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Abstract
Genetic information in the literature has
been extensively looked into for the pur-
pose of discovering the etiology of a dis-
ease. As the gene-disease relation is sen-
sitive to external factors, their identifica-
tion is important to study a disease. En-
vironmental influences, which are usu-
ally called Gene-Environment interaction
(GxE), have been considered as impor-
tant factors and have extensively been re-
searched in biology. Nevertheless, there is
still a lack of systems for automatic GxE
extraction from the biomedical literature
due to new challenges: (1) there are no
preprocessing tools and corpora for GxE,
(2) expressions of GxE are often quite
implicit, and (3) document-level compre-
hension is usually required. We propose
to overcome these challenges with neu-
ral network models and show that a mod-
ified sequence-to-sequence model with a
static RNN decoder produces a good per-
formance in GxE recognition.1

1 Introduction

Identifying genetic information related to a dis-
ease is an effective method for discovering the
etiology of the disease. Many researchers in bi-
ology have attempted to identify the relationship
between different types of genetic information,
such as genes, gene mutations or other biological
events, and diseases.

One of the difficult aspects in the research is
that it is necessary to consider various external fac-
tors, because they can affect whether such biolog-
ical relationships hold or not. For example, it has

∗Corresponding author
1Our source code and gold standard corpus are available

at http://biopathway.org/GxE

been shown that there is no association of NAT2
gene and breast cancer (Zgheib et al., 2013), but
after three years, other researchers made a con-
flicting claim that NAT2 gene is associated with
breast cancer (Kasajova et al., 2016). There may
be many factors causing this difference, but inves-
tigating the environmental factors has been one
of the important research topics. Kasajova et al.
(2016) found that NAT2 gene is associated with
breast cancer when women with NAT2 gene poly-
morphisms have been exposed to long-period ac-
tive smoking. As a result, active smoking has been
considered as a crucial factor that determines the
relation between NAT2 gene and breast cancer,
which biologists called gene and environment in-
teraction (GxE).

Since the importance of studying GxE is rec-
ognized, the amount of related work has steadily
been increasing (Hunter, 2005). Nonetheless,
there is still a lack of systems and databases that
deal with this information (Simonds et al., 2016).
For the purpose of addressing this situation, we
present an automatic system that extracts environ-
ment terms indicating a change of gene-disease re-
lations from the biomedical literature.

There are three major challenges that make it
difficult to perform GxE recognition using exist-
ing systems in the biomedical domain. First, in
contrast to general biomedical natural language
processing (BioNLP) tasks, there are no prepro-
cessing tools and corpora for GxE, though there
are some resources for chemical-disease relations,
such as named entity recognition systems special-
ized for chemical and disease names and corpora
that annotate chemical and disease relations in ab-
stracts (Wei et al., 2015b). Second, research on
discovering biomedical relations usually specifies
environmental information in the literature in var-
ious ways, using not only expressions that explic-
itly refer to certain biomedical concepts such as
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pregnancy and smoking, but also statistical terms
that refer to a comparison between two control
groups, such as p-value and odds ratio, which are
quite difficult to capture using conventional tools.
Since the literature for GxE also tends to report
experiment results in similar ways, the system
needs to understand such implicit information to
determine whether the result is meaningful or not.
Third, information of this kind indicating GxE is
usually not reported in a single sentence, requiring
document-level comprehension of text.

To address this situation, we build an annotated
corpus for GxE and develop an end-to-end sys-
tem that recognizes environment information for
gene-disease pairs given in single document. We
exploit high-dimensional models based on neural
networks to enable document-level understanding
of text and to deal with the issues above. We also
perform experiments with different neural network
models to investigate which models are most suit-
able to GxE recognition.

2 Related work

One of the related areas that have been actively
researched in BioNLP is biomedical event extrac-
tion. For example, a system was proposed in the
recent shared tasks (Kim et al., 2013), attempt-
ing to extract ten biological events, with the best
performance under a 0.6 F1-score. This score,
however, was extremely skewed to particular event
types. While all the systems showed good perfor-
mance, with nearly a 0.8 F1-score, in extracting
simple events such as gene expression and tran-
scription, they showed quite poor performance for
complex events such as binding and regulation.
This is because, in contrast to simple events, com-
plex events consist of more than two elements or
another event. In particular, the task of extracting
binding events is usually treated as finding ternary
relations, where a system is supposed to recog-
nize two biological entities together with a partic-
ular site where their binding takes place. This task
is similar to our task as the relation between two
entities can be changed according to the third en-
tity. The best system for binding event extraction
achieved a 0.49 F1-score.

Another recent work on dealing with com-
plex relations in BioNLP is reading comprehen-
sion (RC), where the system is to find proper an-
swers to given questions about a biological pro-
cess within single document. For example, the

system in (Berant et al., 2014) attempts to find
answers through comparisons between two graphs
constructed from given documents and questions.
Although the system explicitly combines biolog-
ical events extracted from sentences to construct
a long biological process, possibly leading to the
propagation of errors, they reported fairly good
performance and meaningful results, considering
that it is the first attempt for document-level bio-
logical information extraction.

On the other hand, there are quite a few sys-
tems and corpora for document-level comprehen-
sion from a similar perspective in other domains,
such as news articles (Hermann et al., 2015) and
children’s books (Hill et al., 2016). One of the re-
cent studies, (Hermann et al., 2015), addresses the
reading comprehension task for which proposed
models infer missing entities. From the perspec-
tive of evaluating how well such models under-
stand documents for answering given questions,
the task is similar to the present work. In this task,
neural network models were shown to be effective
for processing document-level information. More
specifically, they demonstrated that a variant of
neural network, RNN with attention mechanism,
achieved the state-of-the-art performance (Chen
et al., 2016).

WikiReading is most similar to our task as it
deals with inference over entities based on a se-
quence of tokens (Hewlett et al., 2016). The
authors were inspired from the QA task, treat-
ing given properties as questions and develop-
ing models to find proper entities that could be
answers to the questions. There are two types
of properties in WikiReading: (1) the categori-
cal property that requires selection among a rel-
atively small number of possible answers and (2)
the relational property that requires extraction of
rare or unique answers from the document. The
authors compared various types of models from
simple word embedding models to sequence-to-
sequence models and showed that the sequence-
to-sequence model gives rise to outstanding per-
formance in both types of properties.

3 Task definition

3.1 GxE extraction

We formulate the GxE recognition task as extract-
ing terms indicating a particular environment that
is involved in a change of gene-disease relations.
Figure 1 illustrates an example abstract that con-
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Figure 1: An illustrated abstract describing GxE for lung cancer. In this figure, gene and disease are
shown in blue and red, respectively. Expressions in bold-face are targeted environment terms. Sentences
highlighted in gray are the evidence supporting the claim that an association between MTNR1a and
breast cancer is changed by menopausal status.

Environment type Example

Energy balance
dietary factors,

physical activity

Lifestyle
smoking, alcohol,

breastfeeding

Exogenous hormones HRT, OC use

Endogenous hormones
menopausal status,

age of menarche

Chemical environment
grilled foods/meats,

heterocyclic amines

Drugs/treatment statin, NSAIDS

Infection and inflammation
helicobacter pylori,

autoimmune disease

Physical environment
x-rays,

sun exposure

Table 1: The list of biological environment types
(Simonds et al., 2016)

tains information about GxE for breast cancer,
where gene and disease names are shown in blue
and red, respectively (Wei et al., 2015a; Lee et al.,
2016). There are four types of genes (MTNR1a,
MTNR1b, AANAT, insulin) and two types of dis-
eases (breast cancer, cancer). Therefore, we con-
sider twelve gene-disease combinations for which
our system attempts to find environment terms
from the abstract. As an example of environment
terms, it is claimed in the abstract that the associ-
ation between MTNR1a and 1b genes and breast
cancer may vary to menopausal status. Sentences
highlighted in gray are the evidence supporting the

claim. Expressions in bold-face are targeted envi-
ronment terms to be extracted by our system.

Our model is given the abstract marked with
genes and diseases, and considers each unique
gene-disease combination, one at a time, to find
its environment terms. For example, if we want to
consider the combination of MTNR1a and breast
cancer, the input is the abstract marked only with
these two entities, without other entities marked
such as MTNR1b or AANAT. We used two state-
of-the-art named entity recognizers (Wei et al.,
2015a; Lee et al., 2016) to identify gene and dis-
ease names from a given abstract. For each com-
bination, we consider the following four cases: (1)
the combination consists of an unassociated gene-
disease pair, not affected by an environment; (2)
although the combination consists of a pair that is
basically unassociated, it becomes associated due
to a particular environment; (3) the combination
consists of an associated pair but it is not affected
by an environment; and (4) the combination con-
sists of an associated pair and the degree of its as-
sociation is changed by an environment. Our sys-
tem is trained to choose the most proper environ-
ment term for a given combination in cases (2) and
(4), but not to choose any term in cases (1) and (3).

3.2 Corpus
For experimental data, we collected 253 raw ab-
stracts that are taken from review papers on GxE
for diverse diseases (Simonds et al., 2016; Dunn
et al., 2011; DiGangi et al., 2013; Iyegbe et al.,
2014; Hunter, 2005). To establish the gold stan-
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dard data to train and test the system, we manually
annotated the biological environments that should
be extracted. For the clear definition of an envi-
ronment, we only annotated the terms that can be
categorized into one of the types in Table 1 and
that are clearly reported as associated with gene-
disease relations in the abstract.

Annotation was conducted by two experts in
bioinformatics, who were given abstracts marked
with gene and disease names. They did not an-
notate combinations consisting of entities that are
incorrectly recognized by the named entity recog-
nizer (i.e., entities that are neither gene nor dis-
ease). For each abstract, one annotator read the
entire body of its text and annotated terms refer-
ring to an environment that is involved in a given
combination of gene and disease, and then another
annotator validated its correctness, in a way simi-
lar to other annotation tasks in BioNLP (e.g., Be-
rant et al. 2014). The agreement on annotated
environment terms between the two annotators is
0.81. If they did not agree on a certain annotation,
they had a discussion on the disagreement and re-
solved it afterwards. The corpus contains a total of
1,429 combinations of unique genes and diseases.
Among them, 341 combinations are annotated as
being affected by environment, i.e., they are linked
to some environment terms annotated in the same
abstract.

4 Method

We use two types of models, a feature-based
model and an neural-based model, that could be
applied to document-level understanding of re-
lations between entities in order to investigate
which models are suitable to GxE recognition and
whether or not there are important issues partic-
ularly in this new task. There are three variants
based on the neural-based model: (1) an attentive
reader (Hermann et al., 2015), (2) a sequence-to-
sequence model (Sutskever et al., 2014), and (3)
a static RNN decoder. We envision that different
characteristics of these models would lead to dif-
ferent performance, according to the types of task.

In our experiment, the three models relied nei-
ther on any prior knowledge nor on external tools
for collecting candidate environment terms. Even
though such words as ‘smoking’ or ‘alcohol’ can
be considered to have a higher probability to be a
biological environment than other words, we did
not use such information to prevent error propaga-

tion and to investigate the possibility of handling
newly introduced terms.

4.1 A feature-based model

We combined two models proposed by Chen
et al. (2016) and Xu et al. (2016): a model that
adapts an entity-centric approach to the RC task,
and a feature-based model that extracts chemical-
disease relations on a document level.

Inspired by these two models, we use the fol-
lowing feature sets that we expect are suitable to
our task. We describe each feature in detail be-
low, where g, d, and e indicate gene terms, disease
terms, and candidate environment terms, respec-
tively: (1) shortest distance from e to g and d in
the abstract, (2) whether e and g pair in the same
sentence, (3) whether e and d pair in the same sen-
tence, (4) whether e, d, and g pair in the same sen-
tence, (5) whether e is included in MeSH (Medical
Subject Headings) terms, (6) the frequency of e in
an abstract, (7) the frequency of e in all abstracts,
(8) whether e and g are connected by the depen-
dency parser (De Marneffe et al., 2006), and (9)
whether e and d are connected by the dependency
parser (De Marneffe et al., 2006).

Using these features, the model tried to classify
all terms that are present in the abstract. If the
model assigns 1 to a term, we regard it as an envi-
ronment. If the model classifies all terms for a par-
ticular gene-disease combination as 0, we assume
that there is no environment for this combination
in the abstract.

4.2 An neural-based model

We propose three neural-based models; 1) an at-
tentive reader, 2) a sequence-to-sequence model,
and 3) a static RNN decoder. The three mod-
els comprise two parts: converting text to vector
representation, called encoding, and predicting the
vector to answer, called decoding. The encoding
is the same in all the three models. We look over
the encoding and then compare each decoding part
of the three models.

4.2.1 Encoding
Our encoding with attention is based on the model
proposed by Chen et al. (2016), which shows bet-
ter performance than any other encoders. The
model runs in two steps, text encoding and atten-
tion, described in detail as follows.

Text encoding: All words are mapped to d-
dimensional vectors using the PubMed/PMC word
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embedding model (Pyysalo et al., 2013) with a
limited dictionary size (V ). We include special to-
kens, ‘<NOE>’, that stands for no environment
terms for the combination and ‘<UNK>’, that
stands for terms that are not included in the dic-
tionary. The sequence of words in an abstract ex-
cluding stop words and special characters is en-
coded as p1, ...,pm ∈ Rd where m is the number
of words in the abstract. Then, we pass the se-
quence p1, ...,pm to bi-directional RNN:

−→
hi = RNN(

−→
h i−1,pi) ∈ Rh, i = 1, ...,m

←−
hi = RNN(

←−
h i+1,pi) ∈ Rh, i = m, ..., 1

p̃i = concat(
−→
hi,
←−
hi) =

[−→
hi←−
hi

]
∈ R2h, i = 1, ...,m

where h is the dimension of hidden units of RNN.
From p1, ...,pm, the model extracts marked

gene and disease names. Let the set of gene
names be {g1, ...gn} where n is the number of
gene names in the abstract. Let the set of dis-
ease names be {d1, ...dl} where l is the number
of disease names in the abstract. Then, we make
the gene-disease combination vector c by element-
wise summation of concatenated vectors:

c = WT
c (
[
g1

d1

]
⊕
[
g2

d1

]
...⊕

[
gn

dl

]
)

where Wc ∈ R2d×2h is the weight vector for gene
and disease.

Attention: In order to enable the model to fo-
cus more on evidence for identifying environment
terms in the abstract, we used the attention mech-
anism. In the QA task, the vector of questions is
projected to a document for calculating the proba-
bility of relevance degree between a question and a
document. Likewise, we project the gene-disease
combination vector (c) to the sequence of word
vectors (p̃1, ..., p̃m). We applied a bilinear term,
a variant of attention mechanism, to combine the
combination vector and the sequence of vectors:

a = softmax(cTWbp̃i), i = 1, ...,m

where Wb ∈ R2h×2h.
And then, we generated an attention vector by

summation of projecting the bilinear term to the
sequence of vectors:

ã =
∑

i

ap̃i, i = 1, ...,m

Figure 2: An overview of each decoding part in
three models

4.2.2 Decoding
In this section, we describe each decoding of the
three models. Figure 2 illustrates an overview of
three models.

(a) An attentive reader
By mapping the attention vector (ã) to vocabulary,
we compute output vector (oa) as follows,

oa = WT
a ã

where Wa ∈ R2h×V :
We choose terms that come from their conjunc-

tion showing the top values of the output vector
and that are represented in the abstract, and con-
sider them as environment. However, if the top
value of the output vector indicates ‘<NOE>’, we
conclude that there is no environment.

(b) A sequence-to-sequence model
A decoder in the sequence-to-sequence model dy-
namically generates tokens from ‘<SOE>’ (start
of token) to ‘<EOE>’ (end of token). The model
is based on a previous hidden vector, a previous
token vector and an encoding vector that is an out-
put vector of the encoding. The previous token
vector is computed by projecting a token gener-
ated in previous time step to an embedding layer.
We try to set the attention vector (ã) to the encod-
ing vector as we expect that the attention vector
is more properly tuned to extract terms depending
on the gene-disease combinations than the original
encoding vector:

ti−1 = WT
e oi−1

yi = RNN(
−→
h i−1, ti−1, ã) ∈ R2h, i = 1, ..., e
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where e is the number of environment terms and
WT

e is an embedding layer.

oi = argmax(WT
s yi), i = 1, ..., e

where WT
s ∈ R2h×V . The oi is the index of the

vocabulary and a sequence of tokens, (o1,...,e), is
regarded as environment terms predicted by the
model.

If the first decoding token indicates ‘<NOE>’
in the output sequence, we assume that there is no
environment.

(c) A static RNN decoder
As a modification to the sequence-to-sequence
model, we suggest that the model uses a static
RNN decoder, which does not use a previous to-
ken vector (ti−1). In particular, the model used
randomly normalized token vectors. Because the
model is needed to set the length of the decoder
in advance, it seems to statically generate envi-
ronment terms, which is an outstanding feature
in comparison to the sequence-to-sequence model.
Because our answer tokens are usually atomic and
spread over the abstract, the previous output state,
which is usually used when making a long se-
quence of tokens, is not useful for our task.

yi = RNN(
−→
h i−1, t′i, ã) ∈ R2h, i = 1, ..., e′

where e′ is the number of environment tokens that
is set in advance.

oi = argmax(WT
r yi), i = 1, ..., e′

where WT
r ∈ R2h×V . The oi is the index of the

vocabulary and a sequence of tokens, (o1,...,e′), is
regarded as environment terms predicted by the
model.

Similar to the sequence-to-sequence model, if
the first decoding token indicates ‘<NOE>’ in the
output sequence, we assume that there is no envi-
ronment.

5 Experiments

5.1 Corpus statistics

In the 253 abstracts that report the presence of
GxE, 341 out of 1429 gene-disease combinations
show a relationship and are considered affected
by environment. Table 2 provides some statistics
of the dataset. There are a total of 247 types of
gene and 106 types of disease. In an abstract,

Category #
Types of genes 267
Types of diseases 106
Avg. # of tokens 304.1
Avg. # of sentences 10.4
Avg. # of environment tokens 2.7
Min. # of environment tokens 1
Max. # of environment tokens 15
Avg. # of environments
per combination

1.4

Min. # of environments
per combination

1

Max. # of environments
per combination

8

Table 2: Data statistics of the GxE dataset. All
values are based on the statistics from the entire
dataset.

there are about 304 tokens and 10 lines on aver-
age. Also, the average number of environment to-
kens is about 3 and the maximum number is 15.
Assuming that the combination shows GxE in an
abstract, the average number of unique environ-
ments per combination is 1.4. From the statistics,
we see that the environment is made of just one
or two words and that the combinations showing
GxE appear rarely.

In order to balance positive and negative val-
ues, we randomly sampled 146 combinations from
almost 1000 redundant combinations that do not
show GxE, and abstracts with a total of 487 com-
binations were given as input to the system. The
input is already marked with gene and disease, and
the annotated gold standard environment term was
used as the target answer. We randomly selected
80% of the dataset (389) and used them for train-
ing, 10% for validation (49), and 10% for test (49).

5.2 Setup
For training the proposed model, we set common
parameters empirically as follows. According to a
given embedding model, the dimension of word
vectors is 200. We built a dictionary using the
most frequent 2.5K words. And we split sentences
using the tool (Kazama and Tsujii, 2003) and to-
kenized the sentences using the supporting tool in
BioNLP Shared Task 20112, where both tools are
specialized to BioNLP.

2https://github.com/ninjin/bionlp_
st_2011_supporting/blob/master/tools/
GTB-tokenize.pl
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Model P R F1
Baseline model (DT) 0.157 0.172 0.152
Baseline model (SVM) 0.279 0.274 0.275
Baseline model (RF) 0.204 0.196 0.196
Baseline model (GB) 0.1 0.123 0.095
Baseline model (AB) 0.168 0.155 0.153
RNN reader (top-5) 0.321 0.359 0.338
Attentive reader (top-5) 0.362 0.373 0.366
Attentive reader (top-10) 0.290 0.542 0.378
Attentive reader (top-15) 0.283 0.639 0.390
Attentive reader (top-20) 0.214 0.670 0.324
Seq2seq model
(basic encoding) 0.305 0.298 0.301

Seq2seq model
(attention encoding) 0.322 0.319 0.320

Static RNN decoder
(basic encoding) 0.484 0.389 0.426

Static RNN decoder
(attention encoding) 0.450 0.380 0.409

Table 3: The performances of different models
on GxE recognition. P and R stand for preci-
sion and recall, respectively. DT, SVM, RF, GB
and AB stand for Decision Tree, Support Vector
Machine, Random Forest, Gradient Boosting, and
AdaBoost, respectively. The RNN reader indicates
attentive reader without attention encoding.

The baseline models followed the initial pa-
rameter setting of a machine learning framework,
sklearn3. We tried to change the parameter setting,
without any significant difference in performance.

In the attentive reader and the static RNN de-
coder, we used LSTM (Hochreiter and Schmidhu-
ber, 1997), a variant of the RNN model, and set
the hidden size and dropout rate of RNN to 64 and
0.5, respectively. On the other hand, the sequence-
to-sequence model used GRU (Cho et al., 2014),
another variant of the RNN model, and we set the
hidden size of 64 and dropout rate of 0.5. In the
case of the static RNN decoder, it is necessary to
set the length of the model due to a static attribute.
Therefore, we evaluated the performance of the
model according to the length, and we found that
the model with a length of 25 performs best.

All weights of three models are initialized from
Gaussian distribution with 0 mean and 0.01 STD.
At each update, we randomly sampled a mini-
batch of 16, and the attentive reader, sequence-
to-sequence model, and static RNN decoder used
the Adam algorithm (Kingma and Ba, 2015) with
0.0001, 0.001, and 0.01 learning rates for opti-
mization, respectively. Except for the attentive
reader, we additionally used l2 regularizations.
And we clipped the gradients when the norm of

3http://scikit-learn.org

the gradients exceeds 10. We ran all neural net-
work models up to 100 epochs.

We implemented the proposed neural network
models using TensorFlow4.

5.3 Results

The overall performance of our proposed mod-
els is shown in Table 3. We ran each model 10
times independently, and reported average scores
in the table. Among others, it shows that it is
hard to detect environment terms with feature-
based models and that it is necessary to use high-
dimensional models such as deep neural network.
It also shows that the static RNN decoders out-
perform other models. It is an interesting result
because, contrary to our result, the sequence-to-
sequence model showed outstanding performance
in WikiReading, which is the most similar task to
ours. The fact that the static RNN decoder shows
best performance is probably due to the character-
istics of our corpus where environment tokens are
more widespread and atomic.

If the reader model and the sequence-to-
sequence model use attention as demonstrated in
other studies, it shows higher performance than
the model without attention. On the other hand,
the static RNN decoders show a different case, in
that our proposed attention seems to hamper the
model in exactly extracting the environment.

In order to monitor how performance varies to
the choice of top-k values, we evaluated the at-
tention model with different top-k values (k =
5, 10, 15, 20). When we increase k values, recall
increases and precision decreases. Overall, pre-
cision of the static RNN decoder is found better
than that of the other models. On the other hand,
the attentive reader model shows outstanding per-
formance in extracting all relevant environment to-
kens.

5.4 Analysis

The baseline models mainly show F1-scores un-
der 30, which are worse than we expected. Among
them, SVM outputs skewed results, failing to find
any environment terms, and classifying all test
data to ‘<NOE>’. As a result, its performance
depends on the number of input data showing no
environment terms, which explains why the model
shows even precision and recall. In contrast to
SVM, the other two models can detect environ-

4https://www.tensorflow.org/
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Polymorphisms in CRHR1 and the serotonin transporter loci: gene x gene x environment
interactions on depressive symptoms. [PMID: 20029939]

... These data suggest that G x E interactions predictive of depressive symptoms may be differentially sensitive to levels
of childhood trauma, ...

attentive reader seq2seq static RNN decoder
high history low status <UNK> levels current hormone stress ... <UNK> <UNK> childhood levels high trauma

Peroxisome proliferator-activated receptor-alpha (PPARA) genetic polymorphisms and
breast cancer risk: a Long Island ancillary study. [PMID: 18586686]

... but there was some evidence of interaction between PPARA variants and aspirin use, defined as use at least once per
week for 6 months or longer. ...

attentive reader seq2seq static RNN decoder
use aspirin <UNK> women levels body mass cancer index ... hcas aspirin

Table 4: Results of experiment with four proposed models. Words in red and blue indicate disease and
gene names, respectively, and the words in bold-face indicate environment terms.

ment terms, but they also identify irrelevant tokens
as environment terms in most cases.

In order to analyze how differently the proposed
models output, we select three proposed models
showing the best performance, the attentive reader,
the sequence-to-sequence model (attention encod-
ing), and the static RNN decoder (basic encoding)
among them, and show the result of experiments
for two abstracts. In Table 4, the first row rep-
resents a partial content of the abstract and the
second row represents the results. We show a se-
quence of tokens in the attentive reader as much
as possible, and the sequence is ordered by scores.
On the other hand, a sequence of tokens in the
sequence-to-sequence model and static RNN de-
coder is ordered in which they were made in the
decoding part.

The first example in Table 4 provides GxE for
two genes, where we ask our models to extract
environment tokens for serotonin transport and
depressive symptoms. Although the three mod-
els failed to identify all answer tokens, the static
RNN decoder shows better performance than the
others. In tokens extracted by the attentive reader,
there are not only answer tokens but also error to-
kens, which results in decreasing the performance.
These weaknesses sometimes work as an advan-
tage for the cases with many environment terms as
shown in the abstract in the second example.

In the second example, the number of tokens is
bigger than that in the first example. Interestingly,
the performance of the attentive reader and that
of the static RNN decoder are reversed. Although
there are many answer tokens, the static RNN de-
coder seems to extract minimal tokens. On the
other hand, the majority of tokens extracted by the

Figure 3: Performance of the two models, the at-
tentive reader and the static RNN decoder model,
according to the number of environment tokens.
X-axis and Y-axis represent the number and F1
score, respectively.

attentive reader are included in answer tokens.
As shown in Table 4, the static RNN decoder

models work better in extracting a small number of
tokens. On the other hand, the attentive reader is
suitable to the data with a large number of tokens.
And the choice of k seems an important factor to
affect the performance of the attentive reader. In
order to see that the observations are common, we
compared F1-scores of three models, the attentive
reader (top-5 and top-20) and the static RNN de-
coder, according to the number of environment to-
kens.

Figure 3 presents the change of F1-score when
the number of environment tokens varies. When
the number is smaller than 2, the static RNN de-
coder works best. While the static RNN decoder is
sensitive to the number, the attentive reader (top-5)
shows stable performance. Therefore, the attentive
reader (top-5) shows better performance than the
static RNN reader at both 4 and 8 points. The per-
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Serious obstetric complications interact
with hypoxia-regulated/vascular-expression
genes to influence schizophrenia risk. [PMID:
18195713]

basic encoding attention encoding

<NOE>
obstetric serious
complications

Table 5: An example showing the benefits of us-
ing attention model: the words in bold-face indi-
cate environment terms.

formance of the attentive reader (top-20), however,
increases steadily according to the number. As a
result, the attentive reader (top-20) works best at 6
points afterwards.

At 6 points, the performance of the static RNN
decoder and that of attentive reader (top-20) are
reversed, so it seems that there is not much perfor-
mance difference among them in the graph. But,
the overall difference in performance is much big-
ger because the average of the numbers in the cor-
pus is nearly 5. As a result, the static RNN decoder
outperforms other models. From this observation,
we anticipate that if we address the GxE task fo-
cusing on the number by combining the two mod-
els, the performance will exceed the current best
score, 0.426.

In the static RNN decoder, the attention encod-
ing did not seem to work well, which is in contrast
to our assumption that it would be better to con-
sider combinations for our task. However, there
is a special case showing the benefits of attention
encoding as shown in Table 5. Table 5 shows
part of an abstract where there are 39 combina-
tions (13 genes and 3 diseases) and four genes as-
sociated with schizophrenia among them have the
same environment terms (serious obstetric com-
plications). Unless considering the combination,
it seems hard to identify environment terms due to
many negative examples. As a result, given a com-
bination, (RGS4 and fetal hypoxia), without an en-
vironment term such as the example in Table 5, the
static RNN decoder using a basic encoding seems
to regard the majority of combinations including
the combination with environment as a negative
example, as shown in the first column of Table 5.
However, interestingly, the static RNN decoder us-
ing attention encoding identified three tokens that
are correct environment terms when the four com-
binations with environment are given. This incor-

rect result may be due to the lack of training exam-
ples like this case. So, if we are given many cases
as shown in Table 5, we envision that attention en-
coding will help improve performance.

6 Conclusion

In this paper, we proposed various methods for
GxE recognition and showed that our models
achieved good performance, despite the inherent
difficulty of the task. Unlike general approaches,
such as CNN, RNN, and attention mechanism,
in order to extract targeted relations or infer the
correct answer, we used an RNN decoder as a
sequence-to-sequence model with a static decoder,
and demonstrated that it is suitable to the task in
extracting terms from documents. It is necessary
to identify conditional information that creates the
contradiction of gene-disease relations to develop
advanced systems for understanding the full eti-
ology of a disease or the full genetic network.
We anticipate that the model will help researchers
not only to identify correct gene-disease relations
but also to apply them to other tasks, such as ex-
tracting location information that indicates where
events occur.
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