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Abstract

Previous open Relation Extraction (open
RE) approaches mainly rely on linguis-
tic patterns and constraints to extract im-
portant relational triples from large-scale
corpora. However, they lack of abilities
to cover diverse relation expressions or
measure the relative importance of candi-
date triples within a sentence. It is also
challenging to name the relation type of
a relational triple merely based on con-
text words, which could limit the useful-
ness of open RE in downstream applica-
tions. We propose a novel importance-
based open RE approach by exploiting the
global structure of a dependency tree to
extract salient triples. We design an unsu-
pervised method to name relation types by
grounding relational triples to a large-scale
Knowledge Base (KB) schema, leverag-
ing KB triples and weighted context words
associated with relational triples. Exper-
iments on the English Slot Filling 2013
dataset demonstrate that our approach
achieves 8.1% higher F-score over state-
of-the-art open RE methods.

1 Introduction

Open Relation Extraction (open RE) (Banko and
Etzioni, 2008) aims at extracting relational triples
from an open-domain corpus. Each triple contains
two arguments and a phrase which denotes the re-
lation between them. In this paper, we focus on
discovering relations between entities.

Most successful open RE approaches (Fader
et al., 2011; Xu et al., 2013; Bovi et al., 2015;
Bhutani et al., 2016) extract salient relational
triples based on lexical or syntactic patterns. How-
ever, such handcrafted or automatically learned

patterns are incapable of covering diverse rela-
tion expressions (Soderland et al., 2013). Sub-
sequently, the shortest path between arguments
derived from a dependency tree has been widely
applied to generate patterns to capture long-
distance and complex relations. However, addi-
tional heuristic rules are usually needed to filter
out the resulting large number of meaningless pat-
terns (Wu and Weld, 2010; Mausam et al., 2012;
Bovi et al., 2015). Besides, such flat syntactic
structures lack the ability to measure the relative
importance of candidate triples in a sentence. For
example, the sentence in E1 places particular em-
phasis on the relation between “Lucille Clifton”
and “1936” which therefore should be retained.
E1 “Lucille Clifton, whom he married in 1958,

was born in 1936.”
We notice that a candidate relational triple is

likely to be salient if its two arguments are strongly
connected in a dependency tree. Instead of re-
lying on patterns to capture important triples, we
use an importance-based strategy by exploring the
entire dependency tree structure to automatically
measure the connection strength of candidate ar-
gument pairs. Specifically, we assume that a re-
lational triple is important if there is a relatively
short random walk-based distance between two
relatively important arguments, measured against
the entire dependency tree of a given sentence. For
each argument pair, we apply an effective random-
walk based method to assign weights to context
words in the sentence (Section 2).

How to assign a meaningful relation type name
to a relational triple is also a primary challenge
for open RE. Previous methods use relevant con-
text words in the associated sentence as relation
phrases (type names) (Del Corro and Gemulla,
2013; Bhutani et al., 2016). However, there is still
no generally accepted guideline for relation phrase
extraction. Multiple relation phrases can corre-
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Figure 1: Framework overview.

spond to the same relation type. Besides, overly-
specific or implicit relation phrases are incapable
of providing adequate information for downstream
applications. For example, the relation between
“Patricia” and “Gary Cooper” cannot be clearly
expressed by a set of words in the following
sentence E2. Therefore, previous studies heav-
ily rely on resources such as patterns (Soderland
et al., 2013), training data (Weston et al., 2013), or
distantly-labeled corpora (Angeli et al., 2015b) to
map open RE triples to a known relation schema.
E2 “Patricia later described her relation with

Gary Cooper as one of the most beautiful things
that ever happed to her in her life.”

Compared with a small number of predefined
relation types such as those defined in Automatic
Content Extraction (ACE) 1, the relation schema
in a large-scale Knowledge Base (KB) such as
DBpedia (Auer et al., 2007) covers a much wider
range of informative relations along with their
type signatures. Considering the open-domain na-
ture shared by open RE and a large-scale KB,
we propose an unsupervised grounding method to
name the relation type between two arguments as
either a KB relation or NONE, by leveraging KB
triples and weighted context information associ-
ated with each argument pair based on pre-trained
word embeddings (Section 3). Compared with
previous methods (e.g., (Riedel et al., 2013; We-
ston et al., 2013)), we regard intra-sentence con-
text words as intermediate results for the subse-
quent grounding process, and we do not require
any aligned training corpora or relation phrases for
KB triples. The proposed framework is illustrated
in Figure 1.

To the best of our knowledge, this is the first
open RE method which exploits the global struc-
ture of a dependency tree to extract salient re-
lational triples. This is also the first unsuper-
vised relation grounding method to name relation

1www.ldc.upenn.edu/collaborations/past-projects/ace.

types for open RE based on KB triples and intra-
sentence context information. Experiments on the
English Slot Filling (SF) (Ji et al., 2010, 2011)
2013 dataset demonstrate that our approach out-
performs state-of-the-art open RE approaches.

2 Relation Extraction

In this section, we introduce a graph-based method
to extract argument pairs of salient relational
triples. We first present the extended dependency
tree construction for each sentence (Section 2.1).
Then we show the computation of the relation
strength between two arguments (Section 2.4)
considering both their random-walk based dis-
tance (Section 2.2) and the relative importance of
each argument in the tree (Section 2.3).

2.1 Extended Dependency Tree Construction
Given a sentence containing N words, we con-
struct a weighted directed graph G = (V, E),
where V = {v1, . . . , vN} represents words, and
E is a directed edge set, associated with each di-
rected edge vi → vj representing a dependency
relation originating from vi to vj . We assign a
weight wij = 1 to vi → vj and add its reverse
edge vj → vi with wji = 0.5. By adding lower-
weighted reverse edges, we can analyze the rela-
tion between two nodes which are not connected
by directed dependency links while maintaining
our preferences toward the original directions.

We first apply a dependency parser to generate
basic uncollapsed dependencies.2 We annotate an
entity or time mention node with its type. For ex-
ample in E1, “Lucille Clifton” is annotated as a
person, and “1936” is annotated as a date. Finally
we perform coreference resolution which intro-
duces coreference links between nodes that refer
to the same entity within a document. We replace
any nominal or pronominal entity mention with its
coreferential name mention. For example, “he” is

2All the tools we used are introduced in Section 4.
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replaced by “Fred James Clifton”. Formally, an
extended dependency tree is an annotated tree of
entity mentions and their links. By adding the re-
verse edges, we generate the final extended depen-
dency tree in Figure 2. We regard any two entities
as a candidate argument pair. E1 contains 4 enti-
ties and therefore we can extract

(
4
2

)
= 6 argument

pairs (e.g., (“Lucille Clifton”, “1936”)).

E1:   Lucille Clifton, whom he married in 1958, was born in 1936. 

Lucille Clifton 

whom 

in 

he 1958 

Fred James Clifton in 

1936 

nsubjpass nmod 

dobj nsubj nmod 

coreference case 

Person Year 

Year 

born 

married 

was 

auxpass 

case 

Person 

Figure 2: Extended dependency tree of E1.

2.2 Distance Computation

As mentioned previously, a shorter distance be-
tween two strongly connected nodes is more likely
to indicate the existence of an important rela-
tion. We compute the distance between two nodes
based on a Markov-chain model of random walk.
We define a random walk through G by assign-
ing a transition probability to each directed edge.
Thus, a random walker can jump from node vi to
vj and represent a state of the Markov chain. For a
node vi, we denoteN (i) as the set of its neighbors.
The probability of transitioning from node vj to
node vi is defined as pji = wji/

∑
k∈N (j)wjk for

nodes vi that have an edge from vj to vi, and 0 oth-
erwise. We define the transition probability matrix
of the Markov chain associated with random walks
on G as P .

The mean first-passage time mji (Aldous and
Fill, 2002) is the average number of steps needed
by a random walker for reaching state i for the first
time, when starting from state j. We call cij =
mij +mji as the average commute time (Lovász,
1993). The fact that cij can be regarded as a dis-
tance in G between nodes vi and vj is proven
by Klein and Randić (1993). Compared with the
shortest path between vi and vj , the value of cij
will decrease when the number of paths connect-
ing vi and vj increases and when the length of any
path decreases (Fouss et al., 2007).

The fundamental matrix Z plays an essential
role in computing various quantities related to ran-

dom walks. For a weighted and directed graph, Li
and Zhang (2010) demonstrate that Z can be com-
puted directly using the following equation:

Z = (I − P + ED)−1 −ED (1)

where I is the identity matrix, E is a matrix con-
taining all 1s, and D is the diagonal matrix with
elements dkk = π(k) where π(k) is the stationary
distribution of node vk in the Markov chain.

We can directly compute a mean first-passage
|V| × |V| matrix and a symmetric average com-
mute time matrix C based on Z as follows:

mij =
zjj − zij
πj

(2)

cij =
zjj − zij
πj

+
zii − zji
πi

(3)

Using the example in Figure 2, we can obtain a
10 × 10 matrix M based on the above steps (10
nodes in total). We list the result involving only
entity nodes in Table 1.

m(row, col) Lucille 1958 he 1936

Lucille 0.0 64.2 24.7 74.7
1958 24.3 0.0 17.3 90.2
he 22.6 32.1 0.0 87.7
1936 20.2 101.3 37.1 0.0

Table 1: Mean first-passage time matrixM for E1.

Argument Role Identification: We notice that
argument roles can be identified based on the mean
first-passage time. In a weighted directed graph,
mij and mji are not necessarily similar. Actu-
ally in many cases nodes that lie on the boundaries
have shorter mean first-passage time to the cen-
tral nodes in the graph while there exists longer
mean first-passage time from a central node to a
node close to the boundary. A central node is
more likely to be the central argument. We define
the first argument as the more important argument.
Therefore, we can regard vi as the first argument of
the argument pair (vi, vj) ifmij is larger thanmji.
If mij and mji are equal, vi and vj have similar
argument roles. For example, the boundary node
“1936” in Figure 2 has shorter first-passage time
to the central node “Lucille Clifton” (i.e., the first
argument) compared with the reverse direction.
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2.3 Node Importance Computation
As we mentioned earlier, a candidate relational
triple is more likely to be salient if it involves im-
portant entities of the sentence. In this section, we
illustrate the node importance computation based
on the extended dependency tree of a sentence.

TextRank (Mihalcea and Tarau, 2004) can be
used to compute the importance of each node
within G. Similarly, suppose a random walker
keeps visiting adjacent nodes in G at random. The
expected percentage of walkers visiting each node
converges to the TextRank score.

We define a set of preferred nodesR which cor-
respond to entities in a sentence. We assign higher
preferences toward these nodes when computing
the importance scores since entities are more in-
formative for relation extraction (Björkelund and
Farkas, 2012). We extend TextRank by intro-
ducing a new measure called “back probability”
d ∈ [0, 1] to determine how often walkers jump
back to the nodes inR so that the converged score
can be used to estimate the relative probability of
visiting these preferred nodes. We define a pref-
erence vector pR = {p1, ..., p|V|} such that the
probabilities sum to 1, and pk denotes the relative
importance attached to vk. pk is set to 1/|R| for
vk ∈ R, otherwise 0. Let I be the 1 × |V| im-
portance vector to be computed over all nodes as
follows.

I(i) = (1− d)
∑

j∈N (i)

wji∑
k∈N (j) wjk

I(j) + d · pi (4)

ENTITY i Lucille he 1958 1936

I(i) 0.28 0.12 0.06 0.01

Table 2: Importance score of each entity in E1.

2.4 Combination and Filtering
Given the average commute time cij between
nodes vi and vj (Section 2.2) and their relative im-
portance scores I(i) and I(j) in G (Section 2.3),
we will discuss how to combine them and gen-
erate the final score which can be used to mea-
sure the relation strength between two nodes. In-
tuitively, there exists a strong relation when there
is a shorter distance between two relatively impor-
tant nodes.

Previous approaches (Spagnola and Lagoze,
2011; Guo et al., 2011) consider the distance be-
tween two nodes and the influence of each node

modeled by its weighted frequency to measure the
strength of links in networks. Similarly, in our
setting we can regard cij as the distance between
vi and vj and use the relative importance score to
measure the influence of each node in G. There-
fore, we obtain Equation 5 to compute the rela-
tion strength F (i, j) between nodes vi and vj . We
are more confident in predicting the existence of a
salient relation with stronger relation strength.

F (i, j) =
I(i)× I(j)

c2
ij

(5)

Relation Filtering: We get a complete entity
graph since we analyze the connection between
any two entities in a sentence. In this work, we fo-
cus on identifying the most significant structures
among entities based on the connection strength
we have obtained. Since the entity graph is undi-
rected, we can simply apply the maximum span-
ning tree algorithm to keep those relatively im-
portant pairs. For E1, we obtain three argument
pairs resulting after filtering: (“Lucille”, “1936”),
(“Fred”, “1958”), and (“Lucille”, “Fred”). In
comparison, the relations between argument pairs
such as (“1958”, “1936”) and (“he”, “1936”) are
less important.

3 Relation Grounding

We have presented how to extract candidate argu-
ment pairs in Section 2. In this section, we first
introduce how to rank the context words given
a pair of arguments (Section 3.1). Then we de-
scribe methods of learning KB relation representa-
tions from existing KB triples based on pretrained
word embeddings. Finally we ground each rela-
tional triple to a KB relation or assign NONE (Sec-
tion 3.2).

3.1 Context Word Selection and Weighting

In this section, we introduce how to extract infor-
mative context words and their associated weights
given an argument pair (vi, vj) in a sentence based
on the average commute time matrix C introduced
in Section 2.2. Previous work (Yu and Ji, 2016)
regards this problem as finding important nodes
in G relative to given arguments. However, they
need to run the algorithm repeatedly to analyze the
same graph for each argument pair. Here we dis-
cuss an efficient method to extract weighted con-
text words.
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We only keep nouns, verbs, adjectives, preposi-
tions, and particles as indicative context words X .
We assume that a context word vk ∈ X is more
important relative to (vi, vj) if cik + ckj is close to
cij . Actually if the relation between vi and vj does
not rely on any indicative words, cij will be much
smaller than cik + ckj considering other nodes in
the same sentence. We denote Λ as the weight set
for all the context words of a given argument pair
(vi, vj) as follows. The higher λk is, the more im-
portant the context word vk is relative to (vi, vj).

λk =
cij

cik + ckj
(6)

In E1, given the argument pair (Lucille Clifton,
Fred James Clifton), we generate the following
weighted context words: {married : 0.60, in1 :
0.36, born : 0.29, in2 : 0.24}.

3.2 Grounding

The associated weighted context words of each
candidate argument pair are not sufficiently infor-
mative and flexible to clearly express the relation
between two arguments. Thus, we aim to name the
relation between a pair of arguments as one of the
KB relations or NONE by comparing the semantic
representations of context words and KB relations
based on word embeddings. We also learn argu-
ment type signatures from KB triples.

For each word we obtain its pretrained word
embedding e ∈ Rk where k is the embedding di-
mensionality. For a phrase which contains multi-
ple words, we simply average the vectors of all the
single words in the phrase as its embedding.

Given a KB triple (h, l, t) composed of two en-
tities h, t and a KB relation l ∈ L (the set of KB
relations), we leverage a large-scale KB to learn
the representation for each KB relation motivated
by the basic idea behind previous studies (Bordes
et al., 2013; Mikolov et al., 2013) that relation pat-
terns can be represented as linear translations. We
use Sl = {(hi, l, ti), i = 1, . . . , |Sl|} to represent
all the KB triples with the KB relation l.

KB relation type names can also provide impor-
tant semantic information for relation representa-
tion and disambiguation especially when multiple
relations co-occur in the same sentence, such as
family relations (e.g., spouse, parents, and other
family). We segment a compound name of a KB
relation type into a set of words. For example, we

separate a DBpedia relation type name political-
Groups into {political, groups}. Similarly, we av-
erage the vectors of all the words in a relation type
name as its embedding ẽl ∈ Rk. Incorporating
both implicit semantics from KB tuples and ex-
plicit semantics from KB relation names, we rep-
resent the relation embedding of each KB relation
l as follows.

el =
1
|Sl|

|Sl|∑
i=1

(ehi
− eti + ẽl) (7)

Both of the involved embeddings are obtained
from the linear combination of pretrained word
embeddings, which guarantees that they are in the
same space.

Given a single KB relation type l, an argument
pair (vi, vj) and a single context word x, we can
compute the cosine similarity between any can-
didate open RE triple and any KB relation. We
calculate the absolute value since we have already
captured the direction of arguments in Section 2.2.
Therefore, we can regard similarity scores −1 and
1 equally and 0 as the lowest score.

S(l, (i, j, x)) =
|ex · el|
‖ex‖‖el‖ (8)

When there are multiple context words x ∈ X ,
we can compute the weighted cosine similarity
between them as follows based on the squared
weights of context words described in Section 3.1.

S(l, (i, j,X )) = max
x∈X

S(l, (i, j, x))× λ2
x (9)

Since we have multiple KB relations l ∈ L, we
can ground a candidate relational triple (i, j,X )
and obtain its relation l̂i,j,X considering all the
possible relations. The predicted relation can ei-
ther be assigned a valid KB relation or NONE. We
use a marker to denote the relation between vi and
vj which cannot be grounded to any KB relation.

l̂i,j,X = arg maxl∈L S(l, (i, j,X )) (10)

Relation Argument Type Constraints
For each KB relation, we can obtain its type

constraints for its two arguments. Take the rela-
tion birthPlace as an example: the entity types of
two arguments should be person and location.
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Given all the KB triples, we can estimate the
probability of one of the arguments belonging to
a certain entity type z ∈ Z , where Z represents
the set of all the KB concept types. For a given
KB relation l, we define c(k ; z | l) to be the
number of times the kth argument is seen paired
with the entity type z where k ∈ {1, 2} since there
are two arguments. Given the above definitions,
the maximum likelihood estimate is as follows.

p(k, z | l) =
c(k ; z | l)∑

z∈Z c(k ; z | l) (11)

Therefore, given a candidate argument pair
(vi, vj) and their entity types zi and zj , we can
compute the probability of its being labeled as
the relation l by considering both p(1, zi | l) and
p(2, zj | l). We set S(l, (i, j,X )) to 0 if the har-
monic mean of p(1, zi | l) and p(2, zj | l) is smaller
than a given threshold which will be introduced
later in Section 4.4. We will not consider a can-
didate KB relation for comparison if the argument
type of i or j fails to satisfy its type constraints. In
this way, we can filter out some candidate triples
and reduce the number of similarity computations.
For example, given a KB relation placeOfBurial,
the concept type Species is less likely to be the
correct second argument type compared with other
entity types such as City and Location. Remind
that the order of arguments in the candidate triple
has been introduced in Section 2.2.

4 Experiments

4.1 Knowledge Base and Word Embeddings
We use the April 2016 dump of DBpedia as
our KB which contains 2, 060 relation types and
30, 024, 093 relation triples in total. We use
the 300-dimensional GloVe vectors (Pennington
et al., 2014) pretrained on 6 billion tokens from
the English Gigaword Fifth Edition and a 2014
Wikipedia dump.

4.2 Evaluation based on Slot Filling
There are several benchmarks developed for open
RE (e.g., (Fader et al., 2011; Stanovsky and Da-
gan, 2016)). However, we mainly focus on re-
lations between entities and therefore we cannot
directly compare with state-of-the-art open RE
methods on those datasets. To evaluate the ef-
fectiveness of our approach, we choose the TAC-
KBP SF (McNamee and Dang, 2009; Ji et al.,

2010, 2011; Surdeanu and Ji, 2014) task as our
evaluation platform which has been widely used
by open RE methods (Soderland et al., 2013; An-
geli et al., 2015b) since 2009. The goal of SF is
to extract the values (slot fillers) of specific at-
tributes (slot types) for a given entity (query) from
a large-scale corpus which includes news docu-
ments, web blogs, and discussion forum posts.
Justification sentences should be provided to sup-
port slot fillers. SF defines 25 slot types for person
queries and 16 slots for organization queries.

We use the SF 2013 dataset for which we
can compare with the ground truth and state-
of-the-art open RE results reported in SF. We
obtain 1, 701 relevant documents from the offi-
cial evaluation assessment for 50 person queries
and 50 organization queries. We manually
map KB relations to slot types based on TAC-
KBP slot descriptions.3 Note that a single
KB relation can be mapped to multiple slot
types. For example, birthPlace can be mapped
to per:city of birth, per:stateofprovince of birth,
and per:country of birth. We assign a subtype
(e.g., country, province, or city) to a location entity
based on gazetteer matching.

DBpedia Relations Slot Types

founder org:founded by
keyPeople org:top members employees
education per:schools attended
workInstitution per:employee or member of
birthDate per:date of birth

Table 3: Example Mappings from DBpedia rela-
tions to slot types.

We ignore all the slot types which require nomi-
nal phrases as fillers (e.g., per:cause of death) and
slot types per/org:alternate names which depend
on cross-document coreference resolution. We
apply Stanford CoreNLP (Manning et al., 2014)
for English part-of-speech tagging, name tagging,
time expression extraction, dependency parsing,
and coreference resolution. We use the official
Slot Filling evaluation scoring metrics: Precision
(P), Recall (R), and F-measure (F1).

As shown in Table 4, our method outperforms
the KBP2013 SF submission from the Univer-
sity of Washington (Soderland et al., 2013) which
applies Open IE V4.0, which is an extension of
SRL-based IE (Christensen et al., 2011) and noun

3The resource is publicly available for research purposes
at: http://nlp.cs.rpi.edu/data/dbpedia2slot.zip.
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Method P R F1

UW Official (Soderland et al., 2013) 69.9 12.2 20.8
UMass Official (Singh et al., 2013) 10.6 19.5 13.7

Our Approach
[1] KB Tuples 17.3 21.1 19.0
[2] Relation Names 24.3 30.9 27.2
[1]+[2] Joint 26.2 32.4 28.9

Table 4: Performance (%) on KBP2013 English
SF based on different relation representations.

phrase processing (Pal and Mausam, 2016), to
generate relation triples. This is their latest pub-
lished approach which uses Open IE for Regular
Slot Filling. Their approach achieves very high
precision but comparatively low recall (12.2%). In
our experiments, we keep all the candidate triples
which could be mapped to a slot type without
tuning thresholds. On the same dataset, we also
compare with an approach (Singh et al., 2013)
which extracts relations with matrix factorization
and universal schemas (Riedel et al., 2013) con-
sisted of textual patterns and all the slot types. We
do not directly compare with the work of Angeli
et al. (2015b) because of the lack of access to their
SF output.4

The importance-based strategy is effective at
extracting more salient information. For example,
previous methods only extract one argument pair
(“the top Egyptian cleric”, “Wednesday”) from
the sentence “Sheikh Tantawi, the top Egyptian
cleric who died on Wednesday on a visit to . . . ”
while omitting the person name. Our method ex-
tracts both (“Sheikh Tantawi”, “Egyptian”) and
(“Sheikh Tantawi”, “Wednesday”) with their as-
sociated top-weighted context words “cleric” and
“died” respectively, since the connection between
“Egyptian” and “Wednesday” is much weaker.

Compared with relation phrases, the word em-
beddings of weighted context words are more
flexible for comparison when we map relational
triples to a known schema. For example, it is
impossible for previous methods (e.g., (Soder-
land et al., 2013)) to summarize all the related
mentions (e.g., “appointed” and “CEO”) and
manually map them to the relation employment.
Therefore previous approaches missed the slot
filler “Al-Azhar University” of the query “Mo-
hammed Sayed Tantawi” from the following sen-
tence “Tayeb, the president of Al-Azhar Uni-
versity since 2003, succeeds Mohammed Sayed

4The highest recall they achieve is around 13% on all the
slot types including nominal relations on the same dataset.

Tantawi” as “succeeds” was not included into the
related terms. Our approach extracts it based on
their semantic representations.

In addition, we obtain more generalized rela-
tion type names based from the KB schema. For
example, we ground the relation in E2 between
“Patricia” and “Gary” to influencedBy. Simi-
larly, in the sentence “Ginzburg shared the Nobel
Physics Prize with US physicists Alexei Abrikosov
and Anthony Leggett for their contributions to the
theory of superconductors ...”, the relation phrase
“shared the Nobel Physics Prize with” between
“Ginzburg” and “Alexei” is too specific compared
with the grounded KB relation alongside by our
approach for subsequent applications.

4.3 Impact of Relation Representations
In Section 3.2, we use KB tuples and their rela-
tion type names to learn KB relation representa-
tions. As shown in Table 4, our approach can al-
ready achieve promising performance based on the
relation representations learned from KB relation
names. However, sometimes relations are implic-
itly expressed. It is likely that the context words of
a relation triple and its corresponding KB relation
name are not semantically similar. In this case, we
need more general relation representations with
the help of millions of KB tuples. For example,
we can ground the relation school between “Mc-
Gregor” and “Colorado State University” suc-
cessfully by comparing the representation of con-
text words “tight” and “end” with the joint rela-
tion representations from the following sentence:
“McGregor was a two-time All-America tight end
at Colorado State University” even though this re-
lation is not explicitly described.

4.4 Impact of Argument Type Constraints
As mentioned in Section 3.2, we aim to filter out
some candidate relation triples if the entity types
of the arguments are not popular for a given KB
relation. By tuning thresholds, there are no signif-
icant differences in performance when the thresh-
old falls in the range 0.05–0.2. On the other hand,
if the threshold is set too high (e.g., greater than
0.35%), we will mistakenly discard correct candi-
dates which satisfy type constraints.

We implement Jenks optimization (Wikipedia,
2017) to automatically split the frequency values
of all entity types into two tiers given a certain ar-
gument position and a KB relation. This is done
by minimizing each tier’s average deviation from
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the tier mean, while maximizing each tier’s devi-
ation from the means of other groups (McMaster
and McMaster, 2002). We set the threshold auto-
matically using the obtained natural breaks for two
arguments respectively to compute the harmonic
mean of them. This approach achieves 28.9% F1

which is comparable to the highest F1 (29.2%) ob-
tained by threshold tuning.

1 

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

 Threshold Tuning
 Threshold based on

         Jenks

F-
sc

or
e (

%
)

Threshold (%)

Figure 3: Performance (%) based on different
thresholds for argument type constraints.

5 Related Work

5.1 Open Information Extraction
Lexical or syntactic features and patterns
have been widely used to extract relational
triples (Suchanek et al., 2009; Poon and Domin-
gos, 2009; Wu and Weld, 2010; Nakashole et al.,
2011; Fader et al., 2011; Nakashole et al., 2012;
Mausam et al., 2012; Bovi et al., 2015; Angeli
et al., 2015b; Grycner and Weikum, 2016). Our
work explores the global structure of a depen-
dency tree to identify salient triples within a
sentence. Some open IE approaches have the
capability to extract relations between concepts
or phrases (Kok and Domingos, 2008; Min et al.,
2012; Del Corro and Gemulla, 2013). Currently
we focus on relations between two entities.

Given the SF schema, Soderland et al. (2013)
manually design rules to map relational triples to
slot types within hours. Researchers also use dis-
tantly labeled corpora to compute the PMI2 value
between open IE and SF relation pairs (Angeli
et al., 2015b). Instead, we propose a novel ground-
ing approach which facilitates building a mapping
table between KB relations and slot types. We
do not compare with RE methods specifically de-
signed for SF (Sun et al., 2011; Li et al., 2012;
Angeli et al., 2015a) since these methods actively
search for candidate fillers of the given queries

based on slot-specific training resources while ig-
noring the salient relations which are irrelevant to
the queries or the predefined slot types.

5.2 Relation Grounding

Besides textual features, large-scale knowledge
bases are widely used for distant supervised rela-
tion extraction (Mintz et al., 2009; Riedel et al.,
2010) to deal with the challenges caused by in-
sufficient training data. Weston et al. (2013) com-
bine two relation representations trained from KB
triples and context words independently for rela-
tion extraction. Recent studies such as (Toutanova
et al., 2015) train relation representations of
KB and textual relations jointly. Another kind
of representations combining matrix factoriza-
tion (Riedel et al., 2013) with first-order logic in-
formation is learned by Rocktäschel et al. (2015).
Compared with these previous efforts, our un-
supervised grounding method does not need the
aligned training corpus or relation mentions for
KB tuples. Wijaya and Mitchell (2016) introduce
an approach to map words to KB relations based
on web text, but they only focus on verb phrases.

5.3 Node Importance Computation

Graph-based algorithms such as PageRank (Page
et al., 1999) and TextRank (Mihalcea and Tarau,
2004) are useful in keyword extraction. The way
we rank nodes is most similar to the work of White
and Smyth (2003) and Yu and Ji (2016) which gen-
erate the relative importance score of each node to-
ward a set of preferred nodes. However, they only
deal with unweighted undirected graphs.

6 Conclusions and Future Work

We propose an unsupervised open relation extrac-
tion method by exploring the global structure of
dependency tree and show its effectiveness in ex-
tracting salient candidate relation triples. We also
leverage the knowledge from the large-scale KB
relation triples and weighted context words based
on general embeddings to enhance the quality of
our relation grounding technique. Experiments on
English Slot Filling demonstrate that our approach
outperforms state-of-the-art open RE approaches.
In the future, we aim to extend our framework for
multilingual open RE based on the KB schema.
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