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We present a general framework for semantic role labeling. The framework combines a machine-
learning technique with an integer linear programming–based inference procedure, which in-
corporates linguistic and structural constraints into a global decision process. Within this
framework, we study the role of syntactic parsing information in semantic role labeling. We
show that full syntactic parsing information is, by far, most relevant in identifying the argument,
especially, in the very first stage—the pruning stage. Surprisingly, the quality of the pruning
stage cannot be solely determined based on its recall and precision. Instead, it depends on the
characteristics of the output candidates that determine the difficulty of the downstream prob-
lems. Motivated by this observation, we propose an effective and simple approach of combining
different semantic role labeling systems through joint inference, which significantly improves its
performance.

Our system has been evaluated in the CoNLL-2005 shared task on semantic role labeling,
and achieves the highest F1 score among 19 participants.

1. Introduction

Semantic parsing of sentences is believed to be an important task on the road to natural
language understanding, and has immediate applications in tasks such as informa-
tion extraction and question answering. Semantic Role Labeling (SRL) is a shallow
semantic parsing task, in which for each predicate in a sentence, the goal is to identify
all constituents that fill a semantic role, and to determine their roles (Agent, Patient,
Instrument, etc.) and their adjuncts (Locative, Temporal, Manner, etc.).
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The PropBank project (Kingsbury and Palmer 2002; Palmer, Gildea, and Kingsbury
2005), which provides a large human-annotated corpus of verb predicates and their ar-
guments, has enabled researchers to apply machine learning techniques to develop SRL
systems (Gildea and Palmer 2002; Chen and Rambow 2003; Gildea and Hockenmaier
2003; Pradhan et al. 2003; Surdeanu et al. 2003; Pradhan et al. 2004; Xue and Palmer 2004;
Koomen et al. 2005). However, most systems rely heavily on full syntactic parse trees.
Therefore, the overall performance of the system is largely determined by the quality
of the automatic syntactic parsers of which the state of the art (Collins 1999; Charniak
2001) is still far from perfect.
Alternatively, shallow syntactic parsers (i.e., chunkers and clausers), although they

do not provide as much information as a full syntactic parser, have been shown to
be more robust in their specific tasks (Li and Roth 2001). This raises the very natural
and interesting question of quantifying the importance of full parsing information to
semantic parsing and whether it is possible to use only shallow syntactic information to
build an outstanding SRL system.
Although PropBank is built by adding semantic annotations to the constituents in

the Penn Treebank syntactic parse trees, it is not clear how important syntactic parsing
is for an SRL system. To the best of our knowledge, this problem was first addressed
by Gildea and Palmer (2002). In their attempt to use limited syntactic information, the
parser they used was very shallow—clauses were not available and only chunks were
used. Moreover, the pruning stage there was very strict—only chunks were considered
as argument candidates. This results in over 60% of the actual arguments being ignored.
Consequently, the overall recall in their approach was very low.
The use of only shallow parsing information in an SRL system has largely been

ignored until the recent CoNLL-2004 shared task competition (Carreras and Màrquez
2004). In that competition, participants were restricted to using only shallow parsing
information, which included part-of-speech tags, chunks, and clauses (the definitions of
chunks and clauses can be found in Tjong Kim Sang and Buchholz [2000] and Carreras
et al. [2002], respectively). As a result, the performance of the best shallow parsing–
based system (Hacioglu et al. 2004) in the competition is about 10 points in F1 below the
best system that uses full parsing information (Koomen et al. 2005). However, this is not
the outcome of a true and fair quantitative comparison. The CoNLL-2004 shared task
used only a subset of the data for training, which potentially makes the problem harder.
Furthermore, an SRL system is usually complicated and consists of several stages. It
was still unclear howmuch syntactic information helps and precisely where it helps the
most.
The goal of this paper is threefold. First, we describe an architecture for an SRL

system that incorporates a level of global inference on top of the relatively common
processing steps. This inference step allows us to incorporate structural and linguistic
constraints over the possible outcomes of the argument classifier in an easy way. The
inference procedure is formalized via an Integer Linear Programming framework and
is shown to yield state-of-the-art results on this task. Second, we provide a fair com-
parison between SRL systems that use full parse trees and systems that only use shal-
low syntactic information. As with our full syntactic parse–based SRL system (Koomen
et al. 2005), our shallow parsing–based SRL system is based on the system that achieves
very competitive results and was one of the top systems in the CoNLL-2004 shared
task competition (Carreras and Màrquez 2004). This comparison brings forward a care-
ful analysis of the significance of full parsing information in the SRL task, and provides
an understanding of the stages in the process in which this information makes the most
difference. Finally, to relieve the dependency of the SRL system on the quality of
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automatic parsers, we suggest a way to improve semantic role labeling significantly by
developing a global inference algorithm, which is used to combine several SRL systems
based on different state-of-the-art full parsers. The combination process is done through
a joint inference stage, which takes the output of each individual system as input and
generates the best predictions, subject to various structural and linguistic constraints.
The underlying system architecture can largely affect the outcome of our study.

Therefore, to make the conclusions of our experimental study as applicable as possible
to general SRL systems, the architecture of our SRL system follows the most widely
used two-step design. In the first step, the system is trained to identify argument candi-
dates for a given verb predicate. In the second step, the system classifies the argument
candidates into their types. In addition, it is also a simple procedure to prune obvious
non-candidates before the first step, and to use post-processing inference to fix incon-
sistent predictions after the second step. These two additional steps are also employed
by our system.
Our study of shallow and full syntactic information–based SRL systems was done

by comparing their impact at each stage of the process. Specifically, our goal is to investi-
gate at what stage full parsing information is most helpful relative to a shallow parsing–
based system. Therefore, our experiments were designed so that the compared systems
are as similar as possible, and the addition of the full parse tree–based features is the
only difference. The most interesting result of this comparison is that although each
step of the shallow parsing information–based system exhibits very good performance,
the overall performance is significantly inferior to the system that uses full parsing
information. Our explanation is that chaining multiple processing stages to produce
the final SRL analysis is crucial to understanding this analysis. Specifically, the quality
of the information passed from one stage to the other is a decisive issue, and it is
not necessarily judged simply by considering the F-measure. We conclude that, for
the system architecture used in our study, the significance of full parsing information
comes into play mostly at the pruning stage, where the candidates to be processed later
are determined. In addition, we produce a state-of-the-art SRL system by combining
different SRL systems based on two automatic full parsers (Collins 1999; Charniak 2001),
which achieves the best result in the CoNLL-2005 shared task (Carreras and Màrquez
2005).
The rest of this paper is organized as follows. Section 2 introduces the task of

semantic role labeling in more detail. Section 3 describes the four-stage architecture of
our SRL system, which includes pruning, argument identification, argument classifi-
cation, and inference. The features used for building the classifiers and the learning
algorithm applied are also explained there. Section 4 explains why and where full
parsing information contributes to SRL by conducting a series of carefully designed
experiments. Inspired by the result, we examine the effect of inference in a single system
and propose an approach that combines different SRL systems based on joint inference
in Section 5. Section 6 presents the empirical evaluation of our system in the CoNLL-
2005 shared task competition. After that, we discuss the related work in Section 7 and
conclude this paper in Section 8.

2. The Semantic Role Labeling (SRL) Task

The goal of the semantic role labeling task is to discover the predicate–argument struc-
ture of each predicate in a given input sentence. In this work, we focus only on the verb
predicate. For example, given a sentence I left my pearls to my daughter-in-law in my will,
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the goal is to identify the different arguments of the verb predicate left and produce the
output:

[A0 I] [V left ] [A1 my pearls] [A2 to my daughter-in-law] [AM-LOC in my will].

Here A0 represents the leaver, A1 represents the thing left, A2 represents the beneficiary,
AM-LOC is an adjunct indicating the location of the action, and V determines the
boundaries of the predicate, which is important when a predicate contains many words,
for example, a phrasal verb. In addition, each argument can be mapped to a constituent
in its corresponding full syntactic parse tree.
Following the definition of the PropBank and CoNLL-2004 and 2005 shared tasks,

there are six different types of arguments labeled as A0–A5 and AA. These labels have
different semantics for each verb and each of its senses as specified in the PropBank
Frame files. In addition, there are also 13 types of adjuncts labeled as AM-adj where adj
specifies the adjunct type. For simplicity in our presentation, we will also refer to these
adjuncts as arguments. In some cases, an argument may span over different parts of
a sentence; the label C-arg is then used to specify the continuity of the arguments, as
shown in this example:

[A1 The pearls] , [A0 I] [V said] , [C-A1 were left to my daughter-in-law].

In some other cases, an argumentmight be a relative pronoun that in fact refers to the ac-
tual agent outside the clause. In this case, the actual agent is labeled as the appropriate
argument type, arg, while the relative pronoun is instead labeled as R-arg. For example,

[A1 The pearls] [R-A1 which] [A0 I] [V left] [A2 to my daughter-in-law] are fake.

Because each verb may have different senses producing different semantic roles
for the same labels, the task of discovering the complete set of semantic roles should
involve not only identifying these labels, but also the underlying sense for a given
verb. However, as in all current SRL work, this article focuses only on identifying the
boundaries and the labels of the arguments, and ignores the verb sense disambiguation
problem.
The distribution of these argument labels is fairly unbalanced. In the official release

of PropBank I, core arguments (A0–A5 and AA) occupy 71.26% of the arguments, where
the largest parts are A0 (25.39%) and A1 (35.19%). The rest mostly consists of adjunct
arguments (24.90%). The continued (C-arg) and referential (R-arg) arguments are rela-
tively few, occupying 1.22% and 2.63%, respectively. For more information on PropBank
and the semantic role labeling task, readers can refer to Kingsbury and Palmer (2002)
and Carreras and Màrquez (2004, 2005).
Note that the semantic arguments of the same verb do not overlap. We define over-

lapping arguments to be those that share some of their parts. An argument is considered
embedded in another argument if the second argument completely covers the first one.
Arguments are exclusively overlapping if they are overlapping but are not embedded.

3. SRL System Architecture

Adhering to the most common architecture for SRL systems, our SRL system consists of
four stages: pruning, argument identification, argument classification, and inference.
In particular, the goal of pruning and argument identification is to identify argument
candidates for a given verb predicate. In the first three stages, however, decisions
are independently made for each argument, and information across arguments is not
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incorporated. The final inference stage allows us to use this type of information along
with linguistic and structural constraints in order to make consistent global predictions.
This system architecture remains unchanged when used for studying the impor-

tance of syntactic parsing in SRL, although different information and features are used.
Throughout this article, when full parsing information is available, we assume that
the system is presented with the full phrase-structure parse tree as defined in the Penn
Treebank (Marcus, Marcinkiewicz, and Santorini 1993) but without trace and functional
tags. On the other hand, when only shallow parsing information is available, the full
parse tree is reduced to only the chunks and the clause constituents.
A chunk is a phrase containing syntactically related words. Roughly speaking,

chunks are obtained by projecting the full parse tree onto a flat tree; hence, they are
closely related to the base phrases. Chunks were not directly defined as part of the
standard annotation of the treebank, but, rather, their definition was introduced in the
CoNLL-2000 shared task on text chunking (Tjong Kim Sang and Buchholz 2000), which
aimed to discover such phrases in order to facilitate full parsing. A clause, on the other
hand, is the clausal constituent as defined by the treebank standard. An example of
chunks and clauses is shown in Figure 1.

3.1 Pruning

When the full parse tree of a sentence is available, only the constituents in the parse
tree are considered as argument candidates. Our system exploits the heuristic rules
introduced by Xue and Palmer (2004) to filter out simple constituents that are very
unlikely to be arguments. This pruning method is a recursive process starting from the
target verb. It first returns the siblings of the verb as candidates; then it moves to the
parent of the verb, and collects the siblings again. The process goes on until it reaches
the root. In addition, if a constituent is a PP (prepositional phrase), its children are also
collected. For example, in Figure 1, if the predicate (target verb) is assume, the pruning
heuristic will output: [PP by John Smith who has been elected deputy chairman], [NP John
Smith who has been elected deputy chairman], [VB be], [MD will], and [NP His duties].

3.2 Argument Identification

The argument identification stage utilizes binary classification to identify whether a
candidate is an argument or not. When full parsing is available, we train and apply
the binary classifiers on the constituents supplied by the pruning stage. When only
shallow parsing is available, the system does not have a pruning stage, and also does
not have constituents to begin with. Therefore, conceptually, the system has to consider
all possible subsequences (i.e., consecutive words) in a sentence as potential argument
candidates. We avoid this by using a learning scheme that utilizes two classifiers, one to
predict the beginnings of possible arguments, and the other the ends. The predictions
are combined to form argument candidates. However, we can employ a simple heuristic
to filter out some candidates that are obviously not arguments. The final predication
includes those that do not violate the following constraints.

1. Arguments cannot overlap with the predicate.

2. If a predicate is outside a clause, its arguments cannot be embedded in
that clause.

3. Arguments cannot exclusively overlap with the clauses.
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Figure 1
An example of a parse tree and its predicate–argument structure.

The first constraint comes from the definition of this task that the predicate simply
cannot take itself or any constituents that contain itself as arguments. The other two
constraints are due to the fact that a clause can be treated as a unit that has its own
verb–argument structure. If a verb predicate is outside a clause, then its argument can
only be the whole clause, but may not be embedded in or exclusively overlap with the
clause.
For the argument identification classifier, the features used in full parsing and

shallow parsing settings are all binary features, which are described subsequently.

3.2.1 Features Used When Full Parsing is Available. Most of the features used in our
system are common features for the SRL task. The creation of PropBank was inspired
by the works of Levin (1993) and Levin and Hovav (1996), which discuss the relation
between syntactic and semantic information. Following this philosophy, the features
aim to indicate the properties of the predicate, the constituent which is an argument
candidate, and the relationship between them through the available syntactic infor-
mation. We explain these features herein. For further discussion of these features, we
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refer the readers to the article by Gildea and Jurafsky (2002), which introduced these
features.

� Predicate and POS tag of predicate: indicate the lemma of the predicate
verb and its POS tag.

� Voice: indicates passive/active voice of the predicate.

� Phrase type: provides the phrase type of the constituent, which is the tag
of the corresponding constituent in the parse tree.

� Head word and POS tag of the head word: provides the head word of the
constituent and its POS tag. We use the rules introduced by Collins (1999)
to extract this feature.

� Position: describes if the constituent is before or after the predicate,
relative to the position in the sentence.

� Path: records the tags of parse tree nodes in the traversal path from the
constituent to the predicate. For example, in Figure 1, if the predicate is
assume and the constituent is [S who has been elected deputy chairman], the
path is S↑NP↑PP↑VP↓VBN, where ↑ and ↓ indicate the traversal direction
in the path.

� Subcategorization: describes the phrase structure around the predicate’s
parent. It records the immediate structure in the parse tree that expands to
its parent. As an example, if the predicate is elect in Figure 1, its
subcategorization is VP→(VBN)-NP while the subcategorization of the
predicate assume is VP→(VBN)-PP. Parentheses indicate the position of the
predicate.

Generally speaking, we consider only the arguments that correspond to some con-
stituents in parse trees. However, in some cases, we need to consider an argument that
does not exactly correspond to a constituent, for example, in our experiment in Sec-
tion 4.2 where the gold-standard boundaries are used with the parse trees generated by
an automatic parse. In such cases, if the information on the constituent, such as phrase
type, needs to be extracted, the deepest constituent that covers the whole argument will
be used. For example, in Figure 1, the phrase type for by John Smith is PP, and its path
feature to the predicate assume is PP↑VP↓VBN.
We also use the following additional features. These features have been shown

to be useful for the systems by exploiting other information in the absence of the
full parse tree information (Punyakanok et al. 2004), and, hence, can be helpful in
conjunction with the features extracted from a full parse tree. They also aim to encode
the properties of the predicate, the constituent to be classified, and their relationship in
the sentence.

� Context words and POS tags of the context words: the feature
includes the two words before and after the constituent, and their
POS tags.

� Verb class: the feature is the VerbNet (Kipper, Palmer, and Rambow 2002)
class of the predicate as described in PropBank Frames. Note that a
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verb may inhabit many classes and we collect all of these classes as
features, regardless of the context-specific sense which we do not attempt
to resolve.

� Lengths: of the constituent, in the numbers of words and chunks
separately.

� Chunk: tells if the constituent “is,” “embeds,” “exclusively overlaps,” or
“is embedded in” a chunk with its type. For instance, in Figure 1, if the
constituents are [NP His duties], [PP by John Smith], and [VBN elected], then
their chunk features are “is-NP,” “embed-PP & embed-NP,” and
“embedded-in-VP,” respectively.

� Chunk pattern: encodes the sequence of chunks from the constituent to
the predicate. For example, in Figure 1 the chunk sequence from [NP His
duties] to the predicate elect is VP-PP-NP-NP-VP.

� Chunk pattern length: the feature counts the number of chunks in the
chunk pattern feature.

� Clause relative position: encodes the position of the constituent relative
to the predicate in the pseudo-parse tree constructed only from clause
constituents, chunks, and part-of-speech tags. In addition, we label the
clause with the type of chunk that immediately precedes the clause.
This is a simple rule to distinguish the type of clause based on
the intuition that a subordinate clause often modifies the part of the
sentence immediately before it. Figure 2 shows the pseudo-parse
tree of the parse tree in Figure 1. By disregarding the chunks, there
are four configurations—“target constituent and predicate are
siblings,” “target constituent’s parent is an ancestor of predicate,”
“predicate’s parent is an ancestor of target word,” or “otherwise.”
This feature can be viewed as a generalization of the Path feature
described earlier.

� Clause coverage: describes how much of the local clause from the
predicate is covered by the target argument.

� NEG: the feature is active if the target verb chunk has not or n’t.

� MOD: the feature is active when there is a modal verb in the verb chunk.
The rules of the NEG and MOD features are used in a baseline SRL system
developed by Erik Tjong Kim Sang (Carreras and Màrquez 2004).

Figure 2
The pseudo-parse tree generated from the parse tree in Figure 1.
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In addition, we also use the conjunctions of features which conjoin any two features
into a new feature. For example, the conjunction of the predicate and path features
for the predicate assume and the constituent [S who has been elected deputy chairman] in
Figure 1 is (S↑NP↑PP↑VP↓VBN, assume).

3.2.2 Features Used When Only Shallow Parsing is Available. Most features used here are
similar to those used by the systemwith full parsing information. However, for features
that need full parse trees in their extraction procedures, we either try to mimic them
with some heuristic rules or discard them. The details of these features are as follows.

� Phrase type: uses a simple heuristic to identify the type of the argument
candidate as VP, PP, or NP.

� Head word and POS tag of the head word: are the rightmost word for
NP, and the leftmost word for VP and PP.

� Shallow-Path: records the traversal path in the pseudo-parse tree.
This aims to approximate the Path features extracted from the full
parse tree.

� Shallow-Subcategorization: describes the chunk and clause structure
around the predicate’s parent in the pseudo-parse tree. This aims to
approximate the Subcategorization feature extracted from the full parse
tree.

3.3 Argument Classification

This stage assigns labels to the argument candidates identified in the previous stage.
A multi-class classifier is trained to predict the types of the argument candidates. In
addition, to reduce the excessive candidates mistakenly output by the previous stage,
the classifier can also label an argument as “null” (meaning “not an argument”) to dis-
card it.
The features used here are the same as those used in the argument identification

stage. However, when full parsing is available, an additional feature introduced by Xue
and Palmer (2004) is used.

� Syntactic frame: describes the sequential pattern of the noun phrases and
the predicate in the sentence which aims to complement the Path and
Subcategorization features.

The learning algorithm used for training the argument classifier and argument iden-
tifier is a variation of the Winnow update rule incorporated in SNoW (Roth 1998;
Carlson et al. 1999), a multi-class classifier that is tailored for large scale learning tasks.
SNoW learns a sparse network of linear functions, in which the targets (argument
border predictions or argument type predictions, in this case) are represented as linear
functions over a common feature space; multi-class decisions are done via a winner-
take-all mechanism. It improves the basic Winnow multiplicative update rule with a
regularization term, which has the effect of separating the data with a large margin
separator (Dagan, Karov, and Roth 1997; Grove and Roth 2001; Zhang, Damerau, and
Johnson 2002) and voted (averaged) weight vector (Freund and Schapire 1999; Golding
and Roth 1999).
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The softmax function (Bishop 1995) is used to convert raw activation to conditional
probabilities. If there are n classes and the raw activation of class i is acti, the posterior
estimation for class i is

Prob(i) = eacti∑
1≤j≤n e

actj

Note that in training this classifier, unless specified otherwise, the argument can-
didates used to generate the training examples are obtained from the output of the
argument identifier, not directly from the gold-standard corpus. In this case, we au-
tomatically obtain the necessary examples to learn for class “null.”

3.4 Inference

In the previous stages, decisions were always made for each argument independently,
ignoring the global information across arguments in the final output. The purpose
of the inference stage is to incorporate such information, including both linguistic
and structural knowledge, such as “arguments do not overlap” or “each verb takes
at most one argument of each type.” This knowledge is useful to resolve any incon-
sistencies of argument classification in order to generate final legitimate predictions.
We design an inference procedure that is formalized as a constrained optimization
problem, represented as an integer linear program (Roth and Yih 2004). It takes as
input the argument classifiers’ confidence scores for each type of argument, along
with a list of constraints. The output is the optimal solution that maximizes the lin-
ear sum of the confidence scores, subject to the constraints that encode the domain
knowledge.
The inference stage can be naturally extended to combine the output of several

different SRL systems, as we will show in Section 5. In this section we first introduce
the constraints and formalize the inference problem for the semantic role labeling task.
We then demonstrate how we apply integer linear programming (ILP) to generate the
global label assignment.

3.4.1 Constraints over Argument Labeling. Formally, the argument classifiers attempt to
assign labels to a set of arguments, S1:M, indexed from 1 toM. Each argument Si can take
any label from a set of argument labels, P , and the indexed set of arguments can take a
set of labels, c1:M ∈ PM. If we assume that the classifiers return a score score(Si = ci) that
corresponds to the likelihood of argument Si being labeled ci then, given a sentence, the
unaltered inference task is solved by maximizing the overall score of the arguments,

ĉ1:M = argmax
c1:M∈PM

score(S1:M = c1:M) = argmax
c1:M∈PM

M∑

i=1

score(Si = ci) (1)

In the presence of global constraints derived from linguistic information and struc-
tural considerations, our system seeks to output a legitimate labeling that maximizes this
score. Specifically, it can be thought of as if the solution space is limited through the use
of a filter function, F , which eliminates many argument labelings from consideration.
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Here, we are concerned with global constraints as well as constraints on the arguments.
Therefore, the final labeling becomes

ĉ1:M = argmax
c1:M∈F (PM )

M∑

i=1

score(Si = ci) (2)

When the confidence scores correspond to the conditional probabilities estimated by
the argument classifiers, the value of the objective function represents the expected
number of correct argument predictions. Hence, the solution of Equation (2) is the one
that maximizes this expected value among all legitimate outputs.
The filter function used considers the following constraints:1

1. Arguments cannot overlap with the predicate.

2. Arguments cannot exclusively overlap with the clauses.

3. If a predicate is outside a clause, its arguments cannot be embedded in
that clause.

4. No overlapping or embedding arguments.
This constraint holds because semantic arguments are labeled on
non-embedding constituents in the syntactic parse tree. In addition, as
defined in the CoNLL-2004 and 2005 shared tasks, the legitimate output of
an SRL system must satisfy this constraint.

5. No duplicate argument classes for core arguments, such as A0–A5 and AA.
The only exception is when there is a conjunction in the sentence. For
example,

[A0 I] [V left ] [A1 my pearls] [A2 to my daughter] and [A1 my gold] [A2 to
my son].

Despite this exception, we treat it as a hard constraint because it almost
always holds.

6. If there is an R-arg argument, then there has to be an arg argument. That is,
if an argument is a reference to some other argument arg, then this
referenced argument must exist in the sentence. This constraint is directly
derived from the definition of R-arg arguments.

7. If there is a C-arg argument, then there has to be an arg argument; in
addition, the C-arg argument must occur after arg. This is stricter than
the previous rule because the order of appearance also needs to be
considered. Similarly, this constraint is directly derived from the definition
of C-arg arguments.

8. Given the predicate, some argument classes are illegal (e.g., predicate
stalk can take only A0 or A1). This information can be found in
PropBank Frames.

1 There are other constraints such as “exactly one V argument per class,” or “V–A1–C-V pattern” as
introduced by Punyakanok et al. (2004). However, we did not find them particularly helpful in our
experiments. Therefore, we exclude those constraints in the presentation here.
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This constraint comes from the fact that different predicates take
different types and numbers of arguments. By checking the
PropBank Frame file of the target verb, we can exclude some core
argument labels.

Note that constraints 1, 2, and 3 are actually implemented in the argument identifi-
cation stage (see Section 3.2). In addition, they need to be explicitly enforced only when
full parsing information is not available because the output of the pruning heuristics
never violates these constraints.
The optimization problem (Equation (2)) can be solved using an ILP solver by

reformulating the constraints as linear (in)equalities over the indicator variables that
represent the truth value of statements of the form [argument i takes label j], as described
in detail next.

3.4.2 Using Integer Linear Programming. As discussed previously, a collection of po-
tential arguments is not necessarily a valid semantic labeling because it may not
satisfy all of the constraints. We enforce a legitimate solution using the following
inference algorithm. In our context, inference is the process of finding the best (ac-
cording to Equation (1)) valid semantic labels that satisfy all of the specified con-
straints. We take a similar approach to the one previously used for entity/relation
recognition (Roth and Yih 2004), and model this inference procedure as solving an ILP
problem.
An integer linear program is a linear program with integral variables. That is,

the cost function and the (in)equality constraints are all linear in terms of the variables.
The only difference in an integer linear program is that the variables can only take
integers as their values. In our inference problem, the variables are in fact binary. A
general binary integer linear programming problem can be stated as follows.
Given a cost vector p ∈ 
d, a collection of variables u = (u1, . . . ,ud) and cost ma-

trices C1 ∈ 
c1 ×
d,C2 ∈ 
c2 ×
d , where c1 and c2 are the numbers of inequality and
equality constraints and d is the number of binary variables, the ILP solution u∗ is the
vector that maximizes the cost function,

u∗ = argmax
u∈{0,1}d

p · u

subject to

C1u ≥ b1, and C2u = b2

where b1 ∈ 
c1 ,b2 ∈ 
c2 , and for all u ∈ {0, 1}d.
To solve the problem of Equation (2) in this setting, we first reformulate the

original cost function
∑M

i=1 score(S
i = ci) as a linear function over several binary vari-

ables, and then represent the filter function F using linear inequalities and equalities.
We set up a bijection from the semantic labeling to the variable set u. This is done

by setting u to be a set of indicator variables that correspond to the labels assigned to ar-
guments. Specifically, let uic = [Si = c] be the indicator variable that represents whether
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or not the argument type c is assigned to Si, and let pic = score(Si = c). Equation (1) can
then be written as an ILP cost function as

argmax
uic∈{0,1}:∀i∈[1,M],c∈P

M∑

i=1

∑

c∈P

picuic

subject to

∑

c∈P

uic = 1 ∀i ∈ [1,M]

which means that each argument can take only one type. Note that this new constraint
comes from the variable transformation, and is not one of the constraints used in the
filter function F .
Of the constraints listed earlier, constraints 1 through 3 can be evaluated on a per-

argument basis and, for the sake of efficiency, arguments that violate these constraints
are eliminated even before being given to the argument classifier. Next, we show how to
transform the constraints in the filter function into the form of linear (in)equalities over
u and use them in this ILP setting. For a more complete example of this ILP formulation,
please see Appendix A.

Constraint 4: No overlapping or embedding. If arguments Sj1 , . . . ,Sjk cover the same word
in a sentence, then this constraint ensures that at most one of the arguments is assigned
to an argument type. In other words, at least k− 1 arguments will be the special class
null. If the special class null is represented by the symbol φ, then for every set of such
arguments, the following linear equality represents this constraint.

k∑

i=1

ujiφ ≥ k− 1

Constraint 5: No duplicate argument classes. Within the same clause, several types of
arguments cannot appear more than once. For example, a predicate can only take one
A0. This constraint can be represented using the following inequality.

M∑

i=1

uiA0 ≤ 1

Constraint 6: R-arg arguments. Suppose the referenced argument type is A0 and the
referential type is R-A0. The linear inequalities that represent this constraint are:

∀m ∈ {1, . . . ,M} :
M∑

i=1

uiA0 ≥ umR-A0

If there are γ referential types, then the total number of inequalities needed is γM.

Constraint 7: C-arg arguments. This constraint is similar to the reference argument con-
straints. The difference is that the continued argument arg has to occur before C-arg.
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Assume that the argument pair is A0 and C-A0, and arguments are sorted by their
beginning positions, i.e., if i < k, the position of the beginning of Sjk is not before that of
the beginning of Sji . The linear inequalities that represent this constraint are:

∀m ∈ {2, . . . ,M} :
m−1∑

i=1

ujiA0 ≥ ujmC-A0

Constraint 8: Illegal argument types. Given a specific verb, some argument types should
never occur. For example, most verbs do not have arguments A5. This constraint is
represented by summing all the corresponding indicator variables to be 0.

M∑

i=1

uiA5 = 0

Using ILP to solve this inference problem enjoys several advantages. Linear con-
straints are very general, and are able to represent any Boolean constraint (Guéret, Prins,
and Sevaux 2002). Table 1 summarizes the transformations of common constraints (most
are Boolean), which are revised from Guéret, Prins, and Sevaux (2002), and can be used
for constructing complicated rules.
Previous approaches usually rely on dynamic programming to resolve non-

overlapping/embedding constraints (i.e., Constraint 4) when the constraint structure
is sequential. However, they are not able to handle more expressive constraints
such as those that take long-distance dependencies and counting dependencies into
account (Roth and Yih 2005). The ILP approach, on the other hand, is flexible enough
to handle more expressive and general constraints. Although solving an ILP problem is
NP-hard in the worst case, with the help of today’s numerical packages, this problem
can usually be solved very quickly in practice. For instance, in our experiments it
only took about 10 minutes to solve the inference problem for 4,305 sentences, using

Table 1
Rules of mapping constraints to linear (in)equalities for Boolean variables.

Original constraint Linear form

exactly k of x1, x2, · · · , xn x1 + x2 + · · · + xn = k
at most k of x1, x2, · · · , xn x1 + x2 + · · · + xn ≤ k
at least k of x1, x2, · · · , xn x1 + x2 + · · · + xn ≥ k

a → b a ≤ b
a = b̄ a = 1− b
a → b̄ a+ b ≤ 1
ā → b a+ b ≥ 1
a ↔ b a = b

a → b ∧ c a ≤ b and a ≤ c
a → b ∨ c a ≤ b+ c
b ∧ c → a a ≥ b+ c− 1
b ∨ c → a a ≥ (b+ c)/2

a→ at least k of x1, x2, · · · , xn a ≤ (x1 + x2 + · · · + xn)/k
At least k of x1, x2, · · · , xn → a a ≥ (x1 + x2 + · · · + xn − (k− 1))/(n− (k− 1))
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Xpress-MP (2004) running on a Pentium-III 800 MHz machine. Note that ordinary
search methods (e.g., beam search) are not necessarily faster than solving an ILP
problem and do not guarantee the optimal solution.

4. The Importance of Syntactic Parsing

We experimentally study the significance of syntactic parsing by observing the effects
of using full parsing and shallow parsing information at each stage of an SRL system.
We first describe, in Section 4.1, how we prepare the data. The comparison of full
parsing and shallow parsing on the first three stages of the process is presented in the
reverse order (Sections 4.2, 4.3, 4.4). Note that in the following sections, in addition
to the performance comparison at various stages, we present also the overall system
performance for the different scenarios. In all cases, the overall system performance is
derived after the inference stage.

4.1 Experimental Setting

We use PropBank Sections 02 through 21 as training data, Section 23 as testing, and
Section 24 as a validation set when necessary. In order to apply the standard CoNLL
shared task evaluation script, our system conforms to both the input and output format
defined in the shared task.
The goal of the experiments in this section is to understand the effective contribu-

tion of full parsing information versus shallow parsing information (i.e., using only the
part-of-speech tags, chunks, and clauses). In addition, we also compare performance
when using the correct (gold-standard) data versus using automatic parse data. The
performance is measured in terms of precision, recall, and the F1 measure. Note that
all the numbers reported here do not take into account the V arguments as it is quite
trivial to predict V and, hence, this gives overoptimistic overall performance if included.
When doing the comparison, we also compute the 95% confidence interval of F1 us-
ing the bootstrap resampling method (Noreen 1989), and the difference is considered
significant if the compared F1 lies outside this interval. The automatic full parse trees
are derived using Charniak’s parser (2001) (version 0.4). In automatic shallow parsing,
the information is generated by different state-of-the-art components, including a POS
tagger (Even-Zohar and Roth 2001), a chunker (Punyakanok and Roth 2001), and a
clauser (Carreras, Màrquez, and Castro 2005).

4.2 Argument Classification

To evaluate the performance gap between full parsing and shallow parsing in argument
classification, we assume the argument boundaries are known, and only train classifiers
to classify the labels of these arguments. In this stage, the only difference between the
uses of full parsing and shallow parsing information is the construction of phrase type,
head word, POS tag of the head word, path, subcategorization, and syntactic frame features.
As described in Section 3.2.2, most of these features can be approximated using chunks
and clauses, with the exception of the syntactic frame feature. It is unclear how this
feature can be mimicked because it relies on the internal structure of a full parse tree.
Therefore, it does not have a corresponding feature in the shallow parsing case.
Table 2 reports the experimental results of argument classification when argument

boundaries are known. In this case, because the argument classifier of our SRL system
does not overpredict or miss any arguments, we do not need to train with a null class,
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Table 2
The accuracy of argument classification when argument boundaries are known.

Full Parsing Shallow Parsing

Gold 91.50 ± 0.48 90.75 ± 0.45
Auto 90.32 ± 0.48 89.71 ± 0.50

and we can simply measure the performance using accuracy instead of F1. The training
examples include 90,352 propositions with a total of 332,381 arguments. The test data
contain 5,246 propositions and 19,511 arguments. As shown in the table, although the
full-parsing features are more helpful than the shallow-parsing features, the perfor-
mance gap is quite small (0.75% on gold-standard data and 0.61% with the automatic
parsers).
The rather small difference in the performance between argument classifiers using

full parsing and shallow parsing information almost disappears when their output is
processed by the inference stage. Table 3 shows the final results in recall, precision, and
F1, when the argument boundaries are known. In all cases, the differences in F1 between
the full parsing–based and the shallow parsing–based systems are not statistically
significant.

Conclusion. When the argument boundaries are known, the performance of the full
parsing–based SRL system is about the same as the shallow parsing–based SRL system.

4.3 Argument Identification

Argument identification is an important stage that effectively reduces the number of
argument candidates after the pruning stage. Given an argument candidate, an argu-
ment identifier is a binary classifier that decides whether or not the candidate should be
considered as an argument. To evaluate the influence of full parsing information in this
stage, the candidate list used here is the outputs of the pruning heuristic applied on the
gold-standard parse trees. The heuristic results in a total number of 323,155 positive and
686,887 negative examples in the training set, and 18,988 positive and 39,585 negative
examples in the test set.
Similar to the argument classification stage, the only difference between full

parsing– and shallow parsing–based systems is in the construction of some features.
Specifically, phrase type, head word, POS tag of the head word, path, and subcategorization
features are approximated using chunks and clauses when the binary classifier is trained
using shallow parsing information.
Table 4 reports the performance of the argument identifier on the test set using

the direct predictions of the trained binary classifier. The recall and precision of the

Table 3
The overall system performance when argument boundaries are known.

Full Parsing Shallow Parsing

Prec Rec F1 Prec Rec F1

Gold 91.58 91.90 91.74 ± 0.51 91.14 91.48 91.31 ± 0.51
Auto 90.71 91.14 90.93 ± 0.53 90.50 90.88 90.69 ± 0.53
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Table 4
The performance of argument identification after pruning (based on the gold standard full parse
trees).

Full Parsing Shallow Parsing

Prec Rec F1 Prec Rec F1

Gold 96.53 93.57 95.03 ± 0.32 93.66 91.72 92.68 ± 0.38
Auto 94.68 90.60 92.59 ± 0.39 92.31 88.36 90.29 ± 0.43

full parsing–based system are around 2 to 3 percentage points higher than the shallow
parsing–based system on the gold-standard data. As a result, the F1 score is 2.5 percent-
age points higher. The performance on automatic parse data is unsurprisingly lower
but the difference between the full parsing– and the shallow parsing–based systems is
as observed previously. In terms of filtering efficiency, around 25% of the examples are
predicted as positive. In other words, both argument identifiers filter out around 75%
of the argument candidates after pruning.
Because the recall in the argument identification stage sets the upper-bound the

recall in argument classification, the threshold that determines when examples are
predicted to be positive is usually lowered to allow more positive predictions. That
is, a candidate is predicted as positive when its probability estimation is larger than
the threshold. Table 5 shows the performance of the argument identifiers when the
threshold is 0.1.2

Because argument identification is just an intermediate step in a complete system,
a more realistic evaluation method is to see how each final system performs. Using an
argument identifier with threshold = 0.1 (i.e., Table 5), Table 6 reports the final results
in recall, precision, and F1. The F1 difference is 1.5 points when using the gold-standard
data. However, when automatic parsers are used, the shallow parsing–based system is,
in fact, slightly better; although the difference is not statistically significant. This may be
due to the fact that chunk and clause predictions are very important here, and shallow
parsers are more accurate in chunk or clause predictions than a full parser (Li and Roth
2001).

Conclusion. Full parsing information helps in argument identification. However, when
the automatic parsers are used, using the full parsing information may not have better
overall results compared to using shallow parsing.

4.4 Pruning

As shown in the previous two sections, the overall performance gaps of full parsing and
shallow parsing are small. When automatic parsers are used, the difference is less than 1
point in F1 or accuracy. Therefore, we conclude that themain contribution of full parsing
is in the pruning stage. Because the shallow parsing system does not have enough in-
formation for the pruning heuristics, we train two word-based classifiers to replace the
pruning stage. One classifier is trained to predict whether a given word is the start (S) of

2 The value was determined by experimenting with the complete system using automatic full parse trees,
on the development set. In our tests, lowering the threshold in argument identification always leads to
higher overall recall and lower overall precision. As a result, the gain in F1 is limited.
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Table 5
The performance of argument identification after pruning (based on the gold-standard full parse
trees) and with threshold = 0.1.

Full Parsing Shallow Parsing

Prec Rec F1 Prec Rec F1

Gold 92.13 95.62 93.84 ± 0.37 88.54 94.81 91.57 ± 0.42
Auto 89.48 94.14 91.75 ± 0.41 86.14 93.21 89.54 ± 0.47

Table 6
The overall system performance using the output from the pruning heuristics, applied on the
gold-standard full parse trees.

Full Parsing Shallow Parsing

Prec Rec F1 Prec Rec F1

Gold 86.22 87.40 86.81 ± 0.59 84.14 85.31 84.72 ± 0.63
Auto 84.21 85.04 84.63 ± 0.63 86.17 84.02 85.08 ± 0.63

an argument; the other classifier is to predict the end (E) of an argument. If the product
of probabilities of a pair of S and E predictions is larger than a predefined threshold,
then this pair is considered as an argument candidate. The threshold used here was
obtained by using the validation set. Both classifiers use very similar features to those
used by the argument identifier as explained in Section 3.2, treating the target word as
a constituent. Particularly, the features are predicate, POS tag of the predicate, voice,
context words, POS tags of the context words, chunk pattern, clause relative position,
and shallow-path. The headword and its POS tag are replaced by the target word and its
POS tag. The comparison of using the classifiers and the heuristics is shown in Table 7.
Even without the knowledge of the constituent boundaries, the classifiers seem

surprisingly better than the pruning heuristics. Using either the gold-standard data set
or the output of automatic parsers, the classifiers achieve higher F1 scores. One possible
reason for this phenomenon is that the accuracy of the pruning strategy is limited by
the number of agreements between the correct arguments and the constituents of the
parse trees. Table 8 summarizes the statistics of the examples seen by both strategies.
The pruning strategy needs to decide which are the potential arguments among all con-
stituents. This strategy is upper-bounded by the number of correct arguments that agree
with some constituent. On the other hand, the classifiers do not have this limitation. The
number of examples they observe is the total number of words to be processed, and the
positive examples are those arguments that are annotated as such in the data set.

Table 7
The performance of pruning using heuristics and classifiers.

Full Parsing Classifier Threshold = 0.04

Prec Rec F1 Prec Rec F1

Gold 25.94 97.27 40.96 ± 0.51 29.58 97.18 45.35 ± 0.83
Auto 22.79 86.08 36.04 ± 0.52 24.68 94.80 39.17 ± 0.79
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Table 8
Statistics of the training and test examples for the pruning stage.

Words Arguments Constituents Agreements

Gold Auto Gold Auto

Train 2,575,665 332,381 4,664,954 4,263,831 327,603 319,768
Test 147,981 19,511 268,678 268,482 19,266 18,301

The Agreements column shows the number of arguments that match the boundaries of some
constituents.

Note that because each verb is processed independently, a sentence is processed
once for each verb in the sentence. Therefore, the words and constituents in each
sentence are counted as many times as the number of verbs to be processed.
As before, in order to compare the systems that use full parsing and shallow

parsing information, we need to see the impact on the overall performance. There-
fore, we built two semantic role systems based on full parsing and shallow parsing
information. The full parsing–based system follows the pruning, argument identifica-
tion, argument classification, and inference stages, as described earlier. For the shallow
parsing system, the pruning heuristic is replaced by the word-based pruning classi-
fiers, and the remaining stages are designed to use only shallow parsing as described in
previous sections. Table 9 shows the overall performance of the two evaluation systems.
As indicated in the tables, the gap in F1 between full parsing and shallow parsing–

based systems enlarges tomore than 11 points on the gold-standard data. At first glance,
this result seems to contradict our conclusion in Section 4.3. After all, if the pruning
stage of shallow parsing SRL system performs equally well or even better, the overall
performance gap in F1 should be small.
After we carefully examined the output of the word-based classifier, we realized

that it filters out easy candidates, and leaves examples that are difficult to the later
stages. Specifically, these argument candidates often overlap and differ only in one or
twowords. On the other hand, the pruning heuristic based on full parsing never outputs
overlapping candidates and consequently provides input that is easier for the next stage
to handle. Indeed, the following argument identification stage turns out to be good in
discriminating these non-overlapping candidates.

Conclusion. The most crucial contribution of full parsing is in the pruning stage. The
internal tree structure significantly helps in discriminating argument candidates, which
makes the work done by the following stages easier.

Table 9
The overall system performance.

Full Parsing Shallow Parsing

Prec Rec F1 Prec Rec F1

Gold 86.22 87.40 86.81 ± 0.59 75.34 75.28 75.31 ± 0.76
Auto 77.09 75.51 76.29 ± 0.76 75.48 67.13 71.06 ± 0.80
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5. The Effect of Inference

Our inference procedure plays an important role in improving accuracy when the local
predictions violate the constraints among argument labels. In this section, we first
present the overall system performance when most constraints are not used. We then
demonstrate how the inference procedure can be used to combine the output of several
systems to yield better performance.

5.1 Inference with Limited Constraints

The inference stage in our system architecture provides a principled way to resolve
conflicting local predictions. It is interesting to see whether this procedure improves the
performance differently for the full parsing– vs. the shallow parsing–based system, as
well as gold-standard vs. automatic parsing input.
Table 10 shows the results of using only constraints 1, 2, 3, and 4. As mentioned

previously, the first three constraints are handled before the argument classification
stage. Constraint 4, which forbids overlapping or embedding arguments, is required
in order to use the official CoNLL-2005 evaluation script and is therefore kept.
By comparing Table 9 with Table 10, we can see that the effect of adding more

constraints is quite consistent over the four settings. Precision is improved by 1 to 2 per-
centage points but recall is decreased a little. As a result, the gain in F1 is about 0.5 to 1
point. It is not surprising to see this lower recall and higher precision phenomenon after
the constraints described in Section 3.4.1 are examined. Most constraints punish false
non-null output, but do not regulate false null predictions. For example, an assignment
that has two A1 arguments clearly violates the non-duplication constraint. However, if
an assignment has no predicted arguments at all, it still satisfies all the constraints.

5.2 Joint Inference

The empirical study in Section 4 indicates that the performance of an SRL system
primarily depends on the very first stage—pruning, which is directly derived from
the full parse trees. This also means that in practice the quality of the syntactic parser
is decisive to the quality of the SRL system. To improve semantic role labeling, one
possible way is to combine different SRL systems through a joint inference stage, given
that the systems are derived using different full parse trees.
To test this idea, we first build two SRL systems that use Collins’s parser (Collins

1999)3 and Charniak’s parser (Charniak 2001), respectively. In fact, these two parsers
have noticeably different outputs. Applying the pruning heuristics on the output of
Collins’s parser produces a list of candidates with 81.05% recall. Although this number
is significantly lower than the 86.08% recall produced by Charniak’s parser, the union
of the two candidate lists still significantly improves recall to 91.37%. We construct the
two systems by implementing the first three stages, namely, pruning, argument identifi-
cation, and argument classification. When a test sentence is given, a joint inference stage
is used to resolve the inconsistency of the output of argument classification in these two
systems.
We first briefly review the objective function used in the inference procedure in-

troduced in Section 3.4. Formally speaking, the argument classifiers attempt to assign

3 We use the Collins parser implemented by Bikel (2004).
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Table 10
The impact of removing most constraints in overall system performance.

Full Parsing Shallow Parsing

Prec Rec F1 Prec Rec F1

Gold 85.07 87.50 86.27 ± 0.58 73.19 75.63 74.39 ± 0.75
Auto 75.88 75.81 75.84 ± 0.75 73.56 67.45 70.37 ± 0.80

labels to a set of arguments, S1:M, indexed from 1 toM. Each argument Si can take any
label from a set of argument labels, P , and the indexed set of arguments can take a
set of labels, c1:M ∈ PM. If we assume that the argument classifier returns an estimated
conditional probability distribution, Prob(Si = ci), then, given a sentence, the inference
procedure seeks a global assignment that maximizes the objective function denoted by
Equation (2), which can be rewritten as follows,

ĉ1:M = argmax
c1:M∈F (PM )

M∑

i=1

Prob(Si = ci) (3)

where the linguistic and structural constraints are represented by the filter F . In other
words, this objective function reflects the expected number of correct argument predic-
tions, subject to the constraints.
When there are two or more argument classifiers from different SRL systems, a joint

inference procedure can take the output estimated probabilities for all these candidates
as input, although some candidates may refer to the same phrases in the sentence. For
example, Figure 3 shows the two candidate sets for a fragment of a sentence, ..., traders
say, unable to cool the selling panic in both stocks and futures. In this example, system A has
two argument candidates, a1 = traders and a4 = the selling panic in both stocks and futures;
system B has three argument candidates, b1 = traders, b2 = the selling panic, and b3 = in
both stocks and futures.
A straightforward solution to the combination is to treat each argument produced

by a system as a possible output. Each possible labeling of the argument is associated
with a variable which is then used to set up the inference procedure. However, the final
predictionwill be likely dominated by the system that producesmore candidates, which
is system B in this example. The reason is that our objective function is the sum of the
probabilities of all the candidate assignments.
This bias can be corrected by the following observation. Although system A only

has two candidates, a1 and a4, it can be treated as if it also has two additional phantom
candidates, a2 and a3, where a2 and b2 refer to the same phrase, and so do a3 and b3.
Similarly, system B has a phantom candidate b4 that corresponds to a4. Because systemA
does not really generate a2 and a3, we can assume that these two phantom candidates are
predicted by it as “null” (i.e., not an argument). We assign the same prior distribution to
each phantom candidate. In particular, the probability of the “null” class is set to be 0.55
based on empirical tests, and the probabilities of the remaining classes are set based on
their occurrence frequencies in the training data.
Then, we treat each possible final argument output as a single unit. Each probability

estimation by a system can be viewed as evidence in the final probability estimation and,
therefore, we can simply average their estimation. Formally, let Si be the argument set
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Figure 3
The output of two SRL systems: system A has two candidates, a1 = traders and a4 = the selling
panic in both stocks and futures; system B has three argument candidates, b1 = traders, b2 = the
selling panic, and b3 = in both stocks and futures. In addition, we create two phantom candidates a2
and a3 for system A that correspond to b2 and b3 respectively, and b4 for system B that
corresponds to a4.

output by system i, and S =
⋃k

i=1 Si be the set of all arguments where k is the number
of systems; let N be the cardinality of S. Our augmented objective function is then:

ĉ1:N = argmax
c1:N∈F (PN )

N∑

i=1

Prob(Si = ci) (4)

where Si ∈ S, and

Prob(Si = ci) = 1
k

k∑

j=1

Probj(S
i = ci) (5)

where Probj is the probability output by system j.
Note that we may also treat the individual systems differently by applying different

priors (i.e., weights) on the estimated probabilities of the argument candidates. For
example, if the performance of system A is much better than system B, then we may
want to trust system A’s output more by multiplying the output probabilities by a
larger weight.
Table 11 reports the performance of two individual systems based on Collins’s

parser and Charniak’s parser, as well as the joint system, where the two individual
systems are equally weighted. The joint system based on this straightforward strategy
significantly improves the performance compared to the two original SRL systems in
both recall and precision, and thus achieves a much higher F1.

6. Empirical Evaluation—CoNLL Shared Task 2005

In this section, we present the detailed evaluation of our SRL system, in the competi-
tion on semantic role labeling—the CoNLL-2005 shared task (Carreras and Màrquez
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Table 11
The performance of individual and combined SRL systems.

Prec Rec F1

Collins’ parser 75.92 71.45 73.62 ± 0.79
Charniak’s parser 77.09 75.51 76.29 ± 0.76

Combined result 80.53 76.94 78.69 ± 0.71

2005). The setting of this shared task is basically the same as it was in 2004, with
some extensions. First, it allows much richer syntactic information. In particular, full
parse trees generated using Collins’s parser (Collins 1999) and Charniak’s parser
(Charniak 2001) were provided. Second, the full parsing standard partition was used—
the training set was enlarged and covered Sections 02–21, the development set was
Section 24, and the test set was Section 23. Finally, in addition to the Wall Street Journal
(WSJ) data, three sections of the Brown corpus were used to provide cross-corpora
evaluation.
The system we used to participate in the CoNLL-2005 shared task is an enhanced

version of the system described in Sections 3 and 5. The main difference was that
the joint-inference stage was extended to combine six basic SRL systems instead of
two. Specifically for this implementation, we first trained two SRL systems that use
Collins’s parser and Charniak’s parser, respectively, because of their noticeably dif-
ferent outputs. In evaluation, we ran the system that was trained with Charniak’s
parser five times, with the top-5 parse trees output by Charniak’s parser. Together we
have six different outputs per predicate. For each parse tree output, we ran the first
three stages, namely, pruning, argument identification, and argument classification.
Then, a joint-inference stage, where each individual system is weighted equally, was
used to resolve the inconsistency of the output of argument classification in these
systems.
Table 12 shows the overall results on the development set and different test sets; the

detailed results on WSJ section 23 are shown in Table 13. Table 14 shows the results of
individual systems and the improvement gained by the joint inference procedure on the
development set.
Our system reached the highest F1 scores on all the test sets and was the best system

among the 19 participating teams. After the competition, we improved the system
slightly by tuning the weights of the individual systems in the joint inference procedure,
where the F1 scores onWSJ test section and the Brown test set are 79.59 points and 67.98
points, respectively.

Table 12
Overall CoNLL-2005 shared task results.

Prec. Rec. F1

Development 80.05 74.83 77.35
Test WSJ 82.28 76.78 79.44
Test Brown 73.38 62.93 67.75
Test WSJ+Brown 81.18 74.92 77.92
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Table 13
Detailed CoNLL-2005 shared task results on the WSJ test set.

Test WSJ Prec. Rec. F1

Overall 82.28 76.78 79.44

A0 88.22 87.88 88.05
A1 82.25 77.69 79.91
A2 78.27 60.36 68.16
A3 82.73 52.60 64.31
A4 83.91 71.57 77.25
AM-ADV 63.82 56.13 59.73
AM-CAU 64.15 46.58 53.97
AM-DIR 57.89 38.82 46.48
AM-DIS 75.44 80.62 77.95
AM-EXT 68.18 46.88 55.56
AM-LOC 66.67 55.10 60.33
AM-MNR 66.79 53.20 59.22
AM-MOD 96.11 98.73 97.40
AM-NEG 97.40 97.83 97.61
AM-PNC 60.00 36.52 45.41
AM-TMP 78.16 76.72 77.44
R-A0 89.72 85.71 87.67
R-A1 70.00 76.28 73.01
R-A2 85.71 37.50 52.17
R-AM-LOC 85.71 57.14 68.57
R-AM-TMP 72.34 65.38 68.69

In terms of the computation time, for both the argument identifier and the argument
classifier, the training of each model, excluding feature extraction, takes 50–70 minutes
using less than 1GB memory on a 2.6GHz AMD machine. On the same machine, the
average test time for each stage, excluding feature extraction, is around 2 minutes.

7. Related Work

The pioneering work on building an automatic semantic role labeler was proposed
by Gildea and Jurafsky (2002). In their setting, semantic role labeling was treated as a
tagging problem on each constituent in a parse tree, solved by a two-stage architecture
consisting of an argument identifier and an argument classifier. This is similar to our

Table 14
The results of individual systems and the result with joint inference on the development set.

Prec. Rec. F1

Charniak-1 75.40 74.13 74.76
Charniak-2 74.21 73.06 73.63
Charniak-3 73.52 72.31 72.91
Charniak-4 74.29 72.92 73.60
Charniak-5 72.57 71.40 71.98
Collins 73.89 70.11 71.95

Joint inference 80.05 74.83 77.35

280



Punyakanok, Roth, and Yih Importance of Parsing and Inference in SRL

main architecture with the exclusion of the pruning and inference stages. There are
two additional key differences between their system and ours. First, their system
used a back-off probabilistic model as its main engine. Second, it was trained on
FrameNet (Baker, Fillmore, and Lowe 1998)—another large corpus, besides PropBank,
that contains selected examples of semantically labeled sentences.
Later that year, the same approach was applied on PropBank by Gildea and Palmer

(2002). Their system achieved 57.7% precision and 50.0% recall with automatic parse
trees, and 71.1% precision and 64.4% recall with gold-standard parse trees. It is worth
noticing that at that time the PropBank project was not finished and the data set
available was only a fraction in size of what it is today. Since these pioneering works, the
task has gained increasing popularity and created a new line of research. The two-step
constituent-by-constituent architecture became a common blueprint for many systems
that followed.
Partly due to the expansion of the PropBank dataset, researchers have gradually

made improvement on the performance of automatic SRL systems by using new tech-
niques and new features. Some of the early systems are described in Chen and Rambow
(2003), Gildea and Hockenmaier (2003), and Surdeanu et al. (2003). All are based on a
two-stage architecture similar to the one proposed by Gildea and Palmer (2002) with
the differences in the machine-learning techniques and the features used. The first
breakthrough in terms of performance was due to Pradhan et al. (2003), who first
viewed the task as a massive classification problem and applied multiple SVMs to it.
Their final result (after a few more improvements) reported in Pradhan et al. (2004)
achieved 84% and 75% in precision and recall, respectively.
A second significant contribution beyond the two-stage architecture is due to Xue

and Palmer (2004), who introduced the pruning heuristics to the two-stage architecture,
and remarkably reduced the number of candidate arguments a system needs to con-
sider; this approach was adopted by many systems. Another significant advancement
was in the realization that global information can be exploited and benefits the results
significantly. Inference based on an integer linear programming technique, which was
originally introduced by Roth and Yih (2004) on a relation extraction problem, was
first applied to the SRL problem by Punyakanok et al. (2004). It showed that domain
knowledge can be easily encoded and contributes significantly through inference over
the output of classifiers. The idea of exploiting global information, which is detailed in
this paper, was pursued later by other researchers, in different forms.
Besides the constituent-by-constituent based architecture, others have also been

explored. The alternative frameworks include representing semantic role labeling as
a sequence-tagging problem (Màrquez, Pere Comas, and Català 2005) and tagging the
edges in the corresponding dependency trees (Hacioglu 2004). However, the most pop-
ular architecture by far is the constituent-by-constituent based multi-stage architecture,
perhaps due to its conceptual simplicity and its success. In the CoNLL-2005 shared
task competition (Carreras and Màrquez 2005), the majority of the systems followed
the constituent-by-constituent based two-stage architecture, and the use of the pruning
heuristics was also fairly common.
The CoNLL-2005 shared task also highlighted the importance of system combina-

tion, such as our ILP technique when used in joint inference, in order to achieve superior
performance. The top four systems, which produced significantly better results than the
rest, all used some schemes to combine the output of several SRL systems, ranging from
using a fixed combination function (Haghighi, Toutanova, and Manning 2005; Koomen
et al. 2005) to using a machine-learned combination strategy (Màrquez, Pere Comas,
and Català 2005; Pradhan, Hacioglu, Ward et al. 2005).
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The work of Gildea and Palmer (2002) pioneered not only the fundamental archi-
tecture of SRL, but was also the first to investigate the interesting question regarding
the significance of using full parsing for high quality SRL. They compared their full
system with another system that only used chunking, and found that the chunk-based
system performed much worse. The precision and recall dropped from 57.7% and
50.0% to 27.6% and 22.0%, respectively. That led to the conclusion that full parsing
information is necessary to solving the SRL problem, especially at the stage of argu-
ment identification—a finding that is quite similar to ours in this article. However,
their chunk-based approach was very weak—only chunks were considered as possible
candidates; hence, it is not very surprising that the boundaries of the arguments could
not be reliably found. In contrast, our shallow parse–based system does not have these
restrictions on the argument boundaries and therefore performs much better at this
stage, providing a more fair comparison.
A related comparison can be found also in the work by Pradhan, Hacioglu, Krugler

et al. (2005) (their earlier version appeared in Pradhan et al. [2003]), which reported
the performance on several systems using different information sources and system
architectures. Their shallow parse–based system is modeled as a sequence tagging prob-
lem while the full system is a constituent-by-constituent based two-stage system. Due
to technical difficulties, though, they reported the results of the chunk-based systems
only on a subset of the full data set. Their shallow parse–based system achieved 60.4%
precision and 51.4% recall and their full system achieved 80.6% precision and 67.1%
recall on the same data set (but 84% precision and 75% recall with the full data set).
Therefore, due to the use of different architectures and data set sizes, the questions
of “how much one can gain from full parsing over shallow parsing when using the
full PropBank data set” and “what are the sources of the performance gain” were left
open.
Similarly, in the CoNLL-2004 shared task (Carreras andMàrquez 2004), participants

were asked to develop SRL systems with the restriction that only shallow parsing infor-
mation (i.e., chunks and clauses) were allowed. The performance of the best systemwas
at 72.43% precision and 66.77% recall, which was about 10 points in F1 lower than the
best system based on full parsing in the literature. However, the training examples were
derived from only 5 sections and not all the 19 sections usually used in the standard
setting. Hence, the question was not yet fully answered.
Our experimental study, on the other hand, is done with a consistent architecture,

by considering each stage in a controlled manner, and using the full data set, allowing
one to draw direct conclusions regarding the impact of this information source.

8. Conclusion

This paper studies the important task of semantic role labeling. We presented an ap-
proach to SRL and a principled and general approach to incorporating global informa-
tion in natural language decisions. Beyond presenting this approach which leads to a
state-of-the-art SRL system, we focused on investigating the significance of using full
parse tree information as input to an SRL system adhering to the most common system
architecture, and the stages in the process where this information has the most impact.
We performed a detailed and fair experimental comparison between shallow and full
parsing information and concluded that, indeed, full syntactic information can improve
the performance of an SRL system. In particular, we have shown that this information
is most crucial in the pruning stage of the system, and relatively less important in the
following stages.
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In addition, we showed the importance of global inference to good performance in
this task, characterized by rich structural and linguistic constraints among the predicted
labels of the arguments. Our integer linear programming–based inference procedure
is a powerful and flexible optimization strategy that finds the best solution subject to
these constraints. As we have shown, it can be used to resolve conflicting argument
predictions in an individual system but can also serve as an effective and simple
approach to combining different SRL systems, resulting in a significant improvement
in performance.
In the future, we plan to extend our work in several directions. By adding more

constraints to the inference procedure, an SRL system may be further improved.
Currently, the constraints are provided by human experts in advance. Learning both
hard and statistical constraints from the data will be our top priority. Some work on
combining statistical and declarative constraints has already started and is reported
in Roth and Yih (2005). Another issue we want to address is domain adaptation.
It has been clearly shown in the CoNLL-2005 shared task that the performance of
current SRL systems degrades significantly when tested on a corpus different from
the one used in training. This may be due to the underlying components, especially
the syntactic parsers which are very sensitive to changes in data genre. Developing
a better model that more robustly combines these components could be a promising
direction. In addition, although the shallow parsing–based system was shown here to
be inferior, shallow parsers were shown to be more robust than full parsers (Li and
Roth 2001). Therefore, combining these two systems may bring forward both of their
advantages.

Appendix A: An ILP Formulation for SRL

In this section, we show a complete example of the ILP formulation formulated to solve
the inference problem as described in Section 3.4.

Example. Assume the sentence is four words long with the following argument
candidates, and the following illegal argument types for the predicate of interest.

Sentence: w1 w2 w3 w4
Candidates: [ S1 ] [ S2 ] [ S3 ] [ S5 ]

[ S4 ]
Illegal argument types: A3, A4, A5

Indicator Variables and Their Costs. The followings are the indicator variables and their
associated costs set up for the example.

Indicator Variables:
u1A0,u1A1, . . . ,u1AM-LOC, . . . ,u1C-A0, . . . ,u1R-A0, . . . ,u1φ
u2A0,u2A1, . . . ,u2AM-LOC, . . . ,u2C-A0, . . . ,u2R-A0, . . . ,u2φ
...
u5A0,u5A1, . . . ,u5AM-LOC, . . . ,u5C-A0, . . . ,u5R-A0, . . . ,u5φ

Costs:
p1A0, p1A1, . . . , p1AM-LOC, . . . , p1C-A0, . . . , p1R-A0, . . . , p1φ
p2A0, p2A1, . . . , p2AM-LOC, . . . , p2C-A0, . . . , p2R-A0, . . . , p2φ
...
p5A0, p5A1, . . . , p5AM-LOC, . . . , p5C-A0, . . . , p5R-A0, . . . , p5φ
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Objective Function. The objective function can be written as the following.

argmaxuic∈{0,1}:∀i∈[1,5],c∈P

∑5
i=1

∑
c∈P picuic

where

P = {A0,A1, . . . , AM-LOC, . . . , C-A0, . . . , R-A0, . . . ,φ}

subject to

u1A0 + u1A1 + . . . + u1AM-LOC + . . . + u1C-A0 + . . . + u1R-A0 + . . . + u1φ = 1
u2A0 + u2A1 + . . . + u2AM-LOC + . . . + u2C-A0 + . . . + u2R-A0 + . . . + u2φ = 1

...
u5A0 + u5A1 + . . . + u5AM-LOC + . . . + u2C-A0 + . . . + u5R-A0 + . . . + u5φ = 1

Additional Constraints. The rest of the constraints can be formulated as the following.

Constraint 4: No overlapping or embedding
u3φ + u4φ ≥ 1
u4φ + u5φ ≥ 1

Constraint 5: No duplicate argument classes
u1A0 + u2A0 + . . . + u5A0 ≤ 1
u1A1 + u2A1 + . . . + u5A1 ≤ 1
u1A2 + u2A2 + . . . + u5A2 ≤ 1

Constraint 6: R-arg arguments
u1A0 + u2A0 + . . . + u5A0 ≥ u1R-A0
u1A0 + u2A0 + . . . + u5A0 ≥ u2R-A0

...
u1A0 + u2A0 + . . . + u5A0 ≥ u5R-A0

u1A1 + u2A1 + . . . + u5A1 ≥ u1R-A1
...

u1AM-LOC + u2AM-LOC + . . . + u5AM-LOC ≥ u1R-AM-LOC
...

Constraint 7: C-arg arguments
u1A0 ≥ u2C-A0

u1A0 + u2A0 ≥ u3C-A0
...

u1A0 + u2A0 + . . . + u4A0 ≥ u5C-A0

u1A1 ≥ u2C-A1
...

u1AM-LOC ≥ u2C-AM-LOC
...
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Constraint 8: Illegal argument types
u1A3 + u2A3 + . . . + u5A3 = 0
u1A4 + u2A4 + . . . + u5A4 = 0
u1A5 + u2A5 + . . . + u5A5 = 0
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