of 1,683). This subset was used for
evaluating the COMMUNICATOR systems and for training the user models. The system
models were trained on the full set of dialogues, because they should not know the
user’s goals in advance. So, for each fold of the data, the user model was trained on only
the single-leg and return dialogues from that fold and the system model was trained on
the full set of dialogues from a subset of the remaining folds (one fold for the two-fold
experiments and three folds for the five-fold experiment, as discussed subsequently).

The user models were trained in the same way as the Sdata(s, a) function for the
pure SL model discussed in Section 2.3, using linear function approximation and a
normalized exponential output function. The states that precede user actions are input
as vectors of features virtually identical to those used for the system. However, unlike
the action set for the system, the user only chooses one action per turn, and that action
can include multiple 〈Speech Act, Task〉 pairs. The output of the model is a probability
distribution over these actions. The user simulation selects an action randomly accord-
ing to this distribution. We also trained a user model based on n-grams of user and
system actions, which produced similar results in our testing (Georgila, Henderson,
and Lemon 2006).

In our initial experiments with the hybrid policy, we found that it never closed
the dialogue. We think that this was due to the system action (annotated in DATE)
meta greeting goodbye, which is used both as the first action and as the last action
of a dialogue. The hybrid policy expects this action to be chosen before it will close
the dialogue, but the system never chooses this action at the end of a dialogue because
it is so strongly associated with the beginning of the dialogue. This is an example of
the limitations of linear function approximation, and our dependence on the previous
COMMUNICATOR annotations. We could address this problem by splitting this action
into two actions, one for “greeting” and one for “goodbye.” But because we do not want
to embark on the task of feature engineering at this stage, we have instead augmented
the hybrid policy with a rule that closes the dialogue after the system chooses the action
offer, to offer the user a flight. After this first flight offer, the user has one turn to
reply, and then the dialogue is ended. For practical reasons we have also added rules
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that close the dialogue after 100 states (i.e., total of user and system actions), and that
release the turn if the system has done 10 actions in a row without releasing the turn.

3.2 The Evaluation Metrics

To evaluate the success of a dialogue, we take the final state of the dialogue and use
it to compute a scoring function. We want the scoring function to be similar to the
reward we compute from the quality measures provided with the COMMUNICATOR

data (e.g., the user questionnaires), but because we do not have these quality measures
for the simulated dialogues, we cannot use the exact same reward function. When we
compare the hybrid policy against the COMMUNICATOR systems, we apply the same
scoring function to both types of dialogues so that we have a comparable evaluation
metric for both.

Because currently we are only considering users who only want single-leg or return
flight bookings, the scoring function only looks at the four essential slots for these
bookings: origin city, destination city, departure date, and departure time. We give
25 points for each slot that is filled, plus another 25 points for each slot that is also
confirmed. We also deduct 1 point for each action performed by the system, to penalize
longer dialogues. Thus the maximum possible score is 197 (i.e., 200 minus 3 system
actions: ask for all the user information in one action, then confirm all the four slots in
one action and offer a flight).

The motivation behind this evaluation metric is that confirmed slots are more likely
to be correct than slots that are just filled. If we view the score as proportional to the
probability that a slot is filled correctly, then this scoring assumes that confirmed slots
are twice as likely to be correct. Although other scoring metrics are clearly possible, this
one is a simple and reasonable approximation of the relative expected correctness of
confirmed versus non-confirmed information in dialogue systems. On the other hand,
none of our conclusions depend on this exact scoring function, as indicated by results for
the “no-conf” version of our scoring function (discussed subsequently), which ignores
confirmations.

When combining the scores for different slots, we do not try to model the all-or-
nothing nature of the COMMUNICATOR task-completion quality measures, but instead
sum the scores for the individual slots. This summakes our scoring metric value partial
completions more highly, but inspection of the distributions of scores indicates that
this difference does not favor either the hybrid policy or the original COMMUNICATOR

systems.
Although this evaluation metric could reflect the relative quality of individual

dialogues more accurately, we believe it provides a good measure of the relative quality
of the systems we wish to compare. First, the exact same metric is applied to every
system. Additional information that we have for some systems, but not all, is not used
(e.g., the COMMUNICATOR user questionnaires, which we do not have for simulated
dialogues). Second, the systems are being run against approximately equivalent users.
The user simulation is trained on exactly the same user actions that are used to evaluate
the COMMUNICATOR systems, so the user simulations mimic exactly these users. In
particular, the simulation is able to mimic the effects of speech recognition errors,
because it is just as likely as the real users to disagree with a confirmation or provide a
new value for a previously filled slot. The nature of the simulation model may make it
systematically different from real users in some way, but we know of no argument for
why this would bias our results in favor of one system or another.
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One concern about this evaluation metric is that it does not reflect the quality of the
speech recognizer being used by the system. If a system has a good speech recognizer,
then it may not be necessary for it to confirm a slot value, but our scoring function will
still penalize it for not confirming. This would certainly be a problem if this metric were
to be used to compare different systems within the COMMUNICATOR data set. However,
the intention of the metric is simply to facilitate comparisons between different versions
of our proposed system, and between our proposed systems and those in the data.
Because the user simulations are trained on the COMMUNICATOR data, they simulate
speech recognition errors at the same rate as the data, thereby controlling for the quality
of the speech recognizer.

Nonetheless, it is worth considering another evaluation metric that does not penal-
ize for missing confirmations. For this reason we also evaluate the different systems
based on their scores for only filled slots and length, which we call the “no-conf” score.

3.3 The Influence of Reinforcement Learning

In our first set of experiments, we evaluated the success of our hybrid policy relative
to the performance of the pure reinforcement learning policy and the pure supervised
learning policy. We also investigated how to best set the parameters for combining the
supervised and reinforcement learning policies in a hybrid policy.

We first compared the two proposed hybrid methods using two-fold cross valida-
tion. We trained models of both Qdata(s, a) and Sdata(s, a), and then used them to define
policies. We trained both models for 100 iterations through the training portion of the
data, at which point there was little change in the training error. We trained Qdata(s, a)
using SARSA(λ) with λ = 0.9. This training was repeated twice, once for each fold of the
complete data set. The reinforcement learning policy uses only Qdata(s, a), the SL policy
uses only Sdata(s, a), and the hybrid policies combine the two using Equation (7). For the
hybrid policies, we used the two methods for estimating the unobserved state penalty
u and various values for the fixed reward U or reward offset UO.

During testing, each policy was run for 2,000 dialogues against a linear function
approximation user model trained on the opposite half of the data. The final state for
each one of these dialogues was then fed through the scoring function and averaged
across dialogues and across data halves. The results are plotted in Figure 2. To allow
direct comparisons between the different values of U and UO, these scores are plotted
against the proportion of decisions that are different from that which the pure SL policy
would choose. Thus the SL policy (average reward 139.8) is plotted at 0 (which is

Figure 2
Average dialogue score plotted against the proportion of decisions that diverge from the SL
policy, for different values of the unobservable state reward U and reward offset UO. Averages
over two folds, 2,000 dialogues per fold.
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Figure 3
Average dialogue score plotted against the proportion of decisions that diverge from the SL
policy, for different values of the unobservable state reward offset UO. Averages over five folds,
2,000 dialogues per fold.

equivalent to a large negative U or UO). Additional points for the hybrid policies are
shown for (from left to right, respectively) U = 0, 40, 80, and 100, and UO = –300, –100,
–60, –40, –20, –10, and 0. The pure reinforcement learning policy is not shown because
its average score falls well below the bottom of the graph, at 44.4.

Figure 2 indicates that, for both hybrid methods, adding some influence from RL
increases performance over pure SL, but too much RL results in degradation. Using a
reward offsetUO for u generally does better than a fixed rewardU, and allows a greater
influence from RL before degradation.

We found that the results for our two folds were very different,7 so we repeated
the experiments using five-fold cross validation, where the dialogues from each system
were split randomly (rather than chronologically).8 For each fold, we trained models
of both Qdata(s, a) and Sdata(s, a) on three of the folds, using a fourth fold to decide when
to stop training. The fifth fold was then used to train a linear function approximation
user model, which was used to generate 2,000 simulated dialogues. Combining the five
folds, this gave us 10,000 dialogues per model. Because, in the previous experiments,
using a reward offset UO performed better than using a fixed reward U, we only tested
models using different values of the reward offset UO.

The validation performance of the trained models for Qdata(s, a) and Sdata(s, a) per-
formed similarly across the different splits. Taken together, the models of Sdata(s, a) had a
perplexity of 4.4. Intuitively, this means that the supervised models were able to narrow
down the list of possible actions from 74 to about 4 choices, on average. This suggests
that the ISU representation of state is doing a good job of representing the information
being used by the systems to make dialogue management decisions, but that there is
still a good amount of uncaptured variability. Presumably most of this variability is due
to differences between the policies for the different systems. The models of Qdata(s, a)
had a mean squared error of 8,242, whose square root is 91. This measure is harder to
interpret because it is dominated by large errors, but suggests that the expected future
reward is rather hard to predict, as is to be expected.

Figure 3 shows the average scores for the pure SL policy (at 0) and for hybrid
policies (from left to right) with UO = −300, −100, −60, −40, −20, −10, −5 and 0. The

7 For the two-fold experiments, the data were split by putting the first half of the dialogues for each system
in one fold and the second half in the other, under the constraint that no user had dialogues in more than
one fold. It appears that the users that were run at the beginning of the 2001 COMMUNICATOR data
collection were very different from those run at the end.

8 To be more precise, for each system we split the set of users randomly into five groups. Then all the
dialogues for a given group of users were put in the same fold.
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hybrid policies perform consistently better than the SL policy. The difference between
the hybrid policy and the SL policy is statistically significant at the 5% level for the
three best hybrid policies tested (p < 0.01 for UO = −40, p < 0.001 for UO = −10, and
p < 0.007 for UO = −5). If we combine all the tested hybrid policies together, then their
average score (139.4) is also significantly better than the SL policy (p < 0.014). All these
results are significantly better than the average score of the pure RL policy (34.9).

3.4 Comparisons with COMMUNICATOR Systems

In our second set of experiments, we evaluated the success of our learned policies
relative to the performance of the COMMUNICATOR systems that they were trained on.
To evaluate the performance of the COMMUNICATOR systems, we extracted final states
from all the dialogues that only contain single-leg or return flight bookings and fed
them through the scoring function. The average scores are shown in Tables 3 and 4,
along with the average scores for the pure SL policy, the pure RL policy, and the best
hybrid policy (UO = −10). The total score, the score excluding confirmations, and the
three components of the total score are shown.

Table 3 shows the results computed from the complete dialogues. These results
show a clear advantage for the hybrid policy over the average across the COMMUNI-
CATOR systems, as well as over each individual COMMUNICATOR system. In particular,
the hybrid policy uses fewer steps. Because the number of steps is doubtless affected
by the hybrid policy’s built-in strategy of stopping the dialogue after the first flight
offer, we also evaluated the performance of the COMMUNICATOR systems if we also
stopped these dialogues after the first flight offer, shown in Table 4. The COMMUNI-
CATOR systems do better when stopped at the first flight offer, but still their average
(“all COMMUNICATOR”) is not nearly as good as the hybrid or SL policies, under all
measures.

Although the average score of the COMMUNICATOR systems in Table 4 is well below
those of the hybrid and SL policies, under this measure the single best system (BBN)
beats our proposed system. Also, if we ignore confirmations (the “no-conf” measure),

Table 3
The average scores from the different systems for single-leg and return dialogues, the score
excluding confirmations, and the three components of these scores.

System Total score No-conf Filled Confirmed Length
score slots slots penalty

hybrid RL/SL 140.3 70.3 88.0 70.0 −17.7
pure SL 138.3 69.2 89.2 69.1 −20.0
pure RL 34.9 25.6 56.9 8.3 −31.3
all COMMUNICATOR 103.6 40.6 85.0 63.0 −44.4

SRI 115.3 50.5 83.4 64.9 −32.9
MIT 114.3 43.2 87.1 71.1 −43.9
LUC 110.3 36.1 91.1 74.1 −55.0
COL 105.9 47.0 90.6 59.0 −43.6
BBN 102.4 27.1 82.5 75.2 −55.4
ATT 94.0 38.7 78.3 55.3 −39.6
CMU 92.1 24.0 81.7 68.1 −57.7
IBM 77.0 61.8 85.4 15.3 −23.6
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Table 4
The average scores after the first flight offer for single-leg and return dialogues, the score
excluding confirmations, and the three components of these scores.

System Total score No-conf Filled Confirmed Length
score slots slots penalty

hybrid RL/SL 140.3 70.3 88.0 70.0 −17.7
pure SL 138.3 69.2 89.2 69.1 −20.0
pure RL 34.9 25.6 56.9 8.3 −31.3
all COMMUNICATOR 127.1 63.2 84.5 63.9 −21.3

BBN 148.9 73.2 88.6 75.6 −15.4
LUC 138.5 59.1 91.1 79.4 −32.1
MIT 136.4 66.9 82.8 69.4 −15.9
COL 132.9 71.4 89.9 61.5 −18.6
SRI 128.2 61.7 84.2 66.5 −22.5
CMU 123.8 58.7 77.2 65.1 −18.5
ATT 109.1 53.6 78.3 55.4 −24.7
IBM 86.4 71.2 85.1 15.3 −13.9

then three of the individual systems beat our proposed system by small amounts. How-
ever, as discussed in Section 3.2, our evaluation methodology is not really appropriate
for comparing against individual COMMUNICATOR systems, due to likely differences in
speech recognition performance across systems. To test this explanation, we looked at
the word error rates for the speech recognition outputs for the different systems. BBN
has the highest percentage of user utterances with no speech recognition errors (79%,
versus an average of 66%), and the second lowest average word error rate (12.1 versus
an average of 22.1). Because our simulated users simulate speech recognition errors at
the average rate, the difference in performance between BBN and our systems could
easily be explained simply by differences in the speech recognizers, and not differences
in the dialogue management policies.

3.5 Discussion

The most obvious conclusion to draw from these results is not a surprising one: Pure
reinforcement learning with such a huge state space and such limited data does not
performwell. Given the pure RL policy’s score of 34.9, all the policies in Figure 3 and all
the COMMUNICATOR systems in Tables 3 and 4 perform better by quite a large margin.
Inspection of the dialogues indicates that the pure RL policy does not result in a coherent
sequence of actions. This policy tends to choose actions that are associated with the end
of the dialogue, even at the beginning of the dialogue. Perhaps this is because these
actions are only chosen by the COMMUNICATOR systems during relatively successful
dialogues. This policy also tends to repeat the same actions many times, for example
repeatedly requesting information even after the user has supplied this information.
These phenomena are examples of the problemwe used tomotivate our hybrid learning
method, in that they both involve state–action pairs that the learner would never have
seen in the COMMUNICATOR training data.

Given the disappointing performance of the pure RL policy, it is surprising that our
hybrid policies outperform the pure SL policy, as shown in Figures 2 and 3. Though the
increase in performance is small, it is statistically significant, and consistent across the
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two hybrid methods and across a range of degrees of influence from RL.9 This indicates
that our hybrid policies are succeeding in getting useful information from the results of
reinforcement learning, even under these extremely difficult circumstances. Perhaps,
under less severe circumstances for RL, a greater gain can be achieved with hybrid
policies. For the second hybrid policy (unobserved state reward offset), the fact that the
best result was achievedwith aUO value (UO = −10) that is very close to the theoretical
limit of this method (UO = 0) suggests that future improvements to this method could
result in even more useful information being extracted from the RL policy.

The different components of the scoring function give some indication of how the
hybrid policies differ from the SL policy. As indicated in the top two rows of Table 4,
the hybrid policies mostly improve over the SL policy in dialogue length, with a slight
increase in confirmed slots and a slight decrease in filled slots.

One striking conclusion from the results comparing the learned policies to the poli-
cies of the COMMUNICATOR systems, shown in Tables 3 and 4, is that the learned policies
score better than the policies they were trained on. This is particularly surprising for
the pure SL policy, given that this policy is simply trying to mimic the behavior of
these same systems. This can be explained by the fact that the SL policy is the result
of merging all policies of the COMMUNICATOR systems. Thus it can be thought of as
a form of multi-version system, where decisions are made based on what the majority
of systems would do.10 Multi-version systems are well known to perform better than
their component systems, because the mistakes tend to be different across the different
component systems. They remove errors made by any one system that are not shared
by most of the other systems.

The good performance of the SL policy compared to the COMMUNICATOR systems
makes the better performance of the hybrid policies even more impressive. As shown
on the x axis of Figure 3, the best hybrid systems choose a different action from the
SL policy about one action out of four. Despite the good performance of the action
chosen by the SL policy, RL is able to (on average) find a better action by looking at the
rewards achieved by the systems in the data when they chose those actions in similar
states. By following different systems’ choices at different points in the dialogue, the
learned policy can potentially perform better than any individual system. Although our
current evaluation methodology is not fine-grained enough to determine if this is being
achieved, the most promising aspect of applying RL to fixed data sets is in learning to
combine the best aspects of each system in the data set.

Although we believe that these results provide an accurate picture of the relative
strengths of the different types of systems we compare, it should be noted that the
reliance on evaluation with simulated dialogues inevitably leads to some lack of pre-
cision in the evaluation. All these results are computed with users who have the same
goal (booking a return flight) and with an evaluation metric that only looks at dialogue
length and whether the four main slots were filled and (optionally) confirmed. On the

9 We previously reported results that showed that adding influence from reinforcement learning always
degraded performance slightly compared to the pure SL policy (Henderson, Lemon, and Georgila 2005).
However, these results were obtained with a preliminary version of the data annotation, which gave
a less accurate indication of when slots were filled and confirmed. The scores we are achieving with
the new data annotation (Georgila et al. submitted) are all higher than those reported in Henderson,
Lemon, and Geogila (2005), including the scores calculated from the data for the COMMUNICATOR
systems themselves.

10 To be more technically accurate, we can think of the SL policy as in effect asking each COMMUNICATOR
system for a probability distribution over state–action pairs for the current state, summing these
probabilities across systems, and choosing the action with the highest probability.
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other hand, all the systems were trained to handle a more complicated task than this,
including multi-leg flights, hotel bookings, and rental-car bookings. They were also
designed or trained to complete the task, rather than to fill the slots. Therefore the
evaluation does not reflect all the capabilities or behaviors of the systems. However,
there is no apparent reason to believe that this fact biases our results towards one type
of system or another. This claim is easiest to support for the comparisons between
the hybrid method and the two trained baselines, pure RL and pure SL. For all these
systems, the same data was used to train the systems, the same user models were
used to generate simulated dialogues, and the same evaluation metric was applied to
these simulated dialogues. For the comparisons between the hybrid method and the
COMMUNICATOR systems, only the evaluation metric is exactly the same, but the user
models used for testing the hybrid method were trained to mimic exactly the users
in the dialogues used to evaluate the COMMUNICATOR systems. Because we know of
no evaluation bias introduced when moving from real users to their simulation, we
conclude that this comparison is also indicative of the relative performance of these two
types of systems (particularly given the size of the improvement).

A more general methodological objection could be raised against any evaluation
that uses simulated users. Despite the substantial amount of dialogue system work that
has relied on simulated users (e.g., Scheffler and Young 2002; Pietquin 2004; Georgila,
Henderson, and Lemon 2006; Schatzmann et al. 2006), to date there has not been a
systematic experiment that validates this methodology against results from human
users. However, in related work (Lemon, Georgila, and Henderson 2006), we have
demonstrated that a hybrid policy learned as proposed in this article performs better
than a state-of-the-art hand-coded system in experiments with human users. The exper-
iments were done using the “Town Information”multimodal dialogue system of Lemon
et at. (2006) and Lemon, Georgila, and Stuttle (2005). The hybrid policy reported here
(trained on the COMMUNICATOR data) was ported to this domain, and then evaluated
with human subjects. The learned policy achieved an average gain in perceived task
completion of 14.2% (from 67.6% to 81.8% at p < 0.03) compared to a state-of-the-art
hand-coded system (Lemon, Georgila, and Henderson 2006). This demonstrates that a
policy that performs well in simulation also performs well in real dialogues.11

These experiments demonstrate improvements given an initial fixed data set which
has been generated from existing systems. For applications where there are no existing
systems, an alternative would be to generate the initial data with a Wizard-of-Oz
experiment, where a human plays the part of the system, as explored by Williams and
Young (2003) and Rieser and Lemon (2006b). The methods proposed in this article can
be used to train a policy from such data without having to first build an initial system.

4. Conclusions

In this article, we have investigated how reinforcement learning can be applied to learn
dialogue management policies with large action sets and very large state spaces given
only a fixed data set of dialogues. Under a variety of metrics, our proposed hybrid re-
inforcement learning method outperforms both a policy trained with standard RL and a

11 Future work is to port the hand-coded policy back to the COMMUNICATOR domain for use in simulation.
This will investigate whether a relative improvement in simulated dialogues translates into a relative
improvement in real dialogues.

507



Computational Linguistics Volume 34, Number 4

policy trained with supervised learning, as well as the COMMUNICATOR systems which
generated the data it was trained on. This performance is achieved despite the extremely
challenging task, with 74 actions to choose between, over 10386 possible states, and
very few hand-coded policy decisions. The two main features of our model that make
this possible are the incorporation of supervised learning into a reinforcement learning
model, and the use of linear function approximation with state features provided by the
Information State Update approach to dialogue management. The supervised learning
is used to avoid states not covered by the data set, and the linear function approximation
is used to handle the very large state spaces.

With such a large space of possible state–action pairs, and therefore a huge policy
space, pure reinforcement learning would require an enormous amount of data to find
good policies. We have succeeded in using RL with fairly small data sets of only around
1,000 dialogues (in the portion used for training). This is achieved by using supervised
learning to model when an action would lead to a state for which we do not have
enough data. We proposed two methods for estimating a default value for these unseen
states, and derived a principled way to combine this value with the value estimated by
RL, using the probability provided by SL to weight this combination. This gave us two
hybrid RL/SL methods, both of which outperform both the RL and SL policies alone.
The best hybrid policy performs 302% better than the standard RL policy, and 1.4%
better than the SL policy, according to our automatic evaluation method. In addition,
according to our automatic evaluation method, the hybrid RL/SL policy outperforms
the systems used to generate the data. The best hybrid policy improves over the average
COMMUNICATOR system policy by 10% on our metric. This good performance has
been corroborated in separate experiments with human subjects (Lemon, Georgila, and
Henderson 2006), where the learned policy outperforms a state-of-the-art hand-coded
system.

The success of the hybrid method (and of pure supervised learning) on this chal-
lenging task indicates that linear function approximation is a viable approach to the very
large state spaces produced by the ISU framework. It also demonstrates the utility of a
feature-based representation of states, such as that used in the ISU approach. Further
improvement should be possible by tailoring the representation of states and actions
based on our experience so far (e.g., by including information about specific sequences
of moves), and by using automatic feature selection techniques. We should also be able
to get some improvement from more sophisticated function approximation methods,
such as kernel-based methods.

The next step is to better exploit the advantages of reinforcement learning. One
promising approach is to apply RL while running the learned policy against simulated
users, thereby allowing RL to explore parts of the policy and state spaces that are
not included in the COMMUNICATOR data. The hybrid policy we have learned on the
COMMUNICATOR data is a good starting point for this exploration. Also, the supervised
component within the hybrid system can be used to constrain the range of policies
that need to be explored when training the RL component. All of these advances will
improve techniques for bootstrapping and automatic optimization of dialogue manage-
ment policies from limited initial data sets.
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