
Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 615–623,
Taipei, Taiwan, November 27 – December 1, 2017 c©2017 AFNLP

Chat Disentanglement: Identifying Semantic Reply Relationships with
Random Forests and Recurrent Neural Networks

Shikib Mehri
Department of Computer Science
University of British Columbia

Vancouver, Canada
mehrishikib@gmail.com

Giuseppe Carenini
Department of Computer Science
University of British Columbia

Vancouver, Canada
carenini@cs.ubc.ca

Abstract

Thread disentanglement is a precursor to
any high-level analysis of multipartici-
pant chats. Existing research approaches
the problem by calculating the likelihood
of two messages belonging in the same
thread. Our approach leverages a newly
annotated dataset to identify reply rela-
tionships. Furthermore, we explore the us-
age of an RNN, along with large quanti-
ties of unlabeled data, to learn semantic
relationships between messages. Our pro-
posed pipeline, which utilizes a reply clas-
sifier and an RNN to generate a set of dis-
entangled threads, is novel and performs
well against previous work.

1 Introduction

The problem of thread disentanglement is a pre-
cursor to high-level analysis of multiparticipant
chats (Carenini et al., 2011). A typical chat con-
sists of multiple simultaneous and distinct con-
versations, with Elsner and Charniak (2010) ob-
serving an average of 2.75 simultaneous threads
of dialogue. Since a conversation does not neces-
sarily entail a contiguous sequence of messages,
the interwoven threads must be identified and seg-
mented prior to any high-level analysis of the chat.

To further illustrate the need for thread disen-
tanglement, consider the chat log in Figure 1. It
should be clear to a reader that there are two in-
dependent threads of dialogue occurring within
this sequence of messages, the first between John,
Jack and Brian and the second between Jenny and
Katie. Humans are adept at mentally disentan-
gling conversations and even go as far as to ad-
just their behavior in order to ease the process of
disentanglement which O’Neill and Martin (2003)
observed in the form of name mentioning.

John: i need a new tv show to watch
Jack: psych/house of cards/breaking bad

sound like things you might enjoy
Brian: oh I should probably renew my

Netflix
Katie: I forgot my laprop at home D:
Jenny: Katie, that sucks...
Jenny: Are you going to go back home to

get it?
Katie: laptop*
Brian: try Black Mirror

Figure 1. An example of a multiparticipant chat
with two threads of dialogue.

Our work is novel because it approaches the
problem of thread disentanglement by attempt-
ing to predict immediate reply relationships be-
tween messages. The potential benefits of this idea
were discussed by Elsner and Charniak (2010) and
Uthus and Aha (2013), but the idea has not yet
been explored. Furthermore, Elsner and Charniak
(2010) suggest that this approach ”might yield
more reliable annotations”.

Additionally, we explore the usage of unlabeled
data for the purpose of identifying semantic rela-
tionships between messages. Previous attempts at
semantic modeling by Elsner and Charniak (2010)
and Adams and Martel (2010) have not been very
effective, however recent accomplishments in next
utterance prediction (Lowe et al., 2015) can be
leveraged for the purpose of thread disentangle-
ment.

The main contributions of this paper are as fol-
lows.

1. We create an annotated dataset1 which la-
bels direct reply relationships between pairs

1 The dataset is publicly available and can be found at
http://shikib.com/td annotations.

615



of messages in a transcript.

2. We create and open-source a tool2 for the ef-
ficient reply annotation of a dataset.

3. We propose a pipeline for the task of thread
disentanglement, consisting of:

(a) A classifier, trained on the aforemen-
tioned dataset, that predicts reply rela-
tionships,

(b) A recurrent neural network that mod-
els semantic relationships between mes-
sages,

(c) A thread partitioning algorithm that uti-
lizes a variety of features, including the
previous stages of the pipeline, to ulti-
mately partition a transcript into threads.

4. We evaluate our algorithm against all compa-
rable previous approaches and explore poten-
tial improvements to the pipeline.

As a preview of the paper, Section 2 further de-
scribes related work. Section 3 introduces the pro-
posed pipeline, with the subsections detailing the
distinct stages of the pipeline. Section 4 presents
the metrics used for evaluating the agreement be-
tween a pair of disentanglements. Section 5 dis-
cusses the datasets used by the pipeline, with spe-
cific attention to our newly annotated dataset. Sec-
tion 6 describes our experiments and presents the
results. Finally, Section 7 discusses our results and
suggests potential future improvements upon our
work.

2 Related Work

There have been a number of approaches to thread
disentanglement, the majority of which contain a
clustering/partitioning algorithm using a measure
of message relatedness to segment a chat transcript
into distinct threads.

Shen et al. (2006) introduce the problem of
thread disentanglement, and approach it by using
the cosine-similarity of messages to compute the
distance between a message and a thread.

Elsner and Charniak (2010) present comprehen-
sive metrics for evaluation along with a corpus to
aid with disentanglement. They train a classifier
on their corpus, to predict whether two messages
belong in the same thread.

2 The open-sourced annotation interface can be found at
https://github.com/Shikib/react-chat-reply-annotation.

Wang and Oard (2003) construct expanded mes-
sages using temporal, author and conversational
context. By expanding messages using this con-
textual information, they have more signal to use
when assigning a message to a thread.

We build on this work by using our newly anno-
tated dataset to train a classifier which predicts im-
mediate reply relationships. This is a supervised
alternative to heuristics used by previous research.
Additionally, it is an improvement over the clas-
sifier trained by Elsner and Charniak (2010) since
the nature of the annotation leads to stronger re-
lationships between message pairs in the training
data.

Previous work has explored modeling seman-
tic relationships between messages using a pre-
defined list of technical words (Elsner and Char-
niak, 2010) and applying Latent Dirichlet Alloca-
tion (Adams and Martel, 2010). In contrast, we
apply the research done by Lowe et al. (2015)
by utilizing a Recurrent Neural Network to predict
the probability of a message occurring in a given
thread.

3 Proposed Pipeline

We propose a novel pipeline to approach the prob-
lem of thread disentanglement. This pipeline con-
sists of four stages, as visualized in Figure 2.

The first stage, as described in Section 3.1, is
a classifier to detect reply relationships between
pairs of messages.

The second stage is a classifier that predicts
whether two messages belong in the same thread.
This classifier, described in Section 3.2, is similar
to the one trained by Elsner and Charniak (2010).

The third stage, described in Section 3.3, is a re-
current neural network that uses the content of the
messages to predict the probability of a message
following a sequence of messages.

The fourth and final stage is a thread partition-
ing algorithm that uses the information outputted
from the previous stages to generate threads. This
stage is described in Section 3.4.

3.1 Reply Classifier

Given two input messages, the reply classifier out-
puts the likelihood of the first message being a re-
ply to the second. Given a child and a parent mes-
sage, a feature vector is generated in order to de-
scribe the relationship between the two messages.
The features utilizes are described in Table 1.

616



Table 1: Description of features utilized for the
reply classifier.

Time
The time difference in
seconds.

Mention Parent
Whether the child message
mentions the author of the
parent message.

Mention Child
Whether the parent message
mentions the author of the
child message.

Same author
Whether the author of the two
messages is the same.

Distance
The number of messages
separating the two messages.

RNN Output
The probability outputted
by the RNN.

These feature vectors are then used to train a
random forest (Breiman, 2001) classifier with 250
trees. We performed comparisons to other classi-
fiers, namely a logistic regression classifier, a sup-
port vector classifier and a multilayer perceptron
classifier, however cross-validation proved ran-
dom forests to have the highest accuracy. The
models were trained and evaluated using scikit-
learn (Pedregosa et al., 2011).

The pairs of input messages in the training data
were specifically annotated as consisting of a re-
ply relationship. This suggests that each pair of
messages is directly related, leading to the clas-
sifier learning to identify strong, immediate rela-
tionships between messages.

3.2 Same-Thread Classification

Elsner and Charniak (2010) trained a classifier that
predicted whether two input messages belonged to
the same thread. We implemented a similar classi-
fier through utilization of the features described in
Section 3.1 and a dataset that they provided.

Given a pair of messages, the same-thread clas-
sifier outputs the probability of the messages be-
longing to the same thread. The classifier trained
was a random forest (Breiman, 2001) with 250
trees, using scikit-learn (Pedregosa et al., 2011).

Unlike the reply classifier, the same-thread clas-
sifier was trained on data with weak relationships.
Instead of specifically annotated relationships, the
pairs of messages used to train the same-thread
classifier were labeled as belonging to the same
thread. Because the same-thread pairs are a super-

set of the reply pairs, this leads to the classifier
learning to identify broader relationships between
messages, rather than strictly immediate reply re-
lationships.

As a result of the same-thread classifier being
trained on a different set of data than the reply
classifier, the learned relationships are different in
nature, which suggests that the two classifiers can
strongly complement each other.

3.3 RNN for Next Utterance Classification

The third stage of the pipeline attempts to leverage
large amounts of unlabeled data for the purpose
of modeling semantic relationships between mes-
sages. We train a recurrent neural network with
LSTM (Hochreiter and Schmidhuber, 1997) hid-
den units to predict the probability of a message
following a sequence of messages (Lowe et al.,
2015).

The reasoning behind utilizing an LSTM is for
the purposes of identifying dependencies between
non-adjacent messages. LSTM units are best able
to capture long-term dependencies through the use
of a series of gates which control whether an input
is remembered, forgotten or used as output. For-
mally, at every time step an LSTM unit updates the
internal state Ct as a function of the observed vari-
able xt and the previous internal state Ct−1 and
ht−1.

Both the context (the previous sequence of mes-
sages) and the message are passed through the
LSTM units one word at a time, in the form of
learned word embeddings. Let us use c and r to
denote the final hidden state representations of the
context and reply respectively. We can use these
hidden states, along with a learned matrix M , to
compute the probability of a reply, as:

P (reply | context) = σ(cTMr) (1)

The model, implemented in PyTorch
(A. Paszke, 2017), was trained using hyper-
parameters recommended by Lowe et al. (2015).

This RNN-based next utterance classification is
useful as it supplements the aforementioned clas-
sifiers by leveraging unlabeled data to semanti-
cally model message relationships.

Additionally, the output of this classifier is
added as a feature to the previous two classifiers
as well. This allows the reply classifier and the
same-thread classifier to use the semantic related-
ness of the input messages during classification.

617



Table 2: Description of the features utilized by the
in-thread classifier.

Same-Thread Mean
Mean output of the same-
thread classifier.

Same-Thread STD
Standard deviation of the
output of the same-thread
classifier.

Reply Mean
Mean output of the reply
classifier.

Reply STD
Standard deviation of the
output of the reply
classifier.

Thread Length
Current length of the
thread.

Author count
Number of author’s
messages already in the
thread.

Author total
Number of author’s
messages in the chat.

In-thread
proportion

Author count divided by
Author total.

Author proportion
Author count divided by
Thread Length.

Author mentions
Number of times the
author’s name was
mentioned in the thread.

Time

The time difference
between the message and
the last message in the
thread.

RNN Prediction
The prediction outputted
by the RNN.

3.4 Thread Partitioning

Our ultimate goal is to generate a set of disen-
tangled threads, suggesting the usage of a thread
partitioning algorithm as the next stage in the
pipeline. Using the previously described classi-
fiers, we must identify an optimal segmentation of
an input transcript.

3.4.1 In-Thread Classifier
We construct a classifier, referred to as the in-
thread classifier, which leverages the output of all
previous stages of the pipeline to predict the prob-
ability of a message belonging to a thread.

Given a message and a thread, we generate a
feature vector using the features described in Table
2.

The model used for classification, built in scikit-

learn (Pedregosa et al., 2011), is a random forest
classifier with 300 trees.

3.4.2 Thread Partitioning
Given the in-thread classifier, we can compute
the probability that a message belongs in a given
thread of conversation. This is used by our thread
partitioning algorithm to generate threads.

This algorithm processes the messages in
chronological order. For every message, mi, the
algorithm considers every existing thread, tj , and
passed mi and tj into the in-thread classifier.

Ultimately mi is assigned to the thread which
maximizes the probability outputted by the clas-
sifier, provided that the best probability output is
above a threshold. If the best probability is be-
low the threshold, a new thread is created for the
message. This threshold was fine-tuned on the val-
idation dataset.

After sequentially iterating over all of the mes-
sages in the transcript, the thread partitioning al-
gorithm will output the disentangled threads.

3.5 Pipeline Overview

Figure 2 provides an overview of the proposed
pipeline. The thread partitioning algorithm gen-
erates a feature vector to represent the relationship
between a thread and a message. The features, as
listed in Table 2, include the values outputted by
the previous stages of the pipeline.

The in-thread classifier, trained on the pilot
dataset provided by Elsner and Charniak (2010),
uses this generated feature vector to predict the
probability of the message belonging to the given
thread. Using the outputted probabilities, the
thread partitioning algorithm either assigns the
message to the most probable existing thread or
generates a new thread.

4 Metrics

A number of metrics are used throughout this pa-
per to evaluate the agreement of two disentangle-
ments. It is a non-trivial task to compare two dis-
entanglements which have a different number of
threads.

To measure the global similarity between an-
notations, we utilize one-to-one accuracy. This
is computed by using optimal bipartite matching
to pair up threads between the two annotations
and computing the overlap between every pair of
matched threads. This metric measures ”how well

618



Figure 2. The proposed pipeline for disentangling a chat transcript into threads. Throughout the diagram,
t represents a thread and m denotes a message.

we extract whole conversations intact” (Wang and
Oard, 2009).

We also use the lock score to measure local
agreement. For a particular message, the previous
k messages are either in the same or a different
thread. The lock score is computed by consider-
ing, for each message, the previous k messages
and counting the matches in the same/different
thread assignments across annotations.

The third and final metric used to score annota-
tion agreement is the Shen-F score, as defined by
Shen et al. (2006) which measures how well re-
lated messages are grouped. The Shen-F score is
defined as:

F =
∑

i

ni

n
maxj(F (i, j)) (2)

where i is a ground truth thread with a length
of ni, n is the total length of the transcript and
F (i, j) is the harmonic mean of the precision and
the recall. If the thread overlap is nij , the length
of the gold-standard thread is ni and the length of
the proposed thread is nj , then F (i, j) is defined
as follows:

P =
nij

nj
R =

nij

ni
F (i, j) =

2PR
P +R

(3)

The maxj operation is taken over all detected
threads. Since the matching is multiway (i.e., the
same j can be chosen for different values of i), the
score is not symmetric. When comparing human
annotations, this lack of symmetry is addressed by

treating the annotation with higher entropy as the
gold standard.

Given a transcript of length n, with thread i hav-
ing a size of ni, the entropy of the annotation can
be computed as:

H(c) =
∑

i

ni

n
log2

n

ni
(4)

These metrics are utilized by both Elsner and
Charniak (2010) and Wang and Oard (2009).

To account for differences in annotation speci-
ficity, Elsner and Charniak (2010) introduce
many-to-one accuracy. This metric maps each of
the threads of the source annotation to the single
thread in the target with which it has the greatest
overlap and counts the total percentage of overlap.
Similarly to Shen-F, the higher entropy annotation
is mapped to the lower one.

5 Datasets

We utilize a number of datasets to train various al-
gorithms in our thread disentanglement pipeline.
Two of these datasets are external datasets pro-
vided by previous research. The reply dataset1 was
annotated as part of this study as described in Sec-
tion 5.1.

Since our classifier aims to learn immediate re-
ply relationships between pairs of messages, there
is a need for a newly annotated dataset. This sec-
tion details the process of data acquisition and pro-
vides some preliminary analysis of the data.

619



Table 3: Single annotation statistics describing
three annotations of a 524 message transcript.
All of these metrics describe a single annota-
tion. Thread density refers to the number of active
threads at any given time.

Mean Max Min
Threads 55.33 62 49
Avg. Thread Length 9.6 10.7 8.5
Avg. Thread Density 1.79 1.82 1.73
Entropy 3.99 4.42 3.64

5.1 Data Acquisition

For the acquisition of our annotated reply dataset
a subset of the #linux IRC log data provided by
Elsner and Charniak (2010) was used.

An interface was built and open-sourced to al-
low volunteers to manually annotate the data for
the purpose of identifying direct reply relation-
ships between messages. Users were instructed to
proceed through the messages in the chat and se-
lect the immediate parents for every message.

Three volunteers, familiar with Linux terminol-
ogy, independently annotated a set of 524 mes-
sages from the development dataset provided by
Elsner and Charniak (2010). For every message in
the dataset, annotators identified the potential im-
mediate parents of the message, where parent(m)
is identified as the messages to whichm is a direct
reply. It is possible for a message to have no par-
ents (e.g., starting a new thread of conversation)
and multiple parents (e.g., following up on a multi-
participant conversation).

5.2 Data Analysis

On average, we find that a message has 1.22 di-
rect parents and 1.70 direct children. The rela-
tively high number of children suggests that typ-
ically a message receives more than one reply. On
the other hand, the lower number of direct parents
suggests that a message is typically replying to a
single parent message.

We can use the reply annotations to retrieve a
thread annotation which resembles the structure of
the annotated data by Elsner and Charniak (2010).
This is done by identifying a disjoint set of mes-
sages such that no two messages in different sets
share a reply relationship. This allows us to ap-
ply the read-based metrics described in Section 4
to evaluate the annotation quality.

As is demonstrated in Table 4, our annotations

Table 4: Pair annotation statistics describing three
annotations of a 524 message transcript. These
metrics are all computed on a pair of threads and
therefore describe inter-annotator agreement.

Mean Max Min
one-to-one 81.49 87.79 74.81
loc3 90.36 91.81 88.61
many-to-one 97.39 98.28 95.80
Shen F 87.70 100.0 75.00

have high inter-annotator agreement. While our
agreement is not directly comparable to that of El-
sner and Charniak (2010) due to our annotations
being done on a subset of the data, our agreement
is evidently much greater. This suggests that a
reply-based annotation approach removes ambigu-
ity and by extension removes noise from the data.

5.3 External Datasets

In addition to the aforementioned annotated
dataset, we utilized the corpus provided by Elsner
and Charniak (2010) to train the same-thread clas-
sifier described in Section 3.2. This corpus con-
sists of a pilot set, a development set and a testing
set.

We also utilize the Ubuntu Dialogue Corpus
(Lowe et al., 2015) to train a recurrent neural net-
work to output the probability of a message occur-
ring after a sequence of messages, as described in
Section 3.3.

It is reasonable to utilize both of these datasets,
as both are IRC chat logs from channels con-
cerned with Linux related content. The corpora
provided by Elsner and Charniak (2010) is from
the ##LINUX channel, whereas the Ubuntu Dia-
logue Corpus (Lowe et al., 2015) consists of data
from the ##UBUNTU channel.

6 Experiments and Evaluation Results

6.1 Reply Classifier

We use our annotated data, described in Section
5.1, to generate a set of positive examples (i.e., la-
beled replies) and a set of negative examples (i.e.,
the complement of the annotated replies). This
data is used to train and validate the reply classifier
described in Section 3.1.

The data is very imbalanced, with most pairs
being non-replies which naturally leads to a large
number of false positives (i.e., non-replies classi-
fied as replies). This issue was addressed by ad-

620



justing the class weights in order to stronger penal-
ize false positives when training the random forest
model. Specifically, the class weight of the nega-
tive class was set to be num non replies

num replies while the
class of the positive class was 1.

To further address the problem of imbalanced
data, we employ a strategy used by Elsner and
Charniak (2010) by only having our classifier con-
sider messages within 129 seconds of each other.
This brings the ratio of the two classes much closer
and is useful for speeding up inference as well.

Using 10-fold cross-validation, we obtain an av-
erage precision of 0.91 and average recall of 0.92.
Most message pairs are non-replies and as such
these scores are non-representative. For the reply
class, we have a precision of 0.83 and a recall of
0.49.

Using Gini feature importance (Breiman, 2001),
we find the most important feature to be the proba-
bility outputted by the RNN, followed by the time
difference and the message distance. This con-
firms that semantic relatedness is vital for detect-
ing reply relationships. The time difference and
message distance are both temporal measurements
which represent the fact that new messages are
typically a reply to recently sent messages.

6.2 Same-Thread Classifier
The same-thread classifier, described in Section
3.2, was trained on the development set provided
by Elsner and Charniak (2010) which was de-
scribed in Section 5.3. This classifier obtains a
precision and recall of 0.7, which is similar to the
result obtained by Elsner and Charniak (2010).

The Gini feature importances (Breiman, 2001)
indicate that for the same-thread classifier, the
most important features are the output of the RNN,
the time difference and the ’same author’ feature.
The relatively high importance of the ’same au-
thor’ feature can be explained by the fact that an
author typically responds numerous times within
a conversation. This reaffirms the idea that the
two classifiers learn to identify different relation-
ships between messages, and therefore comple-
ment each other.

6.3 RNN
The recurrent neural network was trained with the
hyperparameters described by Lowe et al. (2015)
on the Ubuntu Dialogue corpus, described in Sec-
tion 5.3. The final model performs within a few
percentage points of the result they reported.

6.4 In-Thread Classifier

This classifier was trained and tuned on the pilot
dataset provided by Elsner and Charniak (2010)
as described in Section 5.3.

To handle the imbalance of the data, we adjust
the class weight when training and only consider
thread-message pairs within 129 seconds of each
other.

With 10-fold cross-validation, we obtain an av-
erage precision of 0.91 and an average recall of
0.92. For the positive class, we have a precision of
0.89 and a recall of 0.69.

Using the Gini feature importances (Breiman,
2001), we find that the most important features
for the in-thread classifier are the time difference,
the proportion of the author’s previous messages
which belong to the thread, the mean output of the
reply classifier and the mean output of the same-
thread classifier.

The in-thread proportion of the author’s mes-
sages is likely a strong feature because high ac-
tivity within a particular conversation indicates a
high likelihood of continued activity.

It is plausible that the output of the RNN is not a
strongly used feature because it is already present
in the output of the reply and same-thread classi-
fiers.

6.5 Disentanglement Evaluation

We compare the performance of our thread parti-
tioning pipeline to the results reported by Elsner
and Charniak (2010) and Wang and Oard (2009).
Both of these papers evaluated their disentangle-
ment models on the same dataset, consisting of six
annotations of the same transcript of 1000 mes-
sages, provided by Elsner and Charniak (2010).
The comparison is shown in Table 5, where our
approach is shown to outperform the other meth-
ods with respect to loc3 and outperforms Elsner
and Charniak (2010) in all metrics.

However, we suspect that the results reported
by Wang and Oard (2009) were boosted by the
inclusion of system messages when computing all
of their metrics. In contrast, Elsner and Charniak
(2010) only include them for the computation of
loc3.

System messages are classified into thread −1
by all of the annotators and are extremely easy
to classify as they always appear in the form ”X
joined the room” or ”X left the room”. We com-
pare the performance of our pipeline, provided

621



Table 5: The results obtained by our pipeline compared to annotators, Elsner and Charniak (2010) and
Wang and Oard (2009).

Annotators Elsner & Charniak Wang & Oard Proposed Pipeline
Mean one-to-one 52.98 41.23 47.00 44.02
Max one-to-one 63.50 52.12 - 52.75
Min one-to-one 35.63 31.62 - 36.75

Mean loc3 81.09 72.94 75.13 78.64
Max loc3 86.53 74.70 - 80.27
Min loc3 74.75 70.77 - 77.23

Mean Shen F 53.87 43.47 52.79 45.86
Max Shen F 66.08 57.57 - 52.22
Min Shen F 33.43 32.97 - 36.75

Table 6: Our results compared to Wang and Oard
(2009), provided we include the system messages
when computing the metrics.

Wang & Oard Pipeline
Mean one-to-one 47.00 55.22
Mean loc3 75.13 78.64
Mean Shen F 52.79 56.62

that we include all system messages, to the re-
sults obtained by Wang and Oard (2009) in Table
6 where our approach outperforms in all metrics.

6.6 Pipeline Discussion
Our pipeline strongly outperforms previous re-
search, likely due to the fact that we leverage dif-
ferent models and data sources to capture a variety
of relationships between messages.

The reply classifier is trained on specifically an-
notated reply relationships, leading it to excel at
identifying strong, local agreements between mes-
sages.

The same-thread classifier is trained on pairs of
messages that belong to the same thread, result-
ing in a model which captures broad relationships
between messages in the same thread. This is ob-
served in the relatively high importance the model
places on the ’same author’ feature.

The RNN, trained on a large corpus of unla-
beled data, is adept at identifying the strength of
semantic relationships between messages. As a re-
sult, it is utilized as a feature in every classifier of
the pipeline.

Removing the RNN entirely from the pipeline
results in a significant quality drop, as shown in
Table 7. This drop reaffirms that the pipeline’s

Table 7: Demonstration of the significant quality
drop observed when removing the RNN.

Pipeline Without RNN
Mean one-to-one 44.02 41.06
Mean loc3 78.64 76.52
Mean Shen F 45.86 43.01

quality stems from its ability to model semantic
relationships between messages.

The in-thread classifier is the final model that
trains and evaluates on top of the output of the pre-
vious models. This model decides how to best uti-
lize the previous models and combines their out-
puts to ultimately decide whether a message be-
longs to a thread.

7 Conclusions and Future Work

This work approaches the problem of thread dis-
entanglement from the perspective of identifying
reply relationships between messages. A corpus
of annotated data for this task is provided, which
should allow future research to expand on the
work presented in this paper. From our high inter-
annotator agreement, it is evident that detecting
reply relationships has relatively little noise. We
incorporate a combination of features in our dis-
entanglement pipeline, using both meta-data and
semantic relationships between messages. We fur-
ther show that unlabeled data in combination with
neural based approaches are effective in aiding
with thread disentanglement. The model that we
present outperforms all previous work when sys-
tem messages are included.

In the near future, we plan to expand our reply

622



annotated corpus, using our open-sourced annota-
tion software, particularly for the purpose of eval-
uation. We have shown that our reply-based an-
notation has higher inter-annotator agreement rel-
ative to the annotations provided by Elsner and
Charniak (2010), therefore supplementing the re-
ply corpus and using it for evaluation may lead to
less noisy evaluations.

While we have shown that using an RNN is ef-
fective for detecting replies, it may prove useful to
perform further experiments to determine if it can
be applied more effectively. For example, adding
an attention mechanism could be beneficial for the
purposes of disentanglement. Additionally, in or-
der to reduce noise in the data and therefore lead
the model to converge faster, it is worth experi-
menting with training the RNN on a disentangled
corpus. Other directions for future research could
involve exploring these ideas.

References
S. Gross S. Chintala A. Paszke. 2017. Pytorch.

github.com/pytorch/pytorch.

Paige Adams and Craig Martel. 2010. Conversational
thread extraction and topic detection in text-based
chat. Semantic Computing pages 87–113.

Leo Breiman. 2001. Random forests. Machine learn-
ing 45(1):5–32.

Giuseppe Carenini, Gabriel Murray, and Raymond Ng.
2011. Methods for mining and summarizing text
conversations. Synthesis Lectures on Data Manage-
ment 3(3):1–130.

Micha Elsner and Eugene Charniak. 2010. Disentan-
gling chat. Computational Linguistics 36(3):389–
409.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle
Pineau. 2015. The ubuntu dialogue corpus: A large
dataset for research in unstructured multi-turn dia-
logue systems. arXiv preprint arXiv:1506.08909 .

Jacki O’Neill and David Martin. 2003. Text chat in ac-
tion. In Proceedings of the 2003 international ACM
SIGGROUP conference on Supporting group work.
ACM, pages 40–49.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning

in Python. Journal of Machine Learning Research
12:2825–2830.

Dou Shen, Qiang Yang, Jian-Tao Sun, and Zheng Chen.
2006. Thread detection in dynamic text message
streams. In Proceedings of the 29th annual inter-
national ACM SIGIR conference on Research and
development in information retrieval. ACM, pages
35–42.

David C Uthus and David W Aha. 2013. Multipartici-
pant chat analysis: A survey. Artificial Intelligence
199:106–121.

Lidan Wang and Douglas W Oard. 2009. Context-
based message expansion for disentanglement of in-
terleaved text conversations. In Proceedings of hu-
man language technologies: The 2009 annual con-
ference of the North American chapter of the associ-
ation for computational linguistics. Association for
Computational Linguistics, pages 200–208.

623


