
Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 366–372,
Taipei, Taiwan, November 27 – December 1, 2017 c©2017 AFNLP

Grammatical Error Correction with Neural Reinforcement Learning

Keisuke Sakaguchi† and Matt Post‡ and Benjamin Van Durme†‡
†Center for Language and Speech Processing, Johns Hopkins University

‡Human Language Technology Center of Excellence, Johns Hopkins University
{keisuke,post,vandurme}@cs.jhu.edu

Abstract

We propose a neural encoder-decoder
model with reinforcement learning (NRL)
for grammatical error correction (GEC).
Unlike conventional maximum likelihood
estimation (MLE), the model directly opti-
mizes towards an objective that considers
a sentence-level, task-specific evaluation
metric, avoiding the exposure bias issue in
MLE. We demonstrate that NRL outper-
forms MLE both in human and automated
evaluation metrics, achieving the state-of-
the-art on a fluency-oriented GEC corpus.

1 Introduction

Research in automated Grammatical Error Correc-
tion (GEC) has expanded from token-level, closed
class corrections (e.g., determiners, prepositions,
verb forms) to phrase-level, open class issues that
consider fluency (e.g., content word choice, id-
iomatic collocation, word order, etc.).

The expanded goals of GEC have led to new
proposed models deriving from techniques in
data-driven machine translation, including phrase-
based MT (PBMT) (Felice et al., 2014; Chollam-
patt et al., 2016; Junczys-Dowmunt and Grund-
kiewicz, 2016) and neural encoder-decoder mod-
els (Yuan and Briscoe, 2016). Napoles et al.
(2017) recently showed that a neural encoder-
decoder can outperform PBMT on a fluency-
oriented GEC data and metric.

We investigate training methodologies in the
neural encoder-decoder for GEC. To train the neu-
ral encoder-decoder models, maximum likelihood
estimation (MLE) has been used, where the ob-
jective is to maximize the (log) likelihood of the
parameters for a given training data.

As Ranzato et al. (2015) indicates, however,
MLE has drawbacks. The MLE objective is based

Algorithm 1: Reinforcement learning for neu-
ral encoder-decoder model.
Input: Pairs of source (X) and target (Y )
Output: Model parameter θ̂

1 initialize(θ̂)
2 for (x, y) ∈ (X,Y ) do
3 (ŷ1, ...ŷk), (p(ŷ1), ...p(ŷk)) = sample(x, k, θ̂)
4 p(ŷ) = normalize(p(ŷ))
5 r̄(ŷ) = 0 // expected reward

6 for ŷi ∈ ŷ do
7 r̄(ŷ)+ = p(ŷi) · score(ŷi, y)
8 backprop(θ̂, r̄) // policy gradient ∂

∂θ̂

9 return θ̂

on word-level accuracy against the reference, and
the model is not exposed to the predicted out-
put during training (exposure bias). This becomes
problematic, because once the model fails to pre-
dict a correct word, it falls off the right track and
does not come back to it easily.

To address the issues, we employ a neural
encoder-decoder GEC model with a reinforcement
learning approach in which we directly optimize
the model toward our final objective (i.e., evalua-
tion metric). The objective of the neural reinforce-
ment learning model (NRL) is to maximize the ex-
pected reward on the training data. The model up-
dates the parameters through back-propagation ac-
cording to the reward from predicted outputs. The
high-level description of the training procedure is
shown in Algorithm 1, and more details are elab-
orated in §2. To our knowledge, this is the first
attempt to employ reinforcement learning for di-
rectly optimizing the encoder-decoder model for
GEC task.

We run GEC experiments on a fluency-oriented
GEC corpus (§3), demonstrating that NRL outper-
forms the MLE baseline both in human and auto-
mated evaluation metrics.

366



2 Model and Optimization

We use the attentional neural encoder-decoder
model (Bahdanau et al., 2014) as a basis for both
NRL and MLE. The model takes (possibly un-
grammatical) source sentences x ∈ X as an in-
put, and predicts grammatical and fluent output
sentences y ∈ Y according to the model param-
eter θ. The model consists of two sub-modules,
encoder and decoder. The encoder transforms x
into a sequence of vector representations (hidden
states) using a bidirectional gated recurrent neural
network (GRU) (Chung et al., 2014). The decoder
predicts a word yt at a time, using previous token
yt−1 and linear combination of encoder informa-
tion as attention.

2.1 Maximum Likelihood Estimation
Maximum Likelihood Estimation training (MLE)
is a standard optimization method for encoder-
decoder models. In MLE, the objective is to maxi-
mize the log likelihood of the correct sequence for
a given sequence for the entire training data.

L(θ) =
∑
〈X,Y 〉

T∑
t=1

log p(yt|x, yt−1
1 ; θ) (1)

The gradient of L(θ) is as follows:

∂L(θ)
∂θ

=
∑
〈X,Y 〉

T∑
t=1

∇p(yt|x, yt−1
1 ; θ)

p(yt|x, yt−1
1 ; θ)

(2)

One drawback of MLE is the exposure bias
(Ranzato et al., 2015). The decoder predicts a
word conditioned on the correct word sequence
(yt−1

1 ) during training, whereas it does with the
predicted word sequence (ŷt−1

1 ) at test time.
Namely, the model is not exposed to the predicted
words in training time. This is problematic, be-
cause once the model fails to predict a correct
word at test time, it falls off the right track and
does not come back to it easily. Furthermore, in
most sentence generation tasks, the MLE objec-
tive does not necessarily correlate with our final
evaluation metrics, such as BLEU (Papineni et al.,
2002) in machine translation and ROUGE (Lin,
2004) in summarization. This is because MLE op-
timizes word level predictions at each time step
instead of evaluating sentences as a whole.

GEC is no exception. It depends on sentence-
level evaluation that considers grammaticality and
fluency. For this purpose, it is natural to use GLEU
(Napoles et al., 2015), which has been used as a

fluency-oriented GEC metric. We explain more
details of this metric in §2.3.

2.2 Neural Reinforcement Learning
To address the issues in MLE, we directly op-
timize the neural encoder-decoder model toward
our final objective for GEC using reinforcement
learning. In reinforcement learning, agents aim to
maximize expected rewards by taking actions and
updating the policy under a given state. In the neu-
ral encoder-decoder model, we treat the encoder-
decoder as an agent which predicts a word from
a fixed vocabulary at each time step (the action),
given the hidden states of the neural encoder-
decoder representation. The key difference from
MLE is that the reward is not restricted to token-
level accuracy. Namely, any arbitrary metric is ap-
plicable as the reward.1

Since we use GLEU as the final evaluation met-
ric, the objective of NRL is to maximize the ex-
pected GLEU by learning the model parameter.

J(θ) = E[r(ŷ, y)]

=
∑

ŷ∈S(x)

p(ŷ|x; θ)r(ŷ, y) (3)

where S(x) is a sampling function that produces k
samples ŷ1, ...ŷk, p(ŷ|x; θ) is a probability of the
output sentence, and r(ŷ, y) is the reward for ŷk
given a reference set y. As described in Algorithm
1, given a pair of source sentence and the reference
(x, y), NRL takes k sample outputs ŷ1, ... ŷk and
their probabilities p(ŷ1), ... p(ŷk) (line 3).2 Then,
the expected reward is computed by multiplying
the probability and metric score for each sample
ŷi (line 7).

In the encoder-decoder model, the parameters
θ are updated through back-propagation and the
number of parameter updates is determined by the
partial derivative of J(θ), called the policy gradi-
ent (Williams, 1992; Sutton et al., 1999) in rein-
forcement learning:

∂J(θ)
∂θ

= αE [∇ log p(ŷ){r(ŷ, y)− b}] (4)

where α is a learning rate and b is an arbitrary
baseline reward to reduce the variance. The sam-
ple mean reward is often used for b (Williams,
1992), and we follow it in NRL.

It is reasonable to compare NRL to minimum
risk training (MRT) (Shen et al., 2016). In fact,

1The reward is given at the end of the decoder output (i.e.,
delayed reward).

2We sampled sentences from softmax distribution.

367



mean chars # sents.
Corpus # sents. per sent. edited
NUCLE 57k 115 38%
FCE 34k 74 62%
Lang-8 1M 56 35%

Table 1: Statistics of training corpora

NRL with a negative expected reward can be re-
garded as MRT. The gradient of MRT objective is
a special case of policy gradient in NRL. We show
mathematical details about the relevance between
NRL and MRT in the supplemental material (Ap-
pendix A).

2.3 Reward in Grammatical Error
Correction

To capture fluency as well as grammaticality in
evaluation on such references, we use GLEU as
the reward. We have shown GLEU to be more
strongly preferred than other GEC metrics by na-
tive speakers (Sakaguchi et al., 2016). Similar to
BLEU in machine translation, GLEU computes
n-gram precision between the system hypothesis
(H) and the reference (R). In GLEU, however, n-
grams in source (S) are also considered. The pre-
cision is penalized when the n-gram inH overlaps
with the source and not with the reference.

GLEU = BP · exp

(
4∑

n=1

1
n

log p′n

)

p′n =
N(H,R)− [N(H,S)−N(H,S,R)]

N(H)

BP =

{
1 if h > r

exp(1− r/h) if h ≤ r
whereN(A,B,C, ...) is the number of overlapped
n-grams among the sets, and BP brevity penalty
is compute based on token length in the system
hypothesis (h) and the reference (r).

3 Experiments

Data For training the models (MLE and NRL),
we use the following corpora: the NUS Cor-
pus of Learner English (NUCLE) (Dahlmeier
et al., 2013), the Cambridge Learner Corpus First
Certificate English (FCE) (Yannakoudakis et al.,
2011), and the Lang-8 Corpus of learner English
(Tajiri et al., 2012). The basic statistics are shown
in Table 1.3 We exclude some unreasonable edits
(comments by editors, incomplete sentences such

3All the datasets are publicly available, for purposes of
reproducibility. For more details about each dataset, refer to
Sakaguchi et al. (2017).

Models Methods # sents. (corpora)
CAMB14 Hybrid 155k

(rule + PBMT) (NUCLE, FCE, in-house)
AMU PBMT + 2.3M

GEC-feat. (NUCLE, Lang8)
NUS PBMT + 2.1M

Neural feat. (NUCLE, Lang8)
CAMB16 enc-dec (MLE) + 1.96M

unk alignment (non-public CLC)
MLE/NRL enc-dec 720k

(MLE/NRL) (NUCLE, Lang8, FCE)

Table 2: Summary of baselines, MLE and NRL models.

as URLs, etc.) using regular expressions and set-
ting a maximum token edit distance within 50% of
the original length. We also ignore sentences that
are longer than 50 tokens or sentences where more
than 5% of tokens are out-of-vocabulary (the vo-
cabulary size is 35k). In total, we use 720k pairs
of sentences for training (21k from NUCLE, 32k
from FCE, and 667k from Lang-8). Spelling er-
rors are corrected in preprocessing with the En-
chant open-source spell checking library.4

Hyperparameters For both MLE and NRL, we
set the vocabulary size to be 35k for both source
and target. Words are represented by a vector with
512 dimensions. Maximum output token length is
50. The size of hidden layer units is 1,000. Gra-
dients are clipped at 1, and beam size during de-
coding is 5. We regularize the GRU layer with a
dropout probability of 0.2.

For MLE we use mini-batches of size 40, and
the ADAM optimizer with a learning rate of 10−4.
We train the encoder-decoder with MLE for 900k
updates, selecting the best model according to the
development set evaluation.

For NRL we set the sample size to be 20. We
use the SGD optimizer with a learning rate of
10−4. For the baseline reward, we use aver-
age of sampled reward following Williams (1992).
The sentence GLEU score is used as the reward
r(ŷ, y). Following a similar (but not the same)
strategy of the Mixed Incremental Cross-Entropy
Reinforce (MIXER) algorithm (Ranzato et al.,
2015), we initialize the model by MLE for 600k
updates, followed by another 600k updates using
NRL, and select the best model according to the
development set evaluation. Our NRL is imple-
mented by extending the Nematus toolkit (Sen-
nrich et al., 2017).5

4https://github.com/AbiWord/enchant
5NRL code is available at https://github.com/

keisks/nematus/tree/nrl-gleu

368



dev set test set
Models Human GLEU Human GLEU
Original -1.072 38.21 -0.760 40.54
AMU -0.405 41.74 -0.168 44.85
CAMB14 -0.160 42.81 -0.225 46.04
NUS -0.131 46.27 -0.249 50.13
CAMB16 -0.117 47.20 -0.164 52.05
MLE -0.052 48.24 -0.110 52.75
NRL 0.169 49.82 0.111 53.98
Reference 1.769 55.26 1.565 62.37

Table 3: Human (TrueSkill) and GLEU evaluation of system
outputs on the development and test set.

Baselines In addition to our MLE baseline, we
compare four leading GEC systems. All the sys-
tems are based on SMT, but they take different
approaches. The first model, proposed by Felice
et al. (2014), uses a combination of a rule-based
system and PBMT with language model reranking
(referring as CAMB14). Junczys-Dowmunt and
Grundkiewicz (2016) proposed a PBMT model
that incorporates linguistic and GEC-oriented
sparse features (AMU). Another PBMT model,
proposed by Chollampatt et al. (2016), is inte-
grated with neural contextual features (NUS). Fi-
nally, Yuan and Briscoe (2016) proposed a neu-
ral encoder-decoder model with MLE training
(CAMB16). This model is similar to our MLE
model, but CAMB16 additionally trains an unsu-
pervised alignment model to handle spelling er-
rors as well as unknown words, and it uses 1.96M
sentence pairs extracted from the non-public Cam-
bridge Learner Corpus (CLC). The summary of
baselines is shown in Table 2.6

Evaluation For evaluation, we use the JFLEG
corpus (Heilman et al., 2014; Napoles et al., 2017),
which consists of 1501 sentences (754: dev, 747:
test) with four fluency-oriented references.

In addition to the automated metric (GLEU), we
run a human evaluation using Amazon Mechani-
cal Turk (MTurk). We randomly select 200 sen-
tences each from the dev and test set. For each
sentence, two turkers are repeatedly asked to rank
five systems randomly selected from all eight: the
four baseline models, MLE, NRL, one randomly
selected human correction, and the original sen-
tence. We infer the evaluation scores by compar-
ing pairwise rankings with the TrueSkill algorithm
(Herbrich et al., 2006; Sakaguchi et al., 2014).

6The four baselines are not tuned toward the same dev set
as MLE and NRL. Also, they use different training set (Table
2). We compare them just for reference.

Models Precision Recall M2 (F0.5)
AMU 69.95 18.81 45.32
CAMB14 65.09 22.84 47.51
NUS 69.59 29.19 54.50
CAMB16 64.35 32.26 53.67
MLE 66.00 34.62 55.87
NRL 65.93 37.28 57.15

Table 4: M2 (F0.5) scores on the dev set.

Models Precision Recall M2 (F0.5)
AMU 69.39 20.79 47.29
CAMB14 63.52 23.44 47.33
NUS 68.08 32.30 55.73
CAMB16 65.66 35.93 56.34
MLE 65.19 37.66 56.88
NRL 65.80 40.96 58.68

Table 5: M2 (F0.5) scores on the test set.

NRL > MLE NRL = MLE NRL < MLE
Dev 33% 45% 22%
Test 30% 57% 13%

Table 6: Ratio of pairwise (preference) judgments between
NRL and MLE. NRL >MLE: NRL correction is preferred
over MLE. NRL <MLE: MLE is preferred over NRL. NRL
=MLE: NRL and MLE are tied.

Results Table 3 shows the human evaluation by
TrueSkill and automated metric (GLEU). In both
dev and test set, NRL outperforms MLE and other
baselines in both the human and automatic evalua-
tions. Human evaluation and GLEU scores corre-
late highly, corroborating the reliability of GLEU.
With respect to inter-annotator agreement, Spear-
man’s rank correlation between Turkers is 55.6 for
the dev set and 49.2 for the test set. The correla-
tions are sufficiently high to show the agreement
between Turkers, considering the low chance level
(i.e., ranking five randomly selected systems con-
sistently between two Turkers).

Table 4 and 5 show the M2 (F0.5) scores
(Dahlmeier and Ng, 2012), which compute
phrase-level edits between the system hypothe-
sis and source and compare them with the ora-
cle edits. Although this metric has several draw-
backs such as underestimation of system perfor-
mance and indiscrimination between “no change”
and “wrong edits” (Felice et al., 2014), we see that
the correlation between the M2 scores and human
evaluation is still high in the result.

Finally, Table 6 shows the percentages of pref-
erence in the pairwise comparisons between NRL
and MLE. In both the dev and test sets, around
30% of NRL corrections are preferred over MLE
and approximately 50% are tied.

369



Orig. but found that successful people use the people money and use there idea for a way to success .
Ref. But it was found that successful people use other people ’s money and use their ideas as a way to success .
MLE But found that successful people use the people money and use it for a way to success .
NRL But found that successful people use the people ’s money and use their idea for a way to success .

Orig. Fish firming uses the lots of special products such as fish meal .
Ref. Fish firming uses a lot of special products such as fish meal .
MLE Fish contains a lot of special products such as fish meals .
NRL Fish shops use the lots of special products such as fish meal .

Table 7: Example outputs by MLE and NRL

Analysis Table 7 presents example outputs from
MLE and NRL. In the first example, both MLE
and NRL successfully corrected the homophone
error (there vs. their), but MLE changed the mean-
ing of the original sentence by replacing their idea
to it. Meanwhile, NRL made the sentence more
grammatical by adding a possessive ’s. The sec-
ond example demonstrates challenging issues for
future work in GEC. The correction by MLE looks
fairly fluent as well as grammatical, but it is se-
mantically nonsense. The correction by NRL is
also fairly fluent and makes sense, but the meaning
has been changed too much. For further improve-
ment, better GEC models that are aware of the
context or possess world knowledge are needed.

4 Conclusions
We have presented a neural encoder-decoder
model with reinforcement learning for GEC. To
alleviate the MLE issues (exposure bias and token-
level optimization), NRL learns the policy (model
parameters) by directly optimizing toward the fi-
nal objective by treating the final objective as
the reward for the encoder-decoder agent. Using
a GEC-specific metric, GLEU, we have demon-
strated that NRL outperforms the MLE baseline
on the fluency-oriented GEC corpus both in hu-
man and automated evaluation metrics. As a sup-
plement, we have explained the relevance between
minimum risk training (MRT) and NRL, claiming
that MRT is a special case of NRL.

Acknowledgments

This work was supported in part by the JHU Hu-
man Language Technology Center of Excellence
(HLTCOE), and DARPA LORELEI. The U.S.
Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes. The
views and conclusions contained in this publica-
tion are those of the authors and should not be
interpreted as representing official policies or en-
dorsements of DARPA or the U.S. Government.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv:1409.0473.

Shamil Chollampatt, Duc Tam Hoang, and Hwee Tou
Ng. 2016. Adapting grammatical error correction
based on the native language of writers with neural
network joint models. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1901–1911, Austin, Texas.
Association for Computational Linguistics.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv:1412.3555.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
568–572, Montréal, Canada. Association for Com-
putational Linguistics.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner
english: The NUS Corpus of Learner English. In
Proceedings of the Eighth Workshop on Innova-
tive Use of NLP for Building Educational Applica-
tions, pages 22–31, Atlanta, Georgia. Association
for Computational Linguistics.

Mariano Felice, Zheng Yuan, Øistein E. Andersen, He-
len Yannakoudakis, and Ekaterina Kochmar. 2014.
Grammatical error correction using hybrid systems
and type filtering. In Proceedings of the Eigh-
teenth Conference on Computational Natural Lan-
guage Learning: Shared Task, pages 15–24, Bal-
timore, Maryland. Association for Computational
Linguistics.

Michael Heilman, Aoife Cahill, Nitin Madnani,
Melissa Lopez, Matthew Mulholland, and Joel
Tetreault. 2014. Predicting grammaticality on an
ordinal scale. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics, pages 174–180, Baltimore, Maryland. As-
sociation for Computational Linguistics.

Ralf Herbrich, Tom Minka, and Thore Graepel. 2006.
TrueSkillTM: A Bayesian skill rating system. In

370



Proceedings of the Twentieth Annual Conference on
Neural Information Processing Systems, pages 569–
576, Vancouver, British Columbia, Canada. MIT
Press.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2016. Phrase-based machine translation is state-of-
the-art for automatic grammatical error correction.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1546–1556, Austin, Texas. Association for Compu-
tational Linguistics.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out: Proceedings of the ACL-04 Work-
shop, pages 74–81, Barcelona, Spain. Association
for Computational Linguistics.

Courtney Napoles, Keisuke Sakaguchi, Matt Post, and
Joel Tetreault. 2015. Ground truth for grammati-
cal error correction metrics. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing, pages
588–593, Beijing, China. Association for Computa-
tional Linguistics.

Courtney Napoles, Keisuke Sakaguchi, and Joel
Tetreault. 2017. JFLEG: A fluency corpus and
benchmark for grammatical error correction. In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 229–234, Valencia, Spain. Associa-
tion for Computational Linguistics.

Franz Josef Och. 2003. Minimum error rate train-
ing in statistical machine translation. In Proceed-
ings of the 41st Annual Meeting of the Association
for Computational Linguistics, pages 160–167, Sap-
poro, Japan. Association for Computational Linguis-
tics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania. Association for Computational Lin-
guistics.

Marc’Aurelio Ranzato, Sumit Chopra, Michael
Auli, and Wojciech Zaremba. 2015. Sequence
level training with recurrent neural networks.
arXiv:1511.06732.

Keisuke Sakaguchi, Courtney Napoles, Matt Post, and
Joel Tetreault. 2016. Reassessing the goals of gram-
matical error correction: Fluency instead of gram-
maticality. Transactions of the Association for Com-
putational Linguistics, 4:169–182.

Keisuke Sakaguchi, Courtney Napoles, and Joel
Tetreault. 2017. GEC into the future: Where are
we going and how do we get there? In Proceed-
ings of the 12th Workshop on Innovative Use of NLP

for Building Educational Applications, pages 180–
187, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Keisuke Sakaguchi, Matt Post, and Benjamin
Van Durme. 2014. Efficient elicitation of annota-
tions for human evaluation of machine translation.
In Proceedings of the Ninth Workshop on Statistical
Machine Translation, pages 1–11, Baltimore, Mary-
land. Association for Computational Linguistics.

Rico Sennrich, Orhan Firat, Kyunghyun Cho, Alexan-
dra Birch, Barry Haddow, Julian Hitschler, Marcin
Junczys-Dowmunt, Samuel Läubli, Antonio Valerio
Miceli Barone, Jozef Mokry, and Maria Nadejde.
2017. Nematus: a toolkit for neural machine trans-
lation. In Proceedings of the Software Demonstra-
tions of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 65–68, Valencia, Spain. Association for Com-
putational Linguistics.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Minimum
risk training for neural machine translation. In Pro-
ceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1683–
1692, Berlin, Germany. Association for Computa-
tional Linguistics.

Richard S Sutton, David A McAllester, Satinder P
Singh, Yishay Mansour, et al. 1999. Policy gradient
methods for reinforcement learning with function
approximation. In NIPS, volume 99, pages 1057–
1063.

Toshikazu Tajiri, Mamoru Komachi, and Yuji Mat-
sumoto. 2012. Tense and aspect error correction
for ESL learners using global context. In Proceed-
ings of the 50th Annual Meeting of the Association
for Computational Linguistics, pages 198–202, Jeju
Island, Korea. Association for Computational Lin-
guistics.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading ESOL texts. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
180–189, Portland, Oregon. Association for Compu-
tational Linguistics.

Zheng Yuan and Ted Briscoe. 2016. Grammatical er-
ror correction using neural machine translation. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 380–386, San Diego, California. Association
for Computational Linguistics.

371



A Minimum Risk Training and Policy
Gradient in Reinforcement Learning

We explain the relevance between minimum risk
training (MRT) (Shen et al., 2016) and neural re-
inforcement learning (NRL) for training neural
encoder-decoder models. We describe the detailed
derivation of gradient in MRT, and show that MRT
is a special case of NRL.

As introduced in §2, the model takes ungram-
matical source sentences x ∈ X as an input, and
predicts grammatical and fluent output sentences
y ∈ Y . The objective function in NRL and MRT
are written as follows.

J(θ) = E[r(ŷ, y)] (5)

R(θ) =
∑

(X,Y )

E[∆(ŷ, y)] (6)

where r(ŷ, y) is the reward and ∆(ŷ, y) is the risk
for an output (ŷ).

For the sake of simplicity, we consider expected
loss in MRT for a single training pair:

R̃(θ) = E[∆(ŷ, y)]

=
∑

ŷ∈S(x)

q(ŷ|x; θ, α)∆(ŷ, y) (7)

where

q(ŷ|x; θ, α) =
p(ŷ|x; θ)α∑

ŷ′∈S(x) p(ŷ′|x; θ)α
(8)

S(x) is a sampling function that produces k sam-
ples ŷ1, ...ŷk, and α is a smoothing parameter for
the samples (Och, 2003). Although the direction
to optimize (i.e., minimizing or maximizing) is
different, we see the similarity between J(θ) and
R̃(θ) in the sense that they both optimize models
directly towards evaluation metrics.

The partial derivative of R̃(θ) with respect to
the model parameter θ is derived as follows.

∂R̃(θ)
∂θ

=
∂

∂θ

∑
ŷ∈S(x)

q(ŷ|x; θ, α)∆(ŷ, y)

=
∑

ŷ∈S(x)

∆(ŷ, y)
∂

∂θ
q(ŷ|x; θ, α) (9)

We need ∂
∂θq(ŷ|x; θ, α) in (9). For space ef-

ficiency, we use q(ŷ) as q(ŷ|x; θ, α) and p(ŷ) as
p(ŷ|x; θ) below.

∂

∂θ
q(ŷ) =

∂q(ŷ)
∂p(ŷ)

∂p(ŷ)
∂θ

(∵ chain rule)

=
∂q(ŷ)
∂p(ŷ)

∇p(ŷ) (10)

For ∂q(ŷ)
∂p(ŷ) , by applying the quotient rule to (8),

∂q(ŷ)
∂p(ŷ)

=
{∑ŷ′ p(ŷ′)α} ∂

∂p(ŷ)p(ŷ)α − p(ŷ)α ∂
∂p(ŷ)

∑
ŷ′ p(ŷ′)α

{∑ŷ′ p(ŷ′)α}2

=
αp(ŷ)α−1∑
ŷ′ p(ŷ′)α

− αp(ŷ)αp(ŷ)α−1

{∑ŷ′ p(ŷ′)α}2

= α
p(ŷ)α−1∑
ŷ′ p(ŷ′)α

{
1− p(ŷ)α∑

ŷ′ p(ŷ′)α

}

= α
p(ŷ)α∑
ŷ′ p(ŷ′)α

1
p(ŷ)

{
1− p(ŷ)α∑

ŷ′ p(ŷ′)α

}
(11)

Thus, from (10) and (11), (9) is

∂R̃(θ)
∂θ

=
∑

ŷ∈S(x)

∆(ŷ, y)∇p(ŷ)

[
α

p(ŷ)α∑
ŷ′ p(ŷ′)α

1
p(ŷ)

{
1− p(ŷ)α∑

ŷ′ p(ŷ′)α

}]

= αE
[
∇p(ŷ) · 1

p(ŷ)
{∆(ŷ, y)− E [∆(ŷ, y)]}

]
= αE [∇ log p(ŷ) {∆(ŷ, y)− E [∆(ŷ, y)]}]

(12)
According to the policy gradient theorem for

REINFORCE (Williams, 1992; Sutton et al.,
1999), the partial derivative of (5) is given as fol-
lows:

∂J(θ)
∂θ

= α̃E [∇ log p(ŷ){r(ŷ, y)− b}] (13)

where α̃ is a learning rate7 and b is arbitrary base-
line reward to reduce the variance of gradients.
Finally, we see that the gradient of MRT (12) is
a special case of policy gradient in REINFORCE
(13) with b = E [∆(ŷ, y)]. It is also interesting to
see that the smoothing parameter αworks as a part
of learning rate (α̃) in NRL.

7In this appendix, we use α̃ to distinguish it from smooth-
ing parameter α in MRT.

372


