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This interesting and original work applies descriptive complexity theory to the study 
of natural languages. The first part of the book (64 pages) characterizes the strong 
generative capacity of context-free grammars in logical terms. The second part (122 
pages) discusses the generative capacity of government and binding (GB) theories. The 
book deserves the close attention of computational linguists, and also of GB theorists 
who wish to gain a better understanding of the formal properties and consequences 
of their theory. 

Mathematical linguistics was founded on the enormously influential results pub- 
lished by Chomsky in 1959. (We save space by not repeating bibliographical items: 
our reference list includes only items that Rogers does not cite.) Thus it was based 
on the theory of rewriting systems and automata. But theoretical computer science 
and linguistics have diverged since 1959, and the emergence of descriptive complexity 
theory is one of the results. This field is most often taken (as, for example, by Immer- 
man [1998]) to originate with Fagin's beautiful result (1973, 1974): the class of graph- 
theoretic problems solvable in polynomial time on a nondeterministic Turing machine 
is exactly the class that can be stated using a second-order existential sentence--that 
is, a sentence of the form 3X1...  ~Xn[~9], where the Xi are variables over properties or 
relations and q~ contains only first-order quantifiers. 

Fagin's work established a new way to measure computational complexity: instead 
of asking for a measure of how many tape squares or Turing machine operations are 
needed for the computation that solves some problem, one can ask instead: "How 
rich a logic it would take to state this kind of problem?" This has led to a significant 
new branch of theoretical computer science. It has antecedents in earlier research. 
In the late 1950s it was proved by J. R. Btichi and by C. C. Elgot that the sets of 
strings definable by existential sentences of monadic second-order logic (MSO) were 
exactly the regular languages; that is, a set of strings is regular if and only if it is 
a model of a sentence of the form ~ X 1 . . .  ~Xn[~] , where the Xi are variables over 
properties of elements, e.g., the property of being an a or being a b, and there is a 
strict ordering on the elements. Between 1967 and 1970, work by James W. Thatcher, 
J. B. Wright, Michael O. Rabin, and John Doner extended this result in various ways, 
considering trees as models for MSO sentences, and from this work it emerged that 
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the sets of finite labeled trees definable in MSO are exactly those that can be generated 
by context-free grammars. (Engelfriet [1991] presents an elegant further generalization 
of the models for MSO, this time to arbitrary graphs; the results on trees follow as a 
special case.) 

Rogers connects this work to the post-1980 trend in theoretical linguistics focused 
on grammars composed of (or incorporating) declarative statements about the syntactic 
structure of natural language expressions. Linguists of most theoretical persuasions 
today talk about languages in a way that is at least partially reminiscent of the work 
of the computer scientists mentioned above: they state (however informally) conditions 
applying directly to syntactic structures. For example, consider a statement of binding 
theory in GB, such as "An anaphor is governed in its binding domain." This is a 
condition on sentence structure, not a component of a device for building structure. A 
representation that displays binding relations either satisfies it or does not. Description 
in such terms can be called model-theoretic syntax (the term appears to originate with 
Rogers's title for a class he gave at the European Summer School in Logic, Language, 
and Information in 1996). By contrast, the dynamic structure-building syntax of Post 
production systems and transformational grammars can be referred to as rewriting 
syntactic description. 

But most current theories are actually hybrids of model-theoretic and rewriting 
syntax. For example, the "Move" operation of GB and the more recent minimalist 
program is interpreted as a schema over instructions for building objects: "Move" is 
not a statement that is true or false of any given structure. Rogers is interested in 
the program of describing syntactic structure in a way that is purely and rigorously 
model-theoretic (as hardly any work in linguistics has been; Rogers [1997] correctly 
notes Johnson and Postal [1980] as one of the few exceptions). 

Rogers defines a special-purpose MSO language, L 2 The intended models are K,P" 
trees. He proves that ~ is a sentence of L2p if and only if the set of all the finite 
models of ~ is the set of trees generated by some context-free grammar. (The "only 
if" direction of the proof actually requires a more complex condition involving the 
projection of a set of trees generated by a finite set of CFGs; see pages 56ff.) Chapter 4 
is devoted to a careful comparison of L 2 with SnS, a logic studied earlier by Rabin, K,P 
and Rogers shows that in a specific sense they are strongly equivalent. Thus there is 
an exact descriptive-complexity characterization of the context-free languages. And it 
is a characterization in terms of strong rather than weak generative capacity. 

What makes L 2 K,P a particularly desirable description language for natural lan- 
guages is that (as in effect shown earlier by Rabin) its satisfiability problem is decid- 
able: it can be decided algorithmicaUy whether there is a model that satisfies a given 
theory. Notice that we do not have the analogous property for (e.g.) context-sensitive 
grammars or transformational grammars: there is no algorithm that can take a gram- 
mar of either of these types and determine whether there might be some sentence 
that it generates, because the emptiness problem for both is (by an easy application of 
Rice's theorem) undecidable. 

The second part of Rogers's book applies L 2 to the analysis of GB, roughly as K,P 
assumed in Chomsky's 1986 book Barriers. The investigation yields several interesting 
definability results. Rogers shows that all of the most central parts of GB theory--  
X-bar theory, the lexicon, theta theory, Case theory, binding, control, leftward and 
rightward phrase movement, chains, the empty-category principle, head movement, 
reconstruction--can be defined in L 2 Thus "the language licensed by a particular K,P" 
theory within the GB framework is strongly context-free" (p. 6). This was not ap- 
preciated during the 1980s, when GB was in competition with generalized phrase 
structure grammar (GPSG), and GB proponents insisted that GPSG's claim of context- 
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freeness would prevent it from capturing the facts of natural languages whereas GB 
did not have this drawback. (A similar development occurred when it was proved by 
Nozohoor-Farshi [1987] that the Marcus [1980] parser, touted as an important existence 
proof for parsing of transformational grammars, in fact only had weakly context-free 
recognizing power.) 

Importantly, these results do not show, like so many such results, an excess of 
expressive power in a formalism previously thought to be restrictive. Here a theo- 
retical system turns out under analysis to be more restrictive than it was thought 
to be. Although GB (in the version Rogers considers) employs transformations, the 
"structure-preserving" use that is made of them in the description of the core struc- 
tures of English makes it possible to represent a sentence as a single annotated s- 
structure tree that contains the corresponding d-structure as a subtree. Rogers shows 
this by recasting movement in terms of relations between traces (some of which have 
phonologically unrealized daughter material referred to as "phantom constituents"). 

Dutch cross-serial dependencies and Swedish unbounded dependencies cannot be 
described in L 2 Rogers diagnoses the reason as the same in both cases: description K,P" 
of them would require the existence of unboundedly many "chains" crossing a given 
node. But interestingly, Manzini and Stabler have independently argued for a constant 
bound on overlapping chains (Manzini's locality theory implies the maximum number 
of chains overlapping at any given node is 2), which means that they have (apparently 
unwittingly) imposed a theoretical restriction on GB that would limit it to the context- 
free languages, making languages like Dutch, Swiss German, and Swedish impossible 
to describe. 

There are some real differences between the expressive power of GB theories and 
context-free grammars, however. Two theoretical devices assumed in recent GB go be- 
yond strongly context-free power. Movement by copying, advocated in various works 
(notably Chomsky's minimalist program) is not definable in L 2 And the most inter- K,P" 
esting nondefinability result Rogers offers concerns free indexation, assumed widely in 
GB since about 1980. Free indexation assumes that phrases (specifically noun phrases) 
are freely assigned numerical indices. In other words, a node is taken to be labeled by 
both a category and a random integer called the index. Syntactic and semantic prin- 
ciples are permitted to refer to coindexing. Rogers defines an extension of L 2 that K,P 
incorporates free indexing and a dyadic predicate that holds of two nodes, n labeled 
by k and n r labeled by k ~, if and only if k = k I. He then shows (by reduction to the 
origin-constrained tiling problem) that the resultant theory is undecidable. Thus the 
device of coindexing (not present in GPSG) increases expressive power to the extent 
that there is no general algorithm to determine whether a given theory is satisfiable. 

L 2 gives a characterization of the strong generative capacity (SGC) of context- K,P 
free languages, in the sense of Miller (1999), since it provides a logical characterization 
of the properties that are assigned to a string in virtue of the fact that it has a given 
derivation. Thus it does in a sense show a certain GB theory to be strongly context-free 
(p. 6). But that statement must be understood as based on a more classical definition of 
SGC, involving uninterpreted sets of structures: one can provide sets of annotated trees 
that are the ones GB grammars would generate, and there is a proof that those sets can 
be generated by context-free grammars. No logical interpretation of those properties 
of GB theory coded in the indices (for example) is provided, or can be provided, as 
Rogers notes. He remarks on page 70 that "if descriptive complexity results similar 
to ours can be established for larger language-theoretic complexity classes (for the 
indexed languages, for instance) it may be possible to make the argument that GB 
can be restricted to principles that are definable in the corresponding theory without 
losing the ability to account for the full class of natural languages." In other words, 

306 



Book Reviews 

what has been done for the (strongly) context-free languages might be also possible for 
larger classes, like the TAG languages or the indexed languages (Rogers [1998] shows 
that in fact this can be achieved for TAGs). We believe it would be a fruitful line of 
research to try to further extend Rogers's logical analysis so that it can provide explicit 
interpretations for linguistic properties that go beyond domination, linear order, and 
constituency. This would amount essentially to integrating some of the ideas of Miller 
(1999) into Rogers's more rigorous and well-defined logical framework. 

Still, Rogers's results as they stand are important and exciting. Techniques for 
showing exactly where the excessive descriptive power of a theory might be located are 
clearly of great value to anyone, of any theoretical leaning, who wishes to understand 
syntactic theory deeply. For instance, when one considers the analysis of X-bar theory 
proposed in Kornai and Pullum (1990), it becomes clear that among the six defining 
properties of X-bar theory, five are easy to express in L2p, whereas the sixth, optionality 
(which claims that the nonhead daughters in any subtree are optional), is literally 
impossible. Rogers's approach makes it clear why: Rogers assumes a domain of nodes 
and various properties and relations. In a model of an L 2 sentence, the properties K,P 
and relations are assigned in a way that determines treehood. But defining optionality 
requires quantifying over sets of trees. The English phrase "the daughter node c~ in 
subtree ~- is optional" might appear to say something about T, but when things are 
formalized in Rogers's terms we can see that it does not: the assertion it makes is 
about a set of subtrees that ~- belongs to. We can neither verify it nor refute it by 
examining T. 

It is of interest, therefore, that Kornai and Pullum (1990) point out that optionality 
is a condition that has only ever been paid lip service by linguists. In practice no 
syntactician has even seriously attempted to maintain it. It is incompatible with the 
existence of strict transitive verbs, or with the existence of languages such as English 
in which both the predicate (verb phrase) and the subject (noun phrase) are obligatory 
in the finite clause. The inability of L2p to state this principle turns out to be a virtue, 
if the practice of syntacticians is to be trusted. 

Rogers's work has already been influential, clearly inspiring most of the work 
published in Kolb and M/)nnich (1999). The most clearly related work within compu- 
tational linguistics is probably that of Patrick Blackburn on applying modal logic to 
the description of trees (the work of Blackburn and his associates on describing trees 
in logical terms--modal logic, in their case--has been developing since about 1993; 
see Blackburn and Meyer-Viol [1997] for an overview). It should also be noted that in 
research not included in the book under review, Rogers (1997) has intensively studied 
the GPSG framework, showing that significant advantages accrue from reformulating 
the 1985 GPSG theory of Gazdar, Klein, Pullum, and Sag in terms of direct statements 
about trees in a logical language for tree description, rather than through the rewriting 
system-derived techniques standardly employed in GPSG. Again this yields interest- 
ing insights into the content of the theory, and the first part of this book would be a 
very useful guide for anyone consulting the 1997 paper. 

In sum, we recommend to linguists interested in achieving a clearer and sharper 
view of natural language syntax that they should make sure they do not overlook this 
book. 
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