
Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 49–58,
Taipei, Taiwan, November 27 – December 1, 2017 c©2017 AFNLP

Dependency Parsing with Partial Annotations: An Empirical Comparison

Yue Zhang†, Zhenghua Li†∗, Jun Lang‡, Qingrong Xia†, Min Zhang†
†Soochow University, Suzhou, China

{yzhang1107,qrxia}@stu.suda.edu.cn,{zhli13,minzhang}@suda.edu.cn
‡Alibaba Group, Hangzhou, China

langjun.lj@alibaba-inc.com

Abstract

This paper describes and compares two
straightforward approaches for depen-
dency parsing with partial annotations
(PA). The first approach is based on a
forest-based training objective for two
CRF parsers, i.e., a biaffine neural network
graph-based parser (Biaffine) and a tradi-
tional log-linear graph-based parser (LL-
GPar). The second approach is based on
the idea of constrained decoding for three
parsers, i.e., a traditional linear graph-
based parser (LGPar), a globally nor-
malized neural network transition-based
parser (GN3Par) and a traditional linear
transition-based parser (LTPar). For the
test phase, constrained decoding is also
used for completing partial trees. We con-
duct experiments on Penn Treebank under
three different settings for simulating PA,
i.e., random, most uncertain, and divergent
outputs from the five parsers. The results
show that LLGPar is most effective in di-
rectly learning from PA, and other parsers
can achieve best performance when PAs
are completed into full trees by LLGPar.

1 Introduction

Traditional supervised approaches for structural
classification assume full annotation (FA), mean-
ing that the training instances have complete
manually-labeled structures. In the case of depen-
dency parsing, FA means a complete parse tree is
provided for each training sentence. However, re-
cent studies suggest that it is more economic and
effective to construct labeled data with partial an-
notation (PA). A lot of research effort has been at-
tracted to obtain partially-labeled data for different

∗Correspondence author

$0 I1 saw2 Sarah3 with4 a5 telescope6

Figure 1: An example partial tree, where only the
heads of “saw” and “with” are given.

tasks via active learning (Sassano and Kurohashi,
2010; Mirroshandel and Nasr, 2011; Li et al.,
2012; Marcheggiani and Artières, 2014; Flannery
and Mori, 2015; Li et al., 2016), cross-lingual syn-
tax projection (Spreyer and Kuhn, 2009; Ganchev
et al., 2009; Jiang et al., 2010; Li et al., 2014),
or mining natural annotation implicitly encoded
in web pages (Jiang et al., 2013; Liu et al., 2014;
Nivre et al., 2014; Yang and Vozila, 2014). Fig-
ure 1) gives an example sentence partially an-
notated with two dependencies. However, there
still lacks systematic study on how to build de-
pendency parsers with PA. Most previous works
listed above rely on ad-hoc strategies designed
for only basic dependency parsers. One excep-
tion is that Li et al. (2014) convert partial trees
into forests and train a traditional log-linear graph-
based dependency parser (LLGPar) with PA based
on a forest-based objective, showing promising
results. Meanwhile, it is still unclear how PAs
can be used by other main-stream dependency
parsers, such as the traditional linear graph-based
parser (LGPar) and transition-based parser (LT-
Par), and the newly proposed biaffine neural net-
work graph-based parser (Biaffine) (Dozat and
Manning, 2017) and globally normalized neural
network transition-based parser (GN3Par) (Andor
et al., 2016).

This paper aims to thoroughly study this issue
and make systematic comparison on different ap-
proaches for dependency parsing with PA. In sum-

49

mary, we make the following contributions.

• We present a general framework for directly
training GN3Par, LGPar and LTPar with PA
based on constrained decoding. The basic
idea is to use the current feature weights to
parse the sentence under the PA-constrained
search space, and use the best parse as a
pseudo gold-standard reference for feature
weight update during perceptron training.

• We also implement the forest-objective based
approach of Li et al. (2014) for the two CRF
parsers, i.e., LLGPar and Biaffine.

• We have made thorough comparison among
different directly-train approaches under
three different settings for simulating PA,
i.e., random dependencies, most uncertain
dependencies, and dependencies with diver-
gent outputs from the five parsers. We have
also compared the proposed directly-train ap-
proaches with the straightforward complete-
then-train approach.

• Extensive experiments lead to several inter-
esting and clear findings.

2 Dependency Parsing

Given an input sentence x = w0w1...wn, a de-
pendency tree comprises a set of dependencies,
namely d = {i ↷ j : 0 ≤ i ≤ n, 1 ≤ j ≤ n},
where i ↷ j is a dependency from a head word
i to a modifier word j. A complete dependency
tree contains n dependencies, namely |d| = n,
whereas a partial dependency tree contains less
than n dependencies, namely |d| < n. Alterna-
tively, FA can be understood as a special form of
PA. For clarity, we denote a complete tree as d and
a partial tree as dp.

The decoding procedure aims to find an optimal
complete tree d∗:

d∗ = arg max
d∈Y(x)

Score(x,d;w) (1)

whereY(x) defines the search space containing all
legal trees for x and w is the model parameters.

2.1 Graph-based Approach
The graph-based method factorizes the score of a
dependency tree into those of small subtrees p:

Score(x,d;w) =
∑
p⊆d

Score(x,p;w) (2)

Dynamic programming based exact search are
usually applied to find the optimal tree (McDon-
ald et al., 2005; McDonald and Pereira, 2006; Car-
reras, 2007; Koo and Collins, 2010).

Biaffine belongs to the first-order model and
only incorporates scores of single dependencies.
In contrast, for LLGPar and LGPar, we follow Li
et al. (2014) and adopt the second-order model of
McDonald and Pereira (2006) considering scores
of single dependencies and adjacent siblings. Bi-
affine and LLGPar both belong to CRF parser.
Please note that the original Biaffine is locally
trained on each word. In this work, we follow
Ma and Hovy (2017) and add a global CRF loss
in the projective case, in order to directly use the
proposed approach of Li et al. (2014). In other
words, we extend the original Biaffine Parser de-
scribed in Dozat and Manning (2017) by adding a
CRF layer. Under the CRF model, the conditional
probability of d given x is:

p(d|x;w) =
eScore(x,d;w)∑

d′∈Y(x) eScore(x,d′;w)
(3)

For training, w is optimized using gradient de-
scent to maximize the likelihood of the training
data.

Biaffine uses a neural network to compute the
score of each dependency. First, the input word
and POS tag sequence are fully encoded with two
BiLSTM layers. Then, two MLPs are applied to
each word position i to obtain two word represen-
tations, i.e., rh

i (wi as head) rm
i (wi as modifier).

Finally, a biaffine classifier predicts the score of an
arbitary dependency i ↷ j.

score(i ↷ j) = rh
i ·W · rm

j + rh
i · V (4)

where W (matrix) and V (vector) are the biaffine
parameters.

LLGPar is a traditional discrete feature based
model, which defines the score of a tree as

Score(x,d;w) = w · f(x,d) (5)

f(x,d) is a sparse accumulated feature vector cor-
responding to d.

LGPar uses perceptron-like online training to
directly learn w. The workflow is similar to Al-
gorithm 1, except that the gold-standard reference
d+ is directly provided in the training data without
the need of constrained decoding in line 7.

50

Algorithm 1 Perceptron training based on constrained decoding.
1: Input: Partially labeled data D = {(xj ,d

p
j)}N

j=1; Output: w;
2: Initialization: w(0) = 0, k = 0
3: for i = 1 to I do // iterations
4: for (xj ,d

p
j) ∈ D do // traverse

5: d− = arg maxd∈Y(xj) Score(xj ,d;w) // Unconstrained decoding: LGPar
6: a− = arg maxa→d∈Y(xj) Score(xj ,a → d;w) // Unconstrained decoding: LTPar
7: d+ = arg maxd∈Y(xj ,d

p
j) Score(xj ,d;w) // Constrained decoding: LGPar

8: a+ = arg maxa→d∈Y(xj ,d
p
j) Score(xj ,a → d;w) // Constrained decoding: LTPar

9: wk+1 = wk + f(x,d+)− f(x,d−) // Update: LGPar
10: wk+1 = wk + f(x,a+)− f(x,a−) // Update: LTPar
11: k = k + 1
12: end for
13: end for

2.2 Transition-based Approach
The transition-based method builds a dependency
by applying sequence of shift/reduce actions a,
and factorizes the score of a tree into the sum
of scores of each action in a (Yamada and Mat-
sumoto, 2003; Nivre, 2003; Zhang and Nivre,
2011):

Score(x,d;w) = Score(x,a → d;w)

=
∑|a|

i=1
Score(x, ci, ai;w)

(6)

where ai is the action taken at step i and ci is the
configuration status after taking action a1...ai−1.
Transition-based methods use inexact beam search
to find a highest-scoring action sequence.

GN3Par uses a neural network to predict scores
of different actions given a state (Chen and Man-
ning, 2014; Andor et al., 2016). First, 48 atomic
features are embeded and concatenated as the in-
put layer. Then, two hidden layers are applied
to get the scores of all feasible actions. Unlike
the traditional perceptron-like training, which only
considers the best action sequence in the beam and
the gold-standard sequence, their idea of global
normalization is to approximately compute the
probabilities of all the sequences in the beam to
obtain a global CRF-like loss.

LTPar is a traditional discrete feature based
model like LLGPar and LGPar, and adopts
global perceptron-like training to learn the fea-
ture weights w. We build an arc-eager transition-
based dependency parser and features described in
Zhang and Nivre (2011).

3 Directly training parsers with PA

As described in Li et al. (2014), CRF parsers
such as LLGPar and Biaffine can naturally learn

from PA based on the idea of ambiguous labeling,
which allows a sentence to have multiple parse
trees (forest) as its gold-standard reference (Rie-
zler et al., 2002; Dredze et al., 2009; Täckström
et al., 2013). First, a partial tree dp is converted
into a forest by adding all possible dependencies
pointing to remaining words without heads, with
the constraint that a newly added dependency does
not violate existing ones in dp. The forest can
be formally defined as F(x,dp) = {d : d ∈
Y(x),dp ⊆ d}, whose conditional probability is
the sum of probabilities of all trees that it contains:

p(dp|x;w) =
∑

d∈F(x,dp)

p(d|x;w) (7)

Then, we can define a forest-based training objec-
tive function to maximize the likelihood of train-
ing data as described in Li et al. (2014).

LGPar can be extended to directly learn from
PA based on the idea of constrained decoding, as
shown in Algorithm 1, which has been previously
applied to Chinese word segmentation with par-
tially labeled sequences (Jiang et al., 2010). The
idea is using the best tree d+ in the constrained
search space Y(xj ,d

p
j) (line 7) as a pseudo gold-

standard reference for weight update. In tradi-
tional perceptron training, d+ would be a com-
plete parse tree provided in the training data. It
is trivial to implement constrained decoding for
graph-based parsers, and we only need to disable
some illegal combination operations during dy-
namic programming.

LTPar can also directly learn from PA in a simi-
lar way, as shown in Algorithm 1. Constrained de-
coding is performed to find a pseudo gold-standard
reference (line 8). It is more complicate to design
constrained decoding for transition-based parsing

51

train-1K train-39K dev test

#Sentence 1,000 38,832 1,700 2,416
#Token 24,358 925,670 40,117 56,684

Table 1: Data Statistics. FA is always used for
train-1K, whereas PA is simulated for train-39K.

than graph-based parsing. Fortunately, Nivre et al.
(2014) propose a constrained decoding procedure
for the arc-eager parsing system. We ignore the
details due to the space limitation.

GN3Par learns from PA in a similar manner
with LTPar. The difference is that for each sen-
tence, all the sequences in beam are used as nega-
tive examples in Line 6, and a+ obtained in Line
8 as gold-standard. Then, the global loss is com-
puted in the same way with the case of FA.1 Mean-
while, since GN3Par uses the arc-standard transi-
tion system, we also develop a constrained decod-
ing procedure for the arc-standard system, which
will be released as supporting documents.

4 Experiments

Data. We conduct experiments on Penn Tree-
bank (PTB), and follow the standard data split-
ting (sec 2-21 as training, sec 22 as develop-
ment, and sec 23 as test). Original bracketed
structures are converted into dependency struc-
tures using Penn2Malt with default head-finding
rules. We build a CRF-based bigram part-of-
speech (POS) tagger to produce automatic POS
tags for all train/dev/test data (10-way jackknifing
on training data), with tagging accuracy 97.3% on
test data. As suggested by an earlier anonymous
reviewer, we further split the training data into two
parts. We assume that the first 1K training sen-
tences are provided as a small-scale data with FA,
which can be obtained by a small amount of man-
ual annotation or through cross-lingual projection
methods. We simulate PA for the remaining 39K
sentences. Table 1 shows the data statistics.

Parameter settings. We implement all five
parsers from scratch using C++, which will be
released publicly in the future. For those who
are immediately interested, please contact us. We
train LLGPar with stochastic gradient descent
(Finkel et al., 2008). For LTPar and GN3Par,

1 We have also tried to use all sequences in the beam in
Line 8 as gold-standard, instead of the best a+, considering
that there may be many gold-standard references in the case
of PA. However, the accuracies become lower.

the beam size is 64 and the standard early update
is adopted during training (Collins, 2002). For
LGPar and LTPar, averaged perceptron is adopted
(Collins, 2002).

For Biaffine, we directly adopt most hyperpa-
rameters of the released code of Dozat and Man-
ning (2017), only removing the components re-
lated with dependency labels, since we focus on
unlabeled dependency parsing in this work. The
LSTM (two forward plus two backward) layers all
use 300-dimension hidden cells. Dropout with ra-
tio of 0.75 is applied to most layers before out-
put. The two MLPs both have 100-dimension out-
puts without hidden layer. Adam optimization is
adopted with α1 = α2 = 0.9.

For GN3Par, we follow Daniel et al. (2016),
and use two 1024× 1024 hidden layers, and adopt
momentum (ratio of 0.9) Adam optimization.

For both Biaffine and GN3Par, we set the em-
bedding dimension of both word/tag to 100, and
use the GloVe pretrained word embedding for ini-
tialization2, and randomly initialize embeddings
of POS tags.

Since we have two sets of training data, we
adopt the simple corpus-weighting strategy of Li
et al. (2014). In each iteration, we merge train-1K
and a subset of random 10K sentences from train-
39K, shuffle them, and then use them for training.
For all parsers, training terminates when the peak
parsing accuracy on dev data does not improve in
30 consecutive iterations.

For evaluation metrics, we use the standard un-
labeled attachment score (UAS) excluding punctu-
ation marks.

4.1 Three settings for simulating PA on
train-39K

In order to simulate PA for each sentence in train-
39K, we only keep α% gold-standard dependen-
cies (not considering punctuation marks), and re-
move all other dependencies. We experiment with
three simulation settings to fully investigate the ca-
pability of different approaches in learning from
PA.

Random (30% or 15%):3 For each sentence
in train-39K, we randomly select α% words, and
only keep dependencies linking to these words.

2https://nlp.stanford.edu/projects/
glove/

3 We choose 15% since the parsers achieve about 85%
UAS when trained on train-1K (see Table 4). Then 30% aim
to find the effect of different levels of supervision.

52

Biaffine LLGPar LGPar GN3Par LTPar Berkeley Turbo Mate-tool ZPar

on Dev 94.37 93.16 93.00 93.32 92.77 92.84 92.86 92.58 92.42
on Test 94.18 92.42 92.43 93.26 92.01 92.85 92.63 92.48 92.12

Table 2: UAS of different parsers trained on all training data (40K)

FA(random) PA(random) PA(uncertain) PA(divergence)
100% 30% 15% 30% 15% 30% 15% 21.33%

Biaffine 94.37 93.06 (-1.31) 92.10 (-2.27) 92.84 (-1.53) 91.92 (-2.45) 93.63 (-0.74) 92.83 (-1.54) 93.58 (-0.79)
LLGPar 93.16 91.93 (-1.23) 91.15 (-2.01) 92.39 (-0.77) 91.66 (-1.50) 93.02 (-0.14) 92.44 (-0.72) 92.83 (-0.33)
LGPar 93.00 91.76 (-1.24) 90.80 (-2.20) 91.63 (-1.37) 90.62 (-2.38) 92.46 (-0.54) 91.64 (-1.36) 92.42 (-0.58)

GN3Par 93.32 91.99 (-1.33) 91.17 (-2.15) 91.43 (-1.89) 90.34 (-2.98) 92.40 (-0.92) 91.80 (-1.52) 92.60 (-0.72)
LTPar 92.77 91.22 (-1.55) 90.35 (-2.42) 91.12 (-1.65) 90.12 (-2.65) 91.35 (-1.42) 90.99 (-1.78) 91.04 (-1.73)

Table 3: UAS on dev data: parsers are directly trained on train-1K with FA and train-39K with PA. “FA
(random) α%” means randomly selecting α% sentences with FA from train-39K for training. Numbers
in parenthesis are the accuracy gap from the second column “FA (100%)”.

With this setting, we aim to purely study the is-
sue without biasing to certain structures. This set-
ting may be best fit the scenario automatic syntax
projection based on bitext, where the projected de-
pendencies tend to be arbitrary (and noisy) due to
the errors in automatic source-language parses and
word alignments and non-isomorphism syntax be-
tween languages.

Uncertain (30% or 15%): In their work of ac-
tive learning with PA, Li et al. (2016) show that the
marginal probabilities from LLGPar is the most
effective uncertainty measurement for selecting
the most informative words to be annotated. Fol-
lowing their work, we first train LLGPar on train-
1K with FA, and then use LLGPar to parse train-
39K and select α% most uncertain words. We use
the gold-standard heads of the selected words as
PAs for model training.

Following Li et al. (2016), we measure the un-
certainty of a word wi according to the marginal
probability gap between its two most likely heads
h0

i and h1
i .

Uncertainty(x, i) = p(h0
i ↷ i|x)− p(h1

i ↷ i|x)
(8)

This setting fits the scenario of active learning,
which aims to save annotation effort by only an-
notating the most useful structures.

Divergence (21.33%): We train all five parsers
on train-1K, and use them to parse train-39K. If
their output trees do not assign the same head to a
word, then we keep the gold-standard dependency
pointing to the word, leading to 21.33% remaining
dependencies. This setting fits to the tri-training

scenario investigated in Li et al. (2014).

4.2 Results of different parsers trained on FA

We train the five parsers on all the training data
with FA. We also employ four publicly available
parsers with their default settings. BerkeleyParser
(v1.7) is a constituent-structure parser, whose re-
sults are converted into dependency structures
(Petrov and Klein, 2007). TurboParser (v2.1.0)
is a linear graph-based dependency parser using
linear programming for inference (Martins et al.,
2013). Mate-tool (v3.3) is a linear graph-based de-
pendency parser very similar to our implemented
LGPar (Bohnet, 2010). ZPar (v0.6) is a linear
transition-based dependency parser very similar to
our implemented LTPar (Zhang and Clark, 2011).
The results are shown in Table 2.

We can see that the five parsers that we adopt
achieve competitive parsing accuracy and serve as
strong baselines. Especially, the recently proposed
neural network Biaffine outperforms other parser
by more than 1%.

4.3 Results of the directly-train approaches

The five parsers are directly trained on train-1K
with FA and train-39K with PA based on the
methods described in Section 3. Table 3 shows
the results.

Comparing the five parsers, we have several
clear findings. (1) LLGPar is the most effective in
directly learning from PA since its accuracy drop
is the smallest over all PA settings compared with
FA (100%). (2) Although Biaffine achieves best

53

Parser for completion
No constraints PA (random) PA (uncertain) PA (divergence)

0% 30% 15% 30% 15% 21.33%

Biaffine-1K 87.08 92.10 (+5.02) 89.79 (+2.71) 96.78 (+9.70) 93.47 (+6.39) 96.76 (+9.68)
LLGPar-1K 86.67 92.65 (+5.98) 90.02 (+3.35) 97.43 (+10.76) 94.43 (+7.76) 97.07 (+10.40)
LGPar-1K 86.05 92.16 (+6.11) 89.48 (+3.43) 97.30 (+11.25) 94.11 (+8.06) 96.99 (+10.94)

GN3Par-1K 85.86 92.34 (+6.48) 89.54 (+3.68) 97.02 (+11.16) 93.69 (+7.83) 96.56 (+10.70)
LTPar-1K 85.38 91.76 (+6.38) 88.89 (+3.51) 96.90 (+11.52) 93.35 (+7.97) 96.72 (+11.34)

LLGPar-1K+39K – 95.55 93.37 98.30 96.22 97.69
Biaffine-1K+39K – 95.77 93.52 98.27 96.17 97.73

Table 4: UAS of full trees in train-39K completed via constrained decoding.

accuracy over all settings, thanks to its strong per-
formance under the basic FA setting, we find that
the accuracy gap between LLGPar and Biaffine
becomes much smaller with PA than with FA. This
also indicates that LLGPar is more effective in di-
rectly learning from PA. (3) LTPar achieves the
lowest accuracy over all settings, especially on PA
under uncertain (30%, 15%) and divergence. It is
also clear that the accuracy declines the largest on
these three settings, compared with FA (100%).

FA (random) vs. PA (random):4 from the re-
sults in the two major columns, we can see that
LLGPar achieves higher accuracy by about 0.5%
when trained on sentences with α% random de-
pendencies than when trained on α% random sen-
tences with FA. This is reasonable and can be
explained under the assumption that LLGPar can
make full use of PA in model training. In fact,
in both cases, the training data contains approxi-
mately the same number of annotated dependen-
cies. However, from the perspective of model
training, given some dependencies in the case of
PA, more information about the syntactic structure
can be derived.5

Taking Figure 1 as an example, “I1” can only
modify “saw2” due to the single-root and single-
head constraints; similarly, “Sarah3” can only
modify either “saw2” or “with2”; and so on. More-

4 These two settings should give the clearest evidence
whether a parser can effectively learn from PAs. Under the
same α%, although containing approximately the same num-
ber of dependencies, PA certainly provide more syntactic in-
formation than FA, since 1) it is more expensive to annotate
PA than FA in the terms of annotation time per dependency;
2) in PA, partially annotated dependencies can provide strong
constraints on the remaining undecided dependencies. There-
fore, we assume that a parser is effectively in learning from
PA if it can achieve at least higher accuracy under PA.

5Also, as suggested in the work of Li et al. (2016), an-
notating PA is more time-consuming than annotating FA in
terms of averaged time for each dependency, since dependen-
cies in the same sentence are correlated and earlier annotated
dependencies usually make later annotation easier.

over, since LLGPar is a second-order model, the
presence of certain dependencies can directly af-
fect the choice of other dependencies through the
scores of adjacent siblings. Therefore, given the
same amount of annotated dependencies, random
PA contains more syntactic information than ran-
dom FA, which explains why LLGPar performs
better with PA than FA.

In contrast, all other four parsers achieve lower
accuracy with PA than with FA. Biaffine differs
from LLGPar in being a first-order model, and
thus cannot fully utilize PA by considering sib-
ling scores. The problem of LGPar may lie in
the perceptron training with constrained decod-
ing, which only considers a single best tree that
complies with the given PA as gold-standard (Line
7 in Algorithm 1), unlike the forest-based objec-
tive of LLGPar that consider all trees weighted
with probabilities. Both GN3Par and LTPar suffer
from the inexact search problem. In other words,
the approximate beam search can cause the cor-
rect tree drops off the beam too soon due to lower
scores for earlier actions, and thus return a bad a+

that causes the model be updated to bias to wrong
structures (Line 8 in Algorithm 1).

PA (random) vs. PA (uncertain):6 we can see
that all five parsers achieve much higher accuracy
in the latter case.7 The annotated dependencies
in PA (uncertain) are most uncertain ones for cur-
rent statistical parser (i.e., LLGPar), and thus are
more helpful for training the models than those in
PA (random). Another phenomenon is that, in the
case of PA (uncertain), increasing α% = 15% to

6From the idea of active learning, we know that annotat-
ing the most informative dependencies as more training data
can help models best. So, we select the most uncertain depen-
dencies and compare the result on the setting with randomly-
selected dependencies.

7The only exception is LTPar with 30% PA, the accuracy
increases by only 91.35 − 91.12 = 0.23%, which may be
caused by the ineffectiveness of LTPar in learning from PA.

54

30% actually doubles the number of annotated de-
pendencies, but only boost accuracy of LLGPar
by 93.02 − 92.44 = 0.58%, which indicates that
newly added 15% dependencies are much less use-
ful since the model can already well handle these
low-uncertainty dependencies.

PA (uncertain, 30%) vs. PA (divergence):8
we can see that the all five parsers achieve simi-
lar parsing accuracies under the two settings. This
indicates that the divergence strategy can find very
useful dependencies for all parsers, whereas un-
certainty measurement based on LLGPar might be
biased towards itself to a certain extent.

In summary, we can conclude from the results
that LLGPar is the most effective in directly learn-
ing from PA among all five parsers, due to both the
second-order modeling and the forest-based train-
ing objective.

4.4 Results of the complete-then-train
methods

The most straight-forward method for learning
from PA is the complete-then-learn method (Mir-
roshandel and Nasr, 2011). The idea is first us-
ing an existing parser to complete partial trees in
train-39K into full trees based on constrained de-
coding, and then training the target parser on train-
1K with FA and train-39K with completed FA.

Results of completing via constrained decod-
ing: Table 4 reports UAS of the completed
trees on train-39K using two different strategies
for completion. “No constraints (0%)” means
that train-39K has no annotated dependencies and
normal decoding without constraints is used. In
the remaining columns, each parser performs con-
strained decoding on PA where α% dependencies
are provided in each sentence.

• Coarsely-trained-self for completion: We
complete PA into FA using corresponding
parsers coarsely trained on only train-1K
with FA. We call these parsers Biaffine-
1K, LLGPar-1K, LGPar-1K, GN3Par-1K,
LTPar-1K respectively.

• Fine-trained-LLGPar for completion: We
complete PA into FA using LLGPar fine
trained on both train-1K with FA and
train-39K with PA. We call this LLGPar

8Selecting uncertain dependencies according to LLGPar
may cause the resulting data to be biased to LLGPar. There-
fore, we consider the divergence among all parsers for selec-
tion.

as LLGPar-1K+39K. Please note that
LLGPar-1K+39K actually performs closed
test in this setting, meaning that it parses
its training data. For example, LLGPar-
1K+39K trained on random (30%) is em-
ployed to complete the same data by filling
the remaining 70% dependencies.

• Fine-trained-Biaffine for completion: This
is the same with the case of “Fine-trained-
LLGPar”, except that we replace LLGParser
with Biaffine. We call the resulting parser as
Biaffine-1K+39K.

Comparing the five parsers trained on train-1K,
we can see that constrained decoding has similar
effects on all five parsers, and is able to return
much more accurate trees. Numbers in parenthesis
show the accuracy gap between unconstrained 0%
and constrained decoding. This suggests that con-
strained decoding itself is not responsible for the
ineffectiveness of Algorithm 1 for other parsers,
especially LTPar.

Comparing the results of LLGPar-1K and
LLGPar-1K+39K, it is obvious that the latter pro-
duces much better full trees since the fine-trained
LLGPar can make extra use of PA in train-39K
during training.

LLGPar-1K+39K and Biaffine-1K+39K
achieve similar accuracies. We choose to use the
former for completion since LLGPar is the most
effective in both learning from PA and completing
PA, as indicated by the results in Table 3 and 4.

Results of training on completed FA: Table 5
compares performance of the five parsers trained
on train-1K with FA and train-39K with com-
pleted FA, from which we can draw several clear
and interesting findings. First, different from the
case of directly training on PA, the accuracy gaps
among the five parsers become much more sta-
ble when trained on data with completed FA in
both completion settings. Second, using parsers
coarsely-trained on train-1K for completion leads
to very bad performance, which is even much
worse than those of the directly-train method in
Table 3 except for LTPar with uncertain (30%) and
divergence. Third, using the fine-trained LLGPar-
1K+39K for completion makes LGPar and LTPar
achieve nearly the same accuracies with LLGPar,
which may be because LLGPar provides comple-
mentary effects during completion, analogous to
the scenario of co-training.

55

Completed by self-1K Completed by LLGPar-1K+39K

PA (random) PA (uncertain) PA (divergence) PA (random) PA (uncertain) PA (divergence)
30% 15% 30% 15% 21.33% 30% 15% 30% 15% 21.33%

Biaffine 90.88 89.77 92.91 91.55 92.83 93.13 92.46 93.52 93.02 93.48
LLGPar 89.91 88.69 92.05 90.77 92.28 92.29 91.54 92.86 92.33 92.76
LGPar 89.42 88.32 91.85 90.66 92.07 92.17 91.59 92.84 92.21 92.79

GN3Par 89.77 88.38 92.07 90.71 92.07 92.43 91.83 92.82 92.45 92.66
LTPar 89.17 87.72 91.59 90.12 91.67 92.05 91.37 92.42 92.10 92.40

Table 5: UAS on dev data: parsers trained on train-1K with FA and train-39K with completed FA.

Directly train on train-39K with PA Train-39K with FA completed by LLGPar-1K+39K

PA (random) PA (uncertain) PA (divergence) PA (random) PA (uncertain) PA (divergence)
30% 15% 30% 15% 21.33% 30% 15% 30% 15% 21.33%

Biaffine 92.76 91.66 93.44 92.82 93.43 92.82 92.00 93.20 92.88 93.30
LLGPar 91.73 91.02 92.34 91.83 92.34 91.46 90.99 92.20 91.59 92.18
LGPar 91.17 90.36 91.99 91.28 91.74 91.55 90.96 91.98 91.57 92.01

GN3Par 91.15 89.86 92.12 91.91 92.50 92.12 91.44 92.65 92.27 92.56
LTPar 90.79 89.89 90.47 90.37 90.75 91.48 90.78 91.80 91.45 91.87

Table 6: UAS on test data: comparison of the directly-train and complete-then-train methods.

4.5 Results on test data: directly-train vs.
complete-then-train

Table 6 reports UAS on the test data of parsers di-
rectly trained on train-1K with FA and train-39K
with PA, and of those trained on train-1K with FA
and train-39K with FA completed by fine-trained
LLGPar-1K+39K. The results are consistent with
the those on dev data in Table 3 and 5. Compar-
ing the two settings, we can draw two interesting
findings. First, LLGPar performs slightly better
with the directly-train method. Second, the two
settings lead to very similar performance on Bi-
affine, without a clear trend. Third, LGPar per-
forms slightly better with the complete-then-train
method in most cases except for uncertain (30%).
Four, GN3Par and LTPar perform much better
with the complete-then-train method.

5 Related work

In parsing community, most previous works adopt
ad-hoc methods to learn from PA. Sassano and
Kurohashi (2010), Jiang et al. (2010), and Flan-
nery and Mori (2015) convert partially annotated
instances into local dependency/non-dependency
classification instances, which may suffer from the
lack of non-local correlation between dependen-
cies in a tree.

Mirroshandel and Nasr (2011) and Majidi
and Crane (2013) adopt the complete-then-learn
method. They use parsers coarsely trained on ex-

isting data with FA for completion via constrained
decoding. However, our experiments show that
this leads to dramatic decrease in parsing accuracy.

Nivre et al. (2014) present a constrained de-
coding procedure for arc-eager transition-based
parsers. However, their work focuses on allow-
ing their parser to effectively exploit external con-
straints during the evaluation phase. In this work,
we directly employ their method and show that
constrained decoding is effective for LTPar and
thus irresponsible for its ineffectiveness in learn-
ing PA.

Directly learning from PA based on constrained
decoding is previously proposed by Jiang et al.
(2013) for Chinese word segmentation, which
is treated as a character-level sequence labeling
problem. In this work, we first apply the idea to
LGPar and LTPar for directly learning from PA.

Directly learning from PA based on a forest-
based objective in LLGPar is first proposed by
Li et al. (2014), inspired by the idea of ambigu-
ous labeling. Similar ideas have been extensively
explored recently in sequence labeling tasks (Liu
et al., 2014; Yang and Vozila, 2014; Marcheggiani
and Artières, 2014).

Hwa (1999) pioneers the idea of exploring
PA for constituent grammar induction based on
a variant Inside-Outside re-estimation algorithm
(Pereira and Schabes, 1992). Clark and Curran
(2006) propose to train a Combinatorial Catego-
rial Grammar parser using partially labeled data

56

only containing predicate-argument dependencies.
Mielens et al. (2015) propose to impute missing
dependencies based on Gibbs sampling in order
to enable traditional parsers to learn from partial
trees.

6 Conclusions

This paper investigates the problem of dependency
parsing with partially labeled data. Particularly,
we focus on the realistic scenario where we have a
small-scale training dataset with FA and a large-
scale training dataset with PA. We experiment
with three settings for simulating PA and com-
pare several directly-train and complete-then-train
approaches with five mainstream parsers, i.e., Bi-
affine, LLGPar, LGPar, GN3Par and LTPar.

Based on this work, we may draw the following
conclusions.

• For the complete-then-train approach, using
parsers coarsely trained on small-scale data
with FA for completion leads to unsatisfac-
tory results.

• LLGPar is the most effective in directly
learning from PA due to both its second-
order modeling and probabilistic forest-based
training objective.

• All other four parsers are less effective in di-
rectly learning from PA, but can achieve their
best performance with the complete-then-
train approach where PAs are completed into
FAs by LLGPar fine-trained on all FA+PA
data.

However, as our reviewers kindly point out,
more extensive experiments and systematic anal-
ysis are needed to really understand this interest-
ing issue and provide stronger findings, which we
leave for future work.

Acknowledgments

The authors would like to thank the anonymous re-
viewers for the helpful comments. We are greatly
grateful to Jiayuan Chao for her earlier-stage ex-
periments on this work, and to Wenliang Chen for
the helpful discussions. This work was supported
by National Natural Science Foundation of China
(Grant No. 61525205, 61373095, 61502325).

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. In Pro-
ceedings of ACL, pages 2442–2452.

Bernd Bohnet. 2010. Top accuracy and fast depen-
dency parsing is not a contradiction. In Proceedings
of COLING, pages 89–97.

Xavier Carreras. 2007. Experiments with a higher-
order projective dependency parser. In Proceedings
of EMNLP/CoNLL, pages 141–150.

Danqi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Conference on Empirical Methods in Nat-
ural Language Processing, pages 740–750.

Stephen Clark and James Curran. 2006. Partial training
for a lexicalized-grammar parser. In Proceedings of
the Human Language Technology Conference of the
NAACL, pages 144–151.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and exper-
iments with perceptron algorithms. In Proceedings
of EMNLP 2002, pages 1–8.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependecy pars-
ing. In ICLR.

Mark Dredze, Partha Pratim Talukdar, and Koby Cram-
mer. 2009. Sequence learning from data with multi-
ple labels. In ECML/PKDD Workshop on Learning
from Multi-Label Data.

Jenny Rose Finkel, Alex Kleeman, and Christopher D.
Manning. 2008. Efficient, feature-based, condi-
tional random field parsing. In Proceedings of ACL,
pages 959–967.

Daniel Flannery and Shinsuke Mori. 2015. Combin-
ing active learning and partial annotation for domain
adaptation of a japanese dependency parser. In Pro-
ceedings of the 14th International Conference on
Parsing Technologies, pages 11–19.

Kuzman Ganchev, Jennifer Gillenwater, and Ben
Taskar. 2009. Dependency grammar induction via
bitext projection constraints. In Proceedings of
ACL-IJCNLP 2009, pages 369–377.

Rebecca Hwa. 1999. Supervised grammar induction
using training data with limited constituent informa-
tion. In Proceedings of ACL, pages 73–79.

Wenbin Jiang, , and Qun Liu. 2010. Dependency pars-
ing and projection based on word-pair classification.
In ACL, pages 897–904.

Wenbin Jiang, Meng Sun, Yajuan Lü, Yating Yang, and
Qun Liu. 2013. Discriminative learning with natural
annotations: Word segmentation as a case study. In
Proceedings of ACL, pages 761–769.

57

Terry Koo and Michael Collins. 2010. Efficient third-
order dependency parsers. In ACL, pages 1–11.

Shoushan Li, Guodong Zhou, and Chu-Ren Huang.
2012. Active learning for Chinese word segmen-
tation. In Proceedings of COLING 2012: Posters,
pages 683–692.

Zhenghua Li, Min Zhang, and Wenliang Chen. 2014.
Soft cross-lingual syntax projection for dependency
parsing. In COLING, pages 783–793.

Zhenghua Li, Min Zhang, Yue Zhang, Zhanyi Liu,
Wenliang Chen, Hua Wu, and Haifeng Wang. 2016.
Active learning for dependency parsing with partial
annotation. In ACL.

Yijia Liu, Yue Zhang, Wanxiang Che, Ting Liu, and
Fan Wu. 2014. Domain adaptation for CRF-based
Chinese word segmentation using free annotations.
In Proceedings of EMNLP, pages 864–874.

Xuezhe Ma and Eduard Hovy. 2017. Neural proba-
bilistic model for non-projective mst parsing. In
arxiv:https://arxiv.org/abs/1701.00874.

Saeed Majidi and Gregory Crane. 2013. Active learn-
ing for dependency parsing by a committee of
parsers. In Proceedings of IWPT, pages 98–105.

Diego Marcheggiani and Thierry Artières. 2014. An
experimental comparison of active learning strate-
gies for partially labeled sequences. In Proceedings
of EMNLP, pages 898–906.

Andre Martins, Miguel Almeida, and Noah A. Smith.
2013. Turning on the turbo: Fast third-order non-
projective turbo parsers. In Proceedings of ACL,
pages 617–622.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In Proceedings of ACL, pages
91–98.

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In Proceedings of EACL, pages 81–88.

Jason Mielens, Liang Sun, and Jason Baldridge. 2015.
Parse imputation for dependency annotations. In
Proceedings of ACL-IJCNLP, pages 1385–1394.

Seyed Abolghasem Mirroshandel and Alexis Nasr.
2011. Active learning for dependency parsing us-
ing partially annotated sentences. In Proceedings of
the 12th International Conference on Parsing Tech-
nologies, pages 140–149.

Joakim Nivre. 2003. An efficient algorithm for projec-
tive dependency parsing. In Proceedings of IWPT,
pages 149–160.

Joakim Nivre, Yoav Goldberg, and Ryan McDonald.
2014. Constrained arc-eager dependency parsing.
In Computational Linguistics, volume 40, pages
249–258.

Fernando Pereira and Yves Schabes. 1992. Inside-
outside reestimation from partially bracketed cor-
pora. In Proceedings of the Workshop on Speech
and Natural Language (HLT), pages 122–127.

Slav Petrov and Dan Klein. 2007. Improved infer-
ence for unlexicalized parsing. In Proceedings of
NAACL.

Stefan Riezler, Tracy H. King, Ronald M. Kaplan,
Richard Crouch, John T. III Maxwell, and Mark
Johnson. 2002. Parsing the wall street journal using
a lexical-functional grammar and discriminative es-
timation techniques. In Proceedings of ACL, pages
271–278.

Manabu Sassano and Sadao Kurohashi. 2010. Using
smaller constituents rather than sentences in active
learning for japanese dependency parsing. In Pro-
ceedings of ACL, pages 356–365.

Kathrin Spreyer and Jonas Kuhn. 2009. Data-driven
dependency parsing of new languages using incom-
plete and noisy training data. In CoNLL, pages 12–
20.

Oscar Täckström, Ryan McDonald, and Joakim Nivre.
2013. Target language adaptation of discriminative
transfer parsers. In Proceedings of NAACL, pages
1061–1071.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-
tical dependency analysis with support vector ma-
chines. In Proceedings of IWPT, pages 195–206.

Fan Yang and Paul Vozila. 2014. Semi-supervised Chi-
nese word segmentation using partial-label learning
with conditional random fields. In Proceedings of
EMNLP, pages 90–98.

Yue Zhang and Stephen Clark. 2011. Syntactic pro-
cessing using the generalized perceptron and beam
search. Computational Linguistics, 37(1):105–151.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of ACL, pages 188–193.

58

