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Abstract

We explore the application of a Deep
Structured Similarity Model (DSSM) to
ranking in lexical simplification. Our re-
sults show that the DSSM can effectively
capture fine-grained features to perform
semantic matching when ranking substitu-
tion candidates, outperforming the state-
of-the-art on two standard datasets used
for the task.

1 Introduction

Lexical simplification is the task of automatically
rewriting a text by substituting words or phrases
with simpler variants, while retaining its mean-
ing and grammaticality. The goal is to make the
text easier to understand for children, language
learners, people with cognitive disabilities and
even machines. Approaches to lexical simplifica-
tion generally follow a standard pipeline consist-
ing of two main steps: generation and ranking.
In the generation step, a set of possible substi-
tutions for the target word is commonly created
by querying semantic databases such as Word-
net (Devlin and Tait, 1998), learning substitution
rules from sentence-aligned parallel corpora of
complex-simple texts (Horn et al., 2014; Paetzold
and Specia, 2017), and learning word embeddings
from a large corpora to obtain similar words of
the complex word (Glavaš and Štajner, 2015; Kim
et al., 2016; Paetzold and Specia, 2016a, 2017). In
the ranking step, features that discriminate a sub-
stitution candidate from other substitution candi-
dates are leveraged and the candidates are ranked
with respect to their simplicity and contextual fit-
ness.

∗This research was conducted while the first author was
a Post Doctoral Fellow at the City University of Hong Kong.

The ranking step is challenging because the sub-
stitution candidates usually have similar meaning
to the target word, and thus share similar con-
text features. State-of-the-art approaches to rank-
ing in lexical simplification exploit supervised ma-
chine learning-based methods that rely mostly on
surface features, such as word frequency, word
length and n-gram probability, for training the
model (Horn et al., 2014; Bingel and Søgaard,
2016; Paetzold and Specia, 2016a, 2017). More-
over, deep architectures are not explored in these
models. Surface features and shallow architec-
tures might not be able to explore the features
at different levels of abstractions that capture nu-
ances that discriminate the candidates.

In this paper, we propose to use a Deep Struc-
tured Similarity Model (DSSM) (Huang et al.,
2013) to rank substitution candidates. The DSSM
exploits a deep architecture by using a deep neu-
ral network (DNN), that can effectively capture
contextual features to perform semantic match-
ing between two sentences. It has been success-
fully applied to several natural language process-
ing (NLP) tasks, such as machine translation (Gao
et al., 2014), web search ranking (Huang et al.,
2013; Shen et al., 2014; Liu et al., 2015), question
answering (Yih et al., 2014), and image captioning
(Fang et al., 2015). To the best of our knowledge,
this is the first time this model is applied to lex-
ical simplification. We adapt the original DSSM
architecture and objective function to our specific
task. Our evaluation on two standard datasets for
lexical simplification shows that this method out-
performs state-of-the-art approaches that use su-
pervised machine learning-based methods.

2 Method

2.1 Task Definition
We focus on the ranking step of the standard lexi-
cal simplification pipeline. Given a dataset of tar-
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get words, their sentential contexts and substitu-
tion candidates for the target words, the goal is to
train a model that accurately ranks the candidates
based on their simplicity and semantic matching.

For generating substitution candidates, we uti-
lize the method proposed by Paetzold and Spe-
cia (2017), which was recently shown to be
the state-of-art method for generating substitution
candidates. They exploit a hybrid substitution
generation approach where candidates are first ex-
tracted from 550,644 simple-complex aligned sen-
tences from the Newsela corpus (Xu et al., 2015).
Then, these candidates are complemented with
candidates generated with a retrofitted word em-
bedding model. The word embedding model is
retrofitted over WordNet’s synonym pairs (for de-
tails, please refer to Paetzold and Specia (2017)).

For ranking substitution candidates, we use a
DSSM, which we elaborate in the next section.

2.2 DSSM for Ranking Substitution
Candidates
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Figure 1: Architecture of the Deep Structured
Similarity Model (DSSM): The input X (either
a target word or a substitute candidate and their
sentential contexts, T and S, respectively) is first
represented as a bag of words, then hashed into
letter 3-grams H . Non-linear projection Wt gen-
erates the semantic representation of T and non-
linear projection W s constructs the semantic rep-
resentation of S. Finally, the cosine similarity is
adopted to measure the relevance between the T
and S. At last, the posterior probabilities over all
candidates are computed.

Compared to other latent semantic models, such
as Latent Semantic Analysis (Deerwester et al.,
1990) and its extensions, Deep Structured Simi-
larity Model (also called Deep Semantic Similar-
ity Model) or DSSM (Huang et al., 2013) can cap-

ture fine-grained local and global contextual fea-
tures more effectively. The DSSM is trained by
optimizing a similarity-driven objective, by pro-
jecting the whole sentence to a continuous seman-
tic space. In addition, it is is built upon characters
(rather than words) for scalability and generaliz-
ability (He, 2016). Figure 1 shows the architec-
ture of the model used in this work. It consists of
a typical DNN with a word hashing layer, a non-
linear projection layer, and an output layer. Each
component is described in the following:
Word Hashing Layer: the input is first mapped
from a high-dimentional one-hot word vector into
a low-dimentional letter-trigram space (with the
dimentionality as low as 5k), a method called word
hashing (Huang et al., 2013). For example, the
word cat is hashed as the bag of letter trigram #-c-
a, c-a-t, a-t-#, where # is a boundary symbol (Liu
et al., 2015). The word hashing helps the model
generalize better for out-of-vocabulary words and
for spelling variants of the same word (Liu et al.,
2015).
Nonlinear Projection Layer: This layers maps
the substitution candidate and the target word in
their sentential contexts, S and T respectively,
which are represented as letter tri-grams, into d-
dimension semantic representations, SSq and TSq

respectively:

l = tanh(Wx) (1)

where the nonlinear activation tanh is defined as:
tanh(z) = 1−e−2z

1+e−2z .
Output Layer: This layer computes the semantic
relevance score between S and T as:

R(T, S) = cosine(TSq , SSq) =
TSq

T
SSq∥∥TSq

∥∥∥∥SSq
∥∥
(2)

2.3 Features for DSSM

As baseline features, we use the same n-gram
probability features as in Paetzold and Specia
(2017), who also employ a neural network to
rank substitution candidates. As in Paetzold and
Specia (2017), the features were extracted us-
ing the SubIMDB corpus (Paetzold and Specia,
2015). We also experiment with additional fea-
tures that have been reported as useful in this
task. For each target word and a substitution
candidate word we also compute: cosine similar-
ity, word length, and alignment probability in the
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sentence-aligned Normal-Simple Wikipedia cor-
pus (Kauchak, 2013). The cosine similarity fea-
ture is computed using the SubIMDB corpus.

2.4 Implementation Details and Training
Procedure of the DSSM

Following previous works that used supervised
machine learning for ranking in lexical simplifi-
cation (Horn et al., 2014; Paetzold and Specia,
2017), we train the DSSM using the LexMTurk
dataset (Horn et al., 2014), which contains 500
instances composed of a sentence, a target word
and substitution candidates ranked by simplicity
(Paetzold and Specia, 2017). In order to learn the
parameters W t and W s (Figure 1) of the DSSM,
we use the standard backpropagation algorithm
(Rumelhart et al., 1988). The objective used in
this paper follows the pair-wise learning-to-rank
paradigm outlined in (Burges et al., 2005).

Given a target word and its sentential context
T , we obtain a list of candidates L. We set differ-
ent positive values to the candidates based on their
simplicity rankings. E.g., if the list of the candi-
dates is ordered by simplificity as, L = {A+ >
B+ > C+}, the labels are first constructed as
L = {yA+ = 3, yB+ = 2, yC+ = 1}. The val-
ues are then normalized by dividing by the max-
imum value in the list: L = {yA+ = 1, yB+ =
0.667, yC+ = 0.333}. If the target word was not
originally in L, we add it with label 0. This en-
ables the model to reflect the label information in
the similarity scores. We minimize the Bayesian
expected loss as:

∑L
l=1 `(Sl, T ), where `(Sl, T ) is

defined as:

−{yllnP (Sl|T )+(1−yl)ln(1−P (Sl|T ))} (3)

Note that P (Sl|T ) is computed as:

P (Sl|T ) =
exp(γR(Sl, T ))∑

Si∈L exp(γR(Si, T ))
(4)

here, γ is a tuning factor.
We used 5-cross validation approach to se-

lect hyper-parameters, such as number of hid-
den nodes. We set the gamma factor as 10 as
per Huang et al. (2013). The selected hyper-
parameters were used to train the model in the
whole LexMTurk dataset. We employ early-
stopping and select the model whose change of the
average loss in each epoch was smaller than 1.0e-
3. Since the training data is small (only 500 sam-
ples) we use a smaller number of hidden nodes,

d = 32, in the nonlinear projection layer and adopt
a higher dropout rate (0.4). The model is opti-
mized using Adam (Kingma and Ba, 2014) with
the learning rate fixed at 0.001, and is trained for
30 epochs. The mini-batch is set to 16 during
training.

3 Experiments

3.1 Datasets and Evaluation Metrics
To evaluate the proposed model, we conduct ex-
periments on two common datasets for lexical
simplification: BenchLS (Paetzold and Specia,
2016b), which contains 929 instances, and NN-
SEval (Paetzold and Specia, 2016a), which con-
tains 239 instances. Each instance is composed of
a sentence, a target word, and a set of gold candi-
dates ranked by simplicity (Paetzold and Specia,
2017). Since both datasets contain instances from
the LexMturk dataset (Horn et al., 2014), which
we use for training the DNN, we remove the over-
lap instances between training and test datasets 1.
We finally obtain 429 remaining instances in the
BenchLS dataset, and 78 instances in the NNEval
dataset, which are used in our evaluation.

We adopt the same evaluation metrics featured
in Glavaš and Štajner (2015) and Horn et al.
(2014): 1) precision: ratio of correct simplifica-
tions out of all the simplifications made by the sys-
tem; 2) accuracy: ratio of correct simplifications
out of all words that should have been simplified;
and 3) changed: ratio of target words changed by
the system.

3.2 Baselines
We compared the proposed model (DSSM Rank-
ing) to two state-of-the-art approaches to rank-
ing in lexical simplification that exploit supervised
machine learning-based methods. The first base-
line is the Neural Substitution Ranking (NSR) ap-
proach described in (Paetzold and Specia, 2017),
which employs a multi-layer perceptron neural
network. We reimplement their model as part
of the LEXenstein toolkit (Paetzold and Specia,
2015). The network has 3 hidden layers with
8 nodes each. Unlike the proposed model, they
treat ranking in lexical simplification as a stan-
dard classification problem. The second base-
line is SVMrank (Joachims, 2006) (linear kernel

1Running on the original test datasets leads our system to
obtain higher results than the ones reported here. Therefore,
in order to avoid bias, we removed the overlap instances from
both test datasets.
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Substitution Candidates Ranking Features BenchLS NNSEval
Prec. Acc. Changed Prec. Acc. Changed

NSR n-gram probs. 0.313 0.233 0.743 0.153 0.102 0.666
SVMrank n-gram probs. 0.354 0.261 0.736 0.166 0.102 0.615

DSSM Ranking n-gram probs. 0.337 0.284 0.841 0.216 0.166 0.769
DSSM Ranking all 0.375 0.319 0.850 0.306 0.243 0.794
Selection Step Features BenchLS NNSEval

+ Substitution Candidates Ranking Prec. Acc. Changed Prec. Acc. Changed
NSR n-gram probs. 0.304 0.214 0.703 0.204 0.102 0.500

SVMrank n-gram probs. 0.357 0.263 0.736 0.187 0.115 0.615
DSSM Ranking n-gram probs. 0.355 0.286 0.806 0.259 0.179 0.692
DSSM Ranking all 0.383 0.328 0.857 0.333 0.269 0.807

Table 1: Substitution candidates ranking results. n-gram probs. denotes the n-gram probability features
described in Paetzold and Specia (2017), and all denotes all features described in Section 2.3. All values
marked in bold are significantly higher compared to the best baseline, SVMrank, measured by t-test at
p-value of 0.05.

with default parameters) for ranking substitution
candidates, similar to the method described in
(Horn et al., 2014). All the three models employ
the n-gram probability features extracted from the
SubIMDB corpus (Paetzold and Specia, 2015), as
described in (Paetzold and Specia, 2017), and are
trained using the LexMTurk dataset.

3.3 Results

The top part of table 1 (Substitution Candidates
Ranking) summarizes the results of all three sys-
tems. Overall, both SVMrank and DSSM Ranking
outperform the NSR Baseline. The DSSM Rank-
ing performs comparably to SVMrank when using
only n-gram probabilities as features, and consis-
tently leverages all features described in Section
2.3, outperforming all systems in accuracy, pre-
cision and changed ratio. We experimented with
adding all features described in Section 2.3 to the
baselines as well, however, we obtained no im-
provements compared to using only n-gram prob-
ability features.

We also tried running all ranking systems on se-
lected candidates that best replace the target word
in the input sentence. We follow the Unsupervised
Boundary Ranking Substitution Selection method
described in Paetzold and Specia (2017), which
ranks candidates according to how well they fit the
context of the target word, and discards 50% of
the worst ranking candidates. The bottom part of
the table 1 (Selection Step + Substitution Candi-
dates Ranking) summarizes the results of all rank-
ing systems after performing the selection step on
generated substitution candidates. We obtain sim-
ilar tendency in the results, with the DSSM Rank-
ing outperforming both baselines. The results in-
dicate the advantage of using a deep architecture,

and of building a semantic representation of the
whole sentence on top of the characters. To il-
lustrate by examples, Table 2 lists the top can-
didate ranked by the systems for different input
sentences. In the examples, the DSSM Ranking
correctly ranked a substitute for the target word,
while the two baselines either left the target word
unchanged, or ranked an incorrect substitute.

Input = ”things continued on an informal, personal ba-
sis, by phone, I [ remained ] close friends with two of
them, but Izzat al Gazawi died last year.”
NSR informal
SVMrank cozy
DSSM Ranking casual
Input = ”perhaps the effect of West Nile Virus is suf-
ficient to extinguish endemic birds already severely
stressed by habitat losses.”
NSR severely
SVMrank severely
DSSM Ranking seriously

Table 2: Top candidate ranked by the systems
for different input sentences. The word in bold is
the word to be simplified. The word highlighted
denotes a correct answer.
4 Conclusions

We presented an effective method for ranking in
lexical simplification. We explored the application
of a DSSM that builds a semantic representation
of the whole sentence on top of characters. The
DSSM can effectively capture fine-grained fea-
tures to perform semantic matching when ranking
substitution candidates, outperforming state-of-art
approaches that use supervised machine learning
to ranking in lexical simplification. For future
work, we plan to examine and incorporate a larger
feature set to the DSSM, as well as try other
DSSM architectures, such as the Convolutional
DSSM (C-DSSM) (Shen et al., 2014).
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