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Pronunciation by analogy (PbA) is a data-driven method for relating letters to sound, with 
potential application to next-generation text-to-speech systems. This paper extends previous 
work on PbA in several directions. First, we have included "full" pattern matching between 
input letter string and dictionary entries, as well as including lexical stress in letter-to-phoneme 
conversion. Second, we have extended the method to phoneme-to-letter conversion. Third, and 
most importan t, we have experimented with multiple, different strategies for scoring the candidate 
pronunciations. Individual scores for each strategy are obtained on the basis of rank and either 
multiplied or summed to produce a final, overall score. Five strategies have been studied and results 
obtained from all 31 possible combinations. The two combination methods perform comparably, 
with the product rule only very marginally superior to the sum rule. Nonparametric statistical 
analysis reveals that performance improves as more strategies are included in the combination: 
this trend is very highly significant (p << 0.0005). Accordingly for letter-to-phoneme conversion, 
best results are obtained when all five strategies are combined: word accuracy is raised to 65.5% 
relative to 61.7% for our best previous result and 63.0% for the best-performing single strategy. 
These improvements are very highly significant (p ~ 0 and p = 0.00011 respectively). Similar 
results were found for phoneme-to-letter and letter-to-stress conversion, although the former was 
an easier problem for PbA than letter-to-phoneme conversion and the latter was harder. The main 
sources of error for the multistrategy approach are very similar to those for the best single strategy, 
and mostly involve vowel letters and phonemes. 

1. Introduct ion 

Text-to-phoneme conversion is a problem of some practical importance. Possibly the 
major application is speech synthesis from text, where we need to convert the text 
input (i.e., letter string) to something much closer to a representation of the corre- 
sponding sound sequence (e.g., phoneme string). A further important application is 
speech recognition, where we may wish to add a new word (specified by its spelling) 
to the vocabulary of a recognition system. This requires that the system has some idea 
of the "ideal" pronunciation--or phonemic baseform (Lucassen and Mercer 1984)--of 
the word. Also, in recognition we have a requirement to perform the inverse mapping, 
i.e., for conversion from phonemes to text. Perhaps the techniques employed for the 
forward mapping can also be applied "in reverse" for phoneme-to-text conversion. 
Yet another reason for being interested in the problem of automatic phonemization is 
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that (literate) humans are able to read aloud, so that systems that can pronounce print 
serve as models of human cognitive performance. 

Modern text-to-speech (TTS) systems use lookup in a large dictionary or lexicon 
(we use the terms interchangeably) as the primary strategy to determine the pronunci- 
ation of input words. However, it is not possible to list exhaustively all the words of a 
language, so a secondary or backup strategy is required for the automatic phonemiza- 
tion of words not in the system dictionary. The latter are mostly (but not exclusively) 
proper names, acronyms, and neologisms. At this stage of our work, we concentrate 
on English and assume that any such missing words are dictionary-like with respect 
to their spelling and pronunciation, as will probably be the case for many neologisms. 

Even if the missing words are dictionary-like, automatic determination of pronun- 
ciation is a hard problem for languages like English and French (van den Bosch et al. 
1994). In fact, English is notorious for the lack of regularity in its spelling-to-sound cor- 
respondence. That is, it has a deep orthography (Coltheart 1978; Liberman et al. 1980; 
Sampson 1985) as opposed to the shallow orthography of, for example, Serbo-Croatian 
(Turvey, Feldman, and Lukatela 1984). To a large extent, this reflects the many complex 
historical influences on the spelling system (Venezky 1965; Scragg 1975; Carney 1994). 
Indeed, Abercrombie (1981, 209) describes English orthography as "one of the least 
successful applications of the Roman alphabet." We use 26 letters in English orthogra- 
phy yet about 45-55 phonemes in specifying pronunciation. It follows that the relation 
between letters and phonemes cannot be simply one-to-one. For instance, the letter c 
is p r o n o u n c e d / s / i n  cider b u t / k / i n  cat. On the other hand, t h e / k / s o u n d  of kitten 
is written with a letter k. Nor is this lack of invariance between letters and phonemes 
the only problem. There is no strict correspondence between the number of letters 
and the number of phonemes in English words. Letter combinations (ch, gh, II, ea) fre- 
quently act as a functional spelling unit (Coltheart 1984)--or grapheme--signaling a 
single phoneme. Thus, the combination ough is pronounced /Af/  in enough, while ph is 
pronounced as the single p h o n e m e / f / i n  phase. However, ph in uphill is pronounced 
as two p h o n e m e s , / p h / .  Usually, there are fewer phonemes than letters but there are 
exceptions, e.g., (six,/sIks/). Pronunciation can depend upon word class (e.g., con- 
vict, subject). English also has noncontiguous markings (Wijk 1966; Venezky 1970) as, 
for instance, when the letter e is added to (mad,/mad/) to make (made,/meId/), also 
spelled maid! The final e is not sounded; rather it indicates that the vowel is length- 
ened or dipthongized. Such markings can be quite complex, or long-range, as when 
the suffix y is added to photograph or telegraph to yield photography or telegraphy, re- 
spectively. As a final comment, although not considered further here, English contains 
many proper nouns (place names, surnames) that display idiosyncratic pronuncia- 
tions, and loan words from other languages that conform to a different set of (partial) 
regularities. These further complicate the problem. 

This paper is concerned with an analogical approach to letter-to-sound conversion 
and related string rewriting problems. Specifically, we aim to improve the performance 
of pronunciation by analogy (PbA) by information fusion, an approach to automated 
reasoning that seeks to utilize multiple sources of information in reaching a decision-- 
in this case, a decision about the pronunciation of a word. The remainder of this 
paper is organized as follows: In the next section, we contrast traditional rule-based 
and more modern data-driven approaches (e.g., analogical reasoning) to language 
processing tasks, such as text-to-phoneme conversion. In Section 3, we describe the 
original (PRONOUNCE) PbA system of Dedina and Nusbaum (1986) in some detail as 
this forms the basis for the later work. Section 4 reviews our own work in this area. 
Next, in Section 5, we make some motivating remarks about information fusion and its 
use in computational linguistics in general. In Section 6, we present in some detail the 
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multistrategy (or fusion) approach to PbA that enables us to obtain clear performance 
improvements, as described in Section 7. Finally, conclusions are drawn and directions 
for future studies are proposed in Section 8. 

2. Rule-based and Data-driven Conversion 

Given the problems described above, how is it possible to perform automatic phone- 
mization at all? It is generally believed that the problem is largely soluble provided 
sufficient context is available. For example, the substring ough is pronounced /o~5/ 
when its left context is th in the word al though, /u /when its left context is thr in the 
word through, and /Af /  when its left context is en in the word enough: in each case, 
the right context is the word delimiter symbol. In view of this, context-dependent 
rewrite rules have been a popular formalism for the backup pronunciation strategy 
in TTS systems. The form of the rules, strongly inspired by concepts from generative 
phonology (Chomsky and Halle 1968, 14), is: 

A[BJC --+ D (1) 

which states that the letter substring B with left context A and right context C receives 
the pronunciation (i.e., phoneme substring) D. Such rules can also be straightforwardly 
cast in the IF... THEN form commonly featured in high-level programming languages 
and employed in expert, knowledge-based systems technology. They also constitute 
a formal model of universal computation (Post 1943). Conventionally, these rules are 
specified by an expert linguist, conversant with the sound and spelling systems of the 
language of concern. Typical letter-to-sound rule sets are those described by Ainsworth 
(1973), McIlroy (1973), Elovitz et al. (1976), Hunnicutt (1976), and Divay and Vitale 
(1997). 

Because of the complexities of English spelling-to-sound correspondence detailed 
in the previous section, more than one rule generally applies at each stage of tran- 
scription. The potential conflicts that arise are resolved by maintaining the rules in a 
set of sublists, grouped by (initial) letter and with each sublist ordered by specificity. 
Typically, the most specific rule is at the top and most general at the bottom. In the 
Elovitz et al. rules, for instance, transcription is a one-pass, left-to-right process. For 
the particular target letter (i.e., the initial letter of the substring currently under con- 
sideration), the appropriate sublist is searched from top to bottom until a match is 
found. This rule is then fired (i.e., the corresponding D substring is right-concatenated 
to the evolving output string), the linear search terminated, and the next untranscribed 
letter taken as the target. The last rule in each sublist is a context-independent default 
for the target letter, which is fired in the case that no other, more specific rule applies. 

We refer to the mapping between B and D in Equation (1) as a correspondence. 
Given a set of correspondences, we can align text with its pronunciation. For ex- 
ample, consider the word (make,/meIk/). A possible alignment (which uses the null 
phoneme--see below) is: 

m a k e 

m eI k 
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It should be obvious, however, that it is all but impossible to specify a canonical 
set of correspondences for words of English on which all experts could agree. For 
instance, why should we use the single-letter correspondences a-~ / e I / ,  k--* / k / ,  
and e--+ / - /  as above, rather than the composite ake ~ / e Ik / ,  which captures the 
noncontiguous marking by the final e? Of course, alignment and correspondences are 
at the heart of the rule-based methodology. 

So, although the context-dependent rule formalism has been vastly influential-- 
from both theoretical linguistic and practical system implementation perspectives--it 
does have its problems. From a practical point of view, the task of manually writing 
such a set of rules, deciding the rule order so as to resolve conflicts appropriately, 
maintaining the rules as mispronunciations are discovered, etc., is very considerable 
and requires an expert depth of knowledge of the specific language. For these reasons, 
and especially to ease the problem of creating a TTS system for a new language, 
more recent attention has focused on the application of automatic techniques based 
on machine learning from large corpora--see Damper (1995) for a comprehensive 
review, van den Bosch (1997) for more recent discussion, and Dietterich (1997) for an 
accessible review of the underpinning machine learning methodologies. 

The rule-based approach has also been challenged from a more theoretical point 
of view. For instance, Jones (1996, 1) describes the goal of his book Analogical Natural 
Language Processing as: 

to challenge the currently predominant assumption in the field of nat- 
ural language processing that the representation of language should be 
done within the rule-based paradigm alone. For historical reasons, this 
traditional position is largely the result of the influence of Chomsky 
and his efforts to define language in terms of formal mathematics . . . .  
The contrasting view, taken here, is that language is not something 
that can be described in a neat and tidy way. 

This is also the perspective adopted here. 
It is also conceivable that data-driven techniques can actually outperform tradi- 

tional rules. However, this possibility is not usually given much credence. For instance, 
Divay and Vitale (1997) recently wrote: "To our knowledge, learning algorithms, al- 
though promising, have not (yet) reached the level of rule sets developed by hu- 
mans" (p. 520). Dutoit (1997) takes this further, stating "such training-based strategies 
are often assumed to exhibit much more intelligence than they do in practice, as re- 
vealed by their poor transcription scores" (p. 115, note 14). 

Pronunciation by analogy (PbA) is a data-driven technique for the automatic 
phonemization of text, originally proposed as a model of reading, e.g., by Glushko 
(1979) and Kay and Marcel (1981). It was first proposed for TTS applications over a 
decade ago by Dedina and Nusbaum (1986, 1991). See also the work of Byrd and 
Chodorow (1985), which considers computer-based pronunciation by analogy but 
does not mention the possible application to text-to-speech synthesis. As detailed 
by Damper (1995) and Damper and Eastmond (1997), PbA shares many similarities 
with the artificial intelligence paradigms variously called case-based, memory-based, 
or instance-based reasoning as applied to letter-to-phoneme conversion (Stanfill and 
Waltz 1986; Lehnert 1987; Stanfill 1987, 1988; Golding 1991; Golding and Rosenbloom 
1991; van den Bosch and Daelemans 1993). 

PbA exploits the phonological knowledge implicitly contained in a dictionary of 
words and their corresponding pronunciations. The underlying idea is that a pro- 
nunciation for an unknown word is derived by matching substrings of the input to 
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substrings of known, lexical words, hypothesizing a partial pronunciation for each 
matched substring from the phonological knowledge, and assembling the partial pro- 
ntmciations. Although initially it attracted little attention from workers in speech syn- 
thesis, several groups around the world are now trying to develop the approach as a 
backup to dictionary matching. 

In spite of opinions to the contrary expressed in the literature (see above), there is 
accumulating evidence that PbA easily outperforms linguistic rewrite rules (Damper 
and Eastmond 1996, 1997; Yvon 1996; Bagshaw 1998). More recently, Damper et al. 
(1999) conducted a careful performance evaluation of four techniques for letter-to- 
sound conversion: rules, backpropagation neural networks (Sejnowski and Rosenberg 
1987; McCulloch, Bedworth, and Bridle 1987), PbA and the IBI-IG method based on 
information gain weighting (Daelemans, van den Bosch, and Weijters 1997; van den 
Bosch 1997). Results showed PbA to be the best of the techniques evaluated by a signif- 
icant margin. Although one obviously cannot say from a limited evaluation with just 
three competitors that PbA is the best method available, it is clearly worthy of serious 
consideration and further development. This paper marks a stage of that development. 

As a psychological (or theoretical) model, PbA is "seriously underspecified" so 
that the implementor wishing to use analogy within the pronunciation component of 
a TTS system "faces detailed choices which can only be resolved by trial and error" 
(Damper and Eastmond 1997, 1). The impact of implementational choices on perfor- 
mance has been studied by Sullivan and Damper (1993), Damper and Eastmond (1996, 
1997), and Yvon (1996, 1997). One important dimension on which implementations 
vary is the strategy used to score the candidate pronunciations that PbA produces. 
By and large, these investigators have sought the single best pronunciation strategy. 
However, the range of choices is wide, so that some rather different implementations 
with different performance can be produced, yet these are all (in some sense) pro- 
nunciation by analogy. This raises the possibility, which forms the main focus of this 
paper, that different multiple PbA strategies--whose outputs are combined to give the 
final pronunciation--might be used to good effect. If the different strategies make dif- 
ferent errors, then it is conceivable that such a multistrategy approach can produce 
a lower error rate than even the best single strategy. Indeed, it may be that a strat- 
egy with a poor performance by itself can make a positive overall contribution to 
high-accuracy pronunciation derivation when used in concert with other strategies. It 
can be viewed as a "specialist" within a committee of experts (e.g., Jacobs et al. 1991; 
Dietterich 1997): most often its opinion is invalid, but occasionally--for inputs within 
its sphere of expertise--it produces the correct answer when the other "generalist" 
strategies do not. There is currently much interest in the topic of information fusion 
in a wide variety of application settings. This work can be seen as a specific instance 
of information fusion. 

3. Dedina and Nusbaum's System 

The results reported here were obtained using an extended and improved version of 
PRONOUNCE, the Dedina and Nusbaum (D&N) system, which we now describe. 

3.1 Principles 
The basic PRONOUNCE system consists of four components: the lexical database; the 
matcher, which compares the target input to all the words in the database; the pronun- 
ciation lattice (a data structure representing possible pronunciations); and the decision 
function, which selects the "best" pronunciation among the set of possible ones. Re- 
flecting PbA's origins as an empirical, psychological model, this selection is heuristic 
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A N E C D 0 T E 

@ 

Figure 1 

o t -  

Simplified pronunciation lattice for the word anecdote. For clarity, only a subset of the arcs is 
shown. Full pattern matching is used as described in Section 3.2. Phoneme symbols are those 
employed by Sejnowski and Rosenberg. 

rather than being based (like certain other approaches to automatic pronunciation) on 
any statistical model. 

3.1.1 Pattern Matching. The input word is first compared to words listed in the lexicon 
(Webster's Pocket Dictionary) and substrings common to both are identified. For a given 
dictionary entry, the process starts with the input string and the dictionary entry left- 
aligned. Substrings sharing contiguous, common letters in matching positions in the 
two strings are then found. Information about these matching letter substrings--and 
their corresponding phoneme substrings in the dictionary entry under consideration-- 
is entered into the input string's pronunciation lattice as detailed below. (Note that this 
requires the letters and phonemes of each word in the lexicon to have been previously 
aligned in one-to-one fashion.) The shorter of the two strings is then shifted right by 
one letter and the matching process repeated. This continues until the two strings 
are right-aligned, i.e., the number of right shifts is equal to the difference in length 
between the two strings. This process can be alternatively seen as a matching between 
substrings of the incoming word "segmented in all possible ways" (Kay and Marcel 
1981, 401) and the entries in the lexicon. 

3.1.2 Pronunciation Lattice. Matched substrings, together with their corresponding 
phonemic mappings as found in the lexicon, are used to build the pronunciation 
lattice for the input string. A node of the lattice represents a matched letter, Li, at 
some position, i, in the input. The node is labeled with its position index i and with the 
phoneme that corresponds to Li in the matched substring, Pim say, for the mth matched 
substring. An arc is placed from node i to node j if there is a matched substring 
starting with L i and ending with Lj. The arc is labeled with the phonemes intermediate 
between Pim and Pjm in the phoneme part of the matched substring. Additionally, arcs 
are labeled with a "frequency" count (see below), which is incremented by one each 
time that substring (with that pronunciation) is matched during the pass through the 
lexicon. 

Figure 1 shows an example pronunciation lattice for the word anecdote. For clarity, 
the lattice has been simplified to show only a subset of the arcs. This word suffers 
from the so-called silence problem whereby PbA fails to produce any pronunciation, 
because there is no complete path through the lattice (see next page). In the case 
illustrated, there is no cd ~ / k d /  mapping in the dictionary other than in the word 
anecdote itself. Hence, in view of the leave-one-out testing strategy (see next page), 
there will never be an arc between nodes ( /k / ,4 )  and ( / d / ,  5). 
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3.1.3 Decision Function. A possible pronunciation for the input string then corre- 
sponds to a complete path through its lattice, with the output string assembled by con- 
catenating the phoneme labels on the nodes/arcs in the order that they are traversed. 
(Different paths can, of course, correspond to the same pronunciation.) Scoring of can- 
didate pronunciation uses two heuristics in PRONOUNCE. If there is a unique shortest 
path, then the pronunciation corresponding to this path is taken as the output. If there 
are tied shortest paths, then the pronunciation corresponding to the best-scoring of 
these is taken as the output. In D&N's original work, the score used is the sum of 
arc "frequencies" (Dedina and Nusbaum's term, and nothing to do with frequency 
of usage in written or spoken communication) obtained by counting the number of 
times the corresponding substring matches between the input and the entire lexicon. 
The scoring heuristics are one obvious dimension on which different versions of PbA 
can vary. In the following, when we refer to a multistrategy approach to PbA, it is 
principally the use of multiple scoring strategies which is at issue. 

3.2 Appraisal 
PRONOUNCE was evaluated on just 70 monosyllabic pseudowords--a  subset of those 
previously used in reading studies by Glushko (1979). Such a test is largely irrelevant 
to TTS applications: the test set is not representative of general English, either in 
the small number of words used or their length. Also, D&N's claimed results on 
this pseudoword test set have proved impossible to replicate (Damper and Eastmond 
1996, 1997; Yvon 1996; Bagshaw 1998). In addition, no consideration is given to the 
case where no complete path through the lattice exists (the silence problem mentioned 
earlier). 

D&N's pattern matching (when building the pronunciation lattice) is a "partial" 
one. That is, as explained in section 3.1.1, the process starts with the leftmost letter of 
the input string and of the current dictionary entry aligned and continues until the two 
are right-aligned. They give (on page 59) the example of the input word blope matching 
to the lexical entry sloping. At the first iteration, the initial b of blope aligns with the 
initial s of sloping, and the common substring lop is extracted. The process terminates 
at the third iteration, when the final e of blope aligns with the final g of sloping: there are 
no common substrings in this case. There seems to be no essential reason for starting 
and discontinuing matching at these points. That is, we could shift and match over 
the range of all possible overlaps--starting with the final e of blope aligned with the 
initial s of sloping, and terminating with the initial b of the former aligned with the 
final g of the latter. We call this "full" as opposed to "partial" matching. (Note that the 
simplified pronunciation lattice depicted in Figure 1 was obtained using full pattern 
matching.) 

One conceivable objection to partial pattern matching is that some morphemes 
can act both as prefix and suffix (e.g., someBODY and BODYguard). From this point 
of view, full matching seems worth consideration. A linguistic justification for the full 
method is that affixation is often implicated in the creation of new words. 

4. Previous Work and Extensions 

In this section, we briefly review our previous work on a single-strategy approach 
to PbA (Damper and Eastmond 1996, 1997). The basic purpose of the earlier work 
was to reimplement D&N's system but to improve the scoring heuristic used to find 
the best path through the pronunciation lattice. To have a more realistic and relevant 
evaluation on a large corpus of real words, as opposed to a small set of pseudowords, 
we adopted the methodology of removing each word in turn from the lexicon and 
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deriving a pronunciation by analogy with the remaining words. In the terminology of 
machine learning, this is called leave-one-out or n-fold cross validation (Daelemans, 
van den Bosch, and Weijters 1997; van den Bosch 1997) where n is here the size of the 
dictionary. PbA has been used in this work to solve three string-mapping problems 
of importance in speech technology: letter-to-phoneme translation, phoneme-to-letter 
translation, and letter-to-stress conversion. 

4.1 Lexical Database 
The lexical database on which the analogy process is based is the 20,009 words of Web- 
ster's Pocket Dictionary (1974 edition), manually aligned by Sejnowski and Rosenberg 
(S&R) (1987) for training their NETtalk neural network. The database is publicly avail- 
able via the World Wide Web from URL: ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech 
/dictionaries/. It has data arranged in columns: 

aardvark a-rdvark 1 < < < >  2 < <  
aback xb@k- 0 > 1 < < 
abacus @bxkxs 1 < 0 > 0 < 
abaft xb@ft 0 > 1 < < 

etc. 

Here the second column is the pronunciation, expressed in the phoneme symbols listed 
in S&R's Appendix A, pp. 161-162. (In this paper, we retain the use of S&R's phonetic 
symbols rather than transliterating to the symbols recommended by the International 
Phonetic Association. We do so to maintain consistency with S&R's publicly available 
lexicon.) The phoneme inventory is of size 52, and has the advantage (for computer 
implementation) that all symbols are single characters from the ASCII set. The "-" 
symbol is the null phoneme, introduced to give a strict one-to-one alignment between 
letters and phonemes to satisfy the training requirements of NETtalk. The third column 
encodes the syllable boundaries for the words and their corresponding stress patterns. 
According to S&R (Appendix A): 

< denotes syllable boundary (right) 
> " syllable boundary (left) 
1 " primary stress 
2 " secondary stress 
0 " tertiary stress 

Stress is associated with vowel letters and arrows with consonants. The arrows point 
towards the stress nuclei and change direction at syllable boundaries. To this extent, 
"syllable boundary (right/left)" as above is a misnomer on the part of S&R: indeed, this 
information is not adequate by itself to place syllable boundaries, which we will denote 
"1". We can, however, infer four rules (or regular expressions) to identify syllable 
boundaries: 

RI: [<>] ~ [< I >l 
R2: [< digit] ~ [< I digit] 
R3: [digit >] ~ [digit[ >] 
R4: [digit digit] => [digit[digit] 

These have subsequently been confirmed as correct by Sejnowski and Rosenberg (per- 
sonal communications). 

Table 1 gives some examples of syllable boundaries and decoded "digit stress" 
patterns obtained using these rules (last row). By digit stress, we mean that the same 
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Table 1 
Examples of stress and syllabification patterns. 

Word abbreviate abecedarian actuarial 

Stress pattern 0 <> > 1 > 02 K K 2 > 0 > 0 > 1 K 00 K 2 K> 01 K 00 

Syllabification ab I bre I vi I ate a I be Ice I dar l il an ac I tu l ar l i I al 

Digit stress 0011111001222 2100100111110100 22 [0011110100 

stress-level code (one of 1, 2, or 0) is given to all letters--vowels and consonants--  
within a syllable. There are no " > "  or " < "  codes in the digit stress pattern. 

For letter-to-phoneme conversion, homonyms  (413 entries) and the two one-letter 
words i and o were removed from the original NETtalk corpus to leave 19,594 en- 
tries. (The one-letter word a is absent from Webster's dictionary.) We do not, of 
course, contest the importance of homonyms  in general. Here, however, we focus on 
the (sub)problem of pronouncing isolated word forms. The assumption is that there 
will be another, extended process in the future that handles sentence-level pronun- 
ciation. Excluding homonyms  keeps the problem tractable and means that we can 
have meaningful  scores. We did not want  the same spelling to have different "correct" 
pronunciations, otherwise we have to decide which to consider correct or accept any 
of them. How do we make this decision? (Indeed, this was one of the problems in 
scoring Glushko's pseudowords as pronounced by D&N's system.) To apply the anal- 
ogy method to phoneme-to-letter conversion, we have again used the NETtalk corpus. 
In this case, on the same logic as above, homophones  (463 entries) and one-phoneme 
pronunciations ( / A /  and / o /  in S&R's notation) were removed from this corpus. This 
left 19,544 pronunciations. Finally, we have used analogy to map letters to digit-stress 
patterns. 

4.2 Best Preliminary Results  
Preliminary results were obtained using a single scoring strategy in order to provide a 
baseline for comparison with the multistrategy approach to be described shortly. The 
best results (Table 2) for the three conversions--letter-to-phoneme, phoneme-to-letter, 
and letter-to-stress--were obtained by full pattern matching and using a weighted 
total product  (TP) scoring. The latter is similar to Damper and Eastmond's  TP score 
(Damper and Eastmond 1997), i.e., the sum of the product  of the arc frequencies for all 
shortest paths giving the same pronunciation. In this case, however, each contribution 
to the total product  is weighted by the number  of letters associated with each arc. 

Table 2 
Best single-strategy results (% correct) for the three conversion 
problems studied: letter-to-phoneme, phoneme-to-letter, and 
letter-to-stress. These were obtained by full pattern matching and 
using a weighted total product (TP) scoring. 

Letter-to-phoneme Phoneme-to-letter Letter-to-stress 

Words Letters Pronunciations Phonemes Words Letters 

61.7 91.6 74.4 94.6 54.6 75.0 
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The percentage of words in which both pronunciation and stress are correct was 
41.8%. By use of a very simple strategy for silence avoidance, the results for letter- 
to-phoneme conversion were marginally increased from 61.7% to 61.9% words correct 
and from 91.6% to 91.8% phonemes correct. The strategy adopted was simply to add 
a (null-labeled) arc in the case that there was no complete path through the pronunci- 
ation lattice, and a single break occurred between adjacent nodes. This corresponds to 
concatenation of two otherwise complete word fragments. These best results should 
be compared with 60.7% words correct and 91.2% phonemes correct, as previously 
obtained by Damper and Eastmond (1997, Table 2). 

5. Information Fusion in Computational Linguistics 

In the introduction, we stated that our multistrategy approach is a special case of 
information (or data) fusion. What precisely is this? According to Hall and Llinas 
(1997, 7-8): 

The most fundamental characterization o f . . .  fusion involves a hierar- 
chical transformation between observed ...  parameters (provided by 
multiple sources as input) and a decision or inference. 

In principle, "fusion provides significant advantages over single source data" in- 
cluding "the statistical advantage gained by combining same-source data (e.g., obtain- 
ing an improved est imate. . ,  via redundant observations)" (p. 6). However, dangers in- 
clude "the attempt to combine accurate (i.e., good) data with inaccurate or biased data, 
especially if the uncertainties or variances of the data are unknown" (p. 8). Methods 
of information fusion include "voting methods, Bayesian inference, Dempster-Shafer's 
method, generalized evidence processing theory, and various ad hoc techniques" (Hall 
1992, 135). 

Clearly, the above characterization is very wide ranging. Consequently, fusion has 
been applied to a wide variety of pattern recognition and decision theoretic problems--  
using a plethora of theories, techniques, and tools--including some applications in 
computational linguistics (e.g., Brill and Wu 1998; van Halteren, Zavrel, and Daelemans 
1998) and speech technology (e.g., Bowles and Damper 1989; Romary and Pierrel 1989). 
According to Abbott (1999, 290), "While the reasons [that] combining models works so 
well are not rigorously understood, there is ample evidence that improvements over 
single models are typical . . . .  A strong case can be made for combining models across 
algorithm families as a means of providing uncorrelated output estimates." Our purpose 
in this paper is to study and exploit such fusion by model (or strategy) combination 
as a way of achieving performance gains in PbA. 

6. Multiple Strategies for PbA 

We have experimented with five different scoring strategies, used singly and in combi- 
nation, in an attempt to improve the performance of PbA. The chosen strategies are by 
no means exhaustive, nor do we make any claim that they represent the "best" choices. 
Mostly, they were intuitively appealing measures that had different motivations, cho- 
sen in the hope that this would produce uncorrelated outputs (see quote from Abbott 
above). Also, in view of the remarks of Hall and Llinas about the potential dangers 
of fusion/combination, we chose deliberately to include some very simple strategies 
indeed, to see if they harmed performance. 
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L 0 N G E V I T Y 

vxti 

g v 

IcGg 

1 
Figure 2 
Example pronunciation lattice for the word longevity. For simplicity, only arcs contributing to 
the shortest (length-3) paths are shown and null arc labels are omitted. Phoneme symbols are 
those employed by Sejnowski and Rosenberg. 

In the following, full pattern matching has been used exclusively. 

6.1 Pronunciation Candidates 
Formally, the pronunciation lattice for a word can be seen as a set of N candidate 
pronunciations (corresponding to tied, shortest paths) with some features: 

ff.(Wi) = { C 1  . . . . .  Cj,..., CN} is the lattice for the word Wi with Cj~[1,N] 
denoting the candidates. 

Cj is a 3-tuple (Fj, Dj, Pj) where: 

Fj -- {fl . . . .  , fn } represents the set of arc frequencies along the 
jth candidate path (length n). 
Dj = {dl . . . . .  dk, . . . ,  dn} represents the "path structure," i.e., the 
difference of the position index (within the word) of the nodes 
at either end of the kth arc. 
Pj = {pl . . . . .  Pm,... ,Pl} is the set of pronunciation candidates 
with pm'S from the set of phonemes (52 in our case) and l is the 
length of the pronunciation. (Within the NETtalk corpus, 
primarily because of the use of the null phoneme, words and 
their pronunciations all have the same length). 

For example, for the pronunciation lattice given in Figure 2 for the word longevity, 
we have the six candidate pronunciations shown in Table 3, along with their arc fre- 
quencies and path structures. Of course, candidate pronunciations are not necessarily 
distinct: different shortest paths can obviously correspond to the same phoneme string. 
In this example, the correct pronunciation is that corresponding to Candidates 4 and 6. 

6.2 Combining Scores 
According to Hall and Llinas (1997, 8), "observational data may be combined or fused 
at a variety of levels." Since each of our strategies operates on the same basic data 
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Table 3 
Candidate pronunciations for the word longevity. The correct 
pronunciation is that corresponding to Candidates 4 and 6. 

Candidate Pronunciation Arc Frequencies Path Structure 

1 /lcGgEvxti/ {1,11, 2} {4,1, 5} 
2 /lcGg-vxti/ {1, 24, 22} {5,1, 4} 
3 /lcGg-vIti/ {1, 2, 2} {5, 2, 3} 
4 /lanJEvxti/ {2, 9, 2} {3, 2, 5} 
5 /lonJEvxti/ {1,9,2} {3,2,5} 
6 /lanJEvxti/ {2, 80, 2} {4,1, 5} 

structure--the pronunciation lattice---the most obvious kind of fusion, and that em- 
ployed here, is combination at the level of the final decision. In principle, fusion at this 
level is able to cope with the so-called common currency problem, whereby different 
sources of information produce incommensurate data of different types to which dif- 
ferent physical units of measurement apply. Suppose, for instance, that combination 
is by a weighted summation in which the weights are learned from the data: in this 
case, the weights act to emphasize some measures while de-emphasizing others. Here, 
we use the rank of a pronunciation among the competing candidates as the basis of a 
weighting, or common currency. 

From a computational point of view, the main idea is to attribute points to each 
candidate for each scoring strategy. The number of points given to a candidate for 
scoring strategy si is inversely related to its rank order on the basis of si. Thus, the 
total number of points (T) awarded for each strategy is: 

N 
T(N) = ~ , r - -  N(N + I) 2 (2) 

r = l  

where N is the number of candidate pronunciations (N = 6 in our longevity example, 
so that T(6) = 21). 

Let cand(Rs~) express the number of candidates that have the rank R for the scor- 
ing strategy si so that cand(Rs~) > 1 if there are ties, otherwise cand(Rs~) = 1. Then 
P(Cj, Rs~), the number of points awarded to the candidate Cj thanks to its rank on the 
basis of strategy si, is: 

Rsi +cand ( Rs i ) - 1 

y~ (N - i+1 )  

cand(Rsi) (3) 

Recently, Kittler et al. (1998) have considered the relative merits of several combi- 
nation rules for decision-level fusion from a theoretical and experimental perspective. 
The rules compared were sum, product, max, min, and majority. Of these, the sum 
and product rules generally performed best. In view of this, these are the rules used 
here. 

For the sum rule, the final score for a candidate pronunciation, FS(Cj), is simply 
taken as the sum of the different numbers of points won for each of the S strategies. 
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Since not all strategies are necessarily included: 

S 

FS(Cj) = ~ f~,P(Cj, Rs,) (4) 
i=1 

and for the product rule: 

S 

FS(Cj) = 1--I 6s,P(Cj, Rs,) + (1 - fs,) (5) 
i=1 

where 6si is the Kronecker delta, which is 1 if strategy si is included in the combined 
score and 0 otherwise. Finally, the pronunciation corresponding to the candidate that 
obtains the best final score is chosen. 

6.3 Scoring Strategies 
Five different strategies have been used in deriving an overall pronunciation. In the 
following, we list each strategy, define it, and give the result (in a table below the 
formal definition) of applying the strategy to the six candidate pronunciations of the 
example word longevity (Table 3). For each strategy, points are awarded as determined 
by Equation (3) and total 21 in accordance with Equation (2). 

Strategy 1 
This is the product of the arc frequencies (PF) along the shortest path. 

n 

P (cj) = 1-If, 
i=1 

The candidate scoring the maximum PF( ) value is given rank 1. 

Candidate II 1 I 2 J 3 ] 4 I 5 I 6 
Score, PF() 22 528 4 36 18 320 

Rank 4 1 6 3 5 2 
Points 3 6 1 4 2 5 

Strategy 2 
The standard deviation of the values associated with the path structure (SDPS). 

SDPS(Cj) = 

n 

~=l (di _ ~ ) 2  
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where 
n 

~ _  i=1 

n 

The candidate scoring the min imum SDPS() value is given rank 1. 

I Candidate L l l l  2 L 3 [ 4 [ 5 1 6  I 
Score, SDPS()  1.7 1.7 1.2 1.2 1.2 1.7 

Rank 4 4 1 1 1 4 
Points 2 2 5 5 5 2 

Strategy 3 
The frequency of the same pronunciat ion (FSP), i.e., the number  of occurrences of the 
same pronunciat ion within the (tied) shortest paths. 

FSP(Cj) = cand{Pj[Pj = Pk} 

with 

j • k and k ~ [1, N]. 

The candidate scoring the max imum FSP( ) value is given rank 1. 

Candidate II 1 [ 2 I 3 I 4 I 5 I 6 I 
Score, FSP( ) 1 1 1 2 1 2 

Rank 3 3 3 1 3 1 
Points 2.5 2.5 2.5 5.5 2.5 5.5 

Strategy 4 
The number  of different symbols  (NDS) be tween  a pronunciat ion candidate Cj and 
the other candidates. 

NDS(Cj) = ~(Pj,i, Pk,i) 
i=1 k= l  

where  6( ) is the Kronecker delta, which is 1 if pronunciat ions Pj and Pk differ in posi- 
tion i and is 0 otherwise. Table 4 illustrates the computat ion of NDS( ) for Candidate 1 
( / lcGgEvxti / ) .  

The candidate scoring the min imum NDS( ) value is given rank 1. 

Candidate II 1 I 2 I 3 I 4 I 5 I 6 ] 
Score, NDS( ) 12 14 18 13 14 13 

Rank 1 4 6 2 4 2 
Points 6 2.5 1 4.5 2.5 4.5 

Strategy 5 
Weak link (WL), i.e., the min imum of the arc frequencies. 

WL(Cj) = m/in0~ } i c [1, n] 
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T a b l e  4 
Illustration of the computation of NDS( ) for the candidate 
pronunciation/lcGgEvxti/ of longevity. Phonemes which are 
not equal to those of the target pronunciation are entered in 
bold. 

Candidate1 1 c G g E v x t i 

1 c G g - v x t i 
Other candidates 1 c G g - v I t i 
to be compared 1 a n J E v x t i 
with Candidate 1 1 o n J E v x t i 

1 a n J E v x t i 

Differences at position i 0 3 3 3 2 0 1 0 0 

Score, NDS( ) 12 

The candidate scoring the max imum WL( ) value is given rank 1. 

Candidate I] 1 I 2 I 3 I 4 ] 5 I 6 I 

Score, WL( ) 1 1 1 2 1 2 
Rank 3 3 3 1 3 1 
Points 2.5 2.5 2.5 5.5 2.5 5.5 

We now consider the results of using these five strategies for scoring the shortest 
paths both singly and combined in all possible combinations. 

7. R e s u l t s  

In this section, we first detail some characteristics of the shortest paths through the 
pronunciat ion lattices (since these affect the attainable performance)  before demon-  
strating that the combination strategy produces  statistically significant improvements .  
It is largely immaterial  if we use the sum or the product  rule. Finally, the distribution 
of errors for the best-performing combination of scores is analyzed in order  to set 
priorities for future research in improving PbA. 

7.1  C h a r a c t e r i s t i c s  o f  t h e  S h o r t e s t  P a t h s  

Since we are focusing in this work  on D&N's second heuristic (disambiguating tied 
shortest paths), it makes sense to investigate the limits set by  tacit acceptance of D&N's 
first heur is t ic - -which gives pr imacy to the shortest path. Table 5 shows some statistics 
related to the shortest paths for the three different conversion problems studied. 

The minimal percentage indicates the lower bound  on words-correct  performance 
that obtains when  the second heuristic is irrelevant, i.e., when  all the shortest paths 
through the lattice give the identical, correct pronunciation.  On the other hand,  the 
maximal percentage indicates the upper  bound  that obtains when  the second heuristic 
always chooses the correct candidate,  i.e., there is at least one correct pronuncia t ion 
among the shortest paths. Overall, these statistics indicate that there is considerable 
scope to improve the second heuristic, since the upper  bound  of 85.1% words  correct 
for let ter- to-phoneme conversion, for instance, is vastly superior  to our  previous best 
value of 61.9% and to the figure of 64.0% obtained by  Yvon (1996) on the same lexi- 
con using multiple unbounded  over lapping chunks as the nodes  of the pronuncia t ion 
lattice. They also suggest (in line with our  intuitions) that let ter- to-phoneme conver- 
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Table 5 
Statistics describing the occurrence of correct pronunciations among the shortest paths of 
the pronunciation lattices for all the words in the lexicon. 

Type of Minimal Maximal Mean Candidates Mean Good Candidates 
Conversion Percentage Percentage per Word per Word 

Letter-phoneme 15.3 85.1 7.9 2.2 
Phoneme-letter 31.0 89.1 5.9 2.3 
Letter-stress 11.6 78.2 7.5 2.0 

sion is harder  than phoneme-to-let ter  conversion, and that lexical stress assignment is 
harder  still. 

7.2 R e s u l t s  for D i f f e r e n t  C o m b i n a t i o n s  o f  Strategy  
We have obtained results for all possible combinations of the strategies, for each of the 
three mapp ing  problems. Since there are five strategies, the number  of combinations 
is (25 - 1) = 31. The various combinations are denoted  as a five-bit code where  1 at 
posit ion i indicates that strategy si was included in the combinat ion (i.e., 6si = 1 in 
Equations (4) and (5)) and a 0 indicates that it was not. Thus, as an example,  the code 
00100 indicates that Strategy 3 (FSP) was used alone. 

Table 6 gives an example of the use of the combinat ion 11010 and produc t  rule in 
deriving a pronuncia t ion for the word  longevity using the produc t  rule of combination. 
The points that contribute to the final score are shown in bold. Note that the winner  
(Candidate 4) gives the correct pronunciat ion in this case. When  the sum rule is used, 
the correct pronunciat ions (Candidates 4 and 6) tie with a final score of 13.5. 

Table 7 shows the results of let ter- to-phoneme conversion for the 31 possible com- 
binations of scoring strategy using both  the produc t  and sum rules. The average across 
the 31 combinations was 62.42% words  correct for the produc t  rule compared  to 62.30% 
for the sum rule. This difference is not  significant (on the basis of Equation (6) below). 
Since the product  rule gave numerical ly higher  values, however,  we continue to use 
it for the remainder  of this paper. 

Tables 8, 9, and 10 show the results obtained with all possible combinations of 
strategies for the three conversion problems using the produc t  rule. Consider  first 
the results for let ter- to-phoneme conversion (Table 8). The last two columns show the 
rank according to the number  of strategies included in the final score (Rank(C)) and 
the rank according to word  accuracy (Rank(W)). Let us hypothes ize  that these two 

Table 6 
Example of multistrategy scoring for the word longevity 
using the 11010 combination and product rule. 

Candidate PF SDPS FSP NDS WL FinalScore 
1 3 2 2.5 6 2.5 36 
2 6 2 2.5 2.5 2.5 30 
3 1 5 2.5 1 2.5 5 
4 4 5 5.5 4.5 5.5 90 
5 2 5 2.5 2.5 2.5 25 
6 5 2 5.5 4.5 5.5 45 

Winner: Candidate 4 (/lanJEvxti/) 
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Table 7 
Results of letter-to-phoneme conversion for the 31 possible combinations of 
scoring strategy using the product and sum rules. 

Product rule Sum rule 

Combination Words (%) Phonemes (%) Words (%) Phonemes (%) 

00001 57.7 90.8 57.7 90.5 
00010 61.3 91.7 61.3 91.7 
00011 63.3 92.1 63.2 92.1 
00100 63.0 91.7 63.0 91.7 
00101 65.3 92.2 65.1 92.2 
00110 63.2 91.9 63.1 91.9 
00111 64.9 92.2 65.0 92.3 
01000 48.2 88.4 48.2 88.4 
01001 56.7 90.4 57.0 90.5 
01010 61.5 91.7 61.5 91.7 
01011 63.2 92.0 63.1 91.0 
01100 62.7 91.6 62.8 91.6 
01101 64.7 92.1 64.6 92.1 
01110 63.0 91.9 63.0 91.9 
01111 64.7 92.2 64.9 92.2 
10000 59.2 91.0 59.2 91.0 
10001 59.0 91.2 59.1 91.2 
10010 63.6 92.1 63.6 92.1 
10011 63.6 92.2 63.4 92.1 
10100 65.2 92.2 65.1 92.2 
10101 65.3 92.3 64.9 92.2 
10110 64.8 92.2 64.8 92.3 
10111 65.4 92.4 65.4 92.4 
11000 58.6 91.1 58.6 91.1 
11001 59.0 91.2 59.2 91.2 
11010 63.6 92.2 63.6 92.2 
11011 63.4 92.2 63.2 92.1 
11100 65.4 92.3 65.3 92.3 
11101 64.9 92.3 64.7 92.2 
11110 65.2 92.3 65.1 92.3 
11111 65.5 92.4 65.5 92.4 

ranks are not positively correlated. That is, our null hypothesis  is that performance 
(in terms of word  accuracy) does not increase as more scoring strategies si for candi- 
date pronunciat ion Cj are included in the final score FS(Cj). However,  the Spearman 
rank correlation coefficient rs (Siegel 1956, 202-213) is computed  here as 0.6657, with 
degrees of f reedom df = (31 - 2) = 29. For df ~ 10, the significance of this result can 
be tested as: 

V~ df _4.8041 t = rs 1 - r 2 

This value is very highly significant (p ~ 0.0005, one-tailed test). Hence, we reject the 
null hypothesis  and conclude that performance improves as more scores are included 
in the combination. Note that this test is nonparametric,  and makes a m in imum of 
assumptions about  the da t a - -on ly  that they are ordinal and so can be meaningful ly 
ranked. 
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Table 8 
Results of letter-to-phoneme conversion for the 31 possible 
combinations of scoring strategy using the product rule. Rank(C) is 
the rank of the result according to the number of strategies (in the 
range 1 to 5) included in the final score. Rank(W) is the rank of the 
result according to word accuracy. The Spearman rank correlation 
coefficient rs is 0.6657, which is very highly significant. 

Combination Words (%) Phonemes (%) Rank(C) Rank(W) 

00001 57.7 90.8 29 29 
00010 61.3 91.7 29 24 
00011 63.3 92.1 21.5 17 
00100 63.0 91.7 29 20.5 
00101 65.3 92.2 21.5 4.5 
00110 63.2 91.9 21.5 18.5 
00111 64.9 92.2 11.5 8.5 
01000 48.2 88.4 29 31 
01001 56.7 90.4 21.5 30 
01010 61.5 91.7 21.5 23 
01011 63.2 92.0 11.5 18.5 
01100 62.7 91.6 21.5 22 
01101 64.7 92.1 11.5 11.5 
01110 63.0 91.9 11.5 20.5 
01111 64.7 92.2 4 11.5 
10000 59.2 91.0 29 25 
10001 59.0 91.2 21.5 26.5 
10010 63.6 92.1 21.5 14 
10011 63.6 92.2 11.5 14 
10100 65.2 92.2 21.5 6.5 
10101 65.3 92.3 11.5 4.5 
10110 64.8 92.2 11.5 10 
10111 65.4 92.4 11.5 2.5 
11000 58.6 91.1 21.5 28 
11001 59.0 91.2 11.5 26.5 
11010 63.6 92.2 11.5 14 
11011 63.4 92.2 4 16 
11100 65.4 92.3 11.5 2.5 
11101 64.9 92.3 4 8.5 
11110 65.2 92.3 4 6.5 
11111 65.5 92.4 1 1 

Having  shown that there is a very highly significant positive correlation between 
the number  of strategies deployed and the obtained word  accuracy, we next ask if 
the obtained improvement  is significant. (This is to take account of the possibility that 
the difference between two combination strategies ranked at positions i and (i + k) 
is not  significant.) To answer this, we note that only two outcomes are possible for 
the translation of each word:  either the pronunciat ion is correct or it is not. Thus, the 
sampling distribution of the word  accuracies listed in the second column of Table 8 
is binomial and, hence, we can use a binomial test (Siegel 1956, 36-42) to determine 
the significance of differences between them. Since the number  of trials (i.e., word  
translations) is very large (~20,000), we can use the normal  approximation to the 
binomial distribution. 

Let us first ask if the best letter-to-phoneme conversion result here (65.5% word  ac- 
curacy for combinat ion 11111) is significantly better than the previous best, prel iminary 
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value of 61.7%. The appropriate statistic is (Siegel 1956, 41): 

(x 4- 0.5) - NP 
z = (6) 

vFNPQ 

where N = 19, 594 words, P = 0.617, Q = (1 - P) = 0.383, x = 19, 594 x 0.655 and the 
+0.5 term (correction for the fact that the binomial distribution is discrete while the 
normal distribution is continuous) can be ignored, giving z = 10.9. The (one-tailed) 
probability that this value could have been obtained by chance is effectively zero (un- 
tabulated in Siegel's Table A [p. 247]). In fact, the critical value for the 1% significance 
level is z = 2.33, which equates to a word accuracy of approximately 64.7%. It follows 
that even the best single-strategy result (63.0% for combination 00100 using Strategy 3 
only) is significantly poorer than the multistrategy result using all five scoring strate- 
gies. 

Actually, given its simplicity, it is remarkable that Strategy 3 (frequency of the 
same pronunciation, FSP) used alone performs as well as it does. It was included 
partly to test the effect of including what were felt to be oversimplistic strategies! Yet 
it is superior to the previous best result of 61.7% using the weighted TP score, and 
the superiority is very highly significant (z = 3.7, p = 0.00011). In fact, for all three 
mapping problems, Strategies 1 (PF) and 3 are always implicated in results of rank 
less than 3, indicating their importance in obtaining high performance. 

Turning to phoneme-to-letter conversion (Table 9), the Spearman rank correlation 
coefficient was 0.6375, which again is very highly significant (t = 4.456, p KK 0.0005, 
df = 29, one-tailed test). Hence, as before, performance improves as more scoring 
strategies are deployed. The critical z value of 2.33 for the 1% significance level equates 
to a word accuracy of 74.7% relative to the best obtained word accuracy of 75.4% for 
combination 10101. Hence, the best result is significantly better than either the previous 
best value (74.4%) or the best single-strategy result (73.5% for combination 10000). 

For letter-to-stress conversion (Table 10), the Spearman rank correlation coefficient 
was 0.7411 (t = 5.944, p KK 0.0005, df = 29, one-tailed test) so that, once again, perfor- 
mance improves as more scoring strategies are deployed. The critical z value of 2.33 
for the 1% significance level equates to a word accuracy of 58.0% relative to the best 
obtained word accuracy of 58.8% for combination 11100. Hence, the best result is sig- 
nificantly better than either the previous best value (54.6%) or the best single-strategy 
result (53.4% for combination 00100). 

Finally, the percentage of words in which both pronunciation and stress are correct 
increases from 41.8% to 46.3%. 

7.3 Analysis of Errors 
Table 11 identifies the main sources of error for letter-to-phoneme conversion using 
the 11111 combination strategy. Table 11(a) indicates, in rank order, the 10 letters in 
the input that were most often mapped to an incorrect phoneme. The commonest 
problem is mispronunciation of letter e, which produces 21.2% of the total errors. To 
some extent, this is a natural consequence of the high frequency of this letter in English: 
as indicated in the Proportion column, letter e accounts for 11.0% of the total corpus. 
Even so, the ratio of errors to occurrences is almost 2, while it actually exceeds 2 for 
letters a and o. It is clear, as other workers have found, that the vowel letters are vastly 
more difficult to translate than are the consonant letters. 

Table 11(b) ranks the 10 commonest incorrect phonemes in the system's output. 
The schwa vowel accounts for 20.8% of errors in this case. Again, this partially reflects 
the extremely common occurrence of this phoneme. 
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Table 9 
Results of phoneme-to-letter conversion for the 31 possible 
combinations of scoring strategy using the product rule. Rank(C) is 
the rank of the result according to the number of strategies (in the 
range 1 to 5) included in the final score. Rank(W) is the rank of the 
result according to word accuracy. The Spearman rank correlation 
coefficient rs is 0.6375, which is very highly significant. 

Combinations Words (%) Phonemes (%) Rank(C) Rank(W) 

00001 69.1 93.6 29 29 
00010 71.6 94.2 29 27 
00011 73.3 94.4 21.5 18 
00100 72.2 94.2 29 22.5 
00101 74.0 94.5 21.5 13 
00110 72.3 94.2 21.5 21 
00111 73.9 94.5 11.5 14 
01000 61.6 92.1 29 31 
01001 68.2 93.4 21.5 30 
01010 71.5 94.1 21.5 28 
01011 73.1 94.4 11.5 19 
01100 72.0 94.1 21.5 24 
01101 73.7 94.4 11.5 15.5 
01110 72.2 94.2 11.5 22.5 
01111 73.7 94.4 4 15.5 
10000 73.5 94.4 29 17 
10001 72.7 94.3 21.5 20 
10010 74.3 94.6 21.5 10.5 
10011 74.7 94.7 11.5 8 
10100 75.1 94.7 21.5 2.5 
10101 75.4 94.7 11.5 1 
10110 74.8 94.6 11.5 6 
10111 75.1 94.7 4 2.5 
11000 71.7 94.0 21.5 26 
11001 71.8 94.1 11.5 25 
11010 74.3 94.6 11.5 10.5 
11011 74.2 94.5 4 12 
11100 75.0 94.6 11.5 4.5 
11101 74.7 94.6 4 8 
11110 74.7 94.6 4 8 
11111 75.0 94.7 1 4.5 

Finally, Table 11(c) shows the 10 phonemes  in the correct pronunciat ion that most  
often received a wrong  translation. These are the same 10 phonemes  as for Table 11(b), 
but  in slightly different rank order. Once more, it is clear that vowel  errors vastly 
ou tnumber  consonant  errors overall. The null phoneme is also problematic. 

This pattern of errors is very  close to that for the prel iminary results. We have 
exactly the same 10 main le t te rs /phonemes  responsible for errors in each column with 
only minor  changes in their rank order. These similarities suggest that these particular 
errors are persistent even s t ruc tura l - -and  will cause problems for other translation 
schemes as well as PbA. 

8. C o n c l u s i o n s  

We have extended previous work  in pronunciat ion by  analogy (PbA) principally by 
experimenting with multiple strategies for producing pronunciations. The combina- 
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Table 10 
Results of letter-to-stress conversion for the 31 possible combinations 
of scoring strategy using the product rule. Rank(C) is the rank of the 
result according to the number of strategies (in the range 1 to 5) 
included in the final score. Rank(W) is the rank of the result 
according to word accuracy. The Spearman rank correlation 
coefficient rs is 0.7411, which is very highly significant. 

Combinations Words (%) Phonemes (%) Rank(W) Rank(W) 

00001 52.7 74.9 29 26 
00010 49.2 74.4 29 30 
00011 53.6 75.7 21.5 23.5 
00100 53.4 73.9 29 25 
00101 57.7 76.3 21.5 4 
00110 53.8 74.8 21.5 21.5 
00111 56.2 75.9 11.5 11 
01000 39.4 67.5 29 31 
01001 52.2 74.4 21.5 27 
01010 50.5 74.5 21.5 29 
01011 53.9 75.8 11.5 20 
01100 53.8 74.2 21.5 21.5 
01101 57.1 76.1 11.5 7.5 
01110 54.2 75.0 11.5 18 
01111 56.2 75.9 4 11 
10000 51.6 73.7 29 28 
10001 54.1 75.3 21.5 19 
10010 53.6 75.4 11.5 23.5 
10011 55.2 76.0 21.5 14 
10100 57.4 75.9 21.5 6 
10101 58.2 76.6 11.5 3 
10110 56.2 75.8 11.5 11 
10111 57.1 76.3 4 7.5 
11000 54.5 75.9 21.5 17 
11001 54.6 76.1 11.5 16 
11010 55.0 76.3 11.5 15 
11011 55.8 76.7 4 13 
11100 58.8 77.0 11.5 1 
11101 58.6 77.2 4 2 
11110 57.0 76.4 4 9 
11111 57.5 76.7 1 5 

tion of different scoring strategies for the shortest  pa ths  in the pronuncia t ion  lat- 
tice has been shown  to deliver statistically significant improvements :  a best  result  of 
65.5% words  correct has been  obtained for le t ter- to-phoneme convers ion using approx-  
imately  20,000 manua l ly  al igned words  of Webster's Pocket Dictionary. This compares  
wi th  a figure of 63.0% for the bes t -per forming single-scoring s t rategy (frequency of 
the same pronunciat ion,  FSP) and 61.7% for our  best  pre l iminary  result. Examinat ion 
of the pronuncia t ion  lattices, however ,  reveals that  the u p p e r  bound  on pe r fo rmance  
of a me thod  based on selecting a m o n g  shortest  pa ths  is 85.1%, so that  there is scope 
for further  i m p r o v e m e n t  yet. 

The w a y  of combining  scores is s imply  by  s u m m a t i o n  or mult ipl icat ion of a points  
score awarded  on the basis of a pronuncia t ion ' s  rank. The p roduc t  rule of combinat ion  
is found to pe r fo rm  only ve ry  marginal ly  bet ter  than the sum rule: the difference is 
not  significant. We have  not  yet expended  m u c h  effort in de te rmin ing  exactly which  
scores should be used. To this end, a p re l iminary  analysis  of errors has been  done. This 
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Table 11 
Main factors responsible for errors in letter-to-phoneme mapping. 

(a) Letters most often mapped to an incorrect phoneme 

Letter Errors (%) Proportion (%) 

21.2 11.0 e 

a 20.9 9.0 
o 16.1 6.9 
i 14.1 8.8 
u 7.0 3.8 
r 3.8 7.5 
I 2.7 5.5 
s 2.7 5.3 
n 2.5 6.8 
t 1.8 7.7 

(b) Phonemes most commonly wrong in the output 

Phoneme Errors (%) Proportion (%) 

/ x /  20.8 8.0 
/ I /  9.6 5.0 
/ - /  7.7 14.7 
/ E /  7.5 2.5 
/@/ 7.2 2.8 
/ a /  5.4 1.9 
/ i /  4.8 3.0 
/ e /  4.1 1.8 
/ o /  3.5 1.5 
/ A /  3.0 1.1 

(c) Phonemes of the correct translation most commonly mispronounced 

Phoneme Errors (%) Proportion (%) 

/ x /  22.4 8.1 
/ - /  9.9 14.8 
/ I /  7.7 4.8 
/ a /  6.3 1.9 
/ E /  6.0 2.4 
/ i /  5.7 3.1 
/@/ 5.3 2.7 
/ e /  4.2 1.8 
/ o /  3.6 1.5 
/ A /  3.5 1.2 

reveals that  (in c o m m o n  wi th  other approaches  to let ter- to-sound conversion,  such as 
linguistic rules), the translat ion of vowel  letters is especially problematic.  Future work  
should  therefore a t t empt  to find scoring me thods  and  combinat ion  techniques that  
deal effectively wi th  the vowels.  

We have  also s tudied the related p rob lems  of m a p p i n g  p h o n e m e s  to letters and  
letters to lexical stress, which  are also impor tan t  in speech technology. Our  results 
show that  the former  p rob lem is easier than  le t ter - to-phoneme convers ion  while  the 
latter is h a r d e r - - a t  least, w h e n  at tacked by  the me thod  of analogy. Once again, how-  
ever, the mul t i s t ra tegy approach  has the potent ial  to del iver  significant pe r fo rmance  
gains. 
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