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used is Combinatory Categorial Grammar (CCG), and the grammar is automatically extracted
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and an automatically extracted grammar leads to a significant memory requirement (up to
25 GB), which is satisfied using a parallel implementation of the BFGS optimization algorithm
running on a Beowulf cluster. Dynamic programming over a packed chart, in combination with
the parallel implementation, allows us to solve one of the largest-scale estimation problems in the
statistical parsing literature in under three hours.

A key component of the parsing system, for both training and testing, is a Maximum En-
tropy supertagger which assigns CCG lexical categories to words in a sentence. The super-
tagger makes the discriminative training feasible, and also leads to a highly efficient parser.
Surprisingly, given CCG’s “spurious ambiguity,” the parsing speeds are significantly higher
than those reported for comparable parsers in the literature. We also extend the existing parsing
techniques for CCG by developing a new model and efficient parsing algorithm which exploits
all derivations, including CCG’s nonstandard derivations. This model and parsing algorithm,
when combined with normal-form constraints, give state-of-the-art accuracy for the recovery of
predicate–argument dependencies from CCGbank. The parser is also evaluated on DepBank and
compared against the RASP parser, outperforming RASP overall and on the majority of relation
types. The evaluation on DepBank raises a number of issues regarding parser evaluation.

This article provides a comprehensive blueprint for building a wide-coverage CCG parser.
We demonstrate that both accurate and highly efficient parsing is possible with CCG.
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1. Introduction

Log-linear models have been applied to a number of problems in NLP, for example,
POS tagging (Ratnaparkhi 1996; Lafferty, McCallum, and Pereira 2001), named entity
recognition (Borthwick 1999), chunking (Koeling 2000), and parsing (Johnson et al.
1999). Log-linear models are also referred to as maximum entropy models and random
fields in the NLP literature. They are popular because of the ease with which complex
discriminating features can be included in the model, and have been shown to give
good performance across a range of NLP tasks.

Log-linear models have previously been applied to statistical parsing (Johnson
et al. 1999; Toutanova et al. 2002; Riezler et al. 2002; Malouf and van Noord 2004),
but typically under the assumption that all possible parses for a sentence can be
enumerated. For manually constructed grammars, this assumption is usually sufficient
for efficient estimation and decoding. However, for wide-coverage grammars extracted
from a treebank, enumerating all parses is infeasible. In this article we apply the dy-
namic programming method of Miyao and Tsujii (2002) to a packed chart; however,
because the grammar is automatically extracted, the packed charts require a consid-
erable amount of memory: up to 25 GB. We solve this massive estimation problem by
developing a parallelized version of the estimation algorithm which runs on a Beowulf
cluster.

The lexicalized grammar formalism we use is Combinatory Categorial Grammar
(CCG; Steedman 2000). A number of statistical parsing models have recently been devel-
oped for CCG and used in parsers applied to newspaper text (Clark, Hockenmaier, and
Steedman 2002; Hockenmaier and Steedman 2002b; Hockenmaier 2003b). In this article
we extend existing parsing techniques by developing log-linear models for CCG, as well
as a new model and efficient parsing algorithm which exploits all CCG’s derivations,
including the nonstandard ones.

Estimating a log-linear model involves computing expectations of feature values.
For the conditional log-linear models used in this article, computing expectations re-
quires a sum over all derivations for each sentence in the training data. Because there
can be a massive number of derivations for some sentences, enumerating all derivations
is infeasible. To solve this problem, we have adapted the dynamic programming method
of Miyao and Tsujii (2002) to packed CCG charts. A packed chart efficiently represents all
derivations for a sentence. The dynamic programming method uses inside and outside
scores to calculate expectations, similar to the inside–outside algorithm for estimating
the parameters of a PCFG from unlabeled data (Lari and Young 1990).

Generalized Iterative Scaling (Darroch and Ratcliff 1972) is a common choice in
the NLP literature for estimating a log-linear model (e.g., Ratnaparkhi 1998; Curran
and Clark 2003). Initially we used generalized iterative scaling (GIS) for the parsing
models described here, but found that convergence was extremely slow; Sha and Pereira
(2003) present a similar finding for globally optimized log-linear models for sequences.
As an alternative to GIS, we use the limited-memory BFGS algorithm (Nocedal and
Wright 1999). As Malouf (2002) demonstrates, general purpose numerical optimization
algorithms such as BFGS can converge much faster than iterative scaling algorithms
(including Improved Iterative Scaling; Della Pietra, Della Pietra, and Lafferty 1997).

Despite the use of a packed representation, the complete set of derivations for the
sentences in the training data requires up to 25 GB of RAM for some of the models in this
article. There are a number of ways to solve this problem. Possibilities include using a
subset of the training data; repeatedly parsing the training data for each iteration of
the estimation algorithm; or reading the packed charts from disk for each iteration.
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These methods are either too slow or sacrifice parsing performance, and so we use
a parallelized version of BFGS running on an 18-node Beowulf cluster to perform the
estimation. Even given the large number of derivations and the large feature sets in our
models, the estimation time for the best-performing model is less than three hours. This
gives us a practical framework for developing a statistical parser.

A corollary of CCG’s base-generative treatment of long-range dependencies in rel-
ative clauses and coordinate constructions is that the standard predicate–argument re-
lations can be derived via nonstandard surface derivations. The addition of “spurious”
derivations in CCG complicates the modeling and parsing problems. In this article we
consider two solutions. The first, following Hockenmaier (2003a), is to define a model in
terms of normal-form derivations (Eisner 1996). In this approach we recover only one
derivation leading to a given set of predicate–argument dependencies and ignore the
rest.

The second approach is to define a model over the predicate–argument dependen-
cies themselves, by summing the probabilities of all derivations leading to a given set
of dependencies. We also define a new efficient parsing algorithm for such a model,
based on Goodman (1996), which maximizes the expected recall of dependencies. The
development of this model allows us to test, for the purpose of selecting the correct
predicate–argument dependencies, whether there is useful information in the additional
derivations. We also compare the performance of our best log-linear model against
existing CCG parsers, obtaining the highest results to date for the recovery of predicate–
argument dependencies from CCGbank.

A key component of the parsing system is a Maximum Entropy CCG supertagger
(Ratnaparkhi 1996; Curran and Clark 2003) which assigns lexical categories to words
in a sentence. The role of the supertagger is twofold. First, it makes discriminative
estimation feasible by limiting the number of incorrect derivations for each training
sentence; the supertagger can be thought of as supplying a number of incorrect but
plausible lexical categories for each word in the sentence. Second, it greatly increases the
efficiency of the parser, which was the original motivation for supertagging (Bangalore
and Joshi 1999). One possible criticism of CCG has been that highly efficient parsing is
not possible because of the additional “spurious” derivations. In fact, we show that a
novel method which tightly integrates the supertagger and parser leads to parse times
significantly faster than those reported for comparable parsers in the literature.

The parser is evaluated on CCGbank (available through the Linguistic Data Con-
sortium). In order to facilitate comparisons with parsers using different formalisms, we
also evaluate on the publicly available DepBank (King et al. 2003), using the Briscoe
and Carroll annotation consistent with the RASP parser (Briscoe, Carroll, and Watson
2006). The dependency annotation is designed to be as theory-neutral as possible to
allow easy comparison. However, there are still considerable difficulties associated with
a cross-formalism comparison, which we describe. Even though the CCG dependencies
are being mapped into another representation, the accuracy of the CCG parser is over
81% F-score on labeled dependencies, against an upper bound of 84.8%. The CCG parser
also outperforms RASP overall and on the majority of dependency types.

The contributions of this article are as follows. First, we explain how to estimate a
full log-linear parsing model for an automatically extracted grammar, on a scale as large
as that reported anywhere in the NLP literature. Second, the article provides a compre-
hensive blueprint for building a wide-coverage CCG parser, including theoretical and
practical aspects of the grammar, the estimation process, and decoding. Third, we inves-
tigate the difficulties associated with cross-formalism parser comparison, evaluating the
parser on DepBank. And finally, we develop new models and decoding algorithms for

495



Computational Linguistics Volume 33, Number 4

CCG, and give a convincing demonstration that, through use of a supertagger, highly
efficient parsing is possible with CCG.

2. Related Work

The first application of log-linear models to parsing is the work of Ratnaparkhi and
colleagues (Ratnaparkhi, Roukos, and Ward 1994; Ratnaparkhi 1996, 1999). Similar to
Della Pietra, Della Pietra, and Lafferty (1997), Ratnaparkhi motivates log-linear models
from the perspective of maximizing entropy, subject to certain constraints. Ratnaparkhi
models the various decisions made by a shift-reduce parser, using log-linear distri-
butions defined over features of the local context in which a decision is made. The
probabilities of each decision are multiplied together to give a score for the complete
sequence of decisions, and beam search is used to find the most probable sequence,
which corresponds to the most probable derivation.

A different approach is proposed by Abney (1997), who develops log-linear models
for attribute-value grammars, such as Head-driven Phrase Structure Grammar (HPSG).
Rather than define a model in terms of parser moves, Abney defines a model directly
over the syntactic structures licensed by the grammar. Another difference is that Abney
uses a global model, in which a single log-linear model is defined over the complete
space of attribute–value structures. Abney’s motivation for using log-linear models is
to overcome various problems in applying models based on PCFGs directly to attribute-
value grammars. A further motivation for using global models is that these do not suffer
from the label bias problem (Lafferty, McCallum, and Pereira 2001), which is a potential
problem for Ratnaparkhi’s approach.

Abney defines the following model for a syntactic analysisω:

P(ω) =
∏

i β
fi(ω)
i

Z (1)

where fi(ω) is a feature, or feature function, and βi is its corresponding weight; Z is a
normalizing constant, also known as the partition function. In much work using log-
linear models in NLP, including Ratnaparkhi’s, the features of a model are indicator
functions which take the value 0 or 1. However, in Abney’s models, and in the models
used in this article, the feature functions are integer valued and count the number of
times some feature appears in a syntactic analysis.1 Abney calls the feature functions
frequency functions and, like Abney, we will not always distinguish between a feature
and its corresponding frequency function.

There are practical difficulties with Abney’s proposal, in that finding the maximum-
likelihood solution during estimation involves calculating expectations of feature val-
ues, which are sums over the complete space of possible analyses. Abney suggests a
Metropolis-Hastings sampling procedure for calculating the expectations, but does not
experiment with an implementation.

Johnson et al. (1999) propose an alternative solution, which is to maximize the
conditional likelihood function. In this case the likelihood function is the product of
the conditional probabilities of the syntactic analyses in the data, each probability condi-
tioned on the respective sentence. The advantage of this method is that calculating the
conditional feature expectations only requires a sum over the syntactic analyses for the

1 In principle the features could be real-valued, but we only use integer-valued features in this article.
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sentences in the training data. The conditional-likelihood estimator is also consistent
for the conditional distributions (Johnson et al. 1999). The same solution is arrived at
by Della Pietra, Della Pietra, and Lafferty (1997) via a maximum entropy argument.
Another feature of Johnson et al.’s approach is the use of a Gaussian prior term to avoid
overfitting, which involves adding a regularization term to the likelihood function; the
regularization term penalizes models whose weights get too large in absolute value.
This smoothing method for log-linear models is also proposed by Chen and Rosenfeld
(1999).

Calculating the conditional feature expectations can still be problematic if the gram-
mar licenses a large number of analyses for some sentences. This is not a problem for
Johnson et al. (1999) because their grammars are hand-written and constraining enough
to allow the analyses for each sentence to be enumerated. However, for grammars with
wider coverage it is often not possible to enumerate the analyses for each sentence in
the training data. Osborne (2000) investigates training on a sample of the analyses for
each sentence, for example the top-n most probable according to some other probability
model, or simply a random sample.

The CCG grammar used in this article is automatically extracted, has wide cover-
age, and can produce an extremely large number of derivations for some sentences,
far too many to enumerate. We adapt the feature-forest method of Miyao and Tsujii
(2002), which involves using dynamic programming to efficiently calculate the feature
expectations. Geman and Johnson (2002) propose a similar method in the context of LFG
parsing; an implementation is described in Kaplan et al. (2004).

Miyao and Tsujii have carried out a number of investigations similar to the work
in this article. In Miyao and Tsujii (2003b, 2003a) log-linear models are developed for
automatically extracted grammars for Lexicalized Tree Adjoining Grammar (LTAG) and
Head Driven Phrase Structure Grammar (HPSG). One of Miyao and Tsujii’s motivations
is to model predicate–argument dependencies, including long-range dependencies,
which was one of the original motivations of the wide-coverage CCG parsing project.
Miyao and Tsujii (2003a) present another log-linear model for an automatically extracted
LTAG which uses a simple unigram model of the elementary trees together with a log-
linear model of the attachments. Miyao and Tsujii (2005) address the issue of practical
estimation using an automatically extracted HPSG grammar. A simple unigram model
of lexical categories is used to limit the size of the charts for training, in a similar way to
how we use a CCG supertagger to restrict the size of the charts.

The main differences between Miyao and Tsujii’s work and ours, aside from the
different grammar formalisms, are as follows. The CCG supertagger is a key component
of our parsing system. It allows practical estimation of the log-linear models as well
as highly efficient parsing. The Maximum Entropy supertagger we use could also be
applied to Miyao and Tsujii’s grammars, although whether similar performance would
be obtained depends on the characteristics of the grammar; see subsequent sections for
more discussion of this issue in relation to LTAG. The second major difference is in our
use of a cluster and parallelized estimation algorithm. We have found that significantly
increasing the size of the parse space available for discriminative estimation, which is
possible on the cluster, improves the accuracy of the resulting parser. Another advan-
tage of parallelization, as discussed in Section 5.5, is the reduction in estimation time.
Again, our parallelization techniques could be applied to Miyao and Tsujii’s framework.

Malouf and van Noord (2004) present similar work to ours, in the context of an
HPSG grammar for Dutch. One similarity is that their parsing system uses an HMM
tagger before parsing, similar to our supertagger. One difference is that we use a
Maximum Entropy tagger which allows more flexibility in terms of the features that can
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be encoded; for example, we have found that using Penn Treebank POS tags as features
significantly improves supertagging accuracy. Another difference is that Malouf and
van Noord use the random sampling method of Osborne (2000) to allow practical
estimation, whereas we construct the complete parse forest but use the supertagger to
limit the size of the charts. Their work is also on a somewhat smaller scale, with the
Dutch Alpino treebank containing 7,100 sentences, compared with the 36,000 sentences
we use for training.

Kaplan et al. (2004) present similar work to ours in the context of an LFG grammar
for English. The main difference is that the LFG grammar is hand-built, resulting in less
ambiguity than an automatically extracted grammar and thus requiring fewer resources
for model estimation. One downside of hand-built grammars is that they are typically
less robust, which Kaplan et al. address by developing a “fragment” grammar, together
with a “skimming mode,” which increases coverage on Section 23 of the Penn Treebank
from 80% to 100%. Kaplan et al. also present speed figures for their parser, comparing
with the Collins parser. Comparing parser speeds is difficult because of implementation
and accuracy differences, but their highest reported speed is around 2 sentences per
second on sentences from Section 23. The parse speeds that we present in Section 10.3
are an order of magnitude higher.

More generally, the literature on statistical parsing using linguistically motivated
grammar formalisms is large and growing. Statistical parsers have been developed
for TAG (Chiang 2000; Sarkar and Joshi 2003), LFG (Riezler et al. 2002; Kaplan et al.
2004; Cahill et al. 2004), and HPSG (Toutanova et al. 2002; Toutanova, Markova, and
Manning 2004; Miyao and Tsujii 2004; Malouf and van Noord 2004), among others.
The motivation for using these formalisms is that many NLP tasks, such as Machine
Translation, Information Extraction, and Question Answering, could benefit from the
more sophisticated linguistic analyses they provide.

The formalism most closely related to CCG from this list is TAG. TAG grammars have
been automatically extracted from the Penn Treebank, using techniques similar to those
used by Hockenmaier (Chen and Vijay-Shanker 2000; Xia, Palmer, and Joshi 2000). Also,
the supertagging idea which is central to the efficiency of the CCG parser originated with
TAG (Bangalore and Joshi 1999). Chen et al. (2002) describe the results of reranking the
output of an HMM supertagger using an automatically extracted LTAG. The accuracy
for a single supertag per word is slightly over 80%. This figure is increased to over
91% when the tagger is run in n-best mode, but at a considerable cost in ambiguity,
with 8 supertags per word. Nasr and Rambow (2004) investigate the potential impact
of LTAG supertagging on parsing speed and accuracy by performing a number of
oracle experiments. They find that, with the perfect supertagger, extremely high parsing
accuracies and speeds can be obtained. Interestingly, the accuracy of LTAG supertaggers
using automatically extracted grammars is significantly below the accuracy of the CCG
supertagger. One possible way to increase the accuracy of LTAG supertagging is to use a
Maximum Entropy, rather than HMM, tagger (as discussed previously), but this is likely
to result in an improvement of only a few percentage points. Thus whether the differ-
ence in supertagging accuracy is due to the nature of the formalisms, the supertagging
methods used, or properties of the extracted grammars, is an open question.

Related work on statistical parsing with CCG will be described in Section 3.

3. Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) (Steedman 1996, 2000) is a type-driven lex-
icalized theory of grammar based on Categorial Grammar (Wood 1993). CCG lexical
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entries consist of a syntactic category, which defines valency and directionality, and
a semantic interpretation. In this article we are concerned with the syntactic compo-
nent; see Steedman (2000) for how a semantic interpretation can be composed dur-
ing a syntactic derivation, and also Bos et al. (2004) for how semantic interpretations
can be built for newspaper text using the wide-coverage parser described in this
article.

Categories can be either basic or complex. Examples of basic categories are S (sen-
tence), N (noun), NP (noun phrase), and PP (prepositional phrase). Complex categories
are built recursively from basic categories, and indicate the type and directionality
of arguments (using slashes), and the type of the result. For example, the following
category for the transitive verb bought specifies its first argument as a noun phrase to its
right, its second argument as a noun phrase to its left, and its result as a sentence:

bought := (S\NP)/NP (2)

In the theory of CCG, basic categories are regarded as complex objects that include
syntactic features such as number, gender, and case. For the grammars in this article,
categories are augmented with some additional information, such as head information,
and also features on S categories which distinguish different types of sentence, such as
declarative, infinitival, and wh-question. This additional information will be described
in later sections.

Categories are combined in a derivation using combinatory rules. In the original
Categorial Grammar (Bar-Hillel 1953), which is context-free, there are two rules of
functional application:

X/Y Y ⇒ X (>) (3)

Y X\Y ⇒ X (<) (4)

where X and Y denote categories (either basic or complex). The first rule is forward
application (>) and the second rule is backward application (<). Figure 1 gives an
example derivation using these rules.

CCG extends the original Categorial Grammar by introducing a number of addi-
tional combinatory rules. The first is forward composition, which Steedman denotes

Figure 1
Example derivation using forward and backward application.
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Figure 2
Example derivation using type-raising and forward composition.

by > B (because B is the symbol used by Curry to denote function composition in
combinatory logic; Curry and Feys 1958):

X/Y Y/Z ⇒B X/Z (> B) (5)

Forward composition is often used in conjunction with type-raising (T), as in Figure 2.
In this case type-raising takes a subject noun phrase and turns it into a functor looking
to the right for a verb phrase; the fund is then able to combine with reached using forward
composition, giving the fund reached the category S[dcl]/NP (a declarative sentence
missing an object). It is exactly this type of constituent which the object relative pronoun
category is looking for to its right: (NP\NP)/(S[dcl]/NP).

Note that the fund reached is a perfectly reasonable constituent in CCG, having the
type S[dcl]/NP. This allows analyses for sentences such as the fund reached but investors
disagreed with the agreement, even though this construction is often described as “non-
constituent coordination.” In this example, the fund reached and investors disagreed with
have the same type, allowing them to be coordinated, resulting in the fund reached but
investors disagreed with having the type S[dcl]/NP. Note also that it is this flexible notion
of constituency which leads to so-called spurious ambiguity, because even the simple
sentence the fund reached an agreement will have more than one derivation, with each
derivation leading to the same set of predicate–argument dependencies.

Forward composition is generalized to allow additional arguments to the right
of the Z category in (5). For example, the following combination allows analysis of
sentences such as I offered, and may give, a flower to a policeman (Steedman 2000):

may give

(S\NP)/(S\NP) ((S\NP)/PP)/NP
>B

((S\NP)/PP)/NP

This example shows how the categories for may and give combine, resulting in a cate-
gory of the same type as offered, which can then be coordinated. Steedman (2000) gives
a more precise definition of generalized forward composition.

Further combinatory rules in the theory of CCG include backward composition
(< B) and backward crossed composition (< BX):

Y\Z X\Y ⇒B X\Z (< B) (6)

Y/Z X\Y ⇒B X/Z (< BX) (7)
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Backward composition provides an analysis for sentences involving “argument cluster
coordination,” such as I gave a teacher an apple and a policeman a flower (Steedman 2000).
Backward crossed composition is required for heavy NP shift and coordinations such
as I shall buy today and cook tomorrow the mushrooms. In this coordination example from
Steedman (2000), backward crossed composition is used to combine the categories
for buy, (S\NP)/NP, and today, (S\NP)\(S\NP), and similarly for cook and tomorrow,
producing categories of the same type which can be coordinated. This rule is also
generalized in an analogous way to forward composition.

Finally, there is a coordination rule which conjoins categories of the same type,
producing a further category of that type. This rule can be implemented by assuming
the following category schema for a coordination term: (X\X)/X, where X can be any
category.

All of the combinatory rules described above are implemented in our parser. Other
combinatory rules, such as substitution, have been suggested in the literature to deal
with certain linguistic phenomena, but we chose not to implement them. The reason is
that adding new combinatory rules reduces the efficiency of the parser, and we felt that,
in the case of substitution, for example, the small gain in grammatical coverage was not
worth the reduction in speed. Section 9.3 discusses some of the choices we made when
implementing the grammar.

One way of dealing with the additional ambiguity in CCG is to only consider
normal-form derivations. Informally, a normal-form derivation is one which uses type-
raising and composition only when necessary. Eisner (1996) describes a technique for
eliminating spurious ambiguity entirely, by defining exactly one normal-form deriva-
tion for each semantic equivalence class of derivations. The idea is to restrict the
combination of categories produced by composition; more specifically, any constituent
which is the result of a forward composition cannot serve as the primary (left) functor in
another forward composition or forward application. Similarly, any constituent which
is the result of a backward composition cannot serve as the primary (right) functor
in another backward composition or backward application. Eisner only deals with a
grammar without type-raising, and so the constraints cannot guarantee a normal-form
derivation when applied to the grammars used in this article. However, the constraints
can still be used to significantly reduce the parsing space. Section 9.3 describes the
various normal-form constraints used in our experiments.

A recent development in the theory of CCG is the multi-modal treatment given by
Baldridge (2002) and Baldridge and Kruijff (2003), following the type-logical approaches
to Categorial Grammar (Moortgat 1997). One possible extension to the parser and
grammar described in this article is to incorporate the multi-modal approach; Baldridge
suggests that, as well as having theoretical motivation, a multi-modal approach can
improve the efficiency of CCG parsing.

3.1 Why Use CCG for Statistical Parsing?

CCG was designed to deal with the long-range dependencies inherent in certain
constructions, such as coordination and extraction, and arguably provides the most
linguistically satisfactory account of these phenomena. Long-range dependencies are
relatively common in text such as newspaper text, but are typically not recovered by
treebank parsers such as Collins (2003) and Charniak (2000). This has led to a number
of proposals for post-processing the output of the Collins and Charniak parsers, in
which trace sites are located and the antecedent of the trace determined (Johnson 2002;
Dienes and Dubey 2003; Levy and Manning 2004). An advantage of using CCG is that
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the recovery of long-range dependencies can be integrated into the parsing process in
a straightforward manner, rather than be relegated to such a post-processing phase
(Clark, Hockenmaier, and Steedman 2002; Hockenmaier 2003a; Clark, Steedman, and
Curran 2004).

Another advantage of CCG is that providing a compositional semantics for the
grammar is relatively straightforward. It has a completely transparent interface between
syntax and semantics and, because CCG is a lexicalized grammar formalism, providing a
compositional semantics simply involves adding semantic representations to the lexical
entries and interpreting the small number of combinatory rules. Bos et al. (2004) show
how this can be done for the grammar and parser described in this article.

Of course some of these advantages could be obtained with other grammar for-
malisms, such as TAG, LFG, and HPSG, although CCG is especially well-suited to
analysing coordination and long-range dependencies. For example, the analysis of
“non-constituent coordination” described in the previous section is, as far as we know,
unique to CCG.

Finally, the lexicalized nature of CCG has implications for the engineering of a wide-
coverage parser. Later we show that use of a supertagger (Bangalore and Joshi 1999) prior
to parsing can produce an extremely efficient parser. The supertagger uses statistical
sequence tagging techniques to assign a small number of lexical categories to each word
in the sentence. Because there is so much syntactic information in lexical categories,
the parser is required to do less work once the lexical categories have been assigned;
hence Srinivas and Joshi, in the context of TAG, refer to supertagging as almost parsing.
The parser is able to parse 20 Wall Street Journal (WSJ) sentences per second on standard
hardware, using our best-performing model, which compares very favorably with other
parsers using linguistically motivated grammars.

A further advantage of the supertagger is that it can be used to reduce the parse
space for estimation of the log-linear parsing models. By focusing on those parses
which result from the most probable lexical category sequences, we are able to perform
effective discriminative training without considering the complete parse space, which
for most sentences is prohibitively large.

The idea of supertagging originated with LTAG; however, in contrast to the CCG
grammars used in this article, the automatically extracted LTAG grammars have, as yet,
been too large to enable effective supertagging (as discussed in the previous section). We
are not aware of any other work which has demonstrated the parsing efficiency benefits
of supertagging using an automatically extracted grammar.

3.2 Previous Work on CCG Statistical Parsing

The work in this article began as part of the Edinburgh wide-coverage CCG parsing
project (2000–2004). There has been some other work on defining stochastic categorial
grammars, but mainly in the context of grammar learning (Osborne and Briscoe 1997;
Watkinson and Manandhar 2001; Zettlemoyer and Collins 2005).

An early attempt from the Edinburgh project at wide-coverage CCG parsing is pre-
sented in Clark, Hockenmaier, and Steedman (2002). In order to deal with the problem
of the additional, nonstandard CCG derivations, a conditional model of dependency
structures is presented, based on Collins (1996), in which the dependencies are modeled
directly and derivations are not modeled at all. The conditional probability of a depen-
dency structure π, given a sentence S, is factored into two parts. The first part is the
probability of the lexical category sequence, C, and the second part is the dependency
structure, D, giving P(π|S) = P(C|S)P(D|C, S). Intuitively, the category sequence is gen-
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erated first, conditioned on the sentence, and then attachment decisions are made to
form the dependency links. The probability of the category sequence is estimated using
a maximum entropy model, following the supertagger described in Clark (2002). The
probabilities of the dependencies are estimated using relative frequencies, following
Collins (1996).

The model was designed to include some long-range predicate–argument depen-
dencies, as well as local dependencies. However, there are a number of problems with
the model, as the authors acknowledge. First, the model is deficient, losing probability
mass to dependency structures not generated by the grammar. Second, the relative
frequency estimation of the dependency probabilities is ad hoc, and cannot be seen
as maximum likelihood estimation, or some other principled method. Despite these
flaws, the parser based on this model was able to recover CCG predicate–argument
dependencies at around 82% overall F-score on unseen WSJ text.

Hockenmaier (2003a) and Hockenmaier and Steedman (2002b) present a generative
model of normal-form derivations, based on various techniques from the statistical
parsing literature (Charniak 1997; Goodman 1997; Collins 2003). A CCG binary deriva-
tion tree is generated top-down, with the probability of generating particular child
nodes being conditioned on some limited context from the previously generated struc-
ture. Hockenmaier’s parser uses rule instantiations read off CCGbank (see Section 3.3)
and some of these will be instances of type-raising and composition; hence the parser
can produce non-normal-form derivations. However, because the parsing model is
estimated over normal-form derivations, any non-normal-form derivations will receive
low probabilities and are unlikely to be returned as the most probable parse.

Hockenmaier (2003a) compares a number of generative models, starting with a
baseline model based on a PCFG. Various extensions to the baseline are considered:
increasing the amount of lexicalization; generating a lexical category at its maximal
projection; conditioning the probability of a rule instantiation on the grandparent node
(Johnson 1998); adding features designed to deal with coordination; and adding dis-
tance to the dependency features. Some of these extensions, such as increased lexicaliza-
tion and generating a lexical category at its maximal projection, improved performance,
whereas others, such as the coordination and distance features, reduced performance.
Hockenmaier (2003a) conjectures that the reduced performance is due to the problem of
data sparseness, which becomes particularly severe for the generative model when the
number of features is increased. The best performing model outperforms that of Clark,
Hockenmaier, and Steedman (2002), recovering CCG predicate–argument dependencies
with an overall F-score of around 84% using a similar evaluation.

Hockenmaier (2003b) presents another generative model of normal-form deriva-
tions, which is based on the dependencies in the predicate–argument structure, in-
cluding long-range dependencies, rather than the dependencies defined by the local
trees in the derivation. Hockenmaier also argues that, compared to Hockenmaier and
Steedman (2002b), the predicate–argument model is better suited to languages with
freer word order than English. The model was also designed to test whether the inclu-
sion of predicate–argument dependencies improves parsing accuracy. In fact, the results
given in Hockenmaier (2003b) are lower than previous results. However, Hockenmaier
(2003b) reports that the increased complexity of the model reduces the effectiveness of
the dynamic programming used in the parser, and hence a more aggressive beam search
is required to produce reasonable parse times. Thus the reduced accuracy could be due
to implementation difficulties rather than the model itself.

The use of conditional log-linear models in this article is designed to overcome some
of the weaknesses identified in the approach of Clark, Hockenmaier, and Steedman
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(2002), and to offer a more flexible framework for including features than the generative
models of Hockenmaier (2003a). For example, adding long-range dependency features
to the log-linear model is straightforward. We also showed in Clark and Curran (2004b)
that, in contrast with Hockenmaier (2003a), adding distance to the dependency features
in the log-linear model does improve parsing accuracy. Another feature of conditional
log-linear models is that they are trained discriminatively, by maximizing the condi-
tional probability of each gold-standard parse relative to the incorrect parses for the
sentence. Generative models, in contrast, are typically trained by maximizing the joint
probability of the 〈training sentence, parse〉 pairs, even though the sentence does not
need to be inferred.

3.3 CCGbank

The treebank used in this article performs two roles: It provides the lexical category set
used by the supertagger, plus some unary type-changing rules and punctuation rules
used by the parser, and it is used as training data for the statistical models. The treebank
is CCGbank (Hockenmaier and Steedman 2002a; Hockenmaier 2003a), a CCG version
of the Penn Treebank (Marcus, Santorini, and Marcinkiewicz 1993). Penn Treebank
conversions have also been carried out for other linguistic formalisms, including TAG
(Chen and Vijay-Shanker 2000; Xia, Palmer, and Joshi 2000), LFG (Burke et al. 2004), and
HPSG (Miyao, Ninomiya, and Tsujii 2004).

CCGbank was created by converting the phrase-structure trees in the Penn Tree-
bank into CCG normal-form derivations. Some preprocessing of the phrase-structure
trees was required, in order to allow the correct CCG analyses for some constructions,
such as coordination. Hockenmaier (2003a) gives a detailed description of the procedure
used to create CCGbank. Figure 3 shows an example normal-form derivation for an (ab-
breviated) CCGbank sentence. The derivation has been inverted, so that it is represented
as a binary tree.

Sentence categories (S) in CCGbank carry features, such as [dcl] for declarative, [wq]
for wh-questions, and [for] for small clauses headed by for; see Hockenmaier (2003a) for
the complete list. S categories also carry features in verb phrases; for example, S[b]\NP

Figure 3
Example CCG derivation as a binary tree for the sentence Under new features, participants can
transfer money from the new funds.
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is a bare-infinitive; S[to]\NP is a to-infinitive; S[pss]\NP is a past participle in passive
mode. Note that, whenever an S or S\NP category is modified, any feature on the S is
carried through to the result category; this is true in our parser also. Finally, determiners
specify that the resulting noun phrase is non-bare: NP[nb]/N, although this feature is
largely ignored by the parser described in this article.

As well as instances of the standard CCG combinatory rules—forward and back-
ward application, forward and backward composition, backward-crossed composi-
tion, type-raising, coordination of like types—CCGbank contains a number of unary
type-changing rules and rules for dealing with punctuation. The type-changing rules
typically change a verb phrase into a modifier. The following examples, taken from
Hockenmaier (2003a), demonstrate the most common rules. The bracketed expression
has the type-changing rule applied to it:

� S[pss]\NP ⇒ NP\NP
workers [exposed to it]

� S[adj]\NP ⇒ NP\NP
a forum [likely to bring attention to the problem]

� S[ng]\NP ⇒ NP\NP
signboards [advertising imported cigarettes]

� S[ng]\NP ⇒ (S\NP)\(S\NP)
became chairman [succeeding Ian Butler]

� S[dcl]/NP ⇒ NP\NP
the millions of dollars [it generates]

Another common type-changing rule in CCGbank, which appears in Figure 3, changes
a noun category N into a noun phrase NP. Appendix A lists the unary type-changing
rules used by our parser.

There are also a number of rules in CCGbank for absorbing punctuation. For exam-
ple, Figure 3 contains a rule which takes a comma followed by a declarative sentence
and returns a declarative sentence:

, S[dcl] ⇒ S[dcl]

There are a number of similar comma rules for other categories. There are also similar
punctuation rules for semicolons, colons, and brackets. There is also a rule schema
which treats a comma as a coordination:

, X ⇒ X\X

Appendix A contains the complete list of punctuation rules used in the parser.
A small number of local trees in CCGbank—consisting of a parent and one or two

children—do not correspond to any of the CCG combinatory rules, or the type-changing
rules or punctuation rules. This is because some of the phrase structure subtrees in the
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Penn Treebank are difficult to convert to CCG combinatory rules, and because of noise
introduced by the Treebank conversion process.

3.4 CCG Dependency Structures

Dependency structures perform two roles in this article. First, they are used for parser
evaluation: The accuracy of a parsing model is measured using precision and recall
over CCG predicate–argument dependencies. Second, dependency structures form the
core of the dependency model: Probabilities are defined over dependency structures,
and the parsing algorithm for this model returns the highest scoring dependency
structure.

We define a CCG dependency structure as a set of CCG predicate–argument depen-
dencies. They are defined as sets, rather than multisets, because the lexical items in a
dependency are considered to be indexed by sentence position; this is important for
evaluation purposes and, for the dependency model, determining which derivations
lead to a given set of dependencies. However, there are situations where the lexical
items need to be considered independently of sentence position, for example when
defining feature functions in terms of dependencies. Such cases should be clear from the
context.

We define CCG predicate–argument relations in terms of the argument slots in CCG
lexical categories. Thus the transitive verb category, (S\NP)/NP, has two predicate–
argument relations associated with it, one corresponding to the object NP argument
and one corresponding to the subject NP argument. In order to distinguish different
argument slots, the arguments are numbered from left to right. Thus, the subject relation
for a transitive verb is represented as 〈(S\NP1)/NP2, 1〉.

The predicate–argument dependencies are represented as 5-tuples: 〈hf , f, s, ha, l〉,
where hf is the lexical item of the lexical category expressing the dependency relation,
f is the lexical category, s is the argument slot, ha is the head word of the argument, and
l encodes whether the dependency is non-local. For example, the dependency encoding
company as the object of bought (as in IBM bought the company) is represented as follows:

〈bought2, (S\NP1)/NP2, 2, company4, −〉 (8)

The subscripts on the lexical items indicate sentence position, and the final field (−)
indicates that the dependency is a local dependency.

Head and dependency information is represented on the lexical categories, and
dependencies are created during a derivation as argument slots are filled. Long-range
dependencies are created by passing head information from one category to another
using unification. For example, the expanded category for the control verb persuade is:

persuade := ((S[dcl]persuade\NP1)/(S[to]2\NPX))/NPX,3 (9)

The head of the infinitival complement’s subject is identified with the head of the
object, using the variable X. Unification then passes the head of the object to the subject
of the infinitival, as in standard unification-based accounts of control. In the current
implementation, the head and dependency markup depends on the category only and
not the lexical item. This gives semantically incorrect dependencies in some cases; for
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example, the control verbs persuade and promise have the same lexical category, which
means that promise Brooks to go is assigned a structure meaning promise Brooks that Brooks
will go.

The kinds of lexical items that use the head passing mechanism are raising, aux-
iliary and control verbs, modifiers, and relative pronouns. Among the constructions
that project unbounded dependencies are relativization and right node raising. The
following relative pronoun category (for words such as who, which, and that) shows how
heads are co-indexed for object-extraction:

who := (NPX\NPX,1)/(S[dcl]2/NPX) (10)

In a sentence such as The company which IBM bought, the co-indexing will allow com-
pany to be returned as the object of bought, which is represented using the following
dependency:

〈bought2, (S\NP1)/NP2, 2, company4, (NP\NP)/(S[dcl]/NP)〉 (11)

The final field indicates the category which mediated the long-range dependency, in this
case the object relative pronoun category.

The dependency annotation also permits complex categories as arguments. For
example, the marked up category for about (as in about 5,000 pounds) is:

(NX/NX)Y/(N/N)Y,1 (12)

If 5,000 has the category (NX/NX)5,000, the dependency relation marked on the (N/N)Y,1

argument in (12) allows the dependency between about and 5,000 to be captured.
In the current implementation every argument slot in a lexical category corresponds

to a dependency relation. This means, for example, that the parser produces subjects of
to-infinitival clauses and auxiliary verbs. In the sentence IBM may like to buy Lotus, IBM
will be returned as the subject of may, like, to, and buy. The only exception is during
evaluation, when some of these dependencies are ignored in order to be consistent with
the predicate–argument dependencies in CCGbank, and also DepBank. In future work
we may investigate removing some of these dependencies from the parsing model and
the parser output.

4. Log-Linear Parsing Models for CCG

This section describes two parsing models for CCG. The first defines the probabil-
ity of a dependency structure, and the second—the normal-form model—defines the
probability of a single derivation. In many respects, modeling single derivations is
simpler than modeling dependency structures, as the rest of the article will demonstrate.
However, there are a number of reasons for modeling dependency structures. First,
for many applications predicate–argument dependencies provide a more useful output
than derivations, and the parser evaluation is over dependencies; hence it would seem
reasonable to optimize over the dependencies rather than the derivation. Second, we
want to investigate, for the purposes of parse selection, whether there is useful infor-
mation in the nonstandard derivations. We can test this by defining the probability of
a dependency structure in terms of all the derivations leading to that structure, rather
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than emphasising a single derivation. Thus, the probability of a dependency structure,
π, given a sentence, S, is defined as follows:

P(π|S) =
∑

d∈∆(π)

P(d,π|S) (13)

where ∆(π) is the set of derivations which lead to π.
This approach is different from that of Clark, Hockenmaier, and Steedman (2002),

who define the probability of a dependency structure simply in terms of the depen-
dencies. One reason for modeling derivations (either one distinguished derivation or a
set of derivations), in addition to predicate–argument dependencies, is that derivations
may contain useful information for inferring the correct dependency structure.

For both the dependency model and the normal-form model, the probability of a
parse is defined using a log-linear form. However, the meaning of parse differs in the
two cases. For the dependency model, a parse is taken to be a 〈d,π〉 pair, as in Equa-
tion (13). For the normal-form model, a parse is simply a (head-lexicalized) derivation.2

We define a conditional log-linear model of a parse ω ∈ Ω, given a sentence S, as
follows:

P(ω|S) = 1
ZS

eλλλ · fff (ω) (14)

where λλλ · fff (ω) =
∑

i λifi(ω). The function fi is the integer-valued frequency function of
the ith feature; λi is the weight of the ith feature; and ZS is a normalizing constant which
ensures that P(ω|S) is a probability distribution:

ZS =
∑

ω′∈ρ(S)

eλλλ · fff (ω′ ) (15)

where ρ(S) is the set of possible parses for S. For the normal-form model, features
are defined over single derivations, including local word–word dependencies arising
from lexicalized rule instantiations. The feature set is derived from the gold-standard
normal-form derivations in CCGbank. For the dependency model, features are defined
over dependency structures as well as derivations, and the feature set is derived from
all derivations leading to gold-standard dependency structures, including nonstandard
derivations. Section 7 describes the feature types in more detail.

4.1 Estimating the Dependency Model

For the dependency model, the training data consists of gold-standard dependency
structures, namely, sets of CCG predicate–argument dependencies, as described earlier.
We follow Riezler et al. (2002) in using a discriminative estimation method by maximiz-
ing the conditional log-likelihood of the model given the data, minus a Gaussian prior

2 We could model predicate–argument dependencies together with the derivation, but we wanted to use
features from the derivation only, following Hockenmaier and Steedman (2002b).
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term to prevent overfitting (Chen and Rosenfeld 1999; Johnson et al. 1999). Thus, given
training sentences S1, . . . , Sm, gold-standard dependency structures, π1, . . . ,πm, and the
definition of the probability of a dependency structure from Equation (13), the objective
function is:

L′(Λ) = L(Λ) − G(Λ) (16)

= log
m∏

j=1

PΛ(πj|Sj) −
n∑

i=1

λ2
i

2σ2
i

=
m∑

j=1

log

∑
d∈∆(πj ) eλλλ · fff (d,πj )

∑
ω∈ρ(Sj ) eλλλ · fff (ω)

−
n∑

i=1

λ2
i

2σ2
i

=
m∑

j=1

log
∑

d∈∆(πj )

eλλλ · fff (d,πj ) −
m∑

j=1

log
∑

ω∈ρ(Sj )

eλλλ · fff (ω) −
n∑

i=1

λ2
i

2σ2
i

where L(Λ) is the log-likelihood of model Λ, G(Λ) is the Gaussian prior term, and n is
the number of features. We use a single smoothing parameter σ, so that σi = σ for all
i; however, grouping the features into classes and using a different σ for each class is
worth investigating and may improve the results.

Optimization of the objective function, whether using iterative scaling or more
general numerical optimization methods, requires calculation of the gradient of the ob-
jective function at each iteration. The components of the gradient vector are as follows:

∂L′(Λ)
∂λi

=
m∑

j=1

∑
d∈∆(πj )

eλλλ · fff (d,πj )fi(d,πj)∑
d∈∆(πj ) eλλλ · fff (d,πj )

(17)

−
m∑

j=1

∑
ω∈ρ(Sj )

eλλλ · fff (ω)fi(ω)
∑

ω∈ρ(Sj ) eλλλ · fff (ω)
− λi
σ2

i

The first two terms are expectations of feature fi: the second expectation is over all
derivations for each sentence in the training data, and the first is over only the deriva-
tions leading to the gold-standard dependency structure for each sentence.

The estimation process attempts to make the expectations in Equation (17) equal
(ignoring the Gaussian prior term). Another way to think of the estimation process is
that it attempts to put as much mass as possible on the derivations leading to the gold-
standard structures (Riezler et al. 2002). The Gaussian prior term prevents overfitting
by penalizing any model whose weights get too large in absolute value.

The estimation process can also be thought of in terms of the framework of
Della Pietra, Della Pietra, and Lafferty (1997), because setting the gradient in Equation
(17) to zero yields the usual maximum entropy constraints, namely that the expected
value of each feature is equal to its empirical value (again ignoring the Gaussian prior
term). However, in this case the empirical values are themselves expectations, over all
derivations leading to each gold-standard dependency structure.
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4.2 Estimating the Normal-Form Model

For the normal-form model, the training data consists of gold-standard normal-form
derivations. The objective function and gradient vector for the normal-form model are:

L′(Λ) = L(Λ) − G(Λ) (18)

= log
m∏

j=1

PΛ(dj|Sj) −
n∑

i=1

λ2
i

2σ2
i

∂L′(Λ)
∂λi

=
m∑

j=1

fi(dj) (19)

−
m∑

j=1

∑
d∈θ(Sj )

eλλλ · fff (d)fi(d)
∑

d∈θ(Sj ) eλλλ · fff (d)
− λi
σ2

i

where dj is the the gold-standard normal-form derivation for sentence Sj and θ(Sj) is the
set of possible derivations for Sj. Note that θ(Sj) could contain some non-normal-form
derivations; however, because any non-normal-form derivations will be considered
incorrect, the resulting model will typically assign low probabilities to non-normal-form
derivations.

The empirical value in Equation (19) is simply a count of the number of times
the feature appears in the gold-standard normal-form derivations. The second term in
Equation (19) is an expectation over all derivations for each sentence.

4.3 The Limited-Memory BFGS Algorithm

The limited memory BFGS (L-BFGS) algorithm is a general purpose numerical optimiza-
tion algorithm (Nocedal and Wright 1999). In contrast to iterative scaling algorithms
such as GIS, which update the parameters one at a time on each iteration, L-BFGS
updates the parameters all at once on each iteration. It does this by considering the
topology of the feature space and moving in a direction which is guaranteed to increase
the value of the objective function.

The simplest way in which to consider the shape of the feature space is to move
in the direction in which the value of the objective function increases most rapidly;
this leads to the method of steepest-ascent. Hence steepest-ascent uses the first partial
derivative (the gradient) of the objective function to determine parameter updates.
L-BFGS improves on steepest-ascent by also considering the second partial derivative
(the Hessian). In fact, calculation of the Hessian can be prohibitively expensive, and so
L-BFGS estimates this derivative by observing the change in a fixed number of previous
gradients (hence the limited memory).

Malouf (2002) gives a more thorough description of numerical optimization meth-
ods applied to log-linear models. He also presents a convincing demonstration that gen-
eral purpose numerical optimization methods can greatly outperform iterative scaling
methods for many NLP tasks.3 Malouf uses standard numerical computation libraries

3 One NLP task for which we have found GIS to be especially suitable is sequence tagging, and we still use
GIS to estimate tagging models (Curran and Clark 2003).
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as the basis of his implementation. One of our aims was to provide a self contained
estimation code base, and so we implemented our own version of the L-BFGS algorithm
as described in Nocedal and Wright (1999).

5. Efficient Estimation

The L-BFGS algorithm requires the following values at each iteration: the expected
value and the empirical expected value of each feature, for calculating the gradient;
and the value of the likelihood function. For the normal-form model, the empirical
expected values and the likelihood can be easily obtained, because these only involve
the single gold-standard derivation for each sentence. For the dependency model, the
computations of the empirical expected values and the likelihood function are more
complex, because these involve sums over just those derivations leading to the gold-
standard dependency structures. We explain how these derivations can be found in
Section 5.4. The next section explains how CCG charts can be represented in a way which
allows efficient estimation.

5.1 Packed CCG Charts as Feature Forests

The packed charts perform a number of roles. First, they compactly represent every
〈derivation, dependency-structure〉 pair, by grouping together equivalent chart entries.
Entries are equivalent when they interact in the same manner with both the genera-
tion of subsequent parse structure and the statistical parse selection. In practice, this
means that equivalent entries have the same span; form the same structures, that is, the
remaining derivation plus dependencies, in any subsequent parsing; and generate the
same features in any subsequent parsing. Back pointers to the daughters indicate how
an individual entry was created, so that any derivation plus dependency structure can
be recovered from the chart.

The second role of the packed charts is to allow recovery of the highest scoring
derivation or dependency structure without enumerating all derivations. And finally,
packed charts are an instance of a feature forest, which Miyao and Tsujii (2002) show
can be used to efficiently estimate expected values of features, even though the expec-
tation may involve a sum over an exponential number of trees in the forest. One of the
contributions of this section is showing how Miyao and Tsujii’s feature forest approach
can be applied to a particular grammar formalism, namely CCG. As Chiang (2003) points
out, Miyao and Tsujii do not provide a way of constructing a feature forest given a
sentence, but provide the mathematical tools for estimation once the feature forest has
been constructed.

In our packed charts, entries are equivalent when they have the same category
type, identical head, and identical unfilled dependencies. The equivalence test must
account for heads and unfilled dependencies because equivalent entries form the same
dependencies in any subsequent parsing. Individual entries in the chart are obtained
by combining canonical representatives of equivalence classes, using the rules of the
grammar. Equivalence classes in the chart are sets of equivalent individual entries.

A feature forest Φ is defined as a tuple 〈C, D, R,γ, δ〉 where:

� C is a set of conjunctive nodes;
� D is a set of disjunctive nodes;
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� R ⊆ D is a set of root disjunctive nodes;
� γ : D → 2C is a conjunctive daughter function;
� δ : C → 2D is a disjunctive daughter function.

The interpretation of a packed chart as a feature forest is straightforward. First, only
entries which are part of a derivation spanning the whole sentence are relevant. These
entries can be found by traversing the chart top-down, starting with the entries which
span the sentence. Individual entries in a cell are the conjunctive nodes, which are either
〈lexical category, word〉 pairs at the leaves, or have been obtained by combining two
equivalence classes (or applying a unary rule to an equivalence class). The equivalence
classes of individual entries are the disjunctive nodes. And finally, the equivalence
classes at the roots of the CCG derivations are the root disjunctive nodes.

For each feature function defined over parses (see Section 4) there is a corresponding
feature function defined over conjunctive nodes, that is, for each fi : Ω → N there is
a corresponding fi : C → N which counts the number of times feature fi appears on a
particular conjunctive node. The value of fi for a parse is then the sum of the values of fi
for each conjunctive node in the parse.

The features used in the parsing model determine the definition of the equivalence
relation used for grouping individual entries. In our models, features are defined in
terms of individual dependencies and local rule instantiations, where a rule instan-
tiation is the local tree arising from the application of a rule in the grammar. Note
that features can be defined in terms of long-range dependencies, even though such
dependencies may involve words which are a long way apart in the sentence. Our
earlier definition of equivalence is consistent with these feature types.

As an example, consider the following composition of will with buy using the
forward composition rule:

(S[dcl]will\NP)/NP

(S[dcl]will\NP)/(S[b]\NP) (S[b]buy\NP)/NP

The equivalence class of the resulting individual entry is determined by the CCG cate-
gory plus heads, in this case (S[dcl]will\NP)/NP, plus the dependencies yet to be filled.
The dependencies are not shown, but there are two subject dependencies on the first
NP, one encoding the subject of will and one encoding the subject of buy, and there is
an object dependency on the second NP encoding the object of buy. Entries in the same
equivalence class are identical for the purposes of creating new dependencies for the
remainder of the parsing.

5.2 Feature Locality

It is possible to extend the locality of the features beyond single rule instantiations and
local dependencies. For example, the definition of equivalence given earlier allows the
incorporation of long-range dependencies as features. The equivalence test considers
unfilled dependencies which are both local and long-range; thus any individual entries
which have different long-range dependencies waiting to be filled will be in different
equivalence classes. One of the advantages of log-linear models is that it is easy to
include such features; Hockenmaier (2003b) describes the difficulties in including such
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features in a generative model. One of the early motivations of the Edinburgh CCG
parsing project was to see if the long-range dependencies recovered by a CCG parser
could improve the accuracy of a parsing model. In fact, we have found that adding
long-range dependencies to any of the models described in this article has no impact on
accuracy. One possible explanation is that the long-range dependencies are so rare that a
much larger amount of training data would be required for these dependencies to have
an impact. Of course the fact that CCG enables recovery of long-range dependencies is
still a useful property, even if these dependencies are not currently useful as features,
because it improves the utility of the parser output.

There is considerable flexibility in defining the features for a parsing model in our
log-linear framework, as the long-range dependency example demonstrates, but the
need for dynamic programming for both estimation and decoding reduces the range of
features which can be used. Any extension to the “locality” of the features would reduce
the effectiveness of the chart packing and any dynamic programming performed over
the chart. Two possible extensions, which we have not investigated, include defining de-
pendency features which account for all three elements of the triple in a PP-attachment
(Collins and Brooks 1995), and defining a rule feature which includes the grandparent
node (Johnson 1998). Another alternative for future work is to compare the dynamic
programming approach taken here with the beam-search approach of Collins and Roark
(2004), which allows more “global” features.

5.3 Calculating Feature Expectations

For estimating both the normal-form model and the dependency model, the following
expectation of each feature fi, with respect to some model Λ, is required:

EΛ fi =
∑

S

1
ZS

∑
ω∈ρ(S)

eλλλ · fff (ω)fi(ω) (20)

where ρ(S) is the set of all parses for sentence S, and λλλ is the vector of weights for Λ.
This is essentially the same calculation for both models, even though for the de-

pendency model, features can be defined in terms of dependencies as well as the
derivations. Dependencies can be stored as part of the individual entries (conjunctive
nodes) at which they are created; hence all features can be defined in terms of the
individual entries which make up the derivations.

Calculating EΛ fi requires summing over all derivationsω which include fi for each
sentence S in the training data. The key to performing this sum efficiently is to write
the sum in terms of inside and outside scores for each conjunctive node. The inside and
outside scores can be defined recursively. If the inside score for a conjunctive node c
is denoted φc, and the outside score denoted ψc, then the expected value of fi can be
written as follows:

EΛ fi =
∑

S

1
ZS

∑
c∈CS

fi(c)φcψc (21)

where CS is the set of conjunctive nodes in the packed chart for sentence S.
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Figure 4
Example feature forest.

Figure 4 gives an example feature forest, and shows the nodes used to calculate
the inside and outside scores for conjunctive node c5. The inside score for a disjunctive
node, φd, is the sum of the inside scores for its conjunctive node daughters:

φd =
∑

c∈γ(d)

φc (22)

The inside score for a conjunctive node, φc, is defined in terms of the inside scores
of c’s disjunctive node daughters:

φc =
∏

d∈δ(c)

φd eλλλ · fff (c) (23)

where λλλ · fff (c) =
∑

i λifi(c). If the conjunctive node is a leaf node, the inside score is just
the exponentiation of the sum of the feature weights on that node.

The outside score for a conjunctive node, ψc, is the outside score for its disjunctive
node mother:

ψc = ψd where c ∈ γ(d) (24)

The calculation of the outside score for a disjunctive node, ψd, is a little more
involved; it is defined as a sum over the conjunctive mother nodes, of the product
of the outside score of the mother, the inside score of the disjunctive node sister, and
the feature weights on the mother. For example, the outside score of d4 in Figure 4 is the
sum of two product terms. The first term is the product of the outside score of c5, the
inside score of d5, and the feature weights at c5; and the second term is the product of
the outside score of c2, the inside score of d3, and the feature weights at c2. The definition
is as follows; the outside score for a root disjunctive node is 1, otherwise:

ψd =
∑

{c|d∈δ(c)}


ψc

∏
{d′|d′∈δ(c),d′ �=d}

φd′ eλλλ · fff (c)


 (25)
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The normalization constant ZS is the sum of the inside scores for the root disjunctive
nodes:

ZS =
∑
dr∈R

φdr (26)

In order to calculate inside scores, the scores for daughter nodes need to be calcu-
lated before the scores for mother nodes (and vice versa for the outside scores). This can
easily be achieved by ordering the nodes in the bottom-up CKY parsing order.

5.4 Estimation for the Dependency Model

For the dependency model, the computations of the empirical expected values (17)
and the log-likelihood function (16) require sums over just those derivations leading
to the gold-standard dependency structure. We will refer to such derivations as correct
derivations. As far as we know, this problem of identifying derivations in a packed chart
which lead to a particular dependency structure has not been addressed before in the
NLP literature.

Figure 5 gives an algorithm for finding nodes in a packed chart which appear in
correct derivations. cdeps(c) returns the number of correct dependencies on conjunctive
node c, and returns the incorrect marker ∗ if there are any incorrect dependencies on
c; dmax(c) returns the maximum number of correct dependencies produced by any
sub-derivation headed by c, and returns ∗ if there are no sub-derivations producing

Figure 5
Algorithm for finding nodes in correct derivations.
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only correct dependencies; dmax(d) returns the same value but for disjunctive node d.
Recursive definitions of these functions are given in Figure 5; the base case occurs when
conjunctive nodes have no disjunctive daughters.

The algorithm identifies all those root nodes heading derivations which produce
just the correct dependencies, and traverses the chart top-down marking the nodes
in those derivations. The insight behind the algorithm is that, for two conjunctive
nodes in the same equivalence class, if one node heads a sub-derivation producing
more correct dependencies than the other node (and each sub-derivation only produces
correct dependencies), then the node with less correct dependencies cannot be part of a
correct derivation.

The conjunctive and disjunctive nodes appearing in correct derivations form a
new feature forest, which we call a correct forest. The correct forest forms a subset
of the complete forest (containing all derivations for the sentence). The correct and
complete forests can be used to estimate the required log-likelihood value and feature
expectations. Let EΦ

Λ fi be the expected value of fi over the forest Φ for model Λ; then the

values in Equation (17) can be obtained by calculating E
Φj
Λ fi for the complete forest Φj

for each sentence Sj in the training data, and also E
Ψj
Λ fi for each correct forest Ψj:

∂L(Λ)
∂λi

=
m∑

j=1

(E
Ψj
Λ fi − E

Φj
Λ fi) (27)

The log-likelihood in Equation (16) can be calculated as follows:

L(Λ) =
m∑

j=1

(log ZΨj − log ZΦj ) (28)

where log ZΦ and log ZΨ are the normalization constants for Φ and Ψ.

5.5 Estimation in Practice

Estimating the parsing models consists of generating packed charts for each sentence
in the training data, and then repeatedly calculating the values needed by the L-BFGS
estimation algorithm until convergence. Even though the packed charts are an efficient
representation of the derivation space, the charts for the complete training data (Sec-
tions 02–21 of CCGbank) take up a considerable amount of memory. One solution is to
only keep a small number of charts in memory at any one time, and to keep reading in
the charts on each iteration. However, given that the L-BFGS algorithm takes hundreds
of iterations to converge, this approach would be infeasibly slow.

Our solution is to keep all charts in memory by developing a parallel version of
the L-BFGS training algorithm and running it on an 18-node Beowulf cluster. As well
as solving the memory problem, another significant advantge of parallelization is the
reduction in estimation time: using 18 nodes allows our best-performing model to be
estimated in less than three hours.

We use the the Message Passing Interface (MPI) standard for the implementation
(Gropp et al. 1996). The parallel implementation is a straightforward extension of the
BFGS algorithm. Each machine in the cluster deals with a subset of the training data,
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holding the packed charts for that subset in memory. The key stages of the algorithm
are the calculations of the model expectations and the likelihood function. For a single-
process version these are calculated by summing over all the training instances in one
place. For a multi-process version, these are summed in parallel, and at the end of each
iteration the parallel sums are combined to give a master sum. Producing a master
operation across a cluster using MPI is a reduce operation. In our case, every node needs
to be holding a copy of the master sum, so we use an all reduce operation.

The MPI library handles all aspects of the parallelization, including finding the
optimal way of summing across the nodes of the Beowulf cluster (typically it is done
using a tree algorithm). In fact, the parallelization only adds around twenty lines of
code to the single-process implementation. Because of the simplicity of the parellel
communication between the nodes, parallelizing the estimation code is an example of
an embarrassingly parallel problem. One difficult aspect of the parallel implementation
is that debugging can be much harder, in which case it is often easier to test a non-MPI
version of the program first.

6. The Decoder

For the normal-form model, the Viterbi algorithm is used to find the most probable
derivation from a packed chart. For each equivalence class, we record the individual
entry at the root of the subderivation which has the highest score for the class. The
equivalence classes were defined so that any other individual entry cannot be part of the
highest scoring derivation for the sentence. The score for a subderivation d is

∑
i λifi(d)

where fi(d) is the number of times the ith feature occurs in the subderivation. The
highest-scoring subderivations can be calculated recursively using the highest-scoring
equivalence classes that were combined to create the individual entry.

For the dependency model, the highest scoring dependency structure is required.
Clark and Curran (2003) outline an algorithm for finding the most probable dependency
structure, which keeps track of the highest scoring set of dependencies for each node in
the chart. For a set of equivalent entries in the chart (a disjunctive node), this involves
summing over all conjunctive node daughters which head sub-derivations leading to
the same set of high scoring dependencies. In practice large numbers of such conjunctive
nodes lead to very long parse times.

As an alternative to finding the most probable dependency structure, we have
developed an algorithm which maximizes the expected labeled recall over dependen-
cies. Our algorithm is based on Goodman’s (1996) labeled recall algorithm for the
phrase-structure PARSEVAL measures. As far as we know, this is the first application
of Goodman’s approach to finding highest scoring dependency structures. Watson,
Carroll, and Briscoe (2005) have also applied our algorithm to the grammatical relations
output by the RASP parser.

The dependency structure, πmax, which maximizes the expected recall is:

πmax = argmax
π

∑
πi

P(πi|S)|π ∩ πi| (29)

where πi ranges over the dependency structures for S. The expectation for a single de-
pendency structure π is realized as a weighted intersection over all possible dependency
structures πi for S. The intuition is that, if πi is the gold standard, then the number of
dependencies recalled in π is |π ∩ πi|. Because we do not know which πi is the gold
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standard, then we calculate the expected recall by summing the recall of π relative to
each πi, weighted by the probability of πi.

The expression can be expanded further:

πmax = argmax
π

∑
πi

P(πi|S)
∑
τ∈π

1 if τ ∈ πi

= argmax
π

∑
τ∈π

∑
π′|τ∈π′

P(π′|S)

= argmax
π

∑
τ∈π

∑
d∈∆(π′ )|τ∈π′

P(d|S) (30)

The reason for this manipulation is that the expected recall score for π is now
written in terms of a sum over the individual dependencies in π, rather than a sum over
each dependency structure for S. The inner sum is over all derivations which contain
a particular individual dependency τ. Thus the final score for a dependency structure
π is a sum of the scores for each dependency τ in π; and the score for a dependency τ
is the sum of the probabilities of those derivations producing τ. This latter sum can be
calculated efficiently using inside and outside scores:

πmax = argmax
π

∑
τ∈π

1
ZS

∑
c∈C

φcψc if τ ∈ deps(c) (31)

whereφc is the inside score andψc is the outside score for node c; C is the set of conjunc-
tive nodes in the packed chart for sentence S and deps(c) is the set of dependencies on
conjunctive node c. The intuition behind the expected recall score is that a dependency
structure scores highly if it has dependencies produced by high probability derivations.4

The reason for rewriting the score in terms of individual dependencies is to make
use of the packed chart: The score for an individual dependency can be calculated using
dynamic programming (as explained previously), and the highest scoring dependency
structure can be found using dynamic programming also. The algorithm which finds
πmax is essentially the same as the Viterbi algorithm described earlier, efficiently finding
a derivation which produces the highest scoring set of dependencies.

7. Model Features

The log-linear modeling framework allows considerable flexibility for representing the
parse space in terms of features. In this article we limit the features to those defined
over local rule instantiations and single predicate–argument dependencies. The fea-
ture sets described below differ for the dependency and normal-form models. The

4 Coordinate constructions can create multiple dependencies for a single argument slot; in this case the
score for these multiple dependencies is the average of the individual scores.

518



Clark and Curran Wide-Coverage Efficient Statistical Parsing

Table 1
Features common to the dependency and normal-form models.

Feature type Example

LexCat + Word (S/S)/NP + Before
LexCat + POS (S/S)/NP + IN
RootCat S[dcl]
RootCat + Word S[dcl] + was
RootCat + POS S[dcl] + VBD
Rule S[dcl]→NP S[dcl]\NP
Rule + Word S[dcl]→NP S[dcl]\NP + bought
Rule + POS S[dcl]→NP S[dcl]\NP + VBD

dependency model has features defined over the CCG predicate–argument dependen-
cies, whereas the dependencies for the normal-form model are defined in terms of
local rule instantiations in the derivation. Another difference is that the rule features
for the normal-form model are taken from the gold-standard normal-form deriva-
tions, whereas the dependency model contains rule features from non-normal-form
derivations.

There are a number of features defined over derivations which are common to
the dependency model and the normal-form model.5 First, there are features which
represent each 〈word, lexical-category〉 pair in a derivation, and generalizations of these
which represent 〈POS, lexical-category〉 pairs. Second, there are features representing
the root category of a derivation, which we also extend with the head word of the
root category; this latter feature is then generalized using the POS tag of the head (as
previously described). Third, there are features which encode rule instantiations—local
trees consisting of a parent and one or two children—in the derivation. The first set of
rule features encode the combining categories and the result category; the second set of
features extend the first by also encoding the head of the result category; and the third
set generalizes the second using POS tags. Table 1 gives an example for each of these
feature types.

The dependency model also has CCG predicate–argument dependencies as features,
defined as 5-tuples as in Section 3.4. In addition these features are generalized in three
ways using POS tags, with the word–word pair replaced with word–POS, POS–word,
and POS–POS. Table 2 gives some examples.

We extend the dependency features further by adding distance information. The
distance features encode the dependency relation and the word associated with the
lexical category (but not the argument word), plus some measure of distance between
the two dependent words. We use three distance measures which count the following:
the number of intervening words, with four possible values 0, 1, 2, or more; the number
of intervening punctuation marks, with four possible values 0, 1, 2, or more; and the
number of intervening verbs (determined by POS tag), with three possible values 0, 1,
or more. Each of these features is again generalized by replacing the word associated
with the lexical category with its POS tag.

5 Each feature has a corresponding frequency function, defined in Equation (14), which counts the number
of times the feature appears in a derivation.
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Table 2
Predicate–argument dependency features for the dependency model.

Feature type Example

Word–Word 〈bought, (S\NP1)/NP2, 2, stake, (NP\NP)/(S[dcl]/NP)〉
Word–POS 〈bought, (S\NP1)/NP2, 2, NN, (NP\NP)/(S[dcl]/NP)〉
POS–Word 〈VBD, (S\NP1)/NP2, 2, stake, (NP\NP)/(S[dcl]/NP)〉
POS–POS 〈VBD, (S\NP1)/NP2, 2, NN, (NP\NP)/(S[dcl]/NP)〉
Word + Distance(words) 〈bought, (S\NP1)/NP2, 2, (NP\NP)/(S[dcl]/NP)〉 + 2
Word + Distance(punct) 〈bought, (S\NP1)/NP2, 2, (NP\NP)/(S[dcl]/NP)〉 + 0
Word + Distance(verbs) 〈bought, (S\NP1)/NP2, 2, (NP\NP)/(S[dcl]/NP)〉 + 0
POS + Distance(words) 〈VBD, (S\NP1)/NP2, 2, (NP\NP)/(S[dcl]/NP)〉 + 2
POS + Distance(punct) 〈VBD, (S\NP1)/NP2, 2, (NP\NP)/(S[dcl]/NP)〉 + 0
POS + Distance(verbs) 〈VBD, (S\NP1)/NP2, 2, (NP\NP)/(S[dcl]/NP)〉 + 0

Table 3
Rule dependency features for the normal-form model.

Feature type Example

Word–Word 〈company, S[dcl]→NP S[dcl]\NP, bought〉
Word–POS 〈company, S[dcl]→NP S[dcl]\NP, VBD〉
POS–Word 〈NN, S[dcl]→NP S[dcl]\NP, bought〉
POS–POS 〈NN, S[dcl]→NP S[dcl]\NP, VBD〉
Word + Distance(words) 〈bought, S[dcl]→NP S[dcl]\NP〉 + > 2
Word + Distance(punct) 〈bought, S[dcl]→NP S[dcl]\NP〉 + 2
Word + Distance(verbs) 〈bought, S[dcl]→NP S[dcl]\NP〉 + 0
POS + Distance(words) 〈VBD, S[dcl]→NP S[dcl]\NP〉 + > 2
POS + Distance(punct) 〈VBD, S[dcl]→NP S[dcl]\NP〉 + 2
POS + Distance(verbs) 〈VBD, S[dcl]→NP S[dcl]\NP〉 + 0

For the normal-form model we follow Hockenmaier and Steedman (2002b) by de-
fining dependency features in terms of the local rule instantiations, by adding the heads
of the combining categories to the rule instantiation features.6 These are generalized
in three ways using POS tags, as shown in Table 3. There are also the three distance
measures which encode the distance between the two head words of the combining cat-
egories, as for the dependency model. Here the distance feature encodes the combining
categories, the result category, the head of the result category (either as a word or POS
tag), and the distance between the two head words.

For the features in the normal-form model, a frequency cutoff of two was applied;
that is, a feature had to occur at least twice in the gold-standard normal-form deriva-
tions to be included in the model. The same cutoff was applied to the features in the
dependency model, except for the rule instantiation feature types. For these features the
counting was done across all derivations licensed by the gold-standard lexical category
sequences and a frequency cutoff of 10 was applied. The larger cutoff was used because
the productivity of the grammar can lead to very large numbers of these features. We

6 We have also considered a model containing predicate–argument dependencies as well as local rule
dependencies, but adding the extra dependency feature types had no impact on the accuracy of the
normal-form model.
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also only included those features which had a nonzero empirical count, that is, those
features which occured on at least one correct derivation. These feature types and
frequency cutoffs led to 475,537 features for the normal-form model and 632,591 features
for the dependency model.

8. The Supertagger

Parsing with lexicalized grammar formalisms such as CCG is a two-step process: first,
elementary syntactic structures—in CCG’s case lexical categories—are assigned to each
word in the sentence, and then the parser combines the structures together. The first
step can be performed by simply assigning to each word all lexical categories the word
is seen with in the training data, together with some strategy for dealing with rare
and unknown words (such as assigning the complete lexical category set; Hockenmaier
2003a). Because the number of lexical categories assigned to a word can be high, some
strategy is needed to make parsing practical; Hockenmaier, for example, uses a beam
search to discard chart entries with low scores.

In this article we take a different approach, by using a supertagger (Bangalore and
Joshi 1999) to perform step one. Clark and Curran (2004a) describe the supertagger,
which uses log-linear models to define a distribution over the lexical category set for
each local five-word context containing the target word (Ratnaparkhi 1996). The features
used in the models are the words and POS tags in the five-word window, plus the
two previously assigned lexical categories to the left. The conditional probability of a
sequence of lexical categories, given a sentence, is then defined as the product of the
individual probabilities for each category.

The most probable lexical category sequence can be found efficiently using a variant
of the Viterbi algorithm for HMM taggers. We restrict the categories which can be
assigned to a word by using a tag dictionary: for words seen at least k times in the
training data, the tagger can only assign categories which have been seen with the
word in the data. For words seen less than k times, an alternative based on the word’s
POS tag is used: The tagger can only assign categories which have been seen with the
POS tag in the data. We have found the tag dictionary to be beneficial in terms of both
efficiency and accuracy. A value of k = 20 was used in the experiments described in this
article.

The lexical category set used by the supertagger is described in Clark and Curran
(2004a) and Curran, Clark, and Vadas (2006). It includes all lexical catgeories which ap-
pear at least 10 times in Sections 02–21 of CCGbank, resulting in a set of 425 categories.
The Clark and Curran paper shows this set to have very high coverage on unseen data.

The accuracy of the supertagger on Section 00 of CCGbank is 92.6%, with a sentence
accuracy of 36.8%. Sentence accuracy is the percentage of sentences whose words are
all tagged correctly. These figures include punctuation marks, for which the lexical
category is simply the punctuation mark itself, and are obtained using gold standard
POS tags. With automatically assigned POS tags, using the POS tagger of Curran and
Clark (2003), the accuracies drop to 91.5% and 32.5%. An accuracy of 91–92% may ap-
pear reasonable given the large lexical category set; however, the low sentence accuracy
suggests that the supertagger may not be accurate enough to serve as a front-end to a
parser. Clark (2002) reports that a significant loss in coverage results if the supertagger
is used as a front-end to the parser of Hockenmaier and Steedman (2002b). In order
to increase the number of words assigned the correct category, we develop a CCG
multitagger, which is able to assign more than one category to each word.
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Table 4
Supertagger ambiguity and accuracy on Section 00.

β k CATS/WORD ACC SENT ACC ACC (POS) SENT ACC

0.075 20 1.27 97.34 67.43 96.34 60.27
0.030 20 1.43 97.92 72.87 97.05 65.50
0.010 20 1.72 98.37 77.73 97.63 70.52
0.005 20 1.98 98.52 79.25 97.86 72.24
0.001 150 3.57 99.17 87.19 98.66 80.24

The multitagger uses the following conditional probabilities:

P(yi|w1, . . . , wn) =
∑

y1,...,yi−1,yi+1,...,yn

P(yi, y1, . . . , yi−1, yi+1, . . . , yn|w1, . . . , wn) (32)

Here yi is to be thought of as a constant category, whereas yj ( j �= i) varies over the
possible categories for word j. In words, the probability of category yi, given the
sentence, is the sum of the probabilities of all sequences containing yi. This sum can
be calculated efficiently using a variant of the forward–backward algorithm. For each
word in the sentence, the multitagger then assigns all those categories whose probability
according to Equation (32) is within some factor, β, of the highest probability category
for that word. In the implementation used here the forward–backward sum is limited to
those sequences allowed by the tag dictionary. For efficiency purposes, an extra pruning
strategy is also used to discard low probability sub-sequences before the forward–
backward algorithm is run. This uses a second variable-width beam of 0.1β.

Table 4 gives the per-word accuracy of the supertagger on Section 00 for various
levels of category ambiguity, together with the average number of categories per word.7

The SENT column gives the percentage of sentences whose words are all supertagged
correctly. The set of categories assigned to a word is considered correct if it contains
the correct category. The table gives results when using gold standard POS tags and, in
the final two columns, when using POS tags automatically assigned by the POS tagger
described in Curran and Clark (2003). The drop in accuracy is expected, given the
importance of POS tags as features.

The table demonstrates the significant reduction in the average number of cate-
gories that can be achieved through the use of a supertagger. To give one example,
the number of categories in the tag dictionary’s entry for the word is is 45. However,
in the sentence Mr. Vinken is chairman of Elsevier N.V., the Dutch publishing group., the
supertagger correctly assigns one category to is for all values of β.

In our earlier work (Clark and Curran 2004a) the forward–backward algorithm was
not used to estimate the probability in Equation (32). Curran, Clark, and Vadas (2006)
investigate the improvement obtained from using the forward–backward algorithm,
and also address the drop in supertagger accuracy when using automatically assigned
POS tags. We show how to maintain some POS ambiguity through to the supertagging
phase, using a multi-POS tagger, and also how POS tag probabilities can be encoded
as real-valued features in the supertagger. The drop in supertagging accuracy when

7 The β values used here are slightly different to the values used in earlier publications because the
pruning strategy used in the supertagger has changed slightly.
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moving from gold to automatically assigned POS tags is reduced by roughly 50% across
the various values of β.

9. Parsing in Practice

9.1 Combining the Supertagger and the Parser

The philosophy in earlier work which combined the supertagger and parser (Clark,
Hockenmaier, and Steedman 2002; Clark and Curran 2003) was to use an unrestrictive
setting of the supertagger, but still allow a reasonable compromise between speed and
accuracy. The idea was to give the parser the greatest possibility of finding the correct
parse, by initializing it with as many lexical categories as possible, but still retain
reasonable efficiency. However, for some sentences, the number of categories in the
chart gets extremely large with this approach, and parsing is unacceptably slow. Hence a
limit was applied to the number of categories in the chart, and a more restrictive setting
of the supertagger was reverted to if the limit was exceeded.

In this article we consider the opposite approach: Start with a very restrictive setting
of the supertagger, and only assign more categories if the parser cannot find an analysis
spanning the sentence. In this way the parser interacts much more closely with the
supertagger. In effect, the parser is using the grammar to decide if the categories pro-
vided by the supertagger are acceptable, and if not the parser requests more categories.
The advantage of this adaptive supertagging approach is that parsing speeds are much
higher, without any corresponding loss in accuracy. Section 10.3 gives results for the
speed of the parser.

9.2 Chart Parsing Algorithm

The algorithm used to build the packed charts is the CKY chart parsing algorithm
(Kasami 1965; Younger 1967) described in Steedman (2000). The CKY algorithm applies
naturally to CCG because the grammar is binary. It builds the chart bottom-up, starting
with constituents spanning a single word, incrementally increasing the span until the
whole sentence is covered. Because the constituents are built in order of span size, at any
point in the process all the sub-constituents which could be used to create a particular
new constituent must be present in the chart. Hence dynamic programming can be used
to prevent the need for backtracking during the parsing process.

9.3 Grammar Implementation

There is a trade-off between the size and coverage of the grammar and the efficiency
of the parser. One of our main goals in this work has been to develop a parser which
can provide analyses for the vast majority of linguistic constructions in CCGbank, but is
also efficient enough for large-scale NLP applications. In this section we describe some
of the decisions we made when implementing the grammar, with this trade-off in mind.

First, the lexical category set we use does not contain all the categories in Sec-
tions 02–21 of CCGbank. Applying a frequency cutoff of 10 results in a set of 425 lexical
categories. This set has excellent coverage on unseen data (Clark and Curran 2004a)
and is a manageable size for adding the head and dependency information, and also
mapping to grammatical relations for evaluation purposes (Section 11).
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Second, for the normal-form model, and also the hybrid dependency model de-
scribed in Section 10.2.1, two types of contraints on the grammar rules are used. Sec-
tion 3 described the Eisner constraints, in which any constituent which is the result of
a forward composition cannot serve as the primary (left) functor in another forward
composition or forward application; an analogous constraint applies for backward
composition. The second type of constraint only allows two categories to combine if
they have been seen to combine in the training data. Although this constraint only
permits category combinations seen in Sections 02–21 of CCGbank, we have found that
it is detrimental to neither parser accuracy nor coverage.

Neither of these constraints guarantee a normal-form derivation, but they are both
effective at reducing the size of the charts, which can greatly increase parser speed
(Clark and Curran 2004a). The constraints are also useful for training. Section 10 shows
that having a less restrictive setting on the supertagger, when creating charts for dis-
criminative training, can lead to more accurate models. However, the optimal setting
on the supertagger for training purposes can only be used when the constraints are
applied, because otherwise the memory requirements are prohibitive.

Following Steedman (2000), we place the following constraint on backward crossed
composition (for all models): The Y category in (7) cannot be an N or NP category. We
also place a similar constraint on backward composition. Both constraints reduce the
size of the charts considerably with no impact on coverage or accuracy.

Type-raising is performed by the parser for the categories NP, PP, and S[adj]\NP.
It is implemented by adding one of three fixed sets of categories to the chart whenever
an NP, PP, or S[adj]\NP is present. Appendix A gives the category sets. Each category
transformation is an instance of the following two rule schemata:

X ⇒T T/(T\X) (> T) (33)

X ⇒T T\(T/X) (< T) (34)

Appendix A lists the punctuation and type-changing rules implemented in the
parser. This is a larger grammar than we have used in previous articles (Clark and
Curran 2004b, 2004a, 2006), mainly because the improvement in the supertagger since
the earlier work means that we can now use a larger grammar but still maintain highly
efficient parsing.

10. Experiments

The statistics relating to model estimation were obtained using Sections 02–21 of CCG-
bank as training data. The results for parsing accuracy were obtained using Section
00 as development data and Section 23 as the final test data. The results for parsing
speed were obtained using Section 23. There are various hyperparameters in the parsing
system, for example the frequency cutoff for features, the σ parameter in the Gaussian
prior term, the β values used in the supertagger, and so on. All of these were set
experimentally using Section 00 as development data.

10.1 Model Estimation

The gold standard for the normal-form model consists of the normal-form derivations
in CCGbank. For the dependency model, the gold-standard dependency structures are
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produced by running our CCG parser over the normal-form derivations. It is essential
that the packed charts for each sentence contain the gold standard; for the normal-
form model this means that our parser must be able to produce the gold-standard
derivation from the gold-standard lexical category sequence; and for the dependency
model this means that at least one derivation in the chart must produce the gold-
standard dependency structure. Not all rule instantiations in CCGbank can be produced
by our parser, because some are not instances of combinatory rules, and others are very
rare punctuation and type-changing rules which we have not implemented. Hence it
is not possible for the parser to produce the gold standard for every sentence in Sec-
tions 02–21, for either the normal-form or the dependency model. These sentences are
not used in the training process.

For parsing the training data, we ensure that the correct category is a member of the
set assigned to each word. (We do not do this when parsing the test data.) The average
number of categories assigned to each word is determined by the β parameter in the
supertagger. A category is assigned to a word if the category’s probability is within β of
the highest probability category for that word. Hence the value of β has a direct effect
on the size of the packed charts: Smaller β values lead to larger charts.

For training purposes, the β parameter determines how many incorrect derivations
will be used for each sentence for the discriminative training algorithm. We have found
that the β parameter can have a large impact on the accuracy of the resulting models:
If the β value is too large, then the training algorithm does not have enough incorrect
derivations to “discriminate against”; if the β value is too small, then this introduces
too many incorrect derivations into the training process, and can lead to impractical
memory requirements.

For some sentences, the packed charts can become very large. The supertagging
approach we adopt for training differs from that used for testing and follows the original
approach of Clark, Hockenmaier, and Steedman (2002): If the size of the chart exceeds
some threshold, the value of β is increased, reducing ambiguity, and the sentence is
supertagged and parsed again. The threshold which limits the size of the charts was set
at 300,000 individual entries. (This is the threshold used for training; a higher value was
used for testing.) For a small number of long sentences the threshold is exceeded even
at the largest β value; these sentences are not used for training.

For the normal-form model we were able to use 35,732 sentences for training (90.2%
of Sections 02–21) and for the dependency model 35,889 sentences (90.6%). Table 5
gives training statistics for the normal-form and dependency models (and a hybrid
model described in Section 10.2.1), for various sequences of β values, when the training
algorithm is run to convergence on an 18-node cluster. The training algorithm is defined
to have converged when the percentage change in the objective function is less than
0.0001%. The σ value in Equation (16), which was determined experimentally using the
development data, was set at 1.3 for all the experiments in this article.

Table 5
Training statistics.

Model β values CPU time (min.) Iterations RAM (GB)

Dependency 0.1 176.0 750 24.4
Normal-form 0.1 17.2 420 5.3
Normal-form 0.0045, 0.0055, 0.01, 0.05, 0.1 72.1 466 16.1
Hybrid 0.0045, 0.0055, 0.01, 0.05, 0.1 128.4 610 22.5
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The main reason that the normal-form model requires less memory and converges
faster than the dependency model is that, for the normal-form model, we applied the
two types of normal-form restriction described in Section 9.3: First, categories can only
combine if they appear together in a rule instantiation in Sections 2–21 of CCGbank;
and second, we applied the Eisner constraints described in Section 3.

We conclude this section by noting that it is only through the use of the supertagger
that we are able to perform the discriminative estimation at all; without it the memory
requirements would be prohibitive, even when using the cluster.

10.2 Parsing Accuracy

This section gives accuracy figures on the predicate–argument dependencies in CCG-
bank. Overall results are given, as well as results broken down by relation type, as
in Clark, Hockenmaier, and Steedman (2002). Because the purpose of this article is
to demonstrate the feasibility of wide-coverage parsing with CCG, we do not give an
evaluation targeted specifically at long-range dependencies; such an evaluation was
presented in Clark, Steedman, and Curran (2004).

For evaluation purposes, the threshold parameter which limits the size of the charts
was set at 1,000,000 individual entries. This value was chosen to maximize the coverage
of the parser, so that the evaluation is performed on as much of the unseen data as
possible. This was also the threshold parameter used for the speed experiments in
Section 10.3.

All of the intermediate results were obtained using Section 00 of CCGbank as
development data. The final test result, showing the performance of the best performing
model, was obtained using Section 23. Evaluation was performed by comparing the
dependency output of the parser against the predicate–argument dependencies in CCG-
bank. We report precision, recall, and F-scores for labeled and unlabeled dependencies,
and also category accuracy. The category accuracy is the percentage of words assigned
the correct lexical category by the parser (including punctuation). The labeled depen-
dency scores take into account the lexical category containing the dependency relation,
the argument slot, the word associated with the lexical category, and the argument
head word: All four must be correct to score a point. For the unlabeled scores, only
the two dependent words are considered. The F-score is the balanced harmonic mean of
precision (P) and recall (R): 2PR/(P + R). The scores are given only for those sentences
which were parsed successfully. We also give coverage values showing the percentage
of sentences which were parsed successfully.

Using the CCGbank dependencies for evaluation is a departure from our earlier
work, in which we generated our own gold standard by running the parser over the
derivations in CCGbank and outputting the dependencies. In this article we wanted to
use a gold standard which is easily accessible to other researchers. However, there are
some differences between the dependency scheme used by our parser and CCGbank.
For example, our parser outputs some coordination dependencies which are not in
CCGbank; also, because the parser currently encodes every argument slot in each lexical
category as a dependency relation, there are some relations, such as the subject of to
in a to-infinitival construction, which are not in CCGbank either. In order to provide
a fair evaluation, we ignore those dependency relations. This still leaves some minor
differences. We can measure the remaining differences as follows: Comparing the CCG-
bank dependencies in Section 00 against those generated by running our parser over
the derivations in 00 gives labeled precision and recall values of 99.80% and 99.18%,
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respectively. Thus there are a small number of dependencies in CCGbank which the
current version of the parser can never get right.

10.2.1 Dependency Model vs. Normal-Form Model. Table 6 shows the results for the normal-
form and dependency models evaluated against the predicate–argument dependen-
cies in CCGbank. Gold standard POS tags were used; the LF(POS) column gives the
labeled F-score with automatically assigned POS tags for comparison. Decoding with
the dependency model involves finding the maximum-recall dependency structure, and
decoding with the normal-form model involves finding the most probable derivation,
as described in Section 6. The β value refers to the setting of the supertagger used for
training and is the first in the sequence of βs from Table 5. The β values used during
the testing are those in Table 4 and the new, efficient supertagging strategy of taking the
highest β value first was used.

With the same β values used for training (β = 0.1), the results for the dependency
model are slightly higher than for the normal-form model. However, the coverage of the
normal-form model is higher (because the use of the normal-form constraints mean that
there are less sentences which exceed the chart-size threshold). One clear result from the
table is that increasing the chart size used for training, by using smaller β values, can
significantly improve the results, in this case around 1.5% F-score for the normal-form
model.

The training of the dependency model already uses most of the RAM available on
the cluster. However, it is possible to use smaller β values for training the dependency
model if we also apply the two types of normal-form restriction used by the normal-
form model. This hybrid model still uses the features from the dependency model;
it is still trained using dependency structures as the gold standard; and decoding is
still performed using the maximum-recall algorithm; the only difference is that the
derivations in the charts are restricted by the normal-form constraints (both for training
and testing). Table 5 gives the training statistics for this model, compared to the de-
pendency and normal-form models. The number of sentences we were able to use for
training this model was 36,345 (91.8% of Sections 02–21). The accuracy of this hybrid
dependency model is given in Table 7. These are the highest results we have obtained
to date on Section 00. We also give the results for the normal-form model from Table 6
for comparison.

Table 8 gives the results for the hybrid dependency model, broken down by relation
type, using the same relations given in Clark, Hockenmaier, and Steedman (2002).
Automatically assigned POS tags were used.

10.2.2 Final Test Results. Table 9 gives the final test results on Section 23 for the hybrid
dependency model. The coverage for these results is 99.63% (for gold-standard POS

Table 6
Results for dependency and normal-form models on Section 00.

LF SENT CAT
Model β LP LR LF (POS) ACC UP UR UF ACC cov

Dependency 0.1 86.52 84.97 85.73 84.24 32.06 92.91 91.24 92.07 93.37 98.17
Normal-form 0.1 85.50 84.68 85.08 83.34 31.93 92.38 91.49 91.93 93.04 99.06
Normal-form 0.0045 87.17 86.30 86.73 84.74 34.99 93.21 92.28 92.74 94.05 99.06
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Table 7
Results on Section 00 with both models using normal-form constraints.

LF SENT CAT
Model β LP LR LF (POS) ACC UP UR UF ACC cov

Normal-form 0.0045 87.17 86.30 86.73 84.74 34.99 93.21 92.28 92.74 94.05 99.06
Hybrid dependency 0.0045 88.06 86.43 87.24 85.25 35.67 93.88 92.13 93.00 94.16 99.06

Table 8
Results for the hybrid dependency model on Section 00 by dependency relation.

Lexical category Arg Slot LP % # deps LR % # deps F-score

NX/NX,1 1 nominal modifier 95.28 7,314 95.62 7,288 95.45
NPX/NX,1 1 determiner 96.57 4,078 96.03 4,101 96.30
(NPX\NPX,1)/NP2 2 np modifying prep 82.17 2,574 88.90 2,379 85.40
(NPX\NPX,1)/NP2 1 np modifying prep 81.58 2,285 85.74 2,174 83.61
((SX\NPY)\(SX,1\NPY))/NP2 2 vp modifying prep 71.94 1,169 73.32 1,147 72.63
((SX\NPY)\(SX,1\NPY))/NP2 1 vp modifying prep 70.92 1,073 71.93 1,058 71.42
(S[dcl]\NP1)/NP2 1 transitive verb 81.62 914 85.55 872 83.54
(S[dcl]\NP1)/NP2 2 transitive verb 81.57 971 86.37 917 83.90
(SX\NPY)\(SX,1\NPY) 1 adverbial modifier 86.85 745 86.73 746 86.79
PP/NP1 1 prep complement 75.06 818 70.09 876 72.49
(S[b]\NP1)/NP2 2 inf transitive verb 84.01 663 87.03 640 85.50
(S[dcl]\NPX,1)/(S[b]2\NPX) 2 auxiliary 97.70 478 97.90 477 97.80
(S[dcl]\NPX,1)/(S[b]2\NPX) 1 auxiliary 94.15 479 92.99 485 93.57
(S[b]\NP1)/NP2 1 inf transitive verb 77.82 496 73.95 522 75.83
(NPX/NX,1)\NP2 1 s genitive 96.57 379 95.56 383 96.06
(NPX/NX,1)\NP2 2 s genitive 97.35 377 98.66 372 98.00
(S[dcl]\NP1)/S[dcl]2 1 sentential comp verb 94.88 371 90.96 387 92.88
(NPX\NPX,1)/(S[dcl]2\NPX) 1 subject rel pronoun 85.77 260 81.39 274 83.52
(NPX\NPX,1)/(S[dcl]2\NPX) 2 subject rel pronoun 97.45 275 97.10 276 97.28
(NPX\NPX,1)/(S[dcl]2/NPX) 1 object rel pronoun 81.82 22 69.23 26 75.00
(NPX\NPX,1)/(S[dcl]2/NPX) 2 object rel pronoun 86.36 22 82.61 23 84.44
NP/(S[dcl]1/NP) 1 headless obj rel pron 100.00 17 100.00 17 100.00

Table 9
Results for the hybrid dependency model on Section 23.

LP LR LF SENT UP UR UF CAT ACC cov

Hybrid dependency 88.34 86.96 87.64 36.53 93.74 92.28 93.00 94.32 99.63
Hybrid dependency (POS) 86.17 84.74 85.45 32.92 92.43 90.89 91.65 92.98 99.58
Hockenmaier (2003) 84.3 84.6 84.4 − 91.8 92.2 92.0 92.2 99.83
Hockenmaier (POS) 83.1 83.5 83.3 − 91.1 91.5 91.3 91.5 99.83

tags), which corresponds to 2,398 of the 2,407 sentences in Section 23 receiving an
analysis. When using automatically assigned POS tags, the coverage is slightly lower:
99.58%. We used version 1.2 of CCGbank to obtain these results. Results are also given
for Hockenmaier’s parser (Hockenmaier 2003a) which used an earlier, slightly different
version of the treebank. We wanted to use the latest version to enable other researchers
to compare with our results.
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10.3 Parse Times

The results in this section were obtained using a 3.2 GHz Intel Xeon P4. Table 10 gives
parse times for the 2,407 sentences in Section 23 of CCGbank. In order not to optimize
speed by compromising accuracy, we used the hybrid dependency model, together
with both kinds of normal-form constraints, and the maximum-recall decoder. Times
are given for both automatically assigned POS tags and gold-standard POS tags (POS).
The sents and words columns give the number of sentences, and the number of words,
parsed per second. For all of the figures reported on Section 23, unless stated otherwise,
we chose settings for the various parameters which resulted in a coverage of 99.6%. It is
possible to obtain an analysis for the remaining 0.4%, but at a significant loss in speed.
The parse times and speeds include the failed sentences, and include the time taken by
the supertagger, but not the POS tagger; however, the POS tagger is extremely efficient,
taking less than 4 seconds to supertag Section 23, most of which consists of load time
for the Maximum Entropy model.

The first row corresponds to the strategy of earlier work by starting with an un-
restrictive setting of the supertagger. The first value of β is 0.005; if the parser cannot
find a spanning analysis, this is changed to β = 0.001k=150, which increases the average
number of categories assigned to a word by decreasing β and increasing the tag-
dictionary parameter. If the node limit is exceeded at β = 0.005 (for these experiments
the node limit is set at 1,000,000), β is changed to 0.01. If the node limit is still exceeded,
β is changed to 0.03, and finally to 0.075.

The second row corresponds to the new strategy of starting with the most restrictive
setting of the supertagger (β = 0.075), and moving through the settings if the parser
cannot find a spanning analysis. The table shows that the new strategy has a significant
impact on parsing speed, increasing it by a factor of 3 over the earlier approach (given
the parameter settings used in these experiments).

The penultimate row corresponds to using only one supertagging level with β =
0.075; the parser ignores the sentence if it cannot get an analysis at this level. The per-
centage of sentences without an analysis is now over 6% (with automatically assigned
POS tags), but the parser is extremely fast, processing over 30 sentences per second. This
configuration of the system would be useful for obtaining data for lexical knowledge
acquisition, for example, for which large amounts of data are required. The oracle row
gives the parser speed when it is provided with only the correct lexical categories,
showing the speeds which could be achieved given the perfect supertagger.

Table 11 gives the percentage of sentences which are parsed at each supertagger
level, for both the new and old parsing strategies. The results show that, for the old
approach, most of the sentences are parsed using the least restrictive setting of the
supertagger (β = 0.005); conversely, for the new approach, most of the sentences are

Table 10
Parse times for Section 23.

Supertagging/parsing Time Sents/ Words/ Time (POS) Sents (POS)/ Words (POS)/
constraints (sec) sec sec (sec) sec sec

β = 0.005 → . . .→ 0.075 379.4 6.3 145.9 369.0 6.5 150.0
β = 0.075 → . . . 0.001k=150 99.9 24.1 554.3 116.6 20.6 474.7
β = 0.075 (95.3/93.4% cov) 79.7 30.2 694.6 79.8 30.1 693.5
Oracle (94.7% cov) 23.8 101.0 2,322.6
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Table 11
Supertagger β levels used on Section 00.

0.075 FIRST 0.005 FIRST

β CATS/WORD PARSES % PARSES %

0.075 1.27 1,786 93.4 3 0.2
0.03 1.43 45 2.4 5 0.3
0.01 1.72 24 1.3 2 0.1
0.005 1.98 18 0.9 1,863 97.4
0.001k=150 3.57 22 1.2 22 1.2
FAIL 18 0.9 18 0.9

Table 12
Comparing parser speeds on Section 23 of the WSJ Penn Treebank.

Parser Time (min.)

Collins 45
Charniak 28
Sagae 11
CCG 1.9

parsed using the most restrictive setting (β = 0.075). This suggests that, in order to
increase the accuracy of the parser without losing efficiency, the accuracy of the su-
pertagger at the β = 0.075 level needs to be improved, without increasing the number
of categories assigned on average.

A possible response to our policy of adaptive supertagging is that any statistical
parser can be made to run faster, for example by changing the beam parameter in
the Collins (2003) parser, but that any increase in speed is typically associated with a
reduction in accuracy. For the CCG parser, the accuracy did not degrade when using the
new adaptive parsing strategy. Thus the accuracy and efficiency of the parser were not
tuned separately: The configuration used to obtain the speed results was also used to
obtain the accuracy results in Sections 10.2 and 11.

To give some idea of how these parsing speeds compare with existing parsers,
Table 12 gives the parse times on Section 23 for a number of well-known parsers. Sagae
and Lavie (2005) is a classifier-based linear time parser. The times for the Sagae, Collins,
and Charniak parsers were taken from the Sagae and Lavie paper, and were obtained
using a 1.8 GHz P4, compared to a 3.2 GHz P4 for the CCG numbers. Comparing parser
speeds is especially problematic because of implementation differences and the fact
that the accuracy of the parsers is not being controlled. Thus we are not making any
strong claims about the efficiency of parsing with CCG compared to other formalisms.
However, the results in Table 12 add considerable weight to one of our main claims in
this article, namely, that highly efficient parsing is possible with CCG, and that large-
scale processing is possible with linguistically motivated grammars.

11. Cross-Formalism Comparison

An obvious question is how well the CCG parser compares with parsers using different
grammar formalisms. One question we are often asked is whether the CCG derivations
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output by the parser could be converted to Penn Treebank–style trees to enable a com-
parison with, for example, the Collins and Charniak parsers. The difficulty is that CCG
derivations often have a different shape to the Penn Treebank analyses (coordination
being a prime example) and reversing the mapping used by Hockenmaier to create
CCGbank is a far from trivial task.

There is some existing work comparing parser performance across formalisms.
Briscoe and Carroll (2006) evaluate the RASP parser on the Parc Dependency Bank
(DepBank; King et al. 2003). Cahill et al. (2004) evaluate an LFG parser, which uses an
automatically extracted grammar, against DepBank. Miyao and Tsujii (2004) evaluate
their HPSG parser against PropBank (Palmer, Gildea, and Kingsbury 2005). Kaplan et al.
(2004) compare the Collins parser with the Parc LFG parser by mapping Penn Treebank
parses into the dependencies of DepBank, claiming that the LFG parser is more accurate
with only a slight reduction in speed. Preiss (2003) compares the parsers of Collins
and Charniak, the grammatical relations finder of Buchholz, Veenstra, and Daelemans
(1999), and the Briscoe and Carroll (2002) parser, using the gold-standard grammatical
relations (GRs) from Carroll, Briscoe, and Sanfilippo (1998). The Penn Treebank trees of
the Collins and Charniak parsers, and the GRs of the Buchholz parser, are mapped into
the required grammatical relations, with the result that the GR finder of Buchholz is the
most accurate.

There are a number of problems with such evaluations. The first is that, when
converting the output of the Collins parser, for example, into the output of another
parser, the Collins parser is at an immediate disadvantage. This is especially true if the
alternative output is significantly different from the Penn Treebank trees and if the in-
formation required to produce the alternative output is hard to extract. One could argue
that the relative lack of grammatical information in the output of the Collins parser is a
weakness and any evaluation should measure that. However, we feel that the onus of
mapping into another formalism should ideally lie with the researchers making claims
about their own particular parser. The second difficulty is that some constructions may
be analyzed differently across formalisms, and even apparently trivial differences such
as tokenization can complicate the comparison (Crouch et al. 2002).

Despite these difficulties we have attempted a cross-formalism comparison of the
CCG parser. For the gold standard we chose the version of DepBank reannotated by
Briscoe and Carroll (2006) (hereafter B&C), consisting of 700 sentences from Section 23
of the Penn Treebank. The B&C scheme is similar to the original DepBank scheme in
many respects, but overall contains less grammatical detail. Briscoe and Carroll (2006)
describe the differences between the two schemes.

We chose this resource for the following reasons: It is publicly available, allowing
other researchers to compare against our results; the GRs making up the annotation
share some similarities with the predicate–argument dependencies output by the CCG
parser; and we can directly compare our parser against a non-CCG parser, namely the
RASP parser—and because we are converting the CCG output into the format used by
RASP the CCG parser is not at an unfair advantage. There is also the SUSANNE GR gold
standard (Carroll, Briscoe, and Sanfilippo 1998), on which the B&C annotation is based,
but we chose not to use this for evaluation. This earlier GR scheme is less like the depen-
dencies output by the CCG parser, and the comparison would be complicated further by
fact that, unlike CCGbank, the SUSANNE corpus is not based on the Penn Treebank.

The GRs are described in Briscoe (2006), Briscoe and Carroll (2006), and Briscoe,
Carroll, and Watson (2006). Table 13 contains the complete list of GRs used in the
evaluation, with examples taken from Briscoe. The CCG dependencies were trans-
formed into GRs in two stages. The first stage was to create a mapping between the
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Table 13
The grammatical relations scheme used in the cross-formalism comparison.

GR Description Example Relevant GRs in example

conj coordinator Kim likes oranges, apples, (dobj likes and)
and satsumas or clementines (conj and oranges)

(conj and apples)
(conj and or)
(conj or satsumas)
(conj or clementines)

aux auxiliary Kim has been sleeping (aux sleeping has)
(aux sleeping been)

det determiner the man (det man the)
ncmod non-clausal modifier the old man in the barn slept (ncmod man old)

(ncmod man in)
(dobj in barn)

the butcher’s shop (ncmod poss shop butcher)
xmod unsaturated predicative who to talk to (xmod to who talk)

modifier (iobj talk to)
(dobj to who)

cmod saturated clausal modifier although he came, Kim left (cmod left although)
(ccomp although came)

ncsubj non-clausal subject Kim left (ncsubj left Kim )
the upset man (ncsubj upset man obj)

(passive upset)
Kim wants to go (ncsubj go Kim )
He’s going said Kim (ncsubj said Kim inv)

passive passive verb issues were filed (passive filed)
(ncsubj filed issues obj)

xsubj unsaturated predicative subject leaving matters (xsubj matters leaving )
csubj saturated clausal subject that he came matters (csubj matters came that)
dobj direct object she gave it to Kim (dobj gave it)

(iobj gave to)
(dobj to Kim)

obj2 second object she gave Kim toys (obj2 gave toys)
(dobj gave Kim)

iobj indirect object Kim flew to Paris from Geneva (iobj flew to)
(iobj flew from)
(dobj to Paris)
(dobj from Geneva)

pcomp PP which is a PP complement Kim climbed through into the attic (pcomp climbed through)
(pcomp through into)
(dobj into attic)

xcomp unsaturated VP complement Kim thought of leaving (xcomp thought of)
(xcomp of leaving)

ccomp saturated clausal complement Kim asked about him playing rugby (ccomp asked about)
(ccomp about him)
(ncsubj playing him )
(dobj playing rugby)

ta textual adjunct delimited He made the discovery: (ta colon discovery was)
by punctuation Kim was the abbot

CCG dependencies and the GRs. This involved mapping each argument slot in the 425
lexical categories in the CCG lexicon onto a GR. In the second stage, the GRs created
for a particular sentence—by applying the mapping to the parser output—were passed
through a Python script designed to correct some of the obvious remaining differences
between the CCG and GR representations.

In the process of performing the transformation we encountered a methodological
problem: Without looking at examples it was difficult to create the mapping and im-
possible to know whether the two representations were converging. Briscoe, Carroll,
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and Watson (2006) split the 700 sentences in DepBank into a test and development set,
but the latter only consists of 140 sentences which we found was not enough to reliably
create the transformation. There are some development files in the RASP release which
provide examples of the GRs, which we used when possible, but these only cover a
subset of the CCG lexical categories.

Our solution to this problem was to convert the gold-standard dependencies from
CCGbank into GRs and use these to develop the transformation. So we did inspect the
annotation in DepBank, and compared it to the transformed CCG dependencies, but
only the gold-standard CCG dependencies. Thus the parser output was never used dur-
ing this process. We also ensured that the dependency mapping and the post-processing
are general to the GRs scheme and not specific to the test set. Table 14 gives some
examples of the dependency mapping. Because the number of sentences annotated with
GRs is so small, the only other option would have been to guess at various DepBank
analyses, which would have made the the evaluation even more biased against the CCG
parser.

One advantage of this approach is that, by comparing the transformed gold-
standard CCG dependencies with the gold-standard GRs, we can measure how close
the CCG representation is to the GRs. This provides some indication of how difficult it
is to perform the transformation, and also provides an upper bound on the accuracy of
the parser on DepBank. This method would be useful when converting the output of
the Collins parser into an alternative representation (Kaplan et al. 2004): Applying the
transformation to the gold-standard Penn Treebank trees and comparing with DepBank
would provide an upper bound on the performance of the Collins parser and give some
indication of the effectiveness of the transformation.

11.1 Mapping the CCG Dependencies to GRs

Table 14 gives some examples of the mapping. In our notation, %l indicates the word
associated with the lexical category and %f is the head of the constituent filling the

Table 14
Examples of the CCG dependency to GRs mapping; $l denotes the word associated with the
lexical category and $f is the filler.

CCG lexical category arg slot GR

(S[dcl]\NP1)/NP2 1 (ncsubj %l %f )
(S[dcl]\NP1)/NP2 2 (dobj %l %f)
(S\NP)/(S\NP)1 1 (ncmod %f %l)
(NP\NP1)/NP2 1 (ncmod %f %l)
(NP\NP1)/NP2 2 (dobj %l %f)
NP[nb]/N1 1 (det %f %l)
(NP\NP1)/(S[pss]\NP)2 1 (xmod %f %l)
(NP\NP1)/(S[pss]\NP)2 2 (xcomp %l %f)
((S\NP)\(S\NP)1)/S[dcl]2 1 (cmod %f %l)
((S\NP)\(S\NP)1)/S[dcl]2 2 (ccomp %l %f)
(S[dcl]\NP1)/(S[adj]\NP)2 1 (ncsubj %l %f )
(S[dcl]\NP1)/(S[adj]\NP)2 2 (xcomp %l %f)
((S[dcl]\NP1)/NP2)/NP3 1 (ncsubj %l %f )
((S[dcl]\NP1)/NP2)/NP3 2 (obj2 %l %f)
((S[dcl]\NP1)/NP2)/NP3 3 (dobj %l %f)
(S[dcl]\NP1)/(S[b]\NP)2 2 (aux %f %l)
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argument slot. For many of the CCG dependencies, the mapping into GRs is straightfor-
ward. For example, the first two rows of Table 14 show the mapping for the transitive
verb category (S[dcl]\NP1)/NP2: Argument slot 1 is a non-clausal subject and argument
slot 2 is a direct object. In the example Kim likes juicy oranges, likes is associated with the
transitive verb category, Kim is the subject, and oranges is the head of the constituent
filling the object slot, leading to the following GRs: (ncsubj likes Kim ) and (dobj
likes oranges). The third row shows an example of a modifier: (S\NP)/(S\NP) modi-
fies a verb phrase to the right. Note that, in this example, the order of the lexical category
(%l) and filler (%f) is switched compared to the previous example to match the DepBank
annotation.

There are a number of reasons why creating the dependency transformation is
more difficult than these examples suggest. The first problem is that the mapping from
CCG dependencies to GRs is many-to-many. For example, the transitive verb category
(S[dcl]\NP)/NP applies to the copular in sentences like Imperial Corp. is the parent of
Imperial Savings & Loan. With the default annotation the relation between is and parent
would be dobj, whereas in DepBank the argument of the copular is analyzed as an
xcomp. Table 15 gives some examples of how we attempt to deal with this problem.
The constraint in the first example means that, whenever the word associated with the
transitive verb category is a form of be, the second argument is xcomp, otherwise the
default case applies (in this case dobj). There are a number of categories with similar
constraints, checking whether the word associated with the category is a form of be.

The second type of constraint, shown in the third line of the table, checks the lexical
category of the word filling the argument slot. In this example, if the lexical category of
the preposition is PP/NP, then the second argument of (S[dcl]\NP)/PP maps to iobj;
thus in The loss stems from several factors the relation between the verb and preposition
is (iobj stems from). If the lexical category of the preposition is PP/(S[ng]\NP),
then the GR is xcomp; thus in The future depends on building cooperation the relation
between the verb and preposition is (xcomp depends on). There are a number of
CCG dependencies with similar constraints, many of them covering the iobj/xcomp
distinction.

The second difficulty in creating the transformation is that not all the GRs are binary
relations, whereas the CCG dependencies are all binary. The primary example of this is
to-infinitival constructions. For example, in the sentence The company wants to wean itself
away from expensive gimmicks, the CCG parser produces two dependencies relating wants,
to and wean, whereas there is only one GR: (xcomp to wants wean). The final row of

Table 15
Examples of the many-to-many nature of the CCG dependency to GRs mapping, and a
terniary GR.

CCG lexical category Slot GR Constraint Example

(S[dcl]\NP1)/NP2 2 (xcomp %l %f) word=be The parent is Imperial
(dobj %l %f) The parent sold Imperial

(S[dcl]\NP1)/PP2 2 (iobj %l %f) cat=PP/NP The loss stems from
several factors

(xcomp %l %f) cat=PP/(S[ng]\NP) The future depends on
building cooperation

(S[dcl]\NP1)/ 2 (xcomp %f %l %k) cat=(S[to]\NP)/ wants to wean itself
(S[to]\NP)2 (S[b]\NP) away from
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Table 15 gives an example. We implement this constraint by introducing a %k variable
into the GR template which denotes the argument of the category in the constraint
column (which, as before, is the lexical category of the word filling the argument slot). In
the example, the current category is (S[dcl]\NP1)/(S[to]\NP)2, which is associated with
wants; this combines with (S[to]\NP)/(S[b]\NP), associated with to; and the argument of
(S[to]\NP)/(S[b]\NP) is wean. The %k variable allows us to look beyond the arguments
of the current category when creating the GRs.

A further difficulty in creating the transformation is that the head passing con-
ventions differ between DepBank and CCGbank. By “head passing” we mean the
mechanism which determines the heads of constituents and the mechanism by which
words become arguments of long-range dependencies. For example, in the sentence
The group said it would consider withholding royalty payments, the DepBank and CCGbank
annotations create a dependency between said and the following clause. However, in
DepBank the relation is between said and consider, whereas in CCGbank the relation is
between said and would. We fixed this problem by changing the head of would consider to
be consider rather than would. In practice this means changing the annotation of all the
relevant lexical categories in the markedup file.8 The majority of the categories to which
this applies are those creating aux relations.

A related difference between the two resources is that there are more subject re-
lations in CCGbank than DepBank. In the previous example, CCGbank has a subject
relation between it and consider, and also it and would, whereas DepBank only has
the relation between it and consider. In practice this means ignoring a number of the
subject dependencies output by the CCG parser, which is implemented by annotating
the relevant lexical categories plus argument slot in the markedup file with an “ignore”
marker.

Another example where the dependencies differ in the two resources is the treat-
ment of relative pronouns. For example, in Sen. Mitchell, who had proposed the stream-
lining, the subject of proposed is Mitchell in CCGbank but who in DepBank. Again, we
implemented this change by fixing the head annotation in the lexical categories which
apply to relative pronouns.

In summary, considerable changes were required to the markedup file in order to
bring the dependency annotations of CCGbank and DepBank closer together. The major
types of changes have been described here, but not all the details.

11.2 Post-Processing of the GR Output

Despite the considerable changes made to the parser output described in the previous
section, there were still significant differences between the GRs created from the CCG
dependencies and the DepBank GRs. To obtain some idea of whether the schemes
were converging, we performed the following oracle experiment. We took the CCG
derivations from CCGbank corresponding to the sentences in DepBank, and ran the
parser over the gold-standard derivations, outputting the newly created GRs.9 Treating
the DepBank GRs as a gold standard, and comparing these with the CCGbank GRs,

8 The markedup file is the file containing the lexical categories, together with annotation which determines
dependency and head information, plus the CCG dependency to GR mapping. Appendix B shows part of
the markedup file.

9 All GRs involving a punctuation mark were removed because the RASP evaluation script can only handle
tokens which appear in the gold-standard GRs for the sentence.
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gave precision and recall scores of only 76.23% and 79.56%, respectively. Thus given the
current mapping, the perfect CCGbank parser would achieve an F-score of only 77.86%
when evaluated against DepBank.

On inspecting the output, it was clear that a number of general rules could be
applied to bring the schemes closer together, which we implemented as a Python post-
processing script. We now provide a description of some of the major changes, to give
an indication of the kinds of rules we implemented. We tried to keep the changes as
general as possible and not specific to the test set, although some rules, such as the
handling of monetary amounts, are genre-specific. We decided to include these rules
because they are trivial to implement and significantly affect the score, and we felt that,
without these changes, the CCG parser would be unfairly penalized.

The first set of changes deals with coordination. One significant difference between
DepBank and CCGbank is the treatment of coordinations as arguments. Consider the
example The president and chief executive officer said the loss stems from several factors. In
both CCGbank and DepBank there are two conj GRs arising from the coordination:
(conj and president) and (conj and officer).10 The difference arises in the subject
of said: in DepBank the subject is and: (ncsubj said and ), whereas in CCGbank there
are two subjects: (ncsubj said president ) and (ncsubj said officer ). We deal
with this problem by replacing any pairs of GRs which differ only in their arguments,
and where the arguments are coordinated items, with a single GR containing the coor-
dination term as the argument. Two arguments are coordinated if they appear in conj
relations with the same coordinating term, where “same term” is determined by both
the word and sentence position.

Another source of conj errors is coordination terms acting as sentential modifiers,
with category S/S, often at the beginning of a sentence. These are labeled conj in
DepBank, but the GR for S/S is ncmod. So any ncmod whose modifier’s lexical category
is S/S, and whose POS tag is CC, is changed to conj.

Ampersands are also a significant problem, and occur frequently in WSJ text. For
example, the CCGbank analysis of Standard & Poor’s index assigns the lexical category
N/N to both Standard and &, treating them as modifiers of Poor, whereas DepBank treats
& as a coordinating term. We fixed this by creating conj GRs between any & and the two
words on either side; removing the modifier GR between the two words; and replacing
any GRs in which the words on either side of the & are arguments with a single GR in
which & is the argument.

The ta relation, which identifies text adjuncts delimited by punctuation (Briscoe
2006), is difficult to assign correctly to the parser output. The simple punctuation rules
used by the parser, and derived from CCGbank, do not contain enough information to
distinguish between the various cases of ta. Thus the only rule we have implemented,
which is somewhat specific to the newspaper genre, is to replace GRs of the form
(cmod say arg) with (ta quote arg say), where say can be any of say, said, or says.
This rule applies to only a small subset of the ta cases but has high enough precision to
be worthy of inclusion.

A common source of error is the distinction between iobj and ncmod, which is not
surprising given the difficulty that human annotators have in distinguishing arguments
and adjuncts. There are many cases where an argument in DepBank is an adjunct in
CCGbank, and vice versa. The only change we have made is to turn all ncmod GRs with

10 CCGbank does not contain GRs in this form, although we will continue to talk as though it does; these are
the GRs after the CCGbank dependencies have been put through the dependency to GRs mapping.
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of as the modifier into iobj GRs (unless the ncmod is a partitive predeterminer). This was
found to have high precision and applies to a significant number of cases.

There are some dependencies in CCGbank which do not appear in DepBank. Exam-
ples include any dependencies in which a punctuation mark is one of the arguments,
and so we removed these from the output of the parser.

We have made some attempt to fill the subtype slot for some GRs. The subtype
slot specifies additional information about the GR; examples include the value obj in
a passive ncsubj, indicating that the subject is an underlying object; the value num in
ncmod, indicating a numerical quantity; and prt in ncmod to indicate a verb particle.
The passive case is identified as follows: Any lexical category which starts S[pss]\NP
indicates a passive verb, and we also mark any verbs POS tagged VBN and assigned
the lexical category N/N as passive. Both these rules have high precision, but still leave
many of the cases in DepBank unidentified. Many of those remaining are POS tagged
JJ and assigned the lexical category N/N, but this is also true of many non-passive
modifiers, so we did not attempt to extend these rules further. The numerical case is
identified using two rules: the num subtype is added if any argument in a GR is assigned
the lexical category N/N[num], and if any of the arguments in an ncmod is POS tagged
CD. prt is added to an ncmod if the modifiee has a POS tag beginning V and if the
modifier has POS tag RP.

We are not advocating that any of these post-processing rules should form part
of a parser. It would be preferable to have the required information in the treebank
from which the grammar is extracted, so that it could be integrated into the parser in a
principled way. However, in order that the parser evaluation be as fair and informative
as possible, it is important that the parser output conform as closely to the gold standard
as possible. Thus it is appropriate to use any general transformation rules, as long as
they are simple and not specific to the test set, to achieve this.

The final columns of Table 16 show the accuracy of the transformed gold-standard
CCGbank dependencies when compared with DepBank; the simple post-processing
rules have increased the F-score from 77.86% to 84.76%. However, note that this
F-score provides an upper bound on the performance of the CCG parser, and that this
score is still below the F-scores reported earlier when evaluating the parser output
against CCGbank. Section 11.4 contains more discussion of this issue.

11.3 Results

The results in Table 16 were obtained by parsing the sentences from CCGbank corre-
sponding to those in the 560-sentence test set used by Briscoe, Carroll, and Watson
(2006). We used the CCGbank sentences because these differ in some ways from the
original Penn Treebank sentences (there are no quotation marks in CCGbank, for ex-
ample) and the parser has been trained on CCGbank. Even here we experienced some
unexpected difficulties, because some of the tokenization is different between DepBank
and CCGbank (even though both resources are based on the Penn Treebank), and
there are some sentences in DepBank which have been significantly shortened (for no
apparent reason) compared to the original Penn Treebank sentences. We modified the
CCGbank sentences—and the CCGbank analyses because these were used for the oracle
experiments—to be as close to the DepBank sentences as possible. All the results were
obtained using the RASP evaluation scripts, with the results for the RASP parser taken
from Briscoe, Carroll, and Watson (2006). The results for CCGbank were obtained using
the oracle method described previously.
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Table 16
Accuracy on DepBank.

RASP CCG parser CCGbank

Relation Prec Rec F Prec Rec F Prec Rec F # GRs

dependent 79.76 77.49 78.61 84.07 82.19 83.12 88.83 84.19 86.44 10,696
aux 93.33 91.00 92.15 95.03 90.75 92.84 96.47 90.33 93.30 400
conj 72.39 72.27 72.33 79.02 75.97 77.46 83.07 80.27 81.65 595
ta 42.61 51.37 46.58 51.52 11.64 18.99 62.07 12.59 20.93 292
det 87.73 90.48 89.09 95.23 94.97 95.10 97.27 94.09 95.66 1,114
arg mod 79.18 75.47 77.28 81.46 81.76 81.61 86.75 84.19 85.45 8,295

mod 74.43 67.78 70.95 71.30 77.23 74.14 77.83 79.65 78.73 3,908
ncmod 75.72 69.94 72.72 73.36 78.96 76.05 78.88 80.64 79.75 3,550
xmod 53.21 46.63 49.70 42.67 53.93 47.64 56.54 60.67 58.54 178
cmod 45.95 30.36 36.56 51.34 57.14 54.08 64.77 69.09 66.86 168
pmod 30.77 33.33 32.00 0.00 0.00 0.00 0.00 0.00 0.00 12

arg 77.42 76.45 76.94 85.76 80.01 82.78 89.79 82.91 86.21 4,387
subj or dobj 82.36 74.51 78.24 86.08 83.08 84.56 91.01 85.29 88.06 3,127
subj 78.55 66.91 72.27 84.08 75.57 79.60 89.07 78.43 83.41 1,363

ncsubj 79.16 67.06 72.61 83.89 75.78 79.63 88.86 78.51 83.37 1,354
xsubj 33.33 28.57 30.77 0.00 0.00 0.00 50.00 28.57 36.36 7
csubj 12.50 50.00 20.00 0.00 0.00 0.00 0.00 0.00 0.00 2

comp 75.89 79.53 77.67 86.16 81.71 83.88 89.92 84.74 87.25 3,024
obj 79.49 79.42 79.46 86.30 83.08 84.66 90.42 85.52 87.90 2,328

dobj 83.63 79.08 81.29 87.01 88.44 87.71 92.11 90.32 91.21 1,764
obj2 23.08 30.00 26.09 68.42 65.00 66.67 66.67 60.00 63.16 20
iobj 70.77 76.10 73.34 83.22 65.63 73.38 83.59 69.81 76.08 544

clausal 60.98 74.40 67.02 77.67 72.47 74.98 80.35 77.54 78.92 672
xcomp 76.88 77.69 77.28 77.69 74.02 75.81 80.00 78.49 79.24 381
ccomp 46.44 69.42 55.55 77.27 70.10 73.51 80.81 76.31 78.49 291

pcomp 72.73 66.67 69.57 0.00 0.00 0.00 0.00 0.00 0.00 24

macroaverage 62.12 63.77 62.94 65.71 62.29 63.95 71.73 65.85 68.67
microaverage 77.66 74.98 76.29 81.95 80.35 81.14 86.86 82.75 84.76

The CCG parser results are based on automatically assigned POS tags, using the
Curran and Clark (2003) tagger. For the parser we used the hybrid dependency
model and the maximum recall decoder, because this obtained the highest accuracy on
CCGbank, with the same parser and supertagger parameter settings as described in
Section 10.2.11 The coverage of the parser on DepBank is 100%. The coverage of the
RASP parser is also 100%: 84% of the analyses are complete parses rooted in S and the
rest are obtained using a robustness technique based on fragmentary analyses (Briscoe
and Carroll 2006). The coverage for the oracle experiments is less than 100% (around
95%) since there are some gold-standard derivations in CCGbank which the parser is
unable to follow exactly, because the grammar rules used by the parser are a subset
of those in CCGbank. The oracle figures are based only on those sentences for which
there is a gold-standard analysis, because we wanted to measure how close the two
resources are and provide an approximate upper bound for the parser. (But, to repeat,
the accuracy figures for the parser are based on the complete test set.)

11 The results reported in Clark and Curran (2007) differ from those here because Clark and Curran used
the normal-form model and Viterbi decoder.
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F-score is the balanced harmonic mean of precision (P) and recall (R): 2PR/(P + R).
# GRs is the number of GRs in DepBank. For a GR in the parser output to be correct,
it has to match the gold-standard GR exactly, including any subtype slots; however, it
is possible for a GR to be incorrect at one level but correct at a subsuming level. For
example, if an ncmod GR is incorrectly labeled with xmod, but is otherwise correct, it will
be correct for all levels which subsume both ncmod and xmod, for example mod. Thus the
scores at the most general level in the GR hierarchy (dependent) correspond to unlabeled
accuracy scores. The micro-averaged scores are calculated by aggregating the counts for
all the relations in the hierarchy, whereas the macro-averaged scores are the mean of the
individual scores for each relation (Briscoe, Carroll, and Watson 2006).

The results show that the performance of the CCG parser is higher than RASP
overall, and also higher on the majority of GR types. Relations on which the CCG parser
performs particularly well, relative to RASP, are conj, det, ncmod, cmod, ncsubj, dobj,
obj2, and ccomp. The relations for which the CCG parser performs poorly are some of
the less frequent relations: ta, pmod, xsubj, csubj, and pcomp; in fact pmod and pcomp are
not in the current CCG dependencies to GRs mapping. The overall F-score for the CCG
parser, 81.14%, is only 3.6 points below that for CCGbank, which provides an upper
bound for the CCG parser.

Briscoe and Carroll (2006) give a rough comparison of RASP with the Parc LFG parser
(Kaplan et al. 2004) on DepBank, obtaining similar results overall, but acknowledging
that the results are not strictly comparable because of the different annotation schemes
used.

11.4 Discussion

We might expect the CCG parser to perform better than RASP on this data because RASP
is not tuned to newspaper text and uses an unlexicalized parsing model. On the other
hand the relatively low upper bound for the CCG parser on DepBank demonstrates the
considerable disadvantage of evaluating on a resource which uses a different annotation
scheme to the parser. Our feeling is that the overall F-score on DepBank understates the
accuracy of the CCG parser, because of the information lost in the translation.

One aspect of the CCGbank evaluation which is more demanding than the DepBank
evaluation is the set of labeled dependencies used. In CCGbank there are many more
labeled dependencies than GRs in DepBank, because a dependency is defined as a lexical
category-argument slot pair. In CCGbank there is a distinction between the direct object
of a transitive verb and ditransitive verb, for example, whereas in DepBank these would
both be dobj. In other words, to get a dependency correct in the CCGbank evaluation,
the lexical category—typically a subcategorization frame—has to be correct. In a final
experiment we used the GRs generated by transforming CCGbank as a gold standard,
against which we compared the GRs from the transformed parser output. The resulting
F-score of 89.60% shows the increase obtained from using gold-standard GRs generated
from CCGbank rather than the CCGbank dependencies themselves (for which the
F-score was 85.20%).

Another difference between DepBank and CCGbank is that DepBank has been man-
ually corrected, whereas CCGbank, including the test sections, has been produced semi-
automatically from the Penn Treebank. There are some constructions in CCGbank—
noun compounds being a prominent example—which are often incorrectly analyzed,
simply because the required information is not in the Penn Treebank. Thus the evalua-
tion on CCGbank overstates the accuracy of the parser, because it is tuned to produce
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the output in CCGbank, including constructions where the analysis is incorrect. A
similar comment would apply to other parsers evaluated on, and using grammars
extracted from, the Penn Treebank.

A contribution of this section has been to highlight the difficulties associated with
cross-formalism parser comparisons. Note that the difficulties are not unique to CCG,
and many would apply to any cross-formalism comparison, especially with parsers
using automatically extracted grammars. Parser evaluation has improved on the origi-
nal PARSEVAL measures (Carroll, Briscoe, and Sanfilippo 1998), but the challenge still
remains to develop a representation and evaluation suite which can be easily applied to
a wide variety of parsers and formalisms.

12. Future Work

One of the key questions currently facing researchers in statistical parsing is how to
adapt existing parsers to new domains. There is some experimental evidence showing
that, perhaps not surprisingly, the performance of parsers trained on the WSJ Penn
Treebank drops significantly when the parser is applied to domains outside of news-
paper text (Gildea 2001; Lease and Charniak 2005). The difficulty is that developing
new treebanks for each of these domains is infeasible. Developing the techniques to
extract a CCG grammar from the Penn Treebank, together with the preprocessing of the
Penn Treebank which was required, took a number of years; and developing the Penn
Treebank itself also took a number of years.

Clark, Steedman, and Curran (2004) applied the parser described in this article to
questions from the TREC Question Answering (QA) track. Because of the small number
of questions in the Penn Treebank, the performance of the parser was extremely poor—
well below that required for a working QA system. The novel idea in Clark, Steedman,
and Curran was to create new training data from questions, but to annotate at the lexical
category level only, rather than annotate with full derivations. The idea is that, because
lexical categories contain so much syntactic information, adapting just the supertagger
to the new domain, by training on the new question data, may be enough to obtain good
parsing performance. This technique assumes that annotation at the lexical category
level can be done relatively quickly, allowing rapid porting of the supertagger. We were
able to annotate approximately 1, 000 questions in around a week, which led to an
accurate supertagger and, combined with the Penn Treebank parsing model, an accurate
parser of questions.

There are ways in which this porting technique can be extended. For example, we
have developed a method for training the dependency model which requires lexical
category data only (Clark and Curran 2006). Partial dependency structures are extracted
from the lexical category sequences, and the training algorithm for the dependency
model is extended to deal with partial data. Remarkably, the accuracy of the depen-
dency model trained on data derived from lexical category sequences alone is only 1.3%
labeled F-score less than the full data model. This result demonstrates the significant
amount of syntactic information encoded in the lexical categories. Future work will look
at applying this method to biomedical text.

We have shown how using automatically assigned POS tags reduces the accuracy
of the supertagger and parser. In Curran, Clark, and Vadas (2006) we investigate using
the multi-tagging techniques developed for the supertagger at the POS tag level. The
idea is to maintain some POS tag ambiguity for later parts of the parsing process, using
the tag probabilities to decide which tags to maintain. We were able to reduce the drop

540



Clark and Curran Wide-Coverage Efficient Statistical Parsing

in supertagger accuracy by roughly one half. Future work will also look at maintaing
the POS tag ambiguity through to the parsing stage.

Currently we do not use the probabilities assigned to the lexical categories by the
supertagger as part of the parse selection process. These scores could be incorporated
as real-valued features, or as auxiliary functions, as in Johnson and Riezler (2000).
We would also like to investigate using the generative model of Hockenmaier and
Steedman (2002b) in a similar way. Using a generative model’s score as a feature in
a discriminative framework has been beneficial for reranking approaches (Collins and
Koo 2005). Because the generative model uses local features similar to those in our
log-linear models, it could be incorporated into the estimation and decoding processes
without the need for reranking.

One way of improving the accuracy of a supertagger is to use the parser to provide
large amounts of additional training data, by taking the lexical categories chosen by the
parser as gold-standard training data. If enough unlabeled data is parsed, then the large
volume can overcome the noise in the data (Steedman et al. 2002; Prins and van Noord
2003). We plan to investigate this idea in the context of our own parsing system.

13. Conclusion

This article has shown how to estimate a log-linear parsing model for an automat-
ically extracted CCG grammar, on a very large scale. The techniques that we have
developed, including the use of a supertagger to limit the size of the charts and the
use of parallel estimation, could be applied to log-linear parsing models using other
grammar formalisms. Despite memory requirements of up to 25 GB we have shown
how a parallelized version of the estimation process can limit the estimation time to
under three hours, resulting in a practical framework for parser development. One of
the problems with modeling approaches which require very long estimation times is
that it is difficult to test different configurations of the system, for example different
feature sets. It may also not be possible to train or run the system on anything other
than short sentences (Taskar et al. 2004).

The supertagger is a key component in our parsing system. It reduces the size of
the charts considerably compared with naive methods for assigning lexical categories,
which is crucial for practical discriminative training. The tight integration of the su-
pertagger and parser enables highly efficient as well as accurate parsing. The parser is
significantly faster than comparable parsers in the NLP literature. The supertagger we
have developed can be applied to other lexicalized grammar formalisms.

Another contribution of the article is the development of log-linear parsing models
for CCG. In particular, we have shown how to define a CCG parsing model which
exploits all derivations, including nonstandard derivations. These nonstandard deriva-
tions are an integral part of the formalism, and we have answered the question of
whether efficent estimation and parsing algorithms can be defined for models which
use these derivations. We have also defined a new parsing algorithm for CCG which
maximizes expected recall of predicate–argument dependencies. This algorithm, when
combined with normal-form constraints, gives the highest parsing accuracy to date on
CCGbank. We have also given competitive results on DepBank, outperforming a non-
CCG parser (RASP), despite the considerable difficulties involved in evaluating on a gold
standard which uses a different annotation scheme to the parser.

There has perhaps been a perception in the NLP community that parsing with
CCG is necessarily ineffficient because of CCG’s “spurious” ambiguity. We have

541



Computational Linguistics Volume 33, Number 4

demonstrated, using state-of-the-art statistical models, that both accurate and highly
efficient parsing is practical with CCG. Linguistically motivated grammars can now be
used for large-scale NLP applications.12

Appendix A

The following rules were selected primarily on the basis of frequency of occurrence in
Sections 02–21 of CCGbank.

Type-Raising Categories for NP, PP and S[adj]\NP

S/(S\NP)
(S\NP)\((S\NP)/NP)
((S\NP)/NP)\(((S\NP)/NP)/NP)
((S\NP)/(S[to]\NP))\(((S\NP)/(S[to]\NP))/NP)
((S\NP)/PP)\(((S\NP)/PP)/NP)
((S\NP)/(S[adj]\NP))\(((S\NP)/(S[adj]\NP))/NP)

(S\NP)\((S\NP)/PP)

(S\NP)\((S\NP)/(S[adj]\NP))

Unary Type-Changing Rules

The category on the left of the rule is rewritten bottom-up as the category on the right.

N ⇒ NP

NP ⇒ S/(S/NP)

NP ⇒ NP/(NP\NP)

S[dcl]\NP ⇒ NP\NP

S[pss]\NP ⇒ NP\NP

S[ng]\NP ⇒ NP\NP

S[adj]\NP ⇒ NP\NP

S[to]\NP ⇒ NP\NP

(S[to]\NP)/NP ⇒ NP\NP

S[dcl]/NP ⇒ NP\NP

S[dcl] ⇒ NP\NP

S[pss]\NP ⇒ (S\NP)\(S\NP)

12 The parser and supertagger, including source code, are freely available via the authors’ Web pages.
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S[ng]\NP ⇒ (S\NP)\(S\NP)

S[adj]\NP ⇒ (S\NP)\(S\NP)

S[to]\NP ⇒ (S\NP)\(S\NP)

S[ng]\NP ⇒ (S\NP)/(S\NP)

S[pss]\NP ⇒ S/S

S[ng]\NP ⇒ S/S

S[adj]\NP ⇒ S/S

S[to]\NP ⇒ S/S

S[ng]\NP ⇒ S\S

S[dcl] ⇒ S\S

S[ng]\NP ⇒ NP

S[to]\NP ⇒ N\N

Punctuation Rules

A number of categories absorb a comma to the left, implementing the following schema:

, X ⇒ X

The categories are as follows, where S[∗] matches an S category with any or no feature:

N, NP, S[∗], N/N, NP\NP, PP\PP, S/S, S\S, S[∗]\NP, (S\NP)\(S\NP),
(S\NP)/(S\NP), ((S\NP)\(S\NP))\((S\NP)\(S\NP))

Similarly, a number of categories absorb a comma to the right, implementing the fol-
lowing schema:

X , ⇒ X

The categories are as follows:

N, NP, PP, S[dcl], N/N, NP\NP, S/S, S\S, S[∗]\NP, (S[dcl]\NP)/S,
(S[dcl]\S[dcl])\NP, (S[dcl]\NP)/NP, (S[dcl]\NP)/PP, (NP\NP)/(S[dcl]\NP),
(S\NP)\(S\NP), (S\NP)/(S\NP)

These are the categories which absorb a colon or semicolon to the left, in the same way
as for the comma:

N, NP, S[dcl], NP\NP, S[∗]\NP, (S\NP)\(S\NP)

These are the categories which absorb a colon or semicolon to the right:

N, NP, PP, S[dcl], NP\NP, S/S, S[∗]\NP, (S[dcl]\NP)/S[dcl], (S\NP)\(S\NP),
(S\NP)/(S\NP)
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These are the categories which absorb a period to the right:

N, NP, S[∗], PP, NP\NP, S\S, S[∗]\NP, S[∗]\PP, (S[dcl]\S[∗])\NP, (S\NP)\(S\NP)

These are the categories which absorb a round bracket to the left:

N, NP, S[dcl], NP\NP, (S\NP)\(S\NP)

These are the categories which absorb a round bracket to the right:

N, NP, S[dcl], N\N, N/N, NP\NP, S[dcl]\NP, S/S, S\S, (N/N)\(N/N),
(S\NP)\(S\NP), (S\NP)/(S\NP)

There are some binary type-changing rules involving commas, where the two categories
on the left are rewritten bottom-up as the category on the right:

, NP ⇒ (S\NP)\(S\NP)

NP , ⇒ S/S

S[dcl]/S[dcl] , ⇒ S/S

S[dcl]/S[dcl] , ⇒ (S\NP)\(S\NP)

S[dcl]/S[dcl] , ⇒ (S\NP)/(S\NP)

S[dcl]/S[dcl] , ⇒ S\S

S[dcl]\S[dcl] , ⇒ S/S

Finally, there is a comma coordination rule, and a semicolon coordination rule, repre-
sented by the following two schema:

, X ⇒ X\X

; X ⇒ X\X

The categories which instantiate the comma schema are as follows:

N, NP, S[∗], N/N, NP\NP, S[∗]\NP, (S\NP)\(S\NP)

The categories which instantiate the semicolon schema are as follows:

NP, S[∗], S[∗]\NP
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Other Rules

There are two rules for combining sequences of noun phrases and sequences of declar-
ative sentences:

NP NP ⇒ NP

S[dcl] S[dcl] ⇒ S[dcl]

Finally, there are some coordination constructions in the original Penn Treebank which
were difficult to convert into CCGbank analyses, for which the following rule is used:

conj N ⇒ N

Appendix B

The annotation in the markedup file for some of the most frequent categories in CCG-
bank is shown in Section 11.1. The annotation provides information about heads and
dependencies, and also the mapping from CCG dependencies to the GRs in DepBank.

The first line after the unmarked lexical category gives the number of dependency
relations plus the category annotated with head and dependency information. Variables
in curly brackets indicate heads, with ’ ’ used to denote the word associated with the
lexical category. For example, if the word buys is assigned the transitive verb category
((S[dcl]{ }\NP{Y}〈1〉){ }/NP{Z}〈2〉){ }, then the head on the resulting S[dcl] is buys.
Co-indexing of variables allows head passing; for example, in the relative pronoun cat-
egory ((NP{Y}\NP{Y}〈1〉){ }/(S[dcl]{Z}〈2〉\NP{Y∗}){Z}){ }, the head of the resulting
NP is taken from the NP which is modified to the left, and this head also becomes the
subject of the verb phrase to the right. So in the man who owns the company, the subject of
owns is man.

Numbers in angled brackets indicate dependency relations. For example, in the
nominal modifier category (N{Y}/N{Y}〈1〉){ }, there is one dependency between the
modifier and the modifiee. Long-range dependencies are indicated by marking head
variables with ∗. The ∗ in the relative pronoun category indicates that when the Y vari-
able unifies with a lexical item, this creates a long-range subject dependency.

Some categories have a second head and dependency annotation, indicated with a
!. This is used to produce the DepBank GRs. For example, the relative pronoun category
has a second annotation which results in who being the subject of owns in the man who
owns the company, rather than man, because this is consistent with DepBank. The first
annotation is consistent with CCGbank.

The remaining lines in a category entry give the CCG dependencies to GRs mapping,
described in Section 11.1.

N/N
1 (N{Y}/N{Y}<1>){_}
1 ncmod _ %f %l

NP[nb]/N
1 (NP[nb]{Y}/N{Y}<1>){_}
1 det %f %l
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(NP\NP)/NP
2 ((NP{Y}\NP{Y}<1>){_}/NP{Z}<2>){_}
1 ncmod _ %f %l
2 dobj %l %f

((S\NP)\(S\NP))/NP
2 (((S[X]{Y}\NP{Z}){Y}\(S[X]{Y}<1>\NP{Z}){Y}){_}/NP{W}<2>){_}
1 ncmod _ %f %l
2 dobj %l %f

PP/NP
1 (PP{_}/NP{Y}<1>){_}
1 dobj %l %f

(S[dcl]\NP)/NP
2 ((S[dcl]{_}\NP{Y}<1>){_}/NP{Z}<2>){_}
1 ncsubj %l %f _
2 xcomp _ %l %f =be
2 dobj %l %f

(S\NP)\(S\NP)
1 ((S[X]{Y}\NP{Z}){Y}\(S[X]{Y}<1>\NP{Z}){Y}){_}
1 ncmod _ %f %l

(S[b]\NP)/NP
2 ((S[b]{_}\NP{Y}<1>){_}/NP{Z}<2>){_}
1 ncsubj %l %f _
2 xcomp _ %l %f =be
2 dobj %l %f

(S[to]\NP)/(S[b]\NP)
2 ((S[to]{_}\NP{Z}<1>){_}/(S[b]{Y}<2>\NP{Z*}){Y}){_}
1 ignore
2 ignore

(S[dcl]\NP)/(S[b]\NP)
2 ((S[dcl]{_}\NP{Y}<1>){_}/(S[b]{Z}<2>\NP{Y*}){Z}){_}
! ((S[dcl]{Z}\NP{Y}<1>){Z}/(S[b]{Z}<2>\NP{Y*}){Z}){_}
1 ignore =aux
1 ncsubj %l %f _
2 aux %f %l =aux
2 xcomp _ %l %f

(NP[nb]/N)\NP
2 ((NP[nb]{Y}/N{Y}<1>){_}\NP{Z}<2>){_}
1 ncmod poss %f %2
2 ignore

S[adj]\NP
1 (S[adj]{_}\NP{Y}<1>){_}
1 ignore

S[pss]\NP
1 (S[pss]{_}\NP{Y}<1>){_}
1 ncsubj %l %f obj

(N/N)/(N/N)
1 ((N{Y}/N{Y}){Z}/(N{Y}/N{Y}){Z}<1>){_}
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1 ncmod _ %f %l
(S[ng]\NP)/NP
2 ((S[ng]{_}\NP{Y}<1>){_}/NP{Z}<2>){_}
1 ncsubj %l %f _
2 dobj %l %f

(S\NP)/(S\NP)
1 ((S[X]{Y}\NP{Z}){Y}/(S[X]{Y}<1>\NP{Z}){Y}){_}
1 ncmod _ %f %l

(S[dcl]\NP)/S[dcl]
2 ((S[dcl]{_}\NP{Y}<1>){_}/S[dcl]{Z}<2>){_}
1 ncsubj %l %f _
2 ccomp _ %l %f

S[dcl]\NP
1 (S[dcl]{_}\NP{Y}<1>){_}
1 ncsubj %l %f _

(S[dcl]\NP)/(S[pt]\NP)
2 ((S[dcl]{_}\NP{Y}<1>){_}/(S[pt]{Z}<2>\NP{Y*}){Z}){_}
! ((S[dcl]{Z}\NP{Y}<1>){Z}/(S[pt]{Z}<2>\NP{Y*}){Z}){_}
1 ignore =aux
1 ncsubj %l %f _
2 aux %f %l =aux
2 xcomp _ %l %f

S/S
1 (S[X]{Y}/S[X]{Y}<1>){_}
1 ncmod _ %f %l

(NP\NP)/(S[dcl]\NP)
2 ((NP{Y}\NP{Y}<1>){_}/(S[dcl]{Z}<2>\NP{Y*}){Z}){_}
! ((NP{Y}\NP{Y}<1>){_}/(S[dcl]{Z}<2>\NP{_}){Z}){_}
1 cmod %l %f %2
2 ignore
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