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In this article, we present a language-independent, unsupervised approach to sentence boundary
detection. It is based on the assumption that a large number of ambiguities in the determination
of sentence boundaries can be eliminated once abbreviations have been identified. Instead of
relying on orthographic clues, the proposed system is able to detect abbreviations with high
accuracy using three criteria that only require information about the candidate type itself and
are independent of context: Abbreviations can be defined as a very tight collocation consisting
of a truncated word and a final period, abbreviations are usually short, and abbreviations
sometimes contain internal periods. We also show the potential of collocational evidence for
two other important subtasks of sentence boundary disambiguation, namely, the detection
of initials and ordinal numbers. The proposed system has been tested extensively on eleven
different languages and on different text genres. It achieves good results without any further
amendments or language-specific resources. We evaluate its performance against three different
baselines and compare it to other systems for sentence boundary detection proposed in the
literature.

1. Introduction

The sentence is a fundamental and relatively well understood unit in theoretical and
computational linguistics. Many linguistic phenomena—such as collocations, idioms,
and variable binding, to name a few—are constrained by the abstract concept ‘sentence’
in that they are confined by sentence boundaries. The successful determination of these
boundaries is thus a prerequisite for proper sentence processing. Sentence boundary
detection is not a trivial task, though. Graphemes often serve more than one purpose
in writing systems. The period, which is employed as sentence boundary marker, is no
exception. It is also used to mark abbreviations, initials, ordinal numbers, and ellipses.
Moreover, a period can be used to mark an abbreviation and a sentence boundary at the
same time. In such cases, the second period is haplologically omitted and only one pe-
riod is used as end-of-sentence and abbreviation marker.1 Sentence boundary detection
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thus has to be considered as an instance of ambiguity resolution. The ambiguity of the
period is illustrated by example (1).

Example 1
CELLULAR COMMUNICATIONS INC. sold 1,550,000 common shares at $21.75 each
yesterday, according to lead underwriter L.F. Rothschild & Co.
(cited from Wall Street Journal 05/29/1987)

Periods that form part of an abbreviation but are taken to be end-of-sentence
markers or vice versa do not only introduce errors in the determination of sentence
boundaries. As has been reported in Walker et al. (2001) and Kiss and Strunk (2002b),
segmentation errors propagate into further components, which rely on accurate sen-
tence segmentation, and subsequent analyses are affected negatively.

In this article, we present an approach to sentence boundary detection that builds
on language-independent methods and determines sentence boundaries with high
accuracy. It does not make use of additional annotations, part-of-speech tagging, or
precompiled lists to support sentence boundary detection, but extracts all necessary
data from the corpus to be segmented. Also, it does not use orthographic information
as primary evidence and is thus suited to processing single-case text. It focuses on
robustness and flexibility in that it can be applied with good results to a variety of
languages without any further adjustments. At the same time, the modular structure
of the system makes it possible to integrate language-specific methods and clues to
further improve its accuracy. The basic algorithm has been determined experimentally
on the basis of an unannotated development corpus of English. We have applied the
resulting system to further corpora of English text as well as to corpora from ten
other languages: Brazilian Portuguese, Dutch, Estonian, French, German, Italian, Nor-
wegian, Spanish, Swedish, and Turkish. Without further additions or amendments to
the system produced through experimentation on the development corpus, the mean
accuracy of sentence boundary detection on newspaper corpora in the eleven languages
is 98.74%.

We approach sentence boundary detection by first determining possible abbrevi-
ations in the text. Quantitatively, abbreviations are a major source of ambiguities in
sentence boundary detection since they often constitute up to 30% of the possible
candidates for sentence boundaries in running text; see Section 6.1. Abbreviations can
be characterized by a set of robust as well as cross-linguistically valid properties. The
same cannot be said of the concept ‘sentence boundary’. The end of a sentence cannot
easily be characterized as either appearing after a particular word, between two par-
ticular words, after a particular word class, or in between two particular word classes.
But, as we will show, an abbreviation can be cross-linguistically characterized in such
a way.

It is our basic assumption that abbreviations are collocations of the truncated word
and the following period, and hence, that methods for the detection of collocations can
be successfully applied to abbreviation detection. Firth (1957, page 181) characterizes
the collocations of a word as “statements of the habitual or customary places of that
word.” In languages that mark abbreviations with a following period, one could say
that the abbreviation is habitually made up of a truncated word (or sequence of words)
and a following period. But this might even be too weak a formulation. While typical
elements of a collocation can also appear together with other words, the abbreviation is
strongly tied to the following period. Ideally, in the absence of homography and typing
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errors, an abbreviation should always end in a final period.2 Hence, we characterize an
abbreviation as a very strict collocation and use standard techniques for the detection of
collocations. These techniques will be modified appropriately to account for the stricter
tie between an abbreviated word and the following period. It should be clear from the
outset that abbreviations cannot simply be handled by listing them because they form
a productive and hence open word class; see also Müller, Amerl, and Natalis (1980,
pages 52ff.) and Mikheev (2002, page 291). We corroborate this fact with an experiment
in Section 6.4.4.

We offer a formal characterization of abbreviations in terms of three major proper-
ties, which only rely on the candidate word type itself and not on the local context in
which an instance of the candidate type appears. First, as was already mentioned, an
abbreviation looks like a very tight collocation in that the abbreviated word preceding
the period and the period itself form a close bond. Second, abbreviations have the
tendency to be rather short. This does not mean that we have to assume a fixed upper
bound for the length of a possible abbreviation, but that the likelihood of being an
abbreviation declines if candidates become longer. Using the length of a candidate as a
counterbalance to the collocational bond between candidate and final period allows our
method to identify quite long abbreviations, as long as the collocational bond between
the candidate type and the period is very strong. As a third characteristic property,
we have identified the occurrence of word-internal periods contained in many abbre-
viations. While we have determined the aforementioned properties experimentally, we
believe that they indeed represent crucial traits of abbreviations.

Using just these three characteristics, our system is able to detect abbreviations with
a mean accuracy of 99.38% on newspaper corpora in eleven languages. The effectiveness
of the three properties is further corroborated by an experiment we have carried out
with a log-linear classifier; compare Section 6.4.7. The reported figure does not include
initials and ordinal numbers because these subclasses of abbreviations cannot be discov-
ered using these characteristics and have to be treated differently. The complete system
with special heuristics for initials and ordinal numbers achieves an accuracy of 99.20%
for the detection of abbreviations, initials, and ordinal numbers.

The determination of abbreviation types already yields a large percentage of all
sentence boundaries because all periods occurring after non-abbreviation types can
be classified as end-of-sentence markers. Such a disambiguation on the type level,
however, is insufficient by itself because it still has to be determined for every period
following an abbreviation whether it serves as a sentence boundary marker at the same
time. The detection of initials and of ordinal numbers, which are represented by digits
followed by a period in several languages, also requires the application of token-based
methods because these subclasses of abbreviations are problematic for type-based meth-
ods. These observations suggest a two-stage treatment of sentence boundary detection,
which is both type and token based. We define a classifier as type based if it uses global
evidence, for example, the distribution of a type in a corpus, to classify a type as a whole.
In contrast, a token-based classifier determines a class for each individual token based
on its local context.

In the first stage, a resolution is performed on the type level to detect abbreviation
types and ordinary word types. After this stage, the corpus receives an intermediate

2 There are several types of abbreviations that are usually not marked with a final period: acronyms
such as NATO or unit abbreviations such as kg (kilogram). These do not present a problem for sentence
boundary detection and are therefore not discussed further in this article. We will henceforth use the
term abbreviation to refer only to classes of abbreviations that are normally marked with a final period.
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Figure 1
Architecture of the Punkt System.

annotation where all instances of abbreviations detected by the first stage are marked
as such with the tag <A> and all ellipses with the tag <E>. All periods following non-
abbreviations are assumed to be sentence boundary markers and receive the annotation
<S>.3 The second, token-based stage employs additional heuristics on the basis of
the intermediate annotation to refine and correct the output of the first classifier for
each individual token. The token-based classifier is particularly suited to determine
abbreviations and ellipses at the end of a sentence giving them the final annotation
<A><S> or <E><S>. But it is also used to correct the intermediate annotation by
detecting initials and ordinal numbers that cannot easily be recognized with type-based
methods and thus often receive the wrong annotation from the first stage. The overall
architecture of the present system, which we have baptized Punkt (German for period),
is given in Figure 1.

The present article is structured as follows: Likelihood ratios can be considered
the heart of the present proposal. Both the type-based and the token-based classifiers
employ likelihood ratios to determine collocational bonds between a possible abbrevi-
ation and its final period, between the sentence boundary period and a word following

3 These tags are not intended as XML tags and there are thus no corresponding closing tags </A>, </E>,
and </S>. The tags are attached to the right edge of all tokens that end in a final period.
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it, and between words that surround a period. Section 2 introduces the concept of a
likelihood ratio and discusses the specific properties of the likelihood ratios employed
by Punkt. Section 3 describes the type-based classification stage, while Section 4 in-
troduces the token-based reclassification methods. Section 5 gives a short account
of how Punkt was developed and how we determined some necessary parameters.
The experiments carried out with the present system are discussed in Section 6. In
Section 7, we compare Punkt to other sentence boundary detection systems proposed
in the literature.

2. Likelihood Ratios

Punkt employs likelihood ratios to determine collocational ties in the type-based as well
as in the token-based stage. The usefulness of likelihood ratios for collocation detection
has been made explicit by Dunning (1993) and has been confirmed by an evaluation
of various collocation detection methods carried out by Evert and Krenn (2001). Kiss
and Strunk (2002a, 2002b) characterize abbreviations as collocations and use Dunning’s
log-likelihood ratio (log λ) to detect them on the type level. The present proposal differs
from Kiss and Strunk’s earlier suggestion in employing a highly modified log-likelihood
ratio for abbreviation detection in the type-based stage. The reasons for this divergence
will be discussed in Section 2.1. In the token-based stage, we employ Dunning’s original
log λ, but add an additional constraint to make it one-sided. This version of log λ will
be described in Section 2.2.

2.1 Likelihood Ratios in the Type-based Stage

The log-likelihood ratio by Dunning (1993) tests whether the probability of a word is
dependent on the occurrence of the preceding word type. When applied to abbrevi-
ations, the following two hypotheses are compared in a Dunning-style log-likelihood
ratio.

Null hypothesis H0: P(•|w) = p = P(•|¬w) (1)

Alternative hypothesis HA: P(•|w) = p1 �= p2 = P(•|¬w) (2)

The null hypothesis in (1) states that the probability of occurrence of a period is not
dependent on the preceding word. The alternative hypothesis in (2) assumes a depen-
dency between the period and the preceding word. The log-likelihood ratio is calculated
using the binomial distribution to estimate the likelihoods of the two hypotheses as
in (3). As the probabilities p, p1, and p2 are determined by maximum-likelihood esti-
mation (MLE) and the null hypothesis includes fewer parameters than the alternative
hypothesis, the ratio log λ is asymptotically χ2-distributed and can thus be used as a
test statistic.

log λ = −2 log
Pbinom(H0)
Pbinom(HA) (3)

489



Computational Linguistics Volume 32, Number 4

However, we have decided to employ different hypotheses for abbreviation detec-
tion. While the revised null hypothesis given in (4) is quite close to (1), the revised
alternative hypothesis in (5) differs sharply from the one suggested by Dunning.4

Revised null hypothesis H0: P(•|w) = PMLE(•) = C(•)
N (4)

Revised alternative hypothesis HA: P(•|w) = 0.99 (5)

The formulation of the alternative hypothesis in (5) reflects that we do not only require
that a period occurs together with an abbreviated word more often than expected,
but instead that a period almost always occurs after the truncated word. By choosing
the value 0.99 instead of 1, we can provide for a certain probability that an abbre-
viation type sometimes erroneously occurs without a final period in a corpus. The
hypothesis in (5) captures our intuitions about abbreviations better than the original
version in (2) because it is no longer sufficient that a word type appears more often
than average with a following period to yield a high log-likelihood score. Instead, the
likelihood of a period appearing after a type should be almost 1 in order for it to get
assigned a high log-likelihood score and thus a high likelihood of being classified as
an abbreviation.

Due to the revision of the hypotheses H0 and HA, the log-likelihood ratio for
abbreviation detection is no longer asymptotically χ2-distributed. However, this is not a
disadvantage since the resulting log-likelihood value expresses only one of three crucial
properties of abbreviations. Since this value is counterbalanced by other factors and the
resulting log-likelihood score thus scaled in various ways, the χ2 distribution could not
be retained anyway, as will become clear in Section 3.

2.2 Likelihood Ratios in the Token-based Stage

In the token-based classification stage, Dunning’s log-likelihood ratio is used in two
different heuristics. The collocation heuristic, described in Section 4.1.2, takes a pair
of words w1 and w2 surrounding a period and tests whether a collocational tie exists
between them. A positive answer to this question is used as evidence against an
intervening sentence boundary. The frequent sentence starter heuristic, described in
Section 4.1.3, makes use of the results of the type-based classifier and searches for word
types that form a collocation with a preceding sentence boundary, that is, which occur
particularly often after end-of-sentence periods.

Dunning’s formulation of the log-likelihood ratio is a two-tailed statistical test. For
a pair of word types w1 and w2, the null hypothesis H0: P(w2 | w1) = p = P(w2 | ¬w1),
and the alternative hypothesis HA: P(w2 | w1) = p1 �= p2 = P(w2 | ¬w1), the log λ value
is high if p1 and p2 significantly diverge from each other. But in fact, one should only
consider those pairs of words as collocations for which p1 is much higher than p2. Only
the latter case means that w2 occurs more often than expected after w1, whereas if p1 is
less than p2 this means that w2 occurs less often after w1 than expected. Manning and

4 N represents the number of tokens in the corpus. C(•) is the number of times a token-final period occurs
in the corpus. C(. . . ) always signifies the absolute frequency of some element or elements in the corpus.
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Schütze (1999, page 172) comment in their description that “[w]e assume that p1 >> p2
if Hypothesis 2 [i.e., the alternative hypothesis, TK/JS] is true. The case p1 << p2 is rare,
and we will ignore it here.” To us, this step seems to be premature since it ignores that
Dunning’s log λ is a two-tailed test, where the equation in (6) holds.

log λ = 0 iff C(w2)
N = C(w1, w2)

C(w1) (6)

If the two sides of this equation diverge, log λ will take a value greater than 0. In
the usual case considered by Dunning (1993) and discussed by Manning and Schütze
(1999), the right-hand side of the equation is larger than the left-hand side. A high
log λ value thus properly expresses the fact that w1 and w2 form a collocation because
the occurrence of w2 after w1 is more likely than expected from the unconditional
likelihood of w2. If, however, the left side of the equation is greater than the right side,
we still get a log λ value greater than 0, but this time, this indicates that w2 occurs
less often than expected after w1. This is obviously at odds with the general idea of
a collocation.

For collocations in general, the assumption made by Manning and Schütze (1999)
can indeed be considered safe, since the types w1 and w2 are likely to occur only rarely.
For this reason, we do not expect a large negative deviation, where the right-hand
side of equation (6) is significantly smaller than the left-hand side. However, some of
the types that we test for collocational ties in the token-based stage occur very often.
The frequent sentence starter heuristic, for example, tests whether a given word w2
forms a collocation with a preceding sentence boundary w1, that is, with the sentence
boundary symbol <S> inserted by the type-based first stage of Punkt. The abstract type
‘sentence boundary’ (i.e., <S>) may be very frequent in many corpora, as can be wit-
nessed from a sample from a German newspaper corpus, where C(<S>) = 35,775 and
N = 847,206.

In Table 1, we have tested for four words in the German newspaper corpus whether
they are frequent sentence starters or not. The first two words, ist (the third-person
singular form of the verb sein ‘to be’) and zu (infinitive marker or preposition ‘to’) occur
very often, while the latter two words do not occur so often. Neither ist nor zu should
be considered frequent sentence starters, while both dennoch (‘nevertheless’) and erstens
(‘first’) are true frequent sentence starters. Yet, all four words receive very high log λ

values, since in all cases p1 diverges significantly from p2. However, it holds only for
dennoch and erstens that they occur more often after <S> than expected, while ist and
zu occur much less often than expected after <S>. In order to exclude cases like ist
and zu from being detected as collocates of a preceding sentence boundary, we add

Table 1
Correct and incorrect frequent sentence starters.

w1 w2 C(w1) C(w2) C(w1, w2) log λ

<S> ist 35,775 9,758 182 169.8390 p1 < p2 incorrect
<S> zu 35,775 7,643 71 298.8915 p1 < p2 incorrect
<S> dennoch 35,775 231 80 221.4709 p1 > p2 correct
<S> erstens 35,775 38 21 82.1377 p1 > p2 correct
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the constraint in (7) to log λ calculations for the frequent sentence starter heuristic and
similarly apply it to the collocation heuristic.

〈w1, w2〉 is a collocation if log λ > threshold and C(w1,w2)
C(w1) >

C(w2 )
N (7)

In general, it seems to be a good idea to add the one-sidedness condition given in
(7) to the log-likelihood ratio used for the purpose of collocation detection. The version
of the likelihood ratio that is calculated for the type-based classifier in Section 3 is not
affected by this problem since it does not follow a χ2 distribution and is in fact no longer
two-tailed because of the form of the two hypotheses that are compared.

3. Type-based Classification

The type-based classification stage of Punkt employs three characteristic properties of
abbreviations:

1. Strong collocational dependency: Abbreviations always occur with a
final period.5

2. Brevity: Abbreviations tend to be short.

3. Internal periods: Many abbreviations contain additional internal periods.

As these three characteristics do not change for each individual instance of a type, we
combine them in a type-based approach to abbreviation detection.

The implementation of the first property makes use of a likelihood ratio with
the revised hypotheses introduced in (4) and (5). The list of all types that ever occur
with a following period in the corpus is sorted according to this likelihood ratio. The
resulting value for a type expresses the assumption that this type is more likely to be an
abbreviation than all types having lower values.

The first four columns of Table 2 show a section of this sorted list, where non-
abbreviations are indicated in italics. The figures of occurrence in Table 2, which are
drawn from an actual corpus sample comprising 351,529 tokens of Wall Street Journal
text, also illustrate a potential problem, namely, that most of the candidate types are
quite rare. As has been pointed out by Dunning (1993), the calculation of log λ assumes a
binomial distribution. It is therefore better suited to deal with sparse data than statistics
that are based on a normal distribution, such as the t test. This consideration carries over
to the modified log-likelihood ratio employed here.

Some true abbreviations in the left half of Table 2 are either ranked lower than non-
abbreviations or receive the same log-likelihood value as non-abbreviations. According
to the criterion of strong collocational dependency, ounces is a very good candidate for
an abbreviation, as it never occurs without a final period in the corpus. The collocational
criterion alone is thus not sufficient to detect abbreviations with high precision.

Table 2 confirms that abbreviations tend to be rather short: Each non-abbreviation is
longer than the longest abbreviation. We therefore use brevity as a further characteristic

5 If all or certain abbreviations do not occur with a final period in a language, the problem of deciding
between the sentence boundary and the abbreviation marker does not occur in that language or for
these abbreviations.
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Table 2
Candidate list from an English test corpus.

Candidate type C(w, •) C(w, ¬•) Revised log λ Final sorting Scaled log λ

n.h 5 0 28.08 n.h 7.60
u.s.a 5 0 28.08 a.g 6.08
alex 8 2 26.75 m.j 4.56
ounces 4 0 22.46 u.n 4.56
a.g 4 0 22.46 u.s.a 4.19
ga 4 0 22.46 ga 3.04
vt 4 0 22.46 vt 3.04
ore 5 1 18.99 ore 0.32
1990s 5 1 18.99 reps 0.31
mo 8 3 17.67 mo 0.30

m.j 3 0 16.85 1990s 0.26
depositor 3 0 16.85 ounces 0.06
reps 3 0 16.85 alex 0.03
u.n 3 0 16.85 depositor 0.00

property to counterbalance the likelihood ratio. In contrast to other proposals such as
the one by Mikheev (2002, page 299), we refrain from using a fixed maximum length
for abbreviations. Instead, we multiply the likelihood ratio for each candidate with
an inversely exponential scaling factor derived from the length of that candidate. The
length of the candidate is defined as the number of characters in front of the final period
minus the number of internal periods, as illustrated in example (8).

length(u.s.a.) = 3 (8)

We exclude internal periods from the count because they are good evidence that a
candidate should be classified as an abbreviation (see below). We thus prevent a coun-
terintuitive, higher penalty for candidates with internal periods. The exact form of the
length factor is given in (9).

Flength(w) = 1
elength(w)

(9)

We have chosen an inversely exponential scaling factor since it reflects well the likeli-
hood that a type of a certain length is an abbreviation. Typically, short types are more
likely to be abbreviations than longer types. The validity of this assumption can be
witnessed from Figure 2. It shows that the ratio of the number of abbreviation types
to the number of non-abbreviation types decreases with growing length in a Dutch
newspaper corpus. While about 96% of all types of length one are abbreviations, this
percentage drops rapidly to 59% for types of length two and to 15% for types of length
three and so on.

In addition to avoiding any higher penalty on the factor Flength caused by internal
periods, we use another scaling factor Fperiods as given in (10). This factor expresses the
intuition that a higher number of internal periods increases the likelihood that a type is
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Figure 2
Percentage of types of different lengths that are abbreviations in a Dutch corpus.

a true abbreviation. The scaling factor has been designed to leave unchanged the values
of candidates that do not contain internal periods, while those candidates that contain
internal periods receive an extra advantage.

Fperiods(w) = number of internal periods in w + 1 (10)

Multiplying the log-likelihood ratio with these two scaling factors leads to a signifi-
cantly better sorting of the candidate list.

The scaled log-likelihood ratio does not exclude a candidate from being classified as
an abbreviation just because it has occurred without a final period once or twice in the
corpus if there is otherwise good evidence that it is a true abbreviation. For most lan-
guages, this increased robustness is unproblematic because almost all ordinary words
occur without a period a sufficient number of times. However, for some languages,
the scaled log-likelihood ratio is not restrictive enough. Verb-final languages, such as
Turkish, where certain very common verbs appear at the end of a sentence most of the
time, are one example. In such a case, the scaled log-likelihood ratio described so far
runs into difficulties because it mistakes the occurrences of these verbs without a period
as exceptions. To remedy this problem, the calculated log λ values are multiplied by a
third factor, which penalizes occurrences without a final period exponentially:

Fpenalty(w) = 1
length(w)C(w,¬•) (11)

It should be noted that we use the length of the candidate as a basis for the calcula-
tion because the likelihood of existence of homographic non-abbreviations for a given

494



Kiss and Strunk Unsupervised Multilingual Sentence Boundary Detection

abbreviation type is dependent on the length of the candidate. Homographic non-
abbreviations occur particularly often with abbreviations of length 1, and accordingly,
there will be no penalty at all. With a length of 2, the penalty factor is still moderate,
but increases with length to reflect that longer abbreviations are not very likely to
have homographic non-abbreviations. Furthermore, the penalty factor is exponentially
scaled. Hence, it will mostly affect candidate types with a high number of occurrences
without a final period. A candidate type that occurs six times in all and one time without
a final period is much less affected by (11) than a candidate that occurs 600 times in all
and 100 times without a final period. This reflects our intuition that homographic non-
abbreviations and typing errors can always occur, but that a high number of instances
without a final period requires a strong penalty.

As we cannot rely any longer on the asymptotic χ2 distribution of the log-likelihood
ratio (cf. Section 2.1), we propose a new threshold value. All candidates above it
will be considered abbreviations; all candidates below it will be classified as ordinary
words. We use the classification function defined in (12) with a threshold value of 0.3—
represented by a dashed line in Table 2. We have determined the threshold value by
manual experimentation (cf. Section 5) and have used it throughout the evaluation in
Section 6.

For each candidate word type w:
If log λ(w)×Flength(w)×Fperiods(w)×Fpenalty(w)≥0.3 → w is an abbreviation.
If log λ(w)×Flength(w)×Fperiods(w)×Fpenalty(w)<0.3 → w is not an abbreviation.

(12)

The last two columns of Table 2 show the final sorting of the candidates after applying
the three scaling factors to the log-likelihood value for each candidate. Multiplication
with the three factors has led to a much cleaner separation of the true abbreviation
types from the non-abbreviations.

4. Token-based Classification

The second classification stage of Punkt operates on the token level and improves the
intermediate annotation of the corpus provided by the type-based classification stage.
For every token with a final period, the system decides on the basis of its immediate
right context whether the intermediate annotation has to be modified or corrected.
For this classification step, the relevant tokens are separated into different classes
(cf. Figure 1). Each class triggers a reexamination with a different combination of a few
basic heuristics. The most important classes are ordinary abbreviations and ellipses,
which may appear at the end of a sentence. Moreover, there are two special classes
of abbreviations, which are problematic for a type-based approach, namely, possible
initials and possible ordinal numbers.

Three basic heuristics are employed in the token-based classification stage: the
orthographic heuristic, whose task is to test for orthographic clues for the detection
of sentence boundaries after abbreviations and ellipses; the collocation heuristic, which
determines whether two words surrounding a period form a collocation and interprets a
positive answer to this question as evidence against an intervening sentence boundary;
and finally the frequent sentence starter heuristic, which suggests a preceding sentence
boundary if a word appearing after a period is found on a list of frequent sentence
starters induced on the fly from the text that is to be segmented.
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4.1 Heuristics in the Token-based Stage
4.1.1 The Orthographic Heuristic. At first sight, it might seem reasonable to rely on
orthographic conventions for the detection of sentence boundaries. For instance, a
capitalized word usually indicates a preceding sentence boundary in mixed-case text.
However, such a procedure is perilous for various reasons. To begin with, certain word
classes are capitalized even if they occur sentence-internally as is the case with the
majority of proper nouns in English and all nouns in German. Even a lowercase first
letter does not guarantee that the word in question is not preceded by a sentence
boundary. This is particularly evident for mathematical variables or names that are
conventionally written without capitalization such as amnesty international; see also
Nunberg (1990, pages 54ff.). Finally, any method that relies solely on capitalization will
not help at all with single-case text.

Still, we think that capitalization information—if used cautiously—can help to
determine whether an abbreviation or ellipsis precedes a sentence boundary or not;
see Section 6.4.5 for a discussion of the importance of orthographic information in
comparison to other types of evidence. In order to make the usage of orthographic
information safer and more robust, Punkt counts how often every word type occurs
with an uppercase and lowercase first letter at the beginning of a sentence and sentence-
internally in the corpus; see Table 3 for some example statistics. It bases its calculations
on the sentence boundaries determined by the type-based classification stage. It does
not count tokens occurring after an abbreviation or an ellipsis because we have not
yet determined whether they start a new sentence or not. The algorithm also ignores
tokens that occur after possible initials and numbers. Again, a reclassification is likely
to happen; see Section 4.3. In sum, as the counts are based on imperfectly annotated
data, we try to exclude most doubtful cases.

Figure 3 gives a pseudocode description of the orthographic heuristic, which de-
cides for a token following an abbreviation or an ellipsis on the basis of the orthographic
statistics gathered for all word types whether it represents good evidence for a preced-
ing sentence boundary or not.

If the word following an abbreviation or ellipsis is capitalized, the heuristic deter-
mines whether it occurs with a lowercase first letter in the text and whether it occurs
with an uppercase first letter sentence-internally. Only if it occurs with a lowercase first
letter at least once and never occurs with an uppercase first letter sentence-internally,
the heuristic opts for a sentence boundary after the abbreviation or ellipsis. Otherwise,
it returns undecided.

Table 3
Example data for the orthographic heuristic.

Type Uppercase Lowercase Uppercase Lowercase Uppercase Lowercase
all all after sure after sure clearly clearly

sentence sentence sentence sentence
boundary boundary internally internally

a 2,229 34,483 720 0 654 34,466
across 2 129 1 0 0 129
actual 3 52 2 0 0 52
ask 9 140 1 0 7 140
psychologists 2 4 1 0 0 4
smith 348 0 6 0 218 0

496



Kiss and Strunk Unsupervised Multilingual Sentence Boundary Detection

Figure 3
Pseudo code of the orthographic heuristic.

If the token following the abbreviation or ellipsis has a lowercase first letter, the
heuristic decides against a sentence boundary if that type also occurs with an uppercase
first letter or if it never occurs with a lowercase first letter after a sentence boundary. In
all other cases, the heuristic returns undecided.

For example, if the input of the orthographic heuristic is the capitalized token A,
the heuristic would return undecided given the data in Table 3, because the type a occurs
capitalized both at the beginning of and inside a sentence. If the input is the lowercase
token a, it would return no sentence boundary. For the proper name Smith, the result
would be undecided since the name never occurs with a lowercase first letter at all. For
the input tokens Across, Actual, and Psychologists, the heuristic would decide in favor of
a sentence boundary. If the same tokens were not capitalized, the decision would be no
sentence boundary.

In the worst-case scenario of an all-uppercase corpus, the orthographic heuristic
would always return undecided. If all tokens in the corpus begin with a lowercase letter, it
would either return undecided or no sentence boundary, which we think is the safest option
since in this case, the heuristic cannot adduce any additional token-based evidence and
most sentence boundaries have already been discovered by the type-based stage. The
option to refuse a decision on the basis of capitalization information thus makes the
orthographic heuristic very robust.

4.1.2 The Collocation Heuristic. The basic intuition behind the collocation heuristic is
that sentence boundaries block collocational ties; compare, for example, Manning and
Schütze (1999, page 195). If a period is surrounded by two words that form a collocation,
we do not expect it to act as a sentence boundary marker. A period should therefore
be interpreted as an abbreviation marker and not as a sentence boundary marker if
the two tokens surrounding it can indeed be considered as a collocation according to
Dunning’s (1993) original log-likelihood ratio amended with the one-sidedness con-
straint introduced in Section 2.2. Following the asymptotic χ2 distribution of Dunning’s
original proposal, we require a log λ value of at least 7.88, which represents a confidence
of 99.5%. If this condition is met, we assume that the two words surrounding the
potential sentence boundary form a collocation and hence represent evidence against
an intervening sentence boundary.

4.1.3 The Frequent Sentence Starter Heuristic. We also employ Dunning’s log λ as
an unsupervised method for the extraction of frequent sentence starters, that is, word
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types that occur particularly often after a sentence boundary. We take the viewpoint
of collocation detection and define a frequent sentence starter as a word type that has
a strong collocational tie to a preceding sentence boundary. The occurrence of such a
frequent sentence starter after a period can thus be used to adduce further evidence
that the preceding period marks a sentence boundary.

In contrast to Mikheev (2002, page 297), we do not extract the list of frequent
sentence starters from an additional corpus but use the test corpus itself. The basic idea
is to build a list of frequent sentence starters on the fly by counting how often every
word type occurs following a sure sentence boundary, as determined by the type-based
first stage. Sure sentence boundaries are all single periods following words that have
been classified as non-abbreviations and are not possibly initials or numbers, that is,
single letters or a sequence of one or more digits. Once the problem has been formulated
as a problem of collocation detection, we can use the amended version of Dunning’s
log λ, as described in Section 2.2, to test the candidate word types for a collocational
tie to a preceding sentence boundary. Since we are relying on uncertain information,
namely, the intermediate annotation, we assume an exceptionally high threshold value
of 30 for the classification. Only if this value is reached or exceeded do we put the
candidate on the list of frequent sentence starters. The high cutoff value has been
determined experimentally during the development of Punkt (cf. Section 5).

Finally, there exists an interaction between the frequent sentence starter heuristic
and the collocation heuristic described in the preceding section in that the frequent
sentence starter heuristic may help to counterbalance the collocation heuristic. Some-
times, the collocation heuristic will detect a collocation across a sentence boundary,
particularly if the word preceding the boundary occurs quite often at the end of a
sentence and the word following the sentence boundary is a frequent sentence starter.
By determining the frequent sentence starters in the corpus and preventing the detection
of collocations with these types as second elements, collocation detection is made safer.

4.2 Token-based Reclassification of Abbreviations and Ellipses

The main question for all tokens classified as abbreviations by the type-based first stage
and all ellipses is whether they precede a sentence boundary or not. A sentence bound-
ary after these two classes of candidate tokens is assumed by Punkt if the orthographic
heuristic applied to the token following the abbreviation or ellipsis decides in favor of a
sentence boundary, or the token following the abbreviation or ellipsis is a capitalized fre-
quent sentence starter. However, only abbreviations that are longer than one letter and
thus not possibly initials are reclassified in this way. Initials present special problems
and are therefore reclassified differently, as will be discussed in the following section.

4.3 Token-based Detection of Initials and Ordinal Numbers

Initials are a subclass of abbreviations consisting of a single letter followed by a period.6

As there are only about thirty different letters in the average Latin-derived alphabet, the

6 Sometimes, two or more initials are not separated from each other by spaces, compare L.F. Rothschild in
example (1). Although these cases are usually still regarded as initials, our system does not treat them as
such but as ordinary abbreviations because it cannot distinguish abbreviations with internal periods from
such run-on combinations of initials. This is however not harmful because combinations like L.F. are
normally short, contain internal periods, and will probably not occur without a following period so that
there is a high likelihood that they will be recognized as abbreviations in the type-based stage.
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likelihood of being a homograph of an ordinary word is very high for initials; consider,
for example, the Portuguese definite articles o and a or the Swedish preposition i (‘in’).
Moreover, there are also various other uses for single letters: in formulas, enumerations,
and so on. Initials are therefore often not detected by the type-based first stage of
the Punkt system. For this reason, all single letters followed by a token-final period
are treated as possible initials during the token-based reclassification—regardless of
whether they have been classified as abbreviations or not by the type-based stage.

Luckily, initials are very often part of a complex name and can often be identified
using collocational evidence. If a possible initial forms a collocation with the following
token and the following token is not a frequent sentence starter, the period in between
is reclassified as an abbreviation marker. Alternatively, if the orthographic heuristic
decides against a sentence boundary on the basis of the token following the possible
initial, the period is also reclassified as an abbreviation period. Last but not least, we
employ a special heuristic for initials: If the orthographic heuristic returns undecided and
the type following the possible initial always occurs with an uppercase first letter, it is
assumed to be a proper name and the period between the two tokens is again classified
as an abbreviation marker. The system never reclassifies a period following a possible
initial as a sentence boundary marker because we assume that if a single letter is indeed
not used as an abbreviation but, for example, as a mathematical symbol or if it is an
ordinary word, there will usually be enough occurrences of this type without a final
period so that the type-based stage will classify all periods following instances of the
type in question as sentence boundary periods.

In many languages, such as German, ordinal numbers written in digits are also
marked by a token-final period; compare example (2).

Example 2
Was sind die Konsequenzen der Abstimmung vom 12. Juni?
What are the consequences of the poll of the 12th of June?
(cited from NZZ 06/13/1994)

As every numeric type can also be used as a cardinal number, it cannot be decided
by a type-based algorithm whether a period after a number is an abbreviation marker
or a sentence boundary marker. Numbers are therefore treated in the same way as
initials. If the token following a number with a final period forms a collocation with the
abstract type ##number##7 and is not a frequent sentence starter, the period in between is
classified as an abbreviation period. The same conclusion is reached if the orthographic
heuristic decides against a sentence boundary on the basis of the following token.

5. Development of the Punkt System

The three scaling factors used to improve on the initial sorting by the collocational
criterion for abbreviation detection were obtained by manual experiments on a 10 MB
development corpus of American English containing Wall Street Journal (WSJ) articles.
This corpus is distinct from the portions of the WSJ we use for evaluation purposes in
Section 6. From this development corpus, a candidate list of possible abbreviation types
was extracted and sorted according to the log-likelihood ratio described in Section 2.1.

7 As specific numbers often occur very infrequently, we fold all numeric types into one abstract type
##number## for the purposes of collocation detection.
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We experimented with different factors and measured their impact in terms of precision
and recall on the candidates above a given threshold value. Our goal was to maximize
precision and recall for the top part of the list, that is, to get a clear separation of true
abbreviations at the top of the list from non-abbreviations at the bottom of the list.
The factors Flength (9) and Fperiods (10) were conceived and tested solely on the basis
of the WSJ development corpus. We have added the third factor Fpenalty (11) to cope with
the problem of very common ordinary words that precede a sentence boundary most
of the time. We encountered this problem in the Turkish test corpus, but it would
probably arise for other verb-final languages as well. After fixing the final form of
the scaling factors, we also used the candidate list from the development corpus to
determine the ideal threshold value for type-based abbreviation detection by manual
inspection. The best combination of the different methods in the token-based stage and
the threshold value 30 used for finding frequent sentence starters were also determined
by manual experimentation on the development corpus. The same parameters and
combinations of heuristics have been employed in all tests described in Section 6 unless
otherwise noted.

6. Evaluation

We have tested our system extensively for a number of different languages and under
different circumstances. We report the results that we obtained from our experiments in
Section 6.4, after giving a short characterization of the test corpora on which we did our
evaluation in Section 6.1, defining the performance measures we use in Section 6.2 and
proposing three baselines as lower bounds and standards of comparison in Section 6.3.
We compare our approach to other systems for sentence boundary detection proposed
in the literature in Section 7.

6.1 Test Corpora

We have evaluated Punkt on corpora from eleven different languages: Brazilian
Portuguese, Dutch, English, Estonian, French, German, Italian, Norwegian, Spanish,
Swedish, and Turkish. For all of these languages, we have created test corpora con-
taining newspaper text, the genre that is most often used to test sentence boundary
detection systems; compare Section 7. Table 4 provides a short description for each
one of these newspaper corpora. Five of them—Dutch, French, Italian, Spanish, and
Swedish—are parts of corpora taken from the CD-ROM Multilingual Corpus 1 dis-
tributed by the European Corpus Initiative (ECI). For English, we have used sections
03-06 of the WSJ portion of the Penn Treebank (Marcus, Santorini, and Marcinkiewicz
1993) distributed by the Linguistic Data Consortium (LDC), which have frequently been
used to evaluate sentence boundary detection systems before; compare Section 7. For
the other languages, we have chosen newspaper corpora that were either available on
the Internet (Brazilian Portuguese), distributed by the newspaper itself (German), or
kindly provided to us by other research institutions (Estonian, Norwegian, and Turk-
ish). While the Swedish corpus contains a small amount of literary fiction in addition to
newspaper articles from several Swedish newspapers, the other corpora consist solely of
newswire text.

To determine whether Punkt is also suitable for different text genres, we have
additionally evaluated it on a piece of American English literature (compare Table 5)
obtained from Project Gutenberg (www.gutenberg.org). Last but not least, we have
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Table 4
Newspaper corpora used in the evaluation.

Language Origin Content

Brazilian Portuguese CETENFolha corpus (Linguateca) Folha de S. Paulo
Dutch Multilingual Corpus 1 (ECI) De Limburger
English Penn Treebank (LDC) Wall Street Journal
Estonian By courtesy of the University of Tartu Eesti Ekspress
French Multilingual Corpus 1 (ECI) Le Monde
German Neue Zürcher Zeitung AG CD-ROM Neue Zürcher Zeitung
Italian Multilingual Corpus 1 (ECI) La Stampa, Il Mattino
Norwegian By courtesy of the Centre for Humanities

Information Technologies, Bergen
Bergens Tidende (Bokmål
and Nynorsk)

Spanish Multilingual Corpus 1 (ECI) Sur
Swedish Multilingual Corpus 1 (ECI) Dagens Nyheter (and others)
Turkish METU Turkish Corpus (Türkçe Derlem

Projesi), by courtesy of the University
of Ankara

Milliyet

Table 5
Other corpora used in the evaluation.

Language Origin Content

English Brown corpus Balanced corpus of American English, different text genres
English Project Gutenberg The Works of Edgar Allan Poe in Five Volumes, Volumes I–III,

literary fiction

also tested it on the Brown corpus of American English (Francis and Kucera 1982),
which has often been used to evaluate other sentence boundary detection systems.
This corpus contains a mixture of text genres including news, scientific articles, and
literary fiction.

For the evaluation, we have created annotated versions of the test corpora, in which
all periods were disambiguated by hand and labeled with the correct tag from Table 6.
Table 7 illustrates some statistical properties of the test corpora. For each corpus, we
provide the number of tokens it contains and the number of all tokens with a final
period, that is, all periods that had to be classified by Punkt. As an indication of the
difficulty of the sentence boundary detection task, we also give information on how
many abbreviations each corpus contains and what percentage of all the tokens with
a final period actually are abbreviations. Finally, the last column shows the number of
different abbreviation types occurring in each test corpus.

Table 6
Tags used in the evaluation.

<S> Sentence boundary
<A> Abbreviation
<E> Ellipsis
<A><S> Abbreviation at the end of sentence
<E><S> Ellipsis at the end of sentence
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Table 7
Statistical properties of the test corpora.

Corpus Tokens Tokens with Abbr. Abbr. Abbr.
final periods tokens tokens (%) types

B. Portuguese 321,032 15,250 481 3.15 102
Dutch 340,238 20,075 1,270 6.33 141
English – WSJ 469,396 26,980 7,297 27.05 196
English – Brown 1,105,348 54,722 5,586 10.21 213
English – Poe 324,247 11,247 600 5.33 59
Estonian 358,894 25,825 2,517 9.75 248
French 369,506 12,890 375 2.91 91
German 847,207 38,062 3,603 9.47 139
Italian 312,398 11,561 442 3.82 156
Norwegian 479,225 28,368 1,882 6.63 242
Spanish 352,773 13,015 570 4.38 84
Swedish 338,948 19,724 769 3.90 100
Turkish 333,451 21,047 598 2.84 103

6.2 Performance Measures

The most important measure we use is the error rate given in (13). It is defined
as the ratio of the number of incorrectly classified candidates to the number of all
candidates.

error rate =
false positives + false negatives

number of all candidates (13)

In addition, we use precision and recall to provide better information on what kinds
of errors were made by Punkt. Precision is the ratio between the number of candidate
tokens that have been correctly assigned to a class and the number of all candidates that
have been assigned to this class.

precision =
true positives

true positives + false positives (14)

Recall is defined as the proportion of all candidates truly belonging to a certain class
that have also been assigned to that class by the evaluated system.

recall =
true positives

true positives + false negatives (15)

Finally, the so-called F measure is the harmonic mean of precision and recall (van
Rijsbergen 1979).

F measure =
2 × precision × recall

precision + recall (16)
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All the measures we use are based on counting true and false positives and true and
false negatives. There are, however, three possibilities of what classifications could be
regarded as a positive or a negative outcome because Punkt actually performs three
classification tasks at the same time. The most important one is the decision whether
a token-final period marks a sentence boundary or not. But the system also decides
for each candidate token ending in a period whether it is an abbreviation or not and
whether it is an ellipsis or not; compare Table 6. The performance measures for sen-
tence boundary detection, abbreviation detection, and ellipsis detection do not directly
depend on each other because a candidate can be an abbreviation (or an ellipsis) and
precede a sentence boundary at the same time. We thus calculate error rate, precision,
recall, and F measure for the sentence boundary detection problem and for the ab-
breviation detection problem separately. For sentence boundary detection, we count
the following tags as positives: <S>, <A><S>, and <E><S>. The tags <A> and
<A><S> are considered positives for the abbreviation detection task. As the correct
classification of ellipses is straightforward, we do not give figures for the detection
of ellipses.

6.3 Baselines

In Sections 6.4.1 and 6.4.2, we evaluate Punkt against three different baseline algorithms.
These baselines serve several purposes. First, they establish a lower bound for the task of
sentence boundary detection. Any sentence boundary detection system should perform
significantly better than these baseline algorithms. Second, although we compare Punkt
to other systems proposed in the literature in Section 7, most previous work on sentence
boundary detection considered at most three different languages so that no direct
comparison is possible for many of the corpora and languages that we have used in
our evaluation. A comparison with the performance of the three baselines can at least
give an indication of how well our system did on these corpora. Third, there is still an
assumption held in the field that simple algorithms such as the baselines presented here
are sufficiently reliable to be used for sentence boundary detection. This opinion was,
for example, held by a reviewer of Kiss and Strunk (2002a). As will become clear in the
following sections, a baseline algorithm may perform pretty well on one corpus, but this
performance typically does not carry over to other languages or corpora. The baselines
thus also serve to illustrate the complexity of the sentence boundary detection problem.

The absolute baseline (AbsBL) is the simplest approach to sentence boundary de-
tection we can think of. It simply assumes that all token-final periods in a test corpus
represent sentence boundaries. Consequently, all periods are tagged with <S>.

The second baseline algorithm (TokBL) relies only on the local context of a period. It
is a token-based approach that uses only orthographic information. All token-final pe-
riods (including those that form part of an ellipsis) that do not precede a token starting
with a lowercase letter, a digit, or one of the following sentence internal punctuation
marks [; : ,] are classified as sentence boundary markers and annotated with <S>. All
other token-final periods are either classified as abbreviations (<A>) or ellipses (<E>).

The third baseline algorithm (TypeBL) is based on a method described by
Grefenstette (1999) and also by Mikheev (2002, page 299). It is a type-based approach
that decides for each candidate type whether it is an abbreviation or not. All instances
of candidates that ever occur in an unambiguous position, that is, before a lowercase
letter or a sentence-internal punctuation mark [; : ,] are classified as abbreviations,
and a period following them is not considered as an end-of-sentence marker. All other
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Table 8
Results of classification—newspaper corpora (mixed case).

Corpus Error Prec. Recall F Error Prec. Recall F
(<S>) (<S>) (<S>) (<S>) (<A>) (<A>) (<A>) (<A>)

(%) (%) (%) (%) (%) (%) (%) (%)

B. Port. 1.11 99.14 99.72 99.43 0.99 96.88 70.89 81.87
Dutch 0.97 99.25 99.72 99.48 0.66 99.31 90.24 94.55
English 1.65 99.13 98.64 98.89 0.71 99.86 97.52 98.68
Estonian 2.12 98.58 99.07 98.83 1.75 98.22 83.51 90.27
French 1.54 99.31 99.08 99.19 0.72 95.19 79.20 86.46
German 0.35 99.69 99.93 99.81 0.26 99.91 97.34 98.61
Italian 1.13 99.32 99.49 99.41 0.74 96.60 83.48 89.56
Norw. 0.81 99.45 99.68 99.56 0.72 98.16 90.81 94.34
Spanish 1.06 99.66 99.23 99.45 0.35 98.70 93.33 95.94
Swedish 1.76 98.82 99.36 99.09 1.48 94.10 66.32 77.80
Turkish 1.31 99.40 99.24 99.32 0.43 95.35 89.13 92.13
Mean 1.26 99.25 99.38 99.31 0.80 97.48 85.62 90.93
SD 0.49 0.33 0.38 0.29 0.46 1.99 10.19 6.69

candidate types are treated as ordinary words and a period following them is classified
as a sentence boundary marker. No sentence boundary is assumed after ellipses.

6.4 Experiments

We have tested Punkt on the various corpora introduced in Section 6.1. In all cases,
it was only provided with the unannotated test corpus as input and no further data
whatsoever, most importantly, no lexicon and no list of abbreviations. Its main classifi-
cation task was to decide for all token-final periods whether they indicated the end of
a sentence or not.8 In addition, it had to decide for all token-final periods whether they
were used as an abbreviation marker or were part of an ellipsis.

The results Punkt achieved on the newspaper corpora are presented in Section 6.4.1.
Those obtained for the remaining corpora are given in Section 6.4.2. In Section 6.4.3, we
provide the results of an experiment in which we evaluated our system on all-uppercase
and all-lowercase corpora. As many competing systems require a list of abbreviations,
we have carried out an experiment to determine the usefulness of abbreviation lists
derived from general-purpose dictionaries. The results are reported in Section 6.4.4.
Last but not least, we take a closer look at the architecture of Punkt in Section 6.4.5
by examining the contributions of its individual parts, look at remaining errors and
problems in Section 6.4.6, and discuss the hypothesis that the methods and heuristics
we use can be called language independent in Section 6.4.7.

6.4.1 Results on the Newspaper Corpora. Table 8 shows the results that we obtained
for the tasks of sentence boundary detection and abbreviation detection on the eleven
newspaper corpora. We performed two test runs for each language: one with detection

8 Only periods were classified. We did not include the less ambiguous exclamation and question marks
in the evaluation.
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Table 9
Comparison with the baselines—newspaper corpora (mixed case).

Error <S> Error <A>

Corpus Punkt AbsBL TokBL TypeBL Punkt AbsBL TokBL TypeBL
(%) (%) (%) (%) (%) (%) (%) (%)

B. Port. 1.11 3.17 2.01 1.74 0.99 3.15 2.11 1.51
Dutch 0.97 6.50 5.66 1.63 0.66 6.33 5.59 1.36
English 1.65 25.60 13.37 7.14 0.71 27.05 14.96 5.40
Estonian 2.12 10.03 4.86 7.45 1.75 9.75 4.94 6.53
French 1.54 4.20 3.02 2.87 0.72 2.91 2.20 1.19
German 0.35 9.50 6.23 8.74 0.26 9.47 6.22 8.60
Italian 1.13 4.45 3.40 3.14 0.74 3.82 3.11 2.53
Norw. 0.81 6.57 2.98 5.44 0.72 6.63 3.09 5.10
Spanish 1.06 4.23 3.17 2.61 0.35 4.38 3.40 1.75
Swedish 1.76 4.02 1.68 2.58 1.48 3.90 1.83 1.79
Turkish 1.31 3.47 5.25 26.40 0.43 2.84 4.66 25.44
Mean 1.26 7.43 4.69 6.23 0.80 7.29 4.74 5.56
SD 0.49 6.46 3.24 7.48 0.46 7.01 3.69 7.05

of ordinal numbers and one without a special treatment of numbers. For languages
such as English, which do not usually mark ordinal numbers with a final period, it
is obviously preferable not to try to detect them. In Table 8, we only report the best
result from the two test runs for each language.9 Those languages in which the period
is not usually used to mark ordinal numbers and for which the test without special
treatment of numbers achieved better results are italicized in the following tables. How-
ever, even if the special treatment of numbers was not turned off for such languages,
the resulting increase in the error rate was not very high, maximally 0.03%; see also
Section 6.4.5.

For the sentence boundary detection task, the error rates Punkt achieved on the
eleven newspaper corpora range from 2.12% on the Estonian corpus to only 0.35% on
the German corpus with an average error rate of 1.26%. The error rates for abbreviation
detection are slightly lower, lying between 1.75% on the Estonian corpus and 0.26% on
the German corpus with an average of 0.80% for all eleven corpora.

Table 9 compares Punkt’s performance to that of the three baseline algorithms. The
error rates achieved by Punkt for the sentence boundary task are reduced by about
83% on average compared to the absolute baseline, by about 73% compared to the
token-based baseline, and by almost 80% compared to the type-based baseline. The
error rates for the abbreviation detection task have decreased even more considerably,
namely, by approximately 89% in comparison to the absolute baseline, by about 83% in
comparison to the token-based baseline, and by almost 86% in comparison to the type-
based baseline. Table 9 also shows that whereas the good performance of our system
is quite stable across the eleven corpora with a standard deviation of only 0.49% for

9 One exception is the French corpus. It contains rankings from sports events in which ranks are indicated
using digits and a following period. Using the special detection of ordinal numbers on this corpus results
in a lower error rate of 1.33% for the task of sentence boundary detection and 0.50% for abbreviation
detection. However, as ordinal numbers in French are not usually indicated with final periods, we have
given the results of the system without special treatment of ordinal numbers for French in Table 8.
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sentence boundary detection and 0.46% for abbreviation detection, the performance of
the baselines is not reliable at all. Although one of the baselines sometimes performed
well on one corpus—such as TokBL on the Swedish corpus, the only case where Punkt
was not better than all of the baselines, or TypeBL on the Brazilian Portuguese and
Dutch corpora, the baselines exhibit a very large standard deviation in their error rates
across the eleven corpora and sometimes seem to fail completely, such as TokBL on the
English corpus and TypeBL on the Turkish corpus.

6.4.2 Results on the Other Corpora. In order to show that Punkt is also suited to process
text genres different from newspaper text and that its performance carries over to other
text types, we have tested it on two additional corpora of American English—the entire
Brown corpus and The Works of Edgar Allan Poe (volumes I–III). Table 10 provides the
results Punkt achieved on the two additional corpora.

The error rate on the Brown corpus is 1.02% for the sentence boundary detection
task and 0.82% for the abbreviation detection task. This represents a reduction of about
90% compared to the absolute baseline, a reduction of more than 85% compared to
the token-based baseline, and a reduction of more than 70% compared to the type-
based baseline; see Table 11. The error rate on The Works of Edgar Allan Poe is 0.80% for
sentence boundary detection and 0.46% for abbreviation detection, which corresponds
to a reduction of about 85% in comparison to AbsBL, a reduction by more than 80%
compared to TokBL, and by about 75% compared to TypeBL. These results achieved on
the literary Poe corpus and the Brown corpus with its balanced content fall within the
range of the error rates achieved on the newspaper corpora and thus indicate that Punkt
is also well suited to deal with literary texts and corpora containing mixed content.

6.4.3 Experiments with Single-case Corpora. We have also tested the applicability
of Punkt to single-case text. The newspaper test corpora have been converted to
all-uppercase and all-lowercase versions in order to determine how much Punkt is
affected by the loss of capitalization information. In fact, one should keep in mind

Table 10
Results of classification—other corpora (mixed case).

Corpus Error Prec. Recall F Error Prec. Recall F
(<S>) (<S>) (<S>) (<S>) (<A>) (<A>) (<A>) (<A>)

(%) (%) (%) (%) (%) (%) (%) (%)

Brown 1.02 99.14 99.75 99.44 0.82 98.92 92.17 95.43
Poe 0.80 99.71 99.45 99.58 0.46 95.36 96.00 95.68

Table 11
Comparison with the baselines—other corpora (mixed case).

Error <S> Error <A>

Corpus Punkt AbsBL TokBL TypeBL Punkt AbsBL TokBL TypeBL
(%) (%) (%) (%) (%) (%) (%) (%)

Brown 1.02 9.83 7.17 3.59 0.82 10.21 7.55 3.27
Poe 0.80 5.03 4.12 3.12 0.46 5.33 4.42 2.76
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that single-case text does not only lack useful capitalization information, but actually
contains information that is highly misleading for systems that rely primarily on cap-
italization. Table 12 shows the performance of our system on the single-case corpora.
The left half of the table contains the error rates and F values for sentence boundary
detection and abbreviation detection on the lowercase corpora. The right half gives
the corresponding values for the tests on the uppercase corpora. The last two rows
of the table compare these results with those Punkt achieved on the mixed-case (MC)
versions of the newspaper corpora; compare Section 6.4.1. As can be seen in Table 12,
the performance of our system is only minimally affected by the loss of capitalization
information, slightly more so on the all-lowercase corpora. The error rate our system
produces for the task of sentence boundary detection is 0.41% higher on average on
the lowercase corpora than on the mixed-case corpora. The increase in the error rate
on the uppercase corpora is slightly lower: 0.29%. For the task of abbreviation detection,
the increase in the error rates is even lower: 0.14% on the lowercase corpora and 0.13%
on the uppercase corpora. This is expected because Punkt only uses capitalization
information as evidence during the token-based correction and reclassification stage
and not as primary evidence for the detection of abbreviations. The experiments on
the single-case corpora show that Punkt is quite robust and well suited also to process
single-case text.

6.4.4 Experiments with Additional Abbreviation Lists. Punkt is able to dynamically
detect abbreviations in the test corpus itself. It therefore does not depend on precom-
piled abbreviation lists like some of its competitors; compare Section 7. But even
though an abbreviation list is not necessary for Punkt to perform well, such a list can
easily be integrated into its architecture. The abbreviations read from such a list are
simply added to those the system has detected in the test corpus after the type-based

Table 12
Results of classification—newspaper corpora (single case).

All-lowercase corpora All-uppercase corpora

Corpus Error F Error F Error F Error F
(<S>) (<S>) (<A>) (<A>) (<S>) (<S>) (<A>) (<A>)

(%) (%) (%) (%) (%) (%) (%) (%)

B. Port. 1.25 99.36 1.11 82.68 1.19 99.39 1.04 81.28
Dutch 1.00 99.47 0.72 94.12 0.85 99.55 0.57 95.34
English 2.30 98.44 0.71 98.66 2.04 98.63 0.72 98.65
Estonian 2.57 98.57 1.66 91.01 2.80 98.45 2.10 88.13
French 2.56 98.65 0.85 84.36 1.99 98.96 0.85 84.38
German 0.40 99.78 0.26 98.62 0.47 99.74 0.30 98.38
Italian 1.48 99.23 0.83 88.38 1.37 99.29 0.80 88.97
Norwegian 1.55 99.17 1.32 89.73 1.41 99.25 1.18 90.54
Spanish 1.31 99.31 0.45 94.69 1.12 99.41 0.32 96.24
Swedish 2.39 98.76 1.86 72.88 2.28 98.82 1.74 74.25
Turkish 1.53 99.20 0.57 89.74 1.54 99.20 0.58 89.30
Mean 1.67 99.09 0.94 89.53 1.55 99.15 0.93 89.59
SD 0.70 0.42 0.50 7.54 0.67 0.40 0.56 7.56
Mean (MC) 1.26 99.31 0.80 90.93 1.26 99.31 0.80 90.93
Difference 0.41 −0.22 0.14 −1.40 0.29 −0.16 0.13 −1.34
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stage. Ideally, one would use a domain-specific abbreviation list if the domain of the
test corpus is known beforehand. However, we wanted to determine the usefulness
of general-purpose abbreviation lists derived from general-purpose dictionaries. We
have therefore built such abbreviation lists by extracting by hand all abbreviations
from a German spelling dictionary—the Rechtschreibduden (Dudenredaktion 2004)—
and all English abbreviations from a bilingual dictionary—the small Muret-Sanders
English-German dictionary by Langenscheidt (Willmann and Messinger 1996). This
yielded a total number of 769 abbreviations for German and 1,537 for English; compare
Table 13.

We then made three additional versions of these lists from which we deleted po-
tentially harmful entries: one from which we removed all abbreviations that had ob-
vious non-abbreviation homographs, one from which we removed all single-character
abbreviations, and one from which we removed both. Table 13 gives the number of
remaining abbreviations for these different versions. We produced these additional
versions to test how much care is needed when preparing abbreviation lists for a system
like Punkt.

We then carried out two experiments on the German and English newspaper
corpora and the Brown corpus. In the first experiment, we tested how well Punkt
performed when it was provided with the different abbreviation lists in addition to
the abbreviations it was able to detect on the fly; see Table 14 for the results.

The results show that Punkt can indeed benefit from additional abbreviation
lists, but only if these are prepared with care. Providing such a carefully prepared

Table 13
Abbreviation lists.

List English German

All abbreviations 1537 769
No homographs 1115 729
No single characters 1513 742
No homographs and no single characters 1112 703

Table 14
Results of classification—using an additional abbreviation list.

Error <S>

Corpus No list (%) All (%) No homogr. (%) No single chars. (%) Neither (%)

WSJ 1.65 1.97 1.58 1.96 1.58
Brown 1.02 1.75 0.93 1.72 0.92
NZZ 0.35 0.37 0.32 0.37 0.32

Error <A>

Corpus No list (%) All (%) No homogr. (%) No single chars. (%) Neither (%)

WSJ 0.71 0.89 0.63 0.88 0.63
Brown 0.82 1.44 0.69 1.42 0.70
NZZ 0.26 0.28 0.23 0.28 0.23
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abbreviation list reduced the error rate of our system on the WSJ corpus from 1.65%
to 1.58%, the error rate on the Brown corpus from 1.02% to 0.92%, and the error rate on
the German NZZ corpus from 0.35% to 0.32%. Additional general-purpose abbreviation
lists thus do improve the performance of our system, but the decrease of the error rate
is not very great. Table 14 also shows that abbreviation lists from which abbreviations
homographic to ordinary words and single-character abbreviations have not been re-
moved are not helpful at all and instead lead to an increased error rate on all of the
three corpora.

In the second experiment, Punkt could only use the abbreviations on the different
lists and was not allowed to add any additional abbreviations on the fly. This experi-
ment thus really tests the coverage of general-purpose abbreviation lists and also the
productivity of abbreviation use in the test corpora. Table 15 contains the results from
this experiment. The column On the fly gives the error rates that Punkt achieved in its
normal configuration detecting abbreviations on the fly without being provided with an
additional abbreviation list. The remaining columns show the results it produced when
it could use a fixed list of abbreviations only. A comparison between the first column and
the other columns makes clear that abbreviation use in the corpora is quite productive
and that fixed general-purpose abbreviation lists are clearly not sufficient for sentence
boundary detection. A versatile sentence boundary detection system should therefore
always be able to detect unknown abbreviations on the fly.

6.4.5 Contributions of the Individual Parts of the System. In this section, we take a look
at the contributions of the individual parts of the system to its overall performance.
First, we tried to determine the effectiveness of reclassifying the different candidate
classes in the token-based stage separately using specific combinations of evidence,
namely, ordinary abbreviations, ellipses, initials, and numbers. We therefore built four
different versions of our system, which are described in Table 16. The different config-
urations become cumulatively more specialized in their treatment of the different can-
didate classes from System 1 with no token-based reclassification at all to the complete
System 4.

Table 17 gives the results that the four different configurations achieved on the
eleven newspaper corpora. It shows that the cumulatively more specialized treatment

Table 15
Results of classification—using only a fixed abbreviation list.

Error <S>

Corpus On the fly (%) All (%) No homogr. (%) No single chars. (%) Neither (%)

WSJ 1.65 5.33 16.62 5.35 16.65
Brown 1.02 2.53 5.24 2.60 5.26
NZZ 0.35 2.55 2.64 2.59 2.67

Error <A>

Corpus On the fly (%) All (%) No homogr. (%) No single chars. (%) Neither (%)

WSJ 0.71 4.57 16.70 4.58 16.73
Brown 0.82 2.32 5.32 2.43 5.36
NZZ 0.26 2.48 2.56 2.51 2.60
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Table 16
Configurations for testing the effectiveness of separate reclassification in the token-based stage.

System Description

1 Only type-based stage
2 Type-based stage + Reclassification of abbreviations (including initials) and ellipses
3 Type-based stage + Reclassification of abbreviations and ellipses + Separate treatment

of initials
4 Type-based stage + Reclassification of abbreviations and ellipses + Separate treatment

of initials + Detection of ordinal numbers (Complete System)

of the different candidate classes helps to improve on the error rate of the type-based
stage considerably. Moreover, a separate reclassification of initials and numbers is quite
effective for reducing the error rate on the newspaper corpora, often even more so
than the detection of sentence boundaries after abbreviations and ellipses. The separate
treatment of initials is quite beneficial for the English corpus, for example, reducing
the error rate from 2.06% to 1.65% (System 2 vs. System 3), but also for Dutch, French,
Italian, Norwegian and Spanish, while the detection of ordinal numbers is a very
important factor for the German newspaper corpus, reducing the error rate from 2.25%
to only 0.35% (System 3 vs. System 4), and also for the Estonian, Norwegian, and Turkish
corpora. For all languages that use the period to mark ordinal numbers, the detection
of ordinal numbers thus turns out to be a very important subtask of sentence boundary
disambiguation. A comparison between System 3 and System 4 also shows that leaving
the detection of ordinal numbers on for languages that do not mark them with a final
period is not really harmful, resulting in a maximal increase in the error rate of 0.03%.

In a second experiment, we have tested the usefulness of the different heuristics
used during the token-based stage. Table 18 provides information on the five different
configurations we have evaluated. We have again added heuristics cumulatively: first,
the collocation heuristic; next the frequent sentence starter heuristic; then the ortho-
graphic heuristic; and finally, the special orthographic heuristic for initials.

Table 17
Contributions of separate reclassifications—newspaper corpora (mixed case).

Error <S>

Corpus System 1 (%) System 2 (%) System 3 (%) System 4 (%)

B. Portuguese 1.37 1.27 1.11 1.12
Dutch 1.96 2.73 1.27 0.97
English 2.71 2.06 1.65 1.68
Estonian 7.37 6.88 6.46 2.12
French 2.94 2.04 1.54 1.33
German 2.38 2.32 2.25 0.35
Italian 2.18 1.90 1.13 1.14
Norwegian 4.09 3.92 3.38 0.81
Spanish 1.81 1.67 1.06 1.08
Swedish 2.42 2.16 1.95 1.76
Turkish 1.89 1.72 1.70 1.31
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Table 18
Configurations for testing the effectiveness of the heuristics in the token-based stage.

System Description

A Only type-based stage
B Type-based stage + Collocation heuristic
C Type-based stage + Collocation heuristic + Frequent sentence starter heuristic
D Type-based stage + Collocation heuristic + Frequent sentence starter heuristic +

Orthographic heuristic
E Type-based stage + Collocation heuristic + Frequent sentence starter heuristic +

Orthographic heuristic + Special orthographic heuristic for initials (Complete System)

Table 19 contains the error rates produced by Systems A to E on the eleven news-
paper corpora. It confirms that all heuristics contribute to the performance of the
system, though to different degrees depending on the specific corpus. It also shows
that the collocation heuristic is very effective in reducing the error rate on the different
corpora, more effective in fact than the orthographic heuristic. This fact supports our
argument that the importance of brittle orthographic evidence can be reduced and
sentence boundary detection can be made more robust by relying more on collocational
evidence. The collocation heuristic reduces the error rate from 7.37% to 2.94% on the
Estonian corpus, for example, and is also very effective for German, Norwegian, and
Spanish. The impact of the frequent sentence starter heuristic is somewhat smaller,
but it still leads to a substantial decrease in the error rate from 2.61% to 1.96% for
French and to smaller reductions for all other languages. Although Punkt does not rely
so much on capitalization, the orthographic heuristic still reduces the error rate from
2.80% to 2.18% for Estonian, for example, and leads to smaller improvements for the
other languages except for English, where it causes a small increase in the error rate.
As most combinations of initials and a following proper name are already captured by
the collocation heuristic, the special orthographic heuristic for initials is only applied to
complex names that occur infrequently and thus does not result in a large reduction of
the error rate. Still, it never has a negative effect and is able to reduce the error rate from

Table 19
Contributions of the heuristics—newspaper corpora (mixed case).

Error <S>

Corpus System A (%) System B (%) System C (%) System D (%) System E (%)

B. Portuguese 1.37 1.28 1.13 1.12 1.11
Dutch 1.96 1.17 1.13 1.05 0.97
English 2.71 2.15 1.80 1.84 1.65
Estonian 7.37 2.94 2.80 2.18 2.12
French 2.94 2.61 1.96 1.78 1.54
German 2.38 0.47 0.42 0.36 0.35
Italian 2.18 1.60 1.39 1.23 1.13
Norwegian 4.09 1.44 1.34 0.87 0.81
Spanish 1.81 1.39 1.25 1.08 1.06
Swedish 2.42 2.13 1.94 1.76 1.76
Turkish 1.89 1.58 1.54 1.31 1.31
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1.84% to 1.65% on the English corpus and from 1.78% to 1.54% on the French corpus.
We conclude that our heuristics are well motivated in that they decrease the error
rates on the newspaper corpora substantially and never have any severe detrimental
effect. Moreover, as Section 6.4.3 shows, they work effectively even for single-case
corpora.

6.4.6 Remaining Errors and Problematic Cases. The preceding sections have shown
that Punkt’s type-based abbreviation detection stage by itself is already quite effective
and that the token-based heuristics are successful at further reducing the error rates on
the test corpora. However, there remain some problematic cases, which Punkt currently
is not able to deal with well and which we have to leave for further work. The problems
that resulted in errors on the test corpora can be grouped into a few major types: (1)
homography, (2) inconsistent use of abbreviations, (3) data sparseness, (4) insufficient
or contradicting orthographic evidence, and (5) problems with text structure.

The first type of error results from the type-based nature of our approach to ab-
breviation detection. Abbreviations may not be recognized as such and wrong sen-
tence boundaries may be introduced if an abbreviation is a homograph of an ordinary
word or an acronym because the type-based abbreviation detection stage is not able to
distinguish between homographic types. For example, the English abbreviation in. for
inch might not be recognized because it coincides with the frequent preposition in. All
occurrences of in with and without a final period will be added together and the type in
will most probably be classified as a non-abbreviation. All instances of in followed by
a period will then be marked as ordinary words preceding a sentence boundary. This
type of error was common in the English, Italian, and Portuguese test corpora.

Inconsistent use of abbreviations within the same corpus represents a related prob-
lem. Sometimes, (certain) abbreviations are not obligatorily marked with a final period.
For example, abbreviations for physical units such as m for meter or kg for kilogram are
sometimes marked with a final period and sometimes not. If both usages occur within
the same test corpus, Punkt may classify such a type as a non-abbreviation, which may
lead to incorrectly introduced sentence boundaries if the final period of some instances
of this type serves as abbreviation marker only. This problem was important for the
Swedish test corpus, where many frequent abbreviation types, such as osv. ‘and so on’,
were sometimes used with a final period and sometimes without one.

The type-based abbreviation detection stage is also affected by data sparseness. If an
abbreviation type, especially a long one, occurs only very infrequently, there is simply
not enough collocational evidence to recognize it as an abbreviation. Similarly, if an
infrequent ordinary word by chance always occurs in front of a period, it might be
mistaken for an abbreviation. This type of error occurred frequently in the Norwegian
and Spanish corpora, in which quite a few long and rare abbreviations were used. The
issue of data sparseness can also have an impact on the collocational and orthographic
heuristics in the token-based stage.

Sentence boundaries after abbreviations and ellipses are sometimes not found if the
token following the period belongs to a type that does not provide good orthographic
evidence for assuming a preceding sentence boundary. This is the case if the type is
always capitalized, for example, because it is a proper noun, or if it occurs with an
uppercase first letter within a sentence. If the type is rare it may also occur only at the
beginning of a sentence by chance and will thus only be encountered in capitalized
form. This lack of orthographic evidence had a detrimental effect on the recognition
of abbreviations at the end of a sentence in the English corpus and on the detection of
sentence boundaries after ellipses, for example, in the French corpus.
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Last but not least, not all parts of a text can be easily divided into sentences. For
example, headlines are usually not terminated with a period. If an abbreviation is
the last word in a headline, Punkt often tags it with <A><S> because the following
token starts a new sentence and may provide good evidence for a preceding sentence
boundary. However, a human annotator will probably consider the period following the
abbreviation as an abbreviation marker only and not as a sentence boundary period in
analogy to other headlines. Another problem relating to text structure is the question of
whether an ordinal number in an enumerated list belongs to the same sentence as the list
item itself or whether there is a sentence boundary between them. List items often begin
with a capitalized word; compare, for example, the enumeration in Section 3. Punkt
therefore mostly assumes that there is a sentence boundary between the number and
the list item. Our human annotators, however, have considered the ordinal number to
be part of the following sentence. These problems suggest that the automatic recognition
of text structure could be quite beneficial for sentence boundary detection.

6.4.7 Language Independence and Optional Recalibration. Punkt is conceived as a
language and domain-independent corpus preprocessing tool that can be used out of
the box for all languages that use an alphabetic writing system and employ the same
symbol to mark abbreviations and the end of sentence. It is our hypothesis that the
threshold values we use should not vary much from language to language and from
corpus to corpus. We have therefore determined optimal thresholds once on an English
development corpus and retained these values for all experiments described so far;
compare Section 5. We have carried out two experiments to substantiate our hypothesis.

In the first experiment, we have tested different threshold values for the type-based
abbreviation detection stage. Figure 4 shows that the threshold value of 0.3, which we
have used so far, turns out to be the ideal value for three of the corpora and that the
minimum error rate for all eleven newspaper corpora lies at or is very close to this
threshold value. Table 20 gives the differences between the best error rate on each corpus
and the error rate produced by our system with the chosen threshold value of 0.3. The

Figure 4
Error rates for different classification threshold values in the type-based stage.
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maximal difference is 0.13% for Italian. However, the average difference is only 0.03%.
Moreover, Table 20 also indicates that the threshold values that produced the best results
for the different languages—specified in parentheses in the Lowest column—all lie very
close to 0.3. The biggest deviation is the optimal threshold value 0.6 for Estonian. The
outcome of this experiment shows that abbreviations in the eleven languages behave
very similarly and that the crucial type-based stage of Punkt can indeed be called
language independent.

This is further corroborated by a second experiment in which we trained gener-
alized linear models for the detection of abbreviation types on the eleven newspaper
corpora using a logit link function and no intercept term. In this experiment, we used the
following three factors, which correspond to the collocational factor, the length factor,
and the internal periods factor used in the type-based stage of Punkt:

1. Ratio: The ratio of occurrences of a candidate with a final period to all
occurrences of this candidate.

2. Length: The length of the candidate type (excluding periods).

3. Periods: The number of internal periods.

We then examined the resulting parameters of the trained models in order to
determine whether the evidence we use in the type-based stage of Punkt is significant
information for an effective model for abbreviation detection. All three factors always
make a highly significant contribution and cannot be dropped from the models. The
factor Periods is sometimes a little less important than the other two as there are some
corpora in which most abbreviations do not contain internal periods. Figure 5 indicates
the variation of the parameters that we obtained for the three factors (on the logit link
scale). It is remarkably small. The coefficient for the factor Periods exhibits the most
variability, but is still quite stable. This relatively small variation of the parameters
further substantiates our claim that the evidence we use for abbreviation detection can
be considered language independent.

We know from further experiments that the threshold values 7.88 and 30, which
we have chosen for the collocation heuristic and the frequent sentence starter heuristic,
respectively, work well for our test corpora but are not always the optimal values
for each individual corpus. Although Punkt is conceived as a flexible, unsupervised
system, one can optionally recalibrate the threshold values by providing it with a hand-
annotated training corpus. We have tested this possibility by annotating a second French

Table 20
Difference between lowest error rate and error rate achieved with a threshold of 0.3.

Language 0.3 Lowest (at) Diff. Language 0.3 Lowest (at) Diff.

B. Port. 1.11% 1.10% (0.4) 0.01% Italian 1.13% 1.00% (0.2) 0.13%
Dutch 0.97% 0.93% (0.2) 0.04% Norwegian 0.81% 0.81% (0.3) 0.00%
English 1.65% 1.59% (0.2) 0.06% Spanish 1.06% 1.06% (0.3) 0.00%
Estonian 2.12% 2.10% (0.6) 0.02% Swedish 1.76% 1.76% (0.3) 0.00%
French 1.54% 1.51% (0.2) 0.03% Turkish 1.31% 1.25% (0.4) 0.06%
German 0.35% 0.34% (0.2) 0.01% Average difference: 0.03%
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Figure 5
Variation of parameters in a log-linear model for type-based abbreviation detection.

corpus by hand. It again comprises articles from the newspaper Le Monde. It contains
371,526 tokens in all and 13,664 tokens ending in a final period. Punkt achieved an
error rate for sentence boundary detection of 1.84% on this corpus. We used this second
French corpus as training corpus to recalibrate the threshold values for the collocation
heuristic and the frequent sentence starter heuristic. The optimal values determined on
this training corpus were 17 for the collocation heuristic and 5 for the frequent sentence
starter heuristic. We then used these values in a second test run on our original French
test corpus. The resulting error rate for the task of sentence boundary detection was
1.44%, while the error rate for abbreviation detection was 0.71%. These results are a
little better than the ones achieved without recalibration (1.54% and 0.72%); compare
Section 6.4.1. The optimal threshold values determined on the original test corpus
itself are 6 for the collocation heuristic and 5 for the frequent sentence starter heuristic.
The large difference between the best threshold values for the collocation heuristic on
the two French corpora shows that the ideal value can vary from corpus to corpus,
even if two corpora contain text of the same language and the same genre: in this case
newspaper articles from Le Monde. Nevertheless, the lower error rate obtained in this
experiment shows that Punkt can optionally be recalibrated on a training corpus to
further optimize its performance. It can thus benefit from supervised training data,
such as abbreviation lists or a training corpus, but does not require such data in order to
perform well.

7. Comparison to Other Systems

The results we presented in the previous section show that Punkt is able to achieve low
error rates on corpora from eleven different languages, that it is well-suited to process
different text genres, and that it is robust enough to deal with single-case text. Moreover,
it reliably outperforms the three baseline algorithms, and its performance is much more
stable than that of the baselines.

In this section, we want to compare the performance of our system directly to
that of competing systems and discuss advantages and disadvantages of the different
approaches to sentence boundary detection. Unless otherwise indicated, the term error
rate in this section always refers to the error rate for the task of sentence boundary
detection.
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7.1 Rule-based Systems

Rule-based systems make use of hard-coded rules and fixed lists of lexical items such as
abbreviations in order to identify which punctuation marks signal sentence boundaries
and which do not; that is, they neither learn from an annotated training corpus nor use
the test corpus itself to induce the required knowledge but rather employ precompiled
resources usually provided by a human expert. We will discuss one such system by
Silla, Valle, and Kaestner (2003) and compare its performance directly with that of our
system. Moreover, we will also refer to results by Grefenstette (1999).

7.1.1 The RE system by Silla, Valle, and Kaestner (2003). The RE system10 scans the
test corpus until it encounters a period. It then compares the one token preceding and
the one token following the period with a database of regular expressions that describe
exceptions such as Web addresses, decimal numbers, and, most importantly, abbrevi-
ations, in which the period does not indicate the end of a sentence. If the preceding
token and/or the following token match a regular expression in the database, the RE
system concludes that the period does not indicate a sentence boundary and searches
for the next period. If no matching regular expression is found, the period is classified
as a sentence boundary.

In Strunk, Silla, and Kaestner (2006), we have compared Punkt’s performance to
that of the RE system on two test collections: on articles from the WSJ taken from the
TIPSTER document collection (TREC reference number: WSJ-910130) and on the Brazil-
ian Portuguese Lacio-Web Corpus (Aluisio et al. 2003). The RE system was specifically
developed for English newspaper texts. In order to use it on the Portuguese Lacio-Web
corpus, 240 new regular expressions, which match Portuguese abbreviations, had to be
added. Silla and Kaestner (2004) describe the adaptation process as “easy, although time
consuming.”

On the English TIPSTER test corpus, Punkt achieved results that were only slightly
worse than those of the RE system: The RE system reached a precision of 92.39% and
a recall of 91.18%, which yielded an F measure of 91.78%, while Punkt achieved a
slightly lower precision of 90.70% and a slightly higher recall of 92.34% resulting in an F
measure of 91.51%. When comparing these results, it has to be kept in mind that the RE
system employs a handcrafted list of more than 700 abbreviations and was specifically
developed for English newspaper text, while Punkt was not given any information
besides the test corpus itself. Punkt’s performance on the English TIPSTER corpus is
thus quite impressive. This is further corroborated by the fact that Punkt was able
to outperform the RE system on the Portuguese Lacio-Web corpus, even though 240
Portuguese abbreviations had been collected for the database of the RE system by hand:
The RE system scored a precision of 91.80% and a recall of 88.02%, which resulted in
an F measure of 89.87%, while Punkt achieved a precision of 97.58% and a recall of
96.87%, yielding a much better F measure of 97.22%. In sum, Punkt almost matched the
performance of the RE system on the English test corpus and clearly outperformed it on
the Portuguese test corpus.

7.1.2 Grefenstette (1999). This book chapter by Grefenstette—which is based on earlier
work by Grefenstette and Tapanainen (1994)—discusses different approaches to sen-

10 This is the name given to it in Silla and Kaestner (2004). RE stands for regular expressions. It is available
from http://www.ppgia.pucpr.br/∼silla/softwares/yasd.zip.
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tence boundary disambiguation using different sources of information and evaluates
them on the Brown corpus, on which Punkt achieved an error rate of 1.02%. The first
approach described is a simple regular expressions approach that tries to recognize
abbreviations by matching against the following patterns (Grefenstette 1999, page 127):

� a single capital followed by a period, such as “A.”, “B.,” and “C.”;
� a sequence of letter-period-letter-period’s, such as “U.S.”, “i.e.,”

and “m.p.h.”;
� a capital letter followed by a sequence of consonants followed by

a period, such as “Mr.”, “St.,” and “Assn.”.

This approach produces a high error rate of 2.34%. Moreover, it makes language-specific
assumptions in that strings such as Mr might well be valid ordinary words in other
languages. Grefenstette considers a second approach in which he additionally tries
to identify abbreviations with a type-based heuristic, which inspired our type-based
baseline (TypeBL) (Grefenstette 1999, pages 128 and 129):

Let us define as a likely abbreviation any string of letters terminated by a period and
followed by either a comma or semi-colon, a question mark, a lower-case letter, or a
number, or followed by a word beginning with a capital letter and ending in a period.
[. . . ] We can apply the corpus itself as a filter by eliminating from the list of likely
abbreviations those strings that appear without a terminal period in the corpus.

The token-based and type-based heuristics combined produce an error rate of
1.65%, which is still much higher than that of Punkt. An alternative approach evaluated
by Grefenstette is to use a lexicon containing all ordinary words in the Brown corpus but
no abbreviations or proper names in combination with the type-based heuristic for ab-
breviation detection. Even an approach with this massive amount of lexical knowledge
still produces an error rate that is higher than that achieved by Punkt: 1.73% versus
1.02%. Only when he uses the complete lexicon and a list of common abbreviations,
is Grefenstette (1999) able to attain a result that is slightly better than ours: His most
resource intensive system achieves an error rate of 0.93%.

These results indicate that Punkt can keep up well with rule-based systems even
when tested on the specific language and text type that they have been developed for.
Whereas rule-based systems either require extensive lexical resources or a large amount
of manual labor, Punkt can be applied to new languages and corpora out of the box
with no manual adaptation. The fact that it can recognize new abbreviations on the fly
is especially a great advantage because the results of the RE system on the Lacio-Web
corpus and our own experiments in Section 6.4.4 show that rule or list-based systems
are often not sufficient to cover the productivity of abbreviation use in new corpora
and languages; compare also Mikheev (2002, pages 298, 299, and 311) and Silla and
Kaestner (2004).

7.2 Supervised Machine-Learning Systems

In this section, we discuss several supervised machine-learning approaches to sen-
tence boundary detection described in the literature and compare their results to those
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achieved by Punkt. We regard those sentence boundary systems as supervised that
require a set of manually disambiguated instances as training data.

7.2.1 Riley (1989). Riley induces a decision tree for sentence boundary detection using
the following features (Riley 1989, pages 351 and 352):

� Prob[word with “.” occurs at end of sentence]
� Prob[word after “.” occurs at beginning of sentence]
� Length of word with “.”
� Length of word after “.”
� Case of word with “.”: Upper, Lower, Cap, Numbers
� Case of word after “.”: Upper, Lower, Cap, Numbers
� Punctuation after “.” (if any)
� Abbreviation class of word with “.”

— e.g., month name, unit-of-measure, title, address name, etc.

The resulting decision tree is able to classify the periods in the Brown corpus with a
very low error rate of only 0.2%, which is 0.82% better than that achieved by Punkt.
However, the impressive performance of Riley’s approach also requires impressive
amounts of training data: He calculated the probabilities that a certain word occurs
before or after a sentence boundary from 25 million words of AP newswire text. Such
a large training corpus is probably not available for many languages; see also the
comments in Palmer and Hearst (1997, page 245). Moreover, the last of Riley’s features,
namely, abbreviation class, requires quite specific lexical knowledge about abbreviation
types that can only be taken from additional handcrafted resources. It is unclear how
well his approach would do with a realistic amount of training data and without these
specific lexical resources.

7.2.2 The Satz System by Palmer and Hearst (1997). The Satz system11 uses estimates
of the part-of-speech distribution of the words surrounding potential end-of-sentence
punctuation marks as input to a machine-learning algorithm. The part-of-speech infor-
mation is derived from a lexicon that contains part-of-speech frequency data. In case
a word is not in the lexicon, a part-of-speech distribution is estimated by different
guessing heuristics. In addition, Satz also uses an abbreviation list and capitalization
information. After training the system on a small training and a small cross-validation
corpus, which consist of documents with sentence boundaries annotated by hand, it
can be used on new documents to detect sentence boundaries. The system can work
with any kind of machine-learning approach in principle. Palmer and Hearst’s original
results were obtained using neural networks and decision trees.

We have used the same portion of the Wall Street Journal for evaluation in the
preceding sections as Palmer and Hearst (1997) so that a direct comparison between
the systems is possible. Palmer and Hearst report an error rate of 1.5% for the initial
version of their system, which uses neural nets as machine-learning algorithm, a lexicon

11 Available from: http://elib.cs.berkeley.edu/src/satz/.
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of 30,000 words including an abbreviation list comprising 206 items, and was trained on
a training set of 573 cases and a cross-validation set of 258 cases. This result is only
slightly better than the error rate of 1.65% that we obtained with Punkt. Their best
result was produced by a version of their system that used decision tree induction, a
lexicon of 5,000 words including the 206 abbreviations, and was trained on a set of
6,373 hand-annotated items. This configuration achieved an error rate of 1.0% on the
same test corpus. Palmer and Hearst have also evaluated their system on one French
corpus and two German corpora. For the French corpus, they report an error rate of
0.4%. On the two German corpora, their system produced error rates of 1.3% and 0.5%,
respectively. Whereas the results of the Satz system for French are better than those for
our system, their results on the two German corpora are worse than ours. However, as
we were not able to use the same test corpora in our evaluation, these results are not
directly comparable. Strunk, Silla, and Kaestner (2006) give the results of a comparative
evaluation of the present system against three other approaches, including Satz, on
English and Brazilian Portuguese corpora. For both of these corpora, Satz achieved a
slightly lower error rate than our system; compare Table 22.

While it is true that Satz performs somewhat better than Punkt in general, this is
only the case if enough training data and additional resources are available. When it
was not provided with a precompiled list of abbreviations, for example, it produced
an error rate as high as 4.9% on the WSJ corpus (Palmer and Hearst 1997, page 255).
This result combined with the results from Section 6.4.4, which showed that general-
purpose abbreviation lists are not sufficient due to the productivity of abbreviation use,
suggests that a reliable performance of the Satz system on new corpora can only be
ensured if it is provided with an abbreviation list suitable for the domain in question
and it is ideally trained on documents of the same genre as the corpus it will be tested
on. Moreover, Palmer and Hearst report that Satz possesses a similar robustness with
regard to single-case corpora as our system. However, this is again only the case if it has
been retrained specifically on single-case corpora (Palmer and Hearst 1997, pages 255,
256, 259).

7.2.3 MxTerminator. Reynar and Ratnaparkhi (1997) use maximum-entropy modeling
to learn contextual features from a hand-annotated training corpus that can be used to
identify sentence boundaries. Their system, called MxTerminator,12 employs features
such as the token preceding a potential sentence boundary, the token following it,
capitalization information about these tokens, whether one or both of them are abbrevi-
ations or not, and so on in its most portable version. It also induces a list of abbreviations
from the training corpus by considering as an abbreviation every token in the training
corpus that contains a possible end-of-sentence symbol but does not indicate a sentence
boundary. This portable version does not depend on any lexical resources such as
the part-of-speech information required by Satz. Reynar and Ratnaparkhi also built a
version specialized for English newspaper text, which makes use of additional hand-
crafted resources: a list of honorific abbreviations such as Ms. and Dr. and a list of
corporate-designating abbreviations such as Corp. and S.p.A. This specialized system
achieved an error rate of 1.2% on the English WSJ test corpus also used by Palmer and
Hearst and in our work. While this result is clearly better than that of our system, which
produced an error rate of 1.65%, MxTerminator had to be trained on 39,441 sentences of
WSJ text and used hand-crafted lexical resources. For the more portable version of their

12 Available from: ftp://ftp.cis.upenn.edu/pub/adwait/jmx/jmx.tar.gz.
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system without language-specific abbreviation lists, Reynar and Ratnaparkhi report an
error rate of 2.0% on the same text corpus, an error rate that is higher than that achieved
by our system without training or lexical resources.

We have evaluated the portable version of MxTerminator on our eleven newspaper
corpora using ten-fold cross-validation with nine tenths of the corpus as training set and
one tenth as test set. Table 21 gives the average number of training cases and the mean
error rates for MxTerminator on each corpus and compares them to those achieved by
Punkt. Although MxTerminator achieves a slightly lower error rate on two corpora,
namely Brazilian Portuguese and English, it produces an average error rate of 1.77% on
the newspaper corpora, which lies well above our system’s mean error rate of 1.26%,
even though the number of training instances was sometimes as high as 34,256 (for
German) and never fell below 10,000. MxTerminator’s performance was also worse than
that of our system in a comparative evaluation on English and Brazilian Portuguese
corpora described in Strunk, Silla, and Kaestner (2006).

MxTerminator also shows that one cannot in general expect that the performance
of a machine-learning system carries over to new corpora written in the same language
without retraining. When Reynar and Ratnaparkhi evaluated their system on the Brown
corpus without retraining, it achieved a relatively high error rate of 2.1% (cf. Punkt’s
error rate of 1.02%). The authors themselves remark:

We present the Brown corpus performance to show the importance of training on the
genre of text on which testing will be performed.

This points to the general problem that supervised systems that are not able to
dynamically incorporate new knowledge, for example, by discovering abbrevia-
tion types on the fly, cannot be expected to perform reliably on new corpora if
the specific domain or genre is not known beforehand; compare also Mikheev (2002,
pages 298, 314).

7.2.4 Stamatatos, Fakotakis, and Kokkinakis (1999). These authors apply a specifically
adapted version of transformation-based learning (Brill 1995) to the problem of sentence
boundary detection. For the initial-state annotation, they assume that every possible
sentence-ending punctuation mark does indeed indicate a sentence boundary. In the
first learning stage, their system uses characteristics such as identity, length, capital-

Table 21
Comparison between MxTerminator (Reynar and Ratnaparkhi 1997) and the Punkt System.

Error <S>

Corpus Cases MxTerm. Punkt Corpus Cases MxTerm. Punkt
(%) (%) (%) (%)

B. Port. 13,725 1.10 1.11 Italian 10,405 2.45 1.13
Dutch 18,068 1.13 0.97 Norwegian 25,531 1.34 0.81
English 24,282 1.53 1.65 Spanish 11,714 1.60 1.06
Estonian 23,243 2.79 2.12 Swedish 17,752 2.39 1.76
French 11,601 2.66 1.54 Turkish 18,942 1.77 1.31
German 34,256 0.63 0.35 Mean Error MxTerm.: 1.76%, Punkt: 1.26%
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Table 22
Direct comparison between Punkt and other systems for sentence boundary detection.

F Measure Error <S>

System Tipster—WSJ (%) Lacio Web (%) Brown (%) WSJ (%)

Punkt 91.51 97.22 1.02 1.65
RE 91.78 89.87 – –
Grefenstette & Tapanainen – – 0.93 –
Riley – – 0.20 –
Satz 91.88 99.16 – 1.00
MxTerminator – – 2.10 1.20
MxTerminator (portable) 91.22 96.46 2.50 2.00
Mikheev – – 0.28 0.45
Mikheev (tagger only) – – 0.98 1.95
Mikheev (+ tagger) – – 0.20 0.31

ization of the token containing a possible end-of-sentence boundary marker and of
the token immediately following it as possible triggering environments to learn rules
that remove sentence boundaries. In the second stage, it learns rules that reinsert sen-
tence boundaries using the same space of possible triggering environments. Stamatatos,
Fakotakis, and Kokkinakis (1999) trained their system on a hand-annotated corpus
of Greek newspaper articles that contained 9,136 candidate punctuation marks. They
tested it on a corpus containing articles from the same newspaper with 10,977 candidate
punctuation marks and a lower bound of 79.6%. Their system learned 312 rules in
all and produced an error rate of 0.6% on all punctuation marks, including periods,
exclamation and question marks, and ellipses. When only periods and ellipses were
considered, it achieved an error rate of 0.57% with a set of 234 rules. Punkt achieved a
respectable error rate of 1.50% on this corpus without any training at all. As Stamatatos,
Fakotakis, and Kokkinakis (1999) use individual words and brittle features such as
capitalization information as triggering environments, their system is probably not very
robust in that it requires training on a corpus that is very close to the texts that the system
is intended to be used on in order to guarantee a low error rate.

7.3 Unsupervised Machine-Learning Systems

Unsupervised systems are systems that neither require specific hand-written rules
or lexical resources nor have to be trained on hand-annotated training examples.
Instead, they extract the required information from the test corpus itself and/or
additional unannotated text. We also regard our own approach as an unsupervised
system.

7.3.1 Mikheev (2002). Mikheev proposes to combine sentence boundary detection,
proper name identification, and abbreviation detection in one system. He tackles the
sentence boundary disambiguation task with a set of simple rules that can be applied
after the tokens immediately to the left and to the right of a potential sentence boundary
marker have been fully disambiguated. The most important questions are whether the
token preceding a period is an abbreviation and whether the token following a period
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is a proper name. In order to answer these questions, he uses a combination of type-
based abbreviation-guessing heuristics, some of which have already been discussed
in Grefenstette (1999), and what he calls the document-centered approach to abbrevi-
ation detection and proper name identification. This approach is based on the idea of
classifying a candidate type as a whole as a proper name or an abbreviation based on
instances of that type that occur in unambiguous contexts: For example, a type that
always appears with a final period and occurs before a lowercase word is likely to be
an abbreviation, while a type that occurs with an uppercase first letter in the middle of
a sentence is likely to be a proper name. He enhances these methods with the ability
to distinguish between homographs (between an abbreviation and an ordinary word
and between a proper name and an ordinary word) by collecting common sequences of
more than one token that contain the candidate. His system requires some additional
resources, namely, a list of common words (i.e., not proper names), a list of common
words that are frequent sentence starters, a list of frequent proper names that coincide
with common words, and a domain-specific list of abbreviations, which can all be
created from an unannotated corpus without human intervention.

Mikheev evaluated his system on the WSJ corpus and the Brown corpus of Amer-
ican English, extracting the required additional resources from a 300,000 word corpus
of New York Times articles. It achieved an error rate of 0.45% on the WSJ corpus and an
error rate of 0.28% on the Brown corpus, while Punkt’s error rates on these corpora were
1.65% and 1.02%, respectively.13 Mikheev himself admits that the use of an additional
domain-specific abbreviation list, which has to be recreated for every new domain, is
not always possible, especially if the system is expected “to handle documents from
unknown origin” (Mikheev 2002, pages 305, 306). When his system was not equipped
with an additional abbreviation list, the error rates rose to 1.41% on the WSJ corpus
and 0.65% on the Brown corpus and were more comparable with those achieved by
Punkt. Mikheev also tested his system in conjunction with a morphological analyzer
on a corpus of BBC articles in Russian and obtained an error rate of 0.1% for sentence
boundary detection.

While Mikheev’s system and Punkt are quite similar in spirit, his system uses
advanced methods for the identification of proper names, while we have mostly con-
centrated on abbreviation detection. In fact, combining Mikheev’s insights with our
methods of abbreviation detection would most likely lead to another performance
increase: Mikheev’s abbreviation detection methods achieved an error rate of 6.6% on
the WSJ and an error rate of 8.9% on the Brown corpus for the task of abbreviation
detection when no additional abbreviation list was used. Even when such a list was
consulted, his error rates—0.8% on the WSJ and 1.2% on the Brown corpus—remained
above those achieved by Punkt—0.71% and 0.82%, respectively.

Abbreviation detection is also the area where we have spotted some critical issues
in Mikheev’s approach. Although Mikheev aims at a domain-independent system, he
makes some decisions that could be harmful for domains other than news and literary
fiction. He places an arbitrary length limit on possible abbreviations by applying his
document-centered approach to abbreviation detection only to candidates that have a
maximal length of four letters (Mikheev 2002, page 299). This limit is already too strict
for some abbreviations found in English newspaper corpora, such as Messrs., Calif., and
Thurs. The abbreviation Calif.(ornia), for instance, occurs 88 times in the portion of the

13 However, Mikheev seems to have tested on the whole WSJ portion of the Penn Treebank, while we have
used only Sections 03-06.
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WSJ corpus we used in our evaluation. The abbreviation lists that we have extracted
from a German dictionary and a bilingual English–German dictionary (cf. Section 6.4.4)
show that such an arbitrary length limit can be quite problematic. In the German list,
28% of all abbreviation types have a length greater than four. In the English list, 26% are
longer than four characters.

Moreover, Mikheev’s document-centered approach is mostly based on capitaliza-
tion information and therefore unable to uncover abbreviations that are always followed
by a capitalized word, while our approach uses collocational information pertaining
to the abbreviation itself and its final period and thus does not incur this problem.
Mikheev’s strong reliance on capitalization also renders his approach unsuitable for
single-case text and leads to some problems for German where all nouns are always
capitalized and not only proper names (Mikheev 2002, page 315). Last but not least,
Mikheev’s system does not include a specialized treatment of ordinal numbers, which
we have shown to be quite important for some languages; compare Section 6.4.5.

Mikheev (2000, 2002) describes the combination of a trigram tagger with his
document-centered approach to abbreviation detection and proper name identification.
After bootstrapping the training process on 20,000 words of tagged text, he trained the
tagger in the unsupervised mode on the Brown corpus and evaluated it on the WSJ
corpus and vice versa. When he used the tagger alone for the disambiguation of possible
end-of-sentence marks, it achieved an error rate of 1.95% on the WSJ corpus (vs. 1.65%
achieved by Punkt) and an error rate of 0.98% on the Brown corpus (vs. 1.02% achieved
by our system). Enhancing the tagger with the heuristics to identify proper names and
abbreviations described above improved the error rates to 0.31% on the WSJ corpus and
0.20% on the Brown corpus. When the heuristics were applied only to the test corpora
themselves and no additional abbreviation list was employed, the resulting error rates
were 1.39% on the WSJ corpus and 0.65% on the Brown corpus. When comparing
these results achieved by using a part-of-speech tagger with those of our system, it
has to be kept in mind that although Mikheev trained his tagger in the unsupervised
mode, this technique normally still requires an extensive lexicon that contains the
possible parts of speech for each lexical item, a resource that is not always available for
every language.

8. Conclusion

We have presented an unsupervised multilingual sentence boundary detection system
that does not depend on any additional resources besides the corpus it is supposed to
segment into sentences. It uses collocational information as a new type of evidence for
the detection of abbreviations, initials, and ordinal numbers and is therefore much less
dependent on orthographic information than competing systems. This fact enables it
to accurately detect sentence boundaries even for single-case corpora. The experiments
that we have carried out for eleven languages show that it is an accurate method well
suited for different languages and text genres. Although its performance is slightly
inferior to the best results published in the literature on sentence boundary detection
(cf. Table 22), it can keep up well with rule-based methods and more straightforward
supervised systems. Moreover, we were able to show that abbreviation use is quite
productive and that systems that rely on resources such as abbreviation lists will
have to be adapted specifically to every new language and every new domain, while
no manual work and no language-specific resources are needed to adapt Punkt to
new corpora.
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