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Abstract

We decompose multimodal translation
into two sub-tasks: learning to translate
and learning visually grounded representa-
tions. In a multitask learning framework,
translations are learned in an attention-
based encoder-decoder, and grounded rep-
resentations are learned through image
representation prediction. Our approach
improves translation performance com-
pared to the state of the art on the
Multi30K dataset. Furthermore, it is
equally effective if we train the image pre-
diction task on the external MS COCO
dataset, and we find improvements if we
train the translation model on the external
News Commentary parallel text.

1 Introduction

Multimodal machine translation is the task of
translating sentences in context, such as images
paired with a parallel text (Specia et al., 2016).
This is an emerging task in the area of multilingual
multimodal natural language processing. Progress
on this task may prove useful for translating the
captions of the images illustrating online news ar-
ticles, and for multilingual closed captioning in in-
ternational television and cinema.

Initial efforts have not convincingly demon-
strated that visual context can improve translation
quality. In the results of the First Multimodal
Translation Shared Task, only three systems out-
performed an off-the-shelf text-only phrase-based
machine translation model, and the best perform-
ing system was equally effective with or without
the visual features (Specia et al., 2016). There
remains an open question about how translation
models should take advantage of visual context.
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Figure 1: The Imagination model learns visually-
grounded representations by sharing the encoder
network between the Translation Decoder with
image prediction in the IMAGINET Decoder.

We present a multitask learning model that de-
composes multimodal translation into learning a
translation model and learning visually grounded
representations. This decomposition means that
our model can be trained over external datasets of
parallel text or described images, making it possi-
ble to take advantage of existing resources. Fig-
ure 1 presents an overview of our model, Imagina-
tion, in which source language representations are
shared between tasks through the Shared Encoder.
The translation decoder is an attention-based neu-
ral machine translation model (Bahdanau et al.,
2015), and the image prediction decoder is trained
to predict a global feature vector of an image
that is associated with a sentence (Chrupała et al.,
2015, IMAGINET). This decomposition encour-
ages grounded learning in the shared encoder be-
cause the IMAGINET decoder is trained to imagine
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the image associated with a sentence. It has been
shown that grounded representations are qualita-
tively different from their text-only counterparts
(Kádár et al., 2016) and correlate better with hu-
man similarity judgements (Chrupała et al., 2015).
We assess the success of the grounded learning
by evaluating the image prediction model on an
image–sentence ranking task to determine if the
shared representations are useful for image re-
trieval (Hodosh et al., 2013). In contrast with most
previous work, our model does not take images as
input at translation time, rather it learns grounded
representations in the shared encoder.

We evaluate Imagination on the Multi30K
dataset (Elliott et al., 2016) using a combination
of in-domain and out-of-domain data. In the in-
domain experiments, we find that multitasking
translation with image prediction is competitive
with the state of the art. Our model achieves 55.8
Meteor as a single model trained on multimodal
in-domain data, and 57.6 Meteor as an ensemble.

In the experiments with out-of-domain re-
sources, we find that the improvement in trans-
lation quality holds when training the IMAGINET

decoder on the MS COCO dataset of described
images (Chen et al., 2015). Furthermore, if we
significantly improve our text-only baseline us-
ing out-of-domain parallel text from the News
Commentary corpus (Tiedemann, 2012), we still
find improvements in translation quality from the
auxiliary image prediction task. Finally, we re-
port a state-of-the-art result of 59.3 Meteor on the
Multi30K corpus when ensembling models trained
on in- and out-of-domain resources.

The main contributions of this paper are:

• We show how to apply multitask learning to
multimodal translation. This makes it possi-
ble to train models for this task using exter-
nal resources alongside the expensive triple-
aligned source-target-image data.

• We decompose multimodal translation into
two tasks: learning to translate and learning
grounded representations. We show that each
task can be trained on large-scale external re-
sources, e.g. parallel news text or images de-
scribed in a single language.

• We present a model that achieves state of the
art results without using images as an input.
Instead, our model learns visually grounded
source language representations using an

auxiliary image prediction objective. Our
model does not need any additional param-
eters to translate unseen sentences.

2 Problem Formulation

Multimodal translation is the task of producing
target language translation y, given the source lan-
guage sentence x and additional context, such as
an image v (Specia et al., 2016). Let x be a source
language sentence consisting of N tokens: x1, x2,
. . ., xn and let y be a target language sentence con-
sisting of M tokens: y1, y2, . . ., ym. The training
data consists of tuples D ∈ (x, y, v), where x is a
description of image v, and y is a translation of x.

Multimodal translation has previously been
framed as minimising the negative log-likelihood
of a translation model that is additionally
conditioned on the image, i.e. J(θ) =
−∑

j log p(yj |y<j , x, v). Here, we decompose
the problem into learning to translate and learning
visually grounded representations. The decompo-
sition is based on sharing parameters θ between
these two tasks, and learning task-specific param-
eters φ. We learn the parameters in a multitask
model with shared parameters in the source lan-
guage encoder. The translation model has task-
specific parameters φt in the attention-based de-
coder, which are optimized through the trans-
lation loss JT (θ, φt). Grounded representations
are learned through an image prediction model
with task-specific parameters φg in the image-
prediction decoder by minimizing JG(θ, φg). The
joint objective is given by mixing the translation
and image prediction tasks with the parameter w:

J(θ, φ) = wJT (θ, φt) + (1− w)JG(θ, φg) (1)

Our decomposition of the problem makes it
straightforward to optimise this objective without
paired tuples, e.g. where we have an external
dataset of described images Dimage ∈ (x, v) or
an external parallel corpus Dtext ∈ (x, y).

We train our multitask model following the ap-
proach of Luong et al. (2016). We define a primary
task and an auxiliary task, and a set of parame-
ters θ to be shared between the tasks. A minibatch
of updates is performed for the primary task with
probabilityw, and for the auxiliary task with 1−w.
The primary task is trained until convergence and
weight w determines the frequency of parameter
updates for the auxiliary task.
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3 Imagination Model

3.1 Shared Encoder

The encoder network of our model learns a rep-
resentation of a sequence of N tokens x1...n in
the source language with a bidirectional recur-
rent neural network (Schuster and Paliwal, 1997).
This representation is shared between the differ-
ent tasks. Each token is represented by a one-hot
vector xi, which is mapped into an embedding ei

through a learned matrix E:

ei = xi ·E (2)

A sentence is processed by a pair of recurrent
neural networks, where one captures the sequence
left-to-right (forward), and the other captures the
sequence right-to-left (backward). The initial state
of the encoder h−1 is a learned parameter:

−→
hi =

−−→
RNN(

−−→
hi−1, ei) (3)

←−
hi =

←−−
RNN(

←−−
hi−1, ei) (4)

Each token in the source language input sequence
is represented by a concatenation of the forward
and backward hidden state vectors:

hi = [
−→
hi;
←−
hi] (5)

3.2 Neural Machine Translation Decoder

The translation model decoder is an attention-
based recurrent neural network (Bahdanau et al.,
2015). Tokens in the decoder are represented by
a one-hot vector yj, which is mapped into an em-
bedding ej through a learned matrix Ey:

ej = yj ·Ey (6)

The inputs to the decoder are the previously pre-
dicted token yj−1, the previous decoder state
dj−1, and a timestep-dependent context vector cj

calculated over the encoder hidden states:

dj = RNN(dj−1,yj−1, ej) (7)

The initial state of the decoder d-1 is a nonlinear
transform of the mean of the encoder states, where
Winit is a learned parameter:

d-1 = tanh(Winit · 1
N

N∑
i

hi) (8)

The context vector cj is a weighted sum over the
encoder hidden states, whereN denotes the length
of the source sentence:

cj =
N∑

i=1

αjihi (9)

The αji values are the proportion of which the en-
coder hidden state vectors h1...n contribute to the
decoder hidden state when producing the jth to-
ken in the translation. They are computed by a
feed-forward neural network, where va, Wa and
Ua are learned parameters:

αji =
exp(eji)∑N
l=1 exp(eli)

(10)

eji = va · tanh(Wa · dj−1 + Ua · hi) (11)

From the hidden state dj the network predicts the
conditional distribution of the next token yj , given
a target language embedding ej−1 of the previous
token, the current hidden state dj, and the calcu-
lated context vector cj . Note that at training time,
yj−1 is the true observed token; whereas for un-
seen data we use the inferred token ŷj−1 sampled
from the output of the softmax:

p(yj |y<j , c) = softmax(tanh(ej−1 + dj + cj))
(12)

The translation model is trained to minimise the
negative log likelihood of predicting the target lan-
guage output:

JNLL(θ, φt) = −
∑

j

log p(yj |y<j , x) (13)

3.3 Imaginet Decoder

The image prediction decoder is trained to predict
the visual feature vector of the image associated
with a sentence (Chrupała et al., 2015). It encour-
ages the shared encoder to learn grounded repre-
sentations for the source language.

A source language sentence is encoded using
the Shared Encoder, as described in Section 3.1.
Then we transform the shared encoder representa-
tion into a single vector by taking the mean pool
over the hidden state annotations, the same way
we initialise the hidden state of the translation de-
coder (Eqn. 8). This sentence representation is the
input to a feed-forward neural network that pre-
dicts the visual feature vector v̂ associated with a
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Size Tokens Types Images

Multi30K: parallel text with images

En
31K

377K 10K
31K

De 368K 16K

MS COCO: external described images

En 414K 4.3M 24K 83K

News Commentary: external parallel text

En
240K

8.31M
17K

–

De 8.95M –

Table 1: The datasets used in our experiments.

sentence with parameters Wvis:

v̂ = tanh(Wvis · 1
N

N∑
i

hi) (14)

This decoder is trained to predict the true im-
age vector v with a margin-based objective, pa-
rameterised by the minimum margin α, and the
cosine distance d(·, ·). A margin-based objective
has previously been used in grounded representa-
tion learning (Vendrov et al., 2016; Chrupała et al.,
2017). The contrastive examples v′ are drawn
from the other instances in a minibatch:

JMAR(θ, φt) =
∑
v′ 6=v

max{0, α− d(v̂,v)

+ d(v̂,v′)}
(15)

4 Data

We evaluate our model using the benchmark
Multi30K dataset (Elliott et al., 2016), which is
the largest collection of images paired with sen-
tences in multiple languages. This dataset con-
tains 31,014 images paired with an English lan-
guage sentence and a German language transla-
tion: 29,000 instances are reserved for training,
1,014 for development, and 1,000 for evaluation.1

The English and German sentences are pre-
processed by normalising the punctuation, low-
ercasing and tokenizing the text using the Moses
toolkit. We additionally decompound the German
text using Zmorge (Sennrich and Kunz, 2014).

1The Multi30K dataset also contains 155K independently
collected descriptions in German and English. In order to
make our experiments more comparable with previous work,
we do not make use of this data.

This results in vocabulary sizes of 10,214 types for
English and 16,022 for German.

We also use two external datasets to evaluate
our model: the MS COCO dataset of English
described images (Chen et al., 2015), and the
English-German News Commentary parallel cor-
pus (Tiedemann, 2012). When we perform ex-
periments with the News Commentary corpus, we
first calculate a 17,597 sub-word vocabulary us-
ing SentencePiece (Schuster and Nakajima, 2012)
over the concatentation of the Multi30K and News
Commentary datasets. This gives us a shared
vocabulary for the external data that reduces the
number of out-of-vocabulary tokens.

Images are represented by 2048D vectors ex-
tracted from the ‘pool5/7x7 s1’ layer of the
GoogLeNet v3 CNN (Szegedy et al., 2015).

5 Experiments

We evaluate our multitasking approach with in-
and out-of-domain resources. We start by re-
porting results of models trained using only the
Multi30K dataset. We also report the results of
training the IMAGINET decoder with the COCO
dataset. Finally, we report results on incorporating
the external News Commentary parallel text into
our model. Throughout, we report performance of
the En→De translation using Meteor (Denkowski
and Lavie, 2014) and BLEU (Papineni et al., 2002)
against lowercased tokenized references.

5.1 Hyperparameters

The encoder is a 1000D Gated Recurrent Unit
bidirectional recurrent neural network (Cho et al.,
2014, GRU) with 620D embeddings. We share
all of the encoder parameters between the pri-
mary and auxiliary task. The translation decoder
is a 1000D GRU recurrent neural network, with
a 2000D context vector over the encoder states,
and 620D word embeddings (Sennrich et al.,
2017). The Imaginet decoder is a single-layer
feed-forward network, where we learn the param-
eters Wvis ∈ R2048x2000 to predict the true image
vector with α = 0.1 for the Imaginet objective
(Equation 15). The models are trained using the
Adam optimiser with the default hyperparameters
(Kingma and Ba, 2015) in minibatches of 80 in-
stances. The translation task is defined as the pri-
mary task and convergence is reached when BLEU
has not increased for five epochs on the validation
data. Gradients are clipped when their norm ex-
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Meteor BLEU

NMT 54.0 ± 0.6 35.5 ± 0.8

Calixto et al. (2017) 55.0 36.5

Calixto and Liu (2017) 55.1 37.3

Imagination 55.8 ± 0.4 36.8 ± 0.8

Toyama et al. (2016) 56.0 36.5

Hitschler et al. (2016) 56.1 34.3

Moses 56.9 36.9

Table 2: En→De translation results on the
Multi30K dataset. Our Imagination model is com-
petitive with the state of the art when it is trained
on in-domain data. We report the mean and stan-
dard deviation of three random initialisations.

ceeds 1.0. Dropout is set to 0.2 for the embed-
dings and the recurrent connections in both tasks
(Gal and Ghahramani, 2016). Translations are de-
coded using beam search with 12 hypotheses.

5.2 In-domain experiments

We start by presenting the results of our multitask
model trained using only the Multi30K dataset.
We compare against state-of-the-art approaches
and text-only baselines. Moses is the phrase-based
machine translation model (Koehn et al., 2007) re-
ported in (Specia et al., 2016). NMT is a text-only
neural machine translation model. Calixto et al.
(2017) is a double-attention model over the source
language and the image. Calixto and Liu (2017) is
a multimodal translation model that conditions the
decoder on semantic image vector extracted from
the VGG-19 CNN. Hitschler et al. (2016) uses vi-
sual features in a target-side retrieval model for
translation. Toyama et al. (2016) is most compara-
ble to our approach: it is a multimodal variational
NMT model that infers latent variables to repre-
sent the source language semantics from the image
and linguistic data.

Table 2 shows the results of this experiment. We
can see that the combination of the attention-based
translation model and the image prediction model
is a 1.8 Meteor point improvement over the NMT
baseline, but it is 1.1 Meteor points worse than
the strong Moses baseline. Our approach is com-
petitive with previous approaches that use visual
features as inputs to the decoder and the target-
side reranking model. It also competitive with

Meteor BLEU

Imagination 55.8 ± 0.4 36.8 ± 0.8

Imagination (COCO) 55.6 ± 0.5 36.4 ± 1.2

Table 3: Translation results when using out-of-
domain described images. Our approach is still ef-
fective when the image prediction model is trained
over the COCO dataset.

Meteor BLEU

NMT 52.8 ± 0.6 33.4 ± 0.6

+ NC 56.7 ± 0.3 37.2 ± 0.7

+ Imagination 56.7 ± 0.1 37.4 ± 0.3

+ Imagination (COCO) 57.1 ± 0.2 37.8 ± 0.7

Calixto et al. (2017) 56.8 39.0

Table 4: Translation results with out-of-domain
parallel text and described images. We find further
improvements when we multitask with the News
Commentary (NC) and COCO datasets.

Toyama et al. (2016), which also only uses images
for training. These results confirm that our multi-
tasking approach uses the image prediction task to
improve the encoder of the translation model.

5.3 External described image data
Recall from Section 2 that we are interested in sce-
narios where x, y, and v are drawn from different
sources. We now experiment with separating the
translation data from the described image data us-
ing Dimage: MS COCO dataset of 83K described
images2 and Dtext: Multi30K parallel text.

Table 3 shows the results of this experiment. We
find that there is no significant difference between
training the IMAGINET decoder on in-domain
(Multi30K) or out-of-domain data (COCO). This
result confirms that we can separate the parallel
text from the described images.

5.4 External parallel text data
We now experiment with training our model on a
combination of the Multi30K and the News Com-
mentary English-German data. In these experi-
ments, we concatenate the Multi30K and News

2Due to differences in the vocabularies of the respective
datasets, we do not train on examples where more than 10%
of the tokens are out-of-vocabulary in the Multi30K dataset.
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Parallel text Described images
Multi30K News Commentary Multi30K COCO Meteor BLEU

Z
m

or
ge 56.2 37.8

57.6 39.0
Su

b-
w

or
d 54.4 35.0

58.6 39.4
59.0 39.5
59.3 40.2

Table 5: Ensemble decoding results. Zmorge denotes models trained with decompounded German
words; Sub-word denotes joint SentencePiece word splitting (see Section 4 for more details).

Commentary datasets into a single Dtext train-
ing dataset, similar to Freitag and Al-Onaizan
(2016). We compare our model against Calixto
et al. (2017), who pre-train their model on the
WMT’15 English-German parallel text and back-
translate (Sennrich et al., 2016) additional sen-
tences from the bilingual independent descriptions
in the Multi30K dataset (Footnote 2).

Table 4 presents the results. The text-only NMT
model using sub-words is 1.2 Meteor points lower
than decompounding the German text. Neverthe-
less, the model trained over a concatenation of the
parallel texts is a 2.7 Meteor point improvement
over this baseline (+ NC) and matches the perfor-
mance of our Multitasking model that uses only
in-domain data (Section 5.2). We do not see an
additive improvement for the multitasking model
with the concatenated parallel text and the in-
domain data (+ Imagination) using a training ob-
jective interpolation of w = 0.89 (the ratio of the
training dataset sizes). This may be because we
are essentially learning a translation model and the
updates from the IMAGINET decoder are forgotten.
Therefore, we experiment with multitasking the
concatenated parallel text and the COCO dataset
(w = 0.5). We find that balancing the datasets
improves over the concatenated text model by 0.4
Meteor (+ Imagination (COCO)). Our multitask-
ing approach improves upon Calixto et al. by 0.3
Meteor points. Our model can be trained in 48
hours using 240K parallel sentences and 414K de-
scribed images from out-of-domain datasets. Fur-
thermore, recall that our model does not use im-
ages as an input for translating unseen data, which
results in 6.2% fewer parameters compared to us-
ing the 2048D Inception-V3 visual features to ini-
tialise the hidden state of the decoder.

5.5 Ensemble results

Table 5 presents the results of ensembling differ-
ent randomly initialised models. We achieve a
start-of-the-art result of 57.6 Meteor for a model
trained on only in-domain data. The improve-
ments are more pronounced for the models trained
using sub-words and out-of-domain data. An en-
semble of baselines trained on sub-words is ini-
tially worse than an ensemble trained on Zmorge
decompounded words. However, we always see an
improvement from ensembling models trained on
in- and out-of-domain data. Our best ensemble is
trained on Multi30K parallel text, the News Com-
mentary parallel text, and the COCO descriptions
to set a new state-of-the-art result of 59.3 Meteor.

5.6 Multi30K 2017 results

We also evaluate our approach against 16 submis-
sions to the WMT Shared Task on Multimodal
Translation and Multilingual Image Description
(Elliott et al., 2017). This shared task features
a new evaluation dataset: Multi30K Test 2017
(Elliott et al., 2017), which contains 1,000 new
evaluation images. The shared task submissions
are evaluated with Meteor and human direct as-
sessment (Graham et al., 2017). We submitted
two systems, based on whether they used only the
Multi30K dataset (constrained) or used additional
external resources (unconstrained). Our con-
strained submission is an ensemble of three Imag-
ination models trained over only the Multi30K
training data. This achieves a Meteor score of
51.2, and a joint 3rd place ranking according to hu-
man assessment. Our unconstrained submission is
an ensemble of three Imagination models trained
with the Multi30K, News Commentary, and MS
COCO datasets. It achieves a Meteor score of

135



Source: two children on their stomachs lay on the ground under a pipe
NMT: zwei kinder auf ihren gesichtern liegen unter dem boden auf dem

boden
Ours: zwei kinder liegen bäuchlings auf dem boden unter einer schaukel

Source: small dog in costume stands on hind legs to reach dangling flowers
NMT: ein kleiner hund steht auf dem hinterbeinen und läuft , nach links

von blumen zu sehen
Ours: ein kleiner hund in einem kostüm steht auf den hinterbeinen , um

die blumen zu erreichen

Source: a bird flies across the water
NMT: ein vogel fliegt über das wasser
Ours: ein vogel fliegt durch das wasser

Table 6: Examples where our model improves or worsens the translation compared to the NMT baseline.
Top: NMT translates the wrong body part; both models skip “pipe”. Middle: NMT incorrectly translates
the verb and misses several nouns. Bottom: Our model incorrectly translates the preposition.

53.5, and 2nd place in the human assessment.

5.7 Qualitative examples

Table 6 shows examples of where the multitask-
ing model improves or worsens translation perfor-
mance compared to the baseline model3. The first
example shows that the baseline model makes a
significant error in translating the pose of the chil-
dren, translating “on their stomachs” as “on their
faces”). The middle example demonstrates that
the baseline model translates the dog as walking
(“läuft”) and then makes grammatical and sense
errors after the clause marker. Both models ne-
glect to translate the word “dangling”, which is a
low-frequency word in the training data. There are
instances where the baseline produces better trans-
lations than the multitask model: In the bottom ex-
ample, our model translates a bird flying through
the water (“durch”) instead of “over” the water.

6 Discussion

6.1 Does the model learn grounded
representations?

A natural question to ask if whether the multitask
model is actually learning representations that are
relevant for the images. We answer this question
by evaluating the Imaginet decoder in an image–
sentence ranking task. Here the input is a source
language sentence, from which we predict its im-

3We used MT-ComparEval (Klejch et al., 2015)

age vector v̂. The predicted vector v̂ can be com-
pared against the true image vectors v in the eval-
uation data using the cosine distance to produce a
ranked order of the images. Our model returns a
median rank of 11.0 for the true image compared
to the predicted image vector. Figure 2 shows ex-
amples of the nearest neighbours of the images
predicted by our multitask model. We can see that
the combination of the multitask source language
representations and IMAGINET decoder leads to
the prediction of relevant images. This confirms
that the shared encoder is indeed learning visually
grounded representations.

6.2 The effect of visual feature vectors

We now study the effect of varying the Convolu-
tional Neural Network used to extract the visual
features used in the Imaginet decoder. It has previ-
ously been shown that the choice of visual features
can affect the performance of vision and language
models (Jabri et al., 2016; Kiela et al., 2016). We
compare the effect of training the IMAGINET de-
coder to predict different types of image features,
namely: 4096D features extracted from the ‘fc7‘’
layer of the VGG-19 model (Simonyan and Zis-
serman, 2015), 2048D features extracted from the
‘pool5/7x7 s1’ layer of InceptionNet V3 (Szegedy
et al., 2015), and 2048D features extracted from
‘avg pool‘ layer of ResNet-50 (He et al., 2016).
Table 7 shows the results of this experiment. There
is a clear difference between predicting the 2048D
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(a) Nearest neighbours for “a native woman is working on a craft project .”

(b) Nearest neighbours for “there is a cafe on the street corner with an oval painting on the side of the building .”

Figure 2: We can interpret the IMAGINET Decoder by visualising the predictions made by our model.

Meteor Median Rank

Inception-V3 56.0 ± 0.1 11.0 ± 0.0

Resnet-50 54.7 ± 0.4 11.7 ± 0.5

VGG-19 53.6 ± 1.8 13.0 ± 0.0

Table 7: The type of visual features predicted by
the IMAGINET Decoder has a strong impact on the
Multitask model performance.

vectors (Inception-V3 and ResNet-50) compared
to the 4096D vector from VGG-19). This dif-
ference is reflected in both the translation Meteor
score and the Median rank of the images in the val-
idation dataset. This is likely because it is easier to
learn the parameters of the image prediction model
that has fewer parameters (8.192 million for VGG-
19 vs. 4.096 million for Inception-V3 and ResNet-
50). However, it is not clear why there is such a
pronounced difference between the Inception-V3
and ResNet-50 models4.

7 Related work

Initial work on multimodal translation used se-
mantic or spatially-preserving image features as
inputs to a translation model. Semantic im-
age features are typically extracted from the fi-
nal layer of a pre-trained object recognition CNN,
e.g. ‘pool5/7x7 s1’ in GoogLeNet (Szegedy et al.,
2015). This type of vector has been used as in-
put to the encoder (Elliott et al., 2015; Huang

4We used pre-trained CNNs (https://github.com/
fchollet/deep-learning-models), which claim
equal ILSVRC object recognition performance for both mod-
els: 7.8% top-5 error with a single-model and single-crop.

et al., 2016), the decoder (Libovický et al.,
2016), or as features in a phrase-based translation
model (Shah et al., 2016; Hitschler et al., 2016).
Spatially-preserving image features are extracted
from deeper inside a CNN, where the position of a
feature is related to its position in the image. These
features have been used in “double-attention mod-
els”, which calculate independent context vectors
for the source language and a convolutional im-
age features (Calixto et al., 2016; Caglayan et al.,
2016; Calixto et al., 2017). We use an attention-
based translation model but our multitask model
does not use images for translation.

More related to our work is an extension of
Variational Neural Machine Translation to infer la-
tent variables to explicitly model the semantics of
source sentences from visual and linguistic infor-
mation (Toyama et al., 2016). They report im-
provements on the Multi30K data set but their
model needs additional parameters in the “neural
inferrer” modules. In our model, the grounded se-
mantics are represented implicitly in the shared en-
coder. They assume Source-Target-Image training
data, whereas our approach achieves equally good
results if we train on separate Source-Image and
Source-Target datasets. Saha et al. (2016) study
cross-lingual image description where the task is
to generate a sentence in language L1 given the
image, using only Image-L2 and L1-L2 training
corpora. They propose a Correlational Encoder-
Decoder to model the Image-L2 and L1-L2 data,
which learns correlated representations for paired
Image-L2 data and decodes L1 from the joint rep-
resentation. Similar to our work, the encoder
is trained by minimizing two loss functions: the
Image-L2 correlation loss, and the L1 decoding
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cross-entropy loss. Nakayama and Nishida (2017)
consider a zero-resource problem, where the task
is to translate from L1 to L2 with only Image-L1

and Image-L2 corpora. Their model embeds the
image, L1, and L2 in a joint multimodal space
learned by minimizing a multi-task ranking loss
between both pairs of examples. In this paper,
we focus on enriching source language represen-
tations with visual information instead of zero-
resource learning.

Multitask Learning improves the generalisabil-
ity of a model by requiring it to be useful for more
than one task (Caruana, 1997). This approach has
recently been used to improve the performance of
sentence compression using eye gaze as an auxil-
iary task (Klerke et al., 2016), and to improve shal-
low parsing accuracy through the auxiliary task of
predicting keystrokes in an out-of-domain corpus
(Plank, 2016). More recently, Bingel and Søgaard
(2017) analysed the beneficial relationships be-
tween primary and auxiliary sequential prediction
tasks. In the translation literature, multitask learn-
ing has been used to learn a one-to-many lan-
guages translation model (Dong et al., 2015), a
multi-lingual translation model with a single atten-
tion mechanism shared across multiple languages
(Firat et al., 2016), and in multitask sequence-to-
sequence learning without an attention-based de-
coder (Luong et al., 2016). We explore the benefits
of grounded learning in the specific case of mul-
timodal translation. We combine sequence pre-
diction with continuous (image) vector prediction,
compared to previous work which multitasks dif-
ferent sequence prediction tasks.

Visual representation prediction has been stud-
ied using static images or videos. Lin and Parikh
(2015) use a conditional random field to imag-
ine the composition of a clip-art scene for visual
paraphrasing and fill-in-the-blank tasks. Chrupała
et al. (2015) predict the image vector associated
with a sentence using an L2 loss; they found this
improves multi-modal word similarity compared
to text-only baselines. Gelderloos and Chrupała
(2016) predict the image vector associated with a
sequence of phonemes using a max-margin loss,
similar to our image prediction objective. Col-
lell et al. (2017) learn to predict the visual feature
vector associated with a word for word similar-
ity and relatedness tasks. As a video reconstruc-
tion problem, Srivastava et al. (2015) propose an
LSTM Autoencoder to predict video frames as a

reconstruction task or as a future prediction task.
Pasunuru and Bansal (2017) propose a multitask
model for video description that combines unsu-
pervised video reconstruction, lexical entailment,
and video description. They find improvements
from using out-of-domain resources for entailment
and video prediction, similar to the improvements
we find from using out-of-domain parallel text and
described images.

8 Conclusion

We decompose multimodal translation into two
sub-problems: learning to translate and learning
visually grounded representations. In a multi-
task learning framework, we show how these sub-
problems can be addressed by sharing an encoder
between a translation model and an image predic-
tion model5. Our approach achieves state-of-the-
art results on the Multi30K dataset without using
images for translation. We show that training on
separate parallel text and described image datasets
does not hurt performance, encouraging future re-
search on multitasking with diverse sources of
data. Furthermore, we still find improvements
from image prediction when we improve our text-
only baseline with the out-of-domain parallel text.
Future work includes adapting our decomposition
to other NLP tasks that may benefit from out-of-
domain resources, such as semantic role labelling,
dependency parsing, and question-answering; ex-
ploring methods for inputting the (predicted) im-
age into the translation model; experimenting with
different image prediction architectures; multi-
tasking different translation languages into a sin-
gle shared encoder; and multitasking in both the
encoder and decoder(s).
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