@inproceedings{yu-etal-2017-open,
title = "Open Relation Extraction and Grounding",
author = "Yu, Dian and
Huang, Lifu and
Ji, Heng",
editor = "Kondrak, Greg and
Watanabe, Taro",
booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = nov,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://preview.aclanthology.org/jlcl-multiple-ingestion/I17-1086/",
pages = "854--864",
abstract = "Previous open Relation Extraction (open RE) approaches mainly rely on linguistic patterns and constraints to extract important relational triples from large-scale corpora. However, they lack of abilities to cover diverse relation expressions or measure the relative importance of candidate triples within a sentence. It is also challenging to name the relation type of a relational triple merely based on context words, which could limit the usefulness of open RE in downstream applications. We propose a novel importance-based open RE approach by exploiting the global structure of a dependency tree to extract salient triples. We design an unsupervised relation type naming method by grounding relational triples to a large-scale Knowledge Base (KB) schema, leveraging KB triples and weighted context words associated with relational triples. Experiments on the English Slot Filling 2013 dataset demonstrate that our approach achieves 8.1{\%} higher F-score over state-of-the-art open RE methods."
}
Markdown (Informal)
[Open Relation Extraction and Grounding](https://preview.aclanthology.org/jlcl-multiple-ingestion/I17-1086/) (Yu et al., IJCNLP 2017)
ACL
- Dian Yu, Lifu Huang, and Heng Ji. 2017. Open Relation Extraction and Grounding. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 854–864, Taipei, Taiwan. Asian Federation of Natural Language Processing.