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Abstract

This paper describes our systems for IJC-
NLP 2017 Shared Task on Customer Feed-
back Analysis. We experimented with
simple neural architectures that gave com-
petitive performance on certain tasks. This
includes shallow CNN and Bi-Directional
LSTM architectures with Facebook’s Fast-
text as a baseline model. Our best
performing model was in the Top 5
systems using the Exact-Accuracy and
Micro-Average-F1 metrics for the Span-
ish (85.28% for both) and French (70%
and 73.17% respectively) task, and outper-
formed all the other models on comment
(87.28%) and meaningless (51.85%) tags
using Micro Average F1 by Tags metric for
the French task.

1 Introduction

Customer Feedback Analysis (CFA) aims to ana-
lyze the feedback given by customers to various
products/organizations. A primary component of
CFA is to identify what the feedback is discussing
so that further processing can be carried out ap-
propriately. This requirement serves as a moti-
vation for this shared task, which aims to clas-
sify user feedback in multiple languages into pre-
defined categories and automate the process using
machine learning methods for document classifi-
cation.

2 Related Work

Document Classification is a well-studied prob-
lem in the NLP community with applications
like sentiment analysis (Chen et al., 2016), lan-
guage identification (Lui and Baldwin, 2012),
email/document routing and even adverse drug re-
action classification (Huynh et al., 2016). How-

ever, the problem and various proposed solutions
are highly domain and use-case specific. State
of the art sentiment analysis models/architectures
that perform well for news articles fail to perform
well for Twitter sentiment analysis. Moreover, the
Twitter sentiment analysis models have to be re-
designed for tasks like target dependent sentiment
analysis (Vo and Zhang, 2015). This shows that
the type of models used for a particular domain
depends a lot on the data and the granularity of
the categories. Recent efforts (Kim, 2014; Zhang
et al., 2015; Conneau et al., 2016; Yang et al.,
2016; Joulin et al., 2016) show the applicability
of a single (generally neural) model over a vari-
ety of datasets, showing their capability to model
text classification tasks in a domain and language
agnostic way.

3 Task Description

The goal of the shared task is: Given customer
feedback in four languages (English, French,
Spanish and Japanese) the participants should de-
sign systems that can classify customer feedback
into pre-defined categories (comment, request,
bug, complaint, meaningless and undetermined).
Evaluation is done on per-language basis using a
variety of metrics.

3.1 Dataset
The contest organizers provided customer feed-
back data in four languages. The size of
train/dev/test samples for each of the sub task is
shown in Table 1. About 5% of the samples across
the data splits for English, French and Japanese
task have multiple labels, while each sample in
the Spanish task has only one label. For the
data samples with a single label, the distribution
was highly biased towards certain classes, with
the comment and complaint categories covering
80%-95% across all data splits for each sub-task.
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The contest organizers also provided a relatively
larger corpus of unlabeled data. While this could
be used in different ways like learning domain-
specific word embeddings, we exclude it in our
experiments.

Language Train Dev Test
English(en) 3066 501 501
Spanish(es) 1632 302 300
French(fr) 1951 401 401

Japanese(jp) 1527 251 301
Total 8176 1455 1503

Table 1: Number of Training Samples for each
sub-task

3.2 Evaluation

The contest organizers use 3 metrics to evaluate
the submitted systems

• Exact Accuracy: All tags should be pre-
dicted correctly.

• Micro-Average F1: As discussed in (Man-
ning et al., 2008), micro-average F1 gathers
document level decisions across classes, thus
giving more weight to large classes, which is
the case across all the sub-tasks

• Micro-Average by Tags: Label specific
micro-average F1.

4 Proposed Approach

Motivated by the success of a variety of architec-
tures for document classification task, we use mul-
tiple methods for the given challenge. We used a
recently released open source tool called Fasttext
as our baseline. In addition to that, we used a com-
monly used CNN architecture and multiple LSTM
based architectures. In this section we discuss var-
ious components of our systems.

4.1 Pre-processing

We used minimal text pre-processing by using in-
built tokenizer’s from TensorFlow (Abadi et al.,
2015) and Keras (Chollet et al., 2015) across all
our architectures. In addition to that, we applied
some elementary text cleaning to the English data
only, given our lack of understanding of other lan-
guages.

4.2 Models
4.2.1 fastText (OhioState-FastText)
Given its ease of use, we used the fastText (Joulin
et al., 2016) tool1 as our baseline model. At its
core, fastText is a linear model with a few neat
tricks to make the training fast and efficient. It
takes individual word representations and aver-
ages them to get the representation of the given
text. This representation is then passed through
a softmax to get class distribution. Training is
performed using Stochastic Gradient Descent to
minimize the negative log-likelihood over all the
classes. We used most of the default parameters as
in the original tool. We, however, found that the
model performs best on the dev set when the em-
bedding dimension is set to 200 and the model is
trained for 100 epochs. Since the size of training
data and number of training labels were small, we
used the softmax loss function (and not the hierar-
chical softmax and negative sampling methods) as
training time was not a constraint.

4.3 Convolution Neural Networks
(OhioState-CNN)

We also performed some basic experiments with
CNN’s given their applicability to text classifi-
cation (Kim, 2014; Zhang et al., 2015; Conneau
et al., 2016; Kalchbrenner et al., 2014) problems.
We used a simplified version of the architecture
from (Kim, 2014) as discussed here2. We set the
word embedding size to 100 and trained the archi-
tecture for 10 epochs (after which it starts overfit-
ting) . We used 128 filters of filter width 3,4 and
5 and added a dropout layer with retention prob-
ability of 0.5. We trained the model using Adam
(Kingma and Ba, 2014) and the sigmoid cross en-
tropy loss.

4.4 Bi-Directional LSTM
LSTM’s have been shown to be extremely effec-
tive for learning representations for text, not only
for sequence to sequence labeling tasks, but for
general classification tasks (Yang et al., 2016) as
well as language modeling (Li et al., 2015). We
use Keras’ ability to plug and play layers to exper-
iment with a couple of architectures.

• OhioState-biLSTM1 : A single layer Bi-
directional LSTM with an embedding layer

1We used the Python wrapper from pypi
2http://www.wildml.com/2015/12/implementing-a-cnn-

for-text-classification-in-tensorflow/
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Sub-Tasks
EN ES FR

Models EA MAF Both EA & MAF EA MAF
OhioState-FastText 63.4 65.36 82.94 68 70.49

OhioState-CNN 54.20 56.13 81.27 65 67.8
OhioState-biLSTM1 61.2 63.79 82.61 70 73.17
OhioState-biLSTM2 61.6 63.98 85.28 68.5 71.71
OhioState-biLSTM3 62.8 64.97 79.93 65 67.56

Table 2: Performance of Various Models for Exact Accuracy (EA) and Micro-Average F1 (MAF) score

ES FR
Both EA & MAF EA MAF

Plank-multilingual 88.63 Plank-monolingual 73.75 Plank-monolingual 76.59
Plank-monolingual 88.29 IITP-CNN-entrans 71.75 IITP-CNN-entrans 74.63

IIIT-H-biLSTM 86.29 Plank-multilingual 71.50 Plank-multilingual 74.39
IITP-RNN 85.62 OhioState-biLSTM1 70.00 OhioState-biLSTM1 73.17

OhioState-biLSTM2 85.28 IIIT-H-SVM 69.75 ADAPT-Run1 72.68

Table 3: Top-5 Performing systems for the Spanish and French Sub-Tasks

for the vocabulary and a dense layer with a
sigmoid activation for the class labels. We
also added a Dropout layer (with retention
probability of 0.3) after the LSTM layer.

• OhioState-biLSTM2 : We added a 1D Con-
volutional (with ReLU activation) and Max-
Pooling layer after the word embedding layer
which has shown to better represent n-gram
like characteristics in text.

• OhioState-biLSTM3 : We also added a
Batch Normalization layer after the Convo-
lution layer in the above architecture(though
it decreased the performance)

Note that we did not make use of any pre-
trained embeddings. We used the same training
parameters for the 3 Bi-LSTM variants discussed
above: Word embedding dimension, LSTM unit
size and Batch Size were set to 64. We used the
Adam (Kingma and Ba, 2014) optimizer with bi-
nary cross entropy loss.

A few points worth mentioning: While the
CNN and Bi-LSTM architectures were trained in
a multi-label setting, at prediction time, we only
predict the label with the maximum score. Also,
Japanese text in the corpus either has no or a sin-
gle space and thus tokenization is not effective.
So even though we achieve some (unconvincing)
results for the Japanese task, we do not consider
them as relevant to this sub-task which requires

more sub-word level treatment.

5 Results

We report the performance on 3 sub-tasks (leaving
out Japanese for reasons previously discussed) for
our models in Table 2 and comparison with sys-
tems designed by other teams in Table 3 using the
exact accuracy and micro-average F1 metric.

While there is a considerable difference be-
tween our best performing system and the top sys-
tems for the English sub-task, we obtain competi-
tive performance for the Spanish and French sub-
tasks. Moreover, our LSTM based models outper-
form other systems for comment and meaning-
less category when evaluated using Micro Aver-
age by Tags metric for the French sub-task with an
F-1 accuracy of 87.28% and 51.85% respectively.
However, as shown in Table 4, our neural mod-
els failed to generalize to the infrequent labels as
compared to a shallow model like fastText which
is an expected behavior.

6 Conclusion

We propose some simple but effective neural ar-
chitectures for customer feedback analysis. We
show the effectiveness of LSTM based models
for Text Classification in French and Spanish sub-
tasks without any prior information like heavy pre-
trained embeddings, thus making it easy to per-
form fast and effective hyper-parameter tuning and
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Task Comments Complaint Meaningless Bug Request
EN BiLSTM2 (77.8) BiLSTM1 (63.4) fastText (48.3) fastText (16.7) fastText (53.9)
FR BiLSTM2 (87.3) BiLSTM1 (57.4) BiLSTM1 (51.9) fastText (20) fastText (15.4)
ES BiLSTM2 (92.6) BiLSTM2 (68.9) 0 0 fastText (31.6)

Table 4: Our best performing models (F1) for each label of the English, French and Spanish sub-task
(Scores in bold perform best amongst all submitted systems)

architecture exploration.
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