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This article describes three statistical models for natural language parsing. The models extend
methods from probabilistic context-free grammars to lexicalized grammars, leading to approaches
in which a parse tree is represented as the sequence of decisions corresponding to a head-centered,
top-down derivation of the tree. Independence assumptions then lead to parameters that encode
the X-bar schema, subcategorization, ordering of complements, placement of adjuncts, bigram
lexical dependencies, wh-movement, and preferences for close attachment. All of these preferences
are expressed by probabilities conditioned on lexical heads. The models are evaluated on the Penn
Wall Street Journal Treebank, showing that their accuracy is competitive with other models in
the literature. To gain a better understanding of the models, we also give results on different
constituent types, as well as a breakdown of precision/recall results in recovering various types of
dependencies. We analyze various characteristics of the models through experiments on parsing
accuracy, by collecting frequencies of various structures in the treebank, and through linguistically
motivated examples. Finally, we compare the models to others that have been applied to parsing
the treebank, aiming to give some explanation of the difference in performance of the various
models.

1. Introduction

Ambiguity is a central problem in natural language parsing. Combinatorial effects
mean that even relatively short sentences can receive a considerable number of parses
under a wide-coverage grammar. Statistical parsing approaches tackle the ambiguity
problem by assigning a probability to each parse tree, thereby ranking competing trees
in order of plausibility. In many statistical models the probability for each candidate
tree is calculated as a product of terms, each term corresponding to some substructure
within the tree. The choice of parameterization is essentially the choice of how to
represent parse trees. There are two critical questions regarding the parameterization
of a parsing approach:

1. Which linguistic objects (e.g., context-free rules, parse moves) should the
model’s parameters be associated with? In other words, which features
should be used to discriminate among alternative parse trees?

2. How can this choice be instantiated in a sound probabilistic model?

In this article we explore these issues within the framework of generative models,
more precisely, the history-based models originally introduced to parsing by Black
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et al. (1992). In a history-based model, a parse tree is represented as a sequence of
decisions, the decisions being made in some derivation of the tree. Each decision has
an associated probability, and the product of these probabilities defines a probability
distribution over possible derivations.

We first describe three parsing models based on this approach. The models were
originally introduced in Collins (1997); the current article1 gives considerably more
detail about the models and discusses them in greater depth. In Model 1 we show
one approach that extends methods from probabilistic context-free grammars (PCFGs)
to lexicalized grammars. Most importantly, the model has parameters corresponding
to dependencies between pairs of headwords. We also show how to incorporate a
“distance” measure into these models, by generalizing the model to a history-based
approach. The distance measure allows the model to learn a preference for close at-
tachment, or right-branching structures.

In Model 2, we extend the parser to make the complement/adjunct distinction,
which will be important for most applications using the output from the parser. Model
2 is also extended to have parameters corresponding directly to probability distribu-
tions over subcategorization frames for headwords. The new parameters lead to an
improvement in accuracy.

In Model 3 we give a probabilistic treatment of wh-movement that is loosely based
on the analysis of wh-movement in generalized phrase structure grammar (GPSG)
(Gazdar et al. 1985). The output of the parser is now enhanced to show trace coin-
dexations in wh-movement cases. The parameters in this model are interesting in that
they correspond directly to the probability of propagating GPSG-style slash features
through parse trees, potentially allowing the model to learn island constraints.

In the three models a parse tree is represented as the sequence of decisions cor-
responding to a head-centered, top-down derivation of the tree. Independence as-
sumptions then follow naturally, leading to parameters that encode the X-bar schema,
subcategorization, ordering of complements, placement of adjuncts, lexical dependen-
cies, wh-movement, and preferences for close attachment. All of these preferences are
expressed by probabilities conditioned on lexical heads. For this reason we refer to the
models as head-driven statistical models.

We describe evaluation of the three models on the Penn Wall Street Journal Tree-
bank (Marcus, Santorini, and Marcinkiewicz 1993). Model 1 achieves 87.7% constituent
precision and 87.5% consituent recall on sentences of up to 100 words in length in sec-
tion 23 of the treebank, and Models 2 and 3 give further improvements to 88.3%
constituent precision and 88.0% constituent recall. These results are competitive with
those of other models that have been applied to parsing the Penn Treebank. Models 2
and 3 produce trees with information about wh-movement or subcategorization. Many
NLP applications will need this information to extract predicate-argument structure
from parse trees.

The rest of the article is structured as follows. Section 2 gives background material
on probabilistic context-free grammars and describes how rules can be “lexicalized”
through the addition of headwords to parse trees. Section 3 introduces the three prob-
abilistic models. Section 4 describes various refinments to these models. Section 5
discusses issues of parameter estimation, the treatment of unknown words, and also
the parsing algorithm. Section 6 gives results evaluating the performance of the mod-
els on the Penn Wall Street Journal Treebank (Marcus, Santorini, and Marcinkiewicz
1993). Section 7 investigates various aspects of the models in more detail. We give a

1 Much of this article is an edited version of chapters 7 and 8 of Collins (1999).
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detailed analysis of the parser’s performance on treebank data, including results on
different constituent types. We also give a breakdown of precision and recall results
in recovering various types of dependencies. The intention is to give a better idea
of the strengths and weaknesses of the parsing models. Section 7 goes on to discuss
the distance features in the models, the implicit assumptions that the models make
about the treebank annotation style, and the way that context-free rules in the original
treebank are broken down, allowing the models to generalize by producing new rules
on test data examples. We analyze these phenomena through experiments on parsing
accuracy, by collecting frequencies of various structures in the treebank, and through
linguistically motivated examples. Finally, section 8 gives more discussion, by com-
paring the models to others that have been applied to parsing the treebank. We aim to
give some explanation of the differences in performance among the various models.

2. Background

2.1 Probabilistic Context-Free Grammars
Probabilistic context-free grammars are the starting point for the models in this arti-
cle. For this reason we briefly recap the theory behind nonlexicalized PCFGs, before
moving to the lexicalized case.

Following Hopcroft and Ullman (1979), we define a context-free grammar G as a
4-tuple (N, Σ, A, R), where N is a set of nonterminal symbols, Σ is an alphabet, A is a
distinguished start symbol in N, and R is a finite set of rules, in which each rule is of
the form X → β for some X ∈ N, β ∈ (N ∪Σ)∗. The grammar defines a set of possible
strings in the language and also defines a set of possible leftmost derivations under
the grammar. Each derivation corresponds to a tree-sentence pair that is well formed
under the grammar.

A probabilistic context-free grammar is a simple modification of a context-free
grammar in which each rule in the grammar has an associated probability P(β | X).
This can be interpreted as the conditional probability of X’s being expanded using
the rule X → β, as opposed to one of the other possibilities for expanding X listed
in the grammar. The probability of a derivation is then a product of terms, each
term corresponding to a rule application in the derivation. The probability of a given
tree-sentence pair (T, S) derived by n applications of context-free rules LHSi → RHSi

(where LHS stands for “left-hand side,” RHS for “right-hand side”), 1 ≤ i ≤ n, under
the PCFG is

P(T, S) =

n∏

i=1

P(RHSi | LHSi)

Booth and Thompson (1973) specify the conditions under which the PCFG does in fact
define a distribution over the possible derivations (trees) generated by the underlying
grammar. The first condition is that the rule probabilities define conditional distribu-
tions over how each nonterminal in the grammar can expand. The second is a technical
condition that guarantees that the stochastic process generating trees terminates in a
finite number of steps with probability one.

A central problem in PCFGs is to define the conditional probability P(β | X) for
each rule X → β in the grammar. A simple way to do this is to take counts from a
treebank and then to use the maximum-likelihood estimates:

P(β | X) =
Count(X → β)

Count(X)
(1)
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If the treebank has actually been generated from a probabilistic context-free grammar
with the same rules and nonterminals as the model, then in the limit, as the training
sample size approaches infinity, the probability distribution implied by these estimates
will converge to the distribution of the underlying grammar.2

Once the model has been trained, we have a model that defines P(T, S) for any
sentence-tree pair in the grammar. The output on a new test sentence S is the most
likely tree under this model,

Tbest = arg max
T

P(T | S) = arg max
T

P(T, S)

P(S)
= arg max

T
P(T, S)

The parser itself is an algorithm that searches for the tree, Tbest, that maximizes P(T, S).
In the case of PCFGs, this can be accomplished using a variant of the CKY algorithm
applied to weighted grammars (providing that the PCFG can be converted to an equiv-
alent PCFG in Chomsky normal form); see, for example, Manning and Schütze (1999).

If the model probabilities P(T, S) are the same as the true distribution generating
training and test examples, returning the most likely tree under P(T, S) will be op-
timal in terms of minimizing the expected error rate (number of incorrect trees) on
newly drawn test examples. Hence if the data are generated by a PCFG, and there are
enough training examples for the maximum-likelihood estimates to converge to the
true values, then this parsing method will be optimal. In practice, these assumptions
cannot be verified and are arguably quite strong, but these limitations have not pre-
vented generative models from being successfully applied to many NLP and speech
tasks. (See Collins [2002] for a discussion of other ways of conceptualizing the parsing
problem.)

In the Penn Treebank (Marcus, Santorini, and Marcinkiewicz 1993), which is the
source of data for our experiments, the rules are either internal to the tree, where LHS
is a nonterminal and RHS is a string of one or more nonterminals, or lexical, where
LHS is a part-of-speech tag and RHS is a word. (See Figure 1 for an example.)

2.2 Lexicalized PCFGs
A PCFG can be lexicalized3 by associating a word w and a part-of-speech (POS) tag t
with each nonterminal X in the tree. (See Figure 2 for an example tree.)

The PCFG model can be applied to these lexicalized rules and trees in exactly the
same way as before. Whereas before the nonterminals were simple (for example, S or
NP), they are now extended to include a word and part-of-speech tag (for example,
S(bought,VBD) or NP(IBM,NNP)). Thus we write a nonterminal as X(x), where x =
〈w, t〉 and X is a constituent label. Formally, nothing has changed, we have just vastly
increased the number of nonterminals in the grammar (by up to a factor of |V| × |T |,

2 This point is actually more subtle than it first appears (we thank one of the anonymous reviewers for
pointing this out), and we were unable to find proofs of this property in the literature for PCFGs. The
rule probabilities for any nonterminal that appears with probability greater than zero in parse
derivations will converge to their underlying values, by the usual properties of maximum-likelihood
estimation for multinomial distributions. Assuming that the underlying PCFG generating training
examples meet both criteria in Booth and Thompson (1973), it can be shown that convergence of rule
probabilities implies that the distribution over trees will converge to that of the underlying PCFG, at
least when Kullback-Liebler divergence or the infinity norm is taken to be the measure of distance
between the two distributions. Thanks to Tommi Jaakkola and Nathan Srebro for discussions on this
topic.

3 We find lexical heads in Penn Treebank data using the rules described in Appendix A of Collins (1999).
The rules are a modified version of a head table provided by David Magerman and used in the parser
described in Magerman (1995).
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Internal rules Lexical rules
TOP → S JJ → Last
S → NP NP VP NN → week
NP → JJ NN NNP → IBM
NP → NNP VBD → bought
VP → VBD NP NNP → Lotus
NP → NNP

Figure 1
A nonlexicalized parse tree and a list of the rules it contains.

Internal Rules:
TOP → S(bought,VBD)
S(bought,VBD) → NP(week,NN) NP(IBM,NNP) VP(bought,VBD)
NP(week,NN) → JJ(Last,JJ) NN(week,NN)
NP(IBM,NNP) → NNP(IBM,NNP)
VP(bought,VBD) → VBD(bought,VBD) NP(Lotus,NNP)
NP(Lotus,NNP) → NNP(Lotus,NNP)

Lexical Rules:
JJ(Last,JJ) → Last
NN(week,NN) → week
NNP(IBM,NNP) → IBM
VBD(bought,VBD) → bought
NNP(Lotus,NN) → Lotus

Figure 2
A lexicalized parse tree and a list of the rules it contains.

where |V| is the number of words in the vocabulary and |T | is the number of part-of-
speech tags).

Although nothing has changed from a formal point of view, the practical conse-
quences of expanding the number of nonterminals quickly become apparent when
one is attempting to define a method for parameter estimation. The simplest solution
would be to use the maximum-likelihood estimate as in equation (1), for example,
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estimating the probability associated with S(bought,VBD) → NP(week,NN) NP(IBM,NNP)

VP(bought,VBD) as

P(NP(week,NN) NP(IBM,NNP) VP(bought,VBD) | S(bought,VBD)) =

Count(S(bought,VBD) → NP(week,NN) NP(IBM,NNP) VP(bought,VBD))

Count(S(bought,VBD))

But the addition of lexical items makes the statistics for this estimate very sparse: The
count for the denominator is likely to be relatively low, and the number of outcomes
(possible lexicalized RHSs) is huge, meaning that the numerator is very likely to be
zero. Predicting the whole lexicalized rule in one go is too big a step.

One way to overcome these sparse-data problems is to break down the gener-
ation of the RHS of each rule into a sequence of smaller steps, and then to make
independence assumptions to reduce the number of parameters in the model. The de-
composition of rules should aim to meet two criteria. First, the steps should be small
enough for the parameter estimation problem to be feasible (i.e., in terms of having suf-
ficient training data to train the model, providing that smoothing techniques are used
to mitigate remaining sparse-data problems). Second, the independence assumptions
made should be linguistically plausible. In the next sections we describe three statisti-
cal parsing models that have an increasing degree of linguistic sophistication. Model 1
uses a decomposition of which parameters corresponding to lexical dependencies are a
natural result. The model also incorporates a preference for right-branching structures
through conditioning on “distance” features. Model 2 extends the decomposition to
include a step in which subcategorization frames are chosen probabilistically. Model 3
handles wh-movement by adding parameters corresponding to slash categories being
passed from the parent of the rule to one of its children or being discharged as a trace.

3. Three Probabilistic Models for Parsing

3.1 Model 1
This section describes how the generation of the RHS of a rule is broken down into a
sequence of smaller steps in model 1. The first thing to note is that each internal rule
in a lexicalized PCFG has the form4

P(h) → Ln(ln) . . .L1(l1)H(h)R1(r1) . . .Rm(rm) (2)

H is the head-child of the rule, which inherits the headword/tag pair h from its parent
P. L1(l1) . . .Ln(ln) and R1(r1) . . .Rm(rm) are left and right modifiers of H. Either n or m
may be zero, and n = m = 0 for unary rules. Figure 2 shows a tree that will be used
as an example throughout this article. We will extend the left and right sequences to
include a terminating STOP symbol, allowing a Markov process to model the left and
right sequences. Thus Ln+1 = Rm+1 = STOP.

For example, in S(bought,VBD) → NP(week,NN) NP(IBM,NNP) VP(bought,VBD):

n = 2 m = 0 P = S

H = VP L1 = NP L2 = NP

L3 = STOP R1 = STOP h = 〈bought, VBD〉
l1 = 〈IBM, NNP〉 l2 = 〈week, NN〉

4 With the exception of the top rule in the tree, which has the form TOP → H(h).
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Note that lexical rules, in contrast to the internal rules, are completely deterministic.
They always take the form

P(h) → w

where P is a part-of-speech tag, h is a word-tag pair 〈w, t〉, and the rule rewrites to just
the word w. (See Figure 2 for examples of lexical rules.) Formally, we will always take
a lexicalized nonterminal P(h) to expand deterministically (with probability one) in
this way if P is a part-of-speech symbol. Thus for the parsing models we require the
nonterminal labels to be partitioned into two sets: part-of-speech symbols and other
nonterminals. Internal rules always have an LHS in which P is not a part-of-speech
symbol. Because lexicalized rules are deterministic, they will not be discussed in the
remainder of this article: All of the modeling choices concern internal rules.

The probability of an internal rule can be rewritten (exactly) using the chain rule
of probabilities:

P(Ln+1(ln+1) . . .L1(l1)H(h)R1(r1) . . .Rm+1(rm+1) | P, h) =

Ph(H | P, h) ×
∏

i=1...n+1

Pl(Li(li) | L1(l1) . . .Li−1(li−1), P, h, H) ×

∏

j=1...m+1

Pr(Rj(rj) | L1(l1) . . .Ln+1(ln+1), R1(r1) . . .Rj−1(rj−1), P, h, H)

(The subscripts h, l and r are used to denote the head, left-modifier, and right-modifier
parameter types, respectively.) Next, we make the assumption that the modifiers are
generated independently of each other:

Pl(Li(li) | L1(l1) . . .Li−1(li−1), P, h, H) = Pl(Li(li) | P, h, H)

(3)
Pr(Rj(rj) | L1(l1) . . .Ln+1(ln+1), R1(r1) . . .Rj−1(rj−1), P, h, H) = Pr(Rj(rj) | P, h, H)

(4)

In summary, the generation of the RHS of a rule such as (2), given the LHS, has
been decomposed into three steps:5

1. Generate the head constituent label of the phrase, with probability
Ph(H | P, h).

2. Generate modifiers to the left of the head with probability∏
i=1...n+1 Pl(Li(li) | P, h, H), where Ln+1(ln+1) = STOP. The STOP symbol is

added to the vocabulary of nonterminals, and the model stops
generating left modifiers when the STOP symbol is generated.

3. Generate modifiers to the right of the head with probability∏
i=1...m+1 Pr(Ri(ri) | P, h, H). We define Rm+1(rm+1) as STOP.

For example, the probability of the rule S(bought) → NP(week) NP(IBM) VP(bought)

would be estimated as

Ph(VP | S,bought) × Pl(NP(IBM) | S,VP,bought) × Pl(NP(week) | S,VP,bought)
×Pl(STOP | S,VP,bought) × Pr(STOP | S,VP,bought)

5 An exception is the first rule in the tree, TOP → H(h), which has probability PTOP(H, h|TOP)
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In this example, and in the examples in the rest of the article, for brevity we omit
the part-of-speech tags associated with words, writing, for example S(bought) rather
than S(bought,VBD). We emphasize that throughout the models in this article, each
word is always paired with its part of speech, either when the word is generated or
when the word is being conditioned upon.

3.1.1 Adding Distance to the Model. In this section we first describe how the model
can be extended to be “history-based.” We then show how this extension can be
utilized in incorporating “distance” features into the model.

Black et al. (1992) originally introduced history-based models for parsing. Equa-
tions (3) and (4) of the current article made the independence assumption that each
modifier is generated independently of the others (i.e., that the modifiers are generated
independently of everything except P, H, and h). In general, however, the probability
of generating each modifier could depend on any function of the previous modifiers,
head/parent category, and headword. Moreover, if the top-down derivation order is
fully specified, then the probability of generating a modifier can be conditioned on any
structure that has been previously generated. The remainder of this article assumes
that the derivation order is depth-first: that is, each modifier recursively generates the
subtree below it before the next modifier is generated. (Figure 3 gives an example that
illustrates this.)

The models in Collins (1996) showed that the distance between words standing in
head-modifier relationships was important, in particular, that it is important to capture
a preference for right-branching structures (which almost translates into a preference
for dependencies between adjacent words) and a preference for dependencies not to
cross a verb. In this section we describe how this information can be incorporated
into model 1. In section 7.2, we describe experiments that evaluate the effect of these
features on parsing accuracy.

Figure 3
A partially completed tree derived depth-first. “????” marks the position of the next modifier
to be generated—it could be a nonterminal/headword/head-tag triple, or the STOP symbol.
The distribution over possible symbols in this position could be conditioned on any
previously generated structure, that is, any structure appearing in the figure.



597

Collins Head-Driven Statistical Models for NL Parsing

Figure 4
The next child, R3(r3), is generated with probability P(R3(r3) | P, H, h, distancer(2)). The distance
is a function of the surface string below previous modifiers R1 and R2. In principle the model
could condition on any structure dominated by H, R1, or R2 (or, for that matter, on any
structure previously generated elsewhere in the tree).

Distance can be incorporated into the model by modifying the independence as-
sumptions so that each modifier has a limited dependence on the previous modifiers:

Pl(Li(li) | H, P, h, L1(l1) . . .Li−1(li−1)) = Pl(Li(li) | H, P, h, distancel(i − 1))

(5)
Pr(Ri(ri) | H, P, h, R1(r1) . . .Ri−1(ri−1)) = Pr(Ri(ri) | H, P, h, distancer(i − 1))

(6)

Here distancel and distancer are functions of the surface string below the previous
modifiers. (See Figure 4 for illustration.) The distance measure is similar to that in
Collins (1996), a vector with the following two elements: (1) Is the string of zero
length? (2) Does the string contain a verb? The first feature allows the model to learn
a preference for right-branching structures. The second feature6 allows the model to
learn a preference for modification of the most recent verb.7

3.2 Model 2: The Complement/Adjunct Distinction and Subcategorization
The tree depicted in Figure 2 illustrates the importance of the complement/adjunct
distinction. It would be useful to identify IBM as a subject and Last week as an adjunct
(temporal modifier), but this distinction is not made in the tree, as both NPs are in
the same position8 (sisters to a VP under an S node). From here on we will identify
complements9 by attaching a -C suffix to nonterminals. Figure 5 shows the tree in
Figure 2 with added complement markings.

A postprocessing stage could add this detail to the parser output, but there are a
couple of reasons for making the distinction while parsing. First, identifying comple-
ments is complex enough to warrant a probabilistic treatment. Lexical information is
needed (for example, knowledge that week is likely to be a temporal modifier). Knowl-
edge about subcategorization preferences (for example, that a verb takes exactly one
subject) is also required. For example, week can sometimes be a subject, as in Last week
was a good one, so the model must balance the preference for having a subject against

6 Note that this feature means that dynamic programming parsing algorithms for the model must keep
track of whether each constituent does or does not have a verb in the string to the right or left of its
head. See Collins (1999) for a full description of the parsing algorithms.

7 In the models described in Collins (1997), there was a third question concerning punctuation: (3) Does
the string contain 0, 1, 2 or more than 2 commas? (where a comma is anything tagged as “,” or “:”).
The model described in this article has a cleaner incorporation of punctuation into the generative
process, as described in section 4.3.

8 Except that IBM is closer to the VP, but note that IBM is also the subject in IBM last week bought Lotus.
9 We use the term complement in a broad sense that includes both complements and specifiers under the

terminology of government and binding.
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Figure 5
A tree with the -C suffix used to identify complements. IBM and Lotus are in subject and
object position, respectively. Last week is an adjunct.

Figure 6
Two examples in which the assumption that modifiers are generated independently of one
another leads to errors. In (1) the probability of generating both Dreyfus and fund as subjects,
P(NP-C(Dreyfus) | S,VP,was) ∗ P(NP-C(fund) | S,VP,was), is unreasonably high. (2) is similar:
P(NP-C(bill),VP-C(funding) | VP,VB,was) = P(NP-C(bill) | VP,VB,was) ∗
P(VP-C(funding) | VP,VB,was) is a bad independence assumption.

the relative improbability of week’s being the headword of a subject. These problems
are not restricted to NPs; compare The spokeswoman said (SBAR that the asbestos was dan-
gerous) with Bonds beat short-term investments (SBAR because the market is down), in which
an SBAR headed by that is a complement, but an SBAR headed by because is an adjunct.

A second reason for incorporating the complement/adjunct distinction into the
parsing model is that this may help parsing accuracy. The assumption that comple-
ments are generated independently of one another often leads to incorrect parses. (See
Figure 6 for examples.)

3.2.1 Identifying Complements and Adjuncts in the Penn Treebank. We add the -C

suffix to all nonterminals in training data that satisfy the following conditions:

1. The nonterminal must be (1) an NP, SBAR, or S whose parent is an S; (2)
an NP, SBAR, S, or VP whose parent is a VP; or (3) an S whose parent is
an SBAR.
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2. The nonterminal must not have one of the following semantic tags: ADV,
VOC, BNF, DIR, EXT, LOC, MNR, TMP, CLR or PRP. See Marcus et al.
(1994) for an explanation of what these tags signify. For example, the NP

Last week in figure 2 would have the TMP (temporal) tag, and the SBAR in
(SBAR because the market is down) would have the ADV (adverbial) tag.

3. The nonterminal must not be on the RHS of a coordinated phrase. For
example, in the rule S → S CC S, the two child Ss would not be marked
as complements.

In addition, the first child following the head of a prepositional phrase is marked as
a complement.

3.2.2 Probabilities over Subcategorization Frames. Model 1 could be retrained on
training data with the enhanced set of nonterminals, and it might learn the lexical
properties that distinguish complements and adjuncts (IBM vs. week, or that vs. because).
It would still suffer, however, from the bad independence assumptions illustrated in
Figure 6. To solve these kinds of problems, the generative process is extended to
include a probabilistic choice of left and right subcategorization frames:

1. Choose a head H with probability Ph(H | P, h).

2. Choose left and right subcategorization frames, LC and RC, with
probabilities Plc(LC | P, H, h) and Prc(RC | P, H, h). Each subcategorization
frame is a multiset10 specifying the complements that the head requires
in its left or right modifiers.

3. Generate the left and right modifiers with probabilities Pl(Li(li) |
H, P, h, distancel(i − 1), LC) and Pr(Ri(ri) | H, P, h, distancer(i − 1), RC),
respectively.

Thus the subcategorization requirements are added to the conditioning context. As
complements are generated they are removed from the appropriate subcategorization
multiset. Most importantly, the probability of generating the STOP symbol will be zero
when the subcategorization frame is non-empty, and the probability of generating a
particular complement will be zero when that complement is not in the subcatego-
rization frame; thus all and only the required complements will be generated.

The probability of the phrase S(bought) → NP(week) NP-C(IBM) VP(bought) is
now

Ph(VP | S,bought) × Plc({NP-C} | S,VP,bought) × Prc({} | S,VP,bought) ×
Pl(NP-C(IBM) | S,VP,bought, {NP-C}) × Pl(NP(week) | S,VP,bought, {}) ×
Pl(STOP | S,VP,bought, {}) × Pr(STOP | S,VP,bought, {})

Here the head initially decides to take a single NP-C (subject) to its left and no com-
plements to its right. NP-C(IBM) is immediately generated as the required subject, and
NP-C is removed from LC, leaving it empty when the next modifier, NP(week), is gen-
erated. The incorrect structures in Figure 6 should now have low probability, because
Plc({NP-C,NP-C} | S,VP,was) and Prc({NP-C,VP-C} | VP,VB,was) should be small.

10 A multiset, or bag, is a set that may contain duplicate nonterminal labels.
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3.3 Model 3: Traces and Wh-Movement
Another obstacle to extracting predicate-argument structure from parse trees is wh-
movement. This section describes a probabilistic treatment of extraction from relative
clauses. Noun phrases are most often extracted from subject position, object position,
or from within PPs:

(1) The store (SBAR that TRACE bought Lotus)

(2) The store (SBAR that IBM bought TRACE)

(3) The store (SBAR that IBM bought Lotus from TRACE)

It might be possible to write rule-based patterns that identify traces in a parse tree.
We argue again, however, that this task is best integrated into the parser: The task
is complex enough to warrant a probabilistic treatment, and integration may help
parsing accuracy. A couple of complexities are that modification by an SBAR does not
always involve extraction (e.g., the fact (SBAR that besoboru is played with a ball and a bat)),
and it is not uncommon for extraction to occur through several constituents (e.g., The
changes (SBAR that he said the government was prepared to make TRACE)).

One hope is that an integrated treatment of traces will improve the parameteri-
zation of the model. In particular, the subcategorization probabilities are smeared by
extraction. In examples (1), (2), and (3), bought is a transitive verb; but without knowl-
edge of traces, example (2) in training data will contribute to the probability of bought’s
being an intransitive verb.

Formalisms similar to GPSG (Gazdar et al. 1985) handle wh-movement by adding
a gap feature to each nonterminal in the tree and propagating gaps through the tree
until they are finally discharged as a trace complement (see Figure 7). In extraction
cases the Penn Treebank annotation coindexes a TRACE with the WHNP head of the SBAR,
so it is straightforward to add this information to trees in training data.

(1) NP → NP SBAR(+gap)

(2) SBAR(+gap) → WHNP S-C(+gap)

(3) S(+gap) → NP-C VP(+gap)

(4) VP(+gap) → VB TRACE NP

Figure 7
A +gap feature can be added to nonterminals to describe wh-movement. The top-level NP
initially generates an SBAR modifier but specifies that it must contain an NP trace by adding
the +gap feature. The gap is then passed down through the tree, until it is discharged as a
TRACE complement to the right of bought.
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Given that the LHS of the rule has a gap, there are three ways that the gap can
be passed down to the RHS:

Head: The gap is passed to the head of the phrase, as in rule (3) in Figure 7.

Left, Right: The gap is passed on recursively to one of the left or right modifiers
of the head or is discharged as a TRACE argument to the left or right of
the head. In rule (2) in Figure 7, it is passed on to a right modifier, the S

complement. In rule (4), a TRACE is generated to the right of the head VB.

We specify a parameter type Pg(G |P, h, H) where G is either Head, Left, or Right. The
generative process is extended to choose among these cases after generating the head
of the phrase. The rest of the phrase is then generated in different ways depending
on how the gap is propagated. In the Head case the left and right modifiers are
generated as normal. In the Left and Right cases a +gap requirement is added to either
the left or right SUBCAT variable. This requirement is fulfilled (and removed from
the subcategorization list) when either a trace or a modifier nonterminal that has the
+gap feature, is generated. For example, rule (2) in Figure 7, SBAR(that)(+gap) →
WHNP(that) S-C(bought)(+gap), has probability

Ph(WHNP | SBAR,that) × Pg(Right | SBAR,WHNP,that) × Plc({} | SBAR,WHNP,that) ×
Prc({S-C} | SBAR,WHNP,that) × Pr(S-C(bought)(+gap) | SBAR,WHNP,that, {S-C,+gap}) ×
Pr(STOP | SBAR,WHNP,that, {}) × Pl(STOP | SBAR,WHNP,that, {})

Rule (4), VP(bought)(+gap) → VB(bought) TRACE NP(week), has probability

Ph(VB | VP,bought) × Pg(Right | VP,bought,VB) × Plc({} | VP,bought,VB) ×
Prc({NP-C} | VP,bought,VB) × Pr(TRACE | VP,bought,VB, {NP-C, +gap}) ×
Pr(NP(week) | VP,bought,VB, {}) × Pl(STOP | VP,bought,VB, {}) ×
Pr(STOP | VP,bought,VB, {})

In rule (2), Right is chosen, so the +gap requirement is added to RC. Generation of
S-C(bought)(+gap) fulfills both the S-C and +gap requirements in RC. In rule (4),
Right is chosen again. Note that generation of TRACE satisfies both the NP-C and +gap

subcategorization requirements.

4. Special Cases: Linguistically Motivated Refinements to the Models

Sections 3.1 to 3.3 described the basic framework for the parsing models in this article.
In this section we describe how some linguistic phenomena (nonrecursive NPs and
coordination, for example) clearly violate the independence assumptions of the general
models. We describe a number of these special cases, in each instance arguing that the
phenomenon violates the independence assumptions, then describing how the model
can be refined to deal with the problem.

4.1 Nonrecursive NPs
We define nonrecursive NPs (from here on referred to as base-NPs and labeled NPB

rather than NP) as NPs that do not directly dominate an NP themselves, unless the
dominated NP is a possessive NP (i.e., it directly dominates a POS-tag POS). Figure 8
gives some examples. Base-NPs deserve special treatment for three reasons:

• The boundaries of base-NPs are often strongly marked. In particular, the
start points of base-NPs are often marked with a determiner or another
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Figure 8
Three examples of structures with base-NPs.

distinctive item, such as an adjective. Because of this, the probability of
generating the STOP symbol should be greatly increased when the
previous modifier is, for example, a determiner. As they stand, the
independence assumptions in the three models lose this information. The
probability of NPB(dog) → DT(the) NN(dog) would be estimated as11

Ph(NN | NPB,dog) × Pl(DT(the) | NPB,NN,dog) ×
Pl(STOP | NPB,NN,dog) × Pr(STOP | NPB,NN,dog)

In making the independence assumption

Pl(STOP | DT(the), NPB,NN,dog) = Pl(STOP | NPB,NN,dog)

the model will fail to learn that the STOP symbol is very likely to follow
a determiner. As a result, the model will assign unreasonably high
probabilities to NPs such as [NP yesterday the dog] in sentences such as
Yesterday the dog barked.

• The annotation standard in the treebank leaves the internal structure of
base-NPs underspecified. For example, both pet food volume (where pet
modifies food and food modifies volume) and vanilla ice cream (where both
vanilla and ice modify cream) would have the structure NPB → NN NN NN.
Because of this, there is no reason to believe that modifiers within NPBs
are dependent on the head rather than the previous modifier. In fact, if it
so happened that a majority of phrases were like pet food volume, then
conditioning on the previous modifier rather than the head would be
preferable.

• In general it is important (in particular for the distance measure to be
effective) to have different nonterminal labels for what are effectively
different X-bar levels. (See section 7.3.2 for further discussion.)

For these reasons the following modifications are made to the models:

• The nonterminal label for base-NPs is changed from NP to NPB. For
consistency, whenever an NP is seen with no pre- or postmodifiers, an
NPB level is added. For example, [S [NP the dog] [VP barks] ] would
be transformed into [S [NP [NPB the dog] ] [VP barks ] ]. These
“extra” NPBs are removed before scoring the output of the parser against
the treebank.

11 For simplicity, we give probability terms under model 1 with no distance variables; the probability
terms with distance variables, or for models 2 and 3, will be similar, but with the addition of various
pieces of conditioning information.



603

Collins Head-Driven Statistical Models for NL Parsing

• The independence assumptions are different when the parent
nonterminal is an NPB. Specifically, equations (5) and (6) are modified to
be

Pl(Li(li) | H, P, h, L1(l1) . . .Li−1(li−1)) = Pl(Li(li) | P, Li−1(li−1))

Pr(Ri(ri) | H, P, h, R1(r1) . . .Ri−1(ri−1)) = Pr(Ri(ri) | P, Ri−1(ri−1))

The modifier and previous-modifier nonterminals are always adjacent, so
the distance variable is constant and is omitted. For the purposes of this
model, L0(l0) and R0(r0) are defined to be H(h). The probability of the
previous example is now

Ph(NN | NPB,dog) × Pl(DT(the) | NPB,NN,dog) ×
Pl(STOP | NPB,DT,the) × Pr(STOP | NPB,NN,dog)

Presumably Pl(STOP | NPB,DT,the) will be very close to one.

4.2 Coordination
Coordination constructions are another example in which the independence assump-
tions in the basic models fail badly (at least given the current annotation method in
the treebank). Figure 9 shows how coordination is annotated in the treebank.12 To
use an example to illustrate the problems, take the rule NP(man) → NP(man) CC(and)

NP(dog), which has probability

Ph(NP | NP,man) × Pl(STOP | NP,NP,man) × Pr(CC(and) | NP,NP,man) ×
Pr(NP(dog) | NP,NP,man) × Pr(STOP | NP,NP,man)

The independence assumptions mean that the model fails to learn that there is always
exactly one phrase following the coordinator (CC). The basic probability models will
give much too high probabilities to unlikely phrases such as NP → NP CC or NP →
NP CC NP NP. For this reason we alter the generative process to allow generation of
both the coordinator and the following phrase in one step; instead of just generating a
nonterminal at each step, a nonterminal and a binary-valued coord flag are generated.
coord = 1 if there is a coordination relationship. In the generative process, generation
of a coord = 1 flag along with a modifier triggers an additional step in the generative

Figure 9
(a) The generic way of annotating coordination in the treebank. (b) and (c) show specific
examples (with base-NPs added as described in section 4.1). Note that the first item of the
conjunct is taken as the head of the phrase.

12 See Appendix A of Collins (1999) for a description of how the head rules treat phrases involving
coordination.
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process, namely, the generation of the coordinator tag/word pair, parameterized by
the Pcc parameter. For the preceding example this would give probability

Ph(NP | NP,man) × Pl(STOP | NP,NP,man) × Pr(NP(dog), coord=1 | NP,NP,man) ×
Pr(STOP | NP,NP,man) × Pcc(CC,and | NP,NP,NP,man,dog)

Note the new type of parameter, Pcc, for the generation of the coordinator word and
POS tag. The generation of coord=1 along with NP(dog) in the example implicitly
requires generation of a coordinator tag/word pair through the Pcc parameter. The
generation of this tag/word pair is conditioned on the two words in the coordination
dependency (man and dog in the example) and the label on their relationship (NP,NP,NP
in the example, representing NP coordination).

The coord flag is implicitly zero when normal nonterminals are generated; for ex-
ample, the phrase S(bought) → NP(week) NP(IBM) VP(bought) now has probability

Ph(VP | S,bought) × Pl(NP(IBM),coord=0 | S,VP,bought) ×
Pl(NP(week),coord=0 | S,VP,bought) × Pl(STOP | S,VP,bought) ×
Pr(STOP | S,VP,bought)

4.3 Punctuation
This section describes our treatment of “punctuation” in the model, where “punctu-
ation” is used to refer to words tagged as a comma or colon. Previous work—the
generative models described in Collins (1996) and the earlier version of these mod-
els described in Collins (1997)—conditioned on punctuation as surface features of the
string, treating it quite differently from lexical items. In particular, the model in Collins
(1997) failed to generate punctuation, a deficiency of the model. This section describes
how punctuation is integrated into the generative models.

Our first step is to raise punctuation as high in the parse trees as possible. Punc-
tuation at the beginning or end of sentences is removed from the training/test data
altogether.13 All punctuation items apart from those tagged as comma or colon (items
such as quotation marks and periods, tagged “ ” or . ) are removed altogether. These
transformations mean that punctuation always appears between two nonterminals, as
opposed to appearing at the end of a phrase. (See Figure 10 for an example.)

Figure 10
A parse tree before and after punctuation transformations.

13 As one of the anonymous reviewers of this article pointed out, this choice of discarding the
sentence-final punctuation may not be optimal, as the final punctuation mark may well carry useful
information about the sentence structure.
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Punctuation is then treated in a very similar way to coordination: Our intuition
is that there is a strong dependency between the punctuation mark and the modi-
fier generated after it. Punctuation is therefore generated with the following phrase
through a punc flag that is similar to the coord flag (a binary-valued feature equal to
one if a punctuation mark is generated with the following phrase).

Under this model, NP(Vinken) → NPB(Vinken) ,(,) ADJP(old) would have
probability

Ph(NPB | NP,Vinken) × Pl(STOP | NP,NPB,Vinken) ×
Pr(ADJP(old),coord=0,punc=1 | NP,NPB,Vinken) ×
Pr(STOP | NP,NPB,bought) × Pp(, , | NP,NPB,ADJP,Vinken,old) (7)

Pp is a new parameter type for generation of punctuation tag/word pairs. The genera-
tion of punc=1 along with ADJP(old) in the example implicitly requires generation of a
punctuation tag/word pair through the Pp parameter. The generation of this tag/word
pair is conditioned on the two words in the punctuation dependency (Vinken and old

in the example) and the label on their relationship (NP,NPB,ADJP in the example.)

4.4 Sentences with Empty (PRO) Subjects
Sentences in the treebank occur frequently with PRO subjects that may or may not be
controlled: As the treebank annotation currently stands, the nonterminal is S whether
or not a sentence has an overt subject. This is a problem for the subcategorization prob-
abilities in models 2 and 3: The probability of having zero subjects, Plc({} | S, VP,

verb), will be fairly high because of this. In addition, sentences with and without sub-
jects appear in quite different syntactic environments. For these reasons we modify
the nonterminal for sentences without subjects to be SG (see figure 11). The resulting
model has a cleaner division of subcategorization: Plc({NP-C} | S, VP, verb) ≈ 1 and
Plc({NP-C} | SG, VP, verb) = 0. The model will learn probabilistically the environ-
ments in which S and SG are likely to appear.

4.5 A Punctuation Constraint
As a final step, we use the rule concerning punctuation introduced in Collins (1996)
to impose a constraint as follows. If for any constituent Z in the chart Z → <..X Y..>

two of its children X and Y are separated by a comma, then the last word in Y must be
directly followed by a comma, or must be the last word in the sentence. In training
data 96% of commas follow this rule. The rule has the benefit of improving efficiency
by reducing the number of constituents in the chart. It would be preferable to develop
a probabilistic analog of this rule, but we leave this to future research.

Figure 11
(a) The treebank annotates sentences with empty subjects with an empty -NONE- element
under subject position; (b) in training (and for evaluation), this null element is removed; (c) in
models 2 and 3, sentences without subjects are changed to have a nonterminal SG.
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Table 1
The conditioning variables for each level of back-off. For example, Ph estimation interpolates
e1 = Ph(H | P, w, t), e2 = Ph(H | P, t), and e3 = Ph(H | P). ∆ is the distance measure.

Back-off Ph(H | . . .) Pg(G | . . .) PL1(Li(lti), c, p | . . .) PL2(lwi | . . .)
level Plc(LC | . . .) PR1(Ri(rti), c, p | . . .) PR2(rwi | . . .)

Prc(RC | . . .)

1 P, w, t P, H, w, t P, H, w, t, ∆, LC Li, lti, c, p, P, H, w, t, ∆, LC
2 P, t P, H, t P, H, t, ∆, LC Li, lti, c, p, P, H, t, ∆, LC
3 P P, H P, H, ∆, LC lti

5. Practical Issues

5.1 Parameter Estimation
Table 1 shows the various levels of back-off for each type of parameter in the model.
Note that we decompose PL(Li(lwi, lti), c, p | P, H, w, t, ∆, LC) (where lwi and lti are the
word and POS tag generated with nonterminal Li, c and p are the coord and punc

flags associated with the nonterminal, and ∆ is the distance measure) into the product

PL1(Li(lti), c, p | P, H, w, t, ∆, LC) × PL2(lwi | Li, lti, c, p, P, H, w, t, ∆, LC)

These two probabilities are then smoothed separately. Eisner (1996b) originally used
POS tags to smooth a generative model in this way. In each case the final estimate is

e = λ1e1 + (1 − λ1)(λ2e2 + (1 − λ2)e3)

where e1, e2, and e3 are maximum-likelihood estimates with the context at levels 1, 2,
and 3 in the table, and λ1, λ2 and λ3 are smoothing parameters, where 0 ≤ λi ≤ 1. We
use the smoothing method described in Bikel et al. (1997), which is derived from a
method described in Witten and Bell (1991). First, say that the most specific estimate
e1 = n1

f1
; that is, f1 is the value of the denominator count in the relative frequency

estimate. Second, define u1 to be the number of distinct outcomes seen in the f1 events
in training data. The variable u1 can take any value from one to f1 inclusive. Then we
set

λ1 =
f1

f1 + 5u1

Analogous definitions for f2 and u2 lead to λ2 =
f2

f2+5u2
. The coefficient five was chosen

to maximize accuracy on the development set, section 0 of the treebank (in practice it
was found that any value in the range 2–5 gave a very similar level of performance).

5.2 Unknown Words and Part-of-Speech Tagging
All words occurring less than six times14 in training data, and words in test data that
have never been seen in training, are replaced with the UNKNOWN token. This allows
the model to handle robustly the statistics for rare or new words. Words in test data
that have not been seen in training are deterministically assigned the POS tag that is
assigned by the tagger described in Ratnaparkhi (1996). As a preprocessing step, the

14 In Collins (1999) we erroneously stated that all words occuring less than five times in training data
were classified as “unknown.” Thanks to Dan Bikel for pointing out this error.
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tagger is used to decode each test data sentence. All other words are tagged during
parsing, the output from Ratnaparkhi’s tagger being ignored. The POS tags allowed
for each word are limited to those that have been seen in training data for that word
(any tag/word pairs not seen in training would give an estimate of zero in the PL2
and PR2 distributions). The model is fully integrated, in that part-of-speech tags are
statistically generated along with words in the models, so that the parser will make a
statistical decision as to the most likely tag for each known word in the sentence.

5.3 The Parsing Algorithm
The parsing algorithm for the models is a dynamic programming algorithm, which is
very similar to standard chart parsing algorithms for probabilistic or weighted gram-
mars. The algorithm has complexity O(n5), where n is the number of words in the
string. In practice, pruning strategies (methods that discard lower-probability con-
stituents in the chart) can improve efficiency a great deal. The appendices of Collins
(1999) give a precise description of the parsing algorithms, an analysis of their compu-
tational complexity, and also a description of the pruning methods that are employed.

See Eisner and Satta (1999) for an O(n4) algorithm for lexicalized grammars that
could be applied to the models in this paper. Eisner and Satta (1999) also describe an
O(n3) algorithm for a restricted class of lexicalized grammars; it is an open question
whether this restricted class includes the models in this article.

6. Results

The parser was trained on sections 2–21 of the Wall Street Journal portion of the
Penn Treebank (Marcus, Santorini, and Marcinkiewicz 1993) (approximately 40,000
sentences) and tested on section 23 (2,416 sentences). We use the PARSEVAL measures
(Black et al. 1991) to compare performance:

Labeled precision = number of correct constituents in proposed parse
number of constituents in proposed parse

Labeled recall = number of correct constituents in proposed parse
number of constituents in treebank parse

Crossing brackets = number of constituents that violate constituent boundaries
with a constituent in the treebank parse

For a constituent to be “correct,” it must span the same set of words (ignoring punctu-
ation, i.e., all tokens tagged as commas, colons, or quotation marks) and have the same
label15 as a constituent in the treebank parse. Table 2 shows the results for models 1, 2
and 3 and a variety of other models in the literature. Two models (Collins 2000; Char-
niak 2000) outperform models 2 and 3 on section 23 of the treebank. Collins (2000)
uses a technique based on boosting algorithms for machine learning that reranks n-best
output from model 2 in this article. Charniak (2000) describes a series of enhancements
to the earlier model of Charniak (1997).

The precision and recall of the traces found by Model 3 were 93.8% and 90.1%,
respectively (out of 437 cases in section 23 of the treebank), where three criteria must be
met for a trace to be “correct”: (1) It must be an argument to the correct headword; (2)
It must be in the correct position in relation to that headword (preceding or following);

15 Magerman (1995) collapses ADVP and PRT into the same label; for comparison, we also removed this
distinction when calculating scores.
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Table 2
Results on Section 23 of the WSJ Treebank. LR/LP = labeled recall/precision. CBs is the
average number of crossing brackets per sentence. 0 CBs, ≤ 2 CBs are the percentage of
sentences with 0 or ≤ 2 crossing brackets respectively. All the results in this table are for
models trained and tested on the same data, using the same evaluation metric. (Note that
these results show a slight improvement over those in (Collins 97); the main model changes
were the improved treatment of punctuation (section 4.3) together with the addition of the Pp

and Pcc parameters.)

Model ≤ 40 Words (2,245 sentences)

LR LP CBs 0 CBs ≤ 2 CBs

Magerman 1995 84.6% 84.9% 1.26 56.6% 81.4%
Collins 1996 85.8% 86.3% 1.14 59.9% 83.6%

Goodman 1997 84.8% 85.3% 1.21 57.6% 81.4%
Charniak 1997 87.5% 87.4% 1.00 62.1% 86.1%

Model 1 87.9% 88.2% 0.95 65.8% 86.3%
Model 2 88.5% 88.7% 0.92 66.7% 87.1%
Model 3 88.6% 88.7% 0.90 67.1% 87.4%

Charniak 2000 90.1% 90.1% 0.74 70.1% 89.6%
Collins 2000 90.1% 90.4% 0.73 70.7% 89.6%

Model ≤ 100 Words (2,416 sentences)

LR LP CBs 0 CBs ≤ 2 CBs

Magerman 1995 84.0% 84.3% 1.46 54.0% 78.8%
Collins 1996 85.3% 85.7% 1.32 57.2% 80.8%

Charniak 1997 86.7% 86.6% 1.20 59.5% 83.2%
Ratnaparkhi 1997 86.3% 87.5% 1.21 60.2% —

Model 1 87.5% 87.7% 1.09 63.4% 84.1%
Model 2 88.1% 88.3% 1.06 64.0% 85.1%
Model 3 88.0% 88.3% 1.05 64.3% 85.4%

Charniak 2000 89.6% 89.5% 0.88 67.6% 87.7%
Collins 2000 89.6% 89.9% 0.87 68.3% 87.7%

and (3) It must be dominated by the correct nonterminal label. For example, in Figure 7,
the trace is an argument to bought, which it follows, and it is dominated by a VP. Of the
437 cases, 341 were string-vacuous extraction from subject position, recovered with
96.3% precision and 98.8% recall; and 96 were longer distance cases, recovered with
81.4% precision and 59.4% recall.16

7. Discussion

This section discusses some aspects of the models in more detail. Section 7.1 gives a
much more detailed analysis of the parsers’ performance. In section 7.2 we examine

16 We exclude infinitival relative clauses from these figures (for example, I called a plumber TRACE to fix the
sink, where plumber is coindexed with the trace subject of the infinitival). The algorithm scored 41%
precision and 18% recall on the 60 cases in section 23—but infinitival relatives are extremely difficult
even for human annotators to distinguish from purpose clauses (in this case, the infinitival could be a
purpose clause modifying called) (Ann Taylor, personal communication, 1997).
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the distance features in the model. In section 7.3 we examine how the model interacts
with the Penn Treebank style of annotation. Finally, in section 7.4 we discuss the need
to break down context-free rules in the treebank in such a way that the model will
generalize to give nonzero probability to rules not seen in training. In each case we
use three methods of analysis. First, we consider how various aspects of the model
affect parsing performance, through accuracy measurements on the treebank. Second,
we look at the frequency of different constructions in the treebank. Third, we consider
linguistically motivated examples as a way of justifying various modeling choices.

7.1 A Closer Look at the Results
In this section we look more closely at the parser, by evaluating its performance on
specific constituents or constructions. The intention is to get a better idea of the parser’s
strengths and weaknesses. First, Table 3 has a breakdown of precision and recall by
constituent type. Although somewhat useful in understanding parser performance,
a breakdown of accuracy by constituent type fails to capture the idea of attachment
accuracy. For this reason we also evaluate the parser’s precision and recall in recov-
ering dependencies between words. This gives a better indication of the accuracy on
different kinds of attachments. A dependency is defined as a triple with the following
elements (see Figure 12 for an example tree and its associated dependencies):

1. Modifier: The index of the modifier word in the sentence.

Table 3
Recall and precision for different constituent types, for section 0 of the treebank with model 2.
Label is the nonterminal label; Proportion is the percentage of constituents in the treebank
section 0 that have this label; Count is the number of constituents that have this label.

Proportion Count Label Recall Precision

42.21 15146 NP 91.15 90.26
19.78 7096 VP 91.02 91.11
13.00 4665 S 91.21 90.96
12.83 4603 PP 86.18 85.51
3.95 1419 SBAR 87.81 88.87
2.59 928 ADVP 82.97 86.52
1.63 584 ADJP 65.41 68.95
1.00 360 WHNP 95.00 98.84
0.92 331 QP 84.29 78.37
0.48 172 PRN 32.56 61.54
0.35 126 PRT 86.51 85.16
0.31 110 SINV 83.64 88.46
0.27 98 NX 12.24 66.67
0.25 88 WHADVP 95.45 97.67
0.08 29 NAC 48.28 63.64
0.08 28 FRAG 21.43 46.15
0.05 19 WHPP 100.00 100.00
0.04 16 UCP 25.00 28.57
0.04 16 CONJP 56.25 69.23
0.04 15 SQ 53.33 66.67
0.03 12 SBARQ 66.67 88.89
0.03 9 RRC 11.11 33.33
0.02 7 LST 57.14 100.00
0.01 3 X 0.00 —
0.01 2 INTJ 0.00 —
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“Raw” dependencies Normalized dependencies
Relation Modifier Head Relation Modifier Head
S VP NP-C L 0 1 S VP NP-C L 0 1
TOP TOP S R 1 −1 TOP TOP S R 1 −1
NPB NN DT L 2 3 NPB TAG TAG L 2 3
VP VB NP-C R 3 1 VP TAG NP-C R 3 1
NP-C NPB PP R 4 3 NP NPB PP R 4 3
NPB NN DT L 5 6 NPB TAG TAG L 5 6
PP IN NP-C R 6 4 PP TAG NP-C R 6 4

Figure 12
A tree and its associated dependencies. Note that in “normalizing” dependencies, all POS tags
are replaced with TAG, and the NP-C parent in the fifth relation is replaced with NP.

2. Head: The index of the headword in the sentence.

3. Relation: A 〈Parent, Head, Modifier, Direction〉 4-tuple, where the four
elements are the parent, head, and modifier nonterminals involved in the
dependency and the direction of the dependency (L for left, R for right).
For example, 〈S, VP, NP-C, L〉 would indicate a subject-verb dependency.
In coordination cases there is a fifth element of the tuple, CC. For
example, 〈NP, NP, NP, R, CC〉 would be an instance of NP coordination.

In addition, the relation is “normalized” to some extent. First, all POS tags are
replaced with the token TAG, so that POS-tagging errors do not lead to errors in
dependencies.17 Second, any complement markings on the parent or head nontermi-
nal are removed. For example, 〈NP-C, NPB, PP, R〉 is replaced by 〈NP, NPB, PP, R〉. This
prevents parsing errors where a complement has been mistaken to be an adjunct (or
vice versa), leading to more than one dependency error. As an example, in Figure 12,
if the NP the man with the telescope was mistakenly identified as an adjunct, then without
normalization, this would lead to two dependency errors: Both the PP dependency and
the verb-object relation would be incorrect. With normalization, only the verb-object
relation is incorrect.

17 The justification for this is that there is an estimated 3% error rate in the hand-assigned POS tags in the
treebank (Ratnaparkhi 1996), and we didn’t want this noise to contribute to dependency errors.
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Table 4
Dependency accuracy on section 0 of the treebank with Model 2. No labels means that only the
dependency needs to be correct; the relation may be wrong; No complements means all
complement (-C) markings are stripped before comparing relations; All means complement
markings are retained on the modifying nonterminal.

Evaluation Precision Recall

No labels 91.0% 90.9%
No complements 88.5% 88.5%
All 88.3% 88.3%

Under this definition, gold-standard and parser-output trees can be converted to
sets of dependencies, and precision and recall can be calculated on these dependencies.
Dependency accuracies are given for section 0 of the treebank in table 4. Table 5 gives
a breakdown of the accuracies by dependency type.

Table 6 shows the dependency accuracies for eight subtypes of dependency that
together account for 94% of all dependencies:

1. Complement to a verb (93.76% recall, 92.96% precision): This subtype
includes any relations of the form 〈 S VP ** 〉, where ** is any
complement, or 〈 VP TAG ** 〉, where ** is any complement except VP-C
(i.e., auxiliary-verb—verb dependencies are excluded). The most frequent
verb complements, subject-verb and object-verb, are recovered with over
95% precision and 92% recall.

2. Other complements (94.47% recall, 94.12% precision): This subtype
includes any dependencies in which the modifier is a complement and
the dependency does not fall into the complement to a verb category.

3. PP modification (82.29% recall, 81.51% precision): Any dependencies in
which the modifier is a PP.

4. Coordination (61.47% recall, 62.20% precision).

5. Modification within base-NPs (93.20% recall, 92.59% precision): This
subtype includes any dependencies in which the parent is NPB.

6. Modification to NPs (73.20% recall, 75.49% precision): This subtype
includes any dependencies in which the parent is NP, the head is NPB,
and the modifier is not a PP.

7. Sentential head (94.99% recall, 94.99% precision): This subtype includes
any dependencies involving the headword of the entire sentence.

8. Adjunct to a verb (75.11% recall, 78.44% precision): This subtype includes
any dependencies in which the parent is VP, the head is TAG, and the
modifier is not a PP, or in which the parent is S, the head is VP, and the
modifier is not a PP.

A conclusion to draw from these accuracies is that the parser is doing very well at
recovering the core structure of sentences: complements, sentential heads, and base-NP
relationships (NP chunks) are all recovered with over 90% accuracy. The main sources
of errors are adjuncts. Coordination is especially difficult for the parser, most likely
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Table 5
Accuracy of the 50 most frequent dependency types in section 0 of the treebank, as recovered
by model 2.

Rank Cumulative Percentage Count Relation Recall Precision
percentage

1 29.65 29.65 11786 NPB TAG TAG L 94.60 93.46
2 40.55 10.90 4335 PP TAG NP-C R 94.72 94.04
3 48.72 8.17 3248 S VP NP-C L 95.75 95.11
4 54.03 5.31 2112 NP NPB PP R 84.99 84.35
5 59.30 5.27 2095 VP TAG NP-C R 92.41 92.15
6 64.18 4.88 1941 VP TAG VP-C R 97.42 97.98
7 68.71 4.53 1801 VP TAG PP R 83.62 81.14
8 73.13 4.42 1757 TOP TOP S R 96.36 96.85
9 74.53 1.40 558 VP TAG SBAR-C R 94.27 93.93
10 75.83 1.30 518 QP TAG TAG R 86.49 86.65
11 77.08 1.25 495 NP NPB NP R 74.34 75.72
12 78.28 1.20 477 SBAR TAG S-C R 94.55 92.04
13 79.48 1.20 476 NP NPB SBAR R 79.20 79.54
14 80.40 0.92 367 VP TAG ADVP R 74.93 78.57
15 81.30 0.90 358 NPB TAG NPB L 97.49 92.82
16 82.18 0.88 349 VP TAG TAG R 90.54 93.49
17 82.97 0.79 316 VP TAG SG-C R 92.41 88.22
18 83.70 0.73 289 NP NP NP R CC 55.71 53.31
19 84.42 0.72 287 S VP PP L 90.24 81.96
20 85.14 0.72 286 SBAR WHNP SG-C R 90.56 90.56
21 85.79 0.65 259 VP TAG ADJP R 83.78 80.37
22 86.43 0.64 255 S VP ADVP L 90.98 84.67
23 86.95 0.52 205 NP NPB VP R 77.56 72.60
24 87.45 0.50 198 ADJP TAG TAG L 75.76 70.09
25 87.93 0.48 189 NPB TAG TAG R 74.07 75.68
26 88.40 0.47 187 VP TAG NP R 66.31 74.70
27 88.85 0.45 180 VP TAG SBAR R 74.44 72.43
28 89.29 0.44 174 VP VP VP R CC 74.14 72.47
29 89.71 0.42 167 NPB TAG ADJP L 65.27 71.24
30 90.11 0.40 159 VP TAG SG R 60.38 68.57
31 90.49 0.38 150 VP TAG S-C R 74.67 78.32
32 90.81 0.32 129 S S S R CC 72.09 69.92
33 91.12 0.31 125 PP TAG SG-C R 94.40 89.39
34 91.43 0.31 124 QP TAG TAG L 77.42 83.48
35 91.72 0.29 115 S VP TAG L 86.96 90.91
36 92.00 0.28 110 NPB TAG QP L 80.91 81.65
37 92.27 0.27 106 SINV VP NP R 88.68 95.92
38 92.53 0.26 104 S VP S-C L 93.27 78.86
39 92.79 0.26 102 NP NP NP R 30.39 25.41
40 93.02 0.23 90 ADJP TAG PP R 75.56 78.16
41 93.24 0.22 89 TOP TOP SINV R 96.63 94.51
42 93.45 0.21 85 ADVP TAG TAG L 74.12 73.26
43 93.66 0.21 83 SBAR WHADVP S-C R 97.59 98.78
44 93.86 0.20 81 S VP SBAR L 88.89 85.71
45 94.06 0.20 79 VP TAG ADVP L 51.90 49.40
46 94.24 0.18 73 SINV VP S L 95.89 92.11
47 94.40 0.16 63 NP NPB SG R 88.89 81.16
48 94.55 0.15 58 S VP PRN L 25.86 48.39
49 94.70 0.15 58 NX TAG TAG R 10.34 75.00
50 94.83 0.13 53 NP NPB PRN R 45.28 60.00
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Table 6
Accuracy for various types/subtypes of dependency (part 1). Only subtypes occurring more
than 10 times are shown.

Type Sub-type Description Count Recall Precision

Complement to a verb S VP NP-C L Subject 3,248 95.75 95.11
VP TAG NP-C R Object 2,095 92.41 92.15

6,495 = 16.3% of all cases VP TAG SBAR-C R 558 94.27 93.93
VP TAG SG-C R 316 92.41 88.22
VP TAG S-C R 150 74.67 78.32
S VP S-C L 104 93.27 78.86
S VP SG-C L 14 78.57 68.75
. . .

Total 6,495 93.76 92.96

Other complements PP TAG NP-C R 4,335 94.72 94.04
VP TAG VP-C R 1,941 97.42 97.98

7,473 = 18.8% of all cases SBAR TAG S-C R 477 94.55 92.04
SBAR WHNP SG-C R 286 90.56 90.56
PP TAG SG-C R 125 94.40 89.39
SBAR WHADVP S-C R 83 97.59 98.78
PP TAG PP-C R 51 84.31 70.49
SBAR WHNP S-C R 42 66.67 84.85
SBAR TAG SG-C R 23 69.57 69.57
PP TAG S-C R 18 38.89 63.64
SBAR WHPP S-C R 16 100.00 100.00
S ADJP NP-C L 15 46.67 46.67
PP TAG SBAR-C R 15 100.00 88.24
. . .

Total 7,473 94.47 94.12

PP modification NP NPB PP R 2,112 84.99 84.35
VP TAG PP R 1,801 83.62 81.14

4,473 = 11.2% of all cases S VP PP L 287 90.24 81.96
ADJP TAG PP R 90 75.56 78.16
ADVP TAG PP R 35 68.57 52.17
NP NP PP R 23 0.00 0.00
PP PP PP L 19 21.05 26.67
NAC TAG PP R 12 50.00 100.00
. . .

Total 4,473 82.29 81.51

Coordination NP NP NP R 289 55.71 53.31
VP VP VP R 174 74.14 72.47

763 = 1.9% of all cases S S S R 129 72.09 69.92
ADJP TAG TAG R 28 71.43 66.67
VP TAG TAG R 25 60.00 71.43
NX NX NX R 25 12.00 75.00
SBAR SBAR SBAR R 19 78.95 83.33
PP PP PP R 14 85.71 63.16
. . .

Total 763 61.47 62.20
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Table 6
(cont.)

Type Subtype Description Count Recall Precision

Modification NPB TAG TAG L 11,786 94.60 93.46
within Base-NPs NPB TAG NPB L 358 97.49 92.82
12,742 = 29.6% of all cases NPB TAG TAG R 189 74.07 75.68

NPB TAG ADJP L 167 65.27 71.24
NPB TAG QP L 110 80.91 81.65
NPB TAG NAC L 29 51.72 71.43
NPB NX TAG L 27 14.81 66.67
NPB QP TAG L 15 66.67 76.92
. . .

Total 12,742 93.20 92.59

Modification to NPs NP NPB NP R Appositive 495 74.34 75.72
NP NPB SBAR R Relative clause 476 79.20 79.54

1,418 = 3.6% of all cases NP NPB VP R Reduced relative 205 77.56 72.60
NP NPB SG R 63 88.89 81.16
NP NPB PRN R 53 45.28 60.00
NP NPB ADVP R 48 35.42 54.84
NP NPB ADJP R 48 62.50 69.77
. . .

Total 1,418 73.20 75.49

Sentential head TOP TOP S R 1,757 96.36 96.85
TOP TOP SINV R 89 96.63 94.51

1,917 = 4.8% of all cases TOP TOP NP R 32 78.12 60.98
TOP TOP SG R 15 40.00 33.33
. . .

Total 1,917 94.99 94.99

Adjunct to a verb VP TAG ADVP R 367 74.93 78.57
VP TAG TAG R 349 90.54 93.49

2,242 = 5.6% of all cases VP TAG ADJP R 259 83.78 80.37
S VP ADVP L 255 90.98 84.67
VP TAG NP R 187 66.31 74.70
VP TAG SBAR R 180 74.44 72.43
VP TAG SG R 159 60.38 68.57
S VP TAG L 115 86.96 90.91
S VP SBAR L 81 88.89 85.71
VP TAG ADVP L 79 51.90 49.40
S VP PRN L 58 25.86 48.39
S VP NP L 45 66.67 63.83
S VP SG L 28 75.00 52.50
VP TAG PRN R 27 3.70 12.50
VP TAG S R 11 9.09 100.00
. . .

Total 2,242 75.11 78.44
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Table 7
Results on section 0 of the WSJ Treebank. A “YES” in the A column means that the adjacency
conditions were used in the distance measure; likewise, a “YES” in the V column indicates
that the verb conditions were used in the distance measure. LR = labeled recall; LP = labeled
precision. CBs is the average number of crossing brackets per sentence. 0 CBs ≤ 2 CBs are the
percentages of sentences with 0 and ≤ 2 crossing brackets, respectively.

Model A V LR LP CBs 0 CBs ≤ 2 CBs

Model 1 No No 75.0% 76.5% 2.18 38.5% 66.4
Model 1 Yes No 86.6% 86.7% 1.22 60.9% 81.8
Model 1 Yes Yes 87.8% 88.2% 1.03 63.7% 84.4

Model 2 No No 85.1% 86.8% 1.28 58.8% 80.3
Model 2 Yes No 87.7% 87.8% 1.10 63.8% 83.2
Model 2 Yes Yes 88.7% 89.0% 0.95 65.7% 85.6

because it often involves a dependency between two content words, leading to very
sparse statistics.

7.2 More about the Distance Measure
The distance measure, whose implementation was described in section 3.1.1, deserves
more discussion and motivation. In this section we consider it from three perspectives:
its influence on parsing accuracy; an analysis of distributions in training data that
are sensitive to the distance variables; and some examples of sentences in which the
distance measure is useful in discriminating among competing analyses.

7.2.1 Impact of the Distance Measure on Accuracy. Table 7 shows the results for
models 1 and 2 with and without the adjacency and verb distance measures. It is clear
that the distance measure improves the models’ accuracy.

What is most striking is just how badly model 1 performs without the distance
measure. Looking at the parser’s output, the reason for this poor performance is that
the adjacency condition in the distance measure is approximating subcategorization
information. In particular, in phrases such as PPs and SBARs (and, to a lesser extent,
in VPs) that almost always take exactly one complement to the right of their head,
the adjacency feature encodes this monovalency through parameters P(STOP|PP/SBAR,
adjacent) = 0 and P(STOP|PP/SBAR, not adjacent) = 1. Figure 13 shows some par-
ticularly bad structures returned by model 1 with no distance variables.

Another surprise is that subcategorization can be very useful, but that the dis-
tance measure has masked this utility. One interpretation in moving from the least
parameterized model (Model 1 [No, No]) to the fully parameterized model (Model 2
[Yes, Yes]) is that the adjacency condition adds around 11% in accuracy; the verb
condition adds another 1.5%; and subcategorization finally adds a mere 0.8%. Under
this interpretation subcategorization information isn’t all that useful (and this was my
original assumption, as this was the order in which features were originally added
to the model). But under another interpretation subcategorization is very useful: In
moving from Model 1 (No, No) to Model 2 (No, No), we see a 10% improvement as a
result of subcategorization parameters; adjacency then adds a 1.5% improvement; and
the verb condition adds a final 1% improvement.

From an engineering point of view, given a choice of whether to add just distance
or subcategorization to the model, distance is preferable. But linguistically it is clear
that adjacency can only approximate subcategorization and that subcategorization is
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Figure 13
Two examples of bad parses produced by model 1 with no distance or subcategorization
conditions (Model 1 (No, No) in table 7). In (a) one PP has two complements, the other has
none; in (b) the SBAR has two complements. In both examples either the adjacency condition
or the subcategorization parameters will correct the errors, so these are examples in which the
adjacency and subcategorization variables overlap in their utility.

Table 8
Distribution of nonterminals generated as postmodifiers to an NP (see tree to the left), at
various distances from the head. A = True means the modifier is adjacent to the head, V =
True means there is a verb between the head and the modifier. Distributions were calculated
from the first 10000 events for each of the three cases in sections 2-21 of the treebank.

A = True, V = False A = False, V = False A = False, V = True

Percentage ? Percentage ? Percentage ?

70.78 STOP 88.53 STOP 97.65 STOP
17.7 PP 5.57 PP 0.93 PP
3.54 SBAR 2.28 SBAR 0.55 SBAR
3.43 NP 1.55 NP 0.35 NP
2.22 VP 0.92 VP 0.22 VP
0.61 SG 0.38 SG 0.09 SG
0.56 ADJP 0.26 PRN 0.07 PRN
0.54 PRN 0.22 ADVP 0.04 ADJP
0.36 ADVP 0.15 ADJP 0.03 ADVP
0.08 TO 0.09 -RRB- 0.02 S
0.08 CONJP 0.02 UCP 0.02 -RRB-
0.03 UCP 0.01 X 0.01 X
0.02 JJ 0.01 RRC 0.01 VBG
0.01 VBN 0.01 RB 0.01 RB
0.01 RRC
0.01 FRAG
0.01 CD
0.01 -LRB-

more “correct” in some sense. In free-word-order languages, distance may not approx-
imate subcategorization at all well: A complement may appear to either the right or
left of the head, confusing the adjacency condition.

7.2.2 Frequencies in Training Data. Tables 8 and 9 show the effect of distance on the
distribution of modifiers in two of the most frequent syntactic environments: NP and
verb modification. The distribution varies a great deal with distance. Most striking is
the way that the probability of STOP increases with increasing distance: from 71% to
89% to 98% in the NP case, from 8% to 60% to 96% in the verb case. Each modifier
probability generally decreases with distance. For example, the probability of seeing
a PP modifier to an NP decreases from 17.7% to 5.57% to 0.93%.
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Table 9
Distribution of nonterminals generated as postmodifiers to a verb within a VP (see tree to the
left), at various distances from the head. A = True means the modifier is adjacent to the head;
V = True means there is a verb between the head and the modifier. The distributions were
calculated from the first 10000 events for each of the distributions in sections 2–21. Auxiliary
verbs (verbs taking a VP complement to their right) were excluded from these statistics.

A = True, V = False A = False, V = False A = False, V = True

Percentage ? Percentage ? Percentage ?

39 NP-C 59.87 STOP 95.92 STOP
15.8 PP 22.7 PP 1.73 PP
8.43 SBAR-C 3.3 NP-C 0.92 SBAR
8.27 STOP 3.16 SG 0.5 NP
5.35 SG-C 2.71 ADVP 0.43 SG
5.19 ADVP 2.65 SBAR 0.16 ADVP
5.1 ADJP 1.5 SBAR-C 0.14 SBAR-C
3.24 S-C 1.47 NP 0.05 NP-C
2.82 RB 1.11 SG-C 0.04 PRN
2.76 NP 0.82 ADJP 0.02 S-C
2.28 PRT 0.2 PRN 0.01 VBN
0.63 SBAR 0.19 PRT 0.01 VB
0.41 SG 0.09 S 0.01 UCP
0.16 VB 0.06 S-C 0.01 SQ
0.1 S 0.06 -RRB- 0.01 S
0.1 PRN 0.03 FRAG 0.01 FRAG
0.08 UCP 0.02 -LRB- 0.01 ADJP
0.04 VBZ 0.01 X 0.01 -RRB-
0.03 VBN 0.01 VBP 0.01 -LRB-
0.03 VBD 0.01 VB
0.03 FRAG 0.01 UCP
0.03 -LRB- 0.01 RB
0.02 VBG 0.01 INTJ
0.02 SBARQ
0.02 CONJP
0.01 X
0.01 VBP
0.01 RBR
0.01 INTJ
0.01 DT
0.01 -RRB-

7.2.3 Distance Features and Right-Branching Structures. Both the adjacency and verb
components of the distance measure allow the model to learn a preference for right-
branching structures. First, consider the adjacency condition. Figure 14 shows some
examples in which right-branching structures are more frequent. Using the statistics
from Tables 8 and 9, the probability of the alternative structures can be calculated. The
results are given below. The right-branching structures get higher probability (although
this is before the lexical-dependency probabilities are multiplied in, so this “prior”
preference for right-branching structures can be overruled by lexical preferences). If
the distance variables were not conditioned on, the product of terms for the two
alternatives would be identical, and the model would have no preference for one
structure over another.

Probabilities for the two alternative PP structures in Figure 14 (excluding probabil-
ity terms that are constant across the two structures; A=1 means distance is adjacent,
A=0 means not adjacent) are as follows:
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Figure 14
Some alternative structures for the same surface sequence of chunks (NPB PP PP in the first
case, NPB PP SBAR in the second case) in which the adjacency condition distinguishes between
the two structures. The percentages are taken from sections 2–21 of the treebank. In both cases
right-branching structures are more frequent.

Right-branching:

P(PP|NP,NPB,A=1)P(STOP|NP,NPB,A=0)
P(PP|NP,NPB,A=1)P(STOP|NP,NPB,A=0)
= 0.177 × 0.8853 × 0.177 × 0.8853 = 0.02455

Non-right-branching:

P(PP|NP,NPB,A=1)P(PP|NP,NPB,A=0)
P(STOP|NP,NPB,A=0)P(STOP|NP,NPB,A=1)
= 0.177 × 0.0557 × 0.8853 × 0.7078 = 0.006178

Probabilities for the SBAR case in Figure 14, assuming the SBAR contains a verb (V=0
means modification does not cross a verb, V=1 means it does), are as follows:

Right-branching:

P(PP|NP,NPB,A=1,V=0)P(SBAR|NP,NPB,A=1,V=0)
P(STOP|NP,NPB,A=0,V=1)P(STOP|NP,NPB,A=0,V=1)
= 0.177 × 0.0354 × 0.9765 × 0.9765 = 0.005975

Non-right-branching:

P(PP|NP,NPB,A=1)P(STOP|NP,NPB,A=1)
P(SBAR|NP,NPB,A=0)P(STOP|NP,NPB,A=0,V=1)
= 0.177 × 0.7078 × 0.0228 × 0.9765 = 0.002789
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Figure 15
Some alternative structures for the same surface sequence of chunks in which the verb
condition in the distance measure distinguishes between the two structures. In both cases the
low-attachment analyses will get higher probability under the model, because of the low
probability of generating a PP modifier involving a dependency that crosses a verb. (X stands
for any nonterminal.)

7.2.4 Verb Condition and Right-Branching Structures. Figure 15 shows some exam-
ples in which the verb condition is important in differentiating the probability of two
structures. In both cases an adjunct can attach either high or low, but high attachment
results in a dependency’s crossing a verb and has lower probability.

An alternative to the surface string feature would be a predicate such as were any
of the previous modifiers in X, where X is a set of nonterminals that are likely to contain
a verb, such as VP, SBAR, S, or SG. This would allow the model to handle cases like the
first example in Figure 15 correctly. The second example shows why it is preferable to
condition on the surface string. In this case the verb is “invisible” to the top level, as
it is generated recursively below the NP object.

7.2.5 Structural versus Semantic Preferences. One hypothesis would be that lexical
statistics are really what is important in parsing: that arriving at a correct interpretation
for a sentence is simply a matter of finding the most semantically plausible analysis,
and that the statistics related to lexical dependencies approximate this notion of plau-
sibility. Implicitly, we would be just as well off (maybe even better off) if statistics were
calculated between items at the predicate-argument level, with no reference to struc-
ture. The distance preferences under this interpretation are just a way of mitigating
sparse-data problems: When the lexical statistics are too sparse, then falling back on
some structural preference is not ideal, but is at least better than chance. This hypoth-
esis is suggested by previous work on specific cases of attachment ambiguity such
as PP attachment (see, e.g., Collins and Brooks 1995), which has showed that models
will perform better given lexical statistics, and that a straight structural preference is
merely a fallback.

But some examples suggest this is not the case: that, in fact, many sentences
have several equally semantically plausible analyses, but that structural preferences
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distinguish strongly among them. Take the following example (from Pereira and War-
ren 1980):

(4) John was believed to have been shot by Bill.

Surprisingly, this sentence has two analyses: Bill can be the deep subject of either
believed or shot. Yet people have a very strong preference for Bill to be doing the
shooting, so much so that they may even miss the second analysis. (To see that the
dispreferred analysis is semantically quite plausible, consider Bill believed John to have
been shot.)

As evidence that structural preferences can even override semantic plausibility,
take the following example (from Pinker 1994):

(5) Flip said that Squeaky will do the work yesterday.

This sentence is a garden path: The structural preference for yesterday to modify the
most recent verb is so strong that it is easy to miss the (only) semantically plausible
interpretation, paraphrased as Flip said yesterday that Squeaky will do the work.

The model makes the correct predictions in these cases. In example (4), the statistics
in Table 9 show that a PP is nine times as likely to attach low as to attach high when
two verbs are candidate attachment points (the chances of seeing a PP modifier are
15.8% and 1.73% in columns 1 and 5 of the table, respectively). In example (5), the
probability of seeing an NP (adjunct) modifier to do in a nonadjacent but non-verb-
crossing environment is 2.11% in sections 2–21 of the treebank (8 out of 379 cases); in
contrast, the chance of seeing an NP adjunct modifying said across a verb is 0.026% (1
out of 3,778 cases). The two probabilities differ by a factor of almost 80.

7.3 The Importance of the Choice of Tree Representation
Figures 16 and 17 show some alternative styles of syntactic annotation. The Penn
Treebank annotation style tends to leave trees quite flat, typically with one level of
structure for each X-bar level; at the other extreme are completely binary-branching
representations. The two annotation styles are in some sense equivalent, in that it
is easy to define a one-to-one mapping between them. But crucially, two different
annotation styles may lead to quite different parsing accuracies for a given model,
even if the two representations are equivalent under some one-to-one mapping.

A parsing model does not need to be tied to the annotation style of the treebank
on which it is trained. The following procedure can be used to transform trees in both
training and test data into a new representation:

Figure 16
Alternative annotation styles for a sentence S with a verb head V, left modifiers X1, X2, and
right modifiers Y1, Y2: (a) the Penn Treebank style of analysis (one level of structure for each
bar level); (b) an alternative but equivalent binary branching representation.
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Figure 17
Alternative annotation styles for a noun phrase with a noun head N, left modifiers X1, X2,
and right modifiers Y1, Y2: (a) the Penn Treebank style of analysis (one level of structure for
each bar level, although note that both the nonrecursive and the recursive noun phrases are
labeled NP; (b) an alternative but equivalent binary branching representation; (a′) our
modification of the Penn Treebank style to differentiate recursive and nonrecursive NPs (in
some sense NPB is a bar 1 structure and NP is a bar 2 structure).

1. Transform training data trees into the new representation and train the
model.

2. Recover parse trees in the new representation when running the model
over test data sentences.

3. Convert the test output back into the treebank representation for scoring
purposes.

As long as there is a one-to-one mapping between the treebank and the new rep-
resentation, nothing is lost in making such a transformation. Goodman (1997) and
Johnson (1997) both suggest this strategy. Goodman (1997) converts the treebank into
binary-branching trees. Johnson (1997) considers conversion to a number of different
representations and discusses how this influences accuracy for nonlexicalized PCFGs.

The models developed in this article have tacitly assumed the Penn Treebank
style of annotation and will perform badly given other representations (for example,
binary-branching trees). This section makes this point more explicit, describing exactly
what annotation style is suitable for the models and showing how other annotation
styles will cause problems. This dependence on Penn Treebank–style annotations does
not imply that the models are inappropriate for a treebank annotated in a different
style: In this case we simply recommend transforming the trees into flat, one-level-
per-X-bar-level trees before training the model, as in the three-step procedure outlined
above.

Other models in the literature are also very likely to be sensitive to annotation
style. Charniak’s (1997) models will most likely perform quite differently with binary-
branching trees (for example, his current models will learn that rules such as VP →
V SG PP are very rare, but with binary-branching structures, this context sensitivity
will be lost). The models of Magerman (1995) and Ratnaparkhi (1997) use contextual
predicates that would most likely need to be modified given a different annotation
style. Goodman’s (1997) models are the exception, as he already specifies that the
treebank should be transformed into his chosen representation, binary-branching trees.

7.3.1 Representation Affects Structural, not Lexical, Preferences. The alternative rep-
resentations in Figures 16 and 17 have the same lexical dependencies (providing that
the binary-branching structures are centered about the head of the phrase, as in the
examples). The difference between the representations involves structural preferences
such as the right-branching preferences encoded by the distance measure. Applying
the models in this article to treebank analyses that use this type of “head-centered”
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Figure 18
BB = binary-branching structures; FLAT = Penn treebank style annotations. In each case the
binary-branching annotation style prevents the model from learning that these structures
should receive low probability because of the long distance dependency associated with the
final PP (in boldface).

binary-branching tree will result in a distance measure that incorrectly encodes a pref-
erence for right-branching structures.

To see this, consider the examples in Figure 18. In each binary-branching example,
the generation of the final modifying PP is “blind” to the distance between it and the
head that it modifies. At the top level of the tree, it is apparently adjacent to the head;
crucially, the closer modifier (SG in (a), the other PP in (b)) is hidden lower in the tree
structure. So the model will be unable to differentiate generation of the PP in adjacent
versus nonadjacent or non-verb-crossing versus verb-crossing environments, and the
structures in Figure 18 will be assigned unreasonably high probabilities.

This does not mean that distance preferences cannot be encoded in a binary-
branching PCFG. Goodman (1997) achieves this by adding distance features to the non-
terminals. The spirit of this implementation is that the top-level rules VP → VP PP and
NP → NP PP would be modified to VP → VP(+rverb) PP and NP → NP(+rmod) PP,
respectively, where (+rverb) means a phrase in which the head has a verb in its right
modifiers, and (+rmod) means a phrase that has at least one right modifier to the
head. The model will learn from training data that P(VP → VP(+rverb) PP|VP) �
P(VP → VP(-rverb) PP|VP), that is, that a prepositional-phrase modification is much
more likely when it does not cross a verb.

7.3.2 The Importance of Differentiating Nonrecursive from Recursive NPs. Figure 19
shows the modification to the Penn Treebank annotation to relabel base-NPs as NPB.
It also illustrates a problem that arises if a distinction between the two is not made:
Structures such as that in Figure 19(b) are assigned high probabilities even if they

Figure 19
(a) The way the Penn Treebank annotates NPs. (a′) Our modification to the annotation, to
differentiate recursive (NP) from nonrecursive (NPB) noun phrases. (b) A structure that is never
seen in training data but will receive much too high a probability from a model trained on
trees of style (a).
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Figure 20
Examples of other phrases in the Penn Treebank in which nonrecursive and recursive phrases
are not differentiated.

are never seen in training data. (Johnson [1997] notes that this structure has a higher
probability than the correct, flat structure, given counts taken from the treebank for
a standard PCFG.) The model is fooled by the binary-branching style into modeling
both PPs as being adjacent to the head of the noun phrase, so 19(b) will be assigned a
very high probability.

This problem does not apply only to NPs: Other types of phrases such as adjectival
phrases (ADJPs) or adverbial phrases (ADVPs) also have nonrecursive (bar 1) and recur-
sive (bar 2) levels, which are not differentiated in the Penn Treebank. (See Figure 20 for
examples.) Ideally these cases should be differentiated too: We did not implement this
change because it is unlikely to make much difference in accuracy, given the relative
infrequency of these cases (excluding coordination cases, and looking at the 80,254
instances in sections 2–21 of the Penn Treebank in which a parent and head nonter-
minal are the same: 94.5% are the NP case; 2.6% are cases of coordination in which a
punctuation mark is the coordinator;18 only 2.9% are similar to those in Figure 20).

7.3.3 Summary. To summarize, the models in this article assume the following:

1. Tree representations are “flat”: that is, one level per X-bar level.

2. Different X-bar levels have different labels (in particular, nonrecursive
and recursive levels are differentiated, at least for the most frequent case
of NPs).

7.4 The Need to Break Down Rules
The parsing approaches we have described concentrate on breaking down context-free
rules in the treebank into smaller components. Lexicalized rules were initially broken
down to bare-bones Markov processes, then increased dependency on previously gen-
erated modifiers was built back up through the distance measure and subcategoriza-
tion. Even with this additional context, the models are still able to recover rules in test
data that have never been seen in training data.

An alternative, proposed in Charniak (1997), is to limit parsing to those context-
free rules seen in training data. A lexicalized rule is predicted in two steps. First,
the whole context-free rule is generated. Second, the lexical items are filled in. The
probability of a rule is estimated as19

P(Ln(ln) . . .L1(l1)H(h)R1(r1) . . .Rm(rm) | P, h) =

P(Ln . . .L1HR1 . . .Rm) | P, h) ×
∏

i=1...n

Pl(li | Li, P, h) ×
∏

j=1...m

Pr(rj | Rj, P, h)

18 For example, (S (S John eats apples); (S Mary eats bananas)).
19 Charniak’s model also conditions on the parent of the nonterminal being expanded; we omit this here

for brevity.



624

Computational Linguistics Volume 29, Number 4

The estimation technique used in Charniak (1997) for the CF rule probabilities inter-
polates several estimates, the lowest being P(Ln . . .L1HR1 . . .Rm) | P). Any rules not
seen in training data will be assigned zero probability with this model. Parse trees in
test data will be limited to include rules seen in training.

A problem with this approach is coverage. As shown in this section, many test data
sentences will require rules that have not been seen in training. This gives motivation
for breaking down rules into smaller components. This section motivates the need to
break down rules from four perspectives. First, we discuss how the Penn Treebank
annotation style leads to a very large number of grammar rules. Second, we assess the
extent of the coverage problem by looking at rule frequencies in training data. Third,
we conduct experiments to assess the impact of the coverage problem on accuracy.
Fourth, we discuss how breaking rules down may improve estimation as well as
coverage.

7.4.1 The Penn Treebank Annotation Style Leads to Many Rules. The “flatness” of
the Penn Treebank annotation style has already been discussed, in section 7.3. The
flatness of the trees leads to a very large (and constantly growing) number of rules,
primarily because the number of adjuncts to a head is potentially unlimited: For ex-
ample, there can be any number of PP adjuncts to a head verb. A binary-branching
(Chomsky adjunction) grammar can generate an unlimited number of adjuncts with
very few rules. For example, the following grammar generates any sequence VP → V

NP PP*:

VP → V NP

VP → VP PP

In contrast, the Penn Treebank style would create a new rule for each number of PPs
seen in training data. The grammar would be

VP → V NP

VP → V NP PP

VP → V NP PP PP

VP → V NP PP PP PP

and so on

Other adverbial adjuncts, such as adverbial phrases or adverbial SBARs, can also modify
a verb several times, and all of these different types of adjuncts can be seen together in
the same rule. The result is a combinatorial explosion in the number of rules. To give
a flavor of this, here is a random sample of rules of the format VP → VB modifier*

that occurred only once in sections 2–21 of the Penn Treebank:

VP → VB NP NP NP PRN

VP → VB NP SBAR PP SG ADVP

VP → VB NP ADVP ADVP PP PP

VP → VB RB

VP → VB NP PP NP SBAR

VP → VB NP PP SBAR PP

It is not only verb phrases that cause this kind of combinatorial explosion: Other
phrases, in particular nonrecursive noun phrases, also contribute a huge number of
rules. The next section considers the distributional properties of the rules in more
detail.
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Note that there is good motivation for the Penn Treebank’s decision to repre-
sent rules in this way, rather than with rules expressing Chomsky adjunction (i.e., a
schema in which complements and adjuncts are separated, through rule types 〈VP →
VB {complement}*〉 and 〈VP → VP {adjunct}〉). First, it allows the argument/adjunct
distinction for PP modifiers to verbs to be left undefined: This distinction was found
to be very difficult for annotators. Second, in the surface ordering (as opposed to deep
structure), adjuncts are often found closer to the head than complements, thereby yield-
ing structures that fall outside the Chomsky adjunction schema. For example, a rule
such as 〈VP → VB NP-C PP SBAR-C〉 is found very frequently in the Penn Treebank;
SBAR complements nearly always extrapose over adjuncts.

7.4.2 Quantifying the Coverage Problem. To quantify the coverage problem, rules
were collected from sections 2–21 of the Penn Treebank. Punctuation was raised as
high as possible in the tree, and the rules did not have complement markings or the
distinction between base-NPs and recursive NPs. Under these conditions, 939,382 rule
tokens were collected; there were 12,409 distinct rule types. We also collected the count
for each rule. Table 10 shows some statistics for these rules.

A majority of rules in the grammar (6,765, or 54.5%) occur only once. These rules
account for 0.72% of rules by token. That is, if one of the 939,382 rule tokens in sections
2–21 of the treebank were drawn at random, there would be a 0.72% chance of its being
the only instance of that rule in the 939,382 tokens. On the other hand, if a rule were
drawn at random from the 12,409 rules in the grammar induced from those sections,
there would be a 54.5% chance of that rule’s having occurred only once.

The percentage by token of the one-count rules is an indication of the coverage
problem. From this estimate, 0.72% of all rules (or 1 in 139 rules) required in test data
would never have been seen in training. It was also found that 15.0% (1 in 6.67) of all
sentences have at least one rule that occurred just once. This gives an estimate that
roughly 1 in 6.67 sentences in test data will not be covered by a grammar induced
from 40,000 sentences in the treebank.

If the complement markings are added to the nonterminals, and the base-NP/non-
recursive NP distinction is made, then the coverage problem is made worse. Table 11
gives the statistics in this case. By our counts, 17.1% of all sentences (1 in 5.8 sentences)
contain at least 1 one-count rule.

Table 10
Statistics for rules taken from sections 2–21 of the treebank, with complement markings not
included on nonterminals.

Rule count Number of Rules Percentage Number of Rules Percentage of rules
by type by type by token by token

1 6765 54.52 6765 0.72
2 1688 13.60 3376 0.36
3 695 5.60 2085 0.22
4 457 3.68 1828 0.19
5 329 2.65 1645 0.18

6 . . . 10 835 6.73 6430 0.68
11 . . . 20 496 4.00 7219 0.77
21 . . . 50 501 4.04 15931 1.70

51 . . . 100 204 1.64 14507 1.54
> 100 439 3.54 879596 93.64
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Table 11
Statistics for rules taken from sections 2–21 of the treebank, with complement markings
included on nonterminals.

Rule count Number of Rules Percentage of rules Number of Rules Percentage of rules
by type by type by token by token

1 7865 55.00 7865 0.84
2 1918 13.41 3836 0.41
3 815 5.70 2445 0.26
4 528 3.69 2112 0.22
5 377 2.64 1885 0.20

6 . . . 10 928 6.49 7112 0.76
11 . . . 20 595 4.16 8748 0.93
21 . . . 50 552 3.86 17688 1.88

51 . . . 100 240 1.68 16963 1.81
> 100 483 3.38 870728 92.69

Table 12
Results on section 0 of the Treebank. The label restricted means the model is restricted to
recovering rules that have been seen in training data. LR = labeled recall. LP = labeled
precision. CBs is the average number of crossing brackets per sentence. 0 CBs and ≤ 2 CBs are
the percentages of sentences with 0 and ≤ 2 crossing brackets, respectively.

Model Accuracy

LR LP CBs 0 CBs ≤ 2 CBs

Model 1 87.9 88.3 1.02 63.9 84.4
Model 1 (restricted) 87.4 86.7 1.19 61.7 81.8

Model 2 88.8 89.0 0.94 65.9 85.6
Model 2 (restricted) 87.9 87.0 1.19 62.5 82.4

7.4.3 The Impact of Coverage on Accuracy. Parsing experiments were used to assess
the impact of the coverage problem on parsing accuracy. Section 0 of the treebank was
parsed with models 1 and 2 as before, but the parse trees were restricted to include
rules already seen in training data. Table 12 shows the results. Restricting the rules
leads to a 0.5% decrease in recall and a 1.6% decrease in precision for model 1, and a
0.9% decrease in recall and a 2.0% decrease in precision for model 2.

7.4.4 Breaking Down Rules Improves Estimation. Coverage problems are not the
only motivation for breaking down rules. The method may also improve estimation.
To see this, consider the rules headed by told, whose counts are shown in Table 13.
Estimating the probability P(Rule | VP, told) using Charniak’s (1997) method would
interpolate two maximum-likelihood estimates:

λPml(Rule | VP, told) + (1 − λ)Pml(Rule | VP)

Estimation interpolates between the specific, lexically sensitive distribution in Table 13
and the nonlexical estimate based on just the parent nonterminal, VP. There are many
different rules in the more specific distribution (26 different rule types, out of 147
tokens in which told was a VP head), and there are several one-count rules (11 cases).
From these statistics λ would have to be relatively low. There is a high chance that
a new rule for told will be required in test data; therefore a reasonable amount of
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Table 13
(a) Distribution over rules with told as the head (from sections 2–21 of the treebank); (b)
distribution over subcategorization frames with told as the head.

(a)

Count Rule

70 VP told → VBD NP-C SBAR-C
23 VP told → VBD NP-C

6 VP told → VBD NP-C SG-C
5 VP told → VBD NP-C NP SBAR-C
5 VP told → VBD NP-C : S-C
4 VP told → VBD NP-C PP SBAR-C
4 VP told → VBD NP-C PP
4 VP told → VBD NP-C NP
3 VP told → VBD NP-C PP NP SBAR-C
2 VP told → VBD NP-C PP PP
2 VP told → VBD NP-C NP PP
2 VP told → VBD NP-C , SBAR-C
2 VP told → VBD NP-C , S-C
2 VP told → VBD
2 VP told → ADVP VBD NP-C SBAR-C
1 VP told → VBD NP-C SG-C SBAR
1 VP told → VBD NP-C SBAR-C PP
1 VP told → VBD NP-C SBAR , PP
1 VP told → VBD NP-C PP SG-C
1 VP told → VBD NP-C PP NP
1 VP told → VBD NP-C PP : S-C
1 VP told → VBD NP-C NP : S-C
1 VP told → VBD NP-C ADVP SBAR-C
1 VP told → VBD NP-C ADVP PP NP
1 VP told → VBD NP-C ADVP
1 VP told → VBD NP-C , PRN , SBAR-C

147 Total

(b)

Count Subcategorization frame

89 {NP-C, SBAR-C}
39 {NP-C}

9 {NP-C, S-C}
8 {NP-C, SG-C}
2 {}

147 Total

probability mass must be left to the backed-off estimate Pml(Rule | VP).
This estimation method is missing a crucial generalization: In spite of there being

many different rules, the distribution over subcategorization frames is much sharper.
Told is seen with only five subcategorization frames in training data: The large number
of rules is almost entirely due to adjuncts or punctuation appearing after or between
complements. The estimation method in model 2 effectively estimates the probability
of a rule as

Plc(LC | VP, told) × Prc(RC | VP, told) × P(Rule | VP, told, LC, RC)

The left and right subcategorization frames, LC and RC, are chosen first. The entire
rule is then generated by Markov processes.

Once armed with the Plc and Prc parameters, the model has the ability to learn the
generalization that told appears with a quite limited, sharp distribution over subcatego-
rization frames. Say that these parameters are again estimated through interpolation,
for example

λPml(LC | VP, told) + (1 − λ)Pml(LC | VP)

In this case λ can be quite high. Only five subcategorization frames (as opposed to
26 rule types) have been seen in the 147 cases. The lexically specific distribution
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Pml(LC | VP, told) can therefore be quite highly trusted. Relatively little probability
mass is left to the backed-off estimate.

In summary, from the distributions in Table 13, the model should be quite uncertain
about what rules told can appear with. It should be relatively certain, however, about
the subcategorization frame. Introducing subcategorization parameters allows the
model to generalize in an important way about rules. We have carefully isolated the
“core” of rules—the subcategorization frame—that the model should be certain about.

We should note that Charniak’s method will certainly have some advantages in
estimation: It will capture some statistical properties of rules that our independence
assumptions will lose (e.g., the distribution over the number of PP adjuncts seen for a
particular head).

8. Related Work

Unfortunately, because of space limitations, it is not possible to give a complete review
of previous work in this article. In the next two sections we give a detailed comparison
of the models in this article to the lexicalized PCFG model of Charniak (1997) and the
history-based models of Jelinek et al. (1994), Magerman (1995), and Ratnaparkhi (1997).

For discussion of additional related work, chapter 4 of Collins (1999) attempts to
give a comprehensive review of work on statistical parsing up to around 1998. Of
particular relevance is other work on parsing the Penn WSJ Treebank (Jelinek et al.
1994; Magerman 1995; Eisner 1996a, 1996b; Collins 1996; Charniak 1997; Goodman
1997; Ratnaparkhi 1997; Chelba and Jelinek 1998; Roark 2001). Eisner (1996a, 1996b)
describes several dependency-based models that are also closely related to the mod-
els in this article. Collins (1996) also describes a dependency-based model applied
to treebank parsing. Goodman (1997) describes probabilistic feature grammars and
their application to parsing the treebank. Chelba and Jelinek (1998) describe an in-
cremental, history-based parsing approach that is applied to language modeling for
speech recognition. History-based approaches were introduced to parsing in Black et
al. (1992). Roark (2001) describes a generative probabilistic model of an incremental
parser, with good results in terms of both parse accuracy on the treebank and also
perplexity scores for language modeling.

Earlier work that is of particular relevance considered the importance of relations
between lexical heads for disambiguation in parsing. See Hindle and Rooth (1991) for
one of the earliest pieces of research on this topic in the context of prepositional-phrase
attachment ambiguity. For work that uses lexical relations for parse disambiguation—
all with very promising results—see Sekine et al. (1992), Jones and Eisner (1992a,
1992b), and Alshawi and Carter (1994). Statistical models of lexicalized grammatical
formalisms also lead to models with parameters corresponding to lexical dependen-
cies. See Resnik (1992), Schabes (1992), and Schabes and Waters (1993) for work on
stochastic tree-adjoining grammars. Joshi and Srinivas (1994) describe an alternative
“supertagging” model for tree-adjoining grammars. See Alshawi (1996) for work on
stochastic head-automata, and Lafferty, Sleator, and Temperley (1992) for a stochastic
version of link grammar. De Marcken (1995) considers stochastic lexicalized PCFGs,
with specific reference to EM methods for unsupervised training. Seneff (1992) de-
scribes the use of Markov models for rule generation, which is closely related to
the Markov-style rules in the models in the current article. Finally, note that not all
machine-learning methods for parsing are probabilistic. See Brill (1993) and Hermjakob
and Mooney (1997) for rule-based learning systems.

In recent work, Chiang (2000) has shown that the models in the current article
can be implemented almost unchanged in a stochastic tree-adjoining grammar. Bikel
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(2000) has developed generative statistical models that integrate word sense informa-
tion into the parsing process. Eisner (2002) develops a sophisticated generative model
for lexicalized context-free rules, making use of a probabilistic model of lexicalized
transformations between rules. Blaheta and Charniak (2000) describe methods for the
recovery of the semantic tags in the Penn Treebank annotations, a significant step
forward from the complement/adjunct distinction recovered in model 2 of the cur-
rent article. Charniak (2001) gives measurements of perplexity for a lexicalized PCFG.
Gildea (2001) reports on experiments investigating the utility of different features in
bigram lexical-dependency models for parsing. Miller et al. (2000) develop generative,
lexicalized models for information extraction of relations. The approach enhances non-
terminals in the parse trees to carry semantic labels and develops a probabilistic model
that takes these labels into account. Collins et al. (1999) describe how the models in
the current article were applied to parsing Czech. Charniak (2000) describes a pars-
ing model that also uses Markov processes to generate rules. The model takes into
account much additional context (such as previously generated modifiers, or nonter-
minals higher in the parse trees) through a maximum-entropy-inspired model. The use
of additional features gives clear improvements in performance. Collins (2000) shows
similar improvements through a quite different model based on boosting approaches
to reranking (Freund et al. 1998). An initial model—in fact Model 2 described in the
current article—is used to generate N-best output. The reranking approach attempts to
rerank the N-best lists using additional features that are not used in the initial model.
The intention of this approach is to allow greater flexibility in the features that can be
included in the model. Finally, Bod (2001) describes a very different approach (a DOP
approach to parsing) that gives excellent results on treebank parsing, comparable to
the results of Charniak (2000) and Collins (2000).

8.1 Comparison to the Model of Charniak (1997)
We now give a more detailed comparison of the models in this article to the parser of
Charniak (1997). The model described in Charniak (1997) has two types of parameters:

1. Lexical-dependency parameters. Charniak’s dependency parameters are
similar to the L2 parameters of section 5.1. Whereas our parameters are

PL2(lwi | Li, lti, c, p, P, H, w, t, ∆, LC)

Charniak’s parameters in our notation would be

PL2(lwi | Li, P, w)

For example, the dependency parameter for an NP headed by profits,
which is the subject of the verb rose, would be
P(profits | NP, S, rose).

2. Rule parameters. The second type of parameters are associated with
context-free rules in the tree. As an example, take the S node in the
following tree:
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This nonterminal could expand with any of the rules S → β in the
grammar. The rule probability is defined as P(S → β|rose, S, VP). So the
rule probability depends on the nonterminal being expanded, its
headword, and also its parent.

The next few sections give further explanation of the differences between Charniak’s
models and the models in this article.

8.1.1 Additional Features of Charniak’s Model. There are some notable additional
features of Charniak’s model. First, the rule probabilities are conditioned on the par-
ent of the nonterminal being expanded. Our models do not include this information,
although distinguishing recursive from nonrecursive NPs can be considered a reduced
form of this information. (See section 7.3.2 for a discussion of this distinction; the argu-
ments in that section are also motivation for Charniak’s choice of conditioning on the
parent.) Second, Charniak uses word-class information to smooth probabilities and re-
ports a 0.35% improvement from this feature. Finally, Charniak uses 30 million words
of text for unsupervised training. A parser is trained from the treebank and used to
parse this text; statistics are then collected from this machine-parsed text and merged
with the treebank statistics to train a second model. This gives a 0.5% improvement
in performance.

8.1.2 The Dependency Parameters of Charniak’s Model. Though similar to ours,
Charniak’s dependency parameters are conditioned on less information. As noted
previously, whereas our parameters are PL2(lwi | Li, lti, c, p, P, H, w, t, ∆, LC), Charniak’s
parameters in our notation would be PL2(lwi | Li, P, w). The additional information
included in our models is as follows:

H The head nonterminal label (VP in the previous profits/rose example). At first
glance this might seem redundant: For example, an S will usually take
a VP as its head. In some cases, however, the head label can vary: For
example, an S can take another S as its head in coordination cases.

lti, t The POS tags for the head and modifier words. Inclusion of these tags al-
lows our models to use POS tags as word class information. Charniak’s
model may be missing an important generalization in this respect. Char-
niak (2000) shows that using the POS tags as word class information in
the model is important for parsing accuracy.

c The coordination flag. This distinguishes, for example, coordination cases from
appositives: Charniak’s model will have the same parameter—P(modifier|
head, NP, NP)—in both of these cases.

p, ∆,LC/RC The punctuation, distance, and subcategorization variables. It is dif-
ficult to tell without empirical tests whether these features are important.



631

Collins Head-Driven Statistical Models for NL Parsing

8.1.3 The Rule Parameters of Charniak’s Model. The rule parameters in Charniak’s
model are effectively decomposed into our L1 parameters (section 5.1), the head pa-
rameters, and—in models 2 and 3—the subcategorization and gap parameters. This
decomposition allows our model to assign probability to rules not seen in training
data: See section 7.4 for an extensive discussion.

8.1.4 Right-Branching Structures in Charniak’s Model. Our models use distance fea-
tures to encode preferences for right-branching structures. Charniak’s model does not
represent this information explicitly but instead learns it implicitly through rule prob-
abilities. For example, for an NP PP PP sequence, the preference for a right-branching
structure is encoded through a much higher probability for the rule NP → NP PP than
for the rule NP → NP PP PP. (Note that conditioning on the rule’s parent is needed to
disallow the structure [NP [NP PP] PP]; see Johnson [1997] for further discussion.)

This strategy does not encode all of the information in the distance measure. The
distance measure effectively penalizes rules NP → NPB NP PP where the middle NP

contains a verb: In this case the PP modification results in a dependency that crosses a
verb. Charniak’s model is unable to distinguish cases in which the middle NP contains
a verb (i.e., the PP modification crosses a verb) from those in which it does not.

8.2 A Comparison to the Models of Jelinek et al. (1994), Magerman (1995), and Rat-
naparkhi (1997)

We now make a detailed comparison of our models to the history-based models of Rat-
naparkhi (1997), Jelinek et al. (1994), and Magerman (1995). A strength of these models
is undoubtedly the powerful estimation techniques that they use: maximum-entropy
modeling (in Ratnaparkhi 1997) or decision trees (in Jelinek et al. 1994 and Magerman
1995). A weakness, we will argue in this section, is the method of associating parame-
ters with transitions taken by bottom-up, shift-reduce-style parsers. We give examples
in which this method leads to the parameters’ unnecessarily fragmenting the training
data in some cases or ignoring important context in other cases. Similar observations
have been made in the context of tagging problems using maximum-entropy models
(Lafferty, McCallum, and Pereira 2001; Klein and Manning 2002).

We first analyze the model of Magerman (1995) through three common examples
of ambiguity: PP attachment, coordination, and appositives. In each case a word se-
quence S has two competing structures, T1 and T2, with associated decision sequences
〈d1, . . . , dn〉 and 〈e1, . . . , em〉, respectively. Thus the probability of the two structures can
be written as

P(T1|S) =
∏

i=1...n

P(di|d1 . . . di−1, S)

P(T2|S) =
∏

i=1...m

P(ei|e1 . . . ei−1, S)

It will be useful to isolate the decision between the two structures to a single probability
term. Let the value j be the minimum value of i such that di �= ei. Then we can rewrite
the two probabilities as follows:

P(T1|S) =
∏

i=1...j−1

P(di|d1 . . . di−1, S) × P(dj|d1 . . . dj−1, S) ×
∏

i=j+1...n

P(di|d1 . . . di−1, S)

P(T2|S) =
∏

i=1...j−1

P(ei|e1 . . . ei−1, S) × P(ej|e1 . . . ej−1, S) ×
∏

i=j+1...m

P(ei|e1 . . . ei−1, S)
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The first thing to note is that
∏

i=1...j−1 P(di|d1 . . . di−1, S) =
∏

i=1...j−1 P(ei|e1 . . . ei−1, S),
so that these probability terms are irrelevant to the decision between the two structures.
We make one additional assumption, that

∏

i=j+1...n

P(di|d1 . . . di−1, S) ≈
∏

i=j+1...m

P(ei|e1 . . . ei−1, S) ≈ 1

This is justified for the examples in this section, because once the jth decision is made,
the following decisions are practically deterministic. Equivalently, we are assuming
that P(T1|S)+ P(T2|S) ≈ 1, that is, that very little probability mass is lost to trees other
than T1 or T2. Given these two equalities, we have isolated the decision between the
two structures to the parameters P(dj|d1 . . . dj−1, S) and P(ej|e1 . . . ej−1, S).

Figure 21 shows a case of PP attachment. The first thing to note is that the PP

attachment decision is made before the PP is even built. The decision is linked to the
NP preceding the preposition: whether the arc above the NP should go left or right.

The next thing to note is that at least one important feature, the verb, falls outside
of the conditioning context. (The model considers only information up to two con-
stituents preceding or following the location of the decision.) This could be repaired
by considering additional context, but there is no fixed bound on how far the verb
can be from the decision point. Note also that in other cases the method fragments
the data in unnecessary ways. Cases in which the verb directly precedes the NP, or is
one place farther to the left, are treated separately.

Figure 22 shows a similar example, NP coordination ambiguity. Again, the pivotal
decision is made in a somewhat counterintuitive location: at the NP preceding the
coordinator. At this point the NP following the coordinator has not been built, and its
head noun is not in the contextual window. Figure 23 shows an appositive example
in which the head noun of the appositive NP is not in the contextual window when
the decision is made.

These last two examples can be extended to illustrate another problem. The NP

after the conjunct or comma could be the subject of a following clause. For example,

Figure 21
(a) and (b) are two candidate structures for the same sequence of words. (c) shows the first
decision (labeled “?”) where the two structures differ. The arc above the NP can go either left
(for verb attachment of the PP, as in (a)) or right (for noun attachment of the PP, as in (b)).
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Figure 22
(a) and (b) are two candidate structures for the same sequence of words. (c) shows the first
decision (labeled “?”) where the two structures differ. The arc above the NP can go either left
(for high attachment (a) of the coordinated phrase) or right (for low attachment (b) of the
coordinated phrase).

Figure 23
(a) and (b) are two candidate structures for the same sequence of words. (c) shows the first
decision (labeled “?”) in which the two structures differ. The arc above the NP can go either
left (for high attachment (a) of the appositive phrase) or right (for noun attachment (b) of the
appositive phrase).

in John likes Mary and Bill loves Jill, the decision not to coordinate Mary and Bill is made
just after the NP Mary is built. At this point, the verb loves is outside the contextual
window, and the model has no way of telling that Bill is the subject of the following
clause. The model is assigning probability mass to globally implausible structures as
a result of points of local ambiguity in the parsing process.

Some of these problems can be repaired by changing the derivation order or the
conditioning context. Ratnaparkhi (1997) has an additional chunking stage, which
means that the head noun does fall within the contextual window for the coordination
and appositive cases.

9. Conclusions

The models in this article incorporate parameters that track a number of linguistic
phenomena: bigram lexical dependencies, subcategorization frames, the propagation
of slash categories, and so on. The models are generative models in which parse
trees are decomposed into a number of steps in a top-down derivation of the tree
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and the decisions in the derivation are modeled as conditional probabilities. With a
careful choice of derivation and independence assumptions, the resulting model has
parameters corresponding to the desired linguistic phenomena.

In addition to introducing the three parsing models and evaluating their perfor-
mance on the Penn Wall Street Journal Treebank, we have aimed in our discussion
(in sections 7 and 8) to give more insight into the models: their strengths and weak-
nesses, the effect of various features on parsing accuracy, and the relationship of the
models to other work on statistical parsing. In conclusion, we would like to highlight
the following points:

• Section 7.1 showed, through an analysis of accuracy on different types of
dependencies, that adjuncts are the main sources of error in the parsing
models. In contrast, dependencies forming the “core” structure of
sentences (for example, dependencies involving complements, sentential
heads, and NP chunks) are all recovered with over 90% precision and
recall.

• Section 7.2 evaluated the effect of the distance measure on parsing
accuracy. A model without either the adjacency distance feature or
subcategorization parameters performs very poorly (76.5% precision,
75% recall), suggesting that the adjacency feature is capturing some
subcategorization information in the model 1 parser. The results in
Table 7 show that the subcategorization, adjacency, and “verb-crossing”
features all contribute significantly to model 2’s (and by implication
model 3’s) performance.

• Section 7.3 described how the three models are well-suited to the Penn
Treebank style of annotation, and how certain phenomena (particularly
the distance features) may fail to be modeled correctly given treebanks
with different annotation styles. This may be an important point to bear
in mind when applying the models to other treebanks or other
languages. In particular, it may be important to perform transformations
on some structures in treebanks with different annotation styles.

• Section 7.4 gave evidence showing the importance of the models’ ability
to break down the context-free rules in the treebank, thereby
generalizing to produce new rules on test examples. Table 12 shows that
precision on section 0 of the treebank decreases from 89.0% to 87.0% and
recall decreases from 88.8% to 87.9% when the model is restricted to
produce only those context-free rules seen in training data.

• Section 8 discussed relationships to the generative model of Charniak
(1997) and the history-based (conditional) models of Ratnaparkhi (1997),
Jelinek et al. (1994), and Magerman (1995). Although certainly similar to
Charniak’s model, the three models in this article have some significant
differences, which are identified in section 8.1. (Another important
difference—the ability of models 1, 2, and 3 to generalize to produce
context-free rules not seen in training data—was described in section 7.4.)
Section 8.2 showed that the parsing models of Ratnaparkhi (1997),
Jelinek et al. (1994), and Magerman (1995) can suffer from very similar
problems to the “label bias” or “observation bias” problem observed in
tagging models, as described in Lafferty, McCallum, and Pereira (2001)
and Klein and Manning (2002).
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