
Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 228–233,
Taipei, Taiwan, November 27 – December 1, 2017 c©2017 AFNLP

High Recall Open IE for Relation Discovery

Hady Elsahar, Christophe Gravier, Frederique Laforest
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Abstract

Relation Discovery discovers predicates
(relation types) from a text corpus relying
on the co-occurrence of two named enti-
ties in the same sentence. This is a very
narrowing constraint: it represents only
a small fraction of all relation mentions
in practice. In this paper we propose a
high recall approach for predicate extrac-
tion which enables covering up to 16 times
more sentences in a large corpus. Compar-
ison against OpenIE systems shows that
our proposed approach achieves 28% im-
provement over the highest recall OpenIE
system and 6% improvement in precision
over the same system.

1 Introduction

The recent years have shown a large number of
knowledge bases such as YAGO (Suchanek et al.,
2007), Wikidata (Vrandečić and Krötzsch, 2014)
and Freebase (Bollacker et al., 2008). These
knowledge bases contain information about world
entities (e.g. countries, people...) using a set of
predefined predicates (e.g. birth place, profes-
sion...) that comes from a fixed ontology. The
number of predicates can vary according to the
KB ontology. For example there are 6,1047 DB-
pedia unique predicates compared to only 2,569 in
Wikidata. This has led to an emergence of unsu-
pervised approaches for relation extraction which
can scale to open relations that are not predefined
in a KB ontology.

1.1 Open Information Extraction
Open information extraction (Open IE) systems
extract linguistic relations in the form of tuples
from text through a single data-driven pass over
a large text corpus. Many Open IE systems have

been proposed in the literature, some of them are
based on patterns over shallow syntactic represen-
tations such as TEXTRUNNER (Banko et al., 2007)
and REVERB (Fader et al., 2011), pattern learn-
ing in OLLIE (Mausam et al., 2012), Tree Kernels
(Xu et al., 2013) or logic inference in STANFORD

OPEN IE (Angeli et al., 2015).
Open IE has demonstrated an ability to scale to a
non-predefined set of target predicates over a large
corpus. However extracting new predicates (rela-
tion types) using Open IE systems and merging to
existing knowledge bases is not a straightforward
process, as the output of Open IE systems contains
redundant facts with different lexical forms e.g.
(David Bowie, was born in, London) and (David
bowie, place of birth, London).

1.2 Relation Discovery and Clustering

Relation clustering and relation discovery tech-
niques try to alleviate this problem by grouping
surface forms between each pair of entities in
a large corpus of text. A large body of work
has been done in that direction, through: clus-
tering of OpenIE extractions (Mohamed et al.,
2011; Nakashole et al., 2012a,b), topic model-
ing (Yao et al., 2011, 2012), matrix factoriza-
tion (Takamatsu et al., 2011) and variational au-
toencoders (Marcheggiani and Titov, 2016).
These approaches are successful to group and dis-
cover relation types from a large text corpus for
the aim of later on adding them as knowledge base
predicates.

1.3 Relation Discovery with a Single Entity
Mention

Previously described relation discovery tech-
niques discover relations between a detected pair
of named entities. They usually use a pre-
processing step to select only sentences with the
mention of a pair of named entities (Figure 1 ex-
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ample 1). This step skips many sentences in which
only one entity is detected. These sentences po-
tentially contain important predicates that can be
extracted and added to a KB ontology.
Figure 1 illustrates different examples of these
sentences, such as: When the object is not men-
tioned (example 2), Questions where the object is
not mentioned (example 3) or when one of the en-
tities is hard to detect because of coreferencing or
errors in NER tagging (example 4). By analysing

1. The official currency of the U.K. is
the Pound sterling.

2. The U.K. official currency is down
16 percent since June 23.

3. What is the official currency of
U.K. ?

4. .. which is considered the official
currency of U.K.

Figure 1: Examples of textual representations
mentioning the predicate ”official currency”.

630K documents from the NYT corpus (Sand-
haus, 2008) as illustrated in Figure 2, the num-
ber of sentences with two 2 detected named enti-
ties is only 1.8M sentences. Meanwhile, there are
almost 30M sentences with one entity (16 times
more), which can be explored for predicate men-
tions. As the set of covered sentences is limited, so
is the number of possibly discovered predicates.
In this paper we propose a predicate-centric
method to extract relation types from such sen-
tences while relying on only one entity men-
tion. For relation clustering, we leverage various
features from relations, including linguistic and
semantic features, and pre-trained word embed-
dings. We explore various ways of re-weighting
and fusing these features for enhancing the cluster-
ing results. Our predicate-centric method achieves
28% enhancement in recall over the top Open
IE system and with a very comparable precision
scores over an OpenIE benchmark (Stanovsky and
Dagan, 2016). It demonstrates its superiority for
the discovery of relation types.

2 Our Approach

2.1 Extraction of Predicates

Banko et.al (Banko and Etzioni, 2008) show that
the majority of relations in free text can be repre-
sented using a certain type of Part of Speech (POS)
patterns (e.g. "VB", "VB IN", "NN IN"). Ad-

Figure 2: Distribution of sentences in the NYT
corpus (A), which have: (B) at least 1 entity men-
tion, (C) at least 1 entity and a predicate attached
to it, (D) at least 2 entities mentions, (E) at least 2
entities and a relation in between in Freebase.

ditionally Riedel et al. (Riedel et al., 2013) pro-
pose the Universal Schemas model in which the
lexicalized dependency path between two named
entities in the same sentence is used to represented
the relation in between. We follow a similar ap-
proach to extract lexical forms of predicates in
sentences and connect them to named entities in
the sentences.
First to expand the set of predicate patterns
proposed by Banko et al., we collect labels
and aliases for 2,405 Wikidata (Vrandečić and
Krötzsch, 2014) predicates, align them with sen-
tences from Wikipedia, and run the CoreNLP POS
tagger (Manning et al., 2014) on them. This re-
sults in a set of 212 unique patterns POS =
{posi, ..., posn} 1.
Second, for each sentence in the corpus we do the
following:

(i) extract the linguistic surface forms of predi-
cate candidates Pc by matching the POS tag-
ging of the sentence with the set of POS pat-
terns POS.

(ii) extract candidate named entities Ec using the
CoreNLP NER tagger (Manning et al., 2014).

(iii) extract the lexicalized dependency path dpi

and its direction between every named en-
tity ei ∈ Ec and candidate relation predicates
pi ∈ Pc (if exist). The direction of the depen-
dency path highly correlates with the entity

1http://bit.ly/2obhbyF
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being subject or object of the candidate pred-
icate (Roth and Lapata, 2016).

The result of this process is a set of extractions
Ext = {(pi, ei, dpi)...(pn, en, dpn)}, in which a
predicate pi is connected to a named entitiy ei

through a directed dependency paths dpi. We ig-
nore all the candidate predicates that are not con-
nected to a named entity though a dependency
path. The confidence for each extraction is calcu-
lated according to the rank of its dependency path
dpi and its POS pattern.

2.2 Predicates Representation and Clustering
For each predicate in Ext, there are predicates
though having different surface forms, express the
same semantic relationship (e.g. ”was born in”,
”birth place”). Following (Mohamed et al., 2011),
we treat predicates with the same surface form as
one input to the clustering approach. A feature
representation vector for each unique predicate is
built from multiple sentences across the text cor-
pus. In the literature, this approach is referred to
as the macro scenario, in contrast to the micro sce-
nario (Yao et al., 2011; Marcheggiani and Titov,
2016) where every sentence in the corpus is treated
individually. The input to the clustering process in
the macro scenario is very small in comparison to
the micro scenario, which makes the macro sce-
nario more scalable.
For each unique predicate pi ∈ P we built a fea-
ture vector that consists of the following set of fea-
tures:

1. Sum of TF-IDF re-weighted word embed-
dings for each word in pi.

2. Count vector of each entity appearing as sub-
ject and as an object to pi

3. Count vector of entity types appearing as sub-
ject and as an object to pi

4. Count vector of each unique dependency path
pi that extracted pi

5. The POS pattern of pi encoded as a vector
containing counts of each POS tag.

The previous features are not equally dense – con-
catenating all of them as a single feature vector
for each relation is expected to skew the cluster-
ing algorithm. In supervised relation extraction,
this is not an issue as the learning algorithm is ex-
pected to do feature selection automatically using

training data. Here, it is not the case. In order
to circumvent the sparse features bias, we apply
individual feature reduction of the sparse features
before merging them to the rest of the feature vec-
tors. For feature reduction, we use Principal Com-
ponent Analysis (PCA) (Jolliffe, 2011). Once this
reduction is applied, we apply a K-Means cluster-
ing (Hartigan and Wong, 1979) algorithm over the
relations feature vectors in order to group relations
into k clusters.

3 Experiments and Evaluation

3.1 Predicates Extraction

In this section we demonstrate the effectiveness of
using the proposed predicate-centric approach for
relation discovery. For that we use a large scale
dataset that was used for benchmarking Open IE
(Stanovsky and Dagan, 2016). The dataset is com-
prised of 10,359 Open IE gold standard extractions
over 3,200 sentences. Extractions are evaluated
against the gold standard using a matching func-
tion between the extracted predicate and candidate
predicates from Open IE systems. Extracted pred-
icates that do not exist in the gold standard are cal-
culated as false positives. We compare our predi-
cate extraction method with a set of 6 Open IE sys-
tems, which are: REVERB, OLLIE, STANFORD-
OPENIE, CLAUSIE (Corro and Gemulla, 2013),
OPENIE4.0 an extension of SRL-based IE (Chris-
tensen et al., 2011) and noun phrase processing
(Pal and Mausam, 2016) , and PROPS (Stanovsky
et al., 2016).
Figure 3 shows that our proposed approach scores
the highest recall amongst all the Open IE systems
with 89% of predicates being extracted, achiev-
ing 28% improvement over CLAUSIE, the Open
IE system with the highest recall and 6% improve-
ment in precision over the same system. This
shows that our approach is more useful when the
target application is relation discovery, as it is able
to extract predicates in the long tail with compa-
rable precision, as shown in Figure 4. Table 2
shows a set of example sentences in the evaluation
dataset in which none of the existing Open Infor-
mation Extraction systems where able to extract,
while they are correctly extracted by our approach.

3.2 Quality of Relation Clustering

To the best of our knowledge, the literature does
not provide datasets for evaluating Relation Dis-
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Sentence Target predicate Predicate-Centric Extraction

Nicephorus Xiphias , who had conquered the old Bulgarian capitals. conquered conquered → dobj → MISC
Muncy Creek then turns northeast , crossing Pennsylvania Route 405 crossing crossing → dobj → LOCATION
This was replaced by a Town Hall replaced by replaced by→ nmod→ LOCATION
Starting in 2009 , Akita began experiencing ... Starting in Starting in → nmod → DATE

Table 1: Example of sentences where all OpenIE systems failed to extract target relations, and their
corresponding Predicate-Centric extractions.
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Figure 3: Maximum recall of top Open IE systems
and their corresponding precisions in comparison
with our approach RelDiscovery on (Stanovsky
and Dagan, 2016) evaluation dataset.

covery methods on the macro scenario. So we use
GOOGLE-RE2, a high quality dataset, that consists
of sentences manually annotated with triples from
Freebase (Bollacker et al., 2008). The dataset con-
sists of 34,741 labeled sentences, for 5 Freebase
relations: ”institution”, ”place of birth”, ”place
of death”, ”date of birth” and ”education degree”.
We run our predicate extraction approach on the
dataset and manually label the most frequent 2K
extracted relations into 6 classes: the 5 target se-
mantic relations in GOOGLE-RE and an additional
class ”OTHER” for other relations. We then divide
them to 80-20% test-validation splits. For feature
building, we use word2vec pre-trained word em-
beddings (Mikolov et al., 2013). We tune the PCA
using the validation dataset. Results in Table 2
show that the re-weighting of Word embedding
using TF-IDF had a significant improvement over
only summing word embeddings. This opens the
door for exploring more common unsupervised
representations for short texts. Additionally, indi-
vidual feature reduction on the sparse features has
significantly enhanced the pairwise F1 score of the
clustering algorithm.

2http://bit.ly/2oyGBcZ
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Figure 4: Precision and recall curve of our rela-
tion discovery method RelDiscovery with differ-
ent OpenIE systems.

Em-Ft wEm-Ft wEm-Ft-PCA ALL

0.41 0.50 0.55 0.58

Table 2: pairwise F1 scores using word em-
beddings and sparse features (Em-Ft), after re-
weighting word embeddings (wEm-Ft), after do-
ing feature reduction (wEm-Ft-PCA), and com-
bining all features (ALL).

4 Conclusion

We introduce a high recall approach for predicate
extraction. It covers up to 16 times more sentences
in a large corpus. Our approach is predicate-
centric and learns surface patterns to directly ex-
tract lexical forms representing predicates and at-
tach them to named entities. Evaluation on an
OpenIE benchmark show that our system was able
to achieve a significantly high recall (89%) with
28% improvement over the CLAUSIE, the Open
IE system with the highest recall. It shows also
a with very comparable precision with the rest
of the OpenIE systems. Additionally, we intro-
duce a baseline for comparing similar predicates.
We show that re-weighting word embeddings and
performing PCA for sparse features before fusing
them significantly enhances the clustering perfor-
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mance, reaching up to 0.58 pairwise F1 score.
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