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Abstract

Dialog act segmentation and recognition
are basic natural language understanding
tasks in spoken dialog systems. This pa-
per investigates a unified architecture for
these two tasks, which aims to improve the
model’s performance on both of the tasks.
Compared with past joint models, the pro-
posed architecture can (1) incorporate con-
textual information in dialog act recogni-
tion, and (2) integrate models for tasks of
different levels as a whole, i.e. dialog act
segmentation on the word level and dialog
act recognition on the segment level. Ex-
perimental results show that the joint train-
ing system outperforms the simple cascad-
ing system and the joint coding system on
both dialog act segmentation and recogni-
tion tasks.

1 Introduction

Recently the burst of interactive assistants and
chatbots leads to an increasing interest of dialog
systems. Natural language understanding (NLU),
as an important component of dialog system, is
usually responsible for dialog act (DA) or dialog
intent tagging, where text classification techniques
are necessary. Dialog act (also speech act) is a
representation of the meaning of a sentence at the
level of illocutionary force (Stolcke et al., 2000).
For instance, a sentence “How is the weather?”
belongs to the dialog act class Question. For an-
other sentence, “The weather is quite good to-
day.”, if it follows a previous Question sentence,
it should be an Answer to the question. Otherwise
it is likely to be a Statement. Therefore, DA recog-
nition requires us to understand the sentence from
semantic, pragmatic and syntactic aspects, and its
context plays an important role as well.

Words hi my name is Erica
Segment E I I I E
DA Greeting Statement

Table 1: DA segmentation and recognition.

The prerequisite for DA recognition is to split a
sequence of words into segments, each of which
corresponds to one DA unit. Especially for spo-
ken dialog systems, NLU is based on Automatic
Speech Recognition (ASR) hypotheses or tran-
scripts, in which we cannot make any assump-
tion of punctuation such as periods, commas and
question marks for segmentation. Therefore DA
segmentation becomes essential for spoken dialog
systems. As the example given in Table 1 shows,
a long utterance is firstly split into two segments
“hi” and “my name is Erica”, to which DA tags
“Greeting” and “Statement” are assigned after-
wards. DA segmentation is a sequence labeling
task and an “IE” tag coding scheme is adopted to
describe segment boundaries, where “I” denotes
“inside” of a segment and “E” denotes the “end”.
While the DA segmentation is a pre-process of DA
recognition, recognition of DA in the sequence
helps segmentation. Thus, DA segmentation and
recognition are two highly related tasks. We can
expect that joint learning of these two tasks can
improve the performance of models. In this pa-
per we investigate architectures of joint learning
of DA segmentation and recognition, and analyze
their performances. DA segmentation is a se-
quence labeling task on the word level and DA
recognition is a classification task on the DA seg-
ment level. Our model is flexible and can be ap-
plied to tasks of different levels.

The rest of this paper is structured as follows.
Section 2 gives a literature review. Section 3 de-
scribes a hierarchical neural network model for
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DA recognition and explains its ability to model
sequential short texts. Section 4 focuses on joint
learning of DA segmentation and recognition, and
explores three models for joint tasks. Section 5
shows experimental results on three tasks using
the proposed models. Lastly in Section 6 and 7
we discuss the results and give a conclusion.

2 Related Works

In the task of DA recognition, Shriberg et al.
(1998) applied decision tree using rich features
and emphasized the importance of prosodic fea-
tures. Stolcke et al. (2000) used HMM to cap-
ture the intrinsic patterns of DA sequence. Vari-
ants of neural network have been recently used in
this task. In (Lai et al., 2015), a recurrent convo-
lutional neural network is applied to text classifi-
cation, which consists of a RNN layer and a max-
pooling layer over it. Ji et al. (2016) proposed a
latent variable RNN for modeling discourse rela-
tions between sentences. Khanpour et al. (2016)
investigated RNNs with different settings of hy-
perparameters. A hierarchical neural network was
introduced by Lee and Dernoncourt (2016). It
firstly uses a RNN layer or a CNN layer to gen-
erate vector representations of short texts. Then a
two-layer feedforward ANN takes a sequence of
these vector representations to predict the prob-
ability distribution of output labels. Li and Wu
(2016) used gated RNN for both vector represen-
tation generation and classification in their hierar-
chical model. We base our work on hierarchical
neural network for DA recognition and propose a
unified architecture for joint DA segmentation and
recognition, which is discussed in Section 4.

3 Hierarchical Neural Network

When we regard DA recognition as a text clas-
sification task, there are two difficulties in accu-
rately recognizing a DA. In the first place, texts in
DA recognition are often limited to a small num-
ber of words while tasks such as sentiment anal-
ysis and news topic categorization aim to classify
fairly long documents and can exploit mainly n-
gram models. Compared with long documents, di-
alog utterances have much fewer words and it is
difficult to extract enough information from sim-
ple word co-occurrence features. Secondly, it is
of great importance to consider contexts in DA
recognition. For instance, a sentence “the weather
is quite good today” is regarded as an Answer if
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Figure 1: Hierarchical neural network: an exam-
ple of input and output is given in the figure.

it appears after another speaker questioning the
weather. Otherwise, it is a Statement.

In order to address aforementioned problems,
we use a hierarchical neural network for DA
recognition. The hierarchical model firstly takes
distributed word representation as input, which
contains richer semantic information than n-gram
features do. Secondly, it exploits history informa-
tion to recognize DA tags of ambiguous utterances
such as “the weather is quite good today”. The
general architecture of the hierarchical neural net-
work consists of a sentence encoder and a classi-
fier. A sentence encoder neural network encodes
a sequence of words into a vector (sentence repre-
sentation vector) of a fixed length, which will be
explained in Section 3.1. A classifier neural net-
work predicts the label given representation vec-
tors of the corresponding sentence and its preced-
ing sentences, which will be explained in Sec-
tion 3.2. The architecture of hierarchical neural
network used in our work is shown in Figure 1.

3.1 Sentence Representation

A sentence encoder encodes a sequence of words
into a fixed-length vector. By training the encoder,
it obtains the ability to mine useful task-related in-
formation from a word sequence. We choose Bidi-

705



rectional Long Short-Term Memory (BiLSTM) - a
variant of RNN. LSTM (Hochreiter and Schmid-
huber, 1997) can better avoid the vanishing gra-
dient problem compared with normal RNNs, thus
it is suitable for processing information through
many time steps.

Input words wt
1:L are firstly converted to word

embeddings through a lookup table in word em-
bedding layer. Given word embeddings xt

1:L, BiL-
STM outputs hidden states ht

1:L, where an output
hidden state hi is the concatenation of forward
hidden state

−→
h i and backward hidden state

←−
h i.

We use a max pooling layer to extract the most in-
formative features over time, and produce a single
vector st as the encoding of word sequence wt

1:L.

3.2 Sequence Classification

Given sentence encoding vectors st−k:t, we use the
second neural network to predict the label of the t-
th sentence. We use a history of length k instead
of the whole history since dialog act usually de-
pends on the very late history and it also acceler-
ates training. Again we use BiLSTM and it works
in a similar manner as the BiLSTM sentence en-
coder does but without max pooling layer, since
the latest sentence provides the most information
for DA recognition. Given the final hidden state, a
fully-connected layer with a softmax function out-
puts the predicted label yt.

4 Joint Learning

Joint learning (multi-task learning) is an approach
to learn from several related tasks in parallel so
that it improves the model’s ability to general-
ize features, and promotes its performance on the
different tasks. In natural language processing
(NLP), many higher-level tasks usually depend on
outputs from lower-level tasks, for example named
entity recognition (NER) relies on part-of-speech
(POS) tagging. Hence there are many cases where
models can benefit from joint learning.

Collobert and Weston (2008) introduced a neu-
ral network-based joint architecture making min-
imal assumption of feature engineering, and also
concluded three kinds of joint model, i.e. cascad-
ing features, shallow joint training, and deep joint
training. A cascading model, however, does not
include any joint learning procedure, and shallow
joint training is actually to convert tags of differ-
ent tasks into one tag. In the rest of this paper,
we will name them cascading model, joint cod-

ing model, and joint training model for accuracy.
Zheng et al. (2013) applied a joint coding method
to Chinese word segmentation and POS tagging by
changing POS labels using a “BIES” tag coding
scheme. Peng and Dredze (2016) improved NER
by word representation learnt in word segmenta-
tion task using a LSTM-CRF model. Yang et al.
(2016) proposed a multi-task cross-lingual model
for sequence labeling tasks using RNN-CRF struc-
tures. These approaches to joint learning mostly
attempt to learn shared representation of words
and characters from different tasks.

Unlike aforementioned NLP tasks, DA segmen-
tation and recognition deal with units of differ-
ent levels, i.e. word level and DA segment level.
Joint learning of these two tasks does not nat-
urally fit in the architectures above. Previous
works usually use joint coding methods. Zim-
mermann 2006 (2006) used a hidden-event lan-
guage model for sequence labeling of DA type
and its boundary on word level. It also exploits
prosodic features in classification. Zimmermann
(2009) and Quarterono et al. (2011) applied condi-
tional random field (CRF) and the former also in-
vestigated how different tag coding schemes affect
the model’s performance. Granell et al. (2009)
incorporated syntactic features and used a combi-
nation of a HMM at the lexical level and a Lan-
guage Model (LM) at the DA level. Hakkani-
Tür et al. (2016) used a single sequence label-
ing LSTM model for joint semantic frame pars-
ing, where sentence-level intent and domain tags
are predicted at the last token of the sentence. An
encoder-decoder-pointer framework was used for
chunking in (Zhai et al., 2017), where segmenta-
tion was done by a pointer network and labeling
was done by a decoder LSTM.

To our knowledge, there is no previous work on
neural network based joint model applied to joint
learning of DA segmentation and recognition. In
this section, we investigate cascading model, joint
coding model, and joint training model using neu-
ral networks. In the joint coding model, joint
tag coding is used to combine segmentation and
recognition tags and leads to a word-level se-
quence labeling task. For cascading and joint
training models, the proposed architectures can
deal with tasks of different unit levels and the hi-
erarchical model introduced in Section 3 is inte-
grated to make use of contextual information.
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Figure 2: Joint coding model: an example of input
and output is given in the figure.

4.1 Joint Coding Model
4.1.1 Joint Coding
In the joint coding method, one single model pre-
dicts labels of DA segmentation and recognition at
the same time, so that the units of these two tasks
should keep consistency. We use a joint tag cod-
ing scheme to combine labels of segmentation and
recognition and make them a word-level sequen-
tial labeling problem as shown in Table 2. This al-
lows us to use one single sequential labeling model
to solve two tasks simultaneously. The proposed
joint coding model is given in Figure 2.

4.1.2 Tag Score
A sequence of words w1:L is firstly mapped to
word embeddings x1:L, then we feed them to
the following RNN layer which produces hidden
states h1:L. In order to provide contextual infor-
mation explicitly, when we predict a label for the
i-th step, we also make use of hidden states of
preceding steps (hi−1, hi−2, etc.) and succeeding
steps (hi+1, hi+2, etc.). The concatenated vector
[hi−2,hi−1,hi,hi+1,hi+2] is then fed to a neural
network layer that computes a tag score si, where
si ∈ R|C|, the t-th element in si indicates the score
of choosing the t-th tag at the i-th step, and |C| is
the number of tag classes.

4.1.3 Tag Inference
Since there often exists invalid tag sequences such
as an “E S” following an “I Q” and we would like
to penalize such invalid tag transitions, we apply a
post process to compute the optimal tag sequence
considering the transition probabilities by using a
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Figure 3: Cascading model and joint training
model: in cascading model, part (a) on the left
is a component for segmentation and part (b) on
the right is for DA recognition. In joint training
model, word embedding layers in dashed line rect-
angle are shared by both segmentation and recog-
nition models. An example of input and output is
given in the figure.

transition score matrix Amn, which indicates the
score of jumping from m-th tag to the n-th tag.
Let st

i denotes the t-th element of si, the score of
a tag sequence t1:L is defined as:

score(t1:L) =
L∑

i=1

(Ati−1ti + st
i), (1)

and we use the Viterbi algorithm to find the op-
timal tag sequence t∗1:L that maximizes the se-
quence score:

t∗1:L = arg max
∀t1:L

score(t1:L). (2)

4.2 Cascading Model and Joint Training
Model

DA segmentation splits a sequence of words into
segments, and DA recognition assigns a dialog act
type to them. Thus, these two tasks are naturally
conducted in a cascading manner. The proposed
cascading model is shown in Figure 3.

The left part is a sequential labeling model for
segmentation. Similar to the joint coding model,
a word embedding layer and a layer of RNN are
used to produce a sequence of hidden states h1:L.
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Words hi my name is Erica nice to meet you
Segmentation E I I I E I I I E
DA Greeting Statement Greeting
Joint tag coding E G I S I S I S E S I G I G I G E G

Table 2: Joint “IE” tag coding scheme, where “I” and “E” refer to “inside” and “end” respectively. We
concatenate segmentation tag with DA tag to produce coded tags. For example, “E S” denotes the end
of a Statement segment.

Then the top layer outputs predicted labels y1:L.
The right part of Figure 3 uses the hierarchical
neural network model introduced in Section 3. In
order to provide contextual information, we also
maintain a history of sentence representation vec-
tors of previous sentences using the same hierar-
chical neural network.

Joint training model can be seen as a cascad-
ing model with shared components. As shown in
Figure 3, the proposed model uses only one set
of word embeddings compared with the cascading
one, while other task-specific parts are still sep-
arated. By updating the shared word embeddings
using errors from both tasks, the model is expected
to learn features from DA segmentation and recog-
nition and improve its ability of generalization.

5 Experimental Evaluations

In order to evaluate our models, we conducted
three sets of experiments:

• Segmentation task: evaluate models’ DA
segmentation performance only.

• Recognition task: evaluate models’ DA
recognition performance given correct seg-
ments.

• Joint segmentation and recognition task:
evaluate models’ DA segmentation and
recognition jointly, where predicted segments
are given for DA recognition.

For each set of experiments, we also vary the
length of history k for the cascading model and
the joint training model.

5.1 Data Set
We use a one-to-one Japanese chatting corpus
collected using a conversational android ER-
ICA (Glas et al., 2016; Inoue et al., 2016). It is an-
notated with 4 DA tags (i.e. Question, Statement,
Response and Other) following standards in (Bunt
et al., 2010). Table 3 presents related statistics.

Corpus Statistics
# of classes 4
avg. # of segments per session 165
avg. # of segments per turn 1.76
# of training sessions 30
# of test sessions 8

Table 3: Corpus statistics.

5.2 Implementation

We implemented the proposed models with Ten-
sorFlow1. Neural networks are trained using the
Adam optimizer (Kingma and Ba, 2014). We use
an initial learning rate of 0.0001 which decays in
half when the objective loss does not decrease.
A dropout layer of 0.25 dropout probability is
added before every RNN layer for regularization.
We choose 128 as the word embedding dimension
since it works well in most NLP tasks. To find out
how history length k affects the models, we exper-
imented on k of 1, 3, 5, 10, 20. We also test CRFs
implemented by CRF++2 for comparison in our
experiments.

5.3 Evaluation Metrics

For the segmentation task, we use the DA Segmen-
tation Error Rate (DSER) in (Zimmermann et al.,
2005). The DSER is the percentage of segments
that are incorrectly segmented, i.e. its left or right
boundary differs from the reference boundaries.
Accuracy, Macro F1 measure, and Weighted F1
measure are used for evaluation of the recognition
task since it is a text classification problem. For
the joint task, we use the DA Error Rate (DER)
which is the same as the DSER but also considers
the DA type for correctness. Table 4 demonstrates
the calculation of DSER and DER.

1https://www.tensorflow.org/
2https://taku910.github.io/crfpp/
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Reference E G I S I S E S I Q I Q E Q I S E S
Prediction E G I S I S I S E S I Q E Q I R E R
DSER

√ × × √
DER

√ × × ×
Table 4: An example of DSER and DER metrics. The DSER equals 0.5 (2/4) and the DER equals 0.75
(3/4).
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Figure 4: Results of the segmentation task.

5.4 Segmentation Result

In this task, a set of experiments are conducted to
evaluate the model performances on DA segmen-
tation specifically. We apply our models to seg-
ment every turn in dialogs, where one turn refers
to a sequence of consecutive words uttered by
one speaker without being interrupted by another
speaker. We compare the cascading model, the
joint coding model and the joint training model.
Two CRFs are used for comparison. A simple
CRF uses unigrams and bigrams of wt−2, wt−1,
wt, wt+1, wt+2 as features, where wt is the current
word. Another CRF additionally uses the last tag
as a feature and is named CRF-Bi in the following
experiments.

Figure 4 shows the results of the segmenta-
tion task. The joint training model achieves 9.7%
DSER at a history length of 20, which is compa-
rable to CRF’s 9.0% (without a significant differ-
ence), and it outperforms the cascading model’s
10.5% at a history length of 3. The joint cod-
ing model lags behind slightly with the DSER of
10.7% and CRF-Bi gets a DSER of 11.1%.

5.5 Dialog Act Recognition Result

In the task of DA recognition, we evaluate the
model performances of DA recognition. There-
fore, we directly use ground-truth segments as in-
puts and predict a DA label for these segments. We
only compare the cascading model and the joint
training model in the recognition task because the
joint coding model and CRFs are sequence label-
ing models and they do not naturally fit the text
classification task.

As shown in Figure 5, the joint training model
gets better results than the cascading model ac-
cording to all three metrics. The joint training
model achieves the best results of 78.0% accuracy,
77.4% Macro F1 measure and 78.1% Weighted F1
measure at the history length of 10, while the cas-
cading model reaches 77.2%, 76.5% and 77.4%
respectively. A significant improvement is ob-
tained when we increase the history length from
1 to 3.

5.6 Joint Segmentation and Recognition
Result

In the joint task, segmentation and recognition per-
formances are evaluated jointly. We firstly seg-
ment each turn in dialogs into segments, then use
the predicted segments as inputs of DA recogni-
tion. As in the segmentation task, we compare our
proposed models and two CRFs.

Figure 6 shows the results of the joint task. The
joint training model has the lowest error rate of
27.3% at the history length of 10, gaining an abso-
lute improvement of 1.6% compared with the cas-
cading model’s 28.9%. CRF-Bi, CRF and the joint
coding model got the DSER of 33.5%, 36.8% and
37.1% respectively.

6 Discussion

In the segmentation task, CRF using only n-gram
features obtains a result of 9.0%, though there is
not a statistically significant difference in perfor-
mance between CRF and the joint training model,
whose DSER is 9.7%. We conjecture that the re-
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Figure 6: Results of the joint task.

sult is due to that the boundaries of DA segments
in Japanese are usually marked with words such
as “masu”, “desu”, “kedo”, and considering sim-
ple n-gram features can cover most of the cases in
DA segmentation. CRF-Bi, which uses a previous
tag as additional feature, has a higher error rate
of 11.1% compared with CRF using n-grams. It
implies that extra information (previous segmen-
tation tag and dialog act tag) may hurt the model’s
performance in the sense of segmentation. How-
ever, by comparing the results of the cascading
joint model and the joint training model (10.5%
DSER of the cascading model and 9.7% DSER of

the joint training model), we can see that our joint
training method is able to extract useful informa-
tion from DA recognition task for segmentation
and improve our models’ ability of segmentation.

In the DA recognition task, we compare the
best results of the cascading model and the joint
training model at a history length of 10. Similar
to aforementioned conclusion, joint training helps
the joint training model outperform the cascading
model by 0.8% in accuracy, 0.9% in Macro F1
measure and 0.7% in Weighted F1 measure. Thus
we can conclude that joint training can also learn
features from segmentation task to help recognize
DA tags.

In the joint evaluation, we observe that even
though CRFs obtain fairly good results in the seg-
mentation task, they significantly lag behind the
proposed cascading model and the joint training
model. The hierarchical neural network intro-
duced in Section 3 makes use of contexts and con-
tributes to the improvement. Similarly, CRF-Bi
gets a better result of 33.5% DER than CRF’s
36.8%, which implies that contextual informa-
tion (previous tag) plays an important role in DA
recognition.

Finally the joint coding model has an accept-
able result of segmentation but a very low perfor-
mance in the joint task. There are three possible
reasons: (1) The joint coding model only uses sur-
rounding words as context instead of previous sen-
tences, thus it fails to capture DA relations while
the proposed hierarchical neural network is able
to. (2) Failure in learning from the recognition
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task can degrade the model’s performance on the
segmentation task. (3) Lastly but the most impor-
tant, DA recognition requires understanding of the
whole segment. In the architecture of joint coding
model, however, it has to predict the type of DA
tag at the very beginning of a segment. Although
a short context (i.e. 5 words in our experiments) is
available, the model still cannot make use of com-
plete information of the corresponding segment.

7 Conclusion

In this work, we explored joint learning of dialog
act (DA) segmentation and recognition. To exploit
contextual information in DA recognition, we in-
troduced a hierarchical neural network architec-
ture that incorporates history utterances. Based on
the hierarchical neural network, we investigated
three models for joint DA segmentation and recog-
nition, i.e. cascading model, joint coding model,
and joint training model. Our proposed models
can (1) integrate the hierarchical neural network
and (2) combine tasks of different levels (word
level and DA segment level) in a unified architec-
ture.

Three sets of experiments were carried out to
evaluate the proposed models’ performances on
the segmentation task, the DA recognition task
and the joint task. Experimental results showed
that (1) contextual information plays an important
role in DA recognition; (2) the cascading model
and the joint training model outperform CRF base-
lines significantly (4.6% and 6.2% in DER re-
spectively) in the joint task while having compa-
rable performances in the segmentation task; (3)
the joint training model outperforms the cascading
model in all three tasks. The result demonstrates
that joint training can learn useful generalized fea-
tures.

Acknowledgments

This work was supported by JST ERATO Ishig-
uro Symbiotic Human-Robot Interaction program
(Grant Number JPMJER1401), Japan.

References
Harry Bunt, Jan Alexandersson, Jean Carletta, Jae-

Woong Choe, Alex Chengyu Fang, Kôiti Hasida,
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