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Abstract

Word embeddings are a relatively new
addition to the modern NLP researcher’s
toolkit. However, unlike other tools, word
embeddings are used in a black box man-
ner. There are very few studies regarding
various hyperparameters. One such hyper-
parameter is the dimension of word em-
beddings. They are rather decided based
on a rule of thumb: in the range 50 to
300. In this paper, we show that the di-
mension should instead be chosen based
on corpus statistics. More specifically, we
show that the number of pairwise equidis-
tant words of the corpus vocabulary (as de-
fined by some distance/similarity metric)
gives a lower bound on the the number of
dimensions , and going below this bound
results in degradation of quality of learned
word embeddings. Through our evalua-
tions on standard word embedding evalu-
ation tasks, we show that for dimensions
higher than or equal to the bound, we get
better results as compared to the ones be-
low it.

1 Introduction

Word embeddings are a crucial component of
modern NLP. They are learned in an unsupervised
manner from large amounts of raw corpora. Ben-
gio et al. (2003) were the first to propose neural
word embeddings. Many word embedding mod-
els have been proposed since then (Collobert and
Weston, 2008; Huang et al., 2012; Mikolov et al.,
2013a; Levy and Goldberg, 2014).

Word vector space models can only capture dif-
ferences in meaning (Sahlgren, 2006). That is, one
can infer the meaning of a word by looking at its
neighbors. An isolated word on its own does not

mean anything in the word vector space. Thus, one
needs to think of embedding algorithm’s capabil-
ity to capture these differences effectively, which
is governed by its hyperparameters. The hyperpa-
rameters affect the information to be represented
and the available degree of freedom to express it.

Most word embeddings share different design
choices and hyperparameters such as context type,
window size, number of dimensions of the embed-
dings, etc. However, a large portion of the research
community uses word embeddings without their
in-depth analysis; many proceed with default set-
tings that come with off-the-shelf word embedding
toolkits. While other hyperparameters have been
studied to varying extents (see section 2), there
are no rigorous studies on the number of dimen-
sions that should be used while training word em-
beddings. They are usually decided via a rule of
thumb (established as a side effect of other evalu-
ations): use between 50 to 300, or by trial and er-
ror. This is a common thread across many NLP ap-
plications: Part of Speech Tagging (Collobert and
Weston, 2008), Named Entity Recognition Sen-
tence Classification (Kim, 2014), Sentiment Anal-
ysis (Liu et al., 2015), Sarcasm Detection (Joshi
et al., 2016).

Depending on the corpus, its vocabulary, and
the context through which the differences are
elicited during training of word embedding, we
are bound to obtain a certain number of words,
say n, that are pairwise equidistant. Such words
impose an equality constraint that the embedding
algorithm has to uphold. Thus, we raise the fol-
lowing question:

Does n (the number of pairwise equidistant
words) enforce a lower bound on the number of
dimensions that should be chosen for training

word embeddings on the corpus?

In this paper, we show that this seems to be true
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for skip gram embeddings. We show how to obtain
the number of pairwise equidistant points from
corpus. This number determines the lower bound.
Then we show how the training algorithm of skip-
gram embeddings fails to uphold the equality con-
straint when the number of dimensions is less than
the lower bound. We show this both via analysis
on toy examples as well as intrinsic evaluation on
real data.

2 Background and Related Work

As mentioned earlier, the number of dimensions is
often decided via the rule of thumb, or by trial and
error. This holds true not only for word embedding
usage but also for their evaluations.

Baroni et al. (2014) claimed that neural word
embeddings are better than traditional methods
such as LSA, HAL, RI (Landauer and Dumais,
1997; Lund and Burgess, 1996; Sahlgren, 2005).
They experimented with different settings for the
number of dimensions, but their experiments were
intended to evaluate the practicality of dimensions
of neural embeddings as compared to their tradi-
tional methods. However, their claim was chal-
lenged by Levy et al. (2015), who showed that
superiority of neural word embeddings is not
due to the embedding algorithm, but due to cer-
tain design choices and hyperparameters opti-
mizations. While they investigate different hyper-
parameters, they keep a consistent dimension of
500 for all different embedding models that they
evaluated. Many other evaluations set the number
of dimensions without any justifications (Schnabel
et al., 2015; Zhai et al., 2016; Ghannay et al.,
2016).

Melamud et al. (2016) evaluates skip-gram
word embeddings on a wide range of intrinsic and
extrinsic NLP tasks. An interesting observation
made by them is that while the performance for
intrinsic tasks such as word pair similarity, etc.
peaks at around 300 dimensions, the performance
of extrinsic tasks peaked at around 50, and some-
times showed degradation for higher dimensions.
This justifies the need for study of bounds for di-
mensions.

As is evident from the above discussion, the
analysis of the number of dimensions have not re-
ceived enough attention. This paper is a contribu-
tion towards that direction.

3 Motivation

Let us consider the following toy corpus of four
sentences (<>is sentence separator):

<>I like cats <>I love dogs <>I hate rats <>I
rate bats <>

Table 1 shows the rows of the co-occurrence
matrix corresponding to the four words {like, love,
hate, rate}.

word <> I like love hate rate rats cats dogs bats
like 0 1 0 0 0 0 0 1 0 0
love 0 1 0 0 0 0 0 0 1 0
hate 0 1 0 0 0 0 1 0 0 0
rate 0 1 0 0 0 0 0 0 0 1

Table 1: Four rows corresponding to {like, love,
hate, rate} of co-occurrence matrix for toy corpus

The euclidean distance between any two words
from the set {like, love, hate, rate} is

√
2. In other

words, they form a regular tetrahedron with side
length =

√
2. The words {cats, dogs, rats, bats}

form another such set. Intuitively, we know that
the space which can embed a regular tetrahedron
needs at least 3 dimensions. If a word embedding
learning algorithm wishes to model this informa-
tion correctly, it has to strive to uphold this equal-
ity constraint. However, its success will depend on
the degree of freedom which it receives in terms of
the number of dimensions. If it tries to embed it in
a space of dimension lower than 3, then it ends
up breaking the equality constraint. We end up
having (0.94, 0.94), (1.77, 0.80), and (2.63, 0.10)
as the average (mean, standard deviation) for the
pairwise distances for dimensions 1, 2 and 3 re-
spectively for 5 random initializations. Figure 1
shows the results of attempting to embed the reg-
ular tetrahedron created by the four words in a 1,
2, and 3-dimensional space. One can see how the
algorithm fails for dimensions 1, and 2 (very high
standard deviations), but succeeds in case of 3 di-
mensions (low standard deviation).

To further verify the distortions due to a lower
than needed dimension, we make the following
hypothesis: if the learning algorithm of word em-
beddings does not get enough dimensions, then it
will fail to uphold the equality constraint. There-
fore, the standard deviation of the mean of all pair-
wise distances will be higher. As we increase the
dimension, the algorithm will get more degrees of
freedom to model the equality constraint in a bet-
ter way. Thus, there will be statistically significant
changes in the standard deviation. Once the lower
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Figure 1: Trying to embed {like, love, hate, rate}
in a 1,2 and 3-dimensional space. Here, (Before)
and (After) indicates positions before and after
training respectively. The 3 dimensional vectors
in (c) and (f) are reduced to 2 dimensions using
PCA for visualization purposes

bound of dimensions is reached, the algorithm gets
enough degrees of freedom. Thus, from this point
onwards, even if we increase dimensions, there
will not be any statistically significant difference
in the standard deviation.

To test this, we train word embeddings for dif-
ferent dimensions for an artificially created cor-
pus with 15 pairwise equidistant words. The cor-
pus contained sentences of the form I verbi nouni

where 1 ≤ i ≤ 15. Table 2 shows the results for
the same. Note how there are statistically signif-
icant reductions (p-value < 0.05) in standard de-
viations up until 14 (15 − 1). However, once the
number of dimensions is higher than 14, the differ-
ences are no longer significant (p-value > 0.05).
We used Welch’s Unpaired t-test for testing statis-
tical significance.

Dim σ P-value Dim σ P-value
7 0.358 12 0.154 0.0058
8 0.293 0.0020 13 0.111 0.0001
9 0.273 0.0248 14 0.044 0.0001

10 0.238 0.0313 15 0.047 0.3096
11 0.189 0.0013 16 0.054 0.1659

Table 2: Avg standard deviation (σ) for 15 pair-
wise equidistant words (along with two tail p-
values of Welch’s unpaired t-test for statistical sig-
nificance)

4 Approach

We used euclidean distance in the motivation sec-
tion for ease of discussion. In practice, the met-

ric used in conjunction with word vectors is co-
sine similarity. While the closed-form solution
is available for the case of euclidean distance
(Lower Bound = #Pairwise Equidistant points -
1) (Swanepoel, 2004), the same is not true for
the case of cosine similarity. Instead, the rela-
tion between the number of dimensions and the
maximum number of pairwise equiangular lines
that can be embedded is an active area of research
(Lemmens and Seidel, 1973; de Caen, 2000; God-
sil and Roy, 2009; Barg and Yu, 2014). Table 3
gives the maximum number of pairwise equian-
gular lines E that can be embedded in a space of
dimension λ (taken from (Barg and Yu, 2014)).

λ E λ E
3 6 18 61
4 6 19 76
5 10 20 96
6 16 21 126

7<=n<=13 28 22 176
14 30 23 276
15 36 24<=n<=41 276
16 42 42 288
17 51 43 344

Table 3: Number of dimensions λ and the corre-
sponding maximum number of equiangular lines E
(for larger values of λ, refer (Barg and Yu, 2014))

To find the lower bound, one should follow the
following approach:

1. Compute the word × word co-occurrence
matrix from the corpus

2. Create the word×word cosine similarity ma-
trix by treating the rows of co-occurrence ma-
trix as word vectors

3. For each similarity value sk:

a) Create a graph, where the words are
nodes. Create an edge between node i
and node j if sim( i, j) = sk

b) Find maximum clique on this graph.
The number of nodes in this clique is the
maximum number of pairwise equidis-
tant points Ek

c) Reverse lookup Ek in table 3 to deter-
mine the corresponding number of di-
mension λk

4. The maximum λ among all λks is the lower
bound
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Figure 2: Performance for different tasks with respect to number of dimensions

When we applied this procedure on Brown cor-
pus, we obtained a maximum of 62 words in step
3b), which lead to lower bound of 19 dimensions.

A theoretical shortcoming of this approach is
that finding maximum clique is NP-complete. For
the Brown corpus, we obtained the maximum
cliques using Parallel Maximum Clique library
(PMC)(Rossi et al., 2013).

5 Experimental Setup

5.1 Word Embedding training

We train skip-gram embeddings on the Brown cor-
pus provided with NLTK toolkit. For tokeniza-
tion, we use the default tokenizer. We do not re-
move any stopwords. In order to control effects of
randomization, we avoided it wherever possible.
To this effect, we do not use negative sampling.
We use hierarchical softmax to hasten the softmax
computation. One word to the left and right of the
input word is considered as context.

5.2 Tasks

We use the following intrinsic tasks for evaluation.

a) Word Pair Similarity tasks are commonly
used for intrinsic evaluation of word em-
beddings, which involve predicting similar-
ity between a given pair of words a and b.
The evaluation involves finding cosine sim-
ilarity between the embeddings of a and b,
and finding the spearman correlation with hu-
man annotation. We used the WS353, MEN,
RW, RG65, MTurk, and SimLex999 datasets
(Faruqui and Dyer, 2014)

b) Word Analogy tasks are yet another com-
monly used tasks for intrinsic evaluation of
word embeddings, which involve evaluating
the accuracy of finding a missing word d in
the relation: a is to b as c is to d, where (a, b)

and (c, d) have the same relation. We used
the Google, MSR, and SemEval 2012 Task 2
datasets (Mikolov et al., 2013b).

c) Categorization tasks are yet another com-
monly used tasks for intrinsic evaluation of
word embeddings, which involve evaluating
the purity of clusters formed by word embed-
dings. We used the AP, BLESS, ESSLI 1a,
ESSLI 2b, and ESSLI 2c datasets (Schnabel
et al., 2015).

6 Results and Analysis

Figure 2 shows the effects of increasing dimen-
sions from 1 to 35 on different tasks. One ob-
serves that each series ascends till the number of
dimensions reach 19, after which it stabilizes. This
is because once the lower bound is reached, the
errors introduced due to the violation of equality
constraint are removed. Thus, the optimal perfor-
mance possible with the selected configurations is
reached, and the performance stabilizes thereafter.

Note that, in some cases, the performance stabi-
lizes before 19. This is because, for that particular
dataset and task, the equality constraints that are
broken at lower than 19 dimensions did not mat-
ter. But, for a realistic use case, one would be bet-
ter off if they stick to the lower bound.

7 Conclusion and Future Work

We discussed the importance of deciding the num-
ber of dimensions for word embedding training by
looking at the corpus. We motivated the idea us-
ing abstract examples and gave an algorithm for
finding the lower bound. Our experiments showed
that performance of word embeddings is poor, un-
til the lower bound is reached. Thereafter, it sta-
bilizes. Therefore, such bounds should be used to
decide the number of dimensions, instead of trial
and error.
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We aim to continue the work, addressing the
limitations of complexity, the validity of hypothe-
sis in extrinsic tasks, etc.. We will also investigate
whether the same holds for different word embed-
ding models.
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