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Preface

Welcome to the 8th International Joint Conference on Natural Language Processing (IJCNLP). IJCNLP
was initiated in 2004 by the Asian Federation of Natural Language Processing (AFNLP) with the major
goal to provide a platform for researchers and professionals around the world to share their experiences
related to natural language processing and computational linguistics. In the past years, IJCNLPs were
held in 7 different places: Hainan Island (2004), Jeju Island (2005), Hyderabad (2008), Singapore (2009),
Chiang Mai (2011), Nagoya (2013) and Beijing (2015). This year the 8th IJCNLP is held in Taipei
Nangang Exhibition Hall on November 27-December 1, 2017.

We are confident that you will find IJCNLP 2017 to be technically stimulating. The conference covers a
broad spectrum of technical areas related to natural language processing and computation. Besides main
conference, the program includes 3 keynote speeches, 6 tutorials, 17 demonstrations, 5 workshops, and
5 shared tasks (new event).

Before closing this brief welcome, we would like to thank the entire organizing committee for their
long efforts to create and event that we hope will be memorable for you. Program chairs Greg Kondrak
and Taro Watanabe coordinate the review process allowing for top quality papers to be presented at
the conference. Workshop chairs Min Zhang and Yue Zhang organize 5 nice pre-conference and post-
conference workshops. Tutorial chairs Sadao Kurohashi and Michael Strube select 6 very good tutorials.
Demo chairs Seong-Bae Park and Thepchai Supnithi recommend 17 demonstrations. Shared Task chairs
Chao-Hong Liu, Preslav Nakov and Nianwen Xue choose 5 interesting shared tasks. Sponsorship chairs
Youngkil Kim, Tong Xiao, Kazuhide Yamamoto and Jui-Feng Yeh design sponsor packages and find
financial supports. We thank all the sponsors. Publicity chairs Pushpak Bhattacharya, Xuanjing Huang,
Gina-Anne Levow, Chi Mai Loung and Sebastian Stüker help circulate the conference information and
promote the conference. We would like to express our special thanks to publication chairs Lung-Hao
Lee and Derek F. Wong. After the hard work, they deliver an excellent proceeding to the participants.

Finally, we would like to thank all authors for submitting high quality research this year. We hope all of
you enjoy the conference program, and your stay at this beautiful city of Taipei.

General Chair

Chengqing Zong, Institute of Automation, Chinese Academy of Sciences, China

Organization Co-Chairs

Hsin-Hsi Chen, National Taiwan University, Taiwan
Yuen-Hsien Tseng, National Taiwan Normal University, Taiwan
Chung-Hsien Wu, National Cheng Kung University, Taiwan
Liang-Chih Yu, Yuan Ze University, Taiwan
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Message from the Program Co-Chairs

Welcome to the 8th International Joint Conference on Natural Language Processing (IJCNLP 2017)
organized by National Taiwan Normal University and the Association for Computational Linguistics
and Chinese Language Processing (ACLCLP) and hosted by The Asian Federation of Natural Language
Processing (AFNLP).

Since the first meeting in 2004, IJCNLP has established itself as a major NLP conference. This year, we
received 580 submissions (337 long and 243 short), which is by far the largest number ever for a stand-
alone IJCNLP conference. From these, 179 papers (103 long and 76 short) were accepted to appear at
the conference, which represents an acceptance rate of 31%. In particular, approximately 46% of the
accepted papers are from Asia Pacific, 30% from North America, and 20% from Europe.

Our objective is to keep the conference to three parallel sessions at any one time. 86 long papers and
21 short papers are scheduled as oral presentations, while 17 long papers and 55 short papers will be
presented as posters.

We are also very pleased to announce three exciting keynote talks by the renowned NLP researchers:
Rada Mihalcea (University of Michigan), Trevor Cohn (University of Melbourne) and Jason Eisner
(Johns Hopkins University).

The conference will conclude with the award presentation ceremony. The Best Paper Award goes
to Nikolaos Pappas and Andrei Popescu-Belis for their paper “Multilingual Hierarchical Attention
Networks for Document Classification.” The Best Student Paper award goes to “Roles and Success in
Wikipedia Talk Pages: Identifying Latent Patterns of Behavior” by Keith Maki, Michael Yoder, Yohan
Jo and Carolyn Rosé.

We would like to thank everyone who has helped make IJCNLP 2017 a success. In particular, the area
chairs (who are listed in the Program Committee section) worked hard on recruiting reviewers, managing
reviews, leading discussions, and making recommendations. The quality of the technical program reflects
the expertise of our 536 reviewers. All submissions were reviewed by at least three reviewers. The
review process for the conference was double-blind, and included an author response period, as well as
subsequent discussions.

We would like to acknowledge the help and advice from the General Chair Chengqing Zong, and the
Local Arrangements Committee headed by Liang-Chih Yu. We thank the Publication Chairs Lung-Hao
Lee and Derek F. Wong for putting together the conference proceedings and handbook, and all the other
committee chairs for their great work.

We hope you will enjoy IJCNLP 2017!

IJCNLP 2017 Program Co-Chairs

Greg Kondrak, University of Alberta
Taro Watanabe, Google

vi



Organizing Committee

Conference Chair

Chengqing Zong, Institute of Automation, Chinese Academy of Sciences

Program Committee Co-Chairs

Greg Kondrak, University of Alberta
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Workshop Co-Chairs

Min Zhang, Soochow University
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Invited Talk: Words and People

Rada Mihalcea

University of Michigan

Abstract

What do the words we use say about us and about how we view the world surrounding us? And
what do we - as speakers of those words with our own defining attributes, imply about the words
we utter? In this talk, I will explore the relation between words and people and show how we can
develop cross-cultural word models to identify words with cultural bias – i.e., words that are used
in significantly different ways by speakers from different cultures. Further, I will also show how
we can effectively use information about the speakers of a word (i.e., their gender, culture) to build
better word models.

Biography

Rada Mihalcea is a Professor in the Computer Science and Engineering department at the Uni-
versity of Michigan. Her research interests are in computational linguistics, with a focus on
lexical semantics, multilingual natural language processing, and computational social sciences.
She serves or has served on the editorial boards of the Journals of Computational Linguistics,
Language Resources and Evaluations, Natural Language Engineering, Research in Language in
Computation, IEEE Transactions on Affective Computing, and Transactions of the Association for
Computational Linguistics. She was a program co-chair for the Conference of the Association for
Computational Linguistics (2011) and the Conference on Empirical Methods in Natural Language
Processing (2009), and a general chair for the Conference of the North American Chapter of the
Association for Computational Linguistics (2015). She is the recipient of a National Science Foun-
dation CAREER award (2008) and a Presidential Early Career Award for Scientists and Engineers
awarded by President Obama (2009). In 2013, she was made an honorary citizen of her hometown
of Cluj-Napoca, Romania.
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Invited Talk: Learning Large and Small: How to Transfer NLP Successes to
Low-resource Languages

Trevor Cohn

University of Melbourne

Abstract

Recent advances in NLP have predominantly been based upon supervised learning over large cor-
pora, where rich expressive models, such as deep learning methods, can perform exceptionally
well. However, these state of the art approaches tend to be very data hungry, and consequently do
not elegantly scale down to smaller corpora, which are more typical in many NLP applications.

In this talk, I will describe the importance of small data in our field, drawing particular attention to
so-called “low-” or “under-resourced” languages, for which corpora are scarce, and linguistic an-
notations scarcer yet. One of the key problems for our field is how to translate successes on the few
high-resource languages to practical technologies for the remaining majority of the world’s lan-
guages. I will cover several research problems in this space, including transfer learning between
high- and low-resource languages, active learning for selecting text for annotation, and speech pro-
cessing in a low-resource setting, namely learning to translate audio inputs without transcriptions.
I will finish by discussing open problems in natural language processing that will be critical in
porting highly successful NLP work to the myriad of less-well-studied languages.

Biography

Trevor Cohn is an Associate Professor and ARC Future Fellow at the University of Melbourne,
in the School of Computing and Information Systems. He received Bachelor degrees in Software
Engineering and Commerce, and a PhD degree in Engineering from the University of Melbourne.
He was previously based at the University of Sheffield, and before this worked as a Research
Fellow at the University of Edinburgh. His research interests focus on probabilistic and statistical
machine learning for natural language processing, with applications in several areas including
machine translation, parsing and grammar induction. Current projects include translating diverse
and noisy text sources, deep learning of semantics in translation, rumour diffusion over social
media, and algorithmic approaches for scaling to massive corpora. Dr. Cohn’s research has been
recognised by several best paper awards, including best short paper at EMNLP in 2016. He will
be jointly organising ACL 2018 in Melbourne.
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Invited Talk: Strategies for Discovering Underlying Linguistic Structure

Jason Eisner

Johns Hopkins University

Abstract

A goal of computational linguistics is to automate the kind of reasoning that linguists do. Given
text in a new language, can we determine the underlying morphemes and the grammar rules that
arrange and modify them?

The Bayesian strategy is to devise a joint probabilistic model that is capable of generating the
descriptions of new languages. Given data from a particular new language, we can then seek
explanatory descriptions that have high prior probability. This strategy leads to fascinating and
successful algorithms in the case of morphology.

Yet the Bayesian approach has been less successful for syntax. It is limited in practice by our ability
to (1) design accurate models and (2) solve the computational problem of posterior inference. I
will demonstrate some remedies: build only a partial (conditional) model, and use synthetic data
to train a neural network that simulates correct posterior inference.

Biography

Jason Eisner is Professor of Computer Science at Johns Hopkins University, where he is also af-
filiated with the Center for Language and Speech Processing, the Machine Learning Group, the
Cognitive Science Department, and the national Center of Excellence in Human Language Tech-
nology. His goal is to develop the probabilistic modeling, inference, and learning techniques
needed for a unified model of all kinds of linguistic structure. His 100+ papers have presented
various algorithms for parsing, machine translation, and weighted finite-state machines; formaliza-
tions, algorithms, theorems, and empirical results in computational phonology; and unsupervised
or semi-supervised learning methods for syntax, morphology, and word-sense disambiguation. He
is also the lead designer of Dyna, a new declarative programming language that provides an in-
frastructure for AI research. He has received two school-wide awards for excellence in teaching.
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Abstract
While neural machine translation (NMT)
models provide improved translation qual-
ity in an elegant framework, it is less
clear what they learn about language. Re-
cent work has started evaluating the qual-
ity of vector representations learned by
NMT models on morphological and syn-
tactic tasks. In this paper, we investigate
the representations learned at different lay-
ers of NMT encoders. We train NMT sys-
tems on parallel data and use the mod-
els to extract features for training a clas-
sifier on two tasks: part-of-speech and se-
mantic tagging. We then measure the per-
formance of the classifier as a proxy to
the quality of the original NMT model for
the given task. Our quantitative analysis
yields interesting insights regarding repre-
sentation learning in NMT models. For in-
stance, we find that higher layers are bet-
ter at learning semantics while lower lay-
ers tend to be better for part-of-speech tag-
ging. We also observe little effect of the
target language on source-side representa-
tions, especially in higher quality models.1

1 Introduction
Neural machine translation (NMT) offers an el-
egant end-to-end architecture, while at the same
time improving translation quality. However, little
is known about the inner workings of these models
and their interpretability is limited. Recent work
has started exploring what kind of linguistic infor-
mation such models learn on morphological (Vy-
lomova et al., 2016; Belinkov et al., 2017; Dalvi
et al., 2017) and syntactic levels (Shi et al., 2016;
Sennrich, 2017).

1Our code is available at http://github.com/
boknilev/nmt-repr-analysis.

One observation that has been made is that
lower layers in the neural MT network learn
different kinds of information than higher lay-
ers. For example, Shi et al. (2016) and Belinkov
et al. (2017) found that representations from lower
layers of the NMT encoder are more predictive
of word-level linguistic properties like part-of-
speech (POS) and morphological tags, whereas
higher layer representations are more predictive of
more global syntactic information. In this work,
we take a first step towards understanding what
NMT models learn about semantics. We evaluate
NMT representations from different layers on a se-
mantic tagging task and compare to the results on
a POS tagging task. We believe that understand-
ing the semantics learned in NMT can facilitate
using semantic information for improving NMT
systems, as previously shown for non-neural MT
(Chan et al., 2007; Liu and Gildea, 2010; Gao and
Vogel, 2011; Wu et al., 2011; Jones et al., 2012;
Bazrafshan and Gildea, 2013, 2014).

For the semantic (SEM) tagging task, we use
the dataset recently introduced by Bjerva et al.
(2016). This is a lexical semantics task: given a
sentence, the goal is to assign to each word a tag
representing a semantic class. The classes cap-
ture nuanced meanings that are ignored in most
POS tag schemes. For instance, proximal and dis-
tal demonstratives (e.g., this and that) are typi-
cally assigned the same POS tag (DT) but receive
different SEM tags (PRX and DST, respectively),
and proper nouns are assigned different SEM tags
depending on their type (e.g., geopolitical entity,
organization, person, and location). As another
example, consider pronouns like myself, yourself,
and herself. They may have reflexive or emphasiz-
ing functions, as in (1) and (2), respectively:

(1) Sarah bought herself a book

(2) Sarah herself bought a book

1



Figure 1: Illustration of our approach, after (Belinkov et al., 2017): (i) NMT system trained on parallel
data; (ii) features extracted from pre-trained model; (iii) classifier trained using the extracted features.
We train classifiers on either SEM or POS tagging using features from different layers (here: layer 2).

In these examples, herself has the same POS tag
(PRP) but different SEM tags: REF for a reflexive
function and EMP for an emphasizing function.

Capturing semantic distinctions of this sort can
be important for producing accurate translations.
For instance, example (1) would be translated to
Spanish with the reflexive pronoun se, whereas
(2) would be translated with the intensifier misma.
Thus, a translation system needs to learn different
representations of herself in the two sentences.

In order to assess the quality of the representa-
tions learned by NMT models, we adopt the fol-
lowing methodology from Shi et al. (2016) and
Belinkov et al. (2017). We first train an NMT sys-
tem on parallel data. Given a sentence, we extract
representations from the pre-trained NMT model
and train a word-level classifier to predict a tag
for each word. Our assumption is that the perfor-
mance of the classifier reflects the quality of the
representation for the given task.

We compare POS and SEM tagging quality with
representations from different layers or from mod-
els trained on different target languages, while
keeping the English source fixed. Our results yield
useful insights on representation learning in NMT:

• Consistent with previous work, we find that
lower layer representations are usually better
for POS tagging. However, we also find that
representations from higher layers are better
at capturing semantics, even though these are
word-level labels. This is especially true with
tags that are more semantic in nature such as
discourse functions or noun concepts.

• In contrast to previous work, we observe little
effect of the target language on source-side
representation. We find that the effect of tar-
get language diminishes as the size of data
used to train the NMT model increases.

2 Methodology

Given a parallel corpus of source and target sen-
tence pairs, we train an NMT system with a stan-
dard sequence-to-sequence model with attention
(Bahdanau et al., 2014; Sutskever et al., 2014). Af-
ter training the NMT system, we fix its parameters
and treat it as a feature generator for our classifi-
cation task. Let hk

j denote the output of the k-th
layer of the encoder at the j-th word. Given an-
other corpus of sentences, where each word is an-
notated with a label, we train a classifier that takes
hk

j as input features and maps words to labels. We
then measure the performance of the classifier as a
way to evaluate the quality of the representations
generated by the NMT system. By extracting dif-
ferent NMT features we can obtain a quantitative
comparison of representation learning quality in
the NMT model for the given task. For instance,
we may vary k in order to evaluate representations
learned at different encoding layers.

In our case, we first train NMT systems on par-
allel corpora of an English source and several tar-
get languages. Then we train separate classifiers
for predicting POS and SEM tags using the fea-
tures hk

j that are obtained from the English en-
coder and evaluate their accuracies. Figure 1 il-
lustrates the process.
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3 Data and Experimental Setup

3.1 Data

MT We use the fully-aligned United Nations
corpus (Ziemski et al., 2016) for training NMT
models, which includes 11 million multi-parallel
sentences in six languages: Arabic (Ar), Chinese
(Zh), English (En), French (Fr), Spanish (Es), and
Russian (Ru). We train En-to-* models on the first
2 million sentences of the train set, using the offi-
cial train/dev/test split. This dataset has the benefit
of multiple alignment of the six languages, which
allows for comparable cross-linguistic analysis.

Note that the parallel dataset is only used for
training the NMT model. The classifier is then
trained on the supervised data (described next) and
all accuracies are reported on the English test sets.

Semantic tagging Bjerva et al. (2016) intro-
duced a new sequence labeling task, for tagging
words with semantic (SEM) tags in context. This
is a good task to use as a starting point for inves-
tigating semantics because: i) tagging words with
semantic labels is very simple, compared to build-
ing complex relational semantic structures; ii) it
provides a large supervised dataset to train on, in
contrast to most available datasets on word sense
disambiguation, lexical substitution, and lexical
similarity; and iii) the proposed SEM tagging task
is an abstraction over POS tagging aimed at being
language-neutral, and oriented to multi-lingual se-
mantic parsing, all relevant aspects to MT. We pro-
vide here a brief overview of the task and its as-
sociated dataset, and refer to (Bjerva et al., 2016;
Abzianidze et al., 2017) for more details.

The semantic classes abstract over redundant
POS distinctions and disambiguate useful cases
inside a given POS tag. Examples (1-2) above
illustrate how fine-grained semantic distinctions
may be important for generating accurate trans-
lations. Other examples of SEM tag distinctions
include determiners like every, no, and some that
are typically assigned a single POS tag (e.g., DT in
the Penn Treebank), but have different SEM tags,
reflecting universal quantification (AND), negation
(NOT), and existential quantification (DIS), re-
spectively. The comma, whose POS tag is a punc-
tuation mark, is assigned different SEM tags rep-
resenting conjunction, disjunction, or apposition,
according to its discourse function. Proximal and
distant demonstratives (this vs. that) have different
SEM tags but the same POS tag. Named-entities,

Train Dev Test

POS
Sentences 38K 1.7K 2.3K
Tokens 908K 40K 54K

SEM
Sentences 42.5K 6.1K 12.2K
Tokens 937K 132K 266K

Table 1: Statistics of the part-of-speech and se-
mantic tagging datasets.

whose POS tag is usually a single tag for proper
nouns, are disambiguated into several classes such
as geo-political entity, location, organization, per-
son, and artifact. Other nouns are divided into
“role” entities (e.g., boxer) and “concepts” (e.g.,
wheel), a distinction reflecting existential consis-
tency: an entity can have multiple roles but cannot
be two different concepts.

The dataset annotation scheme includes 66 fine-
grained tags grouped in 13 coarse categories. We
use the silver part of the dataset; see Table 1 for
some statistics.

Part-of-speech tagging For POS tagging, we
simply use the Penn Treebank with the standard
split (parts 2-21/22/23 for train/dev/test); see Ta-
ble 1 for statistics. There are 34 POS tags.

3.2 Experimental Setup

Neural MT We use the seq2seq-attn
toolkit (Kim, 2016) to train 4-layered long short-
term memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) attentional encoder-decoder NMT sys-
tems with 500 dimensions for both word embed-
dings and LSTM states. We compare both uni-
directional and bidirectional encoders and experi-
ment with different numbers of layers. Each sys-
tem is trained with SGD for 20 epochs and the
model with the best loss on the development set
is used for generating features for the classifier.

Classifier The classifier is modeled as a feed-
forward neural network with one hidden layer,
dropout (ratio of 0.5), a ReLU activation func-
tion, and a softmax layer onto the label set size.2

The hidden layer is of the same size as the in-
put coming from the NMT system (i.e., 500 di-
mensions). The classifier has no explicit access to
context other than the hidden representation gen-

2We use a non-linear classifier because previous work
found that it outperforms a linear classifier, while showing
very similar trends (Qian et al., 2016b; Belinkov et al., 2017).
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MFT UnsupEmb Word2Tag

POS 91.95 87.06 95.55
SEM 82.00 81.11 91.41

Table 2: POS and SEM tagging accuracy with
baselines and an upper bound. MFT: most fre-
quent tag; UnsupEmb: classifier using unsuper-
vised word embeddings; Word2Tag: upper bound
encoder-decoder.

erated by the NMT system, which allows us to fo-
cus on the quality of the representation. We chose
this simple formulation as our goal is not to im-
prove the state-of-the-art on the supervised task,
but rather to analyze the quality of the NMT rep-
resentation for the task. We train the classifier for
30 epochs by minimizing the cross-entropy loss
using Adam (Kingma and Ba, 2014) with default
settings. Again, we use the model with the best
loss on the development set for evaluation.

Baselines and an upper bound we consider
two baselines: assigning to each word the most
frequent tag (MFT) according to the training set
(with the global majority tag for unseen words);
and training with unsupervised word embeddings
(UnsupEmb) as features for the classifier, which
shows what a simple task-independent distributed
representation can achieve. For the unsupervised
word embeddings, we train a Skip-gram nega-
tive sampling model (Mikolov et al., 2013) with
500 dimensional vectors on the English side of
the parallel data, to mirror the NMT word em-
bedding size. We also report an upper bound of
directly training an encoder-decoder on word-tag
sequences (Word2Tag), simulating what an NMT-
style model can achieve by directly optimizing for
the tagging tasks.

4 Results

Table 2 shows baseline and upper bound results.
The UnsupEmb baseline performs rather poorly
on both POS and SEM tagging. In comparison,
NMT word embeddings (Table 3, rows with k =
0) perform slightly better, suggesting that word
embeddings learned as part of the NMT model
are better syntactic and semantic representations.
However, the results are still below the most fre-
quent tag baseline (MFT), indicating that non-
contextual word embeddings are poor representa-
tions for POS and SEM tags.

k Ar Es Fr Ru Zh En

POS Tagging Accuracy

0 88.0⇤ 87.9⇤ 87.9⇤ 87.8⇤ 87.7⇤ 87.4⇤

1 92.4 91.9 92.1 92.1 91.5 89.4
2 91.9⇤ 91.8 91.8 91.8⇤ 91.3 88.3
3 92.0⇤ 92.3⇤ 92.1 91.6⇤⇤ 91.2⇤ 87.9⇤

4 92.1⇤ 92.4⇤ 92.5⇤ 92.0 90.5⇤ 86.9⇤

SEM Tagging Accuracy

0 81.9⇤ 81.9⇤ 81.8⇤ 81.8⇤ 81.8⇤ 81.2⇤

1 87.9 87.7 87.8 87.9 87.7 84.5
2 87.4⇤ 87.5⇤ 87.4⇤ 87.3⇤ 87.2⇤ 83.2⇤

3 87.8 87.9⇤ 87.9⇤⇤ 87.3⇤ 87.3⇤ 82.9⇤

4 88.3⇤ 88.6⇤ 88.4⇤ 88.1⇤ 87.7⇤ 82.1⇤

BLEU

32.7 49.1 38.5 34.2 32.1 96.6

Table 3: SEM and POS tagging accuracy using
features from the k-th encoding layer of 4-layered
NMT models trained with different target lan-
guages. “En” column is an English autoencoder.
BLEU scores are given for reference. Statistically
significant differences from layer 1 are shown at
p < 0.001(⇤) and p < 0.01(⇤⇤). See text for de-
tails.

4.1 Effect of network depth

Table 3 summarizes the results of training clas-
sifiers to predict POS and SEM tags using fea-
tures extracted from different encoding layers of 4-
layered NMT systems.3 In the POS tagging results
(first block), as the representations move above
layer 0, performance jumps to around 91–92%.
This is above the UnsupEmb baseline but only on
par with the MFT baseline (Table 2). We note that
previous work reported performance above a ma-
jority baseline for POS tagging (Shi et al., 2016;
Belinkov et al., 2017), but used a weak global ma-
jority baseline (all words are assigned a single tag)
whereas here we compare with a stronger baseline
that assigns to each word the most frequent tag ac-
cording to the training data. The results are also
far below the Word2Tag upper bound (Table 2).

Comparing layers 1 through 4, we see that in
3/5 target languages (Ar, Ru, Zh), POS tagging
accuracy peaks at layer 1 and does not improve

3The results given are with a unidirectional encoder; in
section 4.5 we compare with a bidirectional encoder and ob-
serve similar trends.
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at higher layers, with some drops at layers 2 and
3. In 2/5 cases (Es, Fr) the performance is higher
at layer 4. This result is partially consistent with
previous findings regarding the quality of lower
layer representations for the POS tagging task (Shi
et al., 2016; Belinkov et al., 2017). One possible
explanation for the discrepancy when using dif-
ferent target languages is that French and Span-
ish are typologically closer to English compared
to the other languages. It is possible that when the
source and target languages are more similar, they
share similar POS characteristics, leading to more
benefit in using upper layers for POS tagging.

Turning to SEM tagging (Table 3, second
block), representations from layers 1 through 4
boost the performance to around 87-88%, far
above the UnsupEmb and MFT baselines. While
these results are below the Word2Tag upper bound
(Table 2), they indicate that NMT representations
contain useful information for SEM tagging.

Going beyond the 1st encoding layer, represen-
tations from the 2nd and 3rd layers do not con-
sistently improve semantic tagging performance.
However, representations from the 4th layer lead
to significant improvement with all target lan-
guages except for Chinese. Note that there is a
statistically significant difference (p < 0.001) be-
tween layers 0 and 1 for all target languages, and
between layers 1 and 4 for all languages except for
Chinese, according to the approximate randomiza-
tion test (Padó, 2006).

Intuitively, higher layers have a more global
perspective because they have access to higher
representations of the word and its context, while
lower layers have a more local perspective. Layer
1 has access to context but only through one hid-
den layer which may not be sufficient for capturing
semantics. It appears that higher representations
are necessary for learning even relatively simple
lexical semantics.

Finally, we found that En-En encoder-decoders
(that is, English autoencoders) produce poor rep-
resentations for POS and SEM tagging (last col-
umn in Table 3). This is especially true with
higher layer representations (e.g., around 5% be-
low the MT models using representations from
layer 4). In contrast, the autoencoder has excellent
sentence recreation capabilities (96.6 BLEU). This
indicates that learning to translate (to any foreign
language) is important for obtaining useful repre-
sentations for both tagging tasks.

Ar Es Fr Ru Zh En

POS 88.7 90.0 89.6 88.6 87.4 85.2

SEM 85.3 86.1 85.8 85.2 85.0 80.7

Table 4: SEM and POS tagging accuracy using
features extracted from the 4th NMT encoding
layer, trained with different target languages on a
smaller parallel corpus (200K sentences).

4.2 Effect of target language

Does translating into different languages make the
NMT system learn different source-side represen-
tations? In previous work (Belinkov et al., 2017),
we found a fairly consistent effect of the target lan-
guage on the quality of encoder representations for
POS and morphological tagging, with differences
of ⇠2-3% in accuracy. Here we examine if such
an effect exists in both POS and SEM tagging.

Table 3 also shows results using features ob-
tained by training NMT systems on different tar-
get languages (the English source remains fixed).
In both POS and SEM tagging, there are very
small differences with different target languages
(⇠0.5%), except for Chinese which leads to
slightly worse representations. While the differ-
ences are small, they are mostly statistically sig-
nificant. For example, at layer 4, all the pairwise
comparisons with different target languages are
statistically significant (p < 0.001) in SEM tag-
ging, and all except for two comparisons (Ar vs.
Ru and Es vs. Fr) are significant in POS tagging.

The effect of target language is much smaller
than that reported in (Belinkov et al., 2017) for
POS and morphological tagging. This discrepancy
can be attributed to the fact that our NMT systems
in the present work are trained on much larger cor-
pora (10x), so it is possible that some of the differ-
ences disappear when the NMT model is of better
quality. To verify this, we trained systems using
a smaller data size (200K sentences), comparable
to the size used in (Belinkov et al., 2017). The re-
sults are shown in Table 4. In this case, we observe
a variance in classifier accuracy of 1-2%, based on
target language, which is consistent with our ear-
lier findings. This is true for both POS and SEM
tagging. The differences in POS tagging accuracy
are statistically significant (p < 0.001) for all pair-
wise comparisons except for Ar vs. Ru; the differ-
ences in SEM tagging accuracy are significant for
all comparisons except for Ru vs. Zh.
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Figure 2: SEM tagging accuracy with fine/coarse-
grained tags using features extracted from differ-
ent encoding layers of 4-layered NMT models
trained with different target languages.

Finally, we note that training an English autoen-
coder on the smaller dataset results in much worse
representations compared to MT models, for both
POS and SEM tagging (Table 4, last column), con-
sistent with the behavior we observed on the larger
data (Table 3, last column).

4.3 Analysis at the semantic tag level

The SEM tags are grouped in coarse-grained cat-
egories such as events, names, time, and logical
expressions (Bjerva et al., 2016). In Figure 2
(top lines), we show the results of training and
testing classifiers on coarse tags. Similar trends
to the fine-grained case arise, with higher abso-
lute scores: significant improvement using the 1st
encoding layer and some additional improvement
using the 4th layer, both statistically significant
(p < 0.001). Again, there is a small effect of the
target language.

Figure 3 shows the change in F1 score (averaged
over target languages) when moving from layer 1
to layer 4 representations. The blue bars describe
the differences per coarse tag when directly pre-
dicting coarse tags. The red bars show the same
differences when predicting fine-grained tags and
micro-averaging inside each coarse tag. The for-
mer shows the differences between the two lay-
ers at distinguishing among coarse tags. The latter
gives an idea of the differences when distinguish-
ing between fine-grained tags within a coarse cat-
egory. The first observation is that in the majority
of cases there is an advantage for classifiers trained
with layer 4 representations, i.e., higher layer rep-
resentations are better suited for learning the SEM

Figure 3: Difference in F1 when using represen-
tations from layer 4 compared to layer 1, showing
F1 when directly predicting coarse tags (blue) and
when predicting fine-grained tags and averaging
inside each coarse tag (red).

tags, at both coarse and fine-grained levels.
Considering specific tags, higher layers of the

NMT model are especially better at capturing se-
mantic information such as discourse relations
(DIS tag: subordinate vs. coordinate vs. apposi-
tion relations), semantic properties of nouns (roles
vs. concepts, within the ENT tag), events and pred-
icate tense (EVE and TNS tags), logic relations
and quantifiers (LOG tag: disjunction, conjunc-
tion, implication, existential, universal, etc.), and
comparative constructions (COM tag: equatives,
comparatives, and superlatives). These examples
represent semantic concepts and relations that re-
quire a level of abstraction going beyond the lex-
eme or word form, and thus might be better repre-
sented in higher layers in the deep network.

One negative example that stands out in Fig-
ure 3 is the prediction of the MOD tag, correspond-
ing to modality (necessity, possibility, and nega-
tion). It seems that such semantic concepts should
be better represented in higher layers following
our previous hypothesis. Still, layer 1 is better than
layer 4 in this case. One possible explanation is
that words tagged as MOD form a closed class, with
only a few and mostly unambiguous words (“no”,
“not”, “should”, “must”, “may”, “can”, “might”,
etc.). It is enough for the classifier to memo-
rize these words in order to predict this class with
high F1, and this is something that occurs better in
lower layers. One final case worth mentioning is
the NAM category, which stands for different types
of named entities (person, location, organization,
artifact, etc.). In principle, this seems a clear case
of semantic abstractions suited for higher layers,
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L1 L4

1 REL SUB Zimbabwe ’s President Robert Mugabe has freed three men who were jailed for murder and sab-
otage as they battled South Africa ’s anti-apartheid African National Congress in 1988 .

2 REL SUB The military says the battle erupted after gunmen fired on U.S. troops and Afghan police investi-
gating a reported beating of a villager .

3 IST SUB Election authorities had previously told Haitian-born Dumarsais Simeus that he was not eligible
to run because he holds U.S. citizenship .

4 AND COO Fifty people representing 26 countries took the Oath of Allegiance this week ( Thursday ) and
became U.S. citizens in a special ceremony at the Newseum in Washington , D.C.

5 AND COO But rebel groups said on Sunday they would not sign and insisted on changes .
6 AND COO A Fox asked him , “ How can you pretend to prescribe for others , when you are unable to heal

your own lame gait and wrinkled skin ? ”

7 NIL APP But Syria ’s president , Bashar al-Assad , has already rejected the commission ’s request [...]
8 NIL APP Hassan Halemi , head of the pathology department at Kabul University where the autopsies were

carried out , said hours of testing Saturday confirmed [...]
9 NIL APP Mr. Hu made the comments Tuesday during a meeting with Ichiro Ozawa , the leader of Japan ’s

main opposition party .

10 AND COO [...] abortion opponents will march past the U.S. Capitol and end outside the Supreme Court .
11 AND COO Van Schalkwyk said no new coal-fired power stations would be approved unless they use technol-

ogy that captures and stores carbon emissions .
12 AND COO A MEMBER of the Kansas Legislature meeting a Cake of Soap was passing it by without recog-

nition , but the Cake of Soap insisted on stopping and shaking hands .

Figure 4: Examples of cases of disagreement between layer 1 (L1) and layer 4 (L4) representations when
predicting SEM tags. The correct tag is italicized and the relevant word is underlined.

but the results from layer 4 are not significantly
better than those from layer 1. This might be sig-
naling a limitation of the NMT system at learning
this type of semantic classes. Another factor might
be the fact that many named entities are out of vo-
cabulary words for the NMT system.

4.4 Analyzing discourse relations

In this section, we analyze specific cases of dis-
agreement between predictions using representa-
tions from layer 1 and layer 4. We focus on dis-
course relations, as they show the largest improve-
ment when going from layer 1 to layer 4 repre-
sentations (DIS category in Figure 3). Intuitively,
identifying discourse relations requires a relatively
large context so it is expected that higher layers
would perform better in this case.

There are three discourse relations in the SEM
tags annotation scheme: subordinate (SUB), coor-
dinate (COO), and apposition (APP) relations. For
each of those, Figure 4 (examples 1-9) shows the
first three cases in the test set where layer 4 rep-
resentations correctly predicted the tag but layer 1
representations were wrong. Examples 1-3 have
subordinate conjunctions (as, after, because) con-
necting a main and an embedded clause, which
layer 4 is able to correctly predict. Layer 1 mis-
takes these as attribute tags (REL, IST) that are
usually used for prepositions. In examples 4-5,

the coordinate conjunction and is used to connect
sentences/clauses, which layer 4 correctly tags as
COO. Layer 1 wrongly predicts the tag AND, which
is used for conjunctions connecting shorter ex-
pressions like words (e.g., “murder and sabotage”
in example 1). Example 6 is probably an annota-
tion error, as and connects the phrases “lame gait”
and “wrinkled skin” and should be tagged as AND.
In this case, layer 1 is actually correct. In exam-
ples 7-9, layer 4 correctly identifies the comma as
introducing an apposition, while layer 1 predicts
NIL, a tag for punctuation marks without seman-
tic content (e.g., end-of-sentence period). As ex-
pected, in most of these cases identifying the dis-
course function requires a fairly large context.

Finally, we show in examples 10-12 the first
three occurrences of AND in the test set, where
layer 1 was correct and layer 4 was wrong. In-
terestingly, two of these (10-11) are clear cases of
and connecting clauses or sentences, which should
have been annotated as COO, and the last (12) is a
conjunction of two gerunds. The predictions from
layer 4 in these cases thus appear justifiable.

4.5 Other architectural variants

Here we consider two architectural variants that
have been shown to benefit NMT systems: bidi-
rectional encoder and residual connections. We
also experiment with NMT systems trained with
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different depths. Our motivation in this section is
to see if the patterns we observed thus far hold in
different NMT architectures.

Bidirectional encoder Bidirectional LSTMs
have become ubiquitous in NLP and also give
some improvement as NMT encoders (Britz et al.,
2017). We confirm these results and note im-
provements in both translation (+1-2 BLEU) and
SEM tagging quality (+3-4% accuracy), across
the board, when using a bidirectional encoder.
Some of our bidirectional models obtain 92-93%
accuracy, which is close to the state-of-the-art on
this task (Bjerva et al., 2016). We observed similar
improvements on POS tagging. Comparing POS
and SEM tagging (Table 5), we note that higher
layer representations improve SEM tagging, while
POS tagging peaks at layer 1, in line with our
previous observations.

Residual connections Deep networks can
sometimes be trained better if residual con-
nections are introduced between layers. Such
connections were also found useful for SEM
tagging (Bjerva et al., 2016). Indeed, we noticed
small but consistent improvements in both trans-
lation (+0.9 BLEU) and POS and SEM tagging
(up to +0.6% accuracy) when using features ex-
tracted from an NMT model trained with residual
connections (Table 5). We also observe similar
trends as before: POS tagging does not benefit
from features from the upper layers, while SEM
tagging improves with layer 4 representations.

Shallower MT models In comparing network
depth in NMT, Britz et al. (2017) found that en-
coders with 2 to 4 layers performed the best. For
completeness, we report here results using features
extracted from models trained originally with 2
and 3 layers, in addition to our basic setting of 4
layers. Table 6 shows consistent trends with our
previous observations: POS tagging does not ben-
efit from upper layers, while SEM tagging does,
although the improvement is rather small in the
shallower models.

5 Related Work

Techniques for analyzing neural network mod-
els include visualization of hidden units (Elman,
1991; Karpathy et al., 2015; Kádár et al., 2016;
Qian et al., 2016a), which provide illuminating,
but often anecdotal information on how the net-
work works. A number of studies aim to ob-

0 1 2 3 4

Uni
POS 87.9 92.0 91.7 91.8 91.9
SEM 81.8 87.8 87.4 87.6 88.2

Bi
POS 87.9 93.3 92.9 93.2 92.8
SEM 81.9 91.3 90.8 91.9 91.9

Res
POS 87.9 92.5 91.9 92.0 92.4
SEM 81.9 88.2 87.5 87.6 88.5

Table 5: POS and SEM tagging accuracy
with features from different layers of 4-layer
Uni/Bidirectional/Residual NMT encoders, aver-
aged over all non-English target languages.

0 1 2 3 4

4
POS 87.9 92.0 91.7 91.8 91.9
SEM 81.8 87.8 87.4 87.6 88.2

3
POS 87.9 92.5 92.3 92.4 –
SEM 81.9 88.2 88.0 88.4 –

2
POS 87.9 92.7 92.7 – –
SEM 82.0 88.5 88.7 – –

Table 6: POS and SEM tagging accuracy with fea-
tures from different layers of 2/3/4-layer encoders,
averaged over all non-English target languages.

tain quantitative correlations between parts of the
neural network and linguistic properties, in both
speech (Wu and King, 2016; Alishahi et al., 2017;
Belinkov and Glass, 2017; Wang et al., 2017) and
language processing models (Köhn, 2015; Qian
et al., 2016a; Adi et al., 2016; Linzen et al., 2016;
Qian et al., 2016b). Methodologically, our work is
most similar to Shi et al. (2016) and Belinkov et al.
(2017), who also used hidden vectors from neural
MT models to predict linguistic properties. How-
ever, they focused on relatively low-level tasks
(syntax and morphology, respectively), while we
apply the approach to a semantic task and com-
pare the results with a POS tagging task.

Our methodology is reminiscent of the ap-
proach taken by Pérez-Ortiz and Forcada (2001),
who trained a recurrent neural network POS tagger
in two steps. However, their goal was to improve
POS tagging while we use it as a task to evaluate
neural MT models.
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6 Conclusion

While neural network models have improved the
state-of-the-art in machine translation, it is diffi-
cult to interpret what they learn about language.
In this work, we explore what kind of linguistic
information such models learn at different layers.
Our experimental evaluation leads to interesting
insights about the hidden representations in NMT
models such as the effect of layer depth and target
language on part-of-speech and semantic tagging.

In the future, we would like to extend this work
to other syntactic and semantic tasks that require
building relations such as dependency relations
and predicate-argument structure or to evaluate se-
mantic representations of multi-word expressions.
We believe that understanding how semantic prop-
erties are learned in NMT is a key step for creating
better machine translation systems.
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Abstract

In Neural Machine Translation (NMT),
each word is represented as a low-
dimension, real-value vector for encoding
its syntax and semantic information. This
means that even if the word is in a different
sentence context, it is represented as the
fixed vector to learn source representation.
Moreover, a large number of Out-Of-
Vocabulary (OOV) words, which have
different syntax and semantic information,
are represented as the same vector
representation of unk. To alleviate this
problem, we propose a novel context-
aware smoothing method to dynamically
learn a sentence-specific vector for each
word (including OOV words) depending
on its local context words in a sentence.
The learned context-aware representation
is integrated into the NMT to improve the
translation performance. Empirical results
on NIST Chinese-to-English translation
task show that the proposed approach
achieves 1.78 BLEU improvements on
average over a strong attentional NMT,
and outperforms some existing systems.

1 Introduction

Neural Machine Translation (NMT) (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014;
Bahdanau et al., 2015), has shown prominent
performances in comparison with the conventional
Phrase Based Statistical Machine Translation
(PBSMT) (Koehn et al., 2003). In NMT, a source
sentence is converted into a vector representation
by an RNN called encoder, then another RNN

∗Kehai Chen was an internship research fellow at NICT
when conducting this work.

†Corresponding author.

called decoder generates target sentence word by
word based on the source representation with
attention information and target history.

One advantage of NMT systems is that each
word is represented as a low-dimension, real-
valued vector, instead of storing statistical rules
as in PBSMT. This means that even if the word
is in a different sentence context, it is represented
as the fixed vector to learn source representation.
Figure 1 (a) shows two pair of Chinese-to-English
parallel sentences in which two Chinese sentences
contain the same word “da”. Intuitively, the “da”
denotes “beating” in the first Chinese sentence
while the “da” denotes “playing” in the second
Chinese sentence. It is obvious that the “da”
which denotes different meanings in a specific
sentence is represented as the same word vector
in the encoder of NMT, as show in Figure 1 (b).
Although the RNN-based encoder can capture the
sentence context for each word, we believe that
offering better word vector with context-aware
representation might help improve translation
quality of NMT.

Moreover, a large number of Out-Of-
Vocabulary (OOV) words which have different
syntax and semantic information are represented
as the same vector representation of unk. Actually,
this kind of simple approach may cause ambiguity
of the sentences since the single unk breaks the
structure of sentences, thus hurts representation
learning of source sentence and translation
prediction of the target word. For example, the
unk firstly affects source representation learning in
encoder; then the negative effect would be further
transformed to the decoder, which generates the
poverty context vector and hidden layer state for
translation prediction, as shown in the gray parts
of Figure 1 (c). Besides, when the generated
target word may also be unk, the negative effect
of unk will become more severe.
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Figure 1: (a) Two parallel Chinese-to-English sentence pair; (b) The encoder of NMT; (c) The NMT
with OOV, these gray parts indicate the parameters of NMT which are affected by the OOV xu.

In this paper, we propose a novel context-
aware smoothing method to dynamically learn a
Context-Aware Representation (CAR) for each
word (including OOV words) depending on its
local context words in a sentence. We then
use the learned CAR to extend word vector in
a sentence, thus enhancing source representation
for improving the translation performance of
NMT. First, compared with the single unk vector,
we encode the context words of each OOV as
a Context-Aware Representation (CAR), which
has the potential to capture the OOV’s semantic
information. Second, we also extend the context-
aware smoothing method to in-vocabulary words,
which enhances encoder and decoder of NMT
by more effectively utilizing context information
by the learned CAR. To this end, we proposed
two unique neural networks to learn the context-
aware representation for each word depending on
its context words in a fixed-size window. We then
design four NMT models with CAR to improve
translation performance by smoothing the encoder
and decoder.

The remainder of the paper is organized as
follows. Section 2 introduces the related work
in the NMT. Section 3 presents two novel
neural models to learn the CAR for each word.
Section 4 integrates the CAR into the NMT by
using smoothing strategies. Section 5 reports
the experimental results obtained in the Chinese-
to-English task. Finally, we conclude the
contributions of the paper and discuss the further
work in Section 6.

2 Related Work

In traditional SMT, there are many research works
to improve the translations of OOVs. Fung and
Cheung (2004) and Shao and Ng (2004) adopte
comparable corpora and web resources to extract
translations for each unknown word. Marton et al.
(2009) and Mirkin et al. (2009) applied paraphrase
model and entailment rules to replace unknown
words with in-vocabulary synonyms before trans-
lation. A series of works (Knight and Graehl,
1997; Jiang et al., 2007; Al-Onaizan and Knight,
2002) utilized transliteration and web mining
techniques with external monolingual/bilingual
corpora, comparable data and the web resource to
find the translation of the unknown words. Nearly
most of the related PBSMT researches focused
on finding the correct translation of the unknown
words with external resources and ignored the
negative effect for other words.

Compared with PBSMT, due to high computa-
tional cost, NMT has a more limited vocabulary
size and severe OOV phenomenon. The existing
PBSMT methods that used external resources
to translate unknown words for SMT are hard
to be directly introduced into NMT, because
of NMT’s soft-alignment mechanism (Bahdanau
et al., 2015). To relieve the negative effect
of unknown words for NMT, Luong et al.
(2015) proposed a word alignment algorithm,
allowing the NMT system to emit, for each OOV
word in the target sentence, the position of its
corresponding word in the source sentence, and
to translate every OOV in a post-processing step
using a external bilingual dictionary. Although
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these methods improved the translation of OOV,
they must learn external bilingual dictionary
information in advance.

From the point of vocabulary size, many works
tried to use a large vocabulary size, thus covering
more words. Jean et al. (2015) proposed a method
based on importance sampling that allowed NMT
model to use a very large target vocabulary for
relieving the OOV phenomenon in NMT, which
are only designed to reduce the computational
complexity in training, not for decoding. Arthur
et al. (2016) introduced discrete translation
lexicons into NMT to imrpove the translations
of these low-frequency words. Mi et al. (2016)
proposed a vocabulary manipulation approach by
limiting the number of vocabulary being predicted
by each batch or sentence, to reduce both the
training and the decoding complexity. These
methods focused on the translation of OOV itself
and ignored the other negative effect caused by the
OOV, such as the translations of the words around
the OOV.

Recently, many works exploited the granularity
translation unit from words to smaller subwords
or characters. Sennrich et al. (2016) introduced
a simpler and more effective approach to encode
rare and unknown words as sequences of subword
units by Byte Pair Encoding (Gage, 1994). This
is based on the intuition that various word
classes are translatable via smaller units than
words. Luong and Manning (2016) segmented the
known words into character sequence, and learned
the unknown word representation by character-
level recurrent neural networks, thus achieving
open vocabulary NMT. Li et al. (2016) replaced
OOVs with in-vocabulary words by semantic
similarity to reduce the negative effect for words
around the OOVs. Costa-jussà and Fonollosa
(2016) presented a character-based NMT, in which
character-level embeddings were in combination
with convolutional and highway layers to replace
the standard lookup-based word representations.
These methods extended the vocabulary to a
larger or unlimited vocabulary and improved the
performance of NMT tasks, especially in the
morphological rich language pairs.

Instead of utilizing larger vocabulary or sub-
unit information, we exploit to relieve more
translation performance for NMT from the
negative effect of OOVs by learning context-
aware representations for OOVs. As a result, the

proposed method can smooth the representation
of word and reduce the unk’s negative effect in
attention model, context annotations and decoding
hidden states, thus improving the performance of
NMT.

3 Context-Aware Representation

Intuitively, when one understands natural lan-
guage sentence, especially including polysemy
words or OOVs, one often inferences the meaning
of these words depending on its context words.
Context plays an important role in learning
distributed representation of word (Mikolov et al.,
2013a,b). Motivated by this, we propose two
neural network methods, including Feedforward
Context-of-Word Model (FCWM) and Convo-
lutional Context-of-Words Model (CCWM), to
learn a Context-Aware Representation (CAR) for
each word.

3.1 Feedforward Context-of-Words Model
Inspired by the representation learning of
word (Bengio et al., 2003), the proposed FCWM
includes an input layer, a projection layer, and a
non-linear output layer, as shown in Figure 2 (a).

Specifically, suppose there is a source language
sentence, {x1, x2, . . . , xj , . . . , xJ}. If the context
window is set as 2n (n = 2), the context of each
word xi is defined as its historical n words and
future n words:

Lj = xj−n, . . . , xj−1, xj+1, . . . , xj+n. (1)

In the input layer, each word in Lj is transformed
into one-hot representation. 1 The projection layer
concatenates one-hot representations in Lj to a
(2nm)-dimension vector Lj ,2

Lj = [vj−n : . . . , vj−1 : vj+1 : · · · : vj+n], (2)

where “:” denotes the concatenation operation of
word vectors.

We then approximate to learn its semantic
representation VLj ∈ Rm by a non-linear output
layer instead of softmax layer:

VLj = σ(W1Lj + b1)T , (3)

1If the Lj includes OOV, we use original unk vector to
represent it. Besides, we also try the average vector of the
current sentence word to represent it, but gain the similar
translation performance.

2In this paper, the bold variable denotes a continuous
space vector.
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Figure 2: (a) Feedforward Context-of-Word Model; (b) Convolution Context-of-Word Model.

where σ is a non-linear activation function (e.g.,
Tanh), T represents matrix transpose, and W1 is a
weight matrix and b1 is a bias term.

Finally, we extend each word with the learned
CAR vector VLj , thus feeding into the NMT
to enhance source representation for improving
target word prediction. Therefore, the proposed
FCWM plays the role of the function ϕ
parameterized by θ1, which maps the context Lj
of each word into vector VLj as follows:

VLj = ϕ(Lj ; θ1). (4)

3.2 Convolutional Context-of-Words Model
Compared with the FCWM, the proposed CCWM
indirectly encodes the context words of each
word as a compositional semantic representation
to represent the OOV. Specifically, the proposed
CCWM is a novel variant of the standard
convolutional neural network (Collobert et al.,
2011), including an input layer, a convolution
layer, a pooling layer and a non-linear output layer,
as shown in Figure 2 (b).

Input Layer: When the dimension of word
vector is m and the context window is set to
2n, the input layer is denoted as one vector
matrix M ∈ Rm×2n. In M, each column
denotes context words of word xj , that is, M is
[vj−n, · · · , vj−1, vj+1, · · · , vj+n] for the context
{xj−n, · · · , xj−1, xj+1, · · · , xj+n} of xj .

Convolutional Layer: In the convolutional
layer, let the filter window size bem×k (2 ≤ k ≤
2n), where the k is set to 3 in our experiments,
thus generating feature map Lj as follows:

Lj = ψ(W2[vj : vj+1 : · · · : vj+k] + b2), (5)

where ψ is a non-linear activation function,3 W2 ∈
Rm×k·m is the weight matrix and b2 ∈ Rm is
a bias term. After the filter traverses the input
matrix, the output of the feature map L is:

L = [L1, . . . ,L2n−k+1]. (6)

Pooling Layer: The pooling operation (e.g.,
max, average) is commonly used to extract robust
features from convolution. For the output feature
map of the convolution layers, a column-wise
max is performed over the consecutive columns of
window size 2 as follows:

P l = max[L2l−1,L2l], (7)

where 1 ≤ l ≤ 2n−k+1
2 . After the max pooling,

the output of the feature map P is:

P = [P1, . . . ,P 2n−k+1
2

]. (8)

Non-linear Output Layer: The output layer
is typically a fully connected layer multiplied by
a matrix. In this paper, first row-wise averaging
from the pooling layers is performed without any
parameters, and gain CAR of each word by non-
linear active function σ (e.g., Tanh); hence, the
CAR VLj of word xj is obtained by

VLj = σ(W3(average(

2n−k+1
2∑
l=1

P l)) + b3). (9)

Therefore, the above CCWM plays the role of
the function ϕ parameterized by θ2, which maps

3We used a ReLU activation function.
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the context Lj of word xj into vector VLj as
follows:

VLj = ϕ(Lj ; θ2) (10)

In this case, the word xj is represented as a CAR
VLj .

4 NMT with Context-Aware Smoothing

4.1 NMT Background

An NMT model consists of an encoder process
and a decoder process, and hence it is often
called encoder-decoder model (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014; Bahdanau
et al., 2015), as shown in Figure 1. Typically,
each unit of source input (x1, . . . , xJ) is firstly
embedded as a vector vxj , and then represented as
annotation vector hj by

hj = fenc(vxj ,hj−1), (11)

where fenc is a bidirectional Recurrent Neural
Network (RNN) (Bahdanau et al., 2015). These
annotation vectors {h1, . . . ,hJ} are used to
generate target word in decoder.

An RNN decoder is used to compute the target
word yi probability by a softmax layer g:

P (yi|y<i, x) = g(vyi−1 , si, ci), (12)

where vyi−1 is vector representation of the
previously emitted word yi−1, si is an RNN hidden
state for the current time step and the ci is the
current context vector.

4.2 Smoothing Strategy

In this subsection, we will introduce NMT with the
learned CAR. This would relieve the translation
performance of NMT from source representation.
To this end, we use OOV as an example to
integrate FCWM or CCWM into NMT; and then
extend them to in-vocabulary words.

To learn the representation of source sentence,
the proposed FCWM or CCWM are integrated
into the encoder of NMT. If the source word xj is
in-vocabulary, its annotation vector hj is learned
by the traditional encoder; if the source word xj
is not in-vocabulary (OOV xu), the FCWM or
CCWM proposed in section 3 are used to learn its
CAR instead of single unk vector, and further learn
its annotation vector hj . According to the eq.(11),
the encoder with CAR learns the annotation vector

hj by the eq.(13):

hj =

{
fenc(hxj ,hj−1), xj ∈ Vs
fenc(ϕe(VLxj

),hj−1), xj /∈ Vs,
(13)

where Vs is source-side vocabulary table in NMT,
ϕe is the proposed FCWM or CCWM integrated
into the encoder according to eq.(4) or eq.(10),
and VLj is the learned CAR over the source-side
Lj from eq.(1):

Lj = xj−n, . . . , xj−1, xj+1, . . . , xj+n.
4 (14)

Similarly, the proposed FCWM or CCWM
are also integrated into the decoder in NMT.
Compared with the encoder with CAR, the target-
side OOV’s context words of training processing is
different from that of the decoding in which target-
side OOV’s future context is unknowable. That
is, only the historical n words of yi−1 are used to
learn the CAR of V

L
′
i−1

. To be consistent with the
decoding process, the previous 2n words of OOV
are regarded as its context L

′
i−1 instead of the

previous n words and future n words. Therefore,
the decoder with CAR predicts the next target
word by the eq.(15):

P (yi|y<i, x) =

{
g(vyi−1 , si, ci), yi−1 ∈ Vt
g(ϕd(L

′
i−1), si, ci), yi−1 /∈ Vt,

(15)
where Vt is target-side vocabulary table in NMT,
ϕd denotes the proposed FCWM or CCWM
integrated into the decoder according to eq.(4) or
eq.(10), and V

L
′
i−1

is the learned CAR over the

target-side context L
′
i−1 from eq.(1):

L
′
i−1 = yi−2n, . . . , yi−n, . . . , yi−1.

5 (16)

4.3 Models
Based on the above smoothing strategy, we
design four novel NMT models: CARNMT-
Encoder, CARNMT-Decoder, CARNMT-Both
and an ALLSmooth, all of which can make use
of CAR to enhance encoder or decoder of NMT
for improving the translation performance:

• CARNMT-Encoder: Only smoothing
source-side unk to relieve the influence in the
encoder, as shown in Figure 3 (a).

4If the number of previous context or future context words
is less n, we pads a sentence start symbol BEG or sentence
end symbol EOS.

5If the number of previous context words is less 2n, we
pads Li−1 using a sentence start symbol BEG.
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Figure 3: (a) CARNMT-Encoder; (b) CARNMT-Decoder; (c) CARNMT-Both; (d) ALLSmooth, in
which the red dotted arrows obtain the context words of each word according to eq.(14) or eq.(16). The
blue dotted boxes denote FCWM or CCWM proposed in section 2.

• CARNMT-Decoder: Only smoothing target-
side unk in the decoder, as shown in Figure 3
(b).

• CARNMT-Both: Both smoothing the unks
of source-side and target-side in the NMT, as
shown in Figure 3 (c).

• ALLSmooth: this model smooths not only
the unk words, but also all source-and target-
side in-vocabulary words by the learned
CARs, as shown in Figure 3 (d). Meanwhile,
the vector of in-vocabularys word and its
CARs are concatenated as a novel vector
to represent the semantic information of the
word instead of replacing the word vector
with its CAR.

In our experiments, each model has two variants
according to the integrated FCWM or CCWM.

For example, “CARNMT-encoder (CCWM)”
indicates that the CAR for OOV is learned by the
CCWM proposed in the section 3. In Figure 3,
we take FCWM to learn the CAR for each word
(including OOV). Therefore, there is easy to use
the proposed CCWM instead of the FCWM.

Moreover, the proposed NMT models with
CAR are an integrative architecture without any
external information. Especially, the NMT
and FCWM or CCWM, which are not isolated
from each other, are trained by optimizing their
parameters jointly. In other words, the θ1 or θ2
and the parameters of NMT are optimized jointly.

5 Experiments

5.1 Setting up
We carry out experiments on the Chinese-to-
English translation task. The training dataset
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System Dev (MT02) MT03 MT04 MT05 MT06 MT08 AVG
Moses 33.15 31.02 33.78 30.33 29.62 23.53 29.66
Bahdanau et al. (2015) 36.42 34.22 37.11 33.02 32.69 25.38 32.48
Sennrich et al. (2016) 36.89 35.39 38.24 33.73 32.74 26.22 33.26
Costa-jussà and Fonollosa (2016) 35.98 34.93 37.56 33.24 32.32 26.02 32.81
Li et al. (2016) 36.96 35.78 38.42 34.02 33.14 26.36 33.54
CARNMT-Encoder (FCWM) 36.78 35.56** 38.14* 33.69 33.13 26.16* 33.34
CARNMT-Decoder (FCWM) 36.67 34.65 37.60 33.26 33.01 26.15* 32.93
CARNMT-Both (FCWM) 37.36 35.43** 38.34** 33.43 33.47 26.86** 33.50
ALLSmooth (FCWM) 37.71 35.73** 38.53** 33.91* 33.53* 27.18** 33.78
CARNMT-Encoder (CCWM) 37.12 35.64** 38.14* 33.49 33.26* 26.57** 33.42
CARNMT-Decoder (CCWM) 36.33 34.56 37.43 33.24 32.96 25.86 32.81
CARNMT-Both (CCWM) 37.56 35.83** 38.52** 33.73 33.37** 27.06** 33.70
ALLSmooth (CCWM) 37.69 36.23** 38.89** 34.69** 33.83** 27.94‡ 34.32

Table 1: Results on NIST Chinese-to-English Translation Task. “*” indicates statistically significant
better than Bahdanau et al. (2015) at p-value< 0.05 and “**” at p-value< 0.01. “†” indicate statistically
significant difference (p-value < 0.05) from the Li et al. (2016) which performed the best among
baselines and “‡” at p-value < 0.01. AVG is average BLEU scores for MT03-MT08 test sets. The
bold denotes the proposed model is superior to the Li et al. (2016) over the same test set.

consists of 1.42M sentence pairs extracted from
LDC corpora.6 We choose the NIST 2002 (MT02)
and the NIST 2003-2008 (MT03-08) datasets as
validation set and test sets, respectively. Case-
insensitive 4-gram NIST BLEU score (Papineni
et al., 2002) is as evaluation metric, and the
signtest (Collins et al., 2005) was as statistical
significance test.

The baseline systems included the standard PB-
SMT implemented in Moses (Koehn et al., 2007)
and the standard attentional NMT (Bahdanau
et al., 2015) . We also compared with state-of-the-
art enhanced NMT methods for OOV: subword-
based NMT (Sennrich et al., 2016), character-
based NMT (Costa-jussà and Fonollosa, 2016),
and replacing unk with similarity semantic in-
vocabulary words (Li et al., 2016). All of
these baselines and the proposed method are
implemented in Nematus 7 (Sennrich et al., 2017).

For all NMT systems, we limit the source and
target vocabularies to 30K, and the maximum
sentence length is 80. We shuffle training set
before training and the mini-batch size is 80. The
word embedding dimension is 620-dimensions 8,
the hidden layer dimension is 1000, and the
default dropout technique (Hinton et al., 2012) in
Nematus is used on the all the layers. Training is
conducted on a single Tesla P100 GPU. All NMT
models trained for 15 epochs9 using ADADELTA

6LDC2002E18, LDC2003E07, LDC2003E14, Hansards
portion of LDC2004T07, LDC2004T08, and LDC2005T06.

7https://github.com/EdinburghNLP/nematus
8For the ALLSmooth, the 360 dimensions are from Vxj

or Vyi and the 260 dimensions were from the learned CAR
9All NMT models are convergent in the 15 epochs.

optimizer (Zeiler, 2012), and our training time
is only about 10% slower than the standard
attentional NMT.

5.2 Results and Analyses

Table 1 shows the translation performances
on test sets measured in BLEU score. The
standard attentional NMT (Bahdanau et al., 2015)
outperforms Moses by 2.78 BLEU points on
average, indicating that it is a strong baseline
NMT system. All the comparison methods,
including Sennrich et al. (2016), Costa-jussà and
Fonollosa (2016), and Li et al. (2016), outperform
the standard attentional NMT.

1) Over the standard attentional NMT,
CARNMT-Encoder (FCWM/CCWM)
gain improvements of 0.86/0.94 BLEU
points on average, and CARNMT-Decoder
(FCWM/CCWM) gain improvements of
0.45/0.33 BLEU points on average. CARNMT-
Both (FCWM/CCWM) gain improvements
of 1.02/1.30 BLEU points on average, which
indicates that improvement in encoder and
decoder are essentially orthogonal.

2) ALLSmooth (FCWM/CCWM) surpass
CARNMT-Both (FCWM/CCWM) by 0.28/0.62
BLEU points on average. This indicates that
the proposed context-aware smoothing method
not only helps relieve the OOV affect, but also
enhances representations of in-vocabulary words.

3) ALLSmooth (FCWM/CCWM) also outper-
forms the best performed baseline Li et al. (2016),
which replaces the unk words by using external
lexicon similarity, by 0.24/0.78 BLEU points on
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Ref: to well use this strategic period of opportunity and strive to accomplish some achievments , the development of science and 
technology should be placed in a more prior and prominent position 

Bahdanauet al.(2015) : to make good use of this strategy , we should strive for the development of science and technology , and must put 
the development of science and technology into an even more important and prominent position

SRC:    用好 这个 战略 机遇期 (OOV) ,  力争 有所 作为 ,  必须 把 发展 科学技术 放在 更加 重要 ,     更加 突出的 位置
(pinyin) yonghao zhege zhanlue jiyuqi ,         lizheng yousuo zuowei , bixu ba fazhan kexue jishu fangzai gengjia zhongyao , gengjia tuchu de wiezhi

This work: in making good use of this strategic plan and striving to accomplish something , it is necessary to place the development of 
science and technology in a more important and more prominent position

Figure 4: Translation sample for source sentence with one OOV. The English phrases in color indicate
they are translations from the corresponding Chinese phrase with the same color.

average.
4) The CCWM performs slightly better than

FCWM. The reason may be that the convolution
neural network can summarize the contextual
information better than the feedforward neural
network.

5.3 Translation Qualities for Sentences with
Different Numbers of OOV
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Figure 5: Translation qualities for sentences with
different numbers of OOV.

To further verify our methods, we group
sentences of same number OOVs all the test sets
(MT03-08), for example, “5” indicates that all the
source sentences include five OOV words in the
group, and compute a BLEU score per group.

1) In Figure 5, we observe that when the
number of OOVs is zero (no OOV), ALLSmooth
(FCWM/CCWM) outperform other baseline sys-
tems, and the performances of CARNMT-
Both (FCWM/CCWM) are similar to standard
attentional NMT. This means that CARNMT-Both
(FCWM/CCWM) degrade into standard attention-
al NMT because of these sentences not include

OOV, but our context-aware smoothing method
enhances the representation of in-vocabulary
words in the ALLSmooth (FCWM/CCWM).

2) With the increasing in the number of OOVs
(especially when more than five), the gap between
our methods and other methods (except PBSMT)
become larger. This indicates that our methods
are especially good at dealing with multi-OOV
situation, in comparison with other NMT methods.

5.4 Samples Analysis

This subsection shows one translation sample
for source sentence with one OOV, as shown in
Figure 4. We compare our method ALLSmooth
(CCWM) with Bahdanau et al. (2015) on the
translation of a source sentence with the OOV
“jiyuqi” (“period of opportunity” in English).

1) For both of Bahdanau et al. (2015)’s method
and the proposed method, the OOV “jiyuqi” itself
is not translated.

2) For Bahdanau et al. (2015)’s method,
the phrase “lizheng yousuo zuowei” (“strive to
accomplish some achievments” in English) after
“jiyuqi” is not translated. The purple part of source
sentence are translated twice in (Bahdanau et al.,
2015)’s method. This is in consistent with our
hypothesis in Section 1: the OOV which makes the
structure of source sentence discontinuous affects
source representation learning in encoder; then the
negative effect would be further transformed to
the decoder by the source annotation vectors, thus
generating the poverty context vector and hidden
layer state for translation prediction.

3) In comparison, the proposed method
translates it into “striving to accomplish some-
thing”, which is quite close to the reference.
This indicates that our proposed context-aware
smoothing method can relieve more translation
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performance for NMT from the OOV’s negative
effect shown in Section 1.

6 Conclusion

In this paper, we explored the context information
to smooth source representation with OOVs, and
integrate the learned CAR into the Encoder and
Decoder of NMT to improve the translation
performance. Especially, we extended the method
to smooth each word in-vocabulary, and further
gained improvements over the proposed models
for the NMT.

In the future, we will exploit richer context
information, such as pos-tagger and named
entity, to enhance the semantic representation of
vocabulary in NMT.
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Abstract

Sequence to Sequence Neural Machine
Translation has achieved significant per-
formance in recent years. Yet, there are
some existing issues that Neural Machine
Translation still does not solve completely.
Two of them are translation of long sen-
tences and “over-translation”. To address
these two problems, we propose an ap-
proach that utilize more grammatical in-
formation such as syntactic dependencies,
so that the output can be generated based
on more abundant information. In addi-
tion, the output of the model is presented
not as a simple sequence of tokens but as a
linearized tree construction. Experiments
on the Europarl-v7 dataset of French-to-
English translation demonstrate that our
proposed method improves BLEU scores
by 1.57 and 2.40 on datasets consisting of
sentences with up to 50 and 80 tokens,
respectively. Furthermore, the proposed
method also solved the two existing prob-
lems, ineffective translation of long sen-
tences and over-translation in Neural Ma-
chine Translation.

1 Introduction

Our task is to construct a model which learns in-
put in sequence form and decodes output as a lin-
earized dependency tree. In this work, we propose
an approach in which dependency labels are in-
corporated into the model to represent more gram-
matical information in the output sequence. As
we know, the Sequence to Sequence (Seq2Seq)
Learning model (Sutskever et al., 2014; Aha-
roni et al., 2016) is extremely effective on a va-

∗This author’s present affiliation is CyberAgent, Inc.,
Tokyo, Japan, yoshimoto akifumi xa@cyberagent.co.jp

riety of tasks that require a mapping between a se-
quence to sequence. Therefore, it is used to solve
many tasks in natural language processing. The
Seq2Seq model consists of an encoder-decoder
neural network which encodes a variable-length
input sequence into a vector and decodes it into
a variable-length output. Since the model uses
the information of the source representation and
the previously generated words to produce the
next-word token, this distributed representation al-
lows the Seq2Seq model to generate appropri-
ate mapping between the input and the output (Li
et al., 2016). For specific tasks, Neural Machine
Translation (NMT) model, which is based on the
Seq2Seq learning, has achieved excellent transla-
tion performance in recent years (Sutskever et al.,
2014; Bahdanau et al., 2015; Luong et al., 2015;
Firat et al., 2016). In particular, the NMT model
which is built upon an encoder-decoder frame-
work with attention mechanism (Bahdanau et al.,
2015) can also pay attention and its decoder knows
which part of the input is relevant for the word
that is currently being translated. Therefore, it
has shown competitive results and outperformed
conventional statistical methods (Bentivogli et al.,
2016). Despite of these advantages, NMT model
still has a couple particular issues to be solved
such as dealing with fixed vocabulary, not appli-
cable to small-data, additional phrases, wrong lex-
ical choice errors, long sentence translation, over
and under translation, etc. In this paper, we touch
upon the following two major problems:

• Translation of long sentences

• Over-translation

Since the decoder of the Seq2Seq model pro-
duces the target language word by word simply
based on the previous target words and the source-
side representation vector until it reaches the spe-
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cial end token, it is incapable in capturing long-
distance dependencies in history, so ineffective for
long sentences translation (Zhang et al., 2016;
Toral and Sánchez-Cartagena, 2017). Even with
an attention mechanism, the Seq2Seq model just
pays attention to the current alignment informa-
tion between the inputs and the output at the cur-
rent position but ignores past alignments informa-
tion. Therefore, it cannot keep track of the atten-
tion history when it updates information at each
current time step, leading to the over-production
(Tu et al., 2016a,c; Mi et al., 2016; Tu et al.,
2016b).

In order to address the above two issues, it is
worth considering that using syntactic dependency
information and representing the output as a tree
structure would be effective. This approach al-
lows the next tokens to be output based on not
only the previous tokens but also the syntactic de-
pendencies so far, thereby conditioning them on
more abundant information so it has the ability to
make smarter predictions. Basically, in this paper,
we train the model with an encoder-decoder neu-
ral network and using dependencies in which the
input of the source language is in sequence form
and the output of the target language will be gen-
erated in a linearized dependency-based tree struc-
ture. That is, instead of predicting only words at
each time step, the model trains the network to
predict both words and their grammatical depen-
dencies as a dependency tree at each time step.
Therefore, it is hoped that the accuracy of output
will be improved.

The major contributions of this work are as fol-
lows:

1. To utilize the information of both “head”
words and syntactic dependencies between
them to produce better output.

2. To settle the problems in the NMT task.
In this paper, we desire to solve two tasks.
First is the ineffective translation for long
sentences. Second is the over-translation in
NMT task.

Empirically, to assess the performance of the
proposed method, we used Conditional Gated Re-
current Unit with Attention mechanism model of
Bahdanau (2015) on the French-English portions
of the Europarl-v7 dataset. As a result, the BLEU
score is improved by 1.57 and 2.40 points for sen-
tences of length up to 50 and 80 tokens, respec-

tively. Also, we compare and analyze the results
of attention-based Seq2Seq model and the pro-
posed approach.

2 Related Work

In fact, the effectiveness of using dependency in-
formation of words has been reported in some
previous NLP tasks, for example, in dependency-
based word embeddings, relation classification
and sentence classification tasks (Liu et al., 2015;
Socher et al., 2014; Levy and Goldberg, 2014;
Komnios, 2016; Ono and Hatano, 2014). It has
been shown that the combination of words and
their dependency information can boost perfor-
mance. Besides, in the work of Vinyals et al.
(Vinyals et al., 2014), they also represent output as
a linearized tree structure, but their work showed
that generic sequence-to-sequence approaches can
achieve excellent results on syntactic constituency
parsing. At a glance, our proposed method is a
little similar to the works of Dyer et al., Aharoni
et al., Eriguchi et al., Wu et al. (Dyer et al.,
2016; Aharoni and Goldberg, 2017; Eriguchi et al.,
2017; Wu et al., 2017) in use of parse tree and
generation. However, Dyer et al. and Aharoni
et al.’s works concern predicting constituent trees.
Eriguchi et al.’s model employs syntactic depen-
dency parsing but their model is hybridized the de-
coder of NMT and the Recurrent Neural Network
Grammars, and the target sentences are parsed in
transition-based parsing. Wu et al.’s model also
employs dependency parsing but their model sep-
arately predicts the target translation sequence and
parsing action sequence which maps to translation.
On the other hand, our proposed model’s decoder
directly predicts the linearized dependency tree it-
self in a single neural network in Depth-first pre-
order order so that the next-word token is gener-
ated based on syntactic relations and tree construc-
tion itself. In other words, our model is able to
learn and produce a tree of words and their depen-
dency relations by itself.

3 Sequence-to-Dependency Model

In our proposed approach, the neural network
model is trained to map the target-side output in a
linearized dependency tree construction from the
source-side input in a sequence. Thus, we call
this model Sequence-to-Dependency (Seq2Dep)
model. The problem is defined as follows: Given a
source sequence X = (x1, x2, . . . , xN ) of length
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N, we want the model to encode the input se-
quence X and decode it to a tree structure with
both words and dependency information condi-
tioned on the encoded vector. Therefore, the out-
put will be represented in the form (LY ) =
(ly1, ly2, . . . , lyM ). The conditional probability
p(ly|x) is decomposed as:

p(ly|x) =
∞∏
i=1

p(lyi|ly<i, x), (1)

in which (ly1, ly2, ..., lyM ) are words or depen-
dency labels.

Therefore, the hidden state sj at time step j is
computed as follows:

sj = cGRUatt
(
sj−1, lyj−1,Cj

)
, (2)

and the next token lyj , which may be a word or
dependency label, will be generated as follows:

lyj = f
(
sj , lyj−1,Cj

)
, (3)

In this paper, dependencies are defined as the
dependency labels which are achieved from the
Stanford Dependency Parser (Chen and Manning,
2014). The decoder will decode the next output
based on relations between governors and depen-
dents in a linearized tree structure. In regards to
the order of generating the dependency labels and
the words, the decoder will produce these symbols
in a manner called Depth-first pre-order traversal.
In this section, we will describe the model step-
by-step as follows:

3.1 Processing Data
Since there is no parallel corpus in which the
source-side is represented in sequence and target-
side is represented in linearized dependency tree,
we have to prepare data for training by doing de-
pendency parsing for the target-side language.

3.1.1 Dependency Parsing
In this paper, we do experiments on a French-
English language pair so we use the Stanford
Dependency Parser to obtain dependency parsing
results for English. The Stanford Dependency
Parser produces results in the form of a tree struc-
ture in which each word of the sentence is the de-
pendent of exactly one token, either another word
in the sentence or the distinguished “ROOT-0” to-
ken. The parsing result is represented in the for-
mat “abbreviated relation name(governor, depen-

dent)” in which a governor is a head word and de-
pendency is a syntactic relation between a gover-
nor and a dependent. The governor and the depen-
dent are words in the sentence. This dependency
parsing result will be transformed in another step
for traversing the tree, which will be described in
the next section to create a dependency tree. The
dependency tree represents the target language as
an ordered tree structure which is necessary for
training. The reason we chose the Stanford Depen-
dency Parser for the parsing portion of this method
is because it can represent the order of words in
sentence. This information of the order is useful
to traverse tree in the following step.

3.1.2 Transformation and Tree Traversal
In this section, we describe the Tree Transform
and Tree Traversal process in which output in a
linearized dependency tree form is created from
the Stanford Dependency Parsing tree. For ex-
ample, given a sentence “She ate an apple today
.”, after obtaining dependency parsing tree from
the above dependency parsing phase, we move
the rooted “ate” and “apple” headwords to the
same layers of their dependents which are directly
connected to the headwords. We also concur-
rently make consideration to their positions in or-
der while shifting headwords. The headwords are
shifted in such a manner that the word order of
sentence can be preserved, so we can evaluate the
translated output afterwards. Next, the tree struc-
ture obtained in the fist step will be transformed
into another tree structure for the next tree traver-
sal step. Then we traverse this tree in a Depth-
first pre-order traversal, which is the search tree
in which tree is traversed from its left subtree
to right subtree recursively until current node is
empty, to create output with a linearized tree struc-
ture to train the model. That is, for each rooted
subtree, governors and dependency labels of the
sentence are predicted first, and their information
will be used to predict the next dependent words.
In other words, the model can capture the depen-
dency information between label-word and word-
word pairs to predict the next tokens. This means
that the model is capable of modeling grammat-
ical dependencies in the output symbols. Also,
in Seq2Dep model, we define the Nonterminal
“{DEPENDENCY LABEL”, and Node-closing “}”
tokens. Nonterminal indicates subtree (Dong and
Lapata, 2016), which means open subtree to visit
its children nodes. Node-closing indicates end-of-
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Algorithm 1 Tree Transform
1: procedure TRANSFORM TREE

2: Transform(T,Labels):
3: for label in Labels do
4: if label.children.size! = 0 then
5: Recur Transform(T,Labels)
6: else
7: Compare the order of current
8: label’s parent & children
9: if (label’s children order is larger

than label’s parent order) then
10: INSERT label’s parent first
11: else
12: INSERT label’s children

subtree, that means finishing subtree traversal and
returning to the upper layer to continue the next
subtree traversal. And these defined tokens do not
appear in original source and target datasets. Al-
gorithms 1 and 2 show the definition of transfor-
mation and tree traversal in more detail respec-
tively. The purpose of using Depth-first pre-order
traversal is as follows:

1. To keep the words of the target language
sequence in order when they are generated.
With this generating order, the word order
of the sentence is preserved, thus, we do not
have to do any post-processing subsequently.

2. To utilize both information of the words and
the dependency labels generated in the previ-
ous rooted subtree to predict the tokens of the
next rooted subtree.

Figures 1, 2 and 3 show the Stanford dependency
parsing tree, tree structure after the positions of
“head” words are shifted and Depth-first pre-order
Tree Traversal.

3.2 Sequence-to-Dependency Model
The proposed (Seq2Dep) model consists of an en-
coder which is a bidirectional GRU layer as in
Bahdanau’s model (2015)1. The input embed-
dings of the source sentences are shared by the
forward and backward GRU, and the hidden states
of the corresponding forward and backward GRU
are added to obtain the hidden representation for
that time step. The decoder of the model will
decode the output as words and dependency la-
bels in a linearized dependency tree structure in

1https://github.com/nyu-dl/dl4mt-tutorial

Algorithm 2 Tree Depth-first pre-order traversal
Input: Sentence
Output: Linearized Dependency Tree

1: Stanford Dependency Parsing
2: Make Tree from Dependency Parsing Result
3: Tree transform
4: procedure TRAVERSE TREE

5: Traverse(T,N):
6: N as discovered
7: for all Node not in N do
8: if Node.children.size! = 0 then
9: Recursively call Traverse(T,N)

10: in pre-order traverse
11: else
12: if Node is Nonterminal then
13: OUTPUT Node-opening
14: VISIT children
15: OUTPUT Node-closing
16: else
17: OUTPUT Node

a Depth-first pre-order traversal. Figure 4 shows
the decoder which generates both dependency la-
bels and words in the Seq2Dep model. In Figure
4, the previous token and context vector feeding
are omitted for simplicity.

4 Experiments

4.1 Dataset
In our experiment, the proposed model was trained
on the French-English parallel corpus of the
Europarl-v7 dataset. We used newstest2011 and
newstest2012 of WMT16 as development and test
data respectively. To confirm translation for long
sentences, the whole test set was used without re-
moving any sentences with a maximum length of
50 or 80. We performed experiment on the follow-
ing two datasets:

• Europarl-v7 dataset consisting of sentences
with a maximum length of 50.

• Europarl-v7 dataset consisting of sentences
with a maximum length of 80.

For preprocessing data, we filtered out sentences
which were longer than the above maximum
lengths and cleaned the special symbols or char-
acters which were not strings. We also omitted
sentences which had multiple sentences in one
line. The reason is that the parsing results obtained
from the Stanford Dependency Parser in parsing
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Figure 1: Stanford Dependency Parsing Tree

step would contain multi “{ROOT” tokens for sen-
tences which have multiple sentences in one line,
while it is necessary to generate the next child
nodes starting from just one top {ROOT of a tree.
Next, we tokenize and lowercase this dataset and
perform dependency parsing. After that, we tra-
verse the tree in a Depth-first pre-order to create
the parallel corpus for the training model in which
the source language, French is in sequence form,
and the target language, English is in a linearized
dependency tree structure form. The longer sen-
tences are(particularly sentences with a maximum
length of 80 tokens), the more CPU’s memory and
time cost for this processing data step.

In addition, we built a dictionary of the target
language (English) that consists of both words and
dependency labels. In this dictionary, we define
74 dependency labels based on the current repre-
sentation of grammatical relations of the Stanford
Dependency Parser.

4.2 Settings

In order to evaluate the performance of the pro-
posed method, we set the same hyperparameters
as the attention-based cGRU model in DL4MT-
Tutorial and compare the obtained results of both
Seq2Seq and Seq2Dep models.

The recurrent transformation weights for gates

and hidden state proposal matrices were initial-
ized as random orthogonal matrices. Weights were
optimized using the Adadelta algorithm and were
updated with a mini-batch size of 32 sentences.
The vocabulary sizes of both source and target lan-
guages were set at 30k words, the beam size was
set to 5, dropout was not applied and the gradients
were clipped at 1.0. Morever, because the gen-
erated tokens are not only words but also depen-
dency labels in Seq2Dep model, the maxlen pa-
rameter was set up so that dependency labels are
not counted, therefore long sentences will not be
removed in training.

4.3 Model Training

In the experiments, we trained the following 2
models on 1.65M sentences with a maximum
length of 50 and 1.89M sentences with a maxi-
mum length of 80 from the Europarl-v7 French-
English bitext.

Baseline Model
This model is a Seq2Seq model with atten-
tion mechanism as in Firat (2016) that con-
sists of an encoder that encodes the source
language input in sequence form and a de-
coder that decodes target language output in
sequence form.

Seq2Dep Model The proposed method. In this
model, the model architecture is the same as
the attention-based Seq2Seq model but the
input is in sequence form and the output is
in linearized dependency tree structure.

5 Results

In the Seq2Dep model, because the output
consists of both words and dependency labels,
we evaluated the result with post-processing,
which is the process that removes the depen-
dency labels from the translated result. From
this section onwards, we will refer to the
Seq2Seq and Seq2Dep models with sen-
tences of maximum length 50 and 80 tokens
as Seq2Seq-50, Seq2Dep-50, Seq2Seq-80
and Seq2Dep-80. As a result, the BLEU score
of Seq2Dep-50 with post-processing was 20.88,
which is higher than the BLEU score of 19.31
obtained by the attention-based Seq2Seq-50
model with a gain of up to 1.57 points. Simi-
larly, the BLEU score improved by 2.40 points
for datasets with maximum sentence lengths of 80.

25



Figure 2: Dependency tree after shifting
the positions of “head” words

Figure 3: Depth-first pre-order Tree Traversal

Figure 4: Encoder and decoder of Seq2Dep model

Table 1 shows BLEU and METEOR scores and
TER error of the attention-based Seq2Seq and
Seq2Depmodels. Figure 5 shows the relation be-
tween BLEU score and the length of sentence.

Moreover, when we made a trial to evaluate
the translation results without post-processing, the
BLEU scores without post-processing were 42.76
and 43.41 for both datasets. From these scores,
it is thought that the model can predict not only
word-based tokens but also dependency labels
well.

6 Additional Experiments

In order to verify the ability of the proposed ap-
proach to solve the repetition problem of NMT,
over-translation, we measured the repetition of
words in the translation results of attention-based
Seq2Seq and Seq2Dep learnings in this section.
The repetition rate is measured by the following
formula:

rep rat =
T (y)∑
i=1

1 + r(ỹi)
1 + r(Y )

, (4)

in which ỹi and Yi are the ith hypothesis sentence
and ith reference sentence respectively, and r is
the number of the repeated words and is computed
by:

r(X) = len(X)− len(set(X)) (5)

in which len(X) is the length of the sentence X
and len(set(X)) is the number of words that are
not repeated in sentence X. For example, given
the sentence X=“The big fish ate the smaller fish”,
in this case, set(X)={The, big, fish, ate, smaller},
len(X)=7, len(set(X))=5. Figure 6 shows the com-
parison of repetition rate in both models in which
the horizontal axis is the length of sentences, ver-
tical axis is the repetition rate respectively. In Fig-
ure 6, the repetition rate in both Seq2Seq and
Seq2Dep learnings decreases as the length of the
sentences increases. From Figure 6, we can see
that the more tokens the model learns, the more
the repetition rate decreases. Also, the repetition
rate is reduced in the Seq2Dep model compared
to the attention-based Seq2Seq model.
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Table 1: Translation quality as measured by different metrics.

Model Post-processing
BLEU METEOR TER

Seq2Seq-50 19.31 26.3 66.1
Seq2Dep-50 20.88 27.0 62.5
Seq2Seq-80 16.97 25.5 78.5
Seq2Dep-80 19.37 25.6 65.6

Figure 5: Comparison of BLEU score with respect to the length of sentences

7 Analysis and Discussion

In figure 5, except the span in which the sentence
length is between 41 and 51 words, the BLEU
score of the Seq2Dep model goes up gradually
and almost overcomes that of the attention-based
Seq2Seq model. The BLEU score falls from
19.31 to 16.97 with a 2.34 points difference for the
attention-based Seq2Seq model while the point
difference is 1.51 in the Seq2Dep model. From
the experiments, we confirm that by using the
syntactic dependency information, the Seq2Dep
model can learn well and reduce the drop in BLEU
score compared to the baseline model even if the
sentence is very long. Besides, we can see the
BLEU score is low for short sentences which have
a length of 10 words or less. This is because of the
brevity penalty on short sentences in BLEU (Pap-
ineni et al., 2002).

With regards to the BLEU score without
post-processing, we see that the score of the
Seq2Dep-80 model is higher than that of the
Seq2Dep-50 model. The reason could be: The
longer the sentences are, the more syntactic de-

pendencies the models require for generating bet-
ter outputs.

Also, in terms of the over-translation problem,
Figure 6 shows that the repetition rates of the
two models decrease gradually with respect to the
length of the sentences and the Seq2Dep model
has a lower repetition rate. When we checked the
translation results, we saw that Node-closing to-
ken “}” was almost generated after each subtree.
Moreover, we saw that there were some very long
sentences which the over-generation of “UNK”s
occurred in the translation result of Seq2Seq
model while that did not occur in translation re-
sults of Seq2Deq model. Our assumption is that
after generating subtree, the Seq2Dep model can
learn that it should generate the Node-closing to-
ken “}” next, instead of a chain of words. In
other words, as mentioned in Kuncoro et al.’s
work (Kuncoro et al., 2016) in which modeling of
composition can achieve better performance, the
Seq2Dep model which learns about the syntac-
tic dependencies and tree structure performance is
probably able to learn the blocks of the form “Non-
terminal word }” like a phrase-structure in sen-
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Figure 6: Comparison of the repetition rate of the baseline and Seq2Dep models

tences, so it is unlikely to generate the same word
repeatedly. Therefore, it is possible to prevent the
long repeated words in long sentences. Usually,
because the block of the form “Nonterminal word
}” is seen as a phrase in sentence or a subtree in
tree structure, and it is rare for a phrase to occur
repeatedly in sentence or for a subtree to repeat in
a tree structure, so it is assumed that repetition of
the blocks of form “Nonterminal word }” are also
rare.

8 Conclusion

In this work, we proposed a method in which the
Seq2Dep NMT model is trained by utilizing syn-
tactic dependencies to provide the model more
abundant information. In other words, Seq2Dep
model learns the potential internal relative con-
nections among tokens and their long term syn-
tactic dependencies to predict the next-word to-
kens. Furthermore, the Seq2Dep model can also
generate output as a linearized dependency tree
structure in a Depth-first pre-order tree traver-
sal over words and dependencies. The purpose
of this work is to alleviate issues of translat-
ing long sentences and repetitive translation. We
conduct experiments on the French-English par-
allel corpus of the Europarl-v7 dataset to com-
pare the performance of the proposed method with
the attention-based Seq2Seq model. The results
demonstrated that the proposed model achieved a
1.57 and 2.40 points BLEU score improvement for
sentences of length at most 50 and 80 tokens re-

spectively. Moreover, experiments verify that the
proposed model also reduces the over-translation,
particularly long sentences with over-generation
of “UNK”s.

9 Future work

• Confirm how accurate the Seq2Dep model
generates the dependency labels and the
whole tree structure as well.

• In this paper, to compare performance of
the proposed method with the baseline
model, we set the same hyperparameters as
the attention-based cGRU model in dl4mt-
tutorial and trained the Seq2Dep model on
only Europarl-v7 dataset. Since experiments
were done on small vocabulary size and
dataset, we plan to train the model on larger
vocabulary and datasets with subword units
segmentation.

• For future work, we plan to train models on
datasets which consist of only long sentences
with more than 50 or 80 tokens to compare
the performance of long-sentences transla-
tion of the approach and baseline model.
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Abstract

Attention in neural machine translation
provides the possibility to encode relevant
parts of the source sentence at each trans-
lation step. As a result, attention is con-
sidered to be an alignment model as well.
However, there is no work that specifically
studies attention and provides analysis of
what is being learned by attention mod-
els. Thus, the question still remains that
how attention is similar or different from
the traditional alignment. In this paper, we
provide detailed analysis of attention and
compare it to traditional alignment. We
answer the question of whether attention
is only capable of modelling translational
equivalent or it captures more information.
We show that attention is different from
alignment in some cases and is capturing
useful information other than alignments.

1 Introduction

Neural machine translation (NMT) has gained a
lot of attention recently due to its substantial im-
provements in machine translation quality achiev-
ing state-of-the-art performance for several lan-
guages (Luong et al., 2015b; Jean et al., 2015;
Wu et al., 2016). The core architecture of neural
machine translation models is based on the gen-
eral encoder-decoder approach (Sutskever et al.,
2014). Neural machine translation is an end-to-
end approach that learns to encode source sen-
tences into distributed representations and decode
these representations into sentences in the target
language. Among the different neural MT models,
attentional NMT (Bahdanau et al., 2015; Luong
et al., 2015a) has become popular due to its capa-
bility to use the most relevant parts of the source
sentence at each translation step. This capability

also makes the attentional model superior in trans-
lating longer sentences (Bahdanau et al., 2015; Lu-
ong et al., 2015a).

Figure 1: Visualization of the attention paid to the
relevant parts of the source sentence for each gen-
erated word of a translation example. See how
the attention is ‘smeared out’ over multiple source
words in the case of “would” and “like”.

Figure 1 shows an example of how attention
uses the most relevant source words to generate
a target word at each step of the translation. In
this paper we focus on studying the relevance of
the attended parts, especially cases where atten-
tion is ‘smeared out’ over multiple source words
where their relevance is not entirely obvious, see,
e.g., “would” and “like” in Figure 1. Here, we
ask whether these are due to errors of the attention
mechanism or are a desired behavior of the model.

Since the introduction of attention models in
neural machine translation (Bahdanau et al., 2015)
various modifications have been proposed (Lu-
ong et al., 2015a; Cohn et al., 2016; Liu et al.,
2016). However, to the best of our knowledge
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there is no study that provides an analysis of what
kind of phenomena is being captured by atten-
tion. There are some works that have looked to
attention as being similar to traditional word align-
ment (Alkhouli et al., 2016; Cohn et al., 2016;
Liu et al., 2016; Chen et al., 2016). Some of
these approaches also experimented with train-
ing the attention model using traditional align-
ments (Alkhouli et al., 2016; Liu et al., 2016; Chen
et al., 2016). Liu et al. (2016) have shown that at-
tention could be seen as a reordering model as well
as an alignment model.

In this paper, we focus on investigating the
differences between attention and alignment and
what is being captured by the attention mechanism
in general. The questions that we are aiming to
answer include: Is the attention model only capa-
ble of modelling alignment? And how similar is
attention to alignment in different syntactic phe-
nomena?

Our analysis shows that attention models tradi-
tional alignment in some cases more closely while
it captures information beyond alignment in oth-
ers. For instance, attention agrees with traditional
alignments to a high degree in the case of nouns.
However, it captures other information rather than
only the translational equivalent in the case of
verbs.

This paper makes the following contributions:
1) We provide a detailed comparison of attention
in NMT and word alignment. 2) We show that
while different attention mechanisms can lead to
different degrees of compliance with respect to
word alignments, global compliance is not always
helpful for word prediction. 3) We show that at-
tention follows different patterns depending on the
type of the word being generated. 4) We demon-
strate that attention does not always comply with
alignment. We provide evidence showing that the
difference between attention and alignment is due
to attention model capability to attend the context
words influencing the current word translation.

2 Related Work

Liu et al. (2016) investigate how training the at-
tention model in a supervised manner can bene-
fit machine translation quality. To this end they
use traditional alignments obtained by running au-
tomatic alignment tools (GIZA++ (Och and Ney,
2003) and fast align (Dyer et al., 2013)) on the
training data and feed it as ground truth to the

attention network. They report some improve-
ments in translation quality arguing that the atten-
tion model has learned to better align source and
target words. The approach of training attention
using traditional alignments has also been pro-
posed by others (Chen et al., 2016; Alkhouli et al.,
2016). Chen et al. (2016) show that guided atten-
tion with traditional alignment helps in the domain
of e-commerce data which includes lots of out of
vocabulary (OOV) product names and placehold-
ers, but not much in the other domains. Alkhouli
et al. (2016) have separated the alignment model
and translation model, reasoning that this avoids
propagation of errors from one model to the other
as well as providing more flexibility in the model
types and training of the models. They use a
feed-forward neural network as their alignment
model that learns to model jumps in the source
side using HMM/IBM alignments obtained by us-
ing GIZA++.

Shi et al. (2016) show that various kinds of syn-
tactic information are being learned and encoded
in the output hidden states of the encoder. The
neural system for their experimental analysis is
not an attentional model and they argue that at-
tention does not have any impact for learning syn-
tactic information. However, performing the same
analysis for morphological information, Belinkov
et al. (2017) show that attention has also some ef-
fect on the information that the encoder of neural
machine translation system encodes in its output
hidden states. As part of their analysis they show
that a neural machine translation system that has
an attention model can learn the POS tags of the
source side more efficiently than a system without
attention.

Recently, Koehn and Knowles (2017) carried
out a brief analysis of how much attention and
alignment match in different languages by mea-
suring the probability mass that attention gives to
alignments obtained from an automatic alignment
tool. They also report differences based on the
most attended words.

The mixed results reported by Chen et al.
(2016); Alkhouli et al. (2016); Liu et al. (2016)
on optimizing attention with respect to alignments
motivates a more thorough analysis of attention
models in NMT.
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3 Attention Models

This section provides a short background on at-
tention and discusses two most popular attention
models which are also used in this paper. The first
model is a non-recurrent attention model which is
equivalent to the “global attention” method pro-
posed by Luong et al. (2015a). The second at-
tention model that we use in our investigation is
an input-feeding model similar to the attention
model first proposed by Bahdanau et al. (2015)
and turned to a more general one and called input-
feeding by Luong et al. (2015a). Below we de-
scribe the details of both models.

Both non-recurrent and input-feeding models
compute a context vector ci at each time step. Sub-
sequently, they concatenate the context vector to
the hidden state of decoder and pass it through a
non-linearity before it is fed into the softmax out-
put layer of the translation network.

h̃t = tanh(Wc[ct;h′t]) (1)

The difference of the two models lays in the
way they compute the context vector. In the non-
recurrent model, the hidden state of the decoder is
compared to each hidden state of the encoder. Of-
ten, this comparison is realized as the dot product
of vectors. Then the comparison result is fed to a
softmax layer to compute the attention weight.

et,i = hTi h
′
t (2)

αt,i =
exp(et,i)∑|x|
j=1 exp(et,j)

(3)

Here h′t is the hidden state of the decoder at time
t, hi is ith hidden state of the encoder and |x| is the
length of the source sentence. Then the computed
alignment weights are used to compute a weighted
sum over the encoder hidden states which results
in the context vector mentioned above:

ci =
|x|∑
i=1

αt,ihi (4)

The input-feeding model changes the context
vector computation in a way that at each step t the
context vector is aware of the previously computed
context ct−1. To this end, the input-feeding model
feeds back its own h̃t−1 to the network and uses
the resulting hidden state instead of the context-
independent h′t, to compare to the hidden states of

RWTH data
# of sentences 508

# of alignments 10534
% of sure alignments 91%

% of possible alignments 9%

Table 1: Statistics of manual alignments provided
by RWTH German-English data.

the encoder. This is defined in the following equa-
tions:

h′′t = f(W [h̃t−1; yt−1]) (5)

et,i = hTi h
′′
t (6)

Here, f is the function that the stacked LSTM
applies to the input, yt−1 is the last generated tar-
get word, and h̃t−1 is the output of previous time
step of the input-feeding network itself, meaning
the output of Equation 1 in the case that context
vector has been computed using et,i from Equa-
tion 6.

4 Comparing Attention with Alignment

As mentioned above, it is a commonly held as-
sumption that attention corresponds to word align-
ments. To verify this, we investigate whether
higher consistency between attention and align-
ment leads to better translations.

4.1 Measuring Attention-Alignment
Accuracy

In order to compare attentions of multiple systems
as well as to measure the difference between at-
tention and word alignment, we convert the hard
word alignments into soft ones and use cross en-
tropy between attention and soft alignment as a
loss function. For this purpose, we use manual
alignments provided by RWTH German-English
dataset as the hard alignments. The statistics of
the data are given in Table 1. We convert the hard
alignments to soft alignments using Equation 7.
For unaligned words, we first assume that they
have been aligned to all the words in the source
side and then do the conversion.

Al(xi, yt) =

{
1
|Ayt | if xi ∈ Ayt

0 otherwise
(7)

Here Ayt is the set of source words aligned to
target word yt and |Ayt | is the number of source
words in the set.
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After conversion of the hard alignments to soft
ones, we compute the attention loss as follows:

LAt(yt) = −
|x|∑
i=1

Al(xi, yt) log(At(xi, yt)) (8)

Here x is the source sentence and Al(xi, yt) is
the weight of the alignment link between source
word xi and the target word (see Equation 7).
At(xi, yt) is the attention weight αt,i (see Equa-
tion 3) of the source word xi, when generating the
target word yt .

In our analysis, we also look into the relation
between translation quality and the quality of the
attention with respect to the alignments. For mea-
suring the quality of attention, we use the atten-
tion loss defined in Equation 8. As a measure of
translation quality, we choose the loss between the
output of our NMT system and the reference trans-
lation at each translation step, which we call word
prediction loss. The word prediction loss for word
yt is logarithm of the probability given in Equa-
tion 9.

pnmt(yt | y<t, x) = softmax(Woh̃t) (9)

Here x is the source sentence, yt is target word
at time step t, y<t is the target history given by the
reference translation and h̃t is given by Equation 1
for either non-recurrent or input-feeding attention
models.

Spearman’s rank correlation is used to compute
the correlation between attention loss and word
prediction loss:

ρ =
Cov(RLAt

, RLWP
)

σRLAt
σRLWP

(10)

where RLAt
and RLWP

are the ranks of the at-
tention losses and word prediction losses, respec-
tively, Cov is the covariance between two input
variables, and σRLAt

and σRLWP
are the standard

deviations of RLAt
and RLWP

.
If there is a close relationship between word

prediction quality and consistency of attention ver-
sus alignment, then there should be high correla-
tion between word prediction loss and attention
loss. Figure 2 shows an example with differ-
ent levels of consistency between attention and
word alignments. For the target words “will”
and “come” the attention is not focused on the

Figure 2: An example of inconsistent attention
and alignment. The outlined cells show the man-
ual alignments from the RWTH dataset (see Ta-
ble 1). See how attention is deviated from align-
ment points in the case of “will” and “come”.

manually aligned word but distributed between
the aligned word and other words. The focus
of this paper is examining cases where attention
does not follow alignment, answering the ques-
tions whether those cases represent errors or de-
sirable behavior of the attention model.

4.2 Measuring Attention Concentration

As another informative variable in our analysis,
we look into the attention concentration. While
most word alignments only involve one or a few
words, attention can be distributed more freely.
We measure the concentration of attention by
computing the entropy of the attention distribu-
tion:

EAt(yt) = −
|x|∑
i=1

At(xi, yt) log(At(xi, yt))

(11)

5 Empirical Analysis of Attention
Behaviour

We conduct our analysis using the two different
attention models described in Section 3. Our first
attention model is the global model without input-
feeding as introduced by Luong et al. (2015a). The
second model is the input-feeding model (Luong
et al., 2015a), which uses recurrent attention. Our
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System test2014 test2015 test2016 RWTH
Non-recurrent 17.80 18.89 22.25 23.85
Input-feeding 19.93 21.41 25.83 27.18

Table 2: Performance of our experimental system in BLEU on different standard WMT test sets.

NMT system is a unidirectional encoder-decoder
system as described in (Luong et al., 2015a), using
4 recurrent layers.

We trained the systems with dimension size of
1,000 and batch size of 80 for 20 epochs. The vo-
cabulary for both source and target side is set to be
the 30K most common words. The learning rate
is set to be 1 and a maximum gradient norm of 5
has been used. We also use a dropout rate of 0.3
to avoid overfitting.

Data # of Sent Min Len Max Len Average Len
WMT15 4,240,727 1 100 24.7

Table 3: Statistics for the parallel corpus used to
train our models. The length statistics are based
on the source side.

5.1 Impact of Attention Mechanism

We train both of the systems on the WMT15
German-to-English training data, see Table 3 for
some statistics. Table 2 shows the BLEU scores
(Papineni et al., 2002) for both systems on differ-
ent test sets.

Since we use POS tags and dependency roles in
our analysis, both of which are based on words,
we chose not to use BPE (Sennrich et al., 2016)
which operates at the sub-word level.

non-recurrent input-feeding GIZA++
AER 0.60 0.37 0.31

Table 4: Alignment error rate (AER) of the hard
alignments produced from the output attentions of
the systems with input-feeding and non-recurrent
attention models. We use the most attended source
word for each target word as the aligned word. The
last column shows the AER for the alignment gen-
erated by GIZA++.

We report alignment error rate (AER) (Och and
Ney, 2000), which is commonly used to measure
alignment quality, in Table 4 to show the differ-
ence between attentions and human alignments
provided by RWTH German-English dataset. To
compute AER over attentions, we follow Luong

non-recurrent input-feeding
Attention loss 0.46 0.25

Table 5: Average loss between attention gener-
ated by input-feeding and non-recurrent systems
and the manual alignment over RWTH German-
English data.

et al. (2015a) to produce hard alignments from
attentions by choosing the most attended source
word for each target word. We also use GIZA++
(Och and Ney, 2003) to produce automatic align-
ments over the data set to allow for a comparison
between automatically generated alignments and
the attentions generated by our systems. GIZA++
is run in both directions and alignments are sym-
metrized using the grow-diag-final-and refined
alignment heuristic.

As shown in Table 4, the input-feeding system
not only achieves a higher BLEU score, but also
uses attentions that are closer to the human align-
ments.

Table 5 compares input-feeding and non-
recurrent attention in terms of attention loss com-
puted using Equation 8. Here the losses between
the attention produced by each system and the hu-
man alignments is reported. As expected, the dif-
ference in attention losses are in line with AER.

The difference between these comparisons is
that AER only takes the most attended word into
account while attention loss considers the entire
attention distribution.

5.2 Alignment Quality Impact on Translation

Based on the results in Section 5.1, one might be
inclined to conclude that the closer the attention is
to the word alignments the better the translation.
However, Chen et al. (2016); Liu et al. (2016);
Alkhouli et al. (2016) report mixed results by op-
timizing their NMT system with respect to word
prediction and alignment quality. These findings
warrant a more fine-grained analysis of attention.
To this end, we include POS tags in our analysis
and study the patterns of attention based on POS
tags of the target words. We choose POS tags be-
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(a) Average attention loss based on the POS tags of the target
side.

(b) Average word prediction loss based on the POS tags of the
target side.

Figure 3: Average attention losses and word prediction losses from the input-feeding system.

Tag Meaning Example
ADJ Adjective large, latest
ADP Adposition in, on, of
ADV Adverb only, whenever
CONJ Conjunction and, or
DET Determiner the, a

NOUN Noun market, system
NUM Numeral 2, two
PRT Particle ’s, off, up

PRON Pronoun she, they
PUNC Punctuation ;, .
VERB Verb come, including

Table 6: List of the universal POS tags used in our
analysis.

cause they exhibit some simple syntactic charac-
teristics. We use the coarse grained universal POS
tags (Petrov et al., 2012) given in Table 6.

To better understand how attention accuracy af-
fects translation quality, we analyse the relation-
ship between attention loss and word prediction
loss for individual part-of-speech classes. Fig-
ure 3a shows how attention loss differs when gen-
erating different POS tags. One can see that atten-
tion loss varies substantially across different POS
tags. In particular, we focus on the cases of NOUN
and VERB which are the most frequent POS tags
in the dataset. As shown, the attention of NOUN
is the closest to alignments on average. But the av-
erage attention loss for VERB is almost two times
larger than the loss for NOUN.

Considering this difference and the observations
in Section 5.1, a natural follow-up would be to fo-
cus on getting the attention of verbs to be closer

to alignments. However, Figure 3b shows that the
average word prediction loss for verbs is actually
smaller compared to the loss for nouns. In other
words, although the attention for verbs is substan-
tially more inconsistent with the word alignments
than for nouns, the NMT system translates verbs
more accurately than nouns on average.

Figure 4: Correlation between word prediction
loss and attention loss for the input-feeding model.

To formalize this relationship we compute
Spearman’s rank correlation between word predic-
tion loss and attention loss, based on the POS tags
of the target side, for the input-feeding model, see
Figure 4.

The low correlation for verbs confirms that at-
tention to other parts of source sentence rather
than the aligned word is necessary for translating
verbs and that attention does not necessarily have
to follow alignments. However, the higher correla-
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(a) Average attention entropy based on the POS tags. (b) Correlation between attention entropy and attention loss.

Figure 5: Attention entropy and its correlation with attention loss for the input-feeding system.

tion for nouns means that consistency of attention
with alignments is more desirable. This could, in a
way, explain the mixed result reported for training
attention using alignments (Chen et al., 2016; Liu
et al., 2016; Alkhouli et al., 2016). Especially the
results by Chen et al. (2016) in which large im-
provements are achieved for the e-commerce do-
main which contains many OOV product names
and placeholders, but no or very weak improve-
ments were achieved over common domains.

5.3 Attention Concentration

In word alignment, most target words are aligned
to one source word. The average number of source
words aligned to nouns and verbs is 1.1 and 1.2 re-
spectively. To investigate to what extent this also
holds for attention we measure the attention con-
centration by computing the entropy of the atten-
tion distribution, see Equation 11.

Figure 5a shows the average entropy of atten-
tion based on POS tags. As shown, nouns have one
of the lowest entropies meaning that on average
the attention for nouns tends to be concentrated.
This also explains the closeness of the attention
to alignments for nouns. In addition, the correla-
tion between attention entropy and attention loss
in case of nouns is high as shown in Figure 5b.
This means that attention entropy can be used as a
measure of closeness of attention to alignment in
the case of nouns.

The higher attention entropy for verbs, in Fig-
ure 5a, shows that the attention is more distributed
compared to nouns. The low correlation between
attention entropy and word prediction loss (see

Figure 6) shows that attention concentration is not
required when translating into verbs. This also
confirms that the correct translation of verbs re-
quires the systems to pay attention to different
parts of the source sentence.

Figure 6: Correlation of attention entropy and
word prediction loss for the input-feeding system.

Another interesting observation here is the low
correlation for pronouns (PRON) and particles
(PRT), see Figure 6. As can be seen in Figure 5a,
these tags have more distributed attention compar-
ing to nouns, for example. This could either mean
that the attention model does not know where to
focus or it deliberately pays attention to multiple,
somehow relevant, places to be able to produce a
better translation. The latter is supported by the
relatively low word prediction losses, shown in the
Figure 3b.
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POS tag roles(attention %) description

NOUN

punc(16%) Punctuations1

pn(12%) Prepositional complements
attr(10%) Attributive adjectives or numbers
det(10%) Determiners

VERB

adv(16%) Adverbial functions including negation
punc(14%) Punctuations

aux(9%) Auxiliary verbs
obj(9%) Objects2

subj(9%) Subjects

CONJ
punc(28%) Punctuations
adv(11%) Adverbial functions including negation
conj(10%) All members in a coordination3

Table 7: The most attended dependency roles with their received attention percentage from the attention
probability mass paid to the words other than the alignment points. Here, we focus on the POS tags
discussed earlier.

5.4 Attention Distribution

To further understand under which conditions at-
tention is paid to words other than the aligned
words, we study the distribution of attention over
the source words. First, we measure how much at-
tention is paid to the aligned words for each POS
tag, on average. To this end, we compute the per-
centage of the probability mass that the attention
model has assigned to aligned words for each POS
tag, see Table 8.

POS tag attention to
alignment points %

attention to
other words %

NUM 73 27
NOUN 68 32

ADJ 66 34
PUNC 55 45
ADV 50 50
CONJ 50 50
VERB 49 51
ADP 47 53
DET 45 55

PRON 45 55
PRT 36 64

Overall 54 46

Table 8: Distribution of attention probability mass
(in %) over alignment points and the rest of the
words for each POS tag.

One can notice that less than half of the at-
tention is paid to alignment points for most of

1Punctuations have the role “root” in the parse generated
using ParZu. However, we use the pos tag to discriminate
them from tokens having the role “root”.

2Attention mass for all different objects are summed up.
3Includes all different types of conjunctions and con-

joined elements.

the POS tags. To examine how the rest of at-
tention in each case has been distributed over the
source sentence we measure the attention distri-
bution over dependency roles in the source side.
We first parse the source side of RWTH data using
the ParZu parser (Sennrich et al., 2013). Then we
compute how the attention probability mass given
to the words other than the alignment points, is
distributed over dependency roles. Table 7 gives
the most attended roles for each POS tag. Here,
we focus on POS tags discussed earlier. One can
see that the most attended roles when translating
to nouns include adjectives and determiners and in
the case of translating to verbs, it includes auxil-
iary verbs, adverbs (including negation), subjects,
and objects.

6 Conclusion

In this paper, we have studied attention in neu-
ral machine translation and provided an analysis
of the relation between attention and word align-
ment. We have shown that attention agrees with
traditional alignment to a certain extent. How-
ever, this differs substantially by attention mech-
anism and the type of the word being generated.
We have shown that attention has different pat-
terns based on the POS tag of the target word.
The concentrated pattern of attention and the rela-
tively high correlations for nouns show that train-
ing the attention with explicit alignment labels is
useful for generating nouns. However, this is not
the case for verbs, since the large portion of at-
tention being paid to words other than alignment
points, is already capturing other relevant infor-
mation. Training attention with alignments in this
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case will force the attention model to forget these
useful information. This explains the mixed re-
sults reported when guiding attention to comply
with alignments (Chen et al., 2016; Liu et al.,
2016; Alkhouli et al., 2016).
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Abstract

In this study, we improve grammatical
error detection by learning word embed-
dings that consider grammaticality and er-
ror patterns. Most existing algorithms for
learning word embeddings usually model
only the syntactic context of words so
that classifiers treat erroneous and correct
words as similar inputs. We address the
problem of contextual information by con-
sidering learner errors. Specifically, we
propose two models: one model that em-
ploys grammatical error patterns and an-
other model that considers grammaticality
of the target word. We determine gram-
maticality of n-gram sequence from the
annotated error tags and extract grammat-
ical error patterns for word embeddings
from large-scale learner corpora. Exper-
imental results show that a bidirectional
long-short term memory model initialized
by our word embeddings achieved the
state-of-the-art accuracy by a large mar-
gin in an English grammatical error detec-
tion task on the First Certificate in English
dataset.

1 Introduction

Grammatical error detection that can identify the
location of errors is useful for second language
learners and teachers. It can be seen as a se-
quence labeling task, which is typically solved
by a supervised approach. For example, Rei and
Yannakoudakis (2016) achieved the state-of-the-
art accuracy in English grammatical error detec-
tion using a bidirectional long-short term memory

Phrase pair W2V C&W EWE GWE E&GWE
in summer & on summer 0.84 0.75 0.64 0.58 0.54
in summer & in spring 0.84 0.77 0.90 0.80 0.88
in summer & in English 0.40 0.46 0.36 0.25 0.30
on summer & on spring 0.85 0.71 0.82 0.76 0.80

Table 1: Cosine similarity of phrase pairs for each
word embedding method.

(Bi-LSTM) neural network. Their approach uses
word embeddings learned from a large-scale na-
tive corpus to address the data sparseness problem
of learner corpora.

However, most of the word embeddings, in-
cluding the one used by Rei and Yannakoudakis
(2016), model only the context of the words from a
raw corpus written by native speakers, and do not
consider specific grammatical errors of language
learners. This leads to the problem wherein the
word embeddings of correct and incorrect expres-
sions tend to be similar (Table 1, columns W2V
and C&W) so that the classifier must decide gram-
maticality of a word from contextual information
with a similar input vector.

To address this problem, we introduce two
methods: 1) error-specific word embeddings
(EWE), which employ grammatical error pat-
terns, that is to say the word pairs that learn-
ers tend to easily confuse; 2) grammaticality-
specific word embeddings (GWE), which con-
sider grammatical correctness of n-grams. In
this paper, we use the term grammaticality to re-
fer to the correct or incorrect label of the tar-
get word given its surrounding context. We also
combine these methods, which we will refer to
as error-and grammaticality-specific word embed-
dings (E&GWE).

Table 1 shows the cosine similarity of phrase
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pairs using word2vec (W2V), C&W embeddings
(Collobert and Weston, 2008), EWE, GWE, and
E&GWE1. It illustrates that EWE, GWE, and
E&GWE are able to distinguish between correct
and incorrect phrase pairs while maintaining the
contextual relation.

Furthermore, we conducted experiments using
the large-scale Lang-82 English learner corpus.
The results demonstrated that representation learn-
ing is crucial for exploiting a noisy learner corpus
for grammatical error detection.

The main contributions of this study are sum-
marized as follows:
• We achieve the state-of-the-art accuracy in

grammatical error detection on the First Cer-
tificate in English dataset (FCE-public) using
a Bi-LSTM model initialized using our word
embeddings that consider grammaticality and
error patterns extracted from the FCE-public
corpora.

• We demonstrate that updating word embed-
dings using error patterns extracted from the
Lang-8 (Mizumoto et al., 2011) in addition to
FCE-public corpora greatly improves gram-
matical error detection.

• The proposed word embeddings can distin-
guish between correct and incorrect phrase
pairs.

• We have released our code and learned word
embeddings3.

The rest of this paper is organized as follows:
in Section 2, we first give a brief overview of En-
glish grammatical error detection; Section 3 de-
scribes our grammatical error detection model us-
ing error- and grammaticality-specific word em-
beddings; Section 4 evaluates this model on the
FCE-public dataset, and Section 5 presents an
analysis of the grammatical error detection model
and learned word embeddings; and Section 6 con-
cludes this paper.

2 Related Works

Many studies on grammatical error detection try
to address specific types of grammatical errors
(Tetreault and Chodorow, 2008; Han et al., 2006;
Kochmar and Briscoe, 2014). In contrast, Rei and
Yannakoudakis (2016) target all errors using a Bi-

1The similarity of the phrase pairs was calculated based
on the similarity of the mean vector of the word vectors.

2http://lang-8.com/
3https://github.com/kanekomasahiro/grammatical-error-

detection

LSTM, whose embedding layer is initialized with
word2vec. We also address unrestricted grammat-
ical error detection; however, we focus on learn-
ing word embeddings that consider a learner’s er-
ror pattern and grammaticality of the target word.
In this paper, subsequently, our word embeddings
give statistically significant improvements over
their method using exactly the same training data.

Several studies considering grammatical er-
ror patterns in language learning have been per-
formed. For example, Sawai et al. (2013) suggest
correction candidates for verbs using the learner
error pattern, and Liu et al. (2010) automati-
cally correct verb selection errors in English es-
says written by Chinese students learning English,
based on the error patterns created from a syn-
onym dictionary and an English-Chinese bilingual
dictionary. The main difference between these
previous studies and ours is that the previous stud-
ies focused only on verb selection errors.

As an example of research on learning word em-
beddings that consider grammaticality, Alikanio-
tis et al. (2016) proposed a model for construct-
ing word embeddings by considering the impor-
tance of each word in predicting a quality score for
an English learner’s essay. Their approach learns
word embedding from a document-level score us-
ing the mean square error whereas we learn word
embeddings from a word-level binary error infor-
mation using the hinge loss.

The use of a large-scale learner corpus on gram-
matical error correction is described in works
such as Xie et al. (2016) and Chollampatt et al.
(2016a,b). These studies used the Lang-8 corpus
as training data for phrase-based machine trans-
lation (Xie et al., 2016) and neural network joint
models (Chollampatt et al., 2016a,b). In our study,
Lang-8 was used to extract error patterns that were
then utilized to learn word embeddings. Our ex-
periments show that Lang-8 cannot be used as a re-
liable annotation for LSTM-based classifiers. In-
stead, we need to extract useful information as er-
ror patterns to improve the performance of error
detection.

3 Grammatical Error Detection Using
Error- and Grammaticality-Specific
Word Embeddings

In this section, we describe the details of the
proposed word embeddings: EWE, GWE, and
E&GWE. These models extend an existing word
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Figure 1: Architecture of our learning methods for word embeddings (a) EWE and (b) GWE. Both
models concatenate the word vectors of a sequence for window size and feed them into the hidden layer.
Then, EWE outputs a scalar value, and GWE outputs a prediction of the scalar value and the label of the
word in the middle of the sequence.

embedding learning algorithm called C&W Em-
beddings (Collobert and Weston, 2008) and learn
word embeddings that consider grammatical er-
ror patterns and grammaticality of the target word.
We first describe the well-known C&W embed-
dings, and then explain our extensions. Finally,
we introduce how we incorporate the learned word
embeddings to the grammatical error detection
task using a Bi-LSTM.

3.1 C&W Embeddings

Collobert and Weston (2008; 2011) proposed a
window-based neural network model that learns
distributed representations of target words based
on the local context.

Here, target word wt is the central word
in the window sized sequence of words S =
(w1, . . . , wt, . . . , wn). The representation of the
target word wt is compared with the representa-
tions of other words that appear in the same se-
quence (∀wi ∈ S|wi ̸= wt). A negative sample
S′ = (w1, ..., wc, ..., wn|wc ∼ V ) is created by
replacing the target word wt with a randomly se-
lected word from the vocabulary V to distinguish
between the negative sample S′ and the original
word sequence S. In their method, the word se-
quence S and the negative sample S′ are converted
into vectors in the embedding layer, which are fed
as embeddings. They concatenate each converted

vector and treat it as input vector x ∈ Rn×D,
where D is the dimension of the embedding layer.
The input vector x is then subjected to a linear
transformation (Eq. (1)) to calculate the vector i of
the hidden layer. Then, the resulting vector is sub-
jected to another linear transformation (Eq. (2)) to
obtain the output f(x).

i = σ(Whxx + bh) (1)

f(x) = Wohi + bo (2)

Here, Whx is the weight matrix between the input
vector and the hidden layer, Woh is the weight ma-
trix between the hidden layer and the output layer,
bo and bh are biases, and σ is an element-wise non-
linear function tanh.

This model for word representation learns dis-
tributed representations by making the ranking of
the original word sequence S higher than that of
the negative samples S′, which includes noise due
to replaced words. The difference between the
original word sequence and the word sequence in-
cluding noise is optimized to be at least 1.

lossc(S, S′) = max(0, 1− f(x) + f(x′)) (3)

Here, x′ is a transformed vector at the embedding
layer obtained by converting the word wc of the
negative sample S′.

Our proposed models learn distributed repre-
sentations using the same hinge loss (Eq. (3)) so
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the model could distinguish between correct and
incorrect phrase pairs.

3.2 Error-Specific Word Embeddings (EWE)

EWE learns word embeddings using the same
model as C&W embeddings. However, rather than
creating negative samples randomly, we created
them by replacing the target word wt with words
wc that learners tend to easily confuse with the tar-
get word wt. In such a case, wc is sampled by the
conditional probability:

P (wc|wt) =
|wc, wt|∑

wc′ |wc′, wt| (4)

where, wt is a target word, wc′ is a set of wc re-
garding wt.

This model learns to distinguish between a cor-
rect and an incorrect word by considering error
patterns. Replacement candidates, treated as error
patterns, are extracted from a learner corpus anno-
tated with correction. Figure 1a represents archi-
tecture of EWE.

The bus will pick you up right at your
hotel entery/*entrance.

The above sentence is a simple example from the
test data of FCE-public corpus. In this sentence,
the word “entery” is incorrect and the “entrance”
is the correct word. In this case, wt is “entrance”
and wc is “entery”. Note that we use only one-to-
one (substitution) error patterns.

Due to the data sparseness problem, the context
of infrequent words cannot be properly learned.
This problem is solved by using a large corpus to
pre-train word2vec. By fine-tuning vectors whose
contexts have already been learned, it is possible
to learn word embeddings with no or few replace-
ment candidates in a learner corpus.

3.3 Grammaticality-Specific Word
Embeddings (GWE)

Similar to the approach of Alikaniotis et al. (2016)
for essay score prediction, we extend C&W em-
beddings to distinguish between correct words and
incorrect words by including grammaticality in
distributed representations (Figure 1b). For that
purpose, we add an additional output layer to pre-
dict grammaticality of word sequences, and extend
Equation (3) to calculate following two error func-

tions.

fgrammar(x) = Wghi + bg (5)

ŷ = softmax(fgrammar(x)) (6)

lossp(S) = −
∑

y · log(ŷ) (7)

loss(S, S′) =
α · lossc(S, S′) + (1− α) · lossp(S)

(8)

In Equation (5), fgrammar is the predicted label of
the original word sequence S. Wgh is the weight
matrix and bg is the bias. In Equation (6), the pre-
diction probability ŷ is computed using the soft-
max function for fgrammar. The error lossp is
computed using the cross-entropy function using
the gold label’s vector y of the target word (Eq.
(7)). Finally, two errors are combined to calculate
loss (Eq. (8)). Here, α is a hyperparameter that
determines the weight of the two error functions.

We use the original tag label (0/1) of the FCE-
public data as the grammaticality of word se-
quences for learning. Note that we do not use label
information from Lang-8, because the error anno-
tation of Lang-8 error annotations are too noisy
to train an error detection model directly from the
corpus. Negative examples of GWE are created
randomly, that are similar to the case with C&W.

3.4 Error- and Grammaticality-Specific
Word Embeddings (E&GWE)

E&GWE is a model that combines EWE and
GWE. In particular, E&GWE model creates neg-
ative examples using an error pattern as in EWE
and outputs score and predicts grammaticality as
in GWE.

3.5 Bidirectional LSTM (Bi-LSTM)

We use bidirectional LSTM (Bi-LSTM)
(Graves and Schmidhuber, 2005) as a classifier
for all our experiments for English grammatical
error detection, because Bi-LSTM demonstrates
the state-of-the-art accuracy for this task com-
pared to other architectures such as CRF and
CNNs (Rei and Yannakoudakis, 2016).

The LSTM calculation is expressed as follows:

it =
σ(Wieet + Wihht−1 + Wicct−1 + bi)

(9)

ft =
σ(Wfeet + Wfhht−1 + Wfcct−1 + bf )

(10)
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Figure 2: A bidirectional LSTM network. The
word vectors ei enter the hidden layer to predict
the labels of each word.

ct = it ⊙ g(Wceet

+Wchht−1 + bc) + ft ⊙ ct−1
(11)

ot = σ(Woeet + Wohht−1 + Wocct + bo) (12)

ht = ot ⊙ h(ct) (13)

Here, et is the word embedding of word wt, and
Wie, Wfe, Wce and Woe are weight matrices. Each
bi, bf , bc and bo are biases. An LSTM cell block
has an input gate it, a memory cell ct, a forget
gate ft and an output gate ot to control information
flow. In addition, g and h are the sigmoid function
and σ is the tanh. ⊙ is the pointwise multiplica-
tion.

We apply a bidirectional extension of LSTM, as
shown in Figure 2, to encode the word embedding
ei from both left-to-right and right-to-left direc-
tions.

yt = Wyh(hL
t ⊗ hR

t ) + by (14)

The Bi-LSTM model maps each word wt to a
pair of hidden vectors hL

t and hR
t , i.e., the hidden

vector of the left-to-right LSTM and right-to-left
LSTM, respectively. ⊗ is the concatenation. Wyh

is a weight matrix and by is a bias. We also added
an extra hidden layer for linear transformation be-
tween each of the composition function and the
output layer, as discussed in the previous study.

4 Experiments

4.1 Settings
We used the FCE-public dataset and the Lang-
8 English learner corpus to train classifiers and
word embeddings. For this evaluation, we
used the test set from the FCE-public dataset
(Yannakoudakis et al., 2011) for all experiments.

FCE-public dataset. First, we compared the
proposed methods (EWE, GWE, and E&GWE)
to previous methods (W2V and C&W) relative to
training word embeddings (see Table 2a). For this
purpose, we trained our word embeddings and a
classifier, which were initialized using pre-trained
word embeddings, with the training set from the
FCE-public dataset.

This dataset is one of the most famous English
learner corpus in grammatical error correction. It
contains essays written by English learners. It is
annotated with grammatical errors along with er-
ror classification. We followed the official split
of the data: 30, 953 sentences as a training set,
2, 720 sentences as a test set, and 2, 222 sentences
as a development set. In the FCE-public dataset,
the number of target words of error patterns is
4,184, the number of tokens of the replacement
candidates is 9,834, and the number of types is
6,420. All manually labeled words in the FCE-
public dataset were set as the gold target to train
the GWE. For a missing word error, an error label
is assigned to the word immediately after the miss-
ing word (see Table 4 (c)). To prevent overfitting,
singleton words in the training data were taken as
unknown words.

Lang-8 corpus. Furthermore, we added the
large-scale Lang-8 English learner corpus to the
FCE-public dataset to train word embeddings
(FCE+EWE-L8 and FCE+E&GWE-L8) to ex-
plore the effect of a large data on the proposed
methods. We used a classifier trained using only
the FCE-public dataset whose word embeddings
were initialized with the large-scale pre-trained
word embeddings to compare the results with
those of a classifier trained directly using a noisy
large-scale data whose word embeddings were ini-
tialized using word2vec (FCE&L8+W2V, see Ta-
ble 2b).

Lang-8 learner corpus has over 1 million man-
ually annotated English sentences written by ESL
learners. Extraction of error patterns from Lang-8
in the process of creating negative samples to train
word embeddings was performed as follows:
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1. Extract word pairs using the dynamic pro-
gramming from a correct sentence and an in-
correct sentence.

2. If the learner’s word of the extracted word
pair is included in the vocabulary created
from FCE-public, include it to the error pat-
terns.

In the Lang-8 dataset the number of types of target
words of the replacement candidates is 10,372, the
number of tokens of the replacement candidates is
272,561, and the number of types is 61,950.

Our experiments on FCE+EWE-L8 and
FCE+E&GWE-L8 were conducted by combining
error patterns from all of Lang-8 corpus and
the training part of FCE-public corpus to train
word embeddings. However, since the number
of error patterns of Lang-8 is larger than that of
FCE-public, we normalized each frequency so
that the ratio was 1:1.

We use F0.5 as the main evaluation
measure, following a previous study
(Rei and Yannakoudakis, 2016). This mea-
sure was also adopted in the CoNLL-14 shared
task on error correction task (Ng et al., 2014).
It combines both precision and recall, while
assigning twice as much weight to precision be-
cause accurate feedback is often more important
than coverage in error detection applications
(Nagata and Nakatani, 2010). Nagata and
Nakatani (2010) presented a precision-oriented
error detection system for articles and numbers
that demonstrated precision of 0.72 and a recall
of 0.25 and achieved a learning effect that is
comparable to that of a human tutor.

4.2 Word Embeddings

We set parameters for word embeddings accord-
ing to the previous study (Rei and Yannakoudakis,
2016). The dimension of the embedding layer of
C&W, GWE, EWE and E&GWE is 300 and the
dimension of the hidden layer is 200. We used a
publicly released word2vec vectors (Chelba et al.,
2013) trained on the News crawl from Google
news4 as pre-trained word embeddings. We set
other parameters in our model by running a pre-
liminary experiment in which the window size is
3, the number of negative samples is 600, the
linear interpolation α is 0.03, and the optimizer
is the ADAM algorithm (Kingma and Ba, 2015)

4https://github.com/mmihaltz/word2vec-GoogleNews-
vectors

with the initial learning rate of 0.001. GWE is
initialized randomly and EWE is initialized using
pre-trained word2vec.

4.3 Classifier
We use EWE, GWE, and E&GWE word em-
beddings to initialize the Bi-LSTM neural net-
work, and predict the correctness of the target
word in the input sentence. We update initialized
weights of embedding layer while training classi-
fiers, since it showed better results. The parame-
ters and settings of the network are the same as in
a previous study (Rei and Yannakoudakis, 2016).
Specifically, in Bi-LSTM the dimensions of the
embedding layer, the first hidden layer, and the
second hidden layer are 300, 200, and 50, respec-
tively. The Bi-LSTM model was optimized us-
ing the ADAM algorithm (Kingma and Ba, 2015)
with an initial learning rate of 0.001, and a batch
size of 64 sentences.

4.4 Results
Table 2a shows experimental results comparing
Bi-LSTM models trained on FCE-public dataset
initialized with two baselines (FCE+W2V and
FCE+C&W) and the proposed word embeddings
(FCE+EWE, FCE+GWE and FCE+E&GWE) in
the error detection task. We used two models
for FCE+W2V: FCE+W2V (R&Y 2016) is the
experimental result reported in a previous study
(Rei and Yannakoudakis, 2016), and FCE+W2V
(our reimplementation of (R&Y, 2016)) is the ex-
perimental result of our reimplementation of Rei
and Yannakoudakis (2016). FCE+E&GWE is a
model combining FCE+EWE and FCE+GWE. We
conducted Wilcoxon signed rank test (p ≤ 0.05) 5
times.

Table 2b shows the result of using addi-
tional large-scale Lang-8 corpus. Compared to
FCE&L8+W2V, FCE+EWE-L8 has better results
within the three evaluation metrics. From this re-
sult, it can be seen that it is better to extract and
use error patterns than simply using Lang-8 cor-
pus as a training data to train a classifier, as it con-
tains noise in the correct sentences. Furthermore,
by combining with GWE method, accuracy was
improved as in the above experiment.

In terms of precision, recall, and F0.5, the meth-
ods in our study were ranked as FCE+E&GWE-
L8 > FCE+EWE-L8 > FCE+E&GWE >
FCE+GWE > FCE+EWE > FCE+W2V >
FCE+C&W. Error patterns and grammaticality
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Bi-LSTM + embeddings P R F0.5

FCE + W2V (R&Y, 2016) 46.1 28.5 41.1
FCE + W2V (our reimplementation of (R&Y, 2016)) 45.8±0.1 27.8±0.4 40.5±0.3
FCE + C&W 45.1±0.3 26.7±0.4 39.6±0.3
FCE + EWE 46.1±0.1⋆ 28.0±0.1⋆ 40.8±0.1⋆
FCE + GWE 46.5±0.1⋆ 28.3±0.4⋆ 41.2±0.2⋆
FCE + E&GWE 46.7±0.1⋆ 28.6±0.1⋆ 41.4±0.1⋆

(a) LSTM and word embeddings are trained only using FCE-public.

Bi-LSTM + embeddings P R F0.5

FCE&L8 + W2V 12.3±2.6 32.8±2.2 14.0±2.6
FCE + EWE-L8 50.5±3.4⋆ 30.1±1.2⋆ 44.4±2.7⋆
FCE + E&GWE-L8 50.8±3.6⋆ 30.0±1.2⋆ 44.6±2.8⋆

(b) Either FCE-public and a large-scale Lang-8 corpus are used to train LSTM or word embeddings.

Table 2: Results of grammatical error detection by Bi-LSTM. Asterisks indicate that there is a significant
difference for the confidence interval 0.95 for the P, R and F0.5 against FCE + W2V (our reimplementa-
tion of (R&Y, 2016)).

Error type Verb Missing-article Noun Noun type

(a)
FCE + W2V 56 48 26 9
FCE + C&W 53 46 24 7
FCE + EWE 60 37 29 12

(b) FCE + GWE 62 43 29 11
FCE + E&GWE 64 40 31 14

(c)
FCE + EWE-L8 66 36 37 19
FCE + E&GWE-L8 67 40 39 18
Total number of errors 131 112 77 32

Table 3: Numbers of correct instances for typical error types.

consistently improved the accuracy of grammat-
ical error detection, showing that the proposed
methods are effective. Also, our proposed method
has a statistically significant difference compared
with previous research even without using large-
scale Lang-8 corpus. It outperformed the pre-
ceding state-of-the-art (Rei and Yannakoudakis,
2016) in all evaluation metrics.

5 Discussion

Table 3 shows the number of correct answers of
each model for some typical errors. Error types
are taken from the gold label of the FCE-public
dataset.

First, we analyze verb errors and missing arti-
cles, which have the largest differences between
the numbers of correct answers of baselines and
the proposed methods (see Table 3 (a) and (b)).
The proposed methods gave more correct an-
swers for verb errors, whereas FCE+W2V and

FCE+C&W gave more correct answers for miss-
ing article errors. A possible explanation is that
unigram-based error patterns are too powerful for
word embeddings to learn other errors that can be
learned from the contextual clues.

Second, we examine the difference made by
adding the error patterns extracted from Lang-
8 (see Table 3 (b) and (c)): FCE+EWE and
FCE+EWE-L8 have the greatest difference in the
number of correct answers in noun and noun type
errors. FCE+EWE-L8 has more correct answers
for noun errors such as suggestion and advice and
noun type errors such as time and times. The rea-
son is that Lang-8 includes a wide variety of lexi-
cal choice errors of nouns while FCE-public cov-
ers only a limited number of error variations.

Table 4 demonstrates the examples of error de-
tection of the baseline FCE+W2V and the best
proposed method FCE+E&GWE-L8 on the test
data. Table 4(a) shows an example of a noun error,
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Bi-LSTM + embeddings Detection result
Gold The bus will pick you up right at your hotel entrance.

(a) FCE + W2V The bus will pick you up right at your hotel entery.
FCE + E&GWE-L8 The bus will pick you up right at your hotel entery.
Gold There are shops which sell clothes, food, and books…

(b) FCE + W2V There are shops which sales cloths, foods, and books…
FCE + E&GWE-L8 There are shops which sales cloths, foods, and books…
Gold All the buses and the MTR have air-condition.

(c) FCE + W2V All the buses and MTR have air-condition.
FCE + E&GWE-L8 All the buses and MTR have air-condition.

Table 4: Examples of error detection by FCE+W2V and FCE+E&GWE-L8. Gold corrections in italic,
and detected errors in bold.

and as it can be seen, FCE+E&GWE-L8 detected
the error in contrast to FCE+W2V. Noun type er-
rors are presented in Table 4(b). Here, FCE+W2V
did not detect any error, while FCE+E&GWE-
L8 could detect the mass noun error, frequently
found in a learner corpus. Detection of “sale”
and “cloths” was failed in both models, but they
are hard to detect since the former requires syn-
tactic information and the latter involves com-
mon knowledge. In Table 4(c), FCE+W2V suc-
ceeded in detection of a missing article error, but
FCE+E&GWE-L8 did not. Even though proposed
word embeddings learn substitution errors effec-
tively, they cannot properly learn insertion and
deletion errors. It is our future work to extend
word embeddings to include these types of errors
and focus on contextual errors that are difficult to
deal with the model, for example, missing articles.

Figure 3 visualizes word embeddings
(FCE+W2V and FCE+E&GWE-L8) of fre-
quently occurring errors in learning data using
t-SNE. We plot prepositions and some typical
verbs5, where FCE+E&GWE-L8 showed better
results compared to FCE+W2V. Proportional to
the frequency of errors, the position of the word
embeddings of FCE+E&GWE-L8 changes in
comparison with that of FCE+W2V. For example,
FCE+E&GWE-L8 learned the embeddings of
high-frequency words such as was and could
differently from FCE+W2V. On the other hand,
low-frequency words such as under and walk
were learned similarly. Also, almost all words
shown in this figure move to the upper right.
These visualization can be used to analyze errors
made by learners.

5This dataset includes modal verbs as verb errors.

Figure 3: Visualization of word embeddings by
FCE+W2V and FCE+E&GWE-L8. The red color
represents the word of FCE+W2V and the blue
represents FCE+E&GWE-L8.

6 Conclusion

In this study, we proposed word embeddings that
can improve grammatical error detection accuracy
by considering grammaticality and error patterns.
We achieved the state-of-the-art accuracy on the
FCE-public dataset using a Bi-LSTM model ini-
tialized with the proposed word embeddings. The
word embeddings trained on a learner corpus can
distinguish between correct and incorrect phrase
pairs. In addition, we conducted experiments us-
ing a large-scale Lang-8 corpus. As a result, we
showed that it is better to extract error patterns
from such a corpus to train word embeddings than
simply add Lang-8 corpus as a training data to
train a classifier. We analyzed the detection results
for some typical error types and showed the char-
acteristics of learned word representations. We
hope that the learned word embeddings are gen-
eral enough to be of use to help NLP applications
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to language learning.
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Abstract

This paper describes and compares two
straightforward approaches for depen-
dency parsing with partial annotations
(PA). The first approach is based on a
forest-based training objective for two
CRF parsers, i.e., a biaffine neural network
graph-based parser (Biaffine) and a tradi-
tional log-linear graph-based parser (LL-
GPar). The second approach is based on
the idea of constrained decoding for three
parsers, i.e., a traditional linear graph-
based parser (LGPar), a globally nor-
malized neural network transition-based
parser (GN3Par) and a traditional linear
transition-based parser (LTPar). For the
test phase, constrained decoding is also
used for completing partial trees. We con-
duct experiments on Penn Treebank under
three different settings for simulating PA,
i.e., random, most uncertain, and divergent
outputs from the five parsers. The results
show that LLGPar is most effective in di-
rectly learning from PA, and other parsers
can achieve best performance when PAs
are completed into full trees by LLGPar.

1 Introduction

Traditional supervised approaches for structural
classification assume full annotation (FA), mean-
ing that the training instances have complete
manually-labeled structures. In the case of depen-
dency parsing, FA means a complete parse tree is
provided for each training sentence. However, re-
cent studies suggest that it is more economic and
effective to construct labeled data with partial an-
notation (PA). A lot of research effort has been at-
tracted to obtain partially-labeled data for different

∗Correspondence author

$0 I1 saw2 Sarah3 with4 a5 telescope6

Figure 1: An example partial tree, where only the
heads of “saw” and “with” are given.

tasks via active learning (Sassano and Kurohashi,
2010; Mirroshandel and Nasr, 2011; Li et al.,
2012; Marcheggiani and Artières, 2014; Flannery
and Mori, 2015; Li et al., 2016), cross-lingual syn-
tax projection (Spreyer and Kuhn, 2009; Ganchev
et al., 2009; Jiang et al., 2010; Li et al., 2014),
or mining natural annotation implicitly encoded
in web pages (Jiang et al., 2013; Liu et al., 2014;
Nivre et al., 2014; Yang and Vozila, 2014). Fig-
ure 1) gives an example sentence partially an-
notated with two dependencies. However, there
still lacks systematic study on how to build de-
pendency parsers with PA. Most previous works
listed above rely on ad-hoc strategies designed
for only basic dependency parsers. One excep-
tion is that Li et al. (2014) convert partial trees
into forests and train a traditional log-linear graph-
based dependency parser (LLGPar) with PA based
on a forest-based objective, showing promising
results. Meanwhile, it is still unclear how PAs
can be used by other main-stream dependency
parsers, such as the traditional linear graph-based
parser (LGPar) and transition-based parser (LT-
Par), and the newly proposed biaffine neural net-
work graph-based parser (Biaffine) (Dozat and
Manning, 2017) and globally normalized neural
network transition-based parser (GN3Par) (Andor
et al., 2016).

This paper aims to thoroughly study this issue
and make systematic comparison on different ap-
proaches for dependency parsing with PA. In sum-
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mary, we make the following contributions.

• We present a general framework for directly
training GN3Par, LGPar and LTPar with PA
based on constrained decoding. The basic
idea is to use the current feature weights to
parse the sentence under the PA-constrained
search space, and use the best parse as a
pseudo gold-standard reference for feature
weight update during perceptron training.

• We also implement the forest-objective based
approach of Li et al. (2014) for the two CRF
parsers, i.e., LLGPar and Biaffine.

• We have made thorough comparison among
different directly-train approaches under
three different settings for simulating PA,
i.e., random dependencies, most uncertain
dependencies, and dependencies with diver-
gent outputs from the five parsers. We have
also compared the proposed directly-train ap-
proaches with the straightforward complete-
then-train approach.

• Extensive experiments lead to several inter-
esting and clear findings.

2 Dependency Parsing

Given an input sentence x = w0w1...wn, a de-
pendency tree comprises a set of dependencies,
namely d = {i ↷ j : 0 ≤ i ≤ n, 1 ≤ j ≤ n},
where i ↷ j is a dependency from a head word
i to a modifier word j. A complete dependency
tree contains n dependencies, namely |d| = n,
whereas a partial dependency tree contains less
than n dependencies, namely |d| < n. Alterna-
tively, FA can be understood as a special form of
PA. For clarity, we denote a complete tree as d and
a partial tree as dp.

The decoding procedure aims to find an optimal
complete tree d∗:

d∗ = arg max
d∈Y(x)

Score(x,d;w) (1)

whereY(x) defines the search space containing all
legal trees for x and w is the model parameters.

2.1 Graph-based Approach
The graph-based method factorizes the score of a
dependency tree into those of small subtrees p:

Score(x,d;w) =
∑
p⊆d

Score(x,p;w) (2)

Dynamic programming based exact search are
usually applied to find the optimal tree (McDon-
ald et al., 2005; McDonald and Pereira, 2006; Car-
reras, 2007; Koo and Collins, 2010).

Biaffine belongs to the first-order model and
only incorporates scores of single dependencies.
In contrast, for LLGPar and LGPar, we follow Li
et al. (2014) and adopt the second-order model of
McDonald and Pereira (2006) considering scores
of single dependencies and adjacent siblings. Bi-
affine and LLGPar both belong to CRF parser.
Please note that the original Biaffine is locally
trained on each word. In this work, we follow
Ma and Hovy (2017) and add a global CRF loss
in the projective case, in order to directly use the
proposed approach of Li et al. (2014). In other
words, we extend the original Biaffine Parser de-
scribed in Dozat and Manning (2017) by adding a
CRF layer. Under the CRF model, the conditional
probability of d given x is:

p(d|x;w) =
eScore(x,d;w)∑

d′∈Y(x) eScore(x,d′;w)
(3)

For training, w is optimized using gradient de-
scent to maximize the likelihood of the training
data.

Biaffine uses a neural network to compute the
score of each dependency. First, the input word
and POS tag sequence are fully encoded with two
BiLSTM layers. Then, two MLPs are applied to
each word position i to obtain two word represen-
tations, i.e., rh

i (wi as head) rm
i (wi as modifier).

Finally, a biaffine classifier predicts the score of an
arbitary dependency i ↷ j.

score(i ↷ j) = rh
i ·W · rm

j + rh
i · V (4)

where W (matrix) and V (vector) are the biaffine
parameters.

LLGPar is a traditional discrete feature based
model, which defines the score of a tree as

Score(x,d;w) = w · f(x,d) (5)

f(x,d) is a sparse accumulated feature vector cor-
responding to d.

LGPar uses perceptron-like online training to
directly learn w. The workflow is similar to Al-
gorithm 1, except that the gold-standard reference
d+ is directly provided in the training data without
the need of constrained decoding in line 7.
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Algorithm 1 Perceptron training based on constrained decoding.
1: Input: Partially labeled data D = {(xj ,d

p
j )}N

j=1; Output: w;
2: Initialization: w(0) = 0, k = 0
3: for i = 1 to I do // iterations
4: for (xj ,d

p
j ) ∈ D do // traverse

5: d− = arg maxd∈Y(xj) Score(xj ,d;w) // Unconstrained decoding: LGPar
6: a− = arg maxa→d∈Y(xj) Score(xj ,a → d;w) // Unconstrained decoding: LTPar
7: d+ = arg maxd∈Y(xj ,d

p
j ) Score(xj ,d;w) // Constrained decoding: LGPar

8: a+ = arg maxa→d∈Y(xj ,d
p
j ) Score(xj ,a → d;w) // Constrained decoding: LTPar

9: wk+1 = wk + f(x,d+)− f(x,d−) // Update: LGPar
10: wk+1 = wk + f(x,a+)− f(x,a−) // Update: LTPar
11: k = k + 1
12: end for
13: end for

2.2 Transition-based Approach
The transition-based method builds a dependency
by applying sequence of shift/reduce actions a,
and factorizes the score of a tree into the sum
of scores of each action in a (Yamada and Mat-
sumoto, 2003; Nivre, 2003; Zhang and Nivre,
2011):

Score(x,d;w) = Score(x,a → d;w)

=
∑|a|

i=1
Score(x, ci, ai;w)

(6)

where ai is the action taken at step i and ci is the
configuration status after taking action a1...ai−1.
Transition-based methods use inexact beam search
to find a highest-scoring action sequence.

GN3Par uses a neural network to predict scores
of different actions given a state (Chen and Man-
ning, 2014; Andor et al., 2016). First, 48 atomic
features are embeded and concatenated as the in-
put layer. Then, two hidden layers are applied
to get the scores of all feasible actions. Unlike
the traditional perceptron-like training, which only
considers the best action sequence in the beam and
the gold-standard sequence, their idea of global
normalization is to approximately compute the
probabilities of all the sequences in the beam to
obtain a global CRF-like loss.

LTPar is a traditional discrete feature based
model like LLGPar and LGPar, and adopts
global perceptron-like training to learn the fea-
ture weights w. We build an arc-eager transition-
based dependency parser and features described in
Zhang and Nivre (2011).

3 Directly training parsers with PA

As described in Li et al. (2014), CRF parsers
such as LLGPar and Biaffine can naturally learn

from PA based on the idea of ambiguous labeling,
which allows a sentence to have multiple parse
trees (forest) as its gold-standard reference (Rie-
zler et al., 2002; Dredze et al., 2009; Täckström
et al., 2013). First, a partial tree dp is converted
into a forest by adding all possible dependencies
pointing to remaining words without heads, with
the constraint that a newly added dependency does
not violate existing ones in dp. The forest can
be formally defined as F(x,dp) = {d : d ∈
Y(x),dp ⊆ d}, whose conditional probability is
the sum of probabilities of all trees that it contains:

p(dp|x;w) =
∑

d∈F(x,dp)

p(d|x;w) (7)

Then, we can define a forest-based training objec-
tive function to maximize the likelihood of train-
ing data as described in Li et al. (2014).

LGPar can be extended to directly learn from
PA based on the idea of constrained decoding, as
shown in Algorithm 1, which has been previously
applied to Chinese word segmentation with par-
tially labeled sequences (Jiang et al., 2010). The
idea is using the best tree d+ in the constrained
search space Y(xj ,d

p
j ) (line 7) as a pseudo gold-

standard reference for weight update. In tradi-
tional perceptron training, d+ would be a com-
plete parse tree provided in the training data. It
is trivial to implement constrained decoding for
graph-based parsers, and we only need to disable
some illegal combination operations during dy-
namic programming.

LTPar can also directly learn from PA in a simi-
lar way, as shown in Algorithm 1. Constrained de-
coding is performed to find a pseudo gold-standard
reference (line 8). It is more complicate to design
constrained decoding for transition-based parsing
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train-1K train-39K dev test

#Sentence 1,000 38,832 1,700 2,416
#Token 24,358 925,670 40,117 56,684

Table 1: Data Statistics. FA is always used for
train-1K, whereas PA is simulated for train-39K.

than graph-based parsing. Fortunately, Nivre et al.
(2014) propose a constrained decoding procedure
for the arc-eager parsing system. We ignore the
details due to the space limitation.

GN3Par learns from PA in a similar manner
with LTPar. The difference is that for each sen-
tence, all the sequences in beam are used as nega-
tive examples in Line 6, and a+ obtained in Line
8 as gold-standard. Then, the global loss is com-
puted in the same way with the case of FA.1 Mean-
while, since GN3Par uses the arc-standard transi-
tion system, we also develop a constrained decod-
ing procedure for the arc-standard system, which
will be released as supporting documents.

4 Experiments

Data. We conduct experiments on Penn Tree-
bank (PTB), and follow the standard data split-
ting (sec 2-21 as training, sec 22 as develop-
ment, and sec 23 as test). Original bracketed
structures are converted into dependency struc-
tures using Penn2Malt with default head-finding
rules. We build a CRF-based bigram part-of-
speech (POS) tagger to produce automatic POS
tags for all train/dev/test data (10-way jackknifing
on training data), with tagging accuracy 97.3% on
test data. As suggested by an earlier anonymous
reviewer, we further split the training data into two
parts. We assume that the first 1K training sen-
tences are provided as a small-scale data with FA,
which can be obtained by a small amount of man-
ual annotation or through cross-lingual projection
methods. We simulate PA for the remaining 39K
sentences. Table 1 shows the data statistics.

Parameter settings. We implement all five
parsers from scratch using C++, which will be
released publicly in the future. For those who
are immediately interested, please contact us. We
train LLGPar with stochastic gradient descent
(Finkel et al., 2008). For LTPar and GN3Par,

1 We have also tried to use all sequences in the beam in
Line 8 as gold-standard, instead of the best a+, considering
that there may be many gold-standard references in the case
of PA. However, the accuracies become lower.

the beam size is 64 and the standard early update
is adopted during training (Collins, 2002). For
LGPar and LTPar, averaged perceptron is adopted
(Collins, 2002).

For Biaffine, we directly adopt most hyperpa-
rameters of the released code of Dozat and Man-
ning (2017), only removing the components re-
lated with dependency labels, since we focus on
unlabeled dependency parsing in this work. The
LSTM (two forward plus two backward) layers all
use 300-dimension hidden cells. Dropout with ra-
tio of 0.75 is applied to most layers before out-
put. The two MLPs both have 100-dimension out-
puts without hidden layer. Adam optimization is
adopted with α1 = α2 = 0.9.

For GN3Par, we follow Daniel et al. (2016),
and use two 1024× 1024 hidden layers, and adopt
momentum (ratio of 0.9) Adam optimization.

For both Biaffine and GN3Par, we set the em-
bedding dimension of both word/tag to 100, and
use the GloVe pretrained word embedding for ini-
tialization2, and randomly initialize embeddings
of POS tags.

Since we have two sets of training data, we
adopt the simple corpus-weighting strategy of Li
et al. (2014). In each iteration, we merge train-1K
and a subset of random 10K sentences from train-
39K, shuffle them, and then use them for training.
For all parsers, training terminates when the peak
parsing accuracy on dev data does not improve in
30 consecutive iterations.

For evaluation metrics, we use the standard un-
labeled attachment score (UAS) excluding punctu-
ation marks.

4.1 Three settings for simulating PA on
train-39K

In order to simulate PA for each sentence in train-
39K, we only keep α% gold-standard dependen-
cies (not considering punctuation marks), and re-
move all other dependencies. We experiment with
three simulation settings to fully investigate the ca-
pability of different approaches in learning from
PA.

Random (30% or 15%):3 For each sentence
in train-39K, we randomly select α% words, and
only keep dependencies linking to these words.

2https://nlp.stanford.edu/projects/
glove/

3 We choose 15% since the parsers achieve about 85%
UAS when trained on train-1K (see Table 4). Then 30% aim
to find the effect of different levels of supervision.
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Biaffine LLGPar LGPar GN3Par LTPar Berkeley Turbo Mate-tool ZPar

on Dev 94.37 93.16 93.00 93.32 92.77 92.84 92.86 92.58 92.42
on Test 94.18 92.42 92.43 93.26 92.01 92.85 92.63 92.48 92.12

Table 2: UAS of different parsers trained on all training data (40K)

FA(random) PA(random) PA(uncertain) PA(divergence)
100% 30% 15% 30% 15% 30% 15% 21.33%

Biaffine 94.37 93.06 (-1.31) 92.10 (-2.27) 92.84 (-1.53) 91.92 (-2.45) 93.63 (-0.74) 92.83 (-1.54) 93.58 (-0.79)
LLGPar 93.16 91.93 (-1.23) 91.15 (-2.01) 92.39 (-0.77) 91.66 (-1.50) 93.02 (-0.14) 92.44 (-0.72) 92.83 (-0.33)
LGPar 93.00 91.76 (-1.24) 90.80 (-2.20) 91.63 (-1.37) 90.62 (-2.38) 92.46 (-0.54) 91.64 (-1.36) 92.42 (-0.58)

GN3Par 93.32 91.99 (-1.33) 91.17 (-2.15) 91.43 (-1.89) 90.34 (-2.98) 92.40 (-0.92) 91.80 (-1.52) 92.60 (-0.72)
LTPar 92.77 91.22 (-1.55) 90.35 (-2.42) 91.12 (-1.65) 90.12 (-2.65) 91.35 (-1.42) 90.99 (-1.78) 91.04 (-1.73)

Table 3: UAS on dev data: parsers are directly trained on train-1K with FA and train-39K with PA. “FA
(random) α%” means randomly selecting α% sentences with FA from train-39K for training. Numbers
in parenthesis are the accuracy gap from the second column “FA (100%)”.

With this setting, we aim to purely study the is-
sue without biasing to certain structures. This set-
ting may be best fit the scenario automatic syntax
projection based on bitext, where the projected de-
pendencies tend to be arbitrary (and noisy) due to
the errors in automatic source-language parses and
word alignments and non-isomorphism syntax be-
tween languages.

Uncertain (30% or 15%): In their work of ac-
tive learning with PA, Li et al. (2016) show that the
marginal probabilities from LLGPar is the most
effective uncertainty measurement for selecting
the most informative words to be annotated. Fol-
lowing their work, we first train LLGPar on train-
1K with FA, and then use LLGPar to parse train-
39K and select α% most uncertain words. We use
the gold-standard heads of the selected words as
PAs for model training.

Following Li et al. (2016), we measure the un-
certainty of a word wi according to the marginal
probability gap between its two most likely heads
h0

i and h1
i .

Uncertainty(x, i) = p(h0
i ↷ i|x)− p(h1

i ↷ i|x)
(8)

This setting fits the scenario of active learning,
which aims to save annotation effort by only an-
notating the most useful structures.

Divergence (21.33%): We train all five parsers
on train-1K, and use them to parse train-39K. If
their output trees do not assign the same head to a
word, then we keep the gold-standard dependency
pointing to the word, leading to 21.33% remaining
dependencies. This setting fits to the tri-training

scenario investigated in Li et al. (2014).

4.2 Results of different parsers trained on FA

We train the five parsers on all the training data
with FA. We also employ four publicly available
parsers with their default settings. BerkeleyParser
(v1.7) is a constituent-structure parser, whose re-
sults are converted into dependency structures
(Petrov and Klein, 2007). TurboParser (v2.1.0)
is a linear graph-based dependency parser using
linear programming for inference (Martins et al.,
2013). Mate-tool (v3.3) is a linear graph-based de-
pendency parser very similar to our implemented
LGPar (Bohnet, 2010). ZPar (v0.6) is a linear
transition-based dependency parser very similar to
our implemented LTPar (Zhang and Clark, 2011).
The results are shown in Table 2.

We can see that the five parsers that we adopt
achieve competitive parsing accuracy and serve as
strong baselines. Especially, the recently proposed
neural network Biaffine outperforms other parser
by more than 1%.

4.3 Results of the directly-train approaches

The five parsers are directly trained on train-1K
with FA and train-39K with PA based on the
methods described in Section 3. Table 3 shows
the results.

Comparing the five parsers, we have several
clear findings. (1) LLGPar is the most effective in
directly learning from PA since its accuracy drop
is the smallest over all PA settings compared with
FA (100%). (2) Although Biaffine achieves best
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Parser for completion
No constraints PA (random) PA (uncertain) PA (divergence)

0% 30% 15% 30% 15% 21.33%

Biaffine-1K 87.08 92.10 (+5.02) 89.79 (+2.71) 96.78 (+9.70) 93.47 (+6.39) 96.76 (+9.68)
LLGPar-1K 86.67 92.65 (+5.98) 90.02 (+3.35) 97.43 (+10.76) 94.43 (+7.76) 97.07 (+10.40)
LGPar-1K 86.05 92.16 (+6.11) 89.48 (+3.43) 97.30 (+11.25) 94.11 (+8.06) 96.99 (+10.94)

GN3Par-1K 85.86 92.34 (+6.48) 89.54 (+3.68) 97.02 (+11.16) 93.69 (+7.83) 96.56 (+10.70)
LTPar-1K 85.38 91.76 (+6.38) 88.89 (+3.51) 96.90 (+11.52) 93.35 (+7.97) 96.72 (+11.34)

LLGPar-1K+39K – 95.55 93.37 98.30 96.22 97.69
Biaffine-1K+39K – 95.77 93.52 98.27 96.17 97.73

Table 4: UAS of full trees in train-39K completed via constrained decoding.

accuracy over all settings, thanks to its strong per-
formance under the basic FA setting, we find that
the accuracy gap between LLGPar and Biaffine
becomes much smaller with PA than with FA. This
also indicates that LLGPar is more effective in di-
rectly learning from PA. (3) LTPar achieves the
lowest accuracy over all settings, especially on PA
under uncertain (30%, 15%) and divergence. It is
also clear that the accuracy declines the largest on
these three settings, compared with FA (100%).

FA (random) vs. PA (random):4 from the re-
sults in the two major columns, we can see that
LLGPar achieves higher accuracy by about 0.5%
when trained on sentences with α% random de-
pendencies than when trained on α% random sen-
tences with FA. This is reasonable and can be
explained under the assumption that LLGPar can
make full use of PA in model training. In fact,
in both cases, the training data contains approxi-
mately the same number of annotated dependen-
cies. However, from the perspective of model
training, given some dependencies in the case of
PA, more information about the syntactic structure
can be derived.5

Taking Figure 1 as an example, “I1” can only
modify “saw2” due to the single-root and single-
head constraints; similarly, “Sarah3” can only
modify either “saw2” or “with2”; and so on. More-

4 These two settings should give the clearest evidence
whether a parser can effectively learn from PAs. Under the
same α%, although containing approximately the same num-
ber of dependencies, PA certainly provide more syntactic in-
formation than FA, since 1) it is more expensive to annotate
PA than FA in the terms of annotation time per dependency;
2) in PA, partially annotated dependencies can provide strong
constraints on the remaining undecided dependencies. There-
fore, we assume that a parser is effectively in learning from
PA if it can achieve at least higher accuracy under PA.

5Also, as suggested in the work of Li et al. (2016), an-
notating PA is more time-consuming than annotating FA in
terms of averaged time for each dependency, since dependen-
cies in the same sentence are correlated and earlier annotated
dependencies usually make later annotation easier.

over, since LLGPar is a second-order model, the
presence of certain dependencies can directly af-
fect the choice of other dependencies through the
scores of adjacent siblings. Therefore, given the
same amount of annotated dependencies, random
PA contains more syntactic information than ran-
dom FA, which explains why LLGPar performs
better with PA than FA.

In contrast, all other four parsers achieve lower
accuracy with PA than with FA. Biaffine differs
from LLGPar in being a first-order model, and
thus cannot fully utilize PA by considering sib-
ling scores. The problem of LGPar may lie in
the perceptron training with constrained decod-
ing, which only considers a single best tree that
complies with the given PA as gold-standard (Line
7 in Algorithm 1), unlike the forest-based objec-
tive of LLGPar that consider all trees weighted
with probabilities. Both GN3Par and LTPar suffer
from the inexact search problem. In other words,
the approximate beam search can cause the cor-
rect tree drops off the beam too soon due to lower
scores for earlier actions, and thus return a bad a+

that causes the model be updated to bias to wrong
structures (Line 8 in Algorithm 1).

PA (random) vs. PA (uncertain):6 we can see
that all five parsers achieve much higher accuracy
in the latter case.7 The annotated dependencies
in PA (uncertain) are most uncertain ones for cur-
rent statistical parser (i.e., LLGPar), and thus are
more helpful for training the models than those in
PA (random). Another phenomenon is that, in the
case of PA (uncertain), increasing α% = 15% to

6From the idea of active learning, we know that annotat-
ing the most informative dependencies as more training data
can help models best. So, we select the most uncertain depen-
dencies and compare the result on the setting with randomly-
selected dependencies.

7The only exception is LTPar with 30% PA, the accuracy
increases by only 91.35 − 91.12 = 0.23%, which may be
caused by the ineffectiveness of LTPar in learning from PA.
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30% actually doubles the number of annotated de-
pendencies, but only boost accuracy of LLGPar
by 93.02 − 92.44 = 0.58%, which indicates that
newly added 15% dependencies are much less use-
ful since the model can already well handle these
low-uncertainty dependencies.

PA (uncertain, 30%) vs. PA (divergence):8
we can see that the all five parsers achieve simi-
lar parsing accuracies under the two settings. This
indicates that the divergence strategy can find very
useful dependencies for all parsers, whereas un-
certainty measurement based on LLGPar might be
biased towards itself to a certain extent.

In summary, we can conclude from the results
that LLGPar is the most effective in directly learn-
ing from PA among all five parsers, due to both the
second-order modeling and the forest-based train-
ing objective.

4.4 Results of the complete-then-train
methods

The most straight-forward method for learning
from PA is the complete-then-learn method (Mir-
roshandel and Nasr, 2011). The idea is first us-
ing an existing parser to complete partial trees in
train-39K into full trees based on constrained de-
coding, and then training the target parser on train-
1K with FA and train-39K with completed FA.

Results of completing via constrained decod-
ing: Table 4 reports UAS of the completed
trees on train-39K using two different strategies
for completion. “No constraints (0%)” means
that train-39K has no annotated dependencies and
normal decoding without constraints is used. In
the remaining columns, each parser performs con-
strained decoding on PA where α% dependencies
are provided in each sentence.

• Coarsely-trained-self for completion: We
complete PA into FA using corresponding
parsers coarsely trained on only train-1K
with FA. We call these parsers Biaffine-
1K, LLGPar-1K, LGPar-1K, GN3Par-1K,
LTPar-1K respectively.

• Fine-trained-LLGPar for completion: We
complete PA into FA using LLGPar fine
trained on both train-1K with FA and
train-39K with PA. We call this LLGPar

8Selecting uncertain dependencies according to LLGPar
may cause the resulting data to be biased to LLGPar. There-
fore, we consider the divergence among all parsers for selec-
tion.

as LLGPar-1K+39K. Please note that
LLGPar-1K+39K actually performs closed
test in this setting, meaning that it parses
its training data. For example, LLGPar-
1K+39K trained on random (30%) is em-
ployed to complete the same data by filling
the remaining 70% dependencies.

• Fine-trained-Biaffine for completion: This
is the same with the case of “Fine-trained-
LLGPar”, except that we replace LLGParser
with Biaffine. We call the resulting parser as
Biaffine-1K+39K.

Comparing the five parsers trained on train-1K,
we can see that constrained decoding has similar
effects on all five parsers, and is able to return
much more accurate trees. Numbers in parenthesis
show the accuracy gap between unconstrained 0%
and constrained decoding. This suggests that con-
strained decoding itself is not responsible for the
ineffectiveness of Algorithm 1 for other parsers,
especially LTPar.

Comparing the results of LLGPar-1K and
LLGPar-1K+39K, it is obvious that the latter pro-
duces much better full trees since the fine-trained
LLGPar can make extra use of PA in train-39K
during training.

LLGPar-1K+39K and Biaffine-1K+39K
achieve similar accuracies. We choose to use the
former for completion since LLGPar is the most
effective in both learning from PA and completing
PA, as indicated by the results in Table 3 and 4.

Results of training on completed FA: Table 5
compares performance of the five parsers trained
on train-1K with FA and train-39K with com-
pleted FA, from which we can draw several clear
and interesting findings. First, different from the
case of directly training on PA, the accuracy gaps
among the five parsers become much more sta-
ble when trained on data with completed FA in
both completion settings. Second, using parsers
coarsely-trained on train-1K for completion leads
to very bad performance, which is even much
worse than those of the directly-train method in
Table 3 except for LTPar with uncertain (30%) and
divergence. Third, using the fine-trained LLGPar-
1K+39K for completion makes LGPar and LTPar
achieve nearly the same accuracies with LLGPar,
which may be because LLGPar provides comple-
mentary effects during completion, analogous to
the scenario of co-training.
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Completed by self-1K Completed by LLGPar-1K+39K

PA (random) PA (uncertain) PA (divergence) PA (random) PA (uncertain) PA (divergence)
30% 15% 30% 15% 21.33% 30% 15% 30% 15% 21.33%

Biaffine 90.88 89.77 92.91 91.55 92.83 93.13 92.46 93.52 93.02 93.48
LLGPar 89.91 88.69 92.05 90.77 92.28 92.29 91.54 92.86 92.33 92.76
LGPar 89.42 88.32 91.85 90.66 92.07 92.17 91.59 92.84 92.21 92.79

GN3Par 89.77 88.38 92.07 90.71 92.07 92.43 91.83 92.82 92.45 92.66
LTPar 89.17 87.72 91.59 90.12 91.67 92.05 91.37 92.42 92.10 92.40

Table 5: UAS on dev data: parsers trained on train-1K with FA and train-39K with completed FA.

Directly train on train-39K with PA Train-39K with FA completed by LLGPar-1K+39K

PA (random) PA (uncertain) PA (divergence) PA (random) PA (uncertain) PA (divergence)
30% 15% 30% 15% 21.33% 30% 15% 30% 15% 21.33%

Biaffine 92.76 91.66 93.44 92.82 93.43 92.82 92.00 93.20 92.88 93.30
LLGPar 91.73 91.02 92.34 91.83 92.34 91.46 90.99 92.20 91.59 92.18
LGPar 91.17 90.36 91.99 91.28 91.74 91.55 90.96 91.98 91.57 92.01

GN3Par 91.15 89.86 92.12 91.91 92.50 92.12 91.44 92.65 92.27 92.56
LTPar 90.79 89.89 90.47 90.37 90.75 91.48 90.78 91.80 91.45 91.87

Table 6: UAS on test data: comparison of the directly-train and complete-then-train methods.

4.5 Results on test data: directly-train vs.
complete-then-train

Table 6 reports UAS on the test data of parsers di-
rectly trained on train-1K with FA and train-39K
with PA, and of those trained on train-1K with FA
and train-39K with FA completed by fine-trained
LLGPar-1K+39K. The results are consistent with
the those on dev data in Table 3 and 5. Compar-
ing the two settings, we can draw two interesting
findings. First, LLGPar performs slightly better
with the directly-train method. Second, the two
settings lead to very similar performance on Bi-
affine, without a clear trend. Third, LGPar per-
forms slightly better with the complete-then-train
method in most cases except for uncertain (30%).
Four, GN3Par and LTPar perform much better
with the complete-then-train method.

5 Related work

In parsing community, most previous works adopt
ad-hoc methods to learn from PA. Sassano and
Kurohashi (2010), Jiang et al. (2010), and Flan-
nery and Mori (2015) convert partially annotated
instances into local dependency/non-dependency
classification instances, which may suffer from the
lack of non-local correlation between dependen-
cies in a tree.

Mirroshandel and Nasr (2011) and Majidi
and Crane (2013) adopt the complete-then-learn
method. They use parsers coarsely trained on ex-

isting data with FA for completion via constrained
decoding. However, our experiments show that
this leads to dramatic decrease in parsing accuracy.

Nivre et al. (2014) present a constrained de-
coding procedure for arc-eager transition-based
parsers. However, their work focuses on allow-
ing their parser to effectively exploit external con-
straints during the evaluation phase. In this work,
we directly employ their method and show that
constrained decoding is effective for LTPar and
thus irresponsible for its ineffectiveness in learn-
ing PA.

Directly learning from PA based on constrained
decoding is previously proposed by Jiang et al.
(2013) for Chinese word segmentation, which
is treated as a character-level sequence labeling
problem. In this work, we first apply the idea to
LGPar and LTPar for directly learning from PA.

Directly learning from PA based on a forest-
based objective in LLGPar is first proposed by
Li et al. (2014), inspired by the idea of ambigu-
ous labeling. Similar ideas have been extensively
explored recently in sequence labeling tasks (Liu
et al., 2014; Yang and Vozila, 2014; Marcheggiani
and Artières, 2014).

Hwa (1999) pioneers the idea of exploring
PA for constituent grammar induction based on
a variant Inside-Outside re-estimation algorithm
(Pereira and Schabes, 1992). Clark and Curran
(2006) propose to train a Combinatorial Catego-
rial Grammar parser using partially labeled data
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only containing predicate-argument dependencies.
Mielens et al. (2015) propose to impute missing
dependencies based on Gibbs sampling in order
to enable traditional parsers to learn from partial
trees.

6 Conclusions

This paper investigates the problem of dependency
parsing with partially labeled data. Particularly,
we focus on the realistic scenario where we have a
small-scale training dataset with FA and a large-
scale training dataset with PA. We experiment
with three settings for simulating PA and com-
pare several directly-train and complete-then-train
approaches with five mainstream parsers, i.e., Bi-
affine, LLGPar, LGPar, GN3Par and LTPar.

Based on this work, we may draw the following
conclusions.

• For the complete-then-train approach, using
parsers coarsely trained on small-scale data
with FA for completion leads to unsatisfac-
tory results.

• LLGPar is the most effective in directly
learning from PA due to both its second-
order modeling and probabilistic forest-based
training objective.

• All other four parsers are less effective in di-
rectly learning from PA, but can achieve their
best performance with the complete-then-
train approach where PAs are completed into
FAs by LLGPar fine-trained on all FA+PA
data.

However, as our reviewers kindly point out,
more extensive experiments and systematic anal-
ysis are needed to really understand this interest-
ing issue and provide stronger findings, which we
leave for future work.
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Abstract

In this paper, we propose a probabilistic
parsing model that defines a proper con-
ditional probability distribution over non-
projective dependency trees for a given
sentence, using neural representations as
inputs. The neural network architec-
ture is based on bi-directional LSTM-
CNNs, which automatically benefits from
both word- and character-level represen-
tations, by using a combination of bidi-
rectional LSTMs and CNNs. On top
of the neural network, we introduce a
probabilistic structured layer, defining a
conditional log-linear model over non-
projective trees. By exploiting Kirchhoff’s
Matrix-Tree Theorem (Tutte, 1984), the
partition functions and marginals can be
computed efficiently, leading to a straight-
forward end-to-end model training pro-
cedure via back-propagation. We eval-
uate our model on 17 different datasets,
across 14 different languages. Our parser
achieves state-of-the-art parsing perfor-
mance on nine datasets.

1 Introduction

Dependency parsing is one of the first stages in
deep language understanding and has gained in-
terest in the natural language processing (NLP)
community, due to its usefulness in a wide range
of applications. Many NLP systems, such as ma-
chine translation (Xie et al., 2011), entity coref-
erence resolution (Ng, 2010; Durrett and Klein,
2013; Ma et al., 2016), low-resource languages
processing (McDonald et al., 2013; Ma and Xia,
2014), and word sense disambiguation (Fauceglia
et al., 2015), are becoming more sophisticated, in
part because of utilizing syntactic knowledge such

as dependency parsing trees.
Dependency trees represent syntactic relation-

ships through labeled directed edges between
heads and their dependents (modifiers). In the
past few years, several dependency parsing algo-
rithms (Nivre and Scholz, 2004; McDonald et al.,
2005b; Koo and Collins, 2010; Ma and Zhao,
2012a,b) have been proposed, whose high perfor-
mance heavily rely on hand-crafted features and
task-specific resources that are costly to develop,
making dependency parsing models difficult to
adapt to new languages or new domains.

Recently, non-linear neural networks, such as
recurrent neural networks (RNNs) with long-short
term memory (LSTM) and convolution neural net-
works (CNNs), with as input distributed word
representations, also known as word embeddings,
have been broadly applied, with great success,
to NLP problems like part-of-speech (POS) tag-
ging (Collobert et al., 2011) and named entity
recognition (NER) (Chiu and Nichols, 2016).
By utilizing distributed representations as inputs,
these systems are capable of learning hidden in-
formation representations directly from data in-
stead of manually designing hand-crafted features,
yielding end-to-end models (Ma and Hovy, 2016).
Previous studies explored the applicability of neu-
ral representations to traditional graph-based pars-
ing models. Some work (Kiperwasser and Gold-
berg, 2016; Wang and Chang, 2016) replaced
the linear scoring function of each arc in tradi-
tional models with neural networks and used a
margin-based objective (McDonald et al., 2005a)
for model training. Other work (Zhang et al.,
2016; Dozat and Manning, 2016) formalized de-
pendency parsing as independently selecting the
head of each word with cross-entropy objective,
without the guarantee of a general non-projective
tree structure output. Moreover, there have yet
been no previous work on deriving a neural prob-
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abilistic parsing model to define a proper condi-
tional distribution over non-projective trees for a
given sentence.

In this paper, we propose a probabilistic neu-
ral network-based model for non-projective de-
pendency parsing. This parsing model uses
bi-directional LSTM-CNNs (BLSTM-CNNs) as
backbone to learn neural information representa-
tions, on top of which a probabilistic structured
layer is constructed with a conditional log-linear
model, defining a conditional distribution over all
non-projective dependency trees. The architec-
ture of BLSTM-CNNs is similar to the one used
for sequence labeling tasks (Ma and Hovy, 2016),
where CNNs encode character-level information
of a word into its character-level representation
and BLSTM models context information of each
word. Due to the probabilistic structured out-
put layer, we can use negative log-likelihood as
the training objective, where the partition function
and marginals can be computed via Kirchhoff’s
Matrix-Tree Theorem (Tutte, 1984) to process the
optimization efficiently by back-propagation. At
test time, parsing trees can be decoded with the
maximum spanning tree (MST) algorithm (Mc-
Donald et al., 2005b). We evaluate our model
on 17 treebanks across 14 different languages,
achieving state-of-the-art performance on 9 tree-
banks. The contributions of this work are summa-
rized as: (i) proposing a neural probabilistic model
for non-projective dependency parsing. (ii) giving
empirical evaluations of this model on benchmark
data sets over 14 languages. (iii) achieving state-
of-the-art performance with this parser on nine dif-
ferent treebanks.

2 Neural Probabilistic Parsing Model

In this section, we describe the components (lay-
ers) of our neural parsing model. We introduce
the neural layers in our neural network one-by-one
from top to bottom.

2.1 Edge-Factored Parsing Layer

In this paper, we will use the following notation:
x = {x1, . . . , xn} represents a generic input sen-
tence, where xi is the ith word. y represents a
generic (possibly non-projective) dependency tree,
which represents syntactic relationships through
labeled directed edges between heads and their de-
pendents. For example, Figure 1 shows a depen-
dency tree for the sentence, “Economic news had

Economic news had little effect on financial marketsRoot

root

amod subj amod

dobj

amod

prep pobj

Figure 1: An example labeled dependency tree.

little effect on financial markets”, with the sen-
tences root-symbol as its root. T (x) is used to de-
note the set of possible dependency trees for sen-
tence x.

The probabilistic model for dependency pars-
ing defines a family of conditional probability
p(y|x; Θ) over all y given sentence x, with a log-
linear form:

P (y|x; Θ) =

exp

( ∑
(xh,xm)∈y

φ(xh, xm; Θ)

)
Z(x; Θ)

where Θ is the parameter of this model, shm =
φ(xh, xm; Θ) is the score function of edge from
xh to xm, and

Z(x; Θ) =
∑

y∈T (x)

exp

 ∑
(xh,xm)∈y

shm


is the partition function.

Bi-Linear Score Function. In our model, we
adopt a bi-linear form score function:

φ(xh, xm; Θ) = ϕ(xh)TWϕ(xm)
+UTϕ(xh) + VTϕ(xm) + b

where Θ = {W,U,V,b}, ϕ(xi) is the represen-
tation vector of xi, W,U,V denote the weight
matrix of the bi-linear term and the two weight
vectors of the linear terms in φ, and b denotes the
bias vector.

As discussed in Dozat and Manning (2016), the
bi-linear form of score function is related to the bi-
linear attention mechanism (Luong et al., 2015).
The bi-linear score function differs from the tra-
ditional score function proposed in Kiperwasser
and Goldberg (2016) by adding the bi-linear term.
A similar score function is proposed in Dozat and
Manning (2016). The difference between their and
our score function is that they only used the linear
term for head words (UTϕ(xh)) while use them
for both heads and modifiers.
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Matrix-Tree Theorem. In order to train the
probabilistic parsing model, as discussed in Koo
et al. (2007), we have to compute the partition
function and the marginals, requiring summation
over the set T (x):

Z(x; Θ) =
∑

y∈T (x)

∏
(xh,xm)∈y

ψ(xh, xm; Θ)

µh,m(x; Θ) =
∑

y∈T (x):(xh,xm)∈y
P (y|x; Θ)

where ψ(xh, xm; Θ) is the potential function:

ψ(xh, xm; Θ) = exp (φ(xh, xm; Θ))

and µh,m(x; Θ) is the marginal for edge from hth
word to mth word for x.

Previous studies (Koo et al., 2007; Smith and
Smith, 2007) have presented how a variant of
Kirchhoff’s Matrix-Tree Theorem (Tutte, 1984)
can be used to evaluate the partition function and
marginals efficiently. In this section, we briefly re-
visit this method.

For a sentence x with n words, we denote x =
{x0, x1, . . . , xn}, where x0 is the root-symbol.
We define a complete graph G on n+ 1 nodes (in-
cluding the root-symbol x0), where each node cor-
responds to a word in x and each edge corresponds
to a dependency arc between two words. Then, we
assign non-negative weights to the edges of this
complete graph with n + 1 nodes, yielding the
weighted adjacency matrix A(Θ) ∈ Rn+1×n+1,
for h,m = 0, . . . , n:

Ah,m(Θ) = ψ(xh, xm; Θ)

Based on the adjacency matrix A(Θ), we have the
Laplacian matrix:

L(Θ) = D(Θ)−A(Θ)

where D(Θ) is the weighted degree matrix:

Dh,m(Θ) =


n∑

h′=0

Ah′,m(Θ) if h = m

0 otherwise

Then, according to Theorem 1 in Koo et al. (2007),
the partition function is equal to the minor of L(Θ)
w.r.t row 0 and column 0:

Z(x; Θ) = L(0,0)(Θ)

where for a matrix A, A(h,m) denotes the minor of
A w.r.t row h and column m; i.e., the determinant

of the submatrix formed by deleting the hth row
and mth column.

The marginals can be computed by calculating
the matrix inversion of the matrix corresponding
to L(0,0)(Θ). The time complexity of computing
the partition function and marginals is O(n3).

Labeled Parsing Model. Though it is originally
designed for unlabeled parsing, our probabilistic
parsing model is easily extended to include depen-
dency labels.

In labeled dependency trees, each edge is rep-
resented by a tuple (xh, xm, l), where xh and xm
are the head word and modifier, respectively, and l
is the label of dependency type of this edge. Then
we can extend the original model for labeled de-
pendency parsing by extending the score function
to include dependency labels:

φ(xh, xm, l; Θ) = ϕ(xh)TWlϕ(xm)
+UT

l ϕ(xh) + VT
l ϕ(xm)

+bl

where Wl,Ul,Vl,bl are the weights and bias
corresponding to dependency label l. Suppose that
there are L different dependency labels, it suffices
to define the new adjacency matrix by assigning
the weight of a edge with the sum of weights over
different dependency labels:

A′h,m(Θ) =
L∑
l=1

ψ(xh, xm, l; Θ)

The partition function and marginals over labeled
dependency trees are obtained by operating on the
new adjacency matrix A′(Θ). The time complex-
ity becomes O(n3 + Ln2). In practice, L is prob-
ably large. For English, the number of edge la-
bels in Stanford Basic Dependencies (De Marn-
effe et al., 2006) is 45, and the number in the tree-
bank of CoNLL-2008 shared task (Surdeanu et al.,
2008) is 70. While, the average length of sen-
tences in English Penn Treebank (Marcus et al.,
1993) is around 23. Thus, L is not negligible com-
paring to n.

It should be noticed that in our labeled model,
for different dependency label l we use the same
vector representation ϕ(xi) for each word xi. The
dependency labels are distinguished (only) by the
parameters (weights and bias) corresponding to
each of them. One advantage of this is that it sig-
nificantly reduces the memory requirement com-
paring to the model in Dozat and Manning (2016)
which distinguishes ϕl(xi) for different label l.
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Figure 2: The convolution neural network for ex-
tracting character-level representations of words.
Dashed arrows indicate a dropout layer applied be-
fore character embeddings are input to CNN.

Maximum Spanning Tree Decoding. The de-
coding problem of this parsing model can be for-
mulated as:

y∗ = argmax
y∈T (x)

P (y|x; Θ)

= argmax
y∈T (x)

∑
(xh,xm)∈y

φ(xh, xm; Θ)

which can be solved by using the Maximum Span-
ning Tree (MST) algorithm described in McDon-
ald et al. (2005b).

2.2 Neural Network for Representation
Learning

Now, the remaining question is how to obtain the
vector representation of each word with a neural
network. In the following subsections, we will
describe the architecture of our neural network
model for representation learning.

2.2.1 CNNs
Previous work (Santos and Zadrozny, 2014) have
shown that CNNs are an effective approach to ex-
tract morphological information (like the prefix or
suffix of a word) from characters of words and en-
code it into neural representations, which has been
proven particularly useful on Out-of-Vocabulary
words (OOV). The CNN architecture our model
uses to extract character-level representation of a
given word is the same as the one used in Ma
and Hovy (2016). The CNN architecture is shown
in Figure 2. Following Ma and Hovy (2016), a
dropout layer (Srivastava et al., 2014) is applied
before character embeddings are input to CNN.

2.2.2 Bi-directional LSTM
LSTM Unit. Recurrent neural networks (RNNs)
are a powerful family of connectionist models that
have been widely applied in NLP tasks, such as
language modeling (Mikolov et al., 2010), se-
quence labeling (Ma and Hovy, 2016) and ma-
chine translation (Cho et al., 2014), to capture con-
text information in languages. Though, in theory,
RNNs are able to learn long-distance dependen-
cies, in practice, they fail due to the gradient van-
ishing/exploding problems (Bengio et al., 1994;
Pascanu et al., 2013).

LSTMs (Hochreiter and Schmidhuber, 1997)
are variants of RNNs designed to cope with these
gradient vanishing problems. Basically, a LSTM
unit is composed of three multiplicative gates
which control the proportions of information to
pass and to forget on to the next time step.

BLSTM. Many linguistic structure prediction
tasks can benefit from having access to both
past (left) and future (right) contexts, while the
LSTM’s hidden state ht takes information only
from past, knowing nothing about the future.
An elegant solution whose effectiveness has been
proven by previous work (Dyer et al., 2015;
Ma and Hovy, 2016) is bi-directional LSTM
(BLSTM). The basic idea is to present each se-
quence forwards and backwards to two separate
hidden states to capture past and future informa-
tion, respectively. Then the two hidden states are
concatenated to form the final output. As dis-
cussed in Dozat and Manning (2016), there are
more than one advantages to apply a multilayer
perceptron (MLP) to the output vectors of BLSTM
before the score function, eg. reducing the dimen-
sionality and overfitting of the model. We follow
this work by using a one-layer perceptron with
elu (Clevert et al., 2015) as activation function.

2.3 BLSTM-CNNs

Finally, we construct our neural network model by
feeding the output vectors of BLSTM (after MLP)
into the parsing layer. Figure 3 illustrates the ar-
chitecture of our network in detail.

For each word, the CNN in Figure 2, with char-
acter embeddings as inputs, encodes the character-
level representation. Then the character-level rep-
resentation vector is concatenated with the word
embedding vector to feed into the BLSTM net-
work. To enrich word-level information, we also
use POS embeddings. Finally, the output vec-
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Figure 3: The main architecture of our parsing
model. The character representation for each word
is computed by the CNN in Figure 2. Then
the character representation vector is concatenated
with the word and pos embedding before feeding
into the BLSTM network. Dashed arrows indi-
cate dropout layers applied on the input, hidden
and output vectors of BLSTM.

tors of the neural netwok are fed to the parsing
layer to jointly parse the best (labeled) dependency
tree. As shown in Figure 3, dropout layers are ap-
plied on the input, hidden and output vectors of
BLSTM, using the form of recurrent dropout pro-
posed in Gal and Ghahramani (2016).

3 Network Training

In this section, we provide details about imple-
menting and training the neural parsing model, in-
cluding parameter initialization, model optimiza-
tion and hyper parameter selection.

3.1 Parameter Initialization

Word Embeddings. For all the parsing mod-
els on different languages, we initialize word vec-
tors with pretrained word embeddings. For Chi-

Layer Hyper-parameter Value

CNN
window size 3
number of filters 50

LSTM

number of layers 2
state size 256
initial state 0.0
peepholes Hadamard

MLP
number of layers 1
dimension 100

Dropout
embeddings 0.15
LSTM hidden states 0.25
LSTM layers 0.33

Learning

optimizer Adam
initial learning rate 0.002
decay rate 0.5
gradient clipping 5.0

Table 1: Hyper-parameters for all experiments.

nese, Dutch, English, German and Spanish, we use
the structured-skipgram (Ling et al., 2015) embed-
dings, and for other languages we use the Poly-
glot (Al-Rfou et al., 2013) embeddings. The di-
mensions of embeddings are 100 for English, 50
for Chinese and 64 for other languages.

Character Embeddings. Following Ma and
Hovy (2016), character embeddings are initialized

with uniform samples from [−
√

3
dim ,+

√
3
dim ],

where we set dim = 50.

POS Embedding. Our model also includes POS
embeddings. The same as character embeddings,
POS embeddings are also 50-dimensional, initial-

ized uniformly from [−
√

3
dim ,+

√
3
dim ].

Weights Matrices and Bias Vectors. Matrix
parameters are randomly initialized with uniform

samples from [−
√

6
r+c ,+

√
6
r+c ], where r and c

are the number of of rows and columns in the
structure (Glorot and Bengio, 2010). Bias vec-
tors are initialized to zero, except the bias bf for
the forget gate in LSTM , which is initialized to
1.0 (Jozefowicz et al., 2015).

3.2 Optimization Algorithm
Parameter optimization is performed with the
Adam optimizer (Kingma and Ba, 2014) with
β1 = β2 = 0.9. We choose an initial learn-
ing rate of η0 = 0.002. The learning rate η was
adapted using a schedule S = [e1, e2, . . . , es],
in which the learning rate η is annealed by
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English Chinese German
Dev Test Dev Test Dev Test

Model UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS
Basic 94.51 92.23 94.62 92.54 84.33 81.65 84.35 81.63 90.46 87.77 90.69 88.42
+Char 94.74 92.55 94.73 92.75 85.07 82.63 85.24 82.46 92.16 89.82 92.24 90.18
+POS 94.71 92.60 94.83 92.96 88.98 87.55 89.05 87.74 91.94 89.51 92.19 90.05
Full 94.77 92.66 94.88 92.98 88.51 87.16 88.79 87.47 92.37 90.09 92.58 90.54

Table 2: Parsing performance (UAS and LAS) of different versions of our model on both the development
and test sets for three languages.

multiplying a fixed decay rate ρ = 0.5 after
ei ∈ S epochs respectively. We used S =
[10, 30, 50, 70, 100] and trained all networks for
a total of 120 epochs. While the Adam opti-
mizer automatically adjusts the global learning
rate according to past gradient magnitudes, we
find that this additional decay consistently im-
proves model performance across all settings and
languages. To reduce the effects of “gradient ex-
ploding”, we use a gradient clipping of 5.0 (Pas-
canu et al., 2013). We explored other optimiza-
tion algorithms such as stochastic gradient de-
scent (SGD) with momentum, AdaDelta (Zeiler,
2012), or RMSProp (Dauphin et al., 2015), but
none of them meaningfully improve upon Adam
with learning rate annealing in our preliminary ex-
periments.

Dropout Training. To mitigate overfitting, we
apply the dropout method (Srivastava et al., 2014;
Ma et al., 2017) to regularize our model. As shown
in Figure 2 and 3, we apply dropout on character
embeddings before inputting to CNN, and on the
input, hidden and output vectors of BLSTM. We
apply dropout rate of 0.15 to all the embeddings.
For BLSTM, we use the recurrent dropout (Gal
and Ghahramani, 2016) with 0.25 dropout rate
between hidden states and 0.33 between layers.
We found that the model using the new recur-
rent dropout converged much faster than standard
dropout, while achiving similar performance.

3.3 Hyper-Parameter Selection

Table 1 summarizes the chosen hyper-parameters
for all experiments. We tune the hyper-parameters
on the development sets by random search. We
use the same hyper-parameters across the models
on different treebanks and languages, due to time
constrains. Note that we use 2-layer BLSTM fol-
lowed with 1-layer MLP. We set the state size of
LSTM to 256 and the dimension of MLP to 100.
Tuning these two parameters did not significantly
impact the performance of our model.

Dev Test
UAS LAS UAS LAS

cross-entropy 94.10 91.52 93.77 91.57
global-likelihood 94.77 92.66 94.88 92.98

Table 3: Parsing performance on PTB with differ-
ent training objective functions.

4 Experiments

4.1 Setup

We evaluate our neural probabilistic parser on
the same data setup as Kuncoro et al. (2016),
namely the English Penn Treebank (PTB version
3.0) (Marcus et al., 1993), the Penn Chinese Tree-
bank (CTB version 5.1) (Xue et al., 2002), and the
German CoNLL 2009 corpus (Hajič et al., 2009).
Following previous work, all experiments are eval-
uated on the metrics of unlabeled attachment score
(UAS) and Labeled attachment score (LAS).

4.2 Main Results

We first construct experiments to dissect the effec-
tiveness of each input information (embeddings)
of our neural network architecture by ablation
studies. We compare the performance of four ver-
sions of our model with different inputs — Ba-
sic, +POS, +Char and Full — where the Ba-
sic model utilizes only the pretrained word em-
beddings as inputs, while the +POS and +Char
models augments the basic one with POS embed-
ding and character information, respectively. Ac-
cording to the results shown in Table 2, +Char
model obtains better performance than the Basic
model on all the three languages, showing that
character-level representations are important for
dependency parsing. Second, on English and Ger-
man, +Char and +POS achieves comparable per-
formance, while on Chinese +POS significantly
outperforms +Char model. Finally, the Full model
achieves the best accuracy on English and Ger-
man, but on Chinese +POS obtains the best. Thus,
we guess that the POS information is more useful
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English Chinese German
System UAS LAS UAS LAS UAS LAS
Bohnet and Nivre (2012) – – 87.3 85.9 91.4 89.4
Chen and Manning (2014) 91.8 89.6 83.9 82.4 – –
Ballesteros et al. (2015) 91.6 89.4 85.3 83.7 88.8 86.1
Dyer et al. (2015) 93.1 90.9 87.2 85.7 – –
Kiperwasser and Goldberg (2016): graph 93.1 91.0 86.6 85.1 – –
Ballesteros et al. (2016) 93.6 91.4 87.7 86.2 – –
Wang and Chang (2016) 94.1 91.8 87.6 86.2 – –
Zhang et al. (2016) 94.1 91.9 87.8 86.2 – –
Cheng et al. (2016) 94.1 91.5 88.1 85.7 – –
Andor et al. (2016) 94.6 92.8 – – 90.9 89.2
Kuncoro et al. (2016) 94.3 92.1 88.9 87.3 91.6 89.2
Dozat and Manning (2016) 95.7 94.1 89.3 88.2 93.5 91.4
This work: Basic 94.6 92.5 84.4 81.6 90.7 88.4
This work: +Char 94.7 92.8 85.2 82.5 92.2 90.2
This work: +POS 94.8 93.0 89.1 87.7 92.2 90.1
This work: Full 94.9 93.0 88.8 87.5 92.6 90.5

Table 4: UAS and LAS of four versions of our model on test sets for three languages, together with
top-performance parsing systems.

for Chinese than English and German.
Table 3 gives the performance on PTB of the

parsers trained with two different objective func-
tions — the cross-entropy objective of each word,
and our objective based on likelihood for an en-
tire tree. The parser with global likelihood ob-
jective outperforms the one with simple cross-
entropy objective, demonstrating the effectiveness
of the global structured objective.

4.3 Comparison with Previous Work

Table 4 illustrates the results of the four versions
of our model on the three languages, together
with twelve previous top-performance systems for
comparison. Our Full model significantly outper-
forms the graph-based parser proposed in Kiper-
wasser and Goldberg (2016) which used simi-
lar neural network architecture for representation
learning (detailed discussion in Section 5). More-
over, our model achieves better results than the
parser distillation method (Kuncoro et al., 2016)
on all the three languages. The results of our
parser are slightly worse than the scores reported
in Dozat and Manning (2016). One possible rea-
son is that, as mentioned in Section 2.1, for labeled
dependency parsing Dozat and Manning (2016)
used different vectors for different dependency la-
bels to represent each word, making their model
require much more memory than ours.

4.4 Experiments on CoNLL Treebanks

Datasets. To make a thorough empirical com-
parison with previous studies, we also evaluate our
system on treebanks from CoNLL shared task on
dependency parsing — the English treebank from
CoNLL-2008 shared task (Surdeanu et al., 2008)
and all 13 treebanks from CoNLL-2006 shared
task (Buchholz and Marsi, 2006). For the tree-
banks from CoNLL-2006 shared task, following
Cheng et al. (2016), we randomly select 5% of
the training data as the development set. UAS
and LAS are evaluated using the official scorer1

of CoNLL-2006 shared task.

Baselines. We compare our model with the
third-order Turbo parser (Martins et al., 2013), the
low-rank tensor based model (Tensor) (Lei et al.,
2014), the randomized greedy inference based
(RGB) model (Zhang et al., 2014), the labeled
dependency parser with inner-to-outer greedy de-
coding algorithm (In-Out) (Ma and Hovy, 2015),
and the bi-direction attention based parser (Bi-
Att) (Cheng et al., 2016). We also compare our
parser against the best published results for indi-
vidual languages. This comparison includes four
additional systems: Koo et al. (2010), Martins
et al. (2011), Zhang and McDonald (2014) and
Pitler and McDonald (2015).

1http://ilk.uvt.nl/conll/software.html
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Turbo Tensor RGB In-Out Bi-Att +POS Full Best Published
UAS UAS UAS UAS [LAS] UAS [LAS] UAS [LAS] UAS [LAS] UAS LAS

ar 79.64 79.95 80.24 79.60 [67.09] 80.34 [68.58] 80.05 [67.80] 80.80 [69.40] 81.12 –
bg 93.10 93.50 93.72 92.68 [87.79] 93.96 [89.55] 93.66 [89.79] 94.28 [90.60] 94.02 –
zh 89.98 92.68 93.04 92.58 [88.51] – 93.44 [90.04] 93.40 [90.10] 93.04 –
cs 90.32 90.50 90.77 88.01 [79.31] 91.16 [85.14] 91.04 [85.82] 91.18 [85.92] 91.16 85.14
da 91.48 91.39 91.86 91.44 [85.55] 91.56 [85.53] 91.52 [86.57] 91.86 [87.07] 92.00 –
nl 86.19 86.41 87.39 84.45 [80.31] 87.15 [82.41] 87.41 [84.17] 87.85 [84.82] 87.39 –
en 93.22 93.02 93.25 92.45 [89.43] – 94.43 [92.31] 94.66 [92.52] 93.25 –
de 92.41 91.97 92.67 90.79 [87.74] 92.71 [89.80] 93.53 [91.55] 93.62 [91.90] 92.71 89.80
ja 93.52 93.71 93.56 93.54 [91.80] 93.44 [90.67] 93.82 [92.34] 94.02 [92.60] 93.80 –
pt 92.69 91.92 92.36 91.54 [87.68] 92.77 [88.44] 92.59 [89.12] 92.71 [88.92] 93.03 –
sl 86.01 86.24 86.72 84.39 [73.74] 86.01 [75.90] 85.73 [76.48] 86.73 [77.56] 87.06 –
es 85.59 88.00 88.75 86.44 [83.29] 88.74 [84.03] 88.58 [85.03] 89.20 [85.77] 88.75 84.03
sv 91.14 91.00 91.08 89.94 [83.09] 90.50 [84.05] 90.89 [86.58] 91.22 [86.92] 91.85 85.26
tr 76.90 76.84 76.68 75.32 [60.39] 78.43 [66.16] 75.88 [61.72] 77.71 [65.81] 78.43 66.16
av 88.73 89.08 89.44 88.08 [81.84] – 89.47 [84.24] 89.95 [84.99] 89.83 –

Table 5: UAS and LAS on 14 treebanks from CoNLL shared tasks, together with several state-of-the-art
parsers. “Best Published” includes the most accurate parsers in term of UAS among Koo et al. (2010),
Martins et al. (2011), Martins et al. (2013), Lei et al. (2014), Zhang et al. (2014), Zhang and McDonald
(2014), Pitler and McDonald (2015), Ma and Hovy (2015), and Cheng et al. (2016).

Results. Table 5 summarizes the results of our
model, along with the state-of-the-art baselines.
On average across 14 languages, our approach sig-
nificantly outperforms all the baseline systems. It
should be noted that the average UAS of our parser
over the 14 languages is better than that of the
“best published”, which are from different systems
that achieved best results for different languages.

For individual languages, our parser achieves
state-of-the-art performance on both UAS and
LAS on 8 languages — Bulgarian, Chinese,
Czech, Dutch, English, German, Japanese and
Spanish. On Arabic, Danish, Portuguese, Slovene
and Swedish, our parser obtains the best LAS. An-
other interesting observation is that the Full model
outperforms the +POS model on 13 languages.
The only exception is Chinese, which matches the
observation in Section 4.2.

5 Related Work

In recent years, several different neural network
based models have been proposed and success-
fully applied to dependency parsing. Among
these neural models, there are three approaches
most similar to our model — the two graph-
based parsers with BLSTM feature representa-
tion (Kiperwasser and Goldberg, 2016; Wang and
Chang, 2016), and the neural bi-affine attention
parser (Dozat and Manning, 2016).

Kiperwasser and Goldberg (2016) proposed
a graph-based dependency parser which uses
BLSTM for word-level representations. Wang and
Chang (2016) used a similar model with a way

to learn sentence segment embedding based on
an extra forward LSTM network. Both of these
two parsers trained the parsing models by opti-
mizing margin-based objectives. There are three
main differences between their models and ours.
First, they only used linear form score function,
instead of using the bi-linear term between the
vectors of heads and modifiers. Second, They
did not employ CNNs to model character-level
information. Third, we proposed a probabilistic
model over non-projective trees on the top of neu-
ral representations, while they trained their models
with a margin-based objective. Dozat and Man-
ning (2016) proposed neural parsing model us-
ing bi-affine score function, which is similar to
the bi-linear form score function in our model.
Our model mainly differ from this model by using
CNN to model character-level information. More-
over, their model formalized dependency parsing
as independently selecting the head of each word
with cross-entropy objective, while our probabilis-
tic parsing model jointly encodes and decodes
parsing trees for given sentences.

6 Conclusion

In this paper, we proposed a neural probabilistic
model for non-projective dependency parsing, us-
ing the BLSTM-CNNs architecture for represen-
tation learning. Experimental results on 17 tree-
banks across 14 languages show that our parser
significantly improves the accuracy of both depen-
dency structures (UAS) and edge labels (LAS),
over several previously state-of-the-art systems.
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Abstract

The research question we explore in
this study is how to obtain syntacti-
cally plausible word representations with-
out using human annotations. Our un-
derlying hypothesis is that word order-
ing tests, or linearizations, is suitable
for learning syntactic knowledge about
words. To verify this hypothesis, we de-
velop a differentiable model called Word
Ordering Network (WON) that explic-
itly learns to recover correct word order
while implicitly acquiring word embed-
dings representing syntactic knowledge.
We evaluate the word embeddings pro-
duced by the proposed method on down-
stream syntax-related tasks such as part-
of-speech tagging and dependency pars-
ing. The experimental results demonstrate
that the WON consistently outperforms
both order-insensitive and order-sensitive
baselines on these tasks.

1 Introduction

Distributed word representations have been suc-
cessfully utilized to transfer lexical knowledge
to downstream tasks in a semi-supervised man-
ner, and well known to benefit various applica-
tions (Turian et al., 2010; Collobert et al., 2011;
Socher et al., 2011). As different applications gen-
erally require different features, it is crucial to
choose representations suitable for target down-
stream tasks.

The research question we want to explore in
this study is how to obtain syntactically plausi-
ble word representations without human annota-
tions, with a focus on syntax-related tasks (pars-
ing, etc.). Whereas a variety of approaches re-
lated to semantic word embeddings have been pro-

Figure 1: Illustration of the word ordering task.
The goal of the word ordering task is to recover an
original order given a set of shuffled tokens. The
figure shows an example where original sentence
is “this is a short sentence.” To correctly reorder
the tokens, syntactic knowledge about words (e.g.
grammatical classes of words and their possible
relations) is indispensable. In this study, we ex-
plore how well the word ordering task can be an
objective to obtain syntactic word representations.

posed (Mikolov et al., 2013a,b; Pennington et al.,
2014), it still remains unclear how we should ob-
tain syntactic word embeddings from unannotated
corpora.

Word ordering tests, or linearizations, are com-
monly used to evaluate students’ language profi-
ciency. Suppose that we are given a set of ran-
domly shuffled tokens {“a”, “is,” “sentence,”
“short,” “this,” “.”}. In this case we can easily
recover the original order: “this is a short sen-
tence.” We consider this doable thanks to our
knowledge about grammatical classes (e.g., part-
of-speech (POS) tags) of words and their possible
relations. We depict the above explanation in Fig-
ure 1. Of course, it might not be necessary for ma-
chines to mimic exactly the same reasoning pro-
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cess in humans. However, syntactic knowledge
about words is crucial for both humans and ma-
chines to solve the word ordering task.

Inspired by this observation, in this study, we
develop an end-to-end model called the Word Or-
dering Network (WON) that explicitly learns to
recover correct word orders while implicitly ac-
quiring word embeddings representing syntactic
information. Our underlying hypothesis is that the
word ordering task can be an objective for learning
syntactic knowledge about words. The WON re-
ceives a set of shuffled tokens and first transforms
them independently to low-dimensional continu-
ous vectors, which are then aggregated to produce
a single summarization vector. We formalize the
word ordering task as a sequential prediction prob-
lem of a permutation matrix. We use a recurrent
neural network (RNN) (Elman, 1990) with long
short-term memory (LSTM) units (Hochreiter and
Schmidhuber, 1997) and a soft attention mecha-
nism (Bahdanau et al., 2014; Luong et al., 2015)
that constructs rows of permutation matrices se-
quentially conditioned on summarization vectors.

We evaluate the proposed word embeddings on
downstream syntax-related tasks such as POS tag-
ging and dependency parsing. The experimen-
tal results demonstrate that the WON outperforms
both order-insensitive and order-sensitive base-
lines, and successfully yields the highest perfor-
mance. In addition, we also evaluate the WON on
traditional word-level benchmarks, such as word
analogy and word similarity tasks. Combined with
semantics-oriented embeddings by a simple fine-
tuning technique, the WON gives competitive or
better performances than the other baselines. In-
terestingly, we find that the WON has a potential
to refine and improve semantic features. More-
over, we qualitatively analyze the feature space
produced by the WON and find that the WON
tends to capture not only syntactic but also seman-
tic regularities between words. The source code of
this work is available online. 1

2 The Proposed Method

In this section, we formulate the WON which
implicitly acquires syntactic word embeddings
through learning to solve word ordering problems.

1https://github.com/norikinishida/won

2.1 Embedding Layer
Given a set of shuffled tokensX = {w1, . . . , wN},
the WON first transforms every single symbol wc
into a low-dimensional continuous vector, i.e.,

ec = F (wc) ∈ RD, (1)

where F is a learnable function. Please note that
the number of tokens N in the input X can vary in
the word ordering task.

2.2 Aggregation
To perform reordering on a set of shuffled embed-
dings {e1, . . . , eN}, we aggregate the embeddings
and compute a single summarization vector. The
aggregation function is a sum of word embeddings
followed by a non-linear transformation:

ẽ = tanh(W a

N∑
c=1

ec + ba) ∈ RD, (2)

where W a ∈ RD×D and ba ∈ RD are a projection
matrix and bias vector, respectively.

2.3 Prediction of a Permutation Matrix
We formalize a reordering problem as a prediction
task of a permutation matrix.

A permutation matrix is a square binary ma-
trix and every row and column contains exactly
one entry of 1 and 0s elsewhere. The left-
multiplication of a matrix E ∈ RN×D by a per-
mutation matrix P ∈ RN×N rearranges the rows
of the matrix E, e.g.

e>1
e>2
e>3
e>4

 = PE (3)

=


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0




e>3
e>1
e>4
e>2

 . (4)

Equation 4 gives an example where E =
(e3, e1, e4, e2)

>, and the original sentence (cor-
rect order) is w1, w2, w3, w4.

In the word ordering task, one of the issues in
predicting permutation matrices is that the num-
ber of tokens N changes according to the variable
lengths of input sentences. Therefore, it is impos-
sible to define and train learning models that have
fixed-dimensional outputs such as multi-layer per-
ceptrons.
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Figure 2: Visualization of our approach to sequen-
tially predict a permutation matrix P ∈ RN×N .
In this case, we are given N = 4 shuffled to-
kens (w1, w2, w3, w4). We first independently em-
beds each symbol to dense vectors (e1, e2, e3, e4).
Then, by using an RNN and a soft attention mech-
anism, we sequentially constructs the rows of the
permutation matrix P = (p1,p2,p3,p4)> for
N steps through a scoring function. The vector
hr ∈ RD denotes the r-th hidden state of the
RNN. One can interpret pr as a selective probabil-
ity distribution over the input tokens. For simplic-
ity, in this figure, we ignore the projection matrix
in the scoring function (Eq. 8).

Recently, Vinyals et al. (2015) proposed the
Pointer Networks (PtrNets) that were successfully
applied to geometric sorting problems. Inspired by
the PtrNet, we develop an LSTM (Hochreiter and
Schmidhuber, 1997) with a soft attention mecha-
nism (Bahdanau et al., 2014; Luong et al., 2015).
The LSTM constructs rows of a permutation ma-
trix P = (p1, . . . ,pN )> conditioned on a set
of word embeddings {e1, . . . , em} calculated by
Equation 1. If

∑N
c=1 pr,c = 1 holds, one can in-

terpret pr,c as the probability of the token wc to be
placed at r-th position. In Figure 2, we show a
visualization of our approach to predict a permu-
tation matrix with the LSTM.

The LSTM’s r-th hidden state hr ∈ RD and
memory cells cr ∈ RD are computed as follows:

hr, cr =

{
ẽ, 0 (r = 0)
FLSTM(eir−1 ,hr−1, cr−1) (1 ≤ r ≤ N)

,

(5)

where the function FLSTM is a state-update func-
tion and ir−1 ∈ {1, . . . , N} denotes the index of
the token wir−1 that is placed at the previous posi-

tion, i.e.,

ir−1 = argmax
c∈{1,...,N}

pr−1,c. (6)

Subsequently, we predict a selective distribution
over the input tokens:

pr,c =
exp(score(hr, ec))∑N
k=1 exp(score(hr, ek))

, (7)

where the scoring function score computes the
confidence of placing the token wc at r-th posi-
tion. We define the scoring function as a bilinear
model as follows

score(u,v) = u>W sv ∈ R. (8)

where W s ∈ RD×D denotes a learnable matrix.

2.4 Objective Function
As the WON is designed to be fully differentiable,
it can be trained with any gradient descent al-
gorithms, such as RMSProp (Tieleman and Hin-
ton, 2012). Given a set of shuffled tokens X =
{w1, . . . , wN}, we define a loss function as the
following negative log likelihood:

L(X ) =
N∑
r=1

− log pr,tr (9)

where tr ∈ {1, . . . , N} denotes the index of the
ground-truth token that appears at r-th position
in the original sentence. In other words, an or-
dered sequence wt1 , wt2 , . . . , wtN forms the orig-
inal sentence.

3 Related Work

Among the most popular methods for learning
word embeddings are the skip-gram (SG) model
and the continuous bag-of-words (CBOW) of
Mikolov et al. (2013a,b), or the GloVe introduced
by Pennington et al. (2014). These are formal-
ized as simple log-bilinear models based on the
inner product between two word vectors. The
core idea is based on the distributional hypothe-
sis (Harris, 1954; Firth, 1957), stating that words
appearing in similar contexts tend to have simi-
lar meanings. For example, SG and CBOW are
trained by making predictions of bag-of-words
contexts appearing in a fixed-size window around
target words, and vice versa. Although word em-
beddings produced by these models have been
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shown to give improvements in a variety of down-
stream tasks, it still remains difficult for these
models to learn syntactic word representations ow-
ing to their insensitivity to word order. As a con-
sequence, word embeddings produced by these
order-insensitive models are thus suboptimal for
syntax-related tasks such as parsing (Andreas and
Klein, 2014). In contrast, our method mainly fo-
cuses on word order information and utilize it in
the learning process.

Ling et al. (2015b) introduced the structured
skip-gram (SSG) model and the continuous win-
dow (CWindow) that extend SG and CBOW re-
spectively. Let c be the window size. These
models learn 2c context-embedding matrices to be
aware of relative positions of context words in a
window. The recent work of Trask et al. (2015)
is also based on the same idea as SSG and CWin-
dow. Ling et al. (2015a) proposed an approach
to integrating an order-sensitive attention mech-
anism into CBOW, which allows for considera-
tion of the contexts of words, and where the con-
text words appear in a window. Bengio et al.
(2003) presented a neural network language model
(NNLM) where word embeddings are simultane-
ously learned along with a language model. One
of the major shortcomings of these window-based
approaches is that it is almost impossible to learn
longer dependencies between words than the pre-
fixed window size c. In contrast, the recurrent ar-
chitecture allows the WON to take into account
dependencies over an entire sentence.

Mikolov et al. (2010) applied an RNN for lan-
guage modeling (RNNLM), and demonstrated that
the word embeddings learned by the RNNLM cap-
ture both syntactic and semantic regularities. The
main shortcoming of the RNNLM is that it is
very slow to train unfortunately. This is a conse-
quence of having to predict the probability distri-
bution over an entire vocabulary V , which is gen-
erally very large in the real world. In contrast,
the WON predicts the probability distribution over
entire sentences, whose length N is usually less
than 50 � |V |. In our preliminary experiments,
we found that the computation time for one itera-
tion (= forward + backward + parameter
update) of the WON is about 4 times faster than
that of the RNNLM (LSTMLM).

Levy and Goldberg (2014) introduced
dependency-based word embeddings. The
method applies the skip-gram with negative

sampling (SGNS) model (Mikolov et al., 2013b)
to syntactic contexts derived from dependency
parse-trees. Their method heavily relies on
pre-trained dependency parsers to produce words’
relations for each sentence in training corpora,
thus encountering error propagation problems. In
contrast, our method only requires raw corpora,
and our aim is to produce word embeddings that
improve syntax-related tasks, such as parsing,
without using any human annotations.

The WON can be interpreted as a simplifica-
tion of the recently proposed pointer network (Ptr-
Net) (Vinyals et al., 2015). The main difference
between the WON and the PtrNet is the encoder
part. The PtrNet uses an RNN to encode an un-
ordered set X = {w1, . . . , wN} sequentially, i.e.,

ei = RNNenc(wi, ei−1). (10)

In contrast, the WON treats each symbol indepen-
dently (Eq. 1) and aggregates them with a simpler
function (Eq. 2). In the word ordering task, the or-
der of X = (w1, . . . , wN ) is meaningless because
X is an out-of-order set. Nonetheless, according
to Equation 10, the vector ei depends on the in-
put order of w1, . . . , wi−1. Vinyals et al. (2015)
evaluated the PtrNet on geometric sorting tasks
(e.g., Travelling Salesman Problem) where each
input wi forms a continuous vector that represents
the cartesian coordinate of the point (e.g., a city).
However, in the word ordering task, Equation 10
suffers from the data sparseness problem, as each
input wi forms a high-dimensional discrete sym-
bol.

4 Experimental Setting

4.1 Dataset and Preprocessing

We used the English Wikipedia corpus as the train-
ing corpus. We lowercased and tokenized all to-
kens, and then replaced all digits with “7” (e.g.,
“ABC2017”→“ABC7777”). We built a vocab-
ulary of the most frequent 300K words and re-
placed out-of-vocabulary tokens with a special
“〈UNK〉” symbol. Subsequently, we appended
special “〈EOS〉” symbols to the end of each sen-
tence. The resulting corpus contains about 97 mil-
lion sentences with about 2 billion tokens. We
randomly extracted 5K sentences as the validation
set.
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4.2 Hyper Parameters

We set the dimensionality of word embeddings to
300. The dimensionality of the hidden states of
the LSTM was 512. The L2 regularization term
(called weight decay) was set to 4× 10−6. For the
stochastic gradient descent algorithm, we used the
SMORMS3 (Func, 2015), and the mini-batch size
was set to 180.

4.3 Baselines

For a fair comparison, we trained the follow-
ing order-insensitive/sensitive baselines on exactly
the same pre-processed corpus described in Sec-
tion 4.1.

• SGNS (Mikolov et al., 2013b): We used the
word2vec implementation in Gensim2 to
train the Skip-Gram with Negative Sampling
(SGNS). We set the window size to 5, and the
number of negative samples to 5.

• GloVe (Pennington et al., 2014): GloVe’s
embeddings are trained by using the origi-
nal implementation3 provided by the authors.
We set the window size to 15. In our pre-
liminary experiments, we found that GloVe
with a window size of 15 yields higher per-
formances than that with a window size of 5.

• SSG, CWindow (Ling et al., 2015b): We
built word embeddings by using the struc-
tured skip-gram (SSG) and the continuous
window (CWindow). We used the original
implementation4 developed by the authors.
The window size was 5, and the number of
negative samples was 5.

• LSTMLM: We also compared the proposed
method with the RNNLM (Mikolov et al.,
2010) with LSTM units (LSTMLM). The
hyper parameters were the same with that
of the WON except for the mini-batch size.
We used a mini-batch size of 100 for the
LSTMLM.

5 Evaluation on Part-of-Speech Tagging

In this experiment, we evaluated the learned word
embeddings by using them as pre-trained features
in supervised POS tagging.

2https://radimrehurek.com/gensim/
3http://nlp. stanford.edu/projects/glove/
4https://github.com/wlin12/wang2vec

Test Acc. (%)
SGNS (Mikolov et al., 2013b) 96.76
GloVe (Pennington et al., 2014) 96.31
SSG (Ling et al., 2015b) 96.94
CWindow (Ling et al., 2015b) 96.78
LSTMLM 96.92
WON 97.04

Table 1: Comparison results on part-of-speech
tagging with different word embeddings. The
dataset is the Wall Street Journal (WSJ) portion of
the Penn Treebank (PTB) corpus. The evaluation
metric is accuracy (%).

5.1 Supervised POS Tagger
In POS tagging, every token in a sentence is clas-
sified into its POS tag (NN for nouns, VBD for past
tense verbs, JJ for adjectives, etc.). We first used
the learned word embeddings to project three suc-
cessive tokens (wi−1, wi, wi+1) in an input sen-
tence to feature vectors (ei−1, ei, ei+1) that are
then concatenated and fed to a two-layer percep-
tron followed by a softmax function:

P (c|wi−1, wi, wi+1) = MLP([ei−1; ei; ei+1]),
(11)

where [· ; · ; ·] denotes vector concatenation. The
classifier MLP predicts the probability distribu-
tion over POS tags of the center token wi. We put
special padding symbols at the beginning and end
of each sentence. The dimensionality of the hid-
den layer of the MLP was 300. The MLP classifier
was trained via the SMORMS3 optimizer (Func,
2015) without updating the word embedding layer.

We used the Wall Street Journal (WSJ) por-
tion of the Penn Treebank (PTB) corpus5 (Mar-
cus et al., 1993). We followed the standard section
partition, which is to use sections 0-18 for train-
ing, sections 19-21 for validation, and sections 22-
24 for testing. The dataset contains 45 tags. The
evaluation metric was the word-level accuracy.

5.2 Results & Discussion
Table 1 presents the comparison of the WON to
the other baselines on the test split. The re-
sults demonstrate that the WON gives the high-
est performance, which supports our hypothesis
that the word ordering task is effective for acquir-
ing syntactic knowledge about words. We also

5We used the LDC99T42 Treebank release 3 version.
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Dev Test
UAS LAS UAS LAS

SGNS 91.56 90.09 91.11 89.89
GloVe 88.87 87.09 88.28 86.61
SSG 91.11 89.60 90.93 89.43
CWindow 91.23 89.69 91.16 89.67
LSTMLM 91.83 90.34 91.49 90.08
WON 91.92 90.49 91.82 90.38

Table 2: Results on dependency parsing with dif-
ferent word embeddings. The dataset was the WSJ
portion of the PTB corpus. The evaluation metrics
were Unlabeled Attachment Score (UAS) and La-
beled Attachment Score (LAS).

observe that the order-sensitive methods (WON,
LSTMLM, and SSG) tend to outperform the order-
insensitive methods (SGNS and GloVe), which in-
dicates that, as we expect, word order information
is crucial for learning syntactic word embeddings.

6 Evaluation on Dependency Parsing

In this experiment, as in Section 5, we evaluated
the learned word embeddings on supervised de-
pendency parsing.

6.1 Supervised Dependency Parser

Dependency parsing aims to identify syntac-
tic relations between token pairs in a sentence.
We used Stanford’s neural network dependency
parser (Chen and Manning, 2014)6, whose word
embeddings were initialized with the learned
word embeddings. We followed all the de-
fault settings except for the word embedding size
(embeddingSize = 300) and the number of
training iterations (maxIter = 6000).

We used the WSJ portion of the PTB corpus
and followed the standard splits of sections 2-21
for training, 22 for validation, and 23 for testing.
We converted the treebank corpus to Stanford style
dependencies using the Stanford converter. The
parsing performances were evaluated in terms of
Unlabeled Attachment Score (UAS) and Labeled
Attachment Score (LAS).

6.2 Results & Discussion

Table 2 shows the results of the different word
embeddings on dependency parsing. First we
observe that the WON consistently outperforms

6http://nlp.stanford.edu/software/nndep.shtml

the baselines on both UAS and LAS. Next, by
comparing the unlimited-context models (WON
and LSTMLM) with the limited-context models
(SGNS, GloVe, SSG, CWindow), we can notice
that the former give higher parsing scores than the
latter. These results are reasonable because the
former can learn arbitrary-length syntactic depen-
dencies between words without constraints from
the fixed-size window size based on which the
limited-window models are trained.

7 Fusion with Semantic Features

In various NLP tasks, both syntactic and semantic
features can benefit performances. To enrich our
syntax-oriented word embeddings with semantic
information, in this section, we adopt a simple
fine-tuning technique and verify its effectiveness.
More precisely, we first initialize the word embed-
dings W with pre-trained parameters W sem pro-
duced by a semantics-oriented model such as the
SGNS. Subsequently we add the following penalty
term to the loss function in Equation 9:

λ‖W −W sem‖2F , (12)

where λ ∈ R is a hyper parameter to control the
intensity of the penalty term in the learning pro-
cess, and ‖ · ‖2F is the Frobenius norm. This term
attempts to keep the word embeddings W close
to the semantic representations W sem while min-
imizing the syntax-oriented objective on the word
ordering task. In our experiments, we used the
SGNS’s embeddings as W sem and set λ to 1. The
SGNS was trained as explained in Section 4.3.

In this section, we quantitatively evaluated the
WON with the above fine-tuning technique on two
major benchmarks: (1) word analogy task, and (2)
word similarity task.

7.1 Word Analogy
The word analogy task has been used in previous
work to evaluate the ability of word embeddings
to represent semantic and syntactic regularities. In
this experiment, we used the word analogy dataset
produced by Mikolov et al. (2013a). The dataset
consists of questions like “A is to B what C is
to ?,” denoted as “A : B :: C : ?.” The dataset
contains about 20K such questions, divided into a
syntactic subset and a semantic subset. The syn-
tactic subset contains nine question types, such
as adjective-to-adverb and opposite,
while the semantic subset contains five question
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Question Types SGNS GloVe SSG CWindow LSTMLM WON
adjective-to-adverb 24.1 23.3 29.9 12.1 4.3 29.9
opposite 36.2 29.9 37.0 11.7 15.0 37.8
comparative 85.7 79.5 88.5 73.5 55.3 88.7
superlative 59.3 49.1 68.7 43.8 22.4 62.8
present-participle 64.9 61.0 73.6 57.4 27.1 71.8
nationality-adjective 89.4 92.2 89.7 87.3 30.5 90.8
past-tense 58.0 52.2 59.0 54.0 33.1 61.4
plural 75.2 83.0 75.2 70.4 26.4 75.4
plural-verbs 78.9 56.0 84.6 64.6 61.0 82.9
capital-common 94.5 95.3 92.5 93.1 53.8 95.5
captal-world 87.8 94.5 84.0 66.6 22.1 82.6
currency 12.8 8.7 14.0 3.7 1.9 10.7
city 66.0 60.7 56.9 61.9 13.6 67.4
family 84.2 77.9 81.8 59.1 62.9 84.2

Total 69.9 68.3 69.7 58.2 27.0 70.6

Table 3: Results on the word analogy task (Mikolov et al., 2013a) with different word embeddings. The
first upper block presents the results on nine syntactic question types. In the lower block we show the
results on five semantic question types. The last row presents the total score. The evaluation metric is
accuracy (%).

types such as city-in-state and family.
Suppose that a vector ew is a representation of a
word w, and is normalized to unit norm. Follow-
ing a previous work (Mikolov et al., 2013a), we
answer an analogy question “A : B :: C : ?” by
finding a word w∗ that has the closest representa-
tion to (eB −eA+eC) in terms of cosine similar-
ity, i.e.,

w∗ = argmax
w∈V \{A,B,C}

(eB − eA + eC)> ew
‖eB − eA + eC‖ , (13)

where V denotes the vocabulary. The evaluation
was performed using accuracy, which denotes the
percentage of words predicted correctly.

In Table 3, we report the results of the different
word embeddings on this task. As can be seen in
the Table 3, the WON outperforms the baselines
on four out of nine syntactic question types, and
tends to yield higher accuracies by a large margin
than the baselines except for the SSG. Our method
and the SSG totally give the best performances on
seven of nine syntactic question types. This ten-
dency, as in Section 5.2, indicates that word or-
der information is crucial to learn syntactic word
embeddings. In regard to semantics, the WON
achieves the best scores on three out of five seman-
tic question types. Interestingly, on two semantic
question types (capital-common and city),
the WON outperforms the SGNS that was used to

WS-353 MC RG
SGNS 71.26 81.96 78.86
GloVe 62.54 71.57 75.54
SSG 73.08 81.78 80.37
CWindow 70.31 80.92 77.80
LSTMLM 53.34 66.76 63.23
WON 70.97 82.43 77.64

Table 4: Results on the word similarity task
with different word embeddings. Spearman’s rank
correlation coefficents (%) are computed on three
datasets: WS-353, MC, and RG.

initialize our word embeddings. This result im-
plies that the word ordering task has the potential
to improve not only syntactic but also semantic
features. Our method achieves the highest accu-
racy on the overall score.

7.2 Word Similarity
The word similarity benchmark is commonly used
to evaluate word embeddings in terms of distri-
butional semantic similarity. The word similarity
datasets consist of triplets like (w1, w2, s), where
s ∈ R is a human-annotated similarity score
between two words (w1, w2). In this task, we
compute cosine similarity between two word em-
beddings. The evaluation is performed with the
Spearman’s rank correlation coefficient between

76



Query The 3 most similar words
he she they we
him them us me
his their our your
boy kid creature girl
boys ladies guys folks
dragon werewolf dwarf vamp
dragons robots giants spiders
city village library palace
cities countries kingdoms neighborhoods
drive ride walk hike
drives draws pisses causes
drove rode marched strode
driving traveling walking riding
driven flown propelled shaken
happy pleased unhappy thrilled
happier crazier prettier tougher
happiest hottest toughest coolest
good nice bad decent
better easier worse safer
best worst hardest biggest
in on into under

Table 5: Query words and their most similar
words. Cosine similarities are computed between
their embeddings produced by the WON.

the human-annotated similarities and the com-
puted similarities.

Table 4 presents the results on three datasets:
WordSim-353 (Finkelstein et al., 2001),
MC (Miller and Charles, 1991), and RG (Ruben-
stein and Goodenough, 1965). we observe that the
WON gives a slightly higher performance than
the baselines on the MC dataset. On the other
datasets, the SSG yields the best performances.
These results are interesting because the two
models rely on word order information while the
word similarity task originally focuses on topical
semantic similarities between words.

Further investigation into the interaction be-
tween syntactic and semantic representations
would be interesting and needs to be explored.

8 Qualitative Analysis

In this section, we inspect the learned vector space
by computing the similarities between word em-
beddings.

In this experiment we trained the WON on the
BookCorpus (Zhu et al., 2015) that is preprocessed
in the same way described in Section 4.1. The
BookCorpus consists of a large collection of nov-

els, which results in a grammatically sophisticated
text corpus that would be suitable for qualitative
analysis. Note that to clearly investigate the word
embeddings produced by the WON we neither ini-
tialize our word embeddings with other models
nor use fine-tuning techniques, as in experiments
on downstream syntax-related tasks (Section 5 and
Section 6). We choose queries focusing on (1)
declension of personal pronouns, (2) singular and
plural forms of nouns, (3) verb conjugation, (4)
comparative/superlative forms of adjectives, and
(5) prepositions.

Table 5 presents some representative queries for
(1)-(5) and their respective most similar words in
the learned vector space. First we can observe that
our word embeddings produce a continuous vector
space that successfully captures syntactic regulari-
ties. In addition to the syntactic regularities, inter-
estingly, we found that the WON prefers to gather
words in terms of those meanings or semantic cat-
egories.

9 Conclusion and Future Work

The research question we explored in this study
was how to learn syntactic word embeddings with-
out using any human annotations. Our underlying
hypothesis is that the word odering task is suitable
for obtaining syntactic knowledge about words.
To verify this idea, we developed the WON, which
implicitly learns syntactic word representations
through learning to explicitly solve the word or-
dering task. The experimental results demonstrate
that the WON gives improvements over baselines
particularly on syntax-related tasks, such as part-
of-speech tagging and dependency parsing. We
can also observe that the WON, by combined with
a simple fine-tuning technique, has the potential
to refine not only syntactic but also semantic fea-
tures.

It remains unclear how well order-sensitive
models like the WON can learn syntactic knowl-
edge about words in languages other than English.
Especially, it is interesting to investigate cases on
languages with richer morphology and freer word
order. We leave this to future work.

Acknowledgements

The authors would like to thank the anonymous re-
viewers for their constructive and helpful sugges-
tions on this work. We also thank Makoto Miwa
and Naoaki Okazaki for valuable comments and

77



discussion. This work was supported by JSPS
KAKENHI Grant Number 16H05872 and JST
CREST JPMJCR1304.

References
Jacob Andreas and Dan Klein. 2014. How much do

word embeddings encode about syntax? In Pro-
ceedings of the 52nd Annual Meeting of the Asso-
ciation for Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.
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Abstract

We present a pointwise mutual informa-
tion (PMI) based approach for formaliz-
ing paraphrasability and propose a variant
of PMI, called mutual information based
paraphrase acquisition (MIPA), for para-
phrase acquisition. Our paraphrase acqui-
sition method first acquires lexical para-
phrase pairs by bilingual pivoting and then
reranks them by PMI and distributional
similarity. The complementary nature of
information from bilingual corpora and
from monolingual corpora renders the pro-
posed method robust. Experimental re-
sults show that the proposed method sub-
stantially outperforms bilingual pivoting
and distributional similarity themselves in
terms of metrics such as mean reciprocal
rank, mean average precision, coverage,
and Spearman’s correlation.

1 Introduction

Paraphrases are useful for flexible language
understanding in many NLP applications. For
example, the usefulness of the paraphrase
database PPDB (Ganitkevitch et al., 2013;
Pavlick et al., 2015), a publicly available large-
scale resource for lexical paraphrasing, has
been reported for tasks such as learning word
embeddings (Yu and Dredze, 2014) and semantic
textual similarity (Sultan et al., 2015). In PPDB,
paraphrase pairs are acquired via word alignment
on a bilingual corpus by a process called bilingual
pivoting (Bannard and Callison-Burch, 2005).
Figure 1 shows an example of English language
paraphrase acquisition using the German language
as a pivot.

Although bilingual pivoting is widely used for
paraphrase acquisition, it always includes noise

Figure 1: Paraphrase acquisition via bilingual piv-
oting (Ganitkevitch et al., 2013).

due to unrelated word pairs caused by word align-
ment errors on the bilingual corpus. Distribu-
tional similarity, another well-known method for
paraphrase acquisition, is free of alignment er-
rors, but includes noise due to antonym pairs that
share the same contexts on the monolingual cor-
pus (Mohammad et al., 2013).

In this study, we formalize the paraphrasability
of paraphrase pairs acquired via bilingual pivoting
using pointwise mutual information (PMI) and re-
duce the noise by reranking the pairs using dis-
tributional similarity. The proposed method ex-
tends Local PMI (Evert, 2005), which is a vari-
ant of weighted PMI that aims to avoid low-
frequency bias in PMI, for paraphrase acquisi-
tion. Since bilingual pivoting and distributional
similarity have different advantages and disad-
vantages, we combine them to construct a com-
plementary paraphrase acquisition method, called
mutual information based paraphrase acquisition
(MIPA). Experimental results show that MIPA
outperforms bilingual pivoting and distributional
similarity themselves in terms of metrics such as
mean reciprocal rank (MRR), mean average pre-
cision (MAP), coverage, and Spearman’s correla-
tion.

The contributions of our study are as follows.
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• Bilingual pivoting-based lexical paraphrase
acquisition is generalized using PMI.

• Lexical paraphrases are acquired robustly us-
ing both bilingual and monolingual corpora.

• We release our lexical paraphrase pairs1.

2 Bilingual Pivoting

Bilingual pivoting (Bannard and Callison-Burch,
2005) is a method used to acquire large-scale lex-
ical paraphrases by two-level word alignment on
a bilingual corpus. Bilingual pivoting employs a
conditional paraphrase probability p(e2 |e1) as a
paraphrasability measure, when word alignments
exist between an English phrase e1 and a foreign
language phrase f , and between the foreign lan-
guage phrase f and another English phrase e2 on a
bilingual corpus. It calculates the probability from
an English phrase e1 to another English phrase e2

using word alignment probabilities p(f |e1) and
p(e2 |f); here, the foreign language phrase f is
used as the pivot.

p(e2 |e1) =
∑

f p(e2 |f, e1) p(f |e1)

≈
∑

f p(e2 |f) p(f |e1)
(1)

It assumes conditional independence of e1 and e2

given f , so that the equation above can be es-
timated easily using phrase-based statistical ma-
chine translation models. One of its advantages is
that it requires only two translation models to ac-
quire paraphrases on a large scale. However, since
the conditional probability is asymmetric, it may
introduce irrelevant paraphrases that do not hold
the same meaning as the original one. In addi-
tion, owing to the data sparseness problem in the
bilingual corpus, paraphrase probabilities may be
overestimated for low-frequency word pairs.

To mitigate this, PPDB (Ganitkevitch et al.,
2013) defined the symmetric paraphrase score
sbp(e1, e2) using bi-directional bilingual pivoting.

sbp(e1, e2) = −λ1 log p(e2 |e1)− λ2 log p(e1 |e2)
(2)

Unlike Equation (1), sbp enforces mutual para-
phrasability of e1 and e2. As discussed later,
this does not necessarily increase the performance
of paraphrase acquisition, because the symmetric
constraint may be too strict to allow the extrac-
tion of broad-coverage paraphrases. In this study,

1https://github.com/tmu-nlp/pmi-ppdb

without loss of generality, we set2 λ1 = λ2 = −1.

sbp(e1, e2) = log p(e2 |e1) + log p(e1 |e2) (3)

Although these paraphrase acquisition methods
can extract large-scale paraphrase knowledge, the
results may contain many fragments caused by
word alignment error.

3 MIPA: Mutual Information Based
Paraphrase Acquisition

To mitigate overestimation, we acquire lex-
ical paraphrases with the conditional para-
phrase probability by using Kneser-Ney smooth-
ing (Kneser and Ney, 1995) and reranking them
using information theoretic measure from a bilin-
gual corpus and distributional similarity calculated
from a large-scale monolingual corpus.

3.1 Smoothing of Bilingual Pivoting
Since bilingual pivoting adopts the conditional
probability p(e2 |e1) as paraphrasability, we can
mitigate the problem of overestimation by apply-
ing a smoothing method.

In the hierarchical Bayesian model, the condi-
tional probability p(y |x) is expressed using the
Dirichlet distribution with parameter αy and max-
imum likelihood estimation p̂y |x as follows.

p(y |x) =
n(y |x) + αy∑
y(n(y |x) + αy)

≃ n(y |x)
n(x) +

∑
y αy

∵ αy ≪ 1

=
n(x)

n(x) +
∑

y αy
· n(y |x)

n(x)

=
n(x)

n(x) +
∑

y αy
· p̂y |x

(4)

Here, n(x) indicates the frequency of a word x
and n(y |x) indicates the co-occurrence frequency
of word y following x. As

∑
y αy is too large to

be ignored, especially when the frequency n(x) is
small, Equation (4) shows that the maximum like-
lihood estimation p̂y |x estimates the probability to
be excessively large.

Therefore, we propose using Kneser-Ney
smoothing (Kneser and Ney, 1995), which is con-
sidered to be an extension of the Dirichlet smooth-
ing above, to mitigate overestimation of para-
phrase probability in bilingual pivoting.

2PPDB3: λ1 = λ2 = 1
3http://www.cis.upenn.edu/˜ccb/ppdb/
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pKN(e2 |e1) =
n(e2 |e1)− δ

n(e1)
+ γ(e1)pKN(e2)

δ =
N1

N1 + 2N2

γ(e1) =
δ

n(e1)
N(e1) (5)

pKN(e2) =
N(e2)∑
i N(ei)

Here, Nn indicates the number of types of word
pairs of frequency n and N(e1) indicates the num-
ber of types of paraphrase candidates of word e1.

3.2 Generalization of Bilingual Pivoting
using Mutual Information

The bi-directional bilingual pivoting of
PPDB (Ganitkevitch et al., 2013) constrains
paraphrase acquisition to be strictly symmetric.
However, although it is extremely effective for
extracting synonymous expressions, it tends to
give high scores to frequent but irrelevant phrases,
since bilingual pivoting itself contains noisy
phrase pairs because of word alignment errors.

To address the problem of frequent phrases, we
smooth paraphrasability by bilingual pivoting in
Equation (3) using word probabilities p(e1) and
p(e2) from a monolingual corpus that is suffi-
ciently larger than the bilingual corpus.

spmi(e1, e2) = log p(e2 |e1) + log p(e1 |e2)
− log p(e1)− log p(e2)

(6)

Thus, we can interpret the bi-directional bilingual
pivoting as an unsmoothed version of PMI. Since
the difference in the logarithms of the numerator
and denominator is equal to the logarithm of the
quotient, we can transform Equation (6) as

spmi(e1, e2) = log
p(e2 |e1)

p(e2)
+ log

p(e1 |e2)
p(e1)

= 2PMI(e1, e2) (7)

since we can transform PMI into the following
forms using Bayes’ theorem.

PMI(x, y) = log
p(x, y)

p(x)p(y)
(8)

= log
p(y |x)p(x)
p(x)p(y)

= log
p(y |x)
p(y)

= log
p(x |y)p(y)
p(x)p(y)

= log
p(x |y)
p(x)

Plugging Equation (8) into Equation (7), we can
interpret PMI as a geometric mean of two models.

PMI(x, y) =
1
2
PMI(x, y) +

1
2
PMI(x, y) (9)

=
1
2

log
p(y |x)
p(y)

+
1
2

log
p(x |y)
p(x)

= log

[{
p(y |x)
p(y)

} 1
2

·
{

p(x |y)
p(x)

} 1
2

]
Bilingual pivoting in Equation (1) can be re-

garded as a mixture model that considers only the
e1 → e2 direction. However, as shown in Equa-
tion (9), our proposed method can be regarded
as a product model (Hinton, 2002) that considers
both directions. PPDB (Pavlick et al., 2015) also
considers the paraphrase probability in both direc-
tions, but the authors did not regard it as a product
model; instead the paraphrase probability in each
direction is treated as one of the features of super-
vised learning.

3.3 Incorporating Distributional Similarity
In low-frequency word pairs, it is well-known that
PMI becomes unreasonably large because of co-
incidental co-occurrence. In order to avoid this
problem, Evert (2005) proposed Local PMI, which
assigns weights to PMI depending on the co-
occurrence frequency of word pairs.

LocalPMI(x, y) = n(x, y) · PMI(x, y) (10)

In this study, however, it was difficult to directly
calculate the weight corresponding to n(x, y) in
Equation (10) on the bilingual corpus. Further-
more, our aim was to calculate not the strength
of co-occurrence (relation) between words, but the
paraphrasability. Therefore, it is not appropriate to
count the co-occurrence frequency on a monolin-
gual corpus such as Local PMI.

Alternatively, we use as a weight the distri-
butional similarity, which is frequently used for
paraphrase acquisition from a monolingual cor-
pus (Chan et al., 2011; Glavaš and Štajner, 2015).

slpmi(e1, e2) = cos(e1, e2) · spmi(e1, e2)
= cos(e1, e2) · 2PMI(e1, e2)

(11)

Here, cos(e1, e2) indicates cosine similarity be-
tween vector representations of word e1 and word
e2. Equation (11) simultaneously considers para-
phrasability based on the monolingual corpus (dis-
tributional similarity) and on the bilingual corpus
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Figure 2: Effectiveness of smoothing of bilingual
pivoting evaluated by paraphrase ranking in MRR.

Figure 3: Effectiveness of smoothing of bilingual
pivoting evaluated by paraphrase ranking in MAP.

(bilingual pivoting). Distributional similarity, as
opposed to bilingual pivoting, is robust against
noise associated with unrelated word pairs. Bilin-
gual pivoting is robust against noise arising from
antonym pairs, unlike distributional similarity.
Therefore, slpmi(e1, e2) can perform paraphrase
acquisition robustly by compensating the disad-
vantages. Hereinafter, we refer to slpmi(e1, e2)
as MIPA, mutual information based paraphrase ac-
quisition via bilingual pivoting.

4 Experiments

4.1 Settings

We used French-English parallel data4

from Europarl-v7 (Koehn, 2005) and
GIZA++ (Och and Ney, 2003) (IBM model 4) to
calculate the conditional paraphrase probability
p(e2 |e1) and p(e1 |e2). We also used the English
Gigaword 5th Edition5 and KenLM (Heafield,
2011) to calculate the word probability p(e1)
and p(e2). For cos(e1, e2), we used the CBOW
model6 of word2vec (Mikolov et al., 2013a).
Finally, we acquired paraphrase candidates of
170,682,871 word pairs, excepting the paraphrase
of itself (e1 = e2).

We employed the conditional paraphrase prob-
ability of bilingual pivoting given in Equation (1),
the symmetric paraphrase score of PPDB given
by Equation (3), and distributional similarity as
baselines, and compared them with PMI shown in
Equation (7) and the MIPA score given in Equa-
tion (11). Note that distributional similarity im-

4http://www.statmt.org/europarl/
5https://catalog.ldc.upenn.edu/LDC2011T07
6https://code.google.com/archive/p/word2vec/

plies that the paraphrase pairs acquired via bilin-
gual pivoting were reranked by distributional sim-
ilarity rather than by using the top-k distribution-
ally similar words among all the vocabularies.

4.2 Evaluation Datasets and Metrics

For evaluation, we used two datasets included
in Human Paraphrase Judgments7 published
by Pavlick et al. (2015); hereafter, we call these
datasets HPJ-Wikipedia and HPJ-PPDB, respec-
tively.

First, Human Paraphrase Judgments includes a
paraphrase list of 100 words or phrases randomly
extracted from Wikipedia and processed using a
five-step manual evaluation for each paraphrase
pair (HPJ-Wikipedia). A correct paraphrase is a
word that gained three or more evaluations in man-
ual evaluation. We used this dataset to evaluate
the acquired paraphrase pairs by MRR and MAP,
following Pavlick et al. (2015). Furthermore, we
evaluated the coverage of the top-k paraphrase
pairs. Function words such as “as” have more
than 50,000 types of paraphrase candidates, be-
cause they are sensitive to word alignment errors
in bilingual pivoting. However, since many of
these paraphrase candidates are word pairs that are
not in fact paraphrases, we evaluated the coverage
in terms of the extent to which they can reduce un-
necessary candidates while preserving the correct
paraphrases.

Second, Human Paraphrase Judgments
also includes a five-step manual evalu-
ation of 26,456 word pairs sampled from
PPDB (Ganitkevitch et al., 2013) (HPJ-PPDB)

7http://www.seas.upenn.edu/˜epavlick/data.html
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Figure 4: Paraphrase ranking in MRR. Figure 5: Paraphrase ranking in MAP.

Figure 6: Coverage of the top-k paraphrase pairs.

together with the paraphrase list of 100 words.
We used this dataset to evaluate the overall para-
phrase ranking based on Spearman’s correlation
coefficient, as in Pavlick et al. (2015).

4.3 Results

Figures 2 and 3 show the effectiveness of adopting
Kneser-Ney smoothing for bilingual pivoting in
terms of MRR and MAP on HPJ-Wikipedia. The
horizontal axis of each graph represents the evalu-
ation of the paraphrase up to the top-k of the para-
phrase score. The results confirm that the ranking
of paraphrases acquired via bilingual pivoting was
improved by applying Kneser-Ney smoothing. In
the rest of this study, we always applied Kneser-
Ney smoothing to conditional paraphrase proba-
bility.

Figures 4 and 5 show the comparison of para-
phrase rankings in MRR and MAP on HPJ-
Wikipedia. The evaluation by MRR, shown in

Figure 4, demonstrates that the ranking perfor-
mance of paraphrase pairs is improved by making
bilingual pivoting symmetric. PMI slightly out-
performs the baselines of bilingual pivoting below
the top five. Furthermore, MIPA shows the highest
performance, because reranking by distributional
similarity greatly improves bilingual pivoting.

The evaluation using MAP, shown in Figure 5,
also reinforced the same result, i.e., reranking by
distribution similarity improved bilingual pivot-
ing, and MIPA showed the highest performance.

Figure 6 shows the coverage of the top-ranked
paraphrases on HPJ-Wikipedia. Despite the fact
that the symmetric paraphrase score is better than
the conditional paraphrase probability in the rank-
ing performance of the top three in MRR and
MAP, it shows a poor performance in terms of cov-
erage. Although there is not a significant differ-
ence between MIPA and the other methods, MIPA
was shown to outperform them.
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Figure 7: ρ : log p(e2 |e1). Figure 8: ρ : MIPA(e1, e2).

p(e2 |e1) log p(e2 |e1) + log p(e1 |e2) 2PMI(e1, e2) cos(e1, e2) cos(e1, e2)2PMI(e1, e2)
1. diverse culturally culturally-based historical socio-cultural
2. harvests culture culturaldevelopment culture culture
3. firstly 151 cultural-social educational multicultural
4. understand charter economic-cultural linguistic intercultural
5. flowering monuments culture- multicultural educational
6. trying art cultural-educational cross-cultural intellectual
7. structure casal kulturkampf diversity culturally
8. january kahn cultural-political technological sociocultural
9. culture 13 multiculture intellectual heritage

10. culturally caning culturally preservation architectural

Table 1: Paraphrase examples of cultural. Italicized words are the correct paraphrases.

Figures 7 and 8 show the scatter plots and
Spearman’s correlation coefficient of each para-
phrase score and manual evaluation (average value
of five evaluators) on HPJ-PPDB. As in the pre-
vious experimental results, MIPA showed a high
correlation. In particular, the noise generated by
false positives at the upper left of the scatter plot
can be reduced by combining PMI and distribu-
tional similarity.

5 Discussion

5.1 Qualitative Analysis

Table 1 shows examples of the top 10 in para-
phrase rankings. In the paraphrase examples of
cultural, conditional paraphrase probability does
not score the correct paraphrase as top-ranked
words. Although the symmetric paraphrase score
ranked the correct paraphrase at the top, words
other than the top words are less reliable, as
shown by the previous experimental results. PMI
is strongly influenced by low-frequency words,
and many of the top-ranked words are singleton
words in the bilingual corpus. MIPA, in contrast,

mitigates the problem of low-frequency bias, and
many of the top-ranked words are correct para-
phrases. Distributional similarity-based methods
include relatively numerous correct paraphrases at
the top, and the other top-ranked words are also
strongly related to cultural. From the viewpoint of
paraphrases, 3 of the top 10 words of the proposed
method are incorrect, but these words may also be
useful for applications such as learning word em-
beddings (Yu and Dredze, 2014) and semantic tex-
tual similarity (Sultan et al., 2015).

Table 2 shows correct examples of the para-
phrase rankings. In the paraphrase examples of
labourers, there were 20 correct paraphrases that
received a rating of 3 or higher in manual evalu-
ation. With respect to the conditional paraphrase
probability and PMI, it is necessary to consider up
to the 400th place to cover all correct paraphrases.
However, distributional similarity-based methods
have correct paraphrases of higher rank. In partic-
ular, MIPA was able to include 10 words of cor-
rect paraphrases in the top 20 words; that is, our
method can obtain paraphrases with high coverage
by using only the highly ranked paraphrases.
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p(e2 |e1) log p(e2 |e1) + log p(e1 |e2) 2PMI(e1, e2) cos(e1, e2) cos(e1, e2)2PMI(e1, e2)
1. workers 9. gardeners 10. workmen 2. workers 2. workers
2. employees 42. harvesters 11. wage-earners 8. people 4. workmen
9. farmers 62. workers 16. earners 10. persons 5. craftsmen

13. labour 71. seafarers 19. workers 11. farmers 6. wage-earners
16. gardeners 73. unions 21. craftsmen 15. craftsmen 9. persons
17. people 99. homeworkers 22. workforces 26. wage-earners 12. employees
28. workmen 283. works 26. employed 27. workmen 13. earners
30. employed 394. workmen 27. employees 29. harvesters 15. farmers
33. craftsmen 395. employees 50. labour 31. seafarers 18. people
59. harvesters 412. wage-earners 55. persons 32. employees 19. workforces
80. work 415. craftsmen 75. farmers 42. gardeners 37. harvesters
88. earners 417. earners 103. homeworkers 47. earners 42. individuals
90. wage-earners 419. labour 105. individuals 55. workforces 53. labour

106. persons 420. employed 112. work 57. individuals 55. seafarers
109. individuals 431. people 135. people 79. unions 65. gardeners
114. seafarers 433. farmers 187. harvesters 103. labour 88. employed
115. unions 446. workforces 273. gardeners 140. homeworkers 100. homeworkers
131. workforces 451. work 317. seafarers 144. work 105. work
166. homeworkers 453. persons 456. unions 170. employed 149. unions
401. works 474. individuals 469. works 222. works 254. works

Table 2: Correct paraphrase examples of labourers.

p(e2 |e1) log p(e2 |e1) + log p(e1 |e2) 2PMI(e1, e2) cos(e1, e2) cos(e1, e2)2PMI(e1, e2)
STS-2012 0.539 0.466 0.383 0.363 0.442
STS-2013 0.489 0.469 0.463 0.483 0.499
STS-2014 0.464 0.460 0.471 0.453 0.475
STS-2015 0.611 0.655 0.660 0.642 0.671
STS-2016 0.444 0.518 0.550 0.518 0.542

ALL 0.536 0.543 0.534 0.523 0.555

Table 3: Evaluation by Pearson’s correlation coefficient in semantic textual similarity task.

5.2 Quantitative Analysis

Next, we applied the acquired paraphrase pairs
to the semantic textual similarity task and eval-
uated the extent to which the acquired para-
phrases improve downstream applications. The
semantic textual similarity task deals with calcu-
lating the semantic similarity between two sen-
tences. In this study, we conducted the eval-
uation by applying Pearson’s correlation coeffi-
cient with a five-step manual evaluation using five
datasets constructed by SemEval (Agirre et al.,
2012, 2013, 2014, 2015, 2016). We applied
the acquired paraphrase pairs to the unsuper-
vised method of DLC@CU (Sultan et al., 2015),
which achieved excellent results using PPDB in
the semantic textual similarity task of SemEval-
2015 (Agirre et al., 2015). DLS@CU performs
word alignment (Sultan et al., 2014) using PPDB,
and calculates sentence similarity according to the
ratio of aligned words:

sts(s1, s2) =
na(s1) + na(s2)
n(s1) + n(s2)

(12)

Here, n(s) indicates the number of words in
sentence s and na(s) indicates the number of
aligned words. Although DLS@CU targets all the
paraphrases of PPDB, we used only the top 10
words of the paraphrase score for each target word
and compared the performance of the paraphrase
scores.

Table 3 shows the experimental results of the
semantic textual similarity task. “ALL” is the
weighted mean value of the Pearson’s correlation
coefficient over the five datasets. MIPA achieved
the highest performance on three out of the five
datasets. In other words, the proposed method ex-
tracted paraphrase pairs useful for calculating sen-
tence similarity at the top-rank.

5.3 Reranking PPDB 2.0

Finally, we reranked paraphrase pairs from
a publicly available state-of-the-art paraphrase
database.8 PPDB 2.0 (Pavlick et al., 2015) scores
paraphrase pairs using supervised learning with

8http://paraphrase.org/
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Figure 9: Reranking PPDB 2.0 in MRR. Figure 10: Reranking PPDB 2.0 in MAP.

26,455 labeled data and 209 features. We sorted
the paraphrase pairs from PPDB 2.0 using the
MIPA instead of the PPDB 2.0 score and used
the same evaluation means as described in Sec-
tion 4. Surprisingly, our unsupervised approach
outperformed the paraphrase ranking performance
of PPDB 2.0’s supervised approach in terms of
MRR (Figure 9) and MAP (Figure 10).

6 Related Work

Levy and Goldberg (2014) explained a well-
known representation learning method for word
embeddings, the skip-gram with negative-
sampling (SGNS) (Mikolov et al., 2013a,b),
as a matrix factorization of a word-context
co-occurrence matrix with shifted positive
PMI. In this paper, we explained a well-known
method for paraphrase acquisition, bilingual
pivoting (Bannard and Callison-Burch, 2005;
Ganitkevitch et al., 2013), as a (weighted) PMI.

Chan et al. (2011) reranked paraphrase pairs ac-
quired via bilingual pivoting using distributional
similarity. The main idea of reranking paraphrase
pairs using information from a monolingual cor-
pus is similar to ours, but Chan et al.’s method
failed to acquire semantically similar paraphrases.
We succeeded in acquiring semantically similar
paraphrases because we effectively combined in-
formation from a bilingual corpus and a monolin-
gual corpus by using weighted PMI.

In addition to English, paraphrase databases
are constructed in many languages using bilingual
pivoting (Bannard and Callison-Burch, 2005).
Ganitkevitch and Callison-Burch (2014) con-
structed paraphrase databases8 in 23 languages,
including European languages and Chinese.

Furthermore, Mizukami et al. (2014) constructed
the Japanese version9. In this study, we improved
bilingual pivoting using a monolingual corpus.
Since large-scale monolingual corpora are easily
available for many languages, our proposed
method may improve paraphrase databases in
each of these languages.

PPDB (Ganitkevitch et al., 2013) constructed
by bilingual pivoting is used in many NLP
applications, such as learning word embed-
dings (Yu and Dredze, 2014), semantic textual
similarity (Sultan et al., 2015), machine trans-
lation (Mehdizadeh Seraj et al., 2015), sentence
compression (Napoles et al., 2016), question an-
swering (Sultan et al., 2016), and text simplifica-
tion (Xu et al., 2016). Our proposed method may
improve the performance of many of these NLP
applications supported by PPDB.

7 Conclusion

We proposed a new approach for formalizing lex-
ical paraphrasability based on weighted PMI and
acquired paraphrase pairs using information from
both a bilingual corpus and a monolingual corpus.
Our proposed method, MIPA, uses bilingual pivot-
ing weighted by distributional similarity to acquire
paraphrase pairs robustly, as each of the methods
complements the other. Experimental results us-
ing manually annotated datasets for lexical para-
phrase showed that the proposed method outper-
formed bilingual pivoting and distributional simi-
larity in terms of metrics such as MRR, MAP, cov-
erage, and Spearman’s correlation. We also con-
firmed the effectiveness of the proposed method

9http://ahclab.naist.jp/resource/jppdb/
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by conducting an extrinsic evaluation on a seman-
tic textual similarity task. In addition to the se-
mantic textual similarity task, we hope to improve
the performance of many NLP applications based
on the results of this study.
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Abstract

Implicit semantic role labeling (iSRL) is
the task of predicting the semantic roles of
a predicate that do not appear as explicit ar-
guments, but rather regard common sense
knowledge or are mentioned earlier in the
discourse. We introduce an approach to
iSRL based on a predictive recurrent neu-
ral semantic frame model (PRNSFM) that
uses a large unannotated corpus to learn
the probability of a sequence of semantic
arguments given a predicate. We lever-
age the sequence probabilities predicted
by the PRNSFM to estimate selectional
preferences for predicates and their argu-
ments. On the NomBank iSRL test set, our
approach improves state-of-the-art perfor-
mance on implicit semantic role labeling
with less reliance than prior work on manu-
ally constructed language resources.

1 Introduction

Semantic role labeling (SRL) has traditionally fo-
cused on semantic frames consisting of verbal or
nominal predicates and explicit arguments that oc-
cur within the clause or sentence that contains the
predicate. However, many predicates, especially
nominal ones, may bear arguments that are left
implicit because they regard common sense knowl-
edge or because they are mentioned earlier in a
discourse (Ruppenhofer et al., 2010; Gerber et al.,
2009). These arguments, called implicit arguments,
are resolved by another semantic task, implicit se-
mantic role labeling (iSRL). Consider a NomBank
(Meyers et al., 2004) annotation example:

[A0 The network] had been expected to
have [NP losses] [A1 of $20 million]
. . . Those [NP losses] may widen because
of the short Series.

The predicate loss in the first sentence has two ar-
guments annotated explicitly: A0, the entity losing
something, and A1, the thing lost. Meanwhile, the
other instance of the same predicate in the second
sentence has no associated arguments. However,
for a good reader, a reasonable interpretation of the
second loss should be that it receives the same A0
and A1 as the first instance. These arguments are
implicit to the second loss.

As an emerging task, implicit semantic role la-
beling faces a lack of resources. First, hand-crafted
implicit role annotations for use as training data are
seriously limited: SemEval 2010 Task 10 (Baker
et al., 1998) provided FrameNet-style (Baker et al.,
1998) annotations for a fairly large number of pred-
icates but with few annotations per predicate, while
Gerber and Chai (2010) provided PropBank-style
(Palmer et al., 2005) data with many more anno-
tations per predicate but covering just 10 predi-
cates. Second, most existing iSRL systems depend
on other systems (explicit semantic role labelers,
named entity taggers, lexical resources, etc.), and
as a result not only need iSRL annotations to train
the iSRL system, but annotations or manually built
resources for all of their sub-systems as well.

We propose an iSRL approach that addresses
these challenges, requiring no manually annotated
iSRL data and only a single sub-system, an explicit
semantic role labeler. We introduce a predictive
recurrent neural semantic frame model (PRNSFM),
which can estimate the probability of a sequence
of semantic arguments given a predicate, and can
be trained on unannotated data drawn from the
Wikipedia, Reuters, and Brown corpora, coupled
with the predictions of the MATE (Björkelund et al.,
2010) explicit semantic role labeler on these texts.
The PRNSFM forms the foundation for our iSRL
system, where we use its probability estimates over
sequences of semantic arguments to predict selec-
tional preferences for associating predicates with
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their implicit semantic roles. Our PRNSFM-based
iSRL model improves state-of-the-art performance,
outperforming the only other system that depends
on just an explicit semantic role labeler by 10 %
F1, and achieving equal or better F1 score than sev-
eral other models that require many more lexical
resources.

Our work fits today’s interest in natural language
understanding, which is hampered by the fact that
content in a discourse is often not expressed explic-
itly because it was mentioned earlier or because
it regards common sense or world knowledge that
resides in the mind of the communicator or the audi-
ence. In contrast, humans easily combine relevant
evidence to infer meaning, determine hidden mean-
ings and make explicit what was left implicit in the
text, using the anticipatory power of the brain that
predicts or “imagines” circumstantial situations and
outcomes of actions (Friston, 2010; Vernon, 2014)
which makes language processing extremely effec-
tive and fast (Kurby and Zacks, 2015; Schacter and
Madore, 2016). The neural semantic frame rep-
resentations inferred by our PRNSFM take a first
step towards encoding something like anticipatory
power for natural language understanding systems.

The remainder of the paper is organized as fol-
lows: First, section 2 describes the related work.
Second, section 3 proposes the predictive recur-
rent neural semantic frame model including the
formal definition, architecture, and an algorithm
to extract selectional preferences from the trained
model. Third, in section 4, we introduce the appli-
cation of our PRNSFM in implicit semantic role
labeling. Fourth, the experimental results and dis-
cussions are presented in section 5. Finally, we
conclude our work and suggest some future work
in section 6.

2 Related work

Language Modeling Language models, from n-
gram models to continuous space language models
(Mikolov et al., 2013; Pennington et al., 2014),
provide probability distributions over sequences of
words and have shown their usefulness in many
natural language processing tasks. However, to our
knowledge, they have not yet been used to model
semantic frames. Recently, Peng and Roth (2016)
developed two distinct models that capture seman-
tic frame chains and discourse information while
abstracting over the specific mentions of predicates
and entities, but these models focus on discourse

processing tasks, not semantic frame processing.

Semantic Role Labeling In unsupervised SRL,
Woodsend and Lapata (2015) and Titov and Khod-
dam (2015) induce embeddings to represent a pred-
icate and its arguments from unannotated texts, but
in their approaches, the arguments are words only,
not the semantic role labels, while in our models,
both are considered.

Low-resource Implicit Semantic Role Labeling
Several approaches have attempted to address the
lack of resources for training iSRL systems. La-
parra and Rigau (2013) proposed an approach
based on exploiting argument coherence over dif-
ferent instances of a predicate, which did not re-
quire any manual iSRL annotations but did require
many other manually-constructed resources: an ex-
plicit SRL system, WordNet super-senses, a named
entity tagger, and a manual categorization of Super-
SenseTagger semantic classes. Roth and Frank
(2015) generated additional training data for iSRL
through comparable texts, but the resulting model
performed below the previous state-of-the-art of
Laparra and Rigau (2013). Schenk and Chiarcos
(2016) proposed an approach to induce prototypical
roles using distributed word representations, which
required only an explicit SRL system and a large
unannotated corpus, but their model performance
was almost 10 points lower than the state-of-the-art
of Laparra and Rigau (2013). Similar to Schenk
and Chiarcos (2016), our model requires only an ex-
plicit SRL system and a large unannotated corpus,
but we take a very different approach to leverag-
ing these, and as a result improve state-of-the-art
performance.

3 Predictive Recurrent Neural Semantic
Frame Model

Our goal is to use unlabeled data to acquire selec-
tional preferences that characterize how likely a
phrase is to be an argument of a semantic frame.
We rely on the fact that current explicit SRL sys-
tems achieve high performance on verbal predi-
cates, and run a state-of-the-art explicit SRL system
on unlabeled data. We then construct a predictive
recurrent neural semantic frame model (PRNSFM)
from these explicit frames and roles.

Our PRNSFM views semantic frames as a se-
quence: a predicate, followed by the arguments
in their textual order, and terminated by a special
EOS symbol. We draw predicates from PropBank
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verbal semantic frames, and represent arguments
with their nominal/pronominal heads. For example,
Michael Phelps swam at the Olympics is repre-
sented as [swam:PRED, Phelps:A0, Olympics:AM-
LOC, EOS], where the predicate is labeled PRED
and the arguments Phelps and Olympics are labeled
A0 and AM-LOC, respectively. Our PRNSFM’s
task is thus to take a predicate and zero or more
arguments, and predict the next argument in the se-
quence, or EOS if no more arguments will follow.

We choose to model semantic frames as a se-
quence (rather than, say, a bag of arguments) be-
cause in English, there are often fairly strict con-
straints on the order in which arguments of a verb
may appear. A sequential model should thus be
able to capture these constraints and use them to im-
prove its probability estimates. Moreover, a sequen-
tial model has the ability to learn the interaction
between arguments in the same semantic frame.
For example, considering a swimming event, if
Phelps is A0, then Olympics is more likely to be
the AM-LOC than lake.

Formally, for each tth argument of a semantic
frame f , we denote its word (e.g., Phelps) as wf,t,
its semantic label (e.g., A0) as lf,t, where w ∈ V,
the word vocabulary, and l ∈ L ∪ [PRED], the
set of semantic labels. We denote the predicate
word and label, which are always at the 0th po-
sition in the sequence, in the same way as argu-
ments: wf,0 and lf,0. We denote the sequence
[wf,0, wf,1, . . . , wf,t−1] aswf,<t, and the sequence
[lf,0, lf,1, . . . , lf,t−1] as lf,<t. Our model aims to
estimate the conditional probability of the occur-
rence of wf,t as semantic role lf,t given the preced-
ing words and their labels:

P (wf,t:lf,t|wf,<t:lf,<t)
We use a recurrent neural network to learn this

probability distribution over sequences of semantic
frame arguments. For a semantic frame f with N
arguments, at each time step 0 ≤ t ≤ N , given the
input wf,t:lf,t, the model computes the distribution
P (wf,t+1:lf,t+1|wf,<t+1:lf,<t+1) and predicts the
next most likely argument (or EOS). During train-
ing, model parameters are optimized by minimiz-
ing prediction errors over all time steps.

We consider two versions of this model that dif-
fer in input (Vin) and output (Vout) vocabularies.

3.1 Model 1: Joint Embedding LSTM
We adopt the standard recurrent neural network
language model (Mikolov et al., 2010), which is a

natural architecture to deal with a sequence predic-
tion problem.

Model 1 consists of three layers (see Figure 1):
an embedding layer that learns vector representa-
tions for input values; a long short-term memory
(LSTM) layer that controls the sequential informa-
tion receiving the vector representation as input;
and a softmax layer to predict the next argument
using the output of the LSTM layer as input.

This model treats the word and semantic label
as a single unit in both input and output layers.
The model, therefore, learns joint embeddings for
the word and its corresponding semantic label.
For example, if we take “Michael Phelps swam
at the Olympics” as training data, the three in-
put values would be swam:PRED, Phelps:A0 and
Olympics:AM-LOC, and the three expected outputs
would be Phelps:A0, Olympics:AM-LOC, EOS.
Since each word:label is considered as a single unit,
the embedding layer will learn three vector repre-
sentations, one for swam:PRED, one for Phelps:A0,
and one for Olympics:AM-LOC. As can be seen,
an important difference between our problem and
the traditional language model is that we have to
deal with two different types of information – word
and label. By concatenating word and label, the
standard recurrent neural network model can be
applied directly to our data.

The detail of Model 1 is as following:

Embedding Layer is a matrix of size |Vin| × d
that maps each unit of input into an d-dimensional
vector. The matrix is initialized randomly and up-
dated during network training.

LSTM Layer consists of m standard LSTM
units which take as input the output of the em-
bedding layer, xt, and produce an output ht by
updating at every time step 0 ≤ t ≤ T :

it = sigmoid(Wixt + Uiht−1 + bi)

Ĉt = tanh(Wcxt + Ucht−1 + bc)
ft = sigmoid(Wfxt + Ufht−1 + bf )

Ct = it ∗ Ĉt + ft ∗ Ct−1

ot = sigmoid(Woxt + Uoht−1 + bo)
ht = ot ∗ tanh(Ct)

where Wi,Wc,Wf ,Wo are weight matrices of size
d×m; Ui, Uc, Uf , Uo are weight matrices of size
m×m; bi, bc, bf , bo are bias vectors of sizem; and
∗ is element-wise multiplication. As per the stan-
dard LSTM formulation, it, Ĉt, ft, Ct, ot represent
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Figure 2: Model 2 – Separate Embedding LSTM

the input gate, states of the memory cells, activation
of the memory cells’ forget gates, memory cells’
new state, and output gates’ values, respectively.

Softmax Layer computes the probability distri-
bution of the next argument given the preceding
arguments at time step t:

P (wf,t+1:lf,t+1|wf,<t+1:lf,<t+1) =
softmax(htW + b) (1)

where W is a weight matrix of size m × |Vout|,
and b is a bias vector of size |Vout|. The predicted
next argument is:

argmax
wf,t+1:lf,t+1

P (wf,t+1:lf,t+1|wf,<t+1:lf,<t+1)

The network is trained using the negative log-
likelihood loss function.

3.2 Model 2: Separate Embedding LSTM
Model 2 shares the same basic structure as Model
1, but considers the word and the semantic label as
two different units in the input layer. As shown in
Figure 2, we use two different embedding layers,
one for word values and one for semantic labels,
and the two embedding vectors are concatenated
before being passed to the LSTM layer. The LSTM

and softmax layers are then the same as in Model
1. For example, if we take “Michael Phelps swam
at the Olympics” as training data, the three input
words would be swam, Phelps, and Olympics, the
three input roles would be PRED, A0 and AM-
LOC, and the three expected outputs would be
Phelps:A0, Olympics:AM-LOC, EOS. A total of
six different vector representations will be learned:
a word embedding for each of swam, Phelps, and
Olympics, and a label embedding for each of PRED,
A0 and AM-LOC.

In this model, the embedding layer for labels
is initialized randomly (as in Model 1), but the
embedding layer for word values is initialized with
publicly available word embeddings that have been
trained on a large dataset (Mikolov et al., 2013).

As compared to the joint-embedding Model 1,
the separate-embedding Model 2 gives up a little
power to represent the interaction between words
and labels, but has a less sparse input vocabulary
and gains the ability to incorporate pre-trained
word embeddings.

3.3 Selectional Preferences

While the PRNSFM can predict the probability of
an argument given the predicate and the preced-
ing arguments, P (wf,t:lf,t|wf,<t:lf,<t), an iSRL
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Figure 3: Selectional Preference Inference example: k=2, T=3. The possible sequences are represented as
a tree. Each arrow label is the probability of the target node to be predicted given the path from the tree
root to the parent of the target node.

system needs a selectional preference score rep-
resenting the probability of a word w being the l
argument of predicate p, P (w:l|p:PRED). Thus,
to convert our PRNSFM probabilities to selectional
preferences, we need to marginalize over the possi-
ble argument sequences.

We approximate this marginalization by con-
structing a tree where the root is the predicate, p,
the branches are likely sequences of arguments,
and the leaves are the word and label for which we
need to estimate a probability, w:l. Formally, we
define this tree of possible sequences as:

St =


{[p:PRED]} if t = 0
{[q, wt:lt] : q ∈ St−1,

wt:lt ∈ argmaxk(q)}
if 0 < t < T

{[q, w:l] : q ∈ St−1} if t = T

where wf,0:lf :0 = p:PRED; k and T are thresh-
olds; and argmaxk(q) is the k word:label pairs
that have the highest probability of being the next
argument given the sequence q according to the
PRNSFM.

We then estimate P (w:l|p:PRED) as the sum
of the probabilities of all the sequences encoded in

the tree. Formally:

P (w:l|p:PRED) ≈
∑

0≤t≤T
P (w:l|wf,<t+1:lf,<t+1)

≈
∑

0≤t≤T

∑
q∈St

P (w:l|q)× P (q)

where the probability of an argument sequence q is
the product of the PRNSFM’s estimates for each
step in the sequence:

P (q) = P (wt:lt|wt−1:lt−1, . . . , p:PRED)
× P (wt−1:lt−1|wt−2:lt−2, . . . , p:PRED)
× . . .× P (w1:l1|p:PRED) (2)

An example of the calculation of P (w:l|p:PRED)
is shown in Figure 3.

Intuitively, the tree enumerates all possible argu-
ment sequences that start with the predicate, have
zero or more intervening arguments, and end with
the word and label of interest, w:l. The probabil-
ity of w:l given the predicate is the sum of the
probabilities of all branches in this tree, i.e., of all
possible sequences that end with w:l. In reality, we
do not have the computational power to explore
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all possible sequences, so we must limit the tree
somehow. Thus, we only ask the PRNSFM for its
top k predictions at each branch point, and we only
explore sequences with a maximum length of T .

4 Implicit Semantic Role Labeling

As you will recall from previous sections, implicit
semantic role labeling is the task of identifying
discourse-level arguments of a semantic frame,
which are missed by standard semantic role label-
ing, which operates on individual sentences. For
instance, in “This house has a new owner. The sale
was finalized 10 days ago.”, the semantic frame
evoked by “sale” in the second sentence should
receive “the house” as an implicit A1 semantic
role. Humans easily resolve the object of the sale
given the candidates (in our example: “house” and
“owner”), but for a machine this is more difficult
unless it has knowledge on what the likely objects
of a sale are. This kind of knowledge of selec-
tional preferences can be extracted from our trained
PRNSFM.

The previous section described how to extract
selectional preferences from our PRNSFM. How-
ever, that model is trained on verbal predicates, and
the test data that we use (Gerber and Chai, 2010)
contains nominal predicates. Thus, for each triple
of a nominal predicate np, a word candidate w, and
a label l, we approximate the selectional preference
score of w being the implicit argument role l of np
as:

P (w:l|np) = maxp∈V (np)P (w:l|p:PRED)

where P (w:l|p) is the selectional preference score
described in Section 3.3, and V (np) is set of verbal
forms of np. Here, we use the NomBank lexicon to
get verbs associated with each nominal predicate,
and then find instances of those verbs in the explicit
SRL training data. For example, for the noun funds,
V (funds) = {funds, fund, funding, funded}.

We apply selectional preferences to iSRL follow-
ing (Laparra and Rigau, 2013). For each nominal
predicate np and implicit label l, the current and
previous two sentences are designated the context
window. Each sentence in the context window is
annotated with the explicit SRL system. If any in-
stances of np or V (np) in the text have an explicit
argument of type l, we deterministically predict
the closest such argument as the implicit l argu-
ment of np. Otherwise, we run the PRNSFM over
each word in the context window, and select the

word with the highest selectional preference score
above a threshold s. If all the candidates’ scores
are less than s, the system leaves the missing argu-
ment unfilled. We optimized this threshold on the
development data, resulting in s = 0.0003.

As in Laparra and Rigau (2013), we apply a
sentence recency factor to emphasize recent can-
didates. The selectional preference score x is up-
dated as x′ = x − z + z × αd where d is the
sentence distance, and α and z are parameters. We
set z = 0.00005 based on the development set and
set α = 0.5 as in (Laparra and Rigau, 2013).

5 Experiments

We evaluate the two PRNSFM models on the iSRL
task. The tools, resources, and settings we used are
as follows:

Semantic Role Labeling We used the full
pipeline from MATE (https://code.google.com/
archive/p/mate-tools/) (Björkelund et al., 2010) as
the explicit SRL system, retraining it on just the
CoNLL 2009 training portion.

Unannotated Data The unannotated data used
in the experiments was drawn from Wikipedia
(http://corpus.byu.edu/wiki/), Reuters (http://about.
reuters.com/researchandstandards/corpus/), and
Brown (https://catalog.ldc.upenn.edu/ldc99t42).

Dataset for PRNSFM The first 15 milion short
and medium (less than 100 words) sentences from
the unannotated data (described above) were an-
notated automatically by the explicit SRL system.
The obtained annotations were then used together
with the gold standard CoNLL 2009 SRL training
data to train the PRNSFM.

Neural network training and inference Param-
eters were selected using the CoNLL 2009 develop-
ment set. We set the dimensions of word and label
embeddings in the PRNSFM to 50 and 16, respec-
tively. The hidden sizes of LSTM layers are the
same as their input sizes. Word embedding layers
are initialized by Skip-gram embeddings learned
by training the word2vec tool (Mikolov et al., 2013)
on the unannotated data. Our models were trained
for 120 epochs using the AdaDelta optimization
algorithm (Zeiler, 2012). For fast selectional pref-
erence computing, we set k = 1 and T = 41.

1We selected relatively small values for the parameters to
reduce the training and prediction time. We tried some larger
values of the parameters on a small dataset, but found that the
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Evaluation We follow the evaluation setting in
Gerber and Chai (2010); Laparra and Rigau (2013);
Schenk and Chiarcos (2016)2: the method is evalu-
ated on the evaluation portion of the nominal iSRL
data by Dice coefficient metrics. For each miss-
ing argument position of a predicate instance, the
system is required to either (1) identify a single
constituent that fills the missing argument position
or (2) make no prediction and leave the missing
argument position unfilled. To give partial credit
for inexact argument boundaries, predictions are
scored by using the Dice coefficient, which is de-
fined as follows:

Dice(predicted, true) =
2 |predicted ∩ true|
|predicted|+ |true|

Predicted contains the tokens that the model has
identified as the filler of the implicit argument po-
sition. True is the set of tokens from a single
annotated constituent that truely fill the missing ar-
gument position. The model’s prediction receives
a score equal to the maximum Dice overlap across
any of the annotated fillers (AF)3:

Score(predicted) =
max

true∈AF
Dice(predicted, true)

Precision is equal to the summed prediction scores
divided by the number of argument positions filled
by the model. Recall is equal to the summed pre-
diction scores divided by the number of argument
positions filled in the annotated data.

5.1 Experimental Setup

In the baseline mode, instead of using the
PRNSFM, we only use the deterministic predic-
tion by the explicit SRL system. We refer to this
mode as Baseline in Table 1.

In the main mode, the joint embedding LSTM
model (Model 1) and the separate embedding
LSTM model (Model 2) were trained on the same
dataset which is a combination of the automatic
SRL annotations and the gold standard CoNLL

small values reported in the article achieved similar results
with faster processing times.

2 Following Schenk and Chiarcos (2016), we do not per-
form the alternative evaluation of Gerber and Chai (2012) that
evaluates systems on the iSRL training set, since the iSRL
training set overlaps with the CoNLL 2009 explicit semantic
role training set on which MATE is trained.

3For iSRL, one implicit role may receive more than one
annotated filler across a coreference chain in the discourse.

2009 training data as described in the previous sec-
tion. We denote this mode as gold CoNLL 2009 +
unlabeled in Table 1.

To evaluate how well the system acquires knowl-
edge from unlabeled data, we also train the
PRNSFM only on the gold standard CoNLL 2009
training data. We denote this mode as CoNLL 2009
in Table 1.

In order to compare the performance of our se-
quential model to a non-sequential model, we train
a skip-gram neural language model on the same
unlabeled and labeled data as the PRNSFM in the
main mode. The skip-gram model treats the pred-
icates and arguments as a bag of labeled words
rather than a sequence. The P (w:l|p) is computed
at the output layer of the skip-gram model by con-
sidering w:l as the context of p. We denote this
mode as Skip-gram in Table 1.

5.2 Results and Discussion

Table 1 shows the prior state-of-the-art and the
performance of the baseline, skip-gram and our
PRNSFM-based methods.

Our Model 2 achieves the highest precision and
F1 score. This is notable because the first two mod-
els require many more language resources than
just an explicit SRL system: Gerber and Chai
(2010) use WordNet and manually annotated iSRL
data, while Laparra and Rigau (2013) use WordNet,
named entity annotations, and manual semantic
category mappings. Schenk and Chiarcos (2016),
like our approach, use only an explicit SRL sys-
tem, but both our models strongly outperform their
results. We assume that the difference here is
caused by our proposed neural semantic frame
model (PRNSFM). Schenk and Chiarcos (2016)
measure the selectional preference of a predicate
and a role as a cosine between a standard word2vec
embedding for the candidate word, and the aver-
age of all word2vec embeddings for all words that
appear in that role. Our algorithms are very differ-
ent: we take a language modeling approach and
leverage the sequence of semantic roles, we learn
custom word/role embeddings tuned for SRL, and
then marginalize over many possible argument se-
quences. We assume that the learned PRNSFM
representations are better informed about semantic
frames than simple word embeddings, which only
capture knowledge of contextual words.

Table 1 also shows that training on large unla-
beled data results in a marked improvement com-
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P R F1
Gerber and Chai (2010) X X X 44.5 40.4 42.3
Laparra and Rigau (2013) X X X 47.9 43.8 45.8
Schenk and Chiarcos (2016) X 33.5 39.2 36.1
Baseline X 75.3 17.2 28.0
Skip-gram gold CoNLL 2009 + unlabeled X 26.3 32.3 29.0
Model 1: Joint Embedding gold CoNLL 2009 + unlabeled X 48.0 38.2 42.6
Model 2: Separate Embedding gold CoNLL 2009 + unlabeled X 52.6 41.0 46.1
Model 1: Joint Embedding gold CoNLL 2009 X 39.2 34.1 36.5
Model 2: Separate Embedding gold CoNLL 2009 X 40.2 36.0 38.0

Table 1: Implicit role labeling evaluation.

pared to training on only the CoNLL 2009 labeled
data, providing evidence that the models have ac-
quired linguistic knowledge from the unlabeled
data. Although the automatically annotated data
used to train the PRNSFM can be noisy, using a
large amount of data has smoothed out the noise.

Moreover, the better performance of our mod-
els over the standard skip-gram neural language
model proves the effectiveness of modeling seman-
tic frames as sequential data. The intuition here is
that explicit semantic arguments have typical or-
derings in which they occur, so a sequential model
should be a good fit for this problem. Modeling
this sequential aspect of the problem is effective,
but requires us to marginalize out positional infor-
mation to compute selectional preferences, since
implicit semantic arguments can occur anywhere
in the discourse and do not have a typical position.

Among our two models, Model 2, which learns
separate vector representations for words and se-
mantic roles, is better than Model 1, which learns a
single vector representation of each (word, seman-
tic role) pair. The separate representation of words
and roles means that Model 2 can share informa-
tion across multiple occurrences of a word even if
the semantic roles of that word are different, and
this model can use publicly available embeddings
pre-trained from even larger unannotated corpora
when initializing its embeddings.

Gerber and Chai (2012) report an inter-annotator
agreement of 64.3% using Cohen’s kappa mea-
sure on the annotated NomBank-based iSRL data.
This value is borderline between low and moderate
agreement indicating the sheer complexity of the

Predicate Baseline 2010 2013 2016 2017
sale 36.2 44.2 40.3 37.2 52.8
price 15.4 34.2 53.3 27.3 29.0
investor 9.8 38.4 41.2 33.9 43.1
bid 32.3 21.3 52.0 40.7 35.5
plan 38.5 64.7 40.7 47.4 76.8
cost 34.8 62.9 53.0 36.9 44.4
loss 52.6 83.3 65.8 58.9 72.8
loan 18.2 37.5 22.2 37.9 38.6
investment 0.0 30.8 40.8 36.6 23.5
fund 0.0 15.4 44.4 37.5 42.8

Table 2: A comparison on F1 scores (%). 2010:
(Gerber and Chai, 2010), 2013: (Laparra and Rigau,
2013), 2016: Best model from (Schenk and Chiar-
cos, 2016), 2017: Our best model (Model 2).

annotation task, and explaining the relatively low
performance of the iSRL systems.

In Table 2, we compare the F1 scores over all
the ten predicates of our Model 2 to other state-
of-the-art systems 4. Our system obtains relatively
high scores (> 50%) on three predicates including
“sale”, “plan” and “loss”. These three are the most
frequent predicates (among the 10 defined in the
nominal iSRL dataset) in the CoNLL 2009 train-
ing data – they occur 1016, 318 and 275 times in
verbal forms, respectively. In contrast, irregular
predicates such as “bid” or “loan” usually have low
performance. This is possibly caused by the de-

4As an overly conservative estimate, we take a t-test over
the 10 predicate-level F1 scores as can be seen in Table 2.
Comparing against Model 2, this yields p=0.28 for Gerber and
Chai (2010), p=0.46 for Laparra and Rigau (2013), and most
importantly p=0.058 for Schenk and Chiarcos (2016).
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pendence of our PRNSFM on the performance of
the explicit semantic role labeling system on verbal
predicates.

It is important to consider how iSRL can be ex-
tended beyond the 10 annotated predicates of Ger-
ber and Chai (2010). Our models do not require
any handcrafted iSRL annotations for training, and
thus can be applied to all predicates observed in
large unannotated data on which they are trained.

However, as other work in iSRL, our approach
still relies on a resource-heavy SRL system to learn
selectional preferences. It would be interesting
to investigate in further studies whether this SRL
system can be replaced by a low-resource system
(Collobert et al., 2011; Connor et al., 2012).

6 Conclusion and Future Work

We have presented recurrent neural semantic frame
models for learning probability distributions over
semantic argument sequences. By modeling se-
lectional preferences from these probability dis-
tributions, we have improved state-of-the-art per-
formance on the NomBank iSRL task while us-
ing fewer language resources. In the future, we
believe that our semantic frame models are valu-
able in many language processing tasks that require
discourse-level understanding of language, such as
summarization, question answering and machine
translation.
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Abstract

We define a novel textual entailment
task that requires inference over mul-
tiple premise sentences. We present
a new dataset for this task that mini-
mizes trivial lexical inferences, empha-
sizes knowledge of everyday events, and
presents a more challenging setting for
textual entailment. We evaluate several
strong neural baselines and analyze how
the multiple premise task differs from
standard textual entailment.

1 Introduction

Standard textual entailment recognition is con-
cerned with deciding whether one statement (the
hypothesis) follows from another statement (the
premise). However, in some situations, multiple
independent descriptions of the same event are
available, e.g. multiple news articles describing
the same story, social media posts by different
people about a single event, or multiple witness
reports for a crime. In these cases, we want to use
multiple independent reports to infer what really
happened.

We therefore introduce a variant of the standard
textual entailment task in which the premise text
consists of multiple independently written sen-
tences, all describing the same scene (see exam-
ples in Figure 1). The task is to decide whether
the hypothesis sentence 1) can be used to describe
the same scene (entailment), 2) cannot be used
to describe the same scene (contradiction), or 3)
may or may not describe the same scene (neutral).
The main challenge is to infer what happened in
the scene from the multiple premise statements, in
some cases aggregating information across multi-
ple sentences into a coherent whole.

Premises:
1. Two girls sitting down and looking at a book.
2. A couple laughs together as they read a book on a train.
3. Two travelers on a train or bus reading a book together.
4. A woman wearing glasses and a brown beanie next to

a girl with long brown hair holding a book.
Hypothesis:

Women smiling. ⇒ENTAILMENT

Premises:
1. Three men are working construction on top of a building.
2. Three male construction workers on a roof working

in the sun.
3. One man is shirtless while the other two men work

on construction.
4. Two construction workers working on infrastructure,

while one worker takes a break.
Hypothesis:

A man smoking a cigarette. ⇒NEUTRAL

Premises:
1. A group of individuals performed in front of a seated

crowd.
2. Woman standing in front of group with black folders in

hand.
3. A group of women with black binders stand in front of a

group of people.
4. A group of people are standing at the front of the room,

preparing to sing.
Hypothesis:

A group having a meeting. ⇒CONTRADICTION

Figure 1: The Multiple Premise Entailment Task

Similar to the SICK and SNLI datasets (Marelli
et al., 2014; Bowman et al., 2015), each premise
sentence in our data is a single sentence describ-
ing everyday events, rather than news paragraphs
as in the RTE datasets (Dagan et al., 2006), which
require named entity recognition and coreference
resolution. Instead of soliciting humans to write
new hypotheses, as SNLI did, we use simplified
versions of existing image captions, and use a
word overlap filter and the structure of the deno-
tation graph of Young et al. (2014) to minimize
the presence of trivial lexical relationships.

2 Related Standard Entailment Tasks

In the following datasets, premises are single sen-
tences drawn from image or video caption data
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that describe concrete, everyday activities.
The SICK dataset (Marelli et al., 2014) con-

sists of 10K sentence pairs. The premise sentences
come from the FLICKR8K image caption corpus
(Rashtchian et al., 2010) and the MSR Video Para-
phrase Corpus (Agirre et al., 2012), while the hy-
potheses were automatically generated. This pro-
cess introduced some errors (e.g. “A motorcycle is
riding standing up on the seat of the vehicle”) and
an uneven distribution of phenomena across en-
tailment classes that is easy to exploit (e.g. nega-
tion (Lai and Hockenmaier, 2014)).

The SNLI dataset (Bowman et al., 2015) con-
tains over 570K sentence pairs. The premises
come from the FLICKR30K image caption corpus
(Young et al., 2014) and VisualGenome (Krishna
et al., 2016). The hypotheses were written by Me-
chanical Turk workers who were given the premise
and asked to write one definitely true sentence,
one possibly true sentence, and one definitely
false sentence. The task design prompted work-
ers to write hypotheses that frequently parallel the
premise in structure and vocabulary, and therefore
the semantic relationships between premise and
hypothesis are often limited to synonym/hyponym
lexical substitution, replacement of short phrases,
or exact word matching.

3 The Multiple Premise Entailment Task

In this paper, we propose a variant of entail-
ment where each hypothesis sentence is paired
with an unordered set of independently written
premise sentences that describe the same event.
The premises may contain overlapping informa-
tion, but are typically not paraphrases. The ma-
jority of our dataset requires consideration of mul-
tiple premises, including aggregation of informa-
tion from multiple sentences.

This Multiple Premise Entailment (MPE) task
is inspired by the Approximate Textual Entailment
(ATE) task of Young et al. (2014). Each item in the
ATE dataset consists of a premise set of four cap-
tions from FLICKR30K, and a short phrase as the
hypothesis. The ATE data was created automati-
cally, under the assumption that items are positive
(approximately entailing) if the hypothesis comes
from the same image as the four premises, and
negative otherwise. However, Young et al. found
that this assumption was only true for just over half
of the positive items. For MPE, we also start with
four FLICKR30K captions as the premises and a

related/unrelated sentence as the hypothesis, but
we restrict the hypothesis to have low word over-
lap with the premises, and we collect human judg-
ments to label the items as entailing, contradictory,
or neutral.

4 The MPE Dataset

The MPE dataset (Figure 1) contains 10,000 items
(8,000 training, 1,000 development and 1,000
test), each consisting of four premise sentences
(captions from the same FLICKR30K image), one
hypothesis sentence (a simplified FLICKR30K
caption), and one label (entailment, neutral, or
contradiction) that indicates the relationship be-
tween the set of four premises and the hypothesis.
This label is based on a consensus of five crowd-
sourced judgments. To analyze the difference be-
tween multiple premise and single premise entail-
ment (Section 5.2), we also collected pair label an-
notations for each individual premise-hypothesis
pair in the development data. This section de-
scribes how we selected the premise and hypoth-
esis sentences, and how we labeled the items via
crowdsourcing.

4.1 Generating the Items

Hypothesis simplification The four premise
sentences of each MPE item consist of four orig-
inal FLICKR30K captions from the same image.
Since complete captions are too specific and are
likely to introduce new details that are not entailed
by the premises, the hypotheses sentences are sim-
plified versions of FLICKR30K captions. Each hy-
pothesis sentence is either a simplified variant of
the fifth caption of the same image as the premises,
or a simplified variant of one of the captions of a
random, unrelated image.

Our simplification process relies on the denota-
tion graph of Young et al. (2014), a subsumption
hierarchy over phrases, constructed from the cap-
tions in FLICKR30K. They define a set of normal-
ization and reduction rules (e.g. lemmatization,
dropping modifiers and prepositional phrases, re-
placing nouns with their hypernyms, extracting
noun phrases) to transform the original captions
into shorter, more generic phrases that are still true
descriptions of the original image.

To simplify a hypothesis caption, we consider
all sentence nodes in the denotation graph that
are ancestors (more generic versions) of this cap-
tion, but exclude nodes that are also ancestors of
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any of the premises. This ensures that the simpli-
fied hypothesis cannot be trivially obtained from a
premise via the same automatic simplification pro-
cedure. Therefore, we avoid some obvious seman-
tic relationships between premises and hypothesis,
such as hypernym replacement, dropping modi-
fiers or PPs, etc.

Limiting lexical overlap Given the set of sim-
plified, restricted hypotheses, we further restrict
the pool of potential items to contain only pair-
ings where the hypothesis has a word overlap ≤
0.5 with the premise set. We compute word over-
lap as the fraction of hypothesis tokens that appear
in at least one premise (after stopword removal).
This eliminates trivial cases of entailment where
the hypothesis is simply a subset of the premise
text. Table 1 shows that the mean word overlap
for our training data is much lower than SNLI.

SNLI MPE
Data full lemma full lemma

All 0.44 ± 0.29 0.48 ± 0.29 0.28 ± 0.22 0.33 ± 0.20
E 0.59 ± 0.31 0.64 ± 0.30 0.34 ± 0.21 0.38 ± 0.19
N 0.41 ± 0.24 0.45 ± 0.24 0.28 ± 0.21 0.33 ± 0.19
C 0.33 ± 0.25 0.36 ± 0.25 0.23 ± 0.22 0.30 ± 0.21

Table 1: Mean word overlap for full training data
and each label, original and lemmatized sentences.
MPE has much lower word overlap than SNLI.

Data selection From this constrained pool of
premises-hypothesis pairings, we randomly sam-
pled 8000 items from the FLICKR30K train-
ing split for our training data. For test and
development data, we sample 1000 items from
FLICKR30K test and 1000 from dev. The hy-
potheses in the training data must be associated
with at least two captions in the FLICKR30K train
split, while the hypotheses in dev/test must be as-
sociated with at least two captions in the union
of the training and dev/test, and with at least one
caption in dev/test alone. Since the test and dev
splits of FLICKR30K are smaller than the training
split, this threshold selects hypotheses that are rare
enough to be interesting and frequent enough to be
reasonable sentences.

4.2 Assigning Entailment Labels

Crowdsourcing procedure For each item, we
solicited five responses from Crowdflower and
Amazon Mechanical Turk as to whether the hy-
pothesis was entailed, contradictory, or neither

given a set of four premises. Instructions are
shown in Table 2. We provided labeled examples
to illustrate the kinds of assumptions we expected.

Entailment labels We assume three labels (en-
tailment, neutral, contradiction). For entailment,
we deliberately asked annotators to judge whether
the hypothesis could very probably describe the
same scene as the premises, rather than specifying
that the hypothesis must definitely be true, as Bow-
man et al. (2015) did for SNLI. Our instructions
align with the standard definition of textual entail-
ment: “T entails H if humans reading T would typ-
ically infer that H is most likely true” (Dagan et al.,
2013). We are not only interested in what is logi-
cally required for a hypothesis to be true, but also
in what human readers assume is true, given their
own world knowledge.

Final label assignment Of the 10,000 items for
which we collected full label annotations, 90%
had a majority label based on the five judgments,
including 16% with a 3-2 split between entailment
and contradiction. The remaining 10% had a 2-2-
1 split across the three classes. We manually ad-
judicated the latter two cases. As a result, 82%
of the final labels in the dataset correspond to a
majority vote over the judgments (the remaining
18% differ due to our manual correction). The re-
leased dataset contains both our final labels and
the crowdsourced judgments for all items.

Image IDs Premises in the our dataset have cor-
responding image IDs from FLICKR30K. We are
interested in the information present in linguis-
tic descriptions of a scene, so our labels reflect
the textual entailment relationship between the
premise text and the hypothesis. Future work
could apply multi-modal representations to this
task, with the caveat that the image would likely
resolve many neutral items to either entailment or
contradiction.

5 Data Analysis

5.1 Statistics

The dataset contains 8000 training items, 1000 de-
velopment items, and 1000 test items. Table 3
shows overall type and token counts and sentence
lengths as well as the label distribution.

The mean annotator agreement, i.e. the fraction
of annotators who agreed with the final label, is
0.70 for the full dataset, or 0.82 for the entailment
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Instructions:
We will show you four caption sentences that describe the same scene, and one proposed sentence. Your task is to decide
whether or not the scene described by the four captions can also be described by the proposed sentence.
The four captions were written by four different people. All four people were shown the same image, and then wrote a
sentence describing the scene in this image. Therefore, there may be slight disagreements among the captions. The images are
photographs from Flickr that show everyday scenes, activities, and events. You will not be given the image that the caption
writers saw.

Process:
Read the four caption sentences and then read the proposed sentence.
Choose 1 of 3 possible responses to the question
Can the scene described by the four captions also be described by the proposed sentence?
Yes: The scene described by the captions can definitely (or very probably) be described by the proposed sentence. The
proposed sentence may leave out details that are mentioned in the captions. If the proposed sentence describes something that
is not mentioned in the captions, it is probably safe to assume the extra information is true, given what you know from the
captions. If there are disagreements among the captions about the details of the scene, the proposed sentence is consistent with
at least one caption.
Unknown: There is not enough information to decide whether or not the scene described by the captions can be described by
the proposed sentence. There may be scenes that can be described by the proposed sentence and the captions, but you don’t
know whether this is the case here.
No: The scene described by the captions can probably not be described by the proposed sentence. The proposed sentence and
the captions either contradict each other or describe what appear to be two completely separate events.

Table 2: The annotation instructions we provided to Crowdflower and Mechanical Turk annotators.

SNLI MPE
#Lexical types 36,616 9,254
#Lexical tokens 12 million 468,524
Mean premise length 14.0 ± 6.0 53.2 ± 12.8
Mean hypothesis length 8.3 ± 3.2 5.3 ± 1.8

Label distribution
Entailment 33.3% 32.3%
Neutral 33.3% 26.3%
Contradiction 33.3% 41.6%

Table 3: Type and token counts, sentence lengths,
and label distributions for training data.

class, 0.42 for neutral, and 0.78 for contradiction.
That is, on average, four of the five crowdsourced
judgments agree with the final label for the entail-
ment and contradiction items, whereas for the neu-
tral items, only an average of two of the five orig-
inal annotators assigned the neutral label, and the
other three were split between contradiction and
entailment.

5.2 MPE vs. Standard Entailment

Multiple premise entailment (MPE) differs from
standard single premise entailment (SPE) in that
each premise consists of four independently writ-
ten sentences about the same scene. To understand
how MPE differs from SPE, we used crowdsourc-
ing to collect pairwise single-premise entailment
labels for each individual premise-hypothesis pair
in the development data. Each consensus label is
based on three judgments.

In Table 4, we compare the full MPE entail-
ment labels (bold⇒E,⇒N,⇒C), to the four pair

SPE labels (E, N, C). The number of SPE labels
that agree with the MPE label yields the five cat-
egories in Table 4, ranging from the most difficult
case where none of the SPE labels agree with the
MPE label (21.8% of the data) to the simplest case
where all four SPE labels agree with the MPE la-
bel (9.8% of the data).

We observe that a simple majority voting
scheme over the gold standard SPE labels would
not be sufficient, since it assigns the correct MPE
label to only 34.6% of the development items (i.e.
those cases where three or four SPE pairs agree
with the MPE label). We also evaluate a slightly
more sophisticated voting scheme that applies the
following heuristic (here, E, N , C are the number
of SPE labels of each class):

If E > C, predict entailment.
Else if C > E, predict contradiction.
Otherwise, predict neutral.

This baseline achieves an accuracy of 41.7%.
These results indicate that MPE cannot be triv-
ially reduced to SPE. That is, even if a model had
access to the correct SPE label for each individ-
ual premise (an unrealistic assumption), it would
require more than simple voting heuristics to ob-
tain the correct MPE label from these pairwise la-
bels. Table 4 illustrates that the majority of MPE
items require aggregation of information about
the described entities and events across multiple
premises. In the first example, the first premise
is consistent with a scene that involves a team of
football players, while only the last premise indi-
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# pairs
agree

% of data Pair
Label

Example Hypothesis and Four Premises

0 21.8 N
N
N
N

A football player in a red uniform is standing in front of other football players in a stadium.
A football player facing off against two others.
A football player wearing a red shirt.
Defensive player waiting for the snap.
⇒E The team waiting.

1 26.9 N
C
N
N

A person is half submerged in water in their yellow kayak.
A woman has positioned her kayak nose down in the water.
A person in a canoe is rafting in wild waters.
A kayaker plunges into the river.
⇒C A man in a boat paddling through waters.

2 16.7 E
E
N
N

A batter playing cricket missed the ball and the person behind him is catching it.
A cricket player misses the pitch.
The three men are playing cricket.
A man struck out playing cricket.
⇒E A man swings a bat.

3 24.8 N
N
E
N

A young gymnast, jumps high in the air, while performing on a balance beam.
A gymnast performing on the balance beam in front of an audience.
The young gymnast’s supple body soars above the balance beam.
A gymnast is performing on the balance beam.
⇒N A woman doing gymnastics.

4 9.8 C
C
C
C

A man with a cowboy hat is riding a horse that is jumping.
A cowboy riding on his horse that is jumping in the air.
A cowboy balances on his horse in a rodeo.
Man wearing a cowboy hat riding a horse.
⇒C Men pulled by animals.

Table 4: MPE examples that illustrate the difference between pair labels and the full label. We include
one example for each category, based on the number of pair labels that agree with the full label, and
indicate the size of each category as a percentage of the development data.

cates that the team may be waiting. Moreover, the
simple majority voting would work on the fourth
example but fail on the second example, while the
more sophisticated voting scheme would work on
the second example and fail on the fourth.

5.3 Semantic Phenomena

We used a random sample of 100 development
items to examine the types of semantic phenom-
ena that are useful for inference in this dataset.
We categorized each item by type of knowledge
or reasoning necessary to predict the correct label
for the hypothesis given the premises. An item be-
longs to a category if at least one premise in that
item exhibits that semantic phenomenon in rela-
tion to the hypothesis, and an item may belong
to multiple categories. For each category, Table
5 contains its frequency, an illustrative example
containing the relevant premise, and the distribu-
tion over entailment labels. We did our analysis
on full items (four premises and the correspond-
ing hypothesis), but the examples in Table 5 have
been simplified to a single premise for simplicity.

Word equivalence Items in this category con-
tain a pair of equivalent words (synonyms or para-
phrases). The word in the hypothesis can be ex-
changed for the word in the premise without sig-
nificantly changing the meaning of the hypothesis.

Word hypernymy These items involve lexical
hypernyms: someone who is a man is also a person
(entailment), but a person may or may not be a
man (neutral), and somebody who is a man is not
a child (contradiction).

Phrase equivalence These items involve equiv-
alent phrases, i.e. synonyms or paraphrases. The
phrase in the hypothesis can be replaced by the
phrase in the premise without significantly chang-
ing the meaning of the hypothesis.

Phrase hypernymy Items in this category in-
volve a specific phrase and a general phrase: the
more general phrase “doing exercises” can refer to
multiple types of exercises in addition to “stretch-
ing their legs.”

Mutual exclusion Distinguishing between con-
tradiction and neutral items involves identifying
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# E N C Example Premise and Hypothesis Pair

Total 100 31 29 40

Word
equivalence

16 12 4 0 A person climbing a rock face.
A rock climber scales a cliff. ⇒E

Word
hypernymy

19 6 6 7 Girl in a blue sweater painting while looking at a bird in a book.
A child painting a picture. ⇒E

Phrase
equivalence

7 6 1 0 A couple in their wedding attire stand behind a table with a wedding cake and flowers.
Newlyweds standing. ⇒E

Phrase
hypernymy

8 6 2 0 A group of young boys wearing track jackets stretch their legs on a gym floor as they
sit in a circle.
A group doing exercises. ⇒E

Mutual
exclusion

25 0 0 25 A woman in a red vest working at a computer.
Lady doing yoga. ⇒C

Compatibility 18 0 18 0 Onlookers watch.
A girl at bat in a softball game. ⇒N

World
knowledge

35 14 9 12 A young woman gives directions to an older woman outside a subway station.
Women standing. ⇒E

Table 5: Analysis of 100 random dev items. For each phenomenon, we show the distribution over labels
and an example. The label is indicated with E, N, C. We use color and underlining to indicate the relevant
comparisons. The indicated span of text is part of the necessary information to predict the correct label,
but may not be sufficient on its own.

actions that are mutually exclusive, i.e. cannot
be performed simultaneously by the same agent
(“Two doctors perform surgery” vs. “Two sur-
geons are having lunch”).

Compatibility The opposite of mutual
exclusion is compatibility: two actions that
can be performed simultaneously by the same
agent (e.g. “A boy flying a red and white kite” vs.
“A boy is smiling”).

World knowledge These items require extra-
linguistic knowledge about the relative frequency
and co-occurrence of events in the world (not over-
lapping with the mutual exclusion or compatibility
phenomena). A human reader can infer that chil-
dren in a potato sack race are having fun (while a
marathon runner competing in a race might not be
described as having fun).

5.4 Combining Information Across Premises
In addition to the semantic phenomena we have
just discussed, the data presents the challenge
of how to combine information across multiple
premises. We examined examples from the de-
velopment data to analyze the different types of
information aggregation present in our dataset.

Coreference resolution This case requires
cross-caption coreference resolution of entity
mentions from multiple premises and the hy-
pothesis. In this example, a human reader can

recognize that “two men” and “two senior citi-
zens” refer to the same entities, i.e. the “two older
men” in the hypothesis. Given that information,
the reader can additionally infer that the two older
men on the street are likely to be standing.

1. Two men in tan coats exchange looks on the city sidewalk.
2. Two senior citizens talking on a public street.
3. Two men in brown coats on the street.
4. Two men in beige coats, talking.

Two older men stand. ⇒ENTAILMENT

Event resolution This case requires resolving
various event descriptions from multiple premises
and the hypothesis. In the following example, a
human reader recognizes that the man is sitting on
scaffolding so that he can repair the building, and
therefore he is doing construction work.

1. A man is sitting on a scaffolding in front a white building.
2. A man is sitting on a platform next to a building ledge.
3. A man looks down from his balcony from a stone building.
4. Repairing the front of an old building.

A man doing construction work. ⇒ENTAILMENT

Visual ambiguity resolution This case involves
reconciling apparently contradictory information
across premises. These discrepancies are largely
due to the fact that the premise captions were writ-
ten to describe an image. Sometimes the image
contained visually ambiguous entities or events
that are then described by different caption writ-
ers. In this example, in order to resolve the dis-
crepancy, the reader must recognize from context
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that “woman” and “young child” (also “person”)
refer to the same entity.
1. A person in a green jacket and pants appears to be digging
in a wooded field with several cars in the background.
2.A young child in a green jacket rakes leaves.
3. A young child rakes leaves in a wooded area.
4. A woman cleaning up a park.

A woman standing in the forest. ⇒ENTAILMENT

Scene resolution These examples require the
reader to build a mental representation of the scene
from the premises in order to assess the probabil-
ity that the hypothesis is true. In the first example,
specific descriptions – a jumping horse, a cow-
boy balancing, a rodeo – combine to assign a high
probability that the specific event described by the
hypothesis is true.
1. A man with a cowboy hat is riding a horse that is jumping.
2. A cowboy riding on his horse that is jumping in the air.
3. A cowboy balances on his horse in a rodeo.
4. Man wearing a cowboy hat riding a horse.

An animal bucking a man. ⇒ENTAILMENT

In the next example, the hypothesis does not
contradict any individual premise sentence. How-
ever, a reader who understands the generic scene
described knows that the very specific hypothesis
description is unlikely to go unmentioned. Shirt-
lessness would be a salient detail in the this scene,
so the fact that none of the premises mention it
means that the hypothesis is likely to be false.
1. A young couple sits in a park eating ice cream as children
play and other people enjoy themselves around them.
2. Couple in park eating ice cream cones with three other
adults and two children in background.
3. A couple enjoying ice cream outside on a nice day.
4. A couple eats ice cream in the park.

A shirtless man sitting. ⇒CONTRADICTION

In the final example, the premises present a
somewhat generic description of the scene. While
some premises lean towards entailment (a woman
and a man in discussion could be having a work
meeting) and others lean towards contradiction
(two people conversing outdoors at a restaurant are
probably not working), none of them contain over-
whelming evidence that the scene entails or con-
tradicts the hypothesis. Therefore, the hypothesis
is neutral given the premises.
1. A blond woman wearing a gray jacket converses with
an older man in a green shirt and glasses while sitting on a
restaurant patio.
2. A blond pony-tailed woman and a gray-haired man con-
verse while seated at a restaurant’s outdoor area.
3. A woman with blond hair is sitting at a table and talking to
a man with glasses.
4. A woman discusses something with an older man at a table
outside a restaurant.

A woman doing work. ⇒NEUTRAL

6 Models

We apply several neural models from the entail-
ment literature to our data. We also present a
model designed to handle multiple premises, as
this is unique to our dataset.

LSTM In our experiments, we found that the
conditional LSTM (Hochreiter and Schmidhuber,
1997) model of Rocktäschel et al. (2016) outper-
formed a Siamese LSTM network (e.g. Bow-
man et al. (2015)), so we report results using the
conditional LSTM. This model consists of two
LSTMs that process the hypothesis conditioned on
the premise. The first LSTM reads the premise.
Its final cell state is used to initialize the cell state
of the second LSTM, which reads the hypothesis.
The resulting premise vector and hypothesis vec-
tor are concatenated and passed through a hidden
layer and a softmax prediction layer. When han-
dling four MPE premise sentences, we concate-
nate them into a single sequence (in the order of
the caption IDs) that we pass to the first LSTM.
When we only have a single premise sentence, we
simply pass it to the first LSTM.

Word-to-word attention Neural attention mod-
els have shown a lot of success on SNLI. We
evaluate the word-to-word attention model of
Rocktäschel et al. (2016).1 This model learns a
soft alignment of words in the premise and hy-
pothesis. One LSTM reads the premise and pro-
duces an output vector after each word. A second
LSTM, initialized by the final cell state of the first,
reads the hypothesis one word at a time. For each
word wt in the hypothesis, the model produces at-
tention weights αt over the premise output vec-
tors. The final sentence pair representation is a
nonlinear combination of the attention-weighted
representation of the premise and the final out-
put vector from the hypothesis LSTM. This final
sentence pair representation is passed through a
softmax layer to compute the cross-entropy loss.
Again, when training on MPE, we concatenate the
premise sentences into a single sequence as input
to the premise LSTM.

Premise-wise sum of experts (SE) The previ-
ous models all assume that the premise is a single
sentence, so in order to apply them naively to our
dataset, we have to concatenate the four premises.

1Our experiments use a reimplementation of their model
https://github.com/junfenglx/reasoning_attention
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Training Class LSTM SE Attention

SNLI only 52.6 55.9 55.0
E 85.8 71.5 81.7
N 8.4 21.6 16.4
C 55.7 62.0 54.5

MPE only 53.5 56.3 53.9
E 63.1 61.3 48.3
N 39.2 30.2 30.6
C 53.5 66.5 71.2

SNLI+MPE 60.4 60.0 64.0
E 65.1 65.4 75.9
N 40.9 42.7 32.8
C 67.2 65.1 71.5

Table 6: Entailment accuracy on MPE (test). SE is
best when training only on SNLI or MPE. Atten-
tion is best when training on SNLI+MPE.

To capture what distinguishes our task from stan-
dard entailment, we also consider a premise-wise
sum of experts (SE) model that makes four in-
dependent decisions for each premise paired with
the hypothesis. This model can adjust how it pro-
cesses each premise based on the relative predic-
tions of the other premises.

We apply the conditional LSTM repeatedly to
read each premise and the hypothesis, producing
four premise vectors p1 ... p4 and four hypothesis
vectors h1 ... h4 (conditioned on each premise).
Each premise vector pi is concatenated with its
hypothesis vector hi and passed through a feed-
forward layer to produce logit prediction li. We
sum l1 ... l4 to obtain the final prediction, which
we use to compute the cross-entropy loss.

When training on SNLI, we apply the condi-
tional LSTM only once to read the premise and
hypothesis and produce p1 and h1. We pass the
concatenation of p1 and h1 through the feedfor-
ward layer to produce l1, which we use to compute
the cross-entropy loss.

7 Training Details

For the LSTM and SE models, we use 300d GloVe
vectors (Pennington et al., 2014) trained on 840B
tokens as the input. The attention model uses
word2vec vectors (Mikolov et al., 2013) (replac-
ing with GloVe had almost no effect on perfor-
mance). We use the Adam optimizer (Kingma and
Ba, 2014) with the default configuration. We train
each model for 10 epochs based on convergence
on dev. For joint SNLI+MPE training, we use
the same parameters and pretrain for 10 epochs on
SNLI, then train for 10 epochs on MPE. This was

the best joint training approach we found.
When training on SNLI, we use the best pa-

rameters reported for the word-to-word attention
model.2 When training on MPE only, we set
dropout, learning rate, and LSTM dimensionality
as the result of a grid search on dev.3

8 Experimental Results

8.1 Overall Performance
Table 6 contains the test accuracies of the mod-
els from Section 6: LSTM, sum of experts (SE),
and word-to-word attention under three training
regimes: SNLI only, MPE only, and SNLI+MPE.

We train only on SNLI to see whether mod-
els can generalize from one entailment task to
the other. Interestingly, the attention model’s ac-
curacy on MPE is higher after training only on
SNLI than training on MPE, perhaps because it
requires much more data to learn reasonable at-
tention weighting parameters.

When training on SNLI or MPE alone, the best
model is SE, the only model that handles the four
premises. It is not surprising that the LSTM model
performs poorly, as it is forced to reduce a very
long sequence of words to a single vector. The
LSTM performs on par with SE when training on
SNLI+MPE, but our analysis (Section 5.3) shows
that their errors are quite different.

The attention model trained on SNLI+MPE has
the highest accuracy overall. We reason that pre-
training on SNLI is necessary to learn reason-
able parameters for the attention weights before
training on MPE, a smaller dataset where word-
to-word inferences may be less obvious. When
trained only on MPE, the attention model per-
forms much worse than SE, with particularly low
accuracy on entailing items.

We implemented a model that adds attention to
the SE model, but it overfit on SNLI and could
not match other models’ accuracy, reaching only
about 58% on dev compared to 59-63%. Future
work will investigate other approaches to combin-
ing the benefits of the SE and attention models.

8.2 Performance by Pair Agreement
To get a better understanding of how our task dif-
fers from standard entailment, we analyze how

2Dropout: 0.8, learning rate: 0.001, vector dim: 100,
batch size: 32

3LSTM: dropout: 0.8, vector dim: 75. SE: dropout: 0.8,
vector dim: 100. Attention: dropout: 0.6, vector dim: 100.
Learning rate: 0.001 for all models
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Accuracy on SPE-MPE agreement subsets
# pairs agree 0 1 2 3 4
% of data 21.8 26.9 16.7 24.8 9.8

LSTM 57.3 57.6 60.5 67.1 63.3
SE 59.6 58.0 63.3 62.9 66.3
Attention 65.6 57.6 62.9 68.3 70.4

Table 7: Accuracy for each model (trained on
SNLI+MPE) on the dev data subsets that have 0–4
SPE labels that match the MPE label (Table 4).

performance is affected by the number of premises
whose SPE label agrees with the MPE label. Ta-
ble 7 shows the accuracy of each SNLI+MPE-
trained model on the dev data grouped by SPE-
MPE label agreement (as in Table 4).

The attention model has the highest accuracy on
three of five categories, including the most diffi-
cult category where none of the SPE labels match
the MPE label. SE has the highest accuracy in
the remaining two categories. The attention model
demonstrates large gains in the easiest categories,
perhaps because there is less advantage to aggre-
gating individual premise predictions (as SE does)
and more cases where attention weighting of in-
dividual words is useful. On the other hand, the
attention model also does well on the most dif-
ficult category, indicating that it may be able to
partially aggregate premises by increasing atten-
tion weights on phrases from multiple sentences.
Attention and SE exhibit complementary strengths
that we hope to combine in future work.

8.3 Performance by Semantic Phenomenon

Table 8 shows the performance of the three
SNLI+MPE-trained models over semantic phe-
nomena, based on the 100 annotated dev items
(see Section 5.3 and Table 5). It may not be infor-
mative to analyze performance on smaller classes
(e.g. phrase equivalence and phrase hypernymy),
but we can still look at other noticeable differences
between models.

Although the attention model outperformed
both LSTM and SE models in overall accuracy,
it is not the best in every category. Both SE and
attention have access to the same information, but
the attention model does better on items that con-
tain relationships like hypernyms and synonyms
for both words and short phrases. The SE model is
best at mutual exclusion, compatibility, and world
knowledge categories, e.g. knowing that a man
who is resting is not kayaking, and a bride is not
also a cheerleader. In cases that require analy-

Accuracy
Phenomenon LSTM SE Att #

Word equivalence 50.0 56.2 68.8 16
Word hypernymy 52.6 47.4 52.6 19
Phrase equivalence 57.1 57.1 85.7 7
Phrase hypernymy 50.0 50.0 62.5 8
Mutual exclusion 68.0 72.0 60.0 25
Compatibility 50.0 61.1 50.0 18
World knowledge 57.1 62.9 45.7 35

Table 8: Accuracy for each semantic phenomenon
on 100 dev items. While attention was the best
model overall, it does not have the highest accu-
racy for all phenomena.

sis of mutually exclusive or compatible events, a
model like SE has an advantage since it can rein-
force its weighted combination prediction by ex-
amining each premise separately.

9 Conclusion

We presented a novel textual entailment task
that involves inference over longer premise
texts and aggregation of information from
multiple independent premise sentences. This
task is an important step towards a system
that can create a coherent scene representation
from longer texts, such as multiple indepen-
dent reports. We introduced a dataset for this
task (http://nlp.cs.illinois.edu/
HockenmaierGroup/data.html) which
presents a more challenging, realistic entailment
problem and cannot be solved by majority voting
or related heuristics. We presented the results
of several strong neural entailment baselines on
this dataset, including one model that aggregates
information from the predictions of separate
premise sentences. Future work will investigate
aggregating information at earlier stages to
address the cases that require explicit reasoning
about the interaction of multiple premises.
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Abstract

To learn more knowledge, enabling tran-
sitivity is a vital step for lexical infer-
ence. However, most of the lexical infer-
ence models with good performance are
for nouns or noun phrases, which can-
not be directly applied to the inference
on events or states. In this paper, we
construct the largest Chinese verb lexical
inference dataset containing 18,029 verb
pairs, where for each pair one of four in-
ference relations are annotated. We fur-
ther build a probabilistic soft logic (PSL)
model to infer verb lexicons using the
logic language. With PSL, we easily en-
able transitivity in two layers, the observed
layer and the feature layer, which are in-
cluded in the knowledge base. We further
discuss the effect of transitives within and
between these layers. Results show the
performance of the proposed PSL model
can be improved at least 3.5% (relative)
when the transitivity is enabled. Fur-
thermore, experiments show that enabling
transitivity in the observed layer benefits
the most.

1 Introduction

Lexical inference is an important component of
natural language understanding for NLP tasks
such as textual entailment (Garrette et al., 2011),
metaphor detection (Mohler et al., 2013), and text
generation (Biran and McKeown, 2013) to ac-
quire implications not explicitly written in context.
Given two words, the goal of lexical inferences
is to detect whether there is an inference relation
between the lexicon pair. For example, the word
‘buy’ entails the word ‘have’. With the help of lex-
ical inference system, we can know “Mom has ap-

ples” from the ground truth “Mom buys apples”to
answer the question “Who has apples?” without
explicitly mentioning it.

An intuitive solution to this problem is to first
represent the sense of words in the lexicon to cal-
culate the confidence of inferences from one sense
to another, or to build a classifier to distinguish
inference relations from other relations. Most re-
lated research is of one of these two types (Szpek-
tor and Dagan, 2008a; Kiela et al., 2015). How-
ever, for this problem it is difficult for these mod-
els to take into account transitivity. In the frame-
work of a lexical inference system, transitivity can
be included in three layers: the observed layer, the
feature layer, and the prediction layer. Figure 1
illustrates these layers and the corresponding tran-
sitives. The observed layer includes inference re-
lations we already know, e.g., true inferences from
the gold labels or ontologies; the feature layer in-
cludes the observed features for all lexicon pairs to
be predicted,i.e.,features for the testing data, and
the predicted layer saves the predicted inference
pairs, i.e., the relations of pairs in the testing data,
predicted by the model. As inference usually in-
volves available knowledge, the knowledge base
(KB) is shown in Figure 1 as well. KB contains
known information for the models. Therefore, in
this system, it includes the observed layer and the
feature layer which contain gold relations and the
features for the testing data respectively.

There has been several new rising research di-
rections involving lexical inference. The most rep-
resentative ones are the automatic problem solvers
and the open-domain question answering systems,
where inferring between events or states like Some
animals grow thick fur effecting Some animals
stay warm is critical (Clark et al., 2016). How-
ever, many recent works of lexical inference are
only designed for or being tested on nouns or noun
phrases (Jiang and Conrath, 1997; Kiela et al.,
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Figure 1: Three-layer lexical inference system.
Points of the same shape in each layer are the same
verbs; the solid arrow indicates the known infer-
ence relation; the dotted arrow indicates the hid-
den inference relation which can be inferred by the
known inference relations.

2015; Shwartz et al., 2016), which makes them
limited or not capable for these newly proposed
research problems.

In this paper, we adopt the probabilistic soft
logic (PSL) model to find lexical inference on Chi-
nese verbs toward the math word problem solver.
The contributions of this paper are listed as fol-
lows: (1) We build the largest Chinese verb lexical
inference dataset with four types of inference re-
lations as a potential testbed in the future. (2) We
show that in the proposed PSL model the transi-
tivity is easy to enabled and can benefit the lexical
inference on Chinese verbs. (3) We implement and
discuss the transitivity inter- and intra- layers and
conclude the transitivity within the observed layer
brings the most performance gain.

2 Related Work

One mainstream lexical inference extracts ei-
ther explicit or implicit features from the man-
ually constructed lexical knowledge. Szpek-
tor (2009) constructs a WordNet inference chain
through substitution relations (synonyms and hy-
pernyms) defined in WordNet. Aharon (2010)
proposed a FrameNet Entailment-rule Derivation
(FRED) algorithm to inference on the framework
of FrameNet. FrameNet models the semantic ar-
gument structure of predicates in terms of proto-
typical situation, which is called frames. Predi-
cates belong to the same frames are highly related
to a specific situation defined for the frame. There-
fore, it is intuitive to acquire lexical inference pairs
from predicates in the same frame. However, no
matter WordNet or FrameNet was used, the cov-

erage problem was always an issue when lever-
aging handcraft resources. Moreover, the rela-
tions of verbs in WordNet are rather flat compared
to nouns, which brings problems when directly
adopting approaches utilizing WordNet to detect
the inference between verbs.

An unsupervised concept, distributional simi-
larity, for measuring relations between words was
proposed to overcome the coverage problem. Dis-
tributional similarity related algorithms utilized a
large, unstructured corpus to learn lexical entail-
ment relations by assuming that semantically sim-
ilar lexicons appear with similar context (Harris,
1954). Various implementations were proposed
to assess contextual similarity between two lexi-
cons, including (Berant et al., 2010; Lin and Pan-
tel, 2001; Weeds et al., 2004). Lin Similarity, or
known as DIRT, is one commonly adopted method
to measure the lexical context similarity (Lin and
Pantel, 2001). Instead of applying the Distribu-
tional Hypothesis to verbs, Lin applied this hy-
pothesis to the paths in dependency trees. They
hypothesize that the meaning of two phrases is
similar, if their paths tend to link the same sets
of words in a dependency tree. Later, Weeds and
Weir (2004) proposed a general framework for di-
rectional similarity measurement. The measure-
ment examined the coverage of word wl’s features
against those ofwr’s, and more coverage indicated
more similarity.

Lin Similarity generates errors as its symmet-
ric structure cannot tell the difference between
wl → wr and wr → wl. That is, it makes errors
on non-symmetric examples, like buy → take.
Moreover, Weeds’ method generates high score
when an infrequent lexicon has features similar
to those of another lexicon, which harms the per-
formance as it happens a lot for non-entailed lex-
icons. Therefore, Szpektor and Dagan (2008a)
proposed a hybrid method Balanced-Inclusion,
BInc, and it was proved to outperform methods
proposed prior to it. In this paper, we adopt BInc
measurement and complement with lexical re-
source method to construct a hybrid model, which
was proved to outperform both methods separately
on our dataset.

Recent research is exploiting the effect of tran-
sitivity during model training. The intuition is that
some implicit entailment relation is difficult to be
identified when there is no direct features support-
ing it. Sometimes previous work could find the
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entailment pairs w1 → w2 and w2 → w3, but
failed to answer distant entailment relation like
w1 → w3. Skeptor and Dagan (2009) first applied
transitive chaining in the knowledge provided by
the lexical ontology Wordnet (Miller, 1995) in the
feature layer. Berant et al. (2011) built a lexical
entailment knowledge graph given the predicted
results from the base classifier. They used inte-
ger linear programming (ILP) to find the latent
entailment in the prediction cascade, which tran-
sits in the prediction layer. Kloetzer et al. (2015),
whose system outperformed Berant et al.’s on their
own corpus, further use cascade entailment infer-
ence in the feature layer. They applied short tran-
sitivity optimization by a two-layered SVM clas-
sifier (Kloetzer et al., 2015). A set of candidate
transitivity paths were created by concatenating
two identified inference pairs from the first SVM
classifier, e.g., w1 → w2 and w2 → w3 result
in a candidate path w1 → w2 → w3. Then the
two-layered SVM classifier re-predicted whether
there was an inference relation for the lexical pair
w1 → w3. However, none of these models takes
into account transitivity in the observed layer or
transitivity between two layers.

We select probabilistic soft logic (PSL) to
model the lexical inference problem. PSL is a re-
cently proposed alternative framework for prob-
abilistic logic (Bach et al., 2015). It was first
applied to the category prediction and similar-
ity propagation on Wikipedia documents to align
ontologies on a standard corpus of bibliographic
ontology (Brocheler et al., 2012). It has been
adopted in social network analysis, including so-
cial group modeling (Huang et al., 2012) and so-
cial trust analysis (Huang et al., 2013). For nat-
ural language processing, recently, Dhanya Srid-
har (2014) applied the PSL model to stance classi-
fication of on-line debates. Islam Beltagy (2014)
approached the textual problem by transforming
sentences into their logic representations and ap-
plying a PSL model to analyze word-to-word se-
mantic coverage between the hypothesis and the
premise. All these show that PSL is good at cap-
turing relations. However, PSL has not been uti-
lized yet in the lexical inference problem, and its
power to provide lexical transitivity has not been
tested, either. Thus in this paper, we explore its
ability on detecting verb lexical inference and on
enabling the transitivity.

3 Approach

We start from describing the features for each lex-
icon pair. To use PSL, we define atoms and de-
sign rules to enable the inter- and intra-layer tran-
sitives. Finally, PSL will automatically learn the
rule weights by MLE to yield the best results.

3.1 Lexicon Pair Features
3.1.1 Lexical ontology features
E-HowNet is a large Chinese lexical resource ex-
tended from HowNet (Dong and Dong, 2006).
Manually constructed by several linguistic ex-
perts, it contains 93,953 Chinese words and 9,197
semantic types (concepts; some are sememes). It
was designed as an ontology of semantic types,
each is listed in both Chinese and in English. For
example, one semantic type is (Give|給). Each
semantic type has some instances which inherit the
concept of it. Lexical relations are also defined. In
addition to hypernym-hyponym pairs, E-Hownet
contains conflation pairs, including preconditions
like (Divorce|離婚) is to (GetMarried|結婚), con-
sequences like (Labor|臨產) is to (Pregnant|懷
孕), and same-events like (Sell|賣) is to (Buy|買).
The hypernym-hyponym relation and the confla-
tion relation are two features that we use to repre-
sent a lexicon pair.

3.1.2 Cohesion path score
Given two semantically related words, a key as-
pect of detecting lexical inference is the gener-
ality of the hypothesis compared to the premise.
Though we have a lexical ontology to tell us ex-
plicitly the hypernym-hyponym relations, a score
to estimate the degree of this compared generality
is still necessary for model learning. Therefore,
We define the cohesion score of a semantic type
with E-Hownet to model the generality. For each
semantic type si ∈ S which has a set of instantiate
words Vsi, the cohesion score of si is calculated as

Coh (si) = 1
N

∑
v1 6=v2 sim (v1, v2) ;

v1, v2 ∈ Vsi

(1)

where sim(v1, v2) is the word-embedding cosine
similarity of words v1 and v2.

We construct a graph by considering hypernym,
hyponym, and conflation relations in E-HowNet
where nodes are semantic types and instantiate
words, and where edges are relations. Given a
word pair (vl, vr), a set of paths P from vl to
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vr can be found by traversing this graph, each of
which is denoted as p with edges in the edge set
E. Each of these edges in E is represented by the
triple e(n1, n2, typee), where node n2 is of type
typee to node n1. Nodes here can be a word or a
semantic type. The PathScore(p) is defined as:

PathScore(p) =∏
e∈Ep

{
coh(se), typee = Hyponym
1, otherwise

(2)

The idea of PathScore(p) is to calculate the gen-
erality lost, which is caused by hyponym rela-
tions, of each step of inference. The hypernym or
conflation relation does not lose generality, so the
PathScore(p) is always 1.

Empirically, those path p whose length exceed
10 are dropped as the inference chain is too long.
Finally, the cohesion path score of word pair
(v1, v2) is defined as:

CohPathScore(v1, v2) =
ln(maxp∈PPathScore(p))− ln(m)

ln(M)− ln(m)
(3)

while M and m are the Maximum and Mini-
mum PathScore respectively. The cohesion path
score also serves as a feature to build the PSL
model.

3.1.3 Distributional similarity
Distributional semantics has been used to exploit
the semantic similarities of the linguistic items
through large language data.

We applied the CKIP parser 1, a well-known
Chinese text parser, to raw sentences. Context of
words are extracted as features fs of words, ac-
cording to parsed sentence trees.

Some pre-prosessing steps are performed.
Words appearing only once in the corpus are
dropped to reduce Chinese segmentation error.
For each Word v, we retrieve all the words that
share at least one feature with w and call them
candidate words. Drop the candidate word if it
shares less than 1 percent features, counted by fre-
quency, with word w. We then calculate the distri-
butional similarity score between w and its candi-
date words.

Balanced-inclusion (BInc, (Szpektor and Da-
gan, 2008a)) is a well-known scoring function for

1CKIP parser : http://parser.iis.sinica.edu.tw/

determining lexical entailment. It contains two
parts, one is semantic similarity measurement, and
one is semantic coverage direction measurement.
Given two words wl, wr and their feature sets Fl,
Fr, the semantic similarity between wl and wr
is calculated by Lin similarity (Lin and Pantel,
2001):

Lin(vl, vr) =

∑
f∈Fl∩Fr

[wvl(f) + wvr(f)]∑
f∈Fl

wvl(f) +
∑

f∈Fr
wvr(f)

(4)
The coverage direction measurement, which

provides clues of direction of entailment relation,
is calculated by Weed’s (Weeds et al., 2004) cov-
erage measurement:

weed(vl, vr) =

∑
f∈Fl∩Fr

wvl(f)∑
f∈Fl

wvl(f)
(5)

The weight of each feature w(f) is the Point-
wise Mutual Information (PMI) between the word
v and the feature f :

wv(f) = log[
pr(f |v)
pr(f)

] (6)

where pr(f) is probability of feature f . BInc is
defined as geometric mean of the above two:

BInc(vl, vr) =
√
Lin(vl, vr) ·Weed(vl, vr)

(7)
To compare BInc’s performance to the proposed

PSL model and utilize it as a feature, we imple-
mented it on the Chinese experimental dataset to
calculate the BInc score of each lexicon pair.

3.1.4 Word Embeddings
Previous work has shown that word embeddings
work well on entailment relation recognition of
noun-noun pairs and (adj+noun)-noun pairs (Ba-
roni et al., 2012; Roller et al., 2014). We choose
glove (Pennington et al., 2014) to train embed-
dings of each word, and concatenate the embed-
ding of two words to create the embedding for
each word pair. This embedding then serves as the
feature in the rbf-kernel SVM classifier to predict
the entailment relation of the corresponding word
pair.

3.2 Probabilistic Soft Logic (PSL)
We use the PSL model to find the latent infer-
ence relations by enabling the transitivity of lex-
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ical relations. The lexical relations include fea-
tures described in Section 3.1, and the known in-
ference relations in the observed layer. In PSL,
each relation of the lexicon pair vl, vr is writ-
ten as a (ground) atom a(vl, vr) in the logic lan-
guage. The description of the transitivity of atoms
ai(v1, v2), aj(v2, v3) and its latent inference rela-
tion, Etl(v1, v3) is written as a rule in the logic
language:

ai(v1, v2) ∧ aj(v2, v3)→ Etl(v1, v3) (8)

Each rule is assigned a weight to denote the re-
liability of the hypothesis that given ai(v1, v2),
aj(v2, v3) are true, Etl(v1, v3) is also true. The
PSL model learns the rule weights by the training
set. We encode the transitivity inter-(i = j) and
intra-(i 6= j) different types of relations and their
resulting latent inference relation to construct the
experimental rule set.

Given a set of (ground) atoms a = {a1, ..., an},
we denote an interpretation the mapping I : a →
[0, 1]n from ground atoms to soft truth value. The
distance to satisfaction of each ground rule is de-
fined as:

d(r, I) = max{0, I(rantecedent)− I(rconsequent)}
(9)

The PSL model learns the weights λr of these
rules and optimizes the most probable interpreta-
tion of entailment relations, through the probabil-
ity density function f over I:

f(I) =
1
Z

exp[−
∑

r∈R λr(d(r, I))
p]; (10)

where Z is the normalization term, λr is the
weight of rule r, R is the set of all ground rules,
and p ∈ {1, 2}. In this paper, we set p to 2, indi-
cating a squared function.

In the following section, we are going to de-
scribe the atoms defined in our lexical inference
model in Section 3.2.1. Then rules are defined in
Section 3.2.2. Last, weight learning is described
in Section 3.2.3

3.2.1 Atoms for PSL
Atoms are types of information provided in
Knowledge base in PSL model, Table 1 lists all
atoms defined in our lexical inference model. Etl
denotes the entailment relation serving as the pre-
diction target. It is the only unknown atom.
In PSL model the number of prediction target

grows quadratically with the number of the enti-
ties (verbs), if no limitation is provided, which is
not desired and is time consuming. Thus Cdd in-
dicates canopies (McCallum et al., 2000) over the
prediction target. Hypr, Con, Coh, and BInc
are the hypernym, conflation, cohesion path score,
and distributional similarity score BInc features
described in Section 3.1. Svm is the prediction
of SVM classifier which takes concatenation of
word embeddings as feature. Obv represents the
knowledge of observed entailment lexical pairs for
the training phase. Note that the set of pairs with
Obv = true must not overlap with the testing set.

3.2.2 Inference rules for PSL
Having defined the atoms, the five features Hypr,
Con, BInc, Coh, and Svm are used in the de-
sign of five basic rules in Eq. 11. We further apply
the inference chain by concatenating two atoms to
create 25 rules shown as Eq.12 for feature-layer
transitivity. For transitivity in the observed layer,
we concatenate Obv atoms as shown in Eq.13.
Then we concatenate Obv with other features and
vice versa to add 10 additional rules shown as in
Eq.14,15 for bidirectional transitives between the
feature and the observed layers. Finally, the rule
¬Etl(v1, v2) states that v1 does not entail v2 if the
previous rules are not applicable.

Rel(v1, v2)→ Etl(v1, v2);
Rel ∈ {Hypr, Con,BInc, Coh, Svm} (11)

Rel(v1, v2) ∧Rel(v2, v3)→ Etl(v1, v3) (12)

Obv(v1, v2) ∧Obv(v2, v3)→ Etl(v1, v3)
(13)

Obv(v1, v2) ∧Rel(v2, v3)→ Etl(v1, v3)
(14)

Rel(v1, v2) ∧Obv(v2, v3)→ Etl(v1, v3)
(15)

3.2.3 Learning inference rule weights
The rule weights(λr) are determined using
maximum-likelihood estimation.

∂

∂λr
log p(I) =

−
∑

r∈Ri

(d(r, I)) + E
[∑

r∈Ri

(d(r, I))
]
(16)
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Atom Name Description

Cdd(v1,v2)
Canopies over prediction target. Return 1 if (v1,v2) is the prediction target
in the task

Etl(v1,v2) Entail statement which is the prediction target.
Hypr(s1,s2) Hypernym relation between two semantic concept: s1 is hypernym of s2.
Con(s1,s2) Conflation relation between two semantic types.
Ehow(v1, v2) E-HowNet algorithm.
Dis(v1,v2) BInc between v1 and v2.
Svm(v1,v2) Svm prediction featured by word embeddings
Obv(v1,v2) Observed entail statement.

Table 1: List of atoms in lexical inference model

The expected value E
[∑

r∈Ri
(d(r, I))

]
is

intractable. Thus it is approximated via∑
r∈Ri

dr(I∗), where I∗ is the most prob-
able interpretation given the current weight
(Kimmig et al., 2012).

4 Evaluation

4.1 Experiment Dataset

There are some of entailment dataset open to
research utility, but the Chinese Verb entail-
ment dataset (CVED) is special in some way.
First, most of the open entailment dataset in-
clude the entailment between noun-noun pairs,
adjective noun-noun pairs, and quantity noun-
quantity noun pairs, but none of them consider the
entailment between verb-verb pairs like CVED.
Second, in my knowledge, our CVED is the largest
Chinese entailment dataset.

To get more verb lexical inference pairs for our
experiments, we collected verb pairs from math
application problems, which usually contain log-
ical relations in the descriptions for each problem.
A total of 995 verbs and 18,029 verb pairs were
extracted from 20,000 Chinese elementary math
problems, where the verbs in each pair are from
the same problem. Few types of verb are dis-
carded, including V 1, V 2, VH, VI, VJ, VK and
VL ,which are adjective2 and statement associated
verbs defined in CKIP3.

Given a set of verbs extracted from a math
problem, every possible directed verb pair was
labeled. If there were n verbs, n × (n − 1)
directed verb pairs (vi → vj) were collected,
where vi is the premise and vj is the hypothesis.
For example, if we extracted “sell”, “buy”, and

2Adjective words are seen as kind of verbs in CKIP
3http://rocling.iis.sinica.edu.tw/CKIP/tr/

9305 2013%20revision.pdf

“pay” from the descriptions of the problem, we
added six directed verb pairs to the annotation set:
{(sell, buy), (sell, pay), (buy, pay), (buy, sell),
(pay, sell), (pay, buy)} We provide four types
of entailment label in CVED. One is commonly
seen hypernym relation. The same-event relations
are verb pairs related to same thing but in differ-
ent point of view Some examples are (sell, buy)
and (give, got). These are used by most earlier
research or in small-scale experiments (Szpektor
and Dagan, 2008b; Kiela et al., 2015). Another
two are casual relations, as premises in the pre-
condition and consequence relations are likely to
be true given their hypothesis in our daily life,
and because these relations are more useful in real
applications, we further consider these relations
as entailment relations. These relations are usu-
ally selected for web-scale experiments (Aharon
et al., 2010; Berant et al., 2011; Kloetzer et al.,
2015). Among all experimental verb pairs, 10%
were used for testing, 10% were used for develop-
ing and the remaining dataset was for training. A
five-fold training process was performed to learn
the best parameters for the testing model.

4.2 Experiment Setting

To achieve better performance, weights are ran-
domly initialized and retrained 10 times for each
fold. The best combination is derived by averaging
the five best weight sets obtained in the five-fold
cross-validation process. Two baselines are pro-
vided for the evaluation of the models with transi-
tivity disabled. Hyper+Conf is the ontology-based
baseline. In this setting, verb pairs with hyper-
nym and conflation relations found in E-Hownet
are reported as entailment pairs. BInc is the distri-
butional similarity baseline, where we set a best
threshold for the development set and apply it
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Precision Recall F1
Hyper+Conf 0.547 0.189 0.281
BInc 0.150 0.098 0.119
PSL 0.270 0.474 0.344

Table 2: Model performance: transitivity disabled.

to the testing set to identify the entailment rela-
tion. The 20,000 elementary math problems to-
gether with 61,777 sentences from Sinica Tree-
bank4 are utilized to calculate the BInc score of
each verb pair. A set of 300 dimensional word
embedding representation is trained by a hybrid of
Sinica Treebank, elementary math problems and
Chinese Wikipedia.

To discuss the effect of transitivity within
(intra-) and between (inter-) different layers,
we build three additional models for PSL.
PSL TrFeat allows transitivity within the fea-
ture layer, PSL TrObv allows transitivity within
the observed layer on top of PSL TrFeat, and
PSL TrFeatObv allows transitivity betwen the ob-
served layer and the feature layer on top of
PSL TrObv. Here we set the degree of transitiv-
ity to 2, and leave the determination of the best
transitivity degree as future work. For comparison,
we implement a SVM baseline ,the state-of-the-art
entailment classifier (Kloetzer(base)), and its tran-
sitivity framework (Kloetzer(TrFeatPred)) (Kloet-
zer et al., 2015). We use rbf-kernel SVM and the
other hyper-parameters are selected from the 5-
fold training.

4.3 Results and Discussion

Table 2 shows the performance of the proposed
PSL model when transitivity is disabled (PSL).
Unsurprisingly, Hyper+Conf achieves the high-
est precision as the relations found in E-Hownet
are built manually. False alarms come from pairs
that contain various unknown Chinese compound
words that E-Hownet does not include, e.g., 分
給(distribute to) is composed of 分(issue) and
給(give). We attempt to find its head to deter-
mine its sense, which sometimes causes errors.
Compared to BInc, though in general distribu-
tional approaches may outperform ontology-based
approaches at least in recall, Hyper+Conf still per-
forms much better. We think the reason is that E-
Hownet already contains a large number of words

4sinica treeback: http://rocling.iis.sinica.edu.tw/CKIP/
engversion/treebank.htm

and adopting the heuristic of finding the head for
compound words which could mitigates the cover-
age problem.

Table 3 shows the performance of various PSL
models when transitivity is enabled. We conduct a
SVM baseline, SVM(w2v), by concatenating the
word embeddings of two verbs as the features of
the verb pair and it performs comparably well,
indicating word embeddings are strong features.
Therefore, we discuss the effect of the strong and
the weak base settings here. The strong base set-
ting involves the prediction of SVM by word em-
beddings (relation SVM), while the weak base set-
ting involves the rest relations Hypr, Con, BInc
and Coh. The SVM model from Kloetzer serves
as the second baseline. It involves more than 100
features but does not include word embeddings,
and hence we compare it with the PSL models
of the weak base setting. For the weak base set-
ting, the performance of PSL cannot beat that of
Kloetzer’s SVM in the very beginning, as SVM
is generally considered a more powerful classifier
and the Kloetzer’s SVM model involves compa-
rably more features. Surprisingly, this state-of-
the-art model from Kloetzer does not improve its
F1 score after enabling the transitivity in the fea-
ture layer by their transitivity framework. (Kloet-
zer(TrFeatPred) vs. Kloetzer(base): they report
a 2% improvement in average precision in their
paper.) For the proposed PSL models, enabling
transitivity in the feature layer (PSL(TrFeat) vs.
PSL(base)) does improve the F1 score from the
gain of recall. The reason for this could be that
the transitivities of Kloetzer’s features depend on
the transitivities of the prediction results. If the
predictions don’t indicate a path to transit, their
features will not be combined together for the next
prediction. Therefore, their transitivity framework
may involve the noise from the first prediction.
On the contrary, in our PSL models, all possi-
ble feature-layered transitivities between pairs are
explored. Hence, our feature-layered transitivity
models have the capabilities to improve the recall.

A significant improvement comes from en-
abling transitivity in the observed layer, that is,
if we know w1 → w2 and w2 → w3, we add
w1 → w3 to the gold labels. As the relations in the
observed layer constitute prior knowledge (known
from the training data and saved in the PSL knowl-
edge base), inferring from one relation to the other
involves less uncertainty. Therefore, compared to
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Precision Recall F1
SVM(w2v) 0.850 0.500 0.630
PSL(WeakBase) 0.314 0.570 0.405
PSL(WeakBase TrFeat) 0.348 0.645 0.452
PSL(WeakBase TrObv) 0.675 0.577 0.622
PSL(WeakBase TrFeatObv) 0.544 0.613 0.577
Kloetzer(base) 0.390 0.590 0.469
Kloetzer(TrFeatPred) 0.385 0.604 0.470
PSL(StrongBase) 0.670 0.649 0.660
PSL(StrongBase TrFeat) 0.667 0.649 0.658
PSL(StrongBase TrObv) 0.624 0.757 0.684
PSL(StrongBase TrFeatObv) 0.612 0.764 0.680

Table 3: Model performance: transitivity enabled. PSL(StrongBase TrObv) is significantly better than
all the other models with p-value < 0.001.

PSL(WeakBase TrFeat), PSL(WeakBase TrObv)
shows a great improvement in both preci-
sion and F1. For recall, the feature-layer
transitivity (PSL(WeakBase TrFeat)) enables the
model to reach more words for a better re-
call, while the enrichment of the prior knowl-
edge in PSL(WeakBase TrObv) helps to elim-
inate uncertainty but decreases recall. If we
go further to enable transitivity between the ob-
served layer and the feature layer using model
PSL(WeakBase TrFeatObV), it begins to suffer
from the lower precision caused by longer transi-
tivity. Overall, PSL(WeakBase TrObV) achieves
best among all PSL(WeakBase) models, with im-
provements of 21.7% over the transitivity-disabled
PSL model.

Compared to the models of the weak base
setting, the PSL model of the strong base set-
ting without transitivity enabled has achieved
good performance in the very beginning
(F1=0.66). Its performance is better than
3 baselines, SVM(w2v), Kloetzer(base) and
Kloetzer(TrFeatPred). It also performs better
than the best PSL model of the weak base set-
ting, PSL(WeakBase TrObv). The great thing
is, enabling transitivity achieves even better
performance in PSL(StrongBase TrObv) and
PSL(StrongBase TrFeatObv). For all models
of the strong base settings, only enabling the
transitivity in the feature layer does not benefit the
performance as this decreases the precision.

From all the experiment results, we can con-
clude the followings. First, enabling transitivi-
ties help to find more inference pairs no matter
the initial model is strong or weak. Second, for

a general model, transitivities inter- or intra- lay-
ers both help it become stronger; however, for a
strong model, only the transitivities intra- or in-
ter the observed layer, i.e., involving the gold la-
bels, contribute to the performance gain. In other
words, only solid knowledge can make a strong
model even stronger through transitivities.

5 Conclusion

We have proposed a PSL model to explore the
power of transitivity. In this process, the easy
and straightforward nature of PSL in considering
transitives for lexical inference is demonstrated.
Results show that the best PSL model achieves
the F1 score 0.684. Moreover, the proposed base
PSL model has already achieved well and mod-
els with transitivity enabled achieve even better,
which confirms the power of transitivity for solv-
ing the lexical inference problem on verbs. We
will release the current experimental dataset. Fu-
ture goals include enlarging our dataset by includ-
ing web word pairs and applied the predicted re-
sults in textual entailment tasks. The constructed
CVED dataset can be found in the NLPSA lab
webpage5.
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Abstract

In this work, we explore multiple neu-
ral architectures adapted for the task of
automatic post-editing of machine trans-
lation output. We focus on neural end-
to-end models that combine both inputs
mt (raw MT output) and src (source lan-
guage input) in a single neural architec-
ture, modeling {mt, src} → pe directly.
Apart from that, we investigate the influ-
ence of hard-attention models which seem
to be well-suited for monolingual tasks, as
well as combinations of both ideas. We
report results on data sets provided dur-
ing the WMT-2016 shared task on au-
tomatic post-editing and can demonstrate
that dual-attention models that incorporate
all available data in the APE scenario in a
single model improve on the best shared
task system and on all other published re-
sults after the shared task. Dual-attention
models that are combined with hard atten-
tion remain competitive despite applying
fewer changes to the input.

1 Introduction

Given the raw output of a (possibly unknown) ma-
chine translation system from language src to lan-
guage mt, Automatic Post-Editing (APE) is the
process of automatic correction of raw MT output
(mt), so that a closer resemblance to human post-
edited MT output (pe) is achieved. While APE
systems that only model mt → pe yield good re-
sults, the field has always strived towards methods
that also integrate src in various forms.

With neural encoder-decoder models, and
multi-source models in particular, this can be now
achieved in more natural ways than for previously
popular phrase-based statistical machine transla-

tion (PB-SMT) systems. Despite this, previously
reported results for multi-source or dual-source
models in APE scenarios are unsatisfying in terms
of performance.

In this work, we explore a number of single-
source and dual-source neural architectures which
we believe to be better fits to the APE task than
vanilla encoder-decoder models with soft atten-
tion. We focus on neural end-to-end models that
combine both inputs mt and src in a single neu-
ral architecture, modeling {mt, src} → pe di-
rectly. Apart from that, we investigate the influ-
ence of hard-attention models, which seem to be
well-suited for monolingual tasks. Finally, we cre-
ate combinations of both architectures.

We report results on data sets provided dur-
ing the WMT-2016 shared task on automatic post-
editing (Bojar et al., 2016) and compare our per-
formance against the shared task winner, the sys-
tem submitted by the Adam Mickiewicz Univer-
sity (AMU) team (Junczys-Dowmunt and Grund-
kiewicz, 2016), and a more recent system by Pal
et al. (2017) with the previously best published re-
sults on the same test set.

Our main contributions are: (1) we perform
a thorough comparison of end-to-end neural ap-
proaches to APE during which (2) we demon-
strate that dual-attention models that incorporate
all available data in the APE scenario in a sin-
gle model achieve the best reported results for the
WMT-2016 APE task, and (3) show that models
with a hard-attention mechanism reach competi-
tive results although they execute fewer edits than
models relying only on soft attention.

The remainder of the paper is organized as fol-
lows: Previous relevant work is described in Sec-
tion 2. Section 3 summarizes the basic encoder-
decoder with attention architecture that is fur-
ther extended with multiple non-standard attention
mechanisms in Section 4. These attention mecha-
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nisms are: hard-attention in Section 4.1, a combi-
nation of hard attention and soft attention in Sec-
tion 4.2, dual soft attention in Section 4.3 and a
combination of hard attention and dual soft atten-
tion in Section 4.4. We describe experiments and
results in Section 5 and conclude in Section 7.

2 Previous work

Before the application of neural sequence-to-
sequence models to APE, most APE systems
would rely on phrase-based SMT following a
monolingual approach first introduced by Simard
et al. (2007). Béchara et al. (2011) proposed
a “source-context aware” variant of this ap-
proach where automatically created word align-
ments were used to create a new source language
which consisted of joined MT output and source
token pairs. The inclusion of source-language
information in that form was shown to improve
the automatic post-editing results (Béchara et al.,
2012; Chatterjee et al., 2015). The quality of the
used word alignments plays an important role for
this methods, as demonstrated for instance by Pal
et al. (2015).

During the WMT-2016 APE shared task two
systems relied on neural models, the CUNI sys-
tem (Libovický et al., 2016) and the shared task
winner, the system submitted by the AMU team
(Junczys-Dowmunt and Grundkiewicz, 2016).
This submission explored the application of neu-
ral translation models to the APE problem and
achieved good results by treating different mod-
els as components in a log-linear model, allowing
for multiple inputs (the source src and the trans-
lated sentence mt) that were decoded to the same
target language (post-edited translation pe). Two
systems were considered, one using src as the in-
put (src → pe) and another using mt as the input
(mt → pe). A simple string-matching penalty in-
tegrated within the log-linear model was used to
control for higher faithfulness with regard to the
raw MT output. The penalty fired if the APE sys-
tem proposed a word in its output that had not
been seen in mt. The influence of the components
on the final result was tuned with Minimum Error
Rate Training (Och, 2003) with regard to the task
metric TER.

Following the WMT-2016 APE shared task, Pal
et al. (2017) published work on another neural
APE system that integrated precomputed word-
alignment features into the neural structure and en-

forced symmetric attention during the neural train-
ing process. The result was the best reported sin-
gle neural model for the WMT-2016 APE test set
prior to this work. With n-best list re-ranking and
combination with phrase-based post-editing sys-
tems, the authors improved their results even fur-
ther. None of their systems, however, integrated
information from src, all modeled mt→ pe.

3 Attentional Encoder-Decoder

Implementations of all models explored in this pa-
per are available in the Marian1 toolkit (Junczys-
Dowmunt et al., 2016). The attentional encoder-
decoder model in Marian is a re-implementation
of the NMT model in Nematus (Sennrich et al.,
2017). The model differs from the standard model
introduced by Bahdanau et al. (2015) by several
aspects, the most important being the conditional
GRU with attention. The summary provided in
this section is based on the description in Sennrich
et al. (2017).

Given the raw MT output sequence
(x1, . . . , xTx) of length Tx and its manually
post-edited equivalent (y1, . . . , yTy) of length Ty,
we construct the encoder-decoder model using the
following formulations.

Encoder context A single forward encoder state−→
h i is calculated as:

−→
h i = GRU(

−→
h i−1,F[xi]),

where F is the encoder embeddings matrix. The
GRU RNN cell (Cho et al., 2014) is defined as:

GRU (s,x) =(1− z)� s + z� s, (1)

s = tanh (Wx + r�Us) ,
r = σ (Wrx + Urs) ,
z = σ (Wzx + Uzs) ,

where x is the cell input; s is the previous recurrent
state; W, U, Wr, Ur, Wz , Uz are trained model
parameters2; σ is the logistic sigmoid activation
function. The backward encoder state is calculated
analogously over a reversed input sequence with
its own set of trained parameters.

Let hi be the annotation of the source symbol
at position i, obtained by concatenating the for-
ward and backward encoder RNN hidden states,
hi = [

−→
h i;
←−
h i], the set of encoder states C =

{h1, . . . ,hTx} then forms the encoder context.
1https://github.com/marian-nmt/marian
2Biases have been omitted.

121



Decoder initialization The decoder is initial-
ized with start state s0, computed as the average
over all encoder states:

s0 = tanh

(
Winit

∑Tx
i=1 hi
Tx

)
.

Conditional GRU with attention We follow
the Nematus implementation of the conditional
GRU with attention, cGRUatt:

sj = cGRUatt (sj−1,E[yj−1],C) , (2)

where sj is the newly computed hidden state, sj−1

is the previous hidden state, C the source context
and E[yj−1] is the embedding of the previously
decoded symbol yi−1.

The conditional GRU cell with attention,
cGRUatt, has a complex internal structure, consist-
ing of three parts: two GRU layers and an inter-
mediate attention mechanism ATT.

Layer GRU1 generates an intermediate repre-
sentation s′j from the previous hidden state sj−1

and the embedding of the previous decoded sym-
bol E[yj−1]:

s′j = GRU1 (sj−1,E[yj−1]) .

The attention mechanism, ATT, inputs the en-
tire context set C along with intermediate hidden
state s′j in order to compute the context vector cj
as follows:

cj =ATT
(
C, s′j

)
=

Tx∑
i

αijhi,

αij =
exp(eij)∑Tx
k=1 exp(ekj)

,

eij =vᵀ
a tanh

(
Uas′j + Wahi

)
,

where αij is the normalized alignment weight be-
tween source symbol at position i and target sym-
bol at position j, and va,Ua,Wa are trained
model parameters.

Layer GRU2 generates sj , the hidden state of
the cGRUatt, from the intermediate representation
s′j and context vector cj :

sj = GRU2

(
s′j , cj

)
.

Deep output Finally, given sj , yj−1, and cj , the
output probability p(yj |sj , yj−1, cj) is computed
by a softmax activation as follows:

p(yj |sj ,yj−1, cj) = softmax (tjWo) ,
tj = tanh (sjWt1 + E[yj−1]Wt2 + cjWt3) .

Wt1 ,Wt2 ,Wt3 ,Wo are the trained model pa-
rameters.

This rather standard encoder-decoder model
with attention is our baseline and denoted as
CGRU.

4 Encoder-Decoder Models with
APE-specific Attention Models

The following models reuse most parts of the
architecture described above wherever possible,
most differences occur in the decoder RNN cell
and the attention mechanism. The encoders are
identical, so are the deep output layers.

4.1 Hard Monotonic Attention
Aharoni and Goldberg (2016) introduce a sim-
ple model for monolingual morphological re-
inflection with hard monotonic attention. This
model looks at one encoder state at a time, start-
ing with the left-most encoder state and progress-
ing to the right until all encoder states have been
processed.

The target word vocabulary Vy is extended with
a special step symbol (V ′y = Vy ∪ {〈STEP〉}) and
whenever 〈STEP〉 is predicted as the output sym-
bol, the hard attention is moved to the next encoder
state. Formally, the hard attention mechanism
is represented as a precomputed monotonic se-
quence (a1, . . . , aTy) which can be inferred from
the target sequence (y1, . . . , yTy) (containing orig-
inal target symbols and Tx step symbols) as fol-
lows:

a1 = 1,

aj =
{
aj−1 + 1 if yj−1 = 〈STEP〉
aj−1 otherwise.

For a given context C = {h1, . . . ,hTx}, the at-
tended context vector at time step j is simply haj .

Following the description by Aharoni and Gold-
berg (2016) for their LSTM-based model, we
adapt the previously described encoder-decoder
model to incorporate hard attention. Given the se-
quence of attention indices (a1, . . . , aTy), the con-
ditional GRU cell (Eq. 2) used for hidden state
updates of the decoder is replaced with a simple
GRU cell (Eq. 1) (thus removing the soft-attention
mechanism):

sj = GRU
(
sj−1,

[
E[yj−1];haj

])
, (3)

where the cell input is now a concatenation of the
embedding of the previous target symbol E[yj−1]
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and the currently attended encoder state haj . This
model is labeled GRU-HARD.

We find this architecture compelling for mono-
lingual tasks that might require higher faithfulness
with regard to the input. With hard monotonic at-
tention, the translation algorithm can enforce cer-
tain constraints:

1. The end-of-sentence symbol can only be gen-
erated if the hard attention mechanism has
reached the end of the input sequence, en-
forcing full coverage;

2. The 〈STEP〉 symbol cannot be generated once
the end-of-sentence position in the source has
been reached. It is however still possible to
generate content tokens.

This model requires a target sequence with
correctly inserted 〈STEP〉 symbols. For the de-
scribed APE task, using the Longest Common
Subsequence algorithm (Hirschberg, 1977), we
first generate a sequence of match, delete and in-
sert operations which transform the raw MT out-
put (x1, · · ·xTx) into the corrected post-edited se-
quence (y1, · · · yTy)3. Next, we map these opera-
tions to the final sequence of steps and target to-
kens according to the following rules:

• For each matched pair of tokens x, y we pro-
duce symbols: 〈STEP〉 y;

• For each inserted target token y we produce
the same token y;

• For each deleted source token x we produce
〈STEP〉;

• Since at initialization of the model a1 = 1,
i.e. the first encoder state is already attended
to, we discard the first symbol in the new se-
quence if it is a 〈STEP〉 symbol.

4.2 Hard and Soft Attention

While the hard attention model can be used to en-
force faithfulness to the original input, we would
also like the model to be able to look at informa-
tion anywhere in the source sequence which is a
property of the soft attention model.

By re-introducing the conditional GRU cell
with soft attention into the GRU-HARD model
while also inputting the hard-attended encoder

3Similar to GNU wdiff.

state haj , we can try to take advantage of both at-
tention mechanisms. Combining Eq. 2 and Eq. 3,
we get:

sj = cGRUatt
(
sj−1,

[
E[yj−1];haj

]
,C
)
. (4)

The rest of the model is unchanged; the transla-
tion process is the same as before and we use the
same target step/token sequence for training. This
model is called CGRU-HARD.

4.3 Soft Dual-Attention

Neural multi-source models (Zoph and Knight,
2016) seem to be a natural fit for the APE task as
raw MT output and original source language input
are available. Although applications to the APE
problem have been reported (Libovický and Helcl,
2017), state-of-the-art results seem to be missing.

In this section we give details about our dual-
source model implementation. We rename the ex-
isting encoder C to Cmt to signal that the first en-
coder consumes the raw MT output and introduce
a structurally identical second encoder Csrc =
{hsrc1 , . . . ,hsrcTsrc

} over the source language. To
compute the decoder start state s0 for the multi-
encoder model we concatenate the averaged en-
coder contexts before mapping them into the de-
coder state space:

s0 = tanh

(
Winit

[∑Tmt
i=1 hmti
Tmt

;
∑Tsrc

i=1 hsrci
Tsrc

])
.

In the decoder, we replace the conditional GRU
with attention, with a doubly-attentive cGRU cell
(Calixto et al., 2017) over contexts Cmt and Csrc:

sj = cGRU2-att
(
sj−1,E[yj−1],Cmt,Csrc

)
. (5)

The procedure is similar to the original cGRU,
differing only in that in order to compute the con-
text vector cj , we first calculate contexts vectors
cmtj and csrcj for each context and then concate-
nate4 the results:

4Calixto et al. (2017) combine their two attention models
by modifying their GRU cell to include another set of param-
eters that is multiplied with the additional context vector and
summed in the GRU-components. Formally, both approaches
give identical results, as for concatenation the original pa-
rameters have to grow in size to match the now longer input
vector dimensions. The GRU cell itself does not need to be
modified.
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s′j =GRU1 (sj−1,E[yj−1]) ,

cmtj =ATT
(
Cmt, s′j

)
=

Tmt∑
i

αijhmti ,

csrcj =ATT
(
Csrc, s′j

)
=

Tsrc∑
i

αijhsrci ,

cj =
[
cmtj ; csrcj

]
,

sj =GRU2

(
s′j , cj

)
.

This could be easily extended to an arbitrary
number of encoders with different architectures.
During training, this model is fed with a tri-
parallel corpus, and during translation both input
sequences are processed simultaneously to pro-
duce the corrected output. This model is denoted
as M-CGRU.

4.4 Hard Attention with Soft Dual-Attention
Analogously to the procedure described in sec-
tion 4.2, we can extend the doubly-attentive cGRU
to take the hard-attended encoder context as addi-
tional input:

sj = cGRU2-att

(
sj−1,

[
E[yj−1];hmtaj

]
,Cmt,Csrc

)
.

In this formulation, only the first encoder con-
text Cmt is attended to by the hard monotonic at-
tention mechanism. The target training data con-
sists of the step/token sequences used for all pre-
vious hard-attention models. We call this model
M-CGRU-HARD.

5 Experiments and Results

5.1 Training, Development, and Test Data
We perform all our experiments5 with the official
WMT-2016 (Bojar et al., 2016) automatic post-
editing data and the respective development and
test sets. The training data consists of a small
set of 12,000 post-editing triplets (src,mt, pe),
where src is the original English text, mt is
the raw MT output generated by an English-to-
German system, and pe is the human post-edited
MT output. The MT system used to produce the
raw MT output is unknown, so is the original train-
ing data. The task consists of automatically cor-
recting the MT output so that it resembles human

5All experiments in this sections can be reproduced
following the instructions on https://marian-nmt.
github.io/examples/exploration/.

Data set Sentences TER

training set 12,000 26.22
development set 1,000 24.81
test set 2,000 –

artificial-large 4,335,715 36.63
artificial-small 531,839 25.28

Table 1: Statistics for artificial data sets in com-
parison to official training and development data.
Adapted from Junczys-Dowmunt and Grund-
kiewicz (2016).

post-edited data. The main task metric is TER
(Snover et al., 2006) — the lower the better —
with BLEU (Papineni et al., 2002) as a secondary
metric.

To overcome the problem of too little training
data, Junczys-Dowmunt and Grundkiewicz (2016)
— the authors of the best WMT-2016 APE shared
task system — generated large amounts of artifi-
cial data via round-trip translations. The artificial
data has been filtered to match the HTER statistics
of the training and development data for the shared
task and was made available for download6. Ta-
ble 1 summarizes the data sets used in this work.

To produce our final training data set we over-
sample the original training data 20 times and add
both artificial data sets. This results in a total of
slightly more than 5M training triplets. We val-
idate on the development set for early stopping
and report results on the WMT-2016 test set. The
data is already tokenized. Additionally we true-
case all files and apply segmentation into BPE sub-
word units (Sennrich et al., 2016). We reuse the
subword units distributed with the artificial data
set. For the hard-attention models, we create tar-
get training and development files following the
LCS-based procedure outlined in section 4.1.

5.2 Training parameters

All models are trained on the same training data.
Models with single input encoders take only the
raw MT output (mt) as input, dual-encoder mod-
els use raw MT output (mt) and the original source
(pe). The training procedures and model settings
are the same whenever possible:

6The artificial filtered data has been made available
at https://github.com/emjotde/amunmt/wiki/
AmuNMT-for-Automatic-Post-Editing.
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dev 2016 test 2016
Model TER↓ BLEU↑ TER↓ BLEU↑
WMT-2016 BASELINE-1 (Bojar et al., 2016) 25.14 62.92 24.76 62.11
WMT-2016 BASELINE-2 (Bojar et al., 2016) – – 24.64 63.47
Junczys-Dowmunt and Grundkiewicz (2016) 21.46 68.94 21.52 67.65

Pal et al. (2017) SYMMETRIC – – 21.07 67.87
Pal et al. (2017) RERANKING – – 20.70 69.90

Table 2: Results from the literature for the WMT-2016 APE development and test set.

dev 2016 test 2016
Model TER↓ BLEU↑ TER↓ BLEU↑
CGRU 22.01 68.11 22.27 66.90

GRU-HARD 22.72 66.82 22.72 65.86
CGRU-HARD 22.11 67.82 22.10 67.15

M-CGRU 20.79 69.28 20.69 68.56
M-CGRU × 4 20.10 70.24 19.92 69.40

M-CGRU-HARD 20.83 69.02 20.87 68.14
M-CGRU-HARD × 4 20.08 70.05 20.34 68.96

Table 3: Results for models explored in this work. Models with × 4 are ensembles of four models. The
main WMT 2016 APE shared task metric was TER (the lower the better).

• All embedding vectors consist of 512 units;
the RNN states use 1024 units. We choose
a vocabulary size of 40,000 for all inputs
and outputs. When hard attention models are
trained the maximum sentence length is 100
to accommodate the additional step symbols,
otherwise 50.

• To avoid overfitting, we use pervasive
dropout (Gal and Ghahramani, 2016) over
GRU steps and input embeddings, with
dropout probabilities 0.2, and over source and
target words with probabilities 0.2.

• We use Adam (Kingma and Ba, 2014) as our
optimizer, with a mini-batch size of 64. All
models are trained with Asynchronous SGD
(Adam) on three to four GPUs.

• We train all models until convergence (early-
stopping with a patience of 10 based on
development set cross-entropy cost), sav-
ing model checkpoints every 10,000 mini-
batches. For different models we ob-
served early stopping to be triggered between
600,000 and 900,000 mini-batch updates or
between 8 and 11 epochs.

• The best eight model checkpoints w.r.t. de-
velopment set cross-entropy of each train-
ing run are averaged element-wise (Junczys-
Dowmunt et al., 2016) resulting in new sin-
gle models with generally improved perfor-
mance.

• For the multi-source models we repeat the
mentioned procedure four times with differ-
ent randomly initialized weights.

Training time for one model on four NVIDIA
GTX 1080 GPUs or NVIDIA TITAN X (Pascal)
GPUs is between one and two days, depending on
model complexity. The M-CGRU-HARD model is
the most complex and trains longest.

5.3 Evaluation

Table 2 contains relevant results for the WMT-
2016 APE shared task — during the task and af-
terwards. WMT-2016 BASELINE-1 is the raw un-
corrected MT output. BASELINE-2 is the result
of a vanilla phrase-based Moses system (Koehn
et al., 2007) trained only on the official 12,000
sentences. Junczys-Dowmunt and Grundkiewicz
(2016) is the best system at the shared task. Pal
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Model TER-pe TER-mt

CGRU 22.27 12.01

GRU-HARD 22.72 9.48
CGRU-HARD 22.10 11.57

M-CGRU 20.69 15.98
M-CGRU × 4 19.92 15.41

M-CGRU-HARD 20.87 13.62
M-CGRU-HARD × 4 20.34 13.34

Table 4: TER w.r.t. the reference compared to TER
w.r.t. the input on test 2016. Lower results for
TER-mt indicate greater similarity to the input.

et al. (2017) SYMMETRIC is the currently best re-
ported result on the WMT-2016 APE test set for
a single neural model (single source), whereas Pal
et al. (2017) RERANKING — the overall best re-
ported result on the test set — is a system com-
bination of Pal et al. (2017) SYMMETRIC with
phrase-based models via n-best list re-ranking.

In Table 3 we present the results for the mod-
els discussed in this work. Unsurprisingly, none
of the single attention models can compete with
the better systems reported in the literature. The
encoder-decoder model with only hard monotonic
attention (GRU-HARD) is the clear loser, while the
comparison between CGRU and CGRU-HARD re-
mains inconclusive. CGRU-HARD seems to gener-
alize slightly better, but would not have been cho-
sen based on the development set performance.

The dual-attention models each outperform the
best WMT-2016 system and the currently reported
best single-model Pal et al. (2017) SYMMETRIC.
The ensembles also beat the system combination
Pal et al. (2017) RERANKING in terms of TER
(not in terms of BLEU though). The simpler dual-
attention model with no hard-attention M-CGRU

reaches slightly better results on the test set than
its counterpart with added hard attention M-CGRU-
HARD, but the situation would have been less clear
if only the development set were used to determine
the best model. The hard-attention model with
dual soft-attention benefits less from ensembling.

6 Analysis

6.1 Faithfulness and Errors

We postulated that the hard-attention models
might have a potential for higher faithfulness.
Since the APE task is a mostly monolingual task,

Model Mod. Imp. Det.

CGRU 1575 871 399

GRU-HARD 1479 783 362
CGRU-HARD 1564 897 371

M-CGRU 1668 1020 379
M-CGRU × 4 1612 1037 322

M-CGRU-HARD 1688 1044 388
M-CGRU-HARD × 4 1672 1074 341

Table 5: Number of test set sentences modified,
improved and deteriorated by each model.

we can verify this by comparing TER scores with
regard to the reference post-edition (TER-pe) and
TER scores with regard to the raw MT output
(TER-mt). The lower the TER-mt score the fewer
changes have been made to the input to arrive
at the output, thus resulting in higher faithful-
ness. Table 4 contains this comparison for the
WMT-2016 APE test set. The hard-attention mod-
els indeed make fewer changes than their soft-
attention counterparts. This difference is espe-
cially dramatic for M-CGRU and M-CGRU-HARD,
where only small differences in TER-pe occur, but
a gap of more than two TER points for TER-mt.
This shows that hard-attention models can reach
similar TER scores to soft-attention models while
performing fewer changes. It might also explain
why ensembling has a lower impact on the hard-
attention models: higher faithfulness means less
variety which results in smaller benefits from en-
sembles.

Table 5 compares the number of modified, im-
proved and deteriorated test set sentences (2000 in
total) for all models. The majority of sentences
is being modified. While the number of deteri-
orated sentences is comparable between models,
the number of improved sentences increases for
the dual-source architectures. Ensembles lower
the number of deteriorated sentences rather than
increasing the number of improved sentences.

6.2 Visualization of Attention Types

Figures 1 and 2 visualize the behavior of the pre-
sented attention variants examined in this work for
the example sentences in Table 6.

For this sentence, the unseen MT system mis-
translated the word “Set” as “festlegen”. The
monolingual mt → pe systems cannot easily cor-
rect the error as the original meaning is lost, but
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mt Wählen Sie einen Tastaturbefehlssatz im Menü festlegen .
src Select a shortcut set in the Set menu .

CGRU Wählen Sie einen Tastaturbefehlssatz im Menü aus .
GRU-HARD Wählen Sie einen Tastaturbefehlssatz im Menü aus .
CGRU-HARD Wählen Sie einen Tastaturbefehlssatz im Menü aus .
M-CGRU Wählen Sie einen Tastaturbefehlssatz im Menü " Satz " aus .
M-CGRU-HARD Wählen Sie einen Tastaturbefehlssatz im Menü " Satz . "

pe Wählen Sie einen Tastaturbefehlssatz im Menü " Satz . "

Table 6: Example corrections for different models. Only the multi-source models manage to restore the
missing translation for “Set” and insert quotes. The added particle “aus” does not appear in the reference,
but is grammatically correct as well.

W
äh

len

Sie ein
en
Tast

atu
r-

be
-

feh
l-
ssa

tz
im M

en
ü
fes

tle
ge

n

. </s>

Wählen
Sie

einen
Tastatur-

be-
fehl-
ssatz

im
Menü

aus
.

</s>

CGRU

W
äh

len

Sie ein
en
Tast

atu
r-

be
-

feh
l-
ssa

tz
im M

en
ü
fes

tle
ge

n

. </s>

GRU-HARD

W
äh

len

Sie ein
en
Tast

atu
r-

be
-

feh
l-
ssa

tz
im M

en
ü
fes

tle
ge

n

. </s>

CGRU-HARD

Figure 1: Behavior of different monolingual attention models (best viewed in color).
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Figure 2: Attention matrices for dual-soft-attention model M-CGRU (best viewed in color).
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they improve grammaticality. In Figure 1, we see
how the soft attention model (CGRU) follows the
input roughly monotonically. The monotonic hard
attention model (GRU-HARD) does this naturally.
For CGRU-HARD, it is interesting to see how the
monotonic attention now allows the soft attention
mechanism to look around the input sentence more
freely or to remain inactive instead of following
the monotonic path.

Both {mt, src} → pe systems take advantage
of the src information and improve the input. The
proposed modifications could be accepted as cor-
rect; one matches the reference. The highlighted
rows and columns in Figure 2 show how the orig-
inal source was used to reconstruct the missing
word “Satz” and how both attention mechanisms
interact. The attention over src seems to spend
most time in a “parking” position at the sentence
end unless it can provide useful information; the
attention over mt follows the input closely.

7 Conclusions and Future Work

In this paper we presented several neural APE
models that are equipped with non-standard at-
tention mechanisms and combinations thereof.
Among these, hard attention models have been ap-
plied to APE for the first time, whereas dual-soft
attention models have been proposed before for
APE tasks, but with non-conclusive results.

This is the first work to report state-of-the-
art results for dual-attention models that integrate
full post-edition triplets into a single end-to-end
model. The ensembles of dual-attention models
provide more than 1.52 TER points improvement
over the best WMT-2016 system and 0.7 TER im-
provement over the best reported system combina-
tion for the same test set.

We also demonstrated that while hard-attention
models yield similar results to pure soft-attention
models, they do so by performing fewer changes
to the input. This might be a useful property in
scenarios where conservative edits are preferred.
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Abstract

We decompose multimodal translation
into two sub-tasks: learning to translate
and learning visually grounded representa-
tions. In a multitask learning framework,
translations are learned in an attention-
based encoder-decoder, and grounded rep-
resentations are learned through image
representation prediction. Our approach
improves translation performance com-
pared to the state of the art on the
Multi30K dataset. Furthermore, it is
equally effective if we train the image pre-
diction task on the external MS COCO
dataset, and we find improvements if we
train the translation model on the external
News Commentary parallel text.

1 Introduction

Multimodal machine translation is the task of
translating sentences in context, such as images
paired with a parallel text (Specia et al., 2016).
This is an emerging task in the area of multilingual
multimodal natural language processing. Progress
on this task may prove useful for translating the
captions of the images illustrating online news ar-
ticles, and for multilingual closed captioning in in-
ternational television and cinema.

Initial efforts have not convincingly demon-
strated that visual context can improve translation
quality. In the results of the First Multimodal
Translation Shared Task, only three systems out-
performed an off-the-shelf text-only phrase-based
machine translation model, and the best perform-
ing system was equally effective with or without
the visual features (Specia et al., 2016). There
remains an open question about how translation
models should take advantage of visual context.

A girl eats a pancake

Shared Encoder

Attention

Average
Pool

IMAGINET
Decoder

Image

Ein Mädchen

Translation Decoder

Figure 1: The Imagination model learns visually-
grounded representations by sharing the encoder
network between the Translation Decoder with
image prediction in the IMAGINET Decoder.

We present a multitask learning model that de-
composes multimodal translation into learning a
translation model and learning visually grounded
representations. This decomposition means that
our model can be trained over external datasets of
parallel text or described images, making it possi-
ble to take advantage of existing resources. Fig-
ure 1 presents an overview of our model, Imagina-
tion, in which source language representations are
shared between tasks through the Shared Encoder.
The translation decoder is an attention-based neu-
ral machine translation model (Bahdanau et al.,
2015), and the image prediction decoder is trained
to predict a global feature vector of an image
that is associated with a sentence (Chrupała et al.,
2015, IMAGINET). This decomposition encour-
ages grounded learning in the shared encoder be-
cause the IMAGINET decoder is trained to imagine
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the image associated with a sentence. It has been
shown that grounded representations are qualita-
tively different from their text-only counterparts
(Kádár et al., 2016) and correlate better with hu-
man similarity judgements (Chrupała et al., 2015).
We assess the success of the grounded learning
by evaluating the image prediction model on an
image–sentence ranking task to determine if the
shared representations are useful for image re-
trieval (Hodosh et al., 2013). In contrast with most
previous work, our model does not take images as
input at translation time, rather it learns grounded
representations in the shared encoder.

We evaluate Imagination on the Multi30K
dataset (Elliott et al., 2016) using a combination
of in-domain and out-of-domain data. In the in-
domain experiments, we find that multitasking
translation with image prediction is competitive
with the state of the art. Our model achieves 55.8
Meteor as a single model trained on multimodal
in-domain data, and 57.6 Meteor as an ensemble.

In the experiments with out-of-domain re-
sources, we find that the improvement in trans-
lation quality holds when training the IMAGINET

decoder on the MS COCO dataset of described
images (Chen et al., 2015). Furthermore, if we
significantly improve our text-only baseline us-
ing out-of-domain parallel text from the News
Commentary corpus (Tiedemann, 2012), we still
find improvements in translation quality from the
auxiliary image prediction task. Finally, we re-
port a state-of-the-art result of 59.3 Meteor on the
Multi30K corpus when ensembling models trained
on in- and out-of-domain resources.

The main contributions of this paper are:

• We show how to apply multitask learning to
multimodal translation. This makes it possi-
ble to train models for this task using exter-
nal resources alongside the expensive triple-
aligned source-target-image data.

• We decompose multimodal translation into
two tasks: learning to translate and learning
grounded representations. We show that each
task can be trained on large-scale external re-
sources, e.g. parallel news text or images de-
scribed in a single language.

• We present a model that achieves state of the
art results without using images as an input.
Instead, our model learns visually grounded
source language representations using an

auxiliary image prediction objective. Our
model does not need any additional param-
eters to translate unseen sentences.

2 Problem Formulation

Multimodal translation is the task of producing
target language translation y, given the source lan-
guage sentence x and additional context, such as
an image v (Specia et al., 2016). Let x be a source
language sentence consisting of N tokens: x1, x2,
. . ., xn and let y be a target language sentence con-
sisting of M tokens: y1, y2, . . ., ym. The training
data consists of tuples D ∈ (x, y, v), where x is a
description of image v, and y is a translation of x.

Multimodal translation has previously been
framed as minimising the negative log-likelihood
of a translation model that is additionally
conditioned on the image, i.e. J(θ) =
−∑j log p(yj |y<j , x, v). Here, we decompose
the problem into learning to translate and learning
visually grounded representations. The decompo-
sition is based on sharing parameters θ between
these two tasks, and learning task-specific param-
eters φ. We learn the parameters in a multitask
model with shared parameters in the source lan-
guage encoder. The translation model has task-
specific parameters φt in the attention-based de-
coder, which are optimized through the trans-
lation loss JT (θ, φt). Grounded representations
are learned through an image prediction model
with task-specific parameters φg in the image-
prediction decoder by minimizing JG(θ, φg). The
joint objective is given by mixing the translation
and image prediction tasks with the parameter w:

J(θ, φ) = wJT (θ, φt) + (1− w)JG(θ, φg) (1)

Our decomposition of the problem makes it
straightforward to optimise this objective without
paired tuples, e.g. where we have an external
dataset of described images Dimage ∈ (x, v) or
an external parallel corpus Dtext ∈ (x, y).

We train our multitask model following the ap-
proach of Luong et al. (2016). We define a primary
task and an auxiliary task, and a set of parame-
ters θ to be shared between the tasks. A minibatch
of updates is performed for the primary task with
probabilityw, and for the auxiliary task with 1−w.
The primary task is trained until convergence and
weight w determines the frequency of parameter
updates for the auxiliary task.
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3 Imagination Model

3.1 Shared Encoder

The encoder network of our model learns a rep-
resentation of a sequence of N tokens x1...n in
the source language with a bidirectional recur-
rent neural network (Schuster and Paliwal, 1997).
This representation is shared between the differ-
ent tasks. Each token is represented by a one-hot
vector xi, which is mapped into an embedding ei

through a learned matrix E:

ei = xi ·E (2)

A sentence is processed by a pair of recurrent
neural networks, where one captures the sequence
left-to-right (forward), and the other captures the
sequence right-to-left (backward). The initial state
of the encoder h−1 is a learned parameter:

−→
hi =

−−→
RNN(

−−→
hi−1, ei) (3)

←−
hi =

←−−
RNN(

←−−
hi−1, ei) (4)

Each token in the source language input sequence
is represented by a concatenation of the forward
and backward hidden state vectors:

hi = [
−→
hi;
←−
hi] (5)

3.2 Neural Machine Translation Decoder

The translation model decoder is an attention-
based recurrent neural network (Bahdanau et al.,
2015). Tokens in the decoder are represented by
a one-hot vector yj, which is mapped into an em-
bedding ej through a learned matrix Ey:

ej = yj ·Ey (6)

The inputs to the decoder are the previously pre-
dicted token yj−1, the previous decoder state
dj−1, and a timestep-dependent context vector cj

calculated over the encoder hidden states:

dj = RNN(dj−1,yj−1, ej) (7)

The initial state of the decoder d-1 is a nonlinear
transform of the mean of the encoder states, where
Winit is a learned parameter:

d-1 = tanh(Winit · 1
N

N∑
i

hi) (8)

The context vector cj is a weighted sum over the
encoder hidden states, whereN denotes the length
of the source sentence:

cj =
N∑
i=1

αjihi (9)

The αji values are the proportion of which the en-
coder hidden state vectors h1...n contribute to the
decoder hidden state when producing the jth to-
ken in the translation. They are computed by a
feed-forward neural network, where va, Wa and
Ua are learned parameters:

αji =
exp(eji)∑N
l=1 exp(eli)

(10)

eji = va · tanh(Wa · dj−1 + Ua · hi) (11)

From the hidden state dj the network predicts the
conditional distribution of the next token yj , given
a target language embedding ej−1 of the previous
token, the current hidden state dj, and the calcu-
lated context vector cj . Note that at training time,
yj−1 is the true observed token; whereas for un-
seen data we use the inferred token ŷj−1 sampled
from the output of the softmax:

p(yj |y<j , c) = softmax(tanh(ej−1 + dj + cj))
(12)

The translation model is trained to minimise the
negative log likelihood of predicting the target lan-
guage output:

JNLL(θ, φt) = −
∑
j

log p(yj |y<j , x) (13)

3.3 Imaginet Decoder

The image prediction decoder is trained to predict
the visual feature vector of the image associated
with a sentence (Chrupała et al., 2015). It encour-
ages the shared encoder to learn grounded repre-
sentations for the source language.

A source language sentence is encoded using
the Shared Encoder, as described in Section 3.1.
Then we transform the shared encoder representa-
tion into a single vector by taking the mean pool
over the hidden state annotations, the same way
we initialise the hidden state of the translation de-
coder (Eqn. 8). This sentence representation is the
input to a feed-forward neural network that pre-
dicts the visual feature vector v̂ associated with a
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Size Tokens Types Images

Multi30K: parallel text with images

En
31K

377K 10K
31K

De 368K 16K

MS COCO: external described images

En 414K 4.3M 24K 83K

News Commentary: external parallel text

En
240K

8.31M
17K

–

De 8.95M –

Table 1: The datasets used in our experiments.

sentence with parameters Wvis:

v̂ = tanh(Wvis · 1
N

N∑
i

hi) (14)

This decoder is trained to predict the true im-
age vector v with a margin-based objective, pa-
rameterised by the minimum margin α, and the
cosine distance d(·, ·). A margin-based objective
has previously been used in grounded representa-
tion learning (Vendrov et al., 2016; Chrupała et al.,
2017). The contrastive examples v′ are drawn
from the other instances in a minibatch:

JMAR(θ, φt) =
∑
v′ 6=v

max{0, α− d(v̂,v)

+ d(v̂,v′)}
(15)

4 Data

We evaluate our model using the benchmark
Multi30K dataset (Elliott et al., 2016), which is
the largest collection of images paired with sen-
tences in multiple languages. This dataset con-
tains 31,014 images paired with an English lan-
guage sentence and a German language transla-
tion: 29,000 instances are reserved for training,
1,014 for development, and 1,000 for evaluation.1

The English and German sentences are pre-
processed by normalising the punctuation, low-
ercasing and tokenizing the text using the Moses
toolkit. We additionally decompound the German
text using Zmorge (Sennrich and Kunz, 2014).

1The Multi30K dataset also contains 155K independently
collected descriptions in German and English. In order to
make our experiments more comparable with previous work,
we do not make use of this data.

This results in vocabulary sizes of 10,214 types for
English and 16,022 for German.

We also use two external datasets to evaluate
our model: the MS COCO dataset of English
described images (Chen et al., 2015), and the
English-German News Commentary parallel cor-
pus (Tiedemann, 2012). When we perform ex-
periments with the News Commentary corpus, we
first calculate a 17,597 sub-word vocabulary us-
ing SentencePiece (Schuster and Nakajima, 2012)
over the concatentation of the Multi30K and News
Commentary datasets. This gives us a shared
vocabulary for the external data that reduces the
number of out-of-vocabulary tokens.

Images are represented by 2048D vectors ex-
tracted from the ‘pool5/7x7 s1’ layer of the
GoogLeNet v3 CNN (Szegedy et al., 2015).

5 Experiments

We evaluate our multitasking approach with in-
and out-of-domain resources. We start by re-
porting results of models trained using only the
Multi30K dataset. We also report the results of
training the IMAGINET decoder with the COCO
dataset. Finally, we report results on incorporating
the external News Commentary parallel text into
our model. Throughout, we report performance of
the En→De translation using Meteor (Denkowski
and Lavie, 2014) and BLEU (Papineni et al., 2002)
against lowercased tokenized references.

5.1 Hyperparameters

The encoder is a 1000D Gated Recurrent Unit
bidirectional recurrent neural network (Cho et al.,
2014, GRU) with 620D embeddings. We share
all of the encoder parameters between the pri-
mary and auxiliary task. The translation decoder
is a 1000D GRU recurrent neural network, with
a 2000D context vector over the encoder states,
and 620D word embeddings (Sennrich et al.,
2017). The Imaginet decoder is a single-layer
feed-forward network, where we learn the param-
eters Wvis ∈ R2048x2000 to predict the true image
vector with α = 0.1 for the Imaginet objective
(Equation 15). The models are trained using the
Adam optimiser with the default hyperparameters
(Kingma and Ba, 2015) in minibatches of 80 in-
stances. The translation task is defined as the pri-
mary task and convergence is reached when BLEU
has not increased for five epochs on the validation
data. Gradients are clipped when their norm ex-
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Meteor BLEU

NMT 54.0 ± 0.6 35.5 ± 0.8

Calixto et al. (2017) 55.0 36.5

Calixto and Liu (2017) 55.1 37.3

Imagination 55.8 ± 0.4 36.8 ± 0.8

Toyama et al. (2016) 56.0 36.5

Hitschler et al. (2016) 56.1 34.3

Moses 56.9 36.9

Table 2: En→De translation results on the
Multi30K dataset. Our Imagination model is com-
petitive with the state of the art when it is trained
on in-domain data. We report the mean and stan-
dard deviation of three random initialisations.

ceeds 1.0. Dropout is set to 0.2 for the embed-
dings and the recurrent connections in both tasks
(Gal and Ghahramani, 2016). Translations are de-
coded using beam search with 12 hypotheses.

5.2 In-domain experiments

We start by presenting the results of our multitask
model trained using only the Multi30K dataset.
We compare against state-of-the-art approaches
and text-only baselines. Moses is the phrase-based
machine translation model (Koehn et al., 2007) re-
ported in (Specia et al., 2016). NMT is a text-only
neural machine translation model. Calixto et al.
(2017) is a double-attention model over the source
language and the image. Calixto and Liu (2017) is
a multimodal translation model that conditions the
decoder on semantic image vector extracted from
the VGG-19 CNN. Hitschler et al. (2016) uses vi-
sual features in a target-side retrieval model for
translation. Toyama et al. (2016) is most compara-
ble to our approach: it is a multimodal variational
NMT model that infers latent variables to repre-
sent the source language semantics from the image
and linguistic data.

Table 2 shows the results of this experiment. We
can see that the combination of the attention-based
translation model and the image prediction model
is a 1.8 Meteor point improvement over the NMT
baseline, but it is 1.1 Meteor points worse than
the strong Moses baseline. Our approach is com-
petitive with previous approaches that use visual
features as inputs to the decoder and the target-
side reranking model. It also competitive with

Meteor BLEU

Imagination 55.8 ± 0.4 36.8 ± 0.8

Imagination (COCO) 55.6 ± 0.5 36.4 ± 1.2

Table 3: Translation results when using out-of-
domain described images. Our approach is still ef-
fective when the image prediction model is trained
over the COCO dataset.

Meteor BLEU

NMT 52.8 ± 0.6 33.4 ± 0.6

+ NC 56.7 ± 0.3 37.2 ± 0.7

+ Imagination 56.7 ± 0.1 37.4 ± 0.3

+ Imagination (COCO) 57.1 ± 0.2 37.8 ± 0.7

Calixto et al. (2017) 56.8 39.0

Table 4: Translation results with out-of-domain
parallel text and described images. We find further
improvements when we multitask with the News
Commentary (NC) and COCO datasets.

Toyama et al. (2016), which also only uses images
for training. These results confirm that our multi-
tasking approach uses the image prediction task to
improve the encoder of the translation model.

5.3 External described image data
Recall from Section 2 that we are interested in sce-
narios where x, y, and v are drawn from different
sources. We now experiment with separating the
translation data from the described image data us-
ing Dimage: MS COCO dataset of 83K described
images2 and Dtext: Multi30K parallel text.

Table 3 shows the results of this experiment. We
find that there is no significant difference between
training the IMAGINET decoder on in-domain
(Multi30K) or out-of-domain data (COCO). This
result confirms that we can separate the parallel
text from the described images.

5.4 External parallel text data
We now experiment with training our model on a
combination of the Multi30K and the News Com-
mentary English-German data. In these experi-
ments, we concatenate the Multi30K and News

2Due to differences in the vocabularies of the respective
datasets, we do not train on examples where more than 10%
of the tokens are out-of-vocabulary in the Multi30K dataset.
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Parallel text Described images
Multi30K News Commentary Multi30K COCO Meteor BLEU

Z
m

or
ge 56.2 37.8

57.6 39.0
Su

b-
w

or
d 54.4 35.0

58.6 39.4
59.0 39.5
59.3 40.2

Table 5: Ensemble decoding results. Zmorge denotes models trained with decompounded German
words; Sub-word denotes joint SentencePiece word splitting (see Section 4 for more details).

Commentary datasets into a single Dtext train-
ing dataset, similar to Freitag and Al-Onaizan
(2016). We compare our model against Calixto
et al. (2017), who pre-train their model on the
WMT’15 English-German parallel text and back-
translate (Sennrich et al., 2016) additional sen-
tences from the bilingual independent descriptions
in the Multi30K dataset (Footnote 2).

Table 4 presents the results. The text-only NMT
model using sub-words is 1.2 Meteor points lower
than decompounding the German text. Neverthe-
less, the model trained over a concatenation of the
parallel texts is a 2.7 Meteor point improvement
over this baseline (+ NC) and matches the perfor-
mance of our Multitasking model that uses only
in-domain data (Section 5.2). We do not see an
additive improvement for the multitasking model
with the concatenated parallel text and the in-
domain data (+ Imagination) using a training ob-
jective interpolation of w = 0.89 (the ratio of the
training dataset sizes). This may be because we
are essentially learning a translation model and the
updates from the IMAGINET decoder are forgotten.
Therefore, we experiment with multitasking the
concatenated parallel text and the COCO dataset
(w = 0.5). We find that balancing the datasets
improves over the concatenated text model by 0.4
Meteor (+ Imagination (COCO)). Our multitask-
ing approach improves upon Calixto et al. by 0.3
Meteor points. Our model can be trained in 48
hours using 240K parallel sentences and 414K de-
scribed images from out-of-domain datasets. Fur-
thermore, recall that our model does not use im-
ages as an input for translating unseen data, which
results in 6.2% fewer parameters compared to us-
ing the 2048D Inception-V3 visual features to ini-
tialise the hidden state of the decoder.

5.5 Ensemble results

Table 5 presents the results of ensembling differ-
ent randomly initialised models. We achieve a
start-of-the-art result of 57.6 Meteor for a model
trained on only in-domain data. The improve-
ments are more pronounced for the models trained
using sub-words and out-of-domain data. An en-
semble of baselines trained on sub-words is ini-
tially worse than an ensemble trained on Zmorge
decompounded words. However, we always see an
improvement from ensembling models trained on
in- and out-of-domain data. Our best ensemble is
trained on Multi30K parallel text, the News Com-
mentary parallel text, and the COCO descriptions
to set a new state-of-the-art result of 59.3 Meteor.

5.6 Multi30K 2017 results

We also evaluate our approach against 16 submis-
sions to the WMT Shared Task on Multimodal
Translation and Multilingual Image Description
(Elliott et al., 2017). This shared task features
a new evaluation dataset: Multi30K Test 2017
(Elliott et al., 2017), which contains 1,000 new
evaluation images. The shared task submissions
are evaluated with Meteor and human direct as-
sessment (Graham et al., 2017). We submitted
two systems, based on whether they used only the
Multi30K dataset (constrained) or used additional
external resources (unconstrained). Our con-
strained submission is an ensemble of three Imag-
ination models trained over only the Multi30K
training data. This achieves a Meteor score of
51.2, and a joint 3rd place ranking according to hu-
man assessment. Our unconstrained submission is
an ensemble of three Imagination models trained
with the Multi30K, News Commentary, and MS
COCO datasets. It achieves a Meteor score of
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Source: two children on their stomachs lay on the ground under a pipe
NMT: zwei kinder auf ihren gesichtern liegen unter dem boden auf dem

boden
Ours: zwei kinder liegen bäuchlings auf dem boden unter einer schaukel

Source: small dog in costume stands on hind legs to reach dangling flowers
NMT: ein kleiner hund steht auf dem hinterbeinen und läuft , nach links

von blumen zu sehen
Ours: ein kleiner hund in einem kostüm steht auf den hinterbeinen , um

die blumen zu erreichen

Source: a bird flies across the water
NMT: ein vogel fliegt über das wasser
Ours: ein vogel fliegt durch das wasser

Table 6: Examples where our model improves or worsens the translation compared to the NMT baseline.
Top: NMT translates the wrong body part; both models skip “pipe”. Middle: NMT incorrectly translates
the verb and misses several nouns. Bottom: Our model incorrectly translates the preposition.

53.5, and 2nd place in the human assessment.

5.7 Qualitative examples

Table 6 shows examples of where the multitask-
ing model improves or worsens translation perfor-
mance compared to the baseline model3. The first
example shows that the baseline model makes a
significant error in translating the pose of the chil-
dren, translating “on their stomachs” as “on their
faces”). The middle example demonstrates that
the baseline model translates the dog as walking
(“läuft”) and then makes grammatical and sense
errors after the clause marker. Both models ne-
glect to translate the word “dangling”, which is a
low-frequency word in the training data. There are
instances where the baseline produces better trans-
lations than the multitask model: In the bottom ex-
ample, our model translates a bird flying through
the water (“durch”) instead of “over” the water.

6 Discussion

6.1 Does the model learn grounded
representations?

A natural question to ask if whether the multitask
model is actually learning representations that are
relevant for the images. We answer this question
by evaluating the Imaginet decoder in an image–
sentence ranking task. Here the input is a source
language sentence, from which we predict its im-

3We used MT-ComparEval (Klejch et al., 2015)

age vector v̂. The predicted vector v̂ can be com-
pared against the true image vectors v in the eval-
uation data using the cosine distance to produce a
ranked order of the images. Our model returns a
median rank of 11.0 for the true image compared
to the predicted image vector. Figure 2 shows ex-
amples of the nearest neighbours of the images
predicted by our multitask model. We can see that
the combination of the multitask source language
representations and IMAGINET decoder leads to
the prediction of relevant images. This confirms
that the shared encoder is indeed learning visually
grounded representations.

6.2 The effect of visual feature vectors

We now study the effect of varying the Convolu-
tional Neural Network used to extract the visual
features used in the Imaginet decoder. It has previ-
ously been shown that the choice of visual features
can affect the performance of vision and language
models (Jabri et al., 2016; Kiela et al., 2016). We
compare the effect of training the IMAGINET de-
coder to predict different types of image features,
namely: 4096D features extracted from the ‘fc7‘’
layer of the VGG-19 model (Simonyan and Zis-
serman, 2015), 2048D features extracted from the
‘pool5/7x7 s1’ layer of InceptionNet V3 (Szegedy
et al., 2015), and 2048D features extracted from
‘avg pool‘ layer of ResNet-50 (He et al., 2016).
Table 7 shows the results of this experiment. There
is a clear difference between predicting the 2048D
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(a) Nearest neighbours for “a native woman is working on a craft project .”

(b) Nearest neighbours for “there is a cafe on the street corner with an oval painting on the side of the building .”

Figure 2: We can interpret the IMAGINET Decoder by visualising the predictions made by our model.

Meteor Median Rank

Inception-V3 56.0 ± 0.1 11.0 ± 0.0

Resnet-50 54.7 ± 0.4 11.7 ± 0.5

VGG-19 53.6 ± 1.8 13.0 ± 0.0

Table 7: The type of visual features predicted by
the IMAGINET Decoder has a strong impact on the
Multitask model performance.

vectors (Inception-V3 and ResNet-50) compared
to the 4096D vector from VGG-19). This dif-
ference is reflected in both the translation Meteor
score and the Median rank of the images in the val-
idation dataset. This is likely because it is easier to
learn the parameters of the image prediction model
that has fewer parameters (8.192 million for VGG-
19 vs. 4.096 million for Inception-V3 and ResNet-
50). However, it is not clear why there is such a
pronounced difference between the Inception-V3
and ResNet-50 models4.

7 Related work

Initial work on multimodal translation used se-
mantic or spatially-preserving image features as
inputs to a translation model. Semantic im-
age features are typically extracted from the fi-
nal layer of a pre-trained object recognition CNN,
e.g. ‘pool5/7x7 s1’ in GoogLeNet (Szegedy et al.,
2015). This type of vector has been used as in-
put to the encoder (Elliott et al., 2015; Huang

4We used pre-trained CNNs (https://github.com/
fchollet/deep-learning-models), which claim
equal ILSVRC object recognition performance for both mod-
els: 7.8% top-5 error with a single-model and single-crop.

et al., 2016), the decoder (Libovický et al.,
2016), or as features in a phrase-based translation
model (Shah et al., 2016; Hitschler et al., 2016).
Spatially-preserving image features are extracted
from deeper inside a CNN, where the position of a
feature is related to its position in the image. These
features have been used in “double-attention mod-
els”, which calculate independent context vectors
for the source language and a convolutional im-
age features (Calixto et al., 2016; Caglayan et al.,
2016; Calixto et al., 2017). We use an attention-
based translation model but our multitask model
does not use images for translation.

More related to our work is an extension of
Variational Neural Machine Translation to infer la-
tent variables to explicitly model the semantics of
source sentences from visual and linguistic infor-
mation (Toyama et al., 2016). They report im-
provements on the Multi30K data set but their
model needs additional parameters in the “neural
inferrer” modules. In our model, the grounded se-
mantics are represented implicitly in the shared en-
coder. They assume Source-Target-Image training
data, whereas our approach achieves equally good
results if we train on separate Source-Image and
Source-Target datasets. Saha et al. (2016) study
cross-lingual image description where the task is
to generate a sentence in language L1 given the
image, using only Image-L2 and L1-L2 training
corpora. They propose a Correlational Encoder-
Decoder to model the Image-L2 and L1-L2 data,
which learns correlated representations for paired
Image-L2 data and decodes L1 from the joint rep-
resentation. Similar to our work, the encoder
is trained by minimizing two loss functions: the
Image-L2 correlation loss, and the L1 decoding
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cross-entropy loss. Nakayama and Nishida (2017)
consider a zero-resource problem, where the task
is to translate from L1 to L2 with only Image-L1

and Image-L2 corpora. Their model embeds the
image, L1, and L2 in a joint multimodal space
learned by minimizing a multi-task ranking loss
between both pairs of examples. In this paper,
we focus on enriching source language represen-
tations with visual information instead of zero-
resource learning.

Multitask Learning improves the generalisabil-
ity of a model by requiring it to be useful for more
than one task (Caruana, 1997). This approach has
recently been used to improve the performance of
sentence compression using eye gaze as an auxil-
iary task (Klerke et al., 2016), and to improve shal-
low parsing accuracy through the auxiliary task of
predicting keystrokes in an out-of-domain corpus
(Plank, 2016). More recently, Bingel and Søgaard
(2017) analysed the beneficial relationships be-
tween primary and auxiliary sequential prediction
tasks. In the translation literature, multitask learn-
ing has been used to learn a one-to-many lan-
guages translation model (Dong et al., 2015), a
multi-lingual translation model with a single atten-
tion mechanism shared across multiple languages
(Firat et al., 2016), and in multitask sequence-to-
sequence learning without an attention-based de-
coder (Luong et al., 2016). We explore the benefits
of grounded learning in the specific case of mul-
timodal translation. We combine sequence pre-
diction with continuous (image) vector prediction,
compared to previous work which multitasks dif-
ferent sequence prediction tasks.

Visual representation prediction has been stud-
ied using static images or videos. Lin and Parikh
(2015) use a conditional random field to imag-
ine the composition of a clip-art scene for visual
paraphrasing and fill-in-the-blank tasks. Chrupała
et al. (2015) predict the image vector associated
with a sentence using an L2 loss; they found this
improves multi-modal word similarity compared
to text-only baselines. Gelderloos and Chrupała
(2016) predict the image vector associated with a
sequence of phonemes using a max-margin loss,
similar to our image prediction objective. Col-
lell et al. (2017) learn to predict the visual feature
vector associated with a word for word similar-
ity and relatedness tasks. As a video reconstruc-
tion problem, Srivastava et al. (2015) propose an
LSTM Autoencoder to predict video frames as a

reconstruction task or as a future prediction task.
Pasunuru and Bansal (2017) propose a multitask
model for video description that combines unsu-
pervised video reconstruction, lexical entailment,
and video description. They find improvements
from using out-of-domain resources for entailment
and video prediction, similar to the improvements
we find from using out-of-domain parallel text and
described images.

8 Conclusion

We decompose multimodal translation into two
sub-problems: learning to translate and learning
visually grounded representations. In a multi-
task learning framework, we show how these sub-
problems can be addressed by sharing an encoder
between a translation model and an image predic-
tion model5. Our approach achieves state-of-the-
art results on the Multi30K dataset without using
images for translation. We show that training on
separate parallel text and described image datasets
does not hurt performance, encouraging future re-
search on multitasking with diverse sources of
data. Furthermore, we still find improvements
from image prediction when we improve our text-
only baseline with the out-of-domain parallel text.
Future work includes adapting our decomposition
to other NLP tasks that may benefit from out-of-
domain resources, such as semantic role labelling,
dependency parsing, and question-answering; ex-
ploring methods for inputting the (predicted) im-
age into the translation model; experimenting with
different image prediction architectures; multi-
tasking different translation languages into a sin-
gle shared encoder; and multitasking in both the
encoder and decoder(s).
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Abstract

End-to-end training makes the neural ma-
chine translation (NMT) architecture sim-
pler, yet elegant compared to traditional
statistical machine translation (SMT).
However, little is known about linguis-
tic patterns of morphology, syntax and
semantics learned during the training of
NMT systems, and more importantly,
which parts of the architecture are re-
sponsible for learning each of these phe-
nomena. In this paper we i) analyze
how much morphology an NMT decoder
learns, and ii) investigate whether inject-
ing target morphology into the decoder
helps it produce better translations. To
this end we present three methods: i) joint
generation, ii) joint-data learning, and iii)
multi-task learning. Our results show that
explicit morphological information helps
the decoder learn target language mor-
phology and improves the translation qual-
ity by 0.2–0.6 BLEU points.

1 Introduction

Neural machine translation (NMT) offers an el-
egant end-to-end architecture, improving transla-
tion quality compared to traditional phrase-based
machine translation. These improvements are at-
tributed to more fluent output (Toral and Sánchez-
Cartagena, 2017) and better handling of mor-
phology and long-range dependencies (Bentivogli
et al., 2016). However, systematic studies are re-
quired to understand what kinds of linguistic phe-
nomena (morphology, syntax, semantics, etc.) are
learned by these models and more importantly,
which of the components is responsible for each
phenomenon.

A few attempts have been made to understand

what NMT models learn about morphology (Be-
linkov et al., 2017a), syntax (Shi et al., 2016)
and semantics (Belinkov et al., 2017b). Shi et al.
(2016) used activations at various layers from the
NMT encoder to predict syntactic properties on
the source-side, while Belinkov et al. (2017a) and
Belinkov et al. (2017b) used a similar approach to
investigate the quality of word representations on
the task of morphological and semantic tagging.

Belinkov et al. (2017a) found that word rep-
resentations learned from the encoder are rich in
morphological information, while representations
learned from the decoder are significantly poorer.
However, the paper does not present a convincing
explanation for this finding. Our first contribution
in this work is to provide a more comprehensive
analysis of morphological learning on the decoder
side. We hypothesize that other components of the
NMT architecture – specifically the encoder and
the attention mechanism, learn enough informa-
tion about the target language morphology for the
decoder to perform reasonably well, without in-
corporating high levels of morphological knowl-
edge into the decoder. To probe this hypothesis,
we investigate the following questions:

• What is the effect of attention on the perfor-
mance of the decoder?

• How much does the encoder help the decoder
in predicting the correct morphological vari-
ant of the word it generates?

To answer these questions, we train NMT mod-
els for different language pairs, involving mor-
phologically rich languages such as German and
Czech. We then use the trained models to ex-
tract features from the decoder for words in the
language of interest. Finally we train a classifier
using the extracted features to predict the morpho-
logical tag of the words. The accuracy of this ex-
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ternal classifier gives us a quantitative measure of
how well the NMT model learned features that are
relevant to morphology. Our results indicate that
both the encoder and the attention mechanism aid
the decoder in generating correct morphological
forms, and thus limit the need of the decoder to
learn target morphology.

Motivated by these findings, we hypothesize
that it may be possible to force the decoder to learn
more about morphology by injecting the morpho-
logical information during training which can in
turn improve the overall translation quality. In
order to test this hypothesis, we experiment with
three possible solutions:

1. Joint Generation: An NMT model is trained
on the concatenation of words and morpho-
logical tags on the target side.

2. Joint-data learning: An NMT model is
trained where each source sequence is used
twice with an artificial token to either predict
target words or morphological tags.

3. Multi-task learning: A multi-task NMT sys-
tem with two objective functions is trained
to jointly learn translation and morphological
tagging.

Our experiments show that word representations
learned after explicitly injecting target morphol-
ogy improve morphological tagging accuracy of
the decoder by 3% and also improves the trans-
lation quality by up to 0.6 BLEU points.

The remainder of this paper is organized as fol-
lows. Section 2 describes our experimental setup.
Section 3 shows an analysis of the decoder. Sec-
tion 4 describes the three proposed methods to in-
tegrate morphology into the decoder. Section 5
presents the results. Section 6 gives an account
of related work and Section 7 concludes the paper.

2 Experimental Design

Parallel Data
We used the German-English and Czech-English
datasets from the WIT3 TED corpus (Cettolo,
2016) made available for IWSLT 2016. We used
the official training sets to analyze and evaluate
the proposed methods for integrating morphology
. The corpus also provides four test sets, test-11
through test-14. We used test-11 for tuning, and
the other test sets for evaluation. The statistics for
the sets are provided in Table 1.

Language-pair Sentences tokde/cz token

De↔En 210K 4M 4.2M
Cz↔En 122K 2.1M 2.5M

Table 1: Statistics for the data used for training,
tuning and testing

Morphological Annotations
In order to train and evaluate the external classifier
on the extracted features, we required data anno-
tated with morphological tags. We used the fol-
lowing tools recommended on the Moses website1

to annotate the data: LoPar (Schmid, 2000) for
German, Tree-tagger (Schmid, 1994) for Czech
and MXPOST (Ratnaparkhi, 1998) for English.
The number of tags produced by these taggers is
214 for German and 368 for Czech.

Data preprocessing
We used the standard MT pre-processing pipeline
of tokenizing and truecasing the data using Moses
(Koehn et al., 2007) scripts. We did not apply
byte-pair encoding (BPE) (Sennrich et al., 2016b),
which has recently become a common part of the
NMT pipeline, because both our analysis and the
annotation tools are word level.2 However, ex-
perimenting with BPE and other representations
such as character-based models (Kim et al., 2015)
would be interesting.3

NMT Systems
We used the seq2seq-attn implementation
(Kim, 2016) with the following default settings:
word embeddings and LSTM states with 500 di-
mensions, SGD with an initial learning rate of 1.0
and decay rate of 0.5 (after the 9th epoch), and
dropout rate of 0.3. We use two uni-directional
hidden layers for both the encoder and the decoder.

1These have been used frequently to annotate data in the
previous evaluation campaigns (Birch et al., 2014; Durrani
et al., 2014a).

2The difficulty with using these is that it is not straight-
forward to derive word representations out of a decoder that
processes BPE-ed text, because the original words are split
into subwords. We considered aggregating the representa-
tions of BPE subword units, but the choice of aggregation
strategy may have an undesired impact on the analysis. For
this reason we decided to leave exploration of BPE for future
work.

3Character-based models are becoming increasingly pop-
ular in Neural MT, for addressing the rare word problem
– and they have been used previously also to benefit MT
for morphologically rich (Luong et al., 2010; Belinkov and
Glass, 2016; Costa-jussà and Fonollosa, 2016) and closely
related languages (Durrani et al., 2010; Sajjad et al., 2013).
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Figure 1: Features for the word Nun (DECt1) are
extracted from the decoder of a pre-trained NMT
system and provided to the classifier for training

The NMT system is trained for 13 epochs, and the
model with the best validation loss is used for ex-
tracting features for the external classifier. We use
a vocabulary size of 50000 on both the source and
target side.

Classifier Settings

For the classification task, we used a feed-forward
network with one hidden layer, dropout (ρ = 0.5),
a ReLU non-linearity, and an output layer map-
ping to the tag set (followed by a Softmax). The
size of the hidden layer is set to be identical to the
size of the NMT decoder’s hidden state (500 di-
mensions). The classifier has no explicit access to
context other than the hidden representation gener-
ated by the NMT system, which allows us to focus
on the quality of the representation. We use Adam
(Kingma and Ba, 2014) with default parameters to
minimize the cross-entropy objective.

3 Decoder Analysis

3.1 Methodology

We follow a process similar to Shi et al. (2016)
and Belinkov et al. (2017a) to analyze the NMT
systems but with a focus on the decoder compo-
nent of the architecture. Formally, given a source
sentence s = {s1, s2, ..., sN} and a target sen-
tence t = {t1, t2, ..., tM}, we first use the encoder
(Equation 1) to compute a set of hidden states
h = {h1, h2, ..., hN}. We then use an attention
mechanism (Bahdanau et al., 2014) to compute a

weighted average of these hidden states from the
previous decoder state (di−1), known as the con-
text vector ci (Equation 2). The context vector is a
real valued vector of k dimensions, which is set to
be the same as the hidden states in our case. The
attention model computes a weight whi

for each
hidden state of the encoder, thus giving soft align-
ment for each target word. The context vector is
then used by the decoder (Equation 3) to generate
the next word in the target sequence:

ENC : s = {s1, ..., sN} 7→ h = {h1, ..., hN} (1)

ATTNi : h, di−1, ti−1 7→ ci ∈ Rk(1 ≤ i ≤M) (2)
DEC : {c1, ..., cM} 7→ t = {t1, t2, ..., tM} (3)

After training the NMT system, we freeze the pa-
rameters of the network and use the encoder or the
decoder as a feature extractor to generate vectors
representing words in the sentence. Let ENCsi de-
note the representation of a source word si. We
use ENCsi to train the external classifier that for
predicting the morphological tag for si and evalu-
ate the quality of the representation based on our
ability to train a good classifier. For word repre-
sentations on the target side, we feed our word of
interest ti as the previously predicted word, and
extract the representation DECti from the higher
layers (See Figure 1 for illustration).

Note that in the decoder, the target word rep-
resentations DECti are not learned for predicting
the word ti, but the next word (ti+1). Hence, it is
arguable that DECti actually captures morpholog-
ical information about ti+1 rather than ti, which
can also explain the poorer decoder accuracies. To
test this argument, we also trained our systems as-
suming that DECti encodes morphological infor-
mation about the next word ti+1. In this case,
the decoder performance dropped by almost 15%.
DECti probably encodes morphological informa-
tion about both the current word (ti) and the next
word (ti+1). However, we leave this exploration
for future work, and work with the assumption that
DECti encodes information about word ti.

3.2 Analysis
Before diving into the decoder’s performance, we
first compare the performance of encoder ver-
sus decoder by training De↔En4 and Cz↔En
NMT models. We use the De→En/Cz→En mod-
els to extract encoder representations, and the

4By De↔En, we mean independently trained German-to-
English and English-to-German models.
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Baseline ENCsi DECti

De↔En 89.5 44.55
Cz↔En 77.0 36.35

Table 2: Comparison of morphological accuracy
for the encoder and decoder representations

En→De/En→Cz models to extract decoder rep-
resentations. We then feed these representations
to our classifier to predict morphological tags
for German and Czech words. Table 2 shows
that German and Czech representations learned
on the encoder-side (using the De→En/Cz→En
models) give much better accuracy compared to
the ones learned on the decoder-side (using the
En→De/En→Cz models).

Given this difference in performance between
the two components in our NMT system, we ana-
lyze the decoder further in various settings: com-
paring the performance i) with and without the
attention mechanism, and ii) augmenting the de-
coder representation with the representation of the
most attended source word. The baseline NMT
models were trained with an attention mechanism.
In an attempt to probe what effect the attention
mechanism has on the decoder’s performance in
the context of learning target language morphol-
ogy, we trained NMT models without attention.
Next we tried to take our baseline model (with at-
tention) and augment its decoder representations
with the encoder hidden state corresponding to
the maximum attention (hereby denoted as ENCti).
Our hypothesis is that since the decoder focuses
on this hidden state to output the next target word,
it may also encode some useful information about
target morphology. Lastly, we also train a classi-
fier on ENCti alone in order to compare the ability
of the encoder and decoder in learning target lan-
guage morphology.

Table 3 summarizes the results of these experi-
ments. Comparing systems with (DECti) and with-
out attention (w/o-ATTN), we see that the ac-
curacy on the morphological tagging task goes
up when no attention is used. This can be ex-
plained by the fact that in the case of no attention,
the decoder only receives a single context vector
from the encoder and it has to learn more infor-
mation about each target word to make accurate
predictions. It is difficult for the encoder to trans-
fer information about each target word using the
same context vector cleanly, causing the decoder

DECti w/o-ATTN DECti +ENCti ENCti

En→De 44.55 50.26 60.34 43.43
En→Cz 36.35 42.09 48.64 36.36

Table 3: Morphological Tagging accuracy of the
Decoder with and without attention, and effect
of considering the most attended source word
(ENCti)

to learn more, resulting in better decoder perfor-
mance in regards to the morphological information
learned.

The second part of the table presents results in-
volving encoder representations to aid morpholog-
ical analysis of target words. There is a signif-
icant boost in the classifier’s performance when
the decoder representation for a target word ti
is concatenated with the encoder representation
of the most attended source word (DECti+ENCti).
This hints towards several hypotheses: i) because
the source and target words are translations, they
share some morphological properties (e.g. nouns
get translated to nouns, etc.), ii) the encoder also
learns and stores information about the target lan-
guage, so that the attention mechanism can make
use of this information while deciding which word
to focus on next. To ensure that the encoder
and decoder indeed learn different information, we
also tried to classify the morphological tag of a
given word ti based on the encoder representation
of the most attended source word alone (ENCti).
We see a drop in accuracy, showing that both en-
coder and decoder learned different things about
the same target word and are complementary rep-
resentations. We can also see that the accuracy of
the combined representation (DECti+ENCti) still
lags behind the encoder’s performance in predict-
ing source morphology (Table 2). This indicates
that there is still room for improvement in the
NMT model’s ability to learn target side morphol-
ogy.

In this section, we showed that the encoder and
decoder learn different amounts of morphology
due to the varying nature of their tasks within
NMT architecture. The decoder depends on the
encoder and attention mechanism to generate the
correct morphological variant of a target word.

4 Morphology-aware Decoder

Motivated by the result that the decoder learns
considerably less amount of morphology than the
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Figure 2: Various approaches to inject morphological knowledge into the decoder

encoder (Table 2) and the overall system does not
learn as much about target morphology as source
morphology, we investigated three ways to di-
rectly inject target morphology into the decoder,
namely: i) Joint Generation, ii) Joint-data Learn-
ing, iii) Multi-task Learning. Figure 2 illustrates
the approaches.

4.1 Joint Generation

As our first approach, we considered a solution
that uses the standard NMT architecture, but is
trained on a modified dataset. To incorporate
morphological information, we modify the target
sentence by appending the morphological tag se-
quence to it. The NMT system trained on this
data learns to produce both words and morpho-
logical tags simultaneously. Formally, given a
source sentence s = {s1, ..., sN}, target sentence
t = {t1, ..., tM} and its morphological sequence
m = {m1, ...,mM}, we train an NMT system on
(s′, t′) pairs, where s′ = s and t′ = t + m. Al-
though this model is quite weak and the (word and
morphological) bases are quite far away, we posit
that the attention mechanism might be able to at-
tend to the same source word twice. Given this, the
decoder gets a similar representation from which it
has to predict a word in the first instance, and a tag
in the second - thus helping in common learning
for the two tasks.

4.2 Joint-data Learning

Given the drawbacks of the first approach, we
considered another data augmentation technique

inspired by multilingual NMT systems (Johnson
et al., 2016). Instead of having multiple source
and target languages, we used one source language
and two target language variations. The training
data consists of sequences of source→target words
and source→target morphological tags. We added
an artificial token in the beginning of each source
sentence indicating whether we want to generate
target words or morphological tags. Using an ar-
tificial token in the source sentence has been ex-
plored and shown to work well to control the style
of the target language (Sennrich et al., 2016a). The
objective function is the same as the one in usual
sequence-to-sequence models, and is hence shared
to minimize both morphological and translation
error given the mixed data.

4.3 Multi-task Learning

In this final method, we decided to follow a more
principled approach and modified the standard
sequence-to-sequence for multi-task learning. The
goal in multi-task training is to learn several tasks
simultaneously such that each task can benefit
from the mutual information learned (Collobert
and Weston, 2008). 5 With this motivation, we
modified the NMT decoder to predict not only a
word but also its corresponding tag. All of the lay-
ers below the output layers are shared. We have
two output layers in parallel – the first to predict
the target word, and the second to predict the mor-
phological tag of the target word. Both ouput lay-

5For example, Eriguchi et al. (2017) jointly learned the
tasks of parsing and translation.
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Figure 3: Improvements from adding morphology. A y-value of zero represents the baseline

ers have their own separate loss function. While
training, we combine the losses from both output
layers to jointly train the system. This is different
from the Joint-data learning technique, where we
predict entire sequences of words or tags without
any dependence on each other.

Formally, given a set of N tasks, sequence-to-
sequence multi-task learning involves an objec-
tive function minimizing the overall loss, which
is a weighted combination of the N individual
task losses. In our scenario, the training corpus
consisted of a multi-target corpus: source→target
words and source→target morphological tags, i.e
N = 2. Hence, given a set of training exam-
ples D = {〈s(n), t(n),m(n)〉}Nn=1, where s is the
source sentence, t is the target sentence and m is
the target morphological tag sequence, the new ob-
jective function to maximize is as follows:

L =(1− λ)
N∑
n=1

logP (t(n)|s(n); θ)

+ λ

N∑
n=1

logP (m(n)|s(n); θ)

Where λ is a hyper-parameter used to shift focus
towards translation or the morphological tagging.6

5 Results and Discussion

Our results show that the multi-task learning ap-
proach performed the best among the three ap-
proaches, while the Joint Generation method has
the poorest performance. Figure 3 summarizes the
results for different language pairs. The joint gen-
eration method degrades overall translation per-
formance, as expected, given its weakness from

6We tuned the weight parameter on held-out data.

a modeling perspective. It is possible that even
though the attention mechanism is able to focus on
the source sequence in two passes, the parts of the
network that predict words and tags are not tightly
coupled enough to learn from each other.

The BLEU scores improved when using the
other two methods. We achieved an improvement
of up to 0.6 BLEU points and 3% (in tagging accu-
racy). The best improvements were obtained in the
En→De direction, while we observed lesser gains
in the De→En. This is perhaps because English is
morphologically poorer, and the baseline system
was able to learn the required amount of morpho-
logical information from the text itself. Improve-
ments were also obtained for the En→Cz direc-
tion, although not as much as in German. This
could be due to data sparsity: Czech is much richer
in morphology,7 and the available TED En↔Cz
data was 40% less than the En↔De data.

Joint-data vs. Multi-task Learning

Both Joint-data learning and Multi-task learning
improved overall translation performance. In the
case of En→De, the performance of both ap-
proaches is very similar. However, each has its
own pros and cons. While the joint-data learn-
ing method is a simple approach that allows to add
morphology and other linguistic information with-
out needing to change the architecture, the multi-
task learning approach is a more principled and
powerful way of integrating the same information
into the decoder. Having separate objective func-
tions in multi-task learning also allows us to ad-
just the balance between the two tasks, which can

7The number of morphological tags in Czech are 368 ver-
sus 214 in German.
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Figure 4: Multi-task learning: Translation vs. Morphological Tagging weight for En→De model

be handy if the morphological information quality
is not very high. On the flip side, this additional
explicit weight adjustment can also be viewed as a
potential constraint that is not present in the joint-
data learning approach.

Multi-task Weight Hyper-Parameter
As discussed, the multi-task learning approach has
an additional weight hyper-parameter λ that ad-
justs the balance between word and tag prediction.
Figure 4 shows the result of varying λ from no
morphological information (λ = 0) to only mor-
phological information (λ = 1) on test-11 set.
The left y-axis presents the BLEU score and the
right y-axis presents the morphological accuracy.
The best morphological accuracy is achieved at
λ = 1 which does not correspond to best trans-
lation quality since at that point the model is only
minimizing the tag objective function. Similarly at
λ = 0, the model falls back to the baseline model
with a single objective function minimizing trans-
lation error. For all language pairs, we consistently
achieved the best BLEU score at λ = 0.2. The pa-
rameter was tuned on a separate held out develop-
ment set (test-11), and the results shown in Figure
3 are on blind test sets (test-12,13). Averages are
reported in the figure.

6 Related Work

The related work to this paper can be broken into
two groups:

Analysis Several approaches have been devised
to analyze MT models and the linguistic properties
that are learned during training. A common ap-
proach has been to use activations from a trained
model to train an external classifier to predict some

relevant information about the input. Köhn (2015)
and Qian et al. (2016b) analyzed linguistic infor-
mation learned in word embeddings, while Qian
et al. (2016a) went further and analyzed linguistic
properties in the hidden states of a recurrent neu-
ral network. Adi et al. (2016) looked at the overall
information learned in a sentence summary vector
generated by an RNN using a similar approach.
Our approach closely aligns with that of Shi et al.
(2016) and Belinkov et al. (2017a), where the acti-
vations from various layers in a trained NMT sys-
tem are used to predict linguistic properties.

Integrating Morphology Some work has also
been done in injecting morphological or more gen-
eral linguistic knowledge into an NMT system.
Sennrich and Haddow (2016) proposed a factored
model that incorporates linguistic features on the
source side as additional factors. An embedding
is learned for each factor, just like a source word,
and then the word and factor embeddings are com-
bined before being passed on to the encoder. Aha-
roni and Goldberg (2017) proposed a method to
predict the target sentence along with its syntac-
tic tree. They linearize the tree in order to use
the existing sequence-to-sequence model. Nade-
jde et al. (2017) also evaluated several methods
of incorporating syntactic knowledge on both the
source and target. While they used factors on the
source side, their best method for the target side
was to linearize the information and interleave it
between the target words. Garcı́a-Martı́nez et al.
(2016) used a neural MT model with multiple out-
puts, like in our case of Multi-task learning. Their
model predicts two properties at every step, the
lemma of the target word and its morphological
information. They then use an external tool to use
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this information to generate the actual target word.
Dong et al. (2015) presented multi-task learning to
translate a language into multiple target languages,
and Luong et al. (2015) did experiments involving
several levels of source and target language infor-
mation. There have been previous efforts to in-
tegrate morphology into MT systems by learning
factored models (Koehn and Hoang, 2007; Durrani
et al., 2014b) over POS and morphological tags.

7 Conclusion

In this paper we analyzed and investigated ways to
improve morphological learning in the NMT de-
coder. We carried a series of experiments to un-
derstand why the decoder learns considerably less
morphology than the encoder in the NMT archi-
tecture. We found that the decoder needs assis-
tance from the encoder and the attention mecha-
nism to generate correct target morphology. Ad-
ditionally we explored three ways to explicitly
inject morphology in the decoder: joint genera-
tion, joint-data learning, and multi-task learning.
We found multi-task learning to outperform the
other two methods. The simpler joint-data learn-
ing method also gave decent improvements. The
code for the experiments and the modified frame-
work is available at https://github.com/
fdalvi/seq2seq-attn-multitask.
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Abstract

Compared to traditional statistical ma-
chine translation (SMT), neural machine
translation (NMT) often sacrifices ade-
quacy for the sake of fluency. We propose
a method to combine the advantages of tra-
ditional SMT and NMT by exploiting an
existing phrase-based SMT model to com-
pute the phrase-based decoding cost for an
NMT output and then using this cost to
rerank the n-best NMT outputs. The main
challenge in implementing this approach
is that NMT outputs may not be in the
search space of the standard phrase-based
decoding algorithm, because the search
space of phrase-based SMT is limited by
the phrase-based translation rule table. We
propose a soft forced decoding algorithm,
which can always successfully find a de-
coding path for any NMT output. We
show that using the forced decoding cost
to rerank the NMT outputs can success-
fully improve translation quality on four
different language pairs.

1 Introduction

Neural machine translation (NMT), which uses a
single large neural network to model the entire
translation process, has recently been shown to
outperform traditional statistical machine transla-
tion (SMT) such as phrase-based machine transla-
tion (PBMT) on several translation tasks (Koehn
et al., 2003; Bahdanau et al., 2015; Sennrich et al.,
2016a). Compared to traditional SMT, NMT gen-
erally produces more fluent translations, but of-
ten sacrifices adequacy, such as translating source
words into completely unrelated target words,
over-translation or under-translation (Koehn and
Knowles, 2017).

There are a number of methods that combine the
two paradigms to address their respective weak-
nesses. For example, it is possible to incorpo-
rate neural features into traditional SMT models
to disambiguate hypotheses (Neubig et al., 2015;
Stahlberg et al., 2016). However, the search space
of traditional SMT is usually limited by transla-
tion rule tables, reducing the ability of these mod-
els to generate hypotheses on the same level of
fluency as NMT, even after reranking. There are
also methods that incorporate knowledge from tra-
ditional SMT into NMT, such as lexical translation
probabilities (Arthur et al., 2016; He et al., 2016),
phrase memory (Tang et al., 2016; Zhang et al.,
2017), and n-gram posterior probabilities based
on traditional SMT translation lattices (Stahlberg
et al., 2017). These improve the adequacy of NMT
outputs, but do not impose hard alignment con-
straints like traditional SMT systems and there-
fore cannot effectively solve all over-translation or
under-translation problems.

In this paper, we propose a method that ex-
ploits an existing phrase-based translation model
to compute the phrase-based decoding cost for
a given NMT translation.1 That is, we force
a phrase-based translation system to take in the
source sentence and generate an NMT translation.
Then we use the cost of this phrase-based forced
decoding to rerank the NMT outputs. The phrase-
based decoding cost will heavily punish com-
pletely unrelated translations, over-translations,
and under-translations, as they will not be able to
be found in the translation phrase table.

One challenge in implementing this method is
that the NMT output may not be in the search
space of the phrase-based translation model,
which is limited by the phrase-based translation

1In fact, our method can take in the output of any up-
stream system, but we experiment exclusively with using it
to rerank NMT output.
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rule table. To solve this problem, we propose a
soft forced decoding algorithm, which is based on
the standard phrase-based decoding algorithm and
integrates new types of translation rules (deleting
a source word or inserting a target word). The
proposed forced decoding algorithm can always
successfully find a decoding path and compute a
phrase-based decoding cost for any NMT output.
Another challenge is that we need a diverse NMT
n-best list for reranking. Because beam search for
NMT often lacks diversity in the beam – candi-
dates only have slight differences, with most of the
words overlapping – we use a random sampling
method to obtain a more diverse n-best list.

We test the proposed method on English-to-
Chinese, English-to-Japanese, English-to-German
and English-to-French translation tasks, obtaining
large improvements over a strong NMT baseline
that already incorporates discrete lexicon features.

2 Attentional NMT

Our baseline NMT model is similar to the atten-
tional model of Bahdanau et al. (2015), which
includes an encoder, a decoder and an atten-
tion (alignment) model. Given a source sentence
F = {f1, ..., fJ}, the encoder learns an annota-

tion hj =
[
~hj ;

←
hj

]
for fj using a bi-directional

recurrent neural network.
The decoder generates the target translation

from left to right. The probability of generating
next word ei is,2

PNMT

(
ei|ei−1

1 , F
)

= softmax (g (ei−1, ti, si))
(1)

where ti is a decoding state for time step i, com-
puted by,

ti = f (ti−1, ei−1, si) (2)

si is a source representation for time i, calculated
as,

si =
J∑
j=1

αi,j · hj (3)

where αi,j scores how well the inputs around posi-
tion j and the output at position imatch, computed
as,

αi,j =
exp (a (ti−1, hj))
J∑
k=1

exp (a (ti−1, hk))
(4)

2g, f and a in Equation 1, 2 and 4 are nonlinear, poten-
tially multi-layered, functions.

As we can see, NMT only learns an atten-
tion (alignment) distribution for each target word
over all source words and does not provides ex-
act mutually-exclusive word or phrase level align-
ments. As a result, it is known that attentional
NMT systems make mistakes in over- or under-
translation (Cohn et al., 2016; Mi et al., 2016).

3 Phrase-based Forced Decoding for
NMT

3.1 Phrase-based SMT

In phrase-based SMT (Koehn et al., 2003), a
phrase-based translation rule r includes a source
phrase, a target phrase and a translation score
S (r). Phrase-based translation rules can be ex-
tracted from the word-aligned training set and then
used to translate new sentences. Word alignments
for the training set can be obtained by IBM models
(Brown et al., 1993).

Phrase-based decoding uses a list of translation
rules to translate source phrases in the input sen-
tence and generate target phrases from left to right.
A basic concept in phrase-based decoding is hy-
potheses. As shown in Figure 1, the hypothesis
H1 consists of two rules r1 and r2. The score of
a hypothesis S (H) can be calculated as the prod-
uct of the scores of all applied rules.3 An existing
hypothesis can be expanded into a new hypothesis
by applying a new rule. As shown in Figure 1, H1

can be expanded into H2, H3 and H4. H2 cannot
be further expanded, because it covers all source
words, whileH3 andH4 can (and must) be further
expanded. The decoder starts with an initial empty
hypothesis H0 and selects the hypothesis with the
highest score from all completed hypotheses.

During decoding, hypotheses are stored in
stacks. For a source sentence with J words, the de-
coder builds J stacks. The hypotheses that cover
j source words are stored in stack sj . The de-
coder expands hypotheses in s1, s2, ..., sJ in turn
as shown in Algorithm 1. Here, EXPAND(H) is
expanding H to get new hypotheses and putting
the new hypotheses into corresponding stacks. For
each stack, a beam of the best n hypotheses is kept
to speed up the decoding process.

3In actual phrase-based decoding it is common to inte-
grate reordering probabilities in the forced decoding score
defined in Equation 9. However, because NMT generally pro-
duces more properly ordered sentences than traditional SMT,
in this work we do not consider reordering probabilities in
our forced decoding algorithm.
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nightheadacheahadI last

昨晚(last night)我(I)

nightheadacheahadI last

痛(pain)头(head)昨晚(last night)我(I) 了

nightheadacheahadI last

吃(eat)昨晚(last night)我(I) 了

nightheadacheahadI last

一(one)昨晚(last night)我(I)

r1: I—>我(I)

r5: a—>一(one)

r4: had—>吃(eat) 了

r3: had a headache—>头(head) 痛(pain)了

r2: last night—>昨晚(last night)

H1:

H4:

H3:

H2:

S(H1)=S(r1)*S(r2)

S(H4)=S(r1)*S(r2)*S(r5)

S(H3)=S(r1)*S(r2)*S(r4)

S(H2)=S(r1)*S(r2)*S(r3)

Phrase Table

Figure 1: An example of phrase-based decoding.

Algorithm 1 Standard phrase-based decoding.
Require: Source sentence F with length J
Ensure: Translation E and decoding path D

initialize H0 and s1, s2, ..., sJ
EXPAND(H0)
for j = 1 to J − 1 do

for each hypothesis Hjk in sj do
EXPAND(Hjk)

select best hypothesis in sJ

3.2 Forced Decoding for NMT

As stated in the introduction, our goal is not to
generate new hypotheses with phrase-based SMT,
but instead use the phrase-based model to calcu-
late scores for NMT output. In order to do so, we
can perform forced decoding, which is very sim-
ilar to the algorithm in the previous section but
discards all partial hypotheses that do not match
the NMT output. However, the NMT output is
not limited by the phrase-based rule table, so there
may be no decoding path that completely matches
the NMT output when using only the phrase-based
rules.

To remedy this problem, inspired by previous
work in forced decoding for training phrase-based
SMT systems (Wuebker et al., 2010, 2012) we
propose a soft forced decoding algorithm that can
always successfully find a decoding path for a
source sentence F and an NMT translation E.

First, we introduce two new types of rules R1

and R2.

R1 A source word f can be translated into a spe-
cial word null. This corresponds to deleting f
during translation. The score of deleting f is cal-

culated as,

s (f → null) =
unalign (f)
|T | (5)

where unalign (f) is how many times f is un-
aligned in the word-aligned training set T and |T |
is the number of sentence pairs in T .

R2 A target word e can be translated from a spe-
cial word null, which corresponds to inserting e
during translation. The score of inserting e is cal-
culated as,

s (null→ e) =
unalign (e)
|T | (6)

where unalign (e) is how many times e is un-
aligned in T .

One motivation for Equations 5 and 6 is that
function words usually have high frequencies, but
do not have as clear a correspondence with a word
in the other language as content words. As a re-
sult, in the training set function words are more
often unaligned than content words. As an exam-
ple, Table 1 and Table 2 show how many times
different words occur and how many times they
are unaligned in the word-aligned training set of
English-to-Chinese and English-to-French tasks in
our experiments. As we can see, generally there
are less unaligned words in the English-to-French
task, however, function words are more likely to
be unaligned in both tasks. Based on Equation 5
and Equation 6, the scores of deleting or inserting
“of” and “a” will be higher.

In our forced decoding, we choose to model
the score of each translation rule that exists in the
phrase table as the product of direct and inverse
phrase translation probabilities. To make sure that
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Words of a practice water
Occur 1.3M 1.0M 2.2K 29K
Unaligned 0.51M 0.41M 0.25K 3.5K

Table 1: The number of times that words occur
in the English-to-Chinese training corpus and the
number of times that they are unaligned.

Words of a practice water
Occur 1.7M 0.83M 8.8K 7.4K
Unaligned 0.16M 0.12M 0.38K 0.19K

Table 2: The number of times that words occur
in the English-to-French training corpus and the
number of times that they are unaligned.

the scale of the scores for R1 and R2 match the
other phrase (which are the product of two prob-
abilities), we use the square of the score in Equa-
tion 5/6 as the rule score for R1/R2.

Algorithm 2 shows the forced decoding algo-
rithm that integrates the new rules. Because the
translation E is given for the forced decoding al-
gorithm, the proposed forced decoding algorithm
keeps I stacks, where I is the length of E. In
other words, the stack size is corresponding to
the target word size during forced decoding while
the stack size is corresponding to the source word
size during standard phrase-based decoding. The
stack s′i in Algorithm 2 contains all hypotheses
in which the first i target words have been gen-
erated. We expand hypotheses in s′1, s′2, ..., s′I in
turn. When expanding a hypothesis Hold in s′i,
besides expanding it using the original rule table
EXPAND(Hold),4 we also expand Hold by insert-
ing the next target word ei+1 at the end of Hold to
get an additional hypothesis Hnew and put Hnew

into s′i+1. For a final hypothesis in stack s′I , it may
not cover all source words. We update its score by
translating uncovered words into null.

Because different decoding paths can generate
the same final translation, there can be different
decoding paths that fit the NMT translation E.
We use the score of the single decoding path with
the highest decoding score as the forced decoding
score for E.

4The new introduced word inserting/deleting rules are not
used when performing EXPAND(Hold).

Algorithm 2 Forced phrase-based decoding.
Require: Source sentence F with length J and

translation E with length I
Ensure: Decoding path D

initialize H0 and s′1, s′2, ..., s′I
EXPAND(H0)
expand H0 with rule null→ e1
for i = 1 to I − 1 do

for each hypothesis Hik in s′i do
EXPAND(Hik)
expand Hik with rule null→ ei+1

for each hypothesis HIk in s′I do
update S (HIk) for uncovered source words

select best hypothesis in s′I

4 Reranking NMT Outputs with
Phrase-based Decoding Score

We rerank the n-best NMT outputs using the
phrase-based forced decoding score according to
Equation 7.

log P (E|F ) = w1 · log Pn (E|F )+w2 · log Sd (E|F ) (7)

where Pn (E|F ) is the original NMT translation
probability as calculated by Equation 1;

Pn (E|F ) =

I∏
i=1

PNMT

(
ei|ei−1

1 , F
)

(8)

Sd (E|F ) is the forced decoding score, which is
the score of the decoding path D̂ with the highest
decoding score as described above;

Sd (E|F ) =
∏

r∈D̂
S (r) (9)

w1 and w2 are weights that can be tuned on the
n-best list of the development set.

The easiest way to get an n-best list for NMT
is by using the n-best translations from beam
search, which is the standard decoding algorithm
for NMT. While beam search is likely to find the
highest-scoring hypothesis, it often lacks diversity
in the beam: candidates only have slight differ-
ences, with most of the words overlapping. In or-
der to obtain a more diverse list of hypotheses for
reranking, we additionally augment the 1-best hy-
pothesis discovered by beam search with transla-
tions sampled from the NMT conditional proba-
bility distribution.

The standard method for sampling hypotheses
in NMT is ancestral sampling, where we randomly
select a word from the vocabulary according to
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PNMT

(
ei|ei−1

1 , F
)

(Shen et al., 2016). This will
make a diverse list of hypotheses, but may reduce
the probability of selecting a highly scoring hy-
pothesis, and the whole n-best list may not con-
tain any candidate with better translation quality
than the standard beam search output.

Instead, we take an alternative approach that
proved empirically better in our experiments: at
each time step i, we use sampling to randomly
select the next word from e′ and e′′ according to
Equation 10. Here, e′ and e′′ are the two target
words with the highest probability according to
Equation 1.

Prdm (e′) =
PNMT (e′|ei−1

1 ,F)
PNMT (e′|ei−1

1 ,F)+PNMT (e′′|ei−1
1 ,F)

Prdm (e′′) =
PNMT (e′′|ei−1

1 ,F)
PNMT (e′|ei−1

1 ,F)+PNMT (e′′|ei−1
1 ,F)

(10)
The sampling process ends when 〈/s〉 is selected
as the next word.

We repeat the decoding process 1, 000 times to
sample 1, 000 outputs for each source sentence.
We additionally add the 1-best output of standard
beam search, making the size of the list used for
reranking to be 1, 001.

5 Experiments

5.1 Settings
We evaluated the proposed approach for English-
to-Chinese (en-zh), English-to-Japanese (en-ja),
English-to-German (en-de) and English-to-French
(en-fr) translation tasks. For the en-zh and en-
ja tasks, we used datasets provided for the patent
machine translation task at NTCIR-9 (Goto et al.,
2011).5 For the en-de and en-fr tasks, we used
version 7 of the Europarl corpus as training data,
WMT 2014 test sets as our development sets and
WMT 2015 test sets as our test sets. The detailed
statistics for training, development and test sets are
given in Table 3. The word segmentation was done
by BaseSeg (Zhao et al., 2006) for Chinese and
Mecab6 for Japanese.

We built attentional NMT systems with Lam-
tram7. Word embedding size and hidden layer size

5Note that NTCIR-9 only contained a Chinese-to-English
translation task, we used English as the source language in
our experiments. In NTCIR-9, the development and test sets
were both provided for the zh-en task while only the test set
was provided for the en-ja task. We used the sentences from
the NTCIR-8 en-ja and ja-en test sets as the development set
in our experiments.

6http://sourceforge.net/projects/mecab/files/
7https://github.com/neubig/lamtram

SOURCE TARGET

en-de

TRAIN #Sents 1.90M
#Words 52.2M 49.7M
#Vocab 113K 376K

DEV #Sents 3,003
#Words 67.6K 63.0K

TEST #Sents 2,169
#Words 46.8K 44.0K

en-fr

TRAIN #Sents 1.99M
#Words 54.4M 60.4M
#Vocab 114K 137K

DEV #Sents 3,003
#Words 71.1K 81.1K

TEST #Sents 1.5K
#Words 27.1K 29.8K

en-zh

TRAIN #Sents 954K
#Words 40.4M 37.2M
#Vocab 504K 288K

DEV #Sents 2K
#Words 77.5K 75.4K

TEST #Sents 2K
#Words 58.1K 55.5K

en-ja

TRAIN #Sents 3.14M
#Words 104M 118M
#Vocab 273K 150K

DEV #Sents 2K
#Words 66.5K 74.6K

TEST #Sents 2K
#Words 70.6K 78.5K

Table 3: Data sets.

are both 512. We used Byte-pair encoding (BPE)
(Sennrich et al., 2016b) and set the vocabulary size
to be 50K. We used the Adam algorithm for opti-
mization.

To obtain a phrase-based translation rule ta-
ble for our forced decoding algorithm, we used
GIZA++ (Och and Ney, 2003) and grow-diag-
final-and heuristic to obtain symmetric word
alignments for the training set. Then we extracted
the rule table using Moses (Koehn et al., 2007).

5.2 Results and Analysis

Table 4 shows results of the phrase-based SMT
system8, the baseline NMT system, the lexicon
integration method (Arthur et al., 2016) and the
proposed reranking method. We tested three fea-
tures for reranking: the NMT score Pn, the forced
decoding score Sd and a word penalty (WP) fea-
ture, which is the length of the translation. The
best NMT system and the systems that have no
significant difference from the best NMT system
at the p < 0.05 level using bootstrap resampling
(Koehn, 2004) are shown in bold font.

As we can see, integrating lexical translation
probabilities improved the baseline NMT system

8We used the default Moses settings for phrase-based
SMT.
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en-zh en-ja en-de en-fr
dev test dev test dev test dev test

PBMT 30.73 27.72 35.67 33.46 12.37 13.95 25.96 27.50
NMT 34.60 32.71 41.67 39.00 12.52 14.05 23.63 23.99
NMT+lex 36.06 34.80 44.47 41.09 13.36 15.60 24.00 24.91
NMT+lex+rerank(Pn) 34.38 33.23 38.92 34.18 12.34 13.59 23.13 23.61
NMT+lex+rerank(Sd) 36.17 34.09 42.91 40.16 13.08 15.29 24.28 25.71
NMT+lex+rerank(Pn+Sd) 37.94 35.59 45.34 41.75 14.56 16.61 25.96 27.12
NMT+lex+rerank(Pn+WP) 37.44 34.93 45.81 41.90 13.75 15.46 24.47 25.09
NMT+lex+rerank(Sd+WP) 36.44 33.73 43.52 40.49 13.39 15.71 24.74 26.25
NMT+lex+rerank(Pn+Sd+WP) 38.69 35.75 46.92 43.17 14.61 16.65 25.98 27.15

Table 4: Translation results (BLEU). NMT+lex: (Arthur et al., 2016); NMT+lex+rerank: we rerank the
n-best outputs of NMT+lex using different features (Pn, Sd and WP).

en-zh en-ja en-de en-fr
METEOR chrF METEOR chrF METEOR chrF METEOR chrF

PBMT 34.70 37.87 35.22 39.45 26.66 50.02 32.33 56.36
NMT 34.51 39.91 35.07 42.02 24.91 44.50 29.58 49.99
NMT+lex 35.56 42.22 36.48 44.34 25.49 45.67 30.10 50.89
NMT+lex+rerank(Pn) 34.56 40.80 32.63 38.57 23.57 40.35 29.15 48.64
NMT+lex+rerank(Sd) 36.02 42.65 36.87 44.85 26.48 48.73 31.56 54.42
NMT+lex+rerank(Pn+Sd) 36.40 43.73 37.22 45.69 26.26 47.27 31.62 53.99
NMT+lex+rerank(Pn+WP) 36.04 42.86 36.90 44.93 25.03 44.05 30.21 50.78
NMT+lex+rerank(Sd+WP) 36.34 42.78 37.05 45.03 26.16 47.82 31.32 53.75
NMT+lex+rerank(Pn+Sd+WP) 36.88 44.09 37.94 46.66 26.20 47.12 31.61 53.98

Table 5: METEOR and chrF scores on the test sets for different system outputs in Table 4.
en-zh en-ja en-de en-fr
dev test dev test dev test dev test

PBMT 1.008 1.018 1.005 0.998 1.077 1.069 0.986 1.004
NMT 0.953 0.954 0.960 0.961 1.059 1.038 0.985 0.977
NMT+lex 0.936 0.966 0.955 0.963 1.054 1.019 1.030 0.977
NMT+lex+rerank(Pn) 0.875 0.898 0.814 0.775 0.874 0.854 0.904 0.900
NMT+lex+rerank(Sd) 0.973 0.989 0.985 0.981 1.062 1.060 1.030 1.031
NMT+lex+rerank(Pn+Sd) 0.949 0.965 0.945 0.936 1.000 0.992 0.999 0.992
NMT+lex+rerank(Pn+WP) 0.996 1.019 0.999 0.983 1.000 0.975 0.998 1.001
NMT+lex+rerank(Sd+WP) 1.000 1.024 1.001 1.001 1.011 1.007 0.999 0.989
NMT+lex+rerank(Pn+Sd+WP) 0.990 1.014 1.000 0.986 1.000 0.989 1.000 0.992

Table 6: Ratio of translation length to reference length for different system outputs in Table 4.

and reranking with the three features all together
achieved further improvements for all four lan-
guage pairs. Even on English-to-Chinese and
English-to-Japanese tasks, where the NMT system
outperformed the phrase-based SMT system by 7-
8 BLEU scores, using the forced decoding score
for reranking NMT outputs can still achieve sig-
nificant improvements. With or without the word
penalty feature, using both Pn and Sd for rerank-
ing gave better results than only using Pn or Sd
alone. We also show METEOR and chrF scores
on the test sets in Table 5. Our reranking method
improved both METEOR and chrF significantly.

The Word Penalty Feature The word penalty
feature generally improved the reranking results,
especially when only the NMT score Pn was used
for reranking. As we can see, using only Pn for
reranking decreased the translation quality com-

pared to the standard beam search result of NMT.
Because the search spaces of beam search and ran-
dom sampling are quite different, the best beam
search output does not necessarily have the high-
est NMT score compared to random sampling out-
puts. Therefore, even the Pn reranking results do
have higher NMT scores, but have lower BLEU
scores according to Table 4. To explain why this
happened, we show the ratio of translation length
to reference length in Table 6. As we can see, the
Pn reranking outputs are much shorter. This is be-
cause NMT generally prefers shorter translations,
since Equation 8 multiplies all target word proba-
bilities together. So the word penalty feature can
improve the Pn reranking results considerably, by
preferring longer sentences. Because the forced
decoding score Sd as shown in Equation 9 does
not obviously prefer shorter or longer sentences,
when Sd was used for reranking, the word penalty
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Source for hypophysectomized (hypop hy sec to mized) rats , the drinking water additionally contains
5 % glucose .

Reference 对于(for) 去(remove)垂体(hypophysis) 大(big)鼠(rat)，饮用水(drinking water)中(in)另

外(also)含有(contain) 5％葡萄糖(glucose)。

PBMT 用于(for) 大(big) 鼠(rat) 垂体(hypophysis) HySecto，(Hy Sec to，) 饮用水(drinking wa-

ter)另外(also)含有(contain) 5％葡萄糖(glucose)。

NMT 对于(for) 过(pass)盲肠(cecum) 的(of)大(big)鼠(rat)，饮用水(drinking water)另外(also)

含有(contain) 5％葡萄糖(glucose)。
NMT+lex

对于(for) 低(low)酪(cheese)蛋白(protein)切除(remove) 的(of)大(big)鼠(rat)，饮用

水(drinking water)另外(also)含有(contain) 5％葡萄糖(glucose)。
NMT+lex+Pn

NMT+lex+Pn+WP
NMT+lex+Sd 对于(for) 垂体(hypophysis)在(is)切除(remove) 大(big)鼠(rat)中(in)，饮用水(drinking

water)另外(also)含有(contain) 5％葡萄糖(glucose)。
NMT+lex+Sd+WP

NMT+lex+Pn+Sd 对于(for) 垂体(hypophysis)在(is)切除(remove) 的(of)大(big)鼠(rat)中(in)，饮用

水(drinking water)另外(also)含有(contain) 5％葡萄糖(glucose)。
NMT+lex+Pn+Sd+WP

Table 7: An example of improving inaccurate rare word translation by using Sd for reranking.

feature became less helpful. When both Pn and Sd
were used for reranking, the word penalty feature
only achieved further significant improvement on
the English-to-Japanese task.

T1 (NMT+lex):
for→对于(for) -3.04

ra: hy→低(low) -12.19

rb: null→酪(cheese) -21.99

rc: null→蛋白(protein) -13.83
to mized→切除(remove) -6.22
null→的(of) -1.53
rats→大(big)鼠(rat) -1.52

, the drinking water→，饮用水(drinking water) -1.38
additionally contains→另外(also)含有(contain) -3.68
5 %→5％ -0.51
glucose . →葡萄糖(glucose)。 -0.60
rd: hypop→null -25.33

sec→null -20.66
T2 (NMT+lex+Pn+Sd):
for→对于(for) -3.04

hypop hy→垂体(hypophysis) -5.09

the→在(is) -5.32
to mized→切除(remove) -6.22
null→的(of) -1.53
rats→大(big)鼠(rat) -1.52

,→中(in)， -4.11

drinking water→饮用水(drinking water) -1.03
additionally contains→另外(also)含有(contain) -3.68
5 %→5％ -0.51
glucose . →葡萄糖(glucose)。 -0.60
sec→null -20.66

Table 9: Forced decoding paths for T1 and T2:
used rules and log scores. The translation rules
with shade are used only for T1 or T2.

Table 7 gives translation examples of our
reranking method from the English-to-Chinese
task. The source English word “hypophysec-
tomized” is an unknown word which does not oc-
cur in the training set. By employing BPE, this
word is split into “hypop”, “hy”, “sec”, “to” and
“mized”. The correct translation for “hypophy-
sectomized” is “去(remove) 垂体(hypophysis)”
as shown in the reference sentence. The orig-
inal attentional NMT translated it into incor-
rect translation “过(pass) 盲肠(cecum)”. Af-
ter integrating lexicons, the NMT system trans-
lated it into “低(low)酪(cheese)蛋白(protein)切
除(remove)”. The last word “切除(remove)” is
correct, but the rest of the translation is still wrong.
Only by using the forced decoding score Sd for
reranking, we get the more accurate translation
“垂体(hypophysis)在(is)切除(remove)”.

To further demonstrate how the reranking
method works, Table 9 shows translation rules and
their log-scores contained in the forced decoding
paths found for T1, the NMT translation with-
out reranking and T2, the NMT translation using
both Pn and Sd for reranking. As we can see,
the four rules ra, rb, rc and rd used for T1 have
low scores. ra is an unlikely translation. In rb,
rc and rd, “酪(cheese)”, “蛋白(protein)” and “hy-
pop” are content words, which are unlikely to be
deleted or inserted during translation. Table 9 also
shows that the translation of function words is very
flexible. The score of inserting a function word
“的(of)” is very high. The translation rule “the
→在(is)” used for T2 is incorrect, but its score is
relatively high, because function words are often
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Source such changes in reaction conditions include , but are not limited to ,
an increase in temperature or change in ph .

Reference 所(such) 述(said) 反 应(reaction) 条 件(condition) 的(of)
改 变(change) 包 括(include) 但(but) 不(not) 限 于(limit)

温度(temperature)的(of)增加(increase)或(or) pH值(value)的(of)改变(change) 。
PBMT 中(in) 的(of) 这 种(such) 变 化(change) 的(of) 反 应(reaction) 条

件(condition) 包 括(include) ， 但(but) 不(not) 限 于(limit) ，

增加(increase)的(of)温度(temperature)或(or) pH变化(change) 。
NMT 这种(such) 反应(reaction) 条件(condition) 的(of) 变化(change) 包括(include) 但(but) 不(not)

限于(limit) pH或(or) pH的(of)变化(change) 。
NMT+lex 这种(such)反应(reaction)条件(condition)的(of)变化(change)包括(include)，但(but)不(not)

限于(limit)， pH的(of)升高(increase)或(or) pH变化(change) 。
NMT+lex+Pn

NMT+lex+Sd 这种(such) 反应(reaction) 条件(condition) 的(of) 变化(change) 包括(include) 但(but) 不(not)

限于(limit)， 温度(temperature)的(of)升高(increase)或(or)改变(change) pH值(value) 。
NMT+lex+Pn+Sd 这种(such)反应(reaction)条件(condition)的(of)变化(change)包括(include)，但(but)不(not)

限于(limit)， 温度(temperature)的(of)升高(increase)或(or)改变(change) pH值(value) 。
NMT+lex+Pn+WP 这种(such)反应(reaction)条件(condition)的(of)变化(change)包括(include)，但(but)不(not)

限于(limit)， pH的(of)升高(increase)或(or)改变(change) pH值(value) 。
NMT+lex+Sd+WP 这种(such)反应(reaction)条件(condition)的(of)变化(change)包括(include)，但(but)不(not)

限于(limit)， 温度(temperature)的(of)升高(increase)或(or)改变(change) pH值(value) 。
NMT+lex+Pn+Sd+WP

Table 8: An example of improving under-translation and over-translation by using Sd for reranking.

incorrectly aligned in the training set. The rea-
son why function words are more likely to be in-
correctly aligned to each other is that they usually
have high frequencies and do not have clear corre-
spondences between different languages.

In T1, “hypophysectomized (hypop hy sec to
mized)” is incorrectly translated into “低(low)
酪(cheese) 蛋白(protein) 切除(remove)”. How-
ever, from Table 9, we can see that the
forced decoding algorithm learns it as un-
likely translation (hy→低(low)), over-translation
(null→酪(cheese), null→蛋白(protein)) and
under-translation (hypop→null, sec→null),
because there is no translation rule between “hy-
pop” “sec” and “酪(cheese)” “蛋白(protein)”. Be-
cause content words are unlikely to be deleted or
inserted during translation, they have low forced
decoding scores. So using the forced decoding
score for reranking NMT outputs can naturally
improve over-translation or under-translation as
shown in Table 8. As we can see, without using
Sd for reranking, NMT under-translated “temper-
ature” and over-translated “ph” twice, which will
be assigned low scores by forced decoding. By
using Sd for reranking, the correct translation was
selected.

We did human evaluation on 100 sentences ran-
domly selected from the English-to-Chinese test
set to test the effectiveness of our forced decoding

method. We compared the outputs of two systems:

• NMT+lex+rerank(Pn+WP)

• NMT+lex+rerank(Pn+Sd+WP)

For each source sentence, we compared the two
system outputs. Table 10 shows the numbers
of sentences that our forced decoding feature
helped to reduce completely unrelated transla-
tion, over-translation and under-translation. The
last line of Table 10 means that for 73 source
sentences, our forced decoding feature neither
reduced nor caused more unrelated/over/under
translation. That is our forced decoding feature
never caused more unrelated/over/under transla-
tion for the sampled 100 sentences, which shows
that our method is very robust for improving unre-
lated/over/under translation.

Reduce

both under- and over- translation 2
under-translation 11
over-translation 10
unrelated translation 4

No difference 73

Table 10: Human evaluation results.

Reranking PBMT Outputs with NMT We
also did experiments that use the NMT score as
an additional feature to rerank PBMT outputs
(unique 1, 000-best list). The results are shown
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in Table 11. We also copy results of baseline
PBMT and NMT from Table 4 for direct com-
parison. As we can see, using NMT to rerank
PBMT outputs achieved improvements over the
baseline PBMT system. However, when the base-
line NMT system is significantly better than the
baseline PBMT system (en-zh, en-ja), even using
NMT to rerank PBMT outputs still achieved lower
translation quality compared to the baseline NMT
system.

en-zh en-ja en-de en-fr
PBMT+rerank 32.77 37.68 14.23 28.86
PBMT dev 30.73 35.67 12.37 25.96
NMT 34.60 41.67 12.52 23.63
PBMT+rerank 30.04 35.14 15.89 29.77
PBMT test 27.72 33.46 13.95 27.50
NMT 32.71 39.00 14.05 23.99

Table 11: Results of using NMT for reranking
PBMT outputs.

6 Related Work

Wuebker et al. (2010, 2012) applied forced decod-
ing on the training set to improve the training pro-
cess of phrase-based SMT and prune the phrase-
based rule table. They also used word insertions
and deletions for forced decoding, but they used a
high penalty for all insertions and deletions. In
contrast, our soft forced decoding algorithm for
NMT outputs uses a small penalty for function
words and a high penalty for content words, be-
cause function words are usually translated very
flexibly and more likely to be inserted or deleted
compared to content words. For example, the
under-translation of a content word can hurt the
adequacy of the translation heavily. But function
words may naturally disappear during translation
(e.g. the English word “the” disappears in Chi-
nese). By assigning a high penalty to words that
should not be deleted or inserted during transla-
tion, our soft forced decoding method aims to im-
prove the adequacy of NMT, which is very differ-
ent from previous forced decoding methods that
are used to improve general SMT training (Yu
et al., 2013; Xiao et al., 2016).

A major difference of traditional SMT and
NMT is that the alignment model in traditional
SMT provides exact word or phrase level align-
ments between the source and target sentences
while the attention model in NMT only computes
an alignment probability distribution for each tar-
get word over all source words, which is the main

reason why NMT is more likely to produce com-
pletely unrelated translations, over-translation or
under-translation compared to traditional SMT. To
relieve NMT of these problems, there are meth-
ods that modify the NMT neural network structure
(Tu et al., 2016; Meng et al., 2016; Alkhouli et al.,
2016) while we rerank NMT outputs by exploiting
knowledge from traditional SMT.

There are also existing methods that rerank
NMT outputs by using target-bidirectional NMT
models (Liu et al., 2016; Sennrich et al., 2016a).
Their reranking method aims to overcome the is-
sue of unbalanced accuracy in NMT outputs while
our reranking method aims to solve the inade-
quacy problem of NMT.

7 Conclusion

In this paper, we propose to exploit an existing
phrase-based SMT model to compute the phrase-
based decoding cost for NMT outputs and then use
the phrase-based decoding cost to rerank the n-
best NMT outputs, so we can combine the advan-
tages of both PBMT and NMT. Because an NMT
output may not be in the search space of standard
phrase-based SMT, we propose a forced decod-
ing algorithm, which can always successfully find
a decoding path for any NMT output by deleting
source words and inserting target words. Results
show that using the forced decoding cost to rerank
NMT outputs improved translation accuracy on
four different language pairs.
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Abstract

Character-based sequence labeling frame-
work is flexible and efficient for Chi-
nese word segmentation (CWS). Recently,
many character-based neural models have
been applied to CWS. While they obtain
good performance, they have two obvious
weaknesses. The first is that they heav-
ily rely on manually designed bigram fea-
ture, i.e. they are not good at captur-
ing n-gram features automatically. The
second is that they make no use of full
word information. For the first weakness,
we propose a convolutional neural model,
which is able to capture rich n-gram fea-
tures without any feature engineering. For
the second one, we propose an effective
approach to integrate the proposed model
with word embeddings. We evaluate the
model on two benchmark datasets: PKU
and MSR. Without any feature engineer-
ing, the model obtains competitive per-
formance — 95.7% on PKU and 97.3%
on MSR. Armed with word embeddings,
the model achieves state-of-the-art perfor-
mance on both datasets — 96.5% on PKU
and 98.0% on MSR, without using any ex-
ternal labeled resource.

1 Introduction

Unlike English and other western languages, most
east Asian languages, including Chinese, are writ-
ten without explicit word delimiters. However,
most natural language processing (NLP) applica-
tions are word-based. Therefore, word segmen-
tation is an essential step for processing those
languages. CWS is often treated as a character-
based sequence labeling task (Xue et al., 2003;
Peng et al., 2004). Figure 1 gives an intuitive
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���� �
���� �
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� Figure 1: Chinese word segmentation as a sequence label-
ing task. This figure presents the common BMES (Begining,
Middle, End, Singleton) tagging scheme.

explaination. Linear models, such as Maximum
Entropy (ME) (Berger et al., 1996) and Con-
ditional Random Fields (CRF) (Lafferty et al.,
2001), have been widely used for sequence label-
ing tasks. However, they often depend heavily on
well-designed hand-crafted features.

Recently, neural networks have been widely
used for NLP tasks. Collobert et al. (2011) pro-
posed a unified neural architecture for various se-
quence labeling tasks. Instead of exploiting hand-
crafted input features carefully optimized for each
task, their system learns internal representations
automatically. As for CWS, there are a series
of works, which share the main idea with Col-
lobert et al. (2011) but vary in the network ar-
chitecture. In particular, feed-forward neural net-
work (Zheng et al., 2013), tensor neural network
(Pei et al., 2014), recursive neural network (Chen
et al., 2015a), long-short term memory (LSTM)
(Chen et al., 2015b), as well as the combination of
LSTM and recursive neural network (Xu and Sun,
2016) have been used to derive contextual repre-
sentations from input character sequences, which
are then fed to a prediction layer.

Despite of the great success of above models,
they have two weaknesses. The first is that they
are not good at capturing n-gram features automat-
ically. Experimental results show that their models
perform badly when no bigram feature is explic-
itly used. One of the strengths of neural networks
is the ability to learn features automatically. How-
ever, this strength has not been well exploited in

163



their works. The second is that they make no use
of full word information. Full word information
has shown its effectiveness in word-based CWS
systems (Andrew, 2006; Zhang and Clark, 2007;
Sun et al., 2009). Recently, Liu et al. (2016);
Zhang et al. (2016) utilized word embeddings to
boost performance of word-based CWS models.
However, for character-based CWS models, word
information is not easy to be integrated.

For the first weakness, we propose a convolu-
tional neural model, which is also character-based.
Previous works have shown that convolutional lay-
ers have the ablity to capture rich n-gram features
(Kim et al., 2016). We use stacked convolutional
layers to derive contextual representations from
input sequence, which are then fed into a CRF
layer for sequence-level prediction. For the sec-
ond weakness, we propose an effective approach
to incorporate word embeddings into the proposed
model. The word embeddings are learned from
large auto-segmented data. Hence, this approach
belongs to the category of semi-supervised learn-
ing.

We evaluate our model on two benchmark
datasets: PKU and MSR. Experimental results
show that even without the help of explicit n-gram
feature, our model is capable of capturing rich n-
gram information automatically, and obtains com-
petitive performance — 95.7% on PKU and 97.3%
on MSR (F score). Furthermore, armed with word
embeddings, our model achieves state-of-the-art
performance on both datasets — 96.5% on PKU
and 98.0% on MSR, without using any external
labeled resource. 1

2 Architecture

In this section, we introduce the architecture from
bottom to top.

2.1 Lookup Table

The first step to process a sentence by deep neu-
ral networks is often to transform words or char-
acters into embeddings (Bengio et al., 2003; Col-
lobert et al., 2011). This transformation is done
by lookup table operation. A character lookup ta-
bleMchar ∈ R|Vchar|×d (where |Vchar| denotes the
size of the character vocabulary and d denotes the
dimension of embeddings) is associated with all

1The tensorflow (Abadi et al., 2016) implementation
and related resources can be found at https://github.
com/chqiwang/convseg.

Input

Convolution

Gating

Output

×

σ 

Figure 2: Structure of a convolutional layer with GLU. There
are five input channels and four output channels in this figure.

characters. Given a sentence S = (c1, c2, ..., cL),
after the lookup table operation, we obtain a ma-
trix X ∈ RL×d where the i’th row is the character
embedding of ci.

Besides the character, other features can be eas-
ily incorporated into the model (we shall see word
feature in section 3). We associate to each feature
a lookup table (some features may share the same
lookup table) and the final representation is cal-
culated as the concatenation of all corresponding
feature embeddings.

2.2 Convolutional Layer

Many neural network models have been explored
for CWS. However, experimental results show that
they are not able to capure n-gram information au-
tomatically (Pei et al., 2014; Chen et al., 2015a,b).
To achieve good performance, n-gram feature
must be used explicitly. To overcome this weak-
ness, we use convolutional layers (Waibel et al.,
1989) to encode contextual information. Con-
volutional neural networks (CNNs) have shown
its great effectiveness in computer vision tasks
(Krizhevsky et al., 2012; Simonyan and Zisser-
man, 2014; He et al., 2016). Recently, Zhang
et al. (2015) applied character-level CNNs to text
classification task. They showed that CNNs tend
to outpeform traditional n-gram models as the
dataset goes larger. Kim et al. (2016) also ob-
served that character-level CNN learns to differ-
entiate between different types of n-grams — pre-
fixes, suffixes and others, automatically.

Our network is quite simple — only convolu-
tional layers is used (no pooling layer). Gated lin-
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1c 2c 3c 4c 5c 6c 7c 8c

Figure 3: Stacked convolutional layers. There is one input
layer on the bottom and three convolutional layers on the top.
Dashed white circles denote paddings. Black circles and lines
mark the pyramid in the perspective of c4.

ear unit (GLU) (Dauphin et al., 2016) is used as the
non-linear unit in our convolutional layer, which
has been shown to surpass rectified linear unit
(ReLU) on the language modeling task. For sim-
plicity, GLU can also be easily replaced by ReLU
with performance slightly hurt (with roughly the
same number of network parameters). Figure 2
shows the structure of a convolutional layer with
GLU. Formally, we define the number of input
channels as N , the number of output channels as
M , the length of input as L and kernel width as k.
The convolutional layer can be written as

F (X) = (X ∗W + b)⊗ σ(X ∗ V + c)

where ∗ denotes one dimensional convolution op-
eration, X ∈ RL×N is the input of this layer, W ∈
Rk×N×M , b ∈ RM , V ∈ Rk×N×M , c ∈ RM are
parameters to be learned, σ is the sigmoid function
and ⊗ represents element-wise product. We make
F (X) ∈ RL×M by augmenting the input X with
paddings.

A succession of convolutional layers are
stacked to capture long distance information.
From the perspective of each character, informa-
tion flows in a pyramid. Figure 3 shows a network
with three convolutional layers stacked. On the
topmost layer, a linear transformation is used to
transform the output of this layer to unnormalized
label scores E ∈ RL×C , where C is the number of
label types.

2.3 CRF Layer

For sequence labeling tasks, it is often beneficial
to explicitly consider the correlations between ad-
jacent labels (Collobert et al., 2011).

Correlations between adjacent labels can be
modeled as a transition matrix T ∈ RC×C . Given

a sentence S = (c1, c2, ..., cL), we have corre-
sponding scores E ∈ RL×C given by the con-
volutional layers. For a label sequence y =
(y1, y2, ..., yL), we define its unnormalized score
to be

s(S, y) =
L∑
i=1

Ei,yi +
L−1∑
i=1

Tyi,yi+1 .

then the probability of the label sequence is de-
fined as

P (y|S) =
es(S,y)∑

y′∈Y es(S,y′)

where Y is the set of all valid label sequences.
This actually takes the form of linear chain CRF
(Lafferty et al., 2001). Then the final loss of the
proposed model is defined as the negative log-
likehood of the ground-truth label sequence y∗

L(S, y?) = −logP (y?|S).

During training, the loss function is minimized
by back propagation. During test, Veterbi algo-
rithm is applied to quickly find the label sequence
with maximum probability.

3 Integration with Word Embeddings

Character-based CWS models have the superior-
ity of being flexible and efficient. However, full
word information is not easy to be incorporated.
There is another type of CWS models: the word-
based models. Models belong to this category
utilize not only character-level information, but
also word-level (Zhang and Clark, 2007; Andrew,
2006; Sun et al., 2009). Recent works have shown
that word embeddings learned from large auto-
segmented data lead to great improvements in
word-based CWS systems (Liu et al., 2016; Zhang
et al., 2016). We propose an effective approach
to integrate word embeddings with our character-
based model. The integration brings two bene-
fits. On the one hand, full word information can
be used. On the other hand, large unlabeled data
can be better exploited.

To use word embeddings, we design a set of
word features, which are listed in Table 1. We as-
sociate to the word features a lookup table Mword.
Then the final representation of ci is defined as

R(ci) =Mchar[ci]⊕
Mword[ci]⊕Mword[ci−1ci]⊕ · · ·⊕
Mword[cici+1ci+2ci+3]
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Length Features
1 ci
2 ci−1ci cici+1

3 ci−2ci−1ci ci−1cici+1 cici+1ci+2

4
ci−3ci−2ci−1ci ci−2ci−1cici+1

ci−1cici+1ci+2 cici+1ci+2ci+3

Table 1: Word features at position i given a sentence S =
(c1, c2, ..., cL). Only the words that include the current char-
acter ci (marked with underline) are considered as word fea-
ture. Hence, the number of features can be controlled in a
reasonable range. We also restrict the max length of words
to 4 since few words contain more than 4 characters in Chi-
nese. Note that the feature space is still tremendous (O(N4),
where N is the number of characters).

where ⊕ denotes the concatenation operation.
Note that the max length of word features is set
to 4, therefore the feature space is extremely large
(O(N4)). A key step is to shrink the feature space
so that the memory cost can be confined within
a feasible scope. In the meanwhile, the problem
of data sparsity can be eased. The solution is as
following. Given the unlabeled data Dun and a
teacher CWS model, we segment Dun with the
teacher model and get the auto-segmented data
D′un. A vocabulary Vword is generated from D′un
where low frequency words are discarded 2. We
replace Mword[∗] with Mword[UNK] if ∗ /∈ Vword
(UNK denotes the unknown words).

To better exploit the auto-segmented data D′un,
we adopt an off-the-self tool word2vec3 (Mikolov
et al., 2013) to pretrain the word embeddings.
The whole procedure is summarized as following
setps:

1. Train a teacher model that does not rely on
word feature.

2. Segment unlabeled data D with the teacher
model and get the auto-segmented data D′.

3. Build a vocabulary Vword from D′. Replace
all words not appear in Vword with UNK.

4. Pretrain word embeddings on D′ using
word2vec.

5. Train the student model with word feature us-
ing the pretrained word embeddings.

Note that no external labeled data is used in this
procedure.

2The threshold of frequency is set to 5, which is the de-
fault setting of word2vec.

3https://code.google.com/p/word2vec

Hyper-parameters Value
dimension of character embedding 200
dimension of word embedding 50
number of conv layers 5
number of channels per conv layer 200
kernel width of filters 3
dropout rate 0.2

Table 2: Hyper-parameters we choose for our model.

4 Experiments

4.1 Settings

Datasets We evaluate our model on two bench-
mark datasets, PKU and MSR, from the second
International Chinese Word Segmentation Bake-
off (Emerson, 2005). Both datasets are commonly
used by previous state-of-the-art models. For both
datasets, last 10% of the training data are used as
development set. The unlabeled data used in this
work is news data collected by Sogou 4.

We do not perform any preprocessing for these
datasets, such as replacing continuous digits and
English characters with a single token.
Dropout Dropout (Srivastava et al., 2014) is a
very efficient method for preventing overfit, espe-
cially when the dataset is small. We apply dropout
to our model on all convolutional layers and em-
bedding layers. The dropout rate is fixed to 0.2.
Hyper-parameters For both datasets, we use
the same set of hyper-parameters, which are pre-
sented in Table 2. For all convolutional layers, we
just use the same number of channels. Following
the practice of designing very deep CNN in com-
puter vision (Simonyan and Zisserman, 2014), we
use a small kernal width, i.e. 3, for all convolu-
tional layers. To avoid computational inefficiency,
we use a relatively small dimension, i.e. 50, for
word embeddings.
Pretraining Character embeddings and word
embeddings are pretrained on unlabeled or auto-
segmented data by word2vec. Since the pretrained
embeddings are not task-oriented, they are fine-
tuned during supervised training by normal back-
propagation.5

Optimization Adam algorithm (Kingma and
Ba, 2014) is applied to optimize our model. We
use default parameters given in the original paper

4http://www.sogou.com/labs/resource/
ca.php

5We also try to use fixed word embeddings as Zhang et al.
(2016) do but no significant difference is observed.
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Models
PKU MSR

P R F P R F
(Tseng, 2005) 94.6 95.4 95.0 96.2 96.6 96.4
(Zhang and Clark, 2007) - - 94.5 - - 97.2
(Zhao and Kit, 2011) - - 95.40 - - 97.58
(Sun et al., 2012) 95.8 94.9 95.4 97.6 97.2 97.4
(Zhang et al., 2013) 96.5 95.8 96.1 - - 97.45
(Pei et al., 2014) - - 95.2 - - 97.2
(Chen et al., 2015a)∗� 96.5 96.3 96.4 97.4 97.8 97.6
(Chen et al., 2015b)∗� 96.6 96.4 96.5 97.5 97.3 97.4
(Cai and Zhao, 2016)� 95.8 95.2 95.5 96.3 96.8 96.5
(Liu et al., 2016) - - 95.67 - - 97.58
(Zhang et al., 2016) - - 95.7 - - 97.7
(Xu and Sun, 2016)∗� - - 96.1 - - 96.3
CONV-SEG 96.1 95.2 95.7 97.4 97.3 97.3
WE-CONV-SEG (+ word embeddings) 96.8 96.1 96.5 97.9 98.1 98.0

Table 3: Performance of our models and previous state-of-the-art models. Note that (Chen et al., 2015a,b; Xu and Sun, 2016)
used a external Chinese idiom dictionary. To make the comparison fair, we mark them with ∗. Chen et al. (2015a,b); Cai and
Zhao (2016); Xu and Sun (2016) also preprocessed the datasets by replacing the conitinous English character and digits with a
unique token. We mark them with �.

and we set batch size to 100. For both datasets, we
train no more than 100 epoches. The final models
are chosen by their performance on the develop-
ment set.

Weight normalization (Salimans and Kingma,
2016) is applied for all convolutional layers to ac-
celerate the training procedure and obvious accel-
eration is observed.

4.2 Main Results

Table 3 gives the performances of our models, as
well as previous state-of-the-art models. Two pro-
posed models are shown in the table:
• CONV-SEG It is our preliminary model

without word embeddings. Character embed-
dings are pretrained on large unlabeled data.
• WE-CONV-SEG On the basis of CONV-

SEG, word embeddings are used. We use
CONV-SEG as the teacher model (see sec-
tion 3).

Our preliminary model CONV-SEG achieves
competitive performance without any feature en-
gineering. Armed with word embeddings, WE-
CONV-SEG obtains state-of-the-art performance
on both PKU and MSR datasets without using any
external labeled data. WE-CONV-SEG outper-
forms state-of-the-art neural model (Zhang et al.,
2016) in a large margin (+0.8 on PKU and +0.3
in MSR). Chen et al. (2015b) preprocessed all
datasets by replacing Chinese idioms with a sin-
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Figure 4: Learning curves (dev scores) of our models on
PKU (left) and MSR (right).

gle token and thus their model obtains excellent
score on PKU dataset. However, WE-CONV-SEG
achieves the same performance on PKU and out-
performs their model on MSR, without any data
preprocessing.

We also observe that WE-CONV-SEG con-
verges much faster compared to CONV-SEG. Fig-
ure 4 presents the learning curves of the two mod-
els. It takes 10 to 20 epoches for WE-CONV-SEG
to converge while it takes more than 60 epoches
for CONV-SEG to converge.

4.3 Network Depth

Network depth shows great influence on the per-
formance of deep neural networks. A too shallow
network may not fit the training data very well
while a too deep network may overfit or is hard
to train. We evaluate the performance of the pro-
posed model with varying depth. Figure 5 shows
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Figure 5: Scores on dev set and test set with respect to the
number of convolutional layers. The vertical dashed line
marks the depth we choose.

Model Options PKU MSR
without pretraining 94.7 96.7
with pretraining 95.7 97.3

Table 4: Test performances with or without pretraining char-
acter embeddings. “without pretraining” means that the char-
acter embeddings are randomly initialized.

the results. It is obvious that five convolutional
layers is a good choise for both datasets. When
we increase the depth from 1 to 5, the perfor-
mance is improved significantly. However, when
we increase depth from 5 to 7, even to 11 and 15,
the performance is almost unchanged. This phe-
nomenon implies that CWS rarely relies on con-
text larger than 11 6. With more training data,
deeper networks may perform better.

4.4 Pretraining Character Embeddings

Previous works have shown that pretraining char-
acter embeddings boost the performance of neural
CWS models significantly (Pei et al., 2014; Chen
et al., 2015a,b; Cai and Zhao, 2016). We verify
this and get a consistent conclusion. Table 4 shows
the performances with or without pretraining. Our
model obtains significant improvements (+1.0 on
PKU and +0.6 on MSR) with pretrained character
embeddings.

Models PKU MSR PKU MSR
(Cai and Zhao, 2016)� 95.5 96.5 - -
(Zheng et al., 2013) 92.8‡ 93.9‡ - -
(Pei et al., 2014) 94.0 94.9 - -
(Chen et al., 2015a) 94.5† 95.4† 96.1∗ 96.2∗

(Chen et al., 2015b) 94.8† 95.6† 96.0∗ 96.6∗

(Xu and Sun, 2016) - - 96.1∗ 96.3∗

CONV-SEG 95.7 97.3 - -

(Pei et al., 2014)
95.2 97.2

- -
(+1.2) (+2.3)

(Chen et al., 2015a) - -
96.4∗ 97.6∗

(+0.3) (+1.4)

(Chen et al., 2015b) - -
96.5∗ 97.3∗

(+0.5) (+0.7)

AVEBE-CONV-SEG
95.4 97.1

- -
(-0.3) (-0.2)

W2VBE-CONV-SEG 95.9 97.5
- -

(+0.2) (+0.2)

Table 5: The first/second group summarize results of models
without/with bigram feature. The number in the parentheses
is the absolute improvement given by explicit bigram feature.
Results with ∗ used external dictionary. Results with † come
from Cai and Zhao (2016). Results with ‡ come from Pei
et al. (2014). � marks word-based models.

4.5 N-gram Features
In this section, we test the ability of our model in
capturing n-gram features. Since unigram is indis-
pensable and trigram is beyond memory limit, we
only consider bigram.

Bigram feature has shown to play a vital role
in character-based neural CWS models (Pei et al.,
2014; Chen et al., 2015a,b). Without bigram fea-
ture, previous models perform badly. Table 5
gives a summarization. Without bigram feature,
our model outperforms previous character-based
models in a large margin (+0.9 on PKU and +1.7
on MSR). Compared with word-based model (Cai
and Zhao, 2016), the improvements are also sig-
nificant (+0.2 on PKU and +0.8 on MSR).

Then we arm our model with bigram feature.
The bigram feature we use is the same with Pei
et al. (2014); Chen et al. (2015a,b). The dimen-
sion of bigram embedding is set to 50. Follow-
ing Pei et al. (2014); Chen et al. (2015a,b), the bi-
gram embeddings are initialized by the average of
corresponding pretrained character embeddings.
The result model is named AVEBE-CONV-SEG
and the performance is shown in Table 5. Unex-
pectedly, the performance of AVEBE-CONV-SEG
is worse than the preliminary model CONV-SEG
that uses no bigram feature (-0.3 on PKU and -0.2

6Context size is calculated by (k − 1) × d + 1, where k
and d denotes the kernel size and the number of convolutional
layers, respectively.
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on MSR). This result is dramatically inconsistent
with previous works, in which the performance is
significantly improved by the method. We also ob-
serve that the training cost of AVEBE-CONV-SEG
is much lower than CONV-SEG. Hence we can
conclude that the inconsistency is casued by over-
fitting. A reasonable conjecture is that the model
CONV-SEG already capture abundant bigram fea-
ture automatically, therefore the model is tend to
overfit when bigram feature is explicitly added.

A practicable way to overcome overfitting is
to introduce priori knowledge. We introduce pri-
ori knowledge by using bigram embeddings di-
rectly pretrained on large unlabeled data, which
is simmillar with (Mansur et al., 2013). We con-
vert the unlabeled text to bigram sequence and
then apply word2vec to pretrain the bigram em-
beddings directly. The result model is named
W2VBE-CONV-SEG, and the performance is also
shown in Table 5. This method leads to substan-
tial improvements (+0.5 on PKU and +0.4 MSR)
over AVEBE-CONV-SEG. However, compared to
CONV-SEG, there are only slight gains (+0.2 on
PKU and MSR).

All above observations verify that our proposed
network has considerable superiority in capturing
n-gram, at least bigram features automatically.

4.6 Word Embeddings

Word embeddings lead to significant improve-
ments over the strong baseline model CONV-SEG.
The improvements come from the teacher model
and the large unlabeled data. A natural question
is how much unlabeled data can lead to significant
improvements. We study this by halving the unla-
beled data. Figure 6 presents the results. As the
unlabeled data becomes smaller, the performance
remains unchanged at the beginning and then be-
comes worse. This demonstrates that the mass of
unlabeled data is a key factor to achieve high per-
formance. However, even with only 68MB unla-
beled data, we can still observe remarkable im-
provements (+0.4 on PKU and MSR). We also ob-
serve that MSR dataset is more robust to the size
of unlabeled data than PKU dataset. We conjec-
ture that this is because MSR training set is larger
than PKU training set7.

We also study how the teacher’s performance
influence the student. We train other two mod-

7There are 2M words in MSR training set but only 1M
words in PKU training set.
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Figure 6: Test performances with varying size of unlabeled
data for pretraining word embeddings. With full size, the
model is WE-CONV-SEG. With the 0 size, the model degen-
erates to CONV-SEG.

Models
teacher student

PKU MSR PKU MSR
WE-CONV-SEG 95.7 97.4 96.5 98.0
worse teacher 95.4 97.1 96.4 97.9
better teacher 96.5 98.0 96.5 98.0

Table 6: Performances of student models and teacher mod-
els. A previous trained model maybe reused in following so
that there are some

els that use different teacher models. One of them
uses a worse teacher and the other uses a better
teacher. The results are shown in Table 6. As ex-
pected, the worse teacher indeed creates a worse
student, but the effect is marginal (-0.1 on PKU
and MSR). And the better teacher brings no im-
provements. These facts demonstrate that the stu-
dent’s performance is relatively insensitive to the
teacher’s ability as long as the teacher is not too
weak.

Not only the pretrained word embeddings, we
also build a vocabulary Vword from the large auto-
segmented data. Both of them should have posi-
tive impacts on the improvements. To figure out
their contributions quantitatively, we train a con-
trast model, where the pretrained word embed-
dings are not used but the word features and the
vocabulary are persisted, i.e. the word embeddings
are randomly initialized. The results are shown in
Table 7. According to the results, we conclude that
the pretrained word embeddings and the vocabu-
lary have roughly equal contributions to the final
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Models PKU MSR
WE-CONV-SEG 96.5 98.0
-word emb 96.1 97.6
-word feature 95.7 97.3

Table 7: Performances of our models with different word
feature options. “-word emb” denotes the model in which
word features and the vocabulary are used but the pretrained
word embeddings are not. “-word feature” denotes the model
that uses no word feature, i.e. CONV-SEG.

improvements.

5 Related Work

CWS has been studied with considerable efforts in
NLP commutinity. Xue et al. (2003) firstly mod-
eled CWS as a character-based sequence label-
ing problem. They used a sliding-window maxi-
mum entropy classifier to tag Chinese characters
into one of four position tags, and then coverted
these tags into a segmentation using rules. Fol-
lowing their work, Peng et al. (2004) applied
CRF to the problem for sequence-level predic-
tion. Recently, under the sequence labeling frame-
work, various neural models have been explored
for CWS. Zheng et al. (2013) firstly applied a
feed-forward neural network for CWS. Pei et al.
(2014) improved upon Zheng et al. (2013) by ex-
plicitly modeling the interactions between local
context and previous tag. Chen et al. (2015a) pro-
posed a gated recursive neural network (GRNN)
to model the combinations of context characters.
Chen et al. (2015b) utilized Long short-term mem-
ory (LSTM) to capture long distant dependencies.
Xu and Sun (2016) combined LSTM and GRNN
to efficiently integrate local and long-distance fea-
tures.

Our proposed model is also a neural sequence
labeling model. The difference from above mod-
els lies in that CNN is used to encode contextual
information. CNNs have been successfully ap-
plied in many NLP tasks, such as text classifica-
tion (Kalchbrenner et al., 2014; Kim, 2014; Zhang
et al., 2015; Conneau et al., 2016), language mod-
eling (Kim et al., 2016; Pham et al., 2016; Dauphin
et al., 2016), machine translation (Meng et al.,
2015; Kalchbrenner et al., 2016; Gehring et al.,
2016). Experimental results show that the convo-
lutional layers are capable to capture more n-gram
features than previous introduced networks. Col-
lobert et al. (2011) also proposed a CNN based
seuqence labeling model. However, our model

is significantly different from theirs since theirs
adopt max-pooling to encode the whole sentence
into a fixed size vector and use position embed-
dings to demonstrate which word to be tagged
while ours does not. Our model is more efficient
due to the sharing structure in lower layers. Con-
temporary to this work, Strubell et al. (2017) ap-
plied dilated CNN to named entity recognition.

The integration with word embeddings is in-
spired by word-based CWS models (Andrew,
2006; Zhang and Clark, 2007; Sun et al., 2009).
Most recently, Zhang et al. (2016); Liu et al.
(2016); Cai and Zhao (2016) proposed word-based
neural models for CWS. Particularly, Zhang et al.
(2016); Liu et al. (2016) utilized word embed-
dings learned from large auto-segmented data,
which leads to significant improvements. Differ-
ent from their word-based models, we integrate
word embeddings with the proposed character-
based model.

Simillar to this work, Wang et al. (2011) and
Zhang et al. (2013) also enhanced character-based
CWS systems by utilizing auto-segmented data.
However, they didn’t use word embeddings, but
only used statistics features. Sun (2010) and Wang
et al. (2014) combined character-based and word-
based CWS model via bagging and dual decom-
position respectively and achieved better perfor-
mance than single model.

6 Conclusion

In this paper, we address the weaknesses of
character-based CWS models. We propose a novel
neural model for CWS. The model utilizes stacked
convolutional layers to derive contextual repre-
sentations from input sequence, which are then
fed to a CRF layer for prediction. The model
is capable to capture rich n-gram features auto-
matically. Furthermore, we propose an effective
approach to integrate the proposed model with
word embeddings, which are pretrained on large
auto-segmented data. Evaluation on two bench-
mark datasets shows that without any feature en-
gineering, much better performance than previ-
ous models (also without feature engineering) is
obtained. Armed with word embeddings, our
model achieves state-of-the-art performance on
both datasets, without using any external labeled
data.
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Abstract

We present a character-based model for
joint segmentation and POS tagging for
Chinese. The bidirectional RNN-CRF ar-
chitecture for general sequence tagging
is adapted and applied with novel vec-
tor representations of Chinese characters
that capture rich contextual information
and sub-character level features. The
proposed model is extensively evaluated
and compared with a state-of-the-art tag-
ger respectively on CTB5, CTB9 and UD
Chinese. The experimental results indi-
cate that our model is accurate and robust
across datasets in different sizes, genres
and annotation schemes. We obtain state-
of-the-art performance on CTB5, achiev-
ing 94.38 F1-score for joint segmentation
and POS tagging.

1 Introduction

Word segmentation and part-of-speech (POS) tag-
ging are core steps for higher-level natural lan-
guage processing (NLP) tasks. Given the raw text,
segmentation is applied at the very first step and
POS tagging is performed on top afterwards. As
by convention the words in Chinese are not de-
limited by spaces, segmentation is non-trivial, but
its accuracy has a significant impact on POS tag-
ging. Moreover, POS tags provide useful informa-
tion for word segmentation. Thus, modelling word
segmentation and POS tagging jointly can out-
perform the pipeline models (Ng and Low, 2004;
Zhang and Clark, 2008).

POS tagging is a typical sequence tagging prob-
lem over segmented words, while segmentation
also can be modelled as a character-level tagging
problem via predicting the labels that identify the
word boundaries. Ng and Low (2004) propose a

joint model which predicts the combinatory la-
bels of segmentation boundaries and POS tags at
the character level. Joint segmentation and POS
tagging becomes a standard character-based se-
quence tagging problem and therefore the general
machine learning algorithms for structured predic-
tion can be applied.

The bidirectional recurrent neural network
(RNN) using conditional random fields (CRF)
(Lafferty et al., 2001) as the output interface
for sentence-level optimisation (BiRNN-CRF)
achieves state-of-the-art accuracies on various
sequence tagging tasks (Huang et al., 2015;
Ma and Hovy, 2016) and outperforms the tradi-
tional linear statistical models. RNNs with gated
recurrent cells, such as long-short term memory
(LSTM) (Hochreiter and Schmidhuber, 1997) and
gated recurrent units (GRU) (Cho et al., 2014)
are capable of capturing long dependencies and
retrieving rich global information. The sequential
CRF on top of the recurrent layers ensures that the
optimal sequence of tags over the entire sentence
is obtained.

In this paper, we model joint segmentation
and POS tagging as a fully character-based se-
quence tagging problem via predicting the com-
binatory labels. The BiRNN-CRF architecture is
adapted and applied. The Chinese characters are
fed into the neural networks as vector representa-
tions. In addition to utilising the pre-trained char-
acter embeddings, we propose a concatenated n-
gram-representation of the characters. Further-
more, sub-character level information, namely
radicals and orthographical features extracted by
convolutional neural networks (CNNs), are also
incorporated and tested. Three datasets of dif-
ferent sizes, genres and with different annotation
schemes are employed for evaluation. Our model
is thoroughly evaluated and compared with the
joint segmentation and POS tagging model in ZPar
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(Zhang and Clark, 2010), which is a state-of-the-
art joint tagger using structured perceptron and
beam decoding. According to the experimental re-
sults, our proposed model outperforms ZPar on all
the datasets in terms of accuracy.

The main contributions of this work include:
1. We apply the BiRNN-CRF model for general
sequence tagging to joint segmentation and POS
tagging for Chinese and achieve state-of-the-art
accuracy. The experimental results show that our
tagger is robust and accurate across datasets of dif-
ferent sizes, genres and annotation schemes. 2. We
propose a novel approach for vector representa-
tions of characters that leads to substantial im-
provements over the baseline model. 3. Additional
improvements are obtained via exploring the fea-
sibility of utilising sub-character level informa-
tion. 4. We provide an open-source implementa-
tion of our method along with pre-trained charac-
ter embeddings.1

2 Model

2.1 Neural Network Architecture

Our baseline model is an adaptation of BiRNN-
CRF. As illustrated in Figure 1, the Chinese char-
acters are represented as vectors and fed into the
bidirectional recurrent layers. The character rep-
resentations will be described in detail in the fol-
lowing sections. For the recurrent layer, we em-
ploy GRU as the basic recurrent unit as it has
similar functionalities but fewer parameters com-
pared to LSTM (Chung et al., 2014). Dropout
(Srivastava et al., 2014) is applied to the outputs of
the bidirectional recurrent layers. The outputs are
concatenated and passed to the first-order chain
CRF layer. The optimal sequence of the combi-
natory labels is predicted at the end. There is a
post processing step to retrieve both segmentation
and POS tags from the combinatory tags.

2.2 Tagging Scheme

Following the work of Kruengkrai et al. (2009a),
the employed tags indicating the word boundaries
are B, I, E, S representing a character at the be-
ginning, inside, end of a word or as a single-
character word. The CRF layer models condi-
tional scores over all possible combinatory labels
given the input characters. Incorporating the tran-
sition scores between the successive labels, the op-

1 https://github.com/yanshao9798/tagger
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character
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Figure 1: The BiRNN-CRF model for joint Chi-
nese segmentation and POS tagging. The dashed
arrows indicate that dropout layers are applied to
the outputs of the recurrent layers.

timal sequence can be obtained efficiently via the
Viterbi algorithm both for training and decoding.

The time complexity for the Viterbi algorithm
is linear with respect to the sentence length n as
O(k2n), where k is constant and equals to the total
number of combinatory labels. The efficiency can
be improved if we reduce k. For some POS tags,
combining them with the full boundary tags is re-
dundant. For instance, only the functional word
的 can be tagged as DEG in Chinese Treebank
(Xue et al., 2005). Since it is a single-character
word, combinatory tags of B-DEG, I-DEG, and
E-DEG never occur in the experimental data and
should therefore be pruned to reduce the search
space. Similarly, if the maximum length of words
under a given POS tag is two in the training data,
we prune the corresponding label.

2.3 Character Representations

We propose three different approaches to effec-
tively represent Chinese characters as vectors for
the neural network.

2.3.1 Concatenated N-gram
The prevalent character-based neural models as-
sume that larger spans of text, such as words and
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夏 天 太 热

(too) (hot)(summer)

Vi,i Vi−1,i Vi−1,i+1

n-gram
character

Representation
V3

Figure 2: Vector representations of the Chinese
characters as incrementally concatenated n-gram
vectors in a given context.

n-grams, can be represented by the sequence of
characters that they consist of. For example, the
vector representation Vm,n of a span cm,n is ob-
tained by passing the vector representations vi of
the characters ci to a functions f as:

Vm,n = f(vm, vm+1, ..., vn) (1)

where f is usually an RNN (Ling et al., 2015) or a
CNN (dos Santos and Zadrozny, 2014).

In this paper, instead of completely relying on
the BiRNN to extract contextual features from
context-free character representations, we encode
rich local information in the character vectors via
employing the incrementally concatenated n-gram
representation as demonstrated in Figure 2. In
the example, the vector representation of the pivot
character太 in the given context is the concatena-
tion of the context-free vector representation Vi,i

of 太 itself along with Vi−1,i of the bigram 天太
as well as Vi−1,i+1 of the trigram天太热.

Instead of constructing the vector representation
Vm,n of an n-gram cm,n from the character repre-
sentations as in Equation 1, Vm,n in different or-
ders, such as Vi,i, Vi−1,i, and Vi−1,i+1, are ran-
domly initialised separately. We use a single spe-
cial vector to represent all the unknown n-grams
per order. The n-grams in different orders are then
concatenated incrementally to form up the vector
representations of a Chinese character in the given
context, which is passed further to the recurrent
layers. As shown in Figure 2, the neighbouring
characters on both sides of the pivot character are
taken into account.

2.3.2 Radicals and Orthographical Features
Chinese characters are logograms. As opposed to
alphabetical languages, there is rich information

太

Conv.
layers

Max
pooling

. . .

fully-
connected

layer

Figure 3: Convolutional Neural Networks for or-
thographical feature extraction. Only the first
convolutional layer and its following max-pooling
layer are presented.

encrypted in the graphical components. For in-
stance, the Chinese characters that share the same
part 钅 (gold) are all somewhat related to metals,
such as 银 (silver), 铁 (iron), 针 (needle) and so
on. The shared part 钅 is known as the radical,
which functions as a semantic indicator. Hence,
we investigate the effectiveness of using the infor-
mation below the character level for our task.

Radicals are first represented as randomly ini-
tialised vectors and concatenated as parts of the
character representations. Radicals are tradition-
ally used as indices in Chinese dictionaries. In
our approach, they are retrieved via the unicode
representation of Chinese characters as the char-
acters that share the same radical are grouped to-
gether. They are organised in consistent with the
categorisation in Kangxi Dictionary (康熙字典),
in which all the Chinese characters are grouped
under 214 different radicals. We only employ the
radicals of the common characters in the unicode
range of (U+4E00, U+9FFF). For the characters
out of the range and the non-Chinese characters,
we use a single special vector as their radical rep-
resentations.

Additionally, instead of presuming that only
radicals encode sub-character level information,
we use convolutional neural networks (CNNs) to
extract graphical features from scratch by regard-
ing the Chinese characters as pictures and feed
their pixels as the input. As illustrated in Figure 3,
there are two convolutional layers, both followed
by a max-pooling layer. The output of the second
max-pooling layer is reshaped and passed to a reg-
ular fully-connected layer. Dropout is applied to
the output of the fully-connected layer. The out-
put is then concatenated as parts of the character
representation. The CNNs are trained jointly with
the main network.
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2.3.3 Pre-trained Character Embeddings
The context-free vector representations of single
characters introduced in section 2.3.1 can be re-
placed by pre-trained character embeddings re-
trieved from large corpora. We employ GloVe
(Pennington et al., 2014) to train our character em-
beddings on Wikipedia2 and the freely available
Sogou News Corpora (SogouCS).3 We use ran-
domly initialised vectors as the representations of
the characters that are not in the embedding vo-
cabulary. Pre-trained embeddings for higher-order
n-grams are not employed in this paper.

2.4 Ensemble Decoding
At the final decoding phase, we use ensemble de-
coding, a simple averaging technique, to mitigate
the deviations led by random weight initialisation
of the neural network. For the chain CRF decoder,
the final sequence of the combinatory tags y is
obtained via the conditional scores S(yi|xi) and
the transition scores T (yi, yj) given the input se-
quence x. Instead of computing the optimal se-
quence with respect to the scores returned by a
single model, both the conditional scores and tran-
sition scores are averaged over four models with
identical parameter settings that are trained inde-
pendently:

y∗ = argmax
y∈L(x)

p(y|x; ¯{S}, ¯{T}) (2)

Ensemble decoding is only applied to the best
performing model according to the feature experi-
ments at the final testing phase in this paper.

3 Implementation

Our neural networks are implemented using the
TensorFlow 1.2.0 library (Abadi et al., 2016). We
group the sentences with similar lengths into the
same buckets and the sentences in the same bucket
are padded to the same length accordingly. We
construct sub-computational graphs respectively
for each bucket. The training and tagging speed of
our neural network on GPU devices can be dras-
tically improved thanks to the bucket model. The
training time is proportional to both the size of the
training set and the number of POS tags.

Table 1 shows the adopted hyper-parameters.
We use one set of parameters for all the experi-
ments on different datasets. The weights of the

2https://dumps.wikimedia.org/
3http://www.sogou.com/labs/resource/cs.php

Char. embedding size 64
n-gram embedding size 64
Radical embedding size 30
Character font simsun (宋体)
Character size 30 × 30
GRU state size 200
Conv. filter size 5 × 5
Conv. filter number 32
Max pooling size 2 × 2
Fully-connected size 100
Optimiser Adagrad
Initial learning rate 0.1
Decay rate 0.05
Gradient Clipping 5.0
Dropout rate 0.5
Batch size 10

Table 1: Hyper-parameters.

neural networks, including the randomly intialised
embeddings, are initialised using the scheme in-
troduced in Glorot and Bengio (2010). The net-
work is trained with the error back-propagation
algorithm. All the embeddings are fine-tuned dur-
ing training by back-propagating gradients. Ada-
grad (Duchi et al., 2011) with mini-batches is em-
ployed for optimisation with the initial learning
rate η0 = 0.1, which is updated with a decay rate
ρ = 0.05 as ηt = η0

ρ(t−1)+1 , where t is the index of
the current epoch.

The model is optimised with respect to the per-
formance on the development sets. F1-scores of
both segmentation (F1Seg) and joint POS tagging
(F1Seg&Tag) are employed as F1Seg ∗F1Seg&Tag

to measure the performance of the model after
each epoch during training. In our experiments,
the models are trained for 30 epochs. To ensure
that the weights are well optimised, we only adopt
the best epoch after the model is trained at least for
5 epochs.

4 Experiments

4.1 Datasets

We employ three different datasets for our ex-
periments, namely Chinese Treebank (Xue et al.,
2005) 5.0 (CTB5) and 9.0 (CTB9) along with the
Chinese section in Universal Dependencies (UD
Chinese) (Nivre et al., 2016) of version 1.4.

CTB5 is the most employed dataset for joint
segmentation and POS tagging in previous re-
search. It is composed of newswire data. We
follow the conventional split of the dataset as
in Jiang et al. (2008); Kruengkrai et al. (2009a);
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Zhang and Clark (2010). CTB9 consists of source
texts in various genres, CTB5 is a subset of it. We
split CTB9 by referring to the partition of CTB7
in Wang et al. (2011). We extend the training,
development and test sets from CTB5 by adding
80% of the new data in CTB9 to training and
10% each to development and test. The double-
checked files are all placed in the test set. The
detailed splitting information can be found in Ta-
ble 10 in Appendix. UD Chinese has both univer-
sal and language-specific POS tags. They are not
predicted jointly in this paper. For the sake of con-
venience, we refer the universal tags as UD1 and
the language-specific ones as UD2 in the follow-
ing sessions. To make the model benefit from the
pre-trained character embeddings, we convert the
texts in UD Chinese from traditional Chinese into
simplified Chinese.

Table 2 shows brief statistics of the employed
datasets in numbers of words. The out-of-
vocabulary (OOV) words are counted regardless
of the POS tags. We can see that the size of
UD Chinese is much smaller and it has a notably
higher OOV rate than the two CTB datasets.

CTB5 CTB9 UD Chinese
Train 493,935 1,696,322 98,608
Dev 6,821 136,468 12,663
Test 8,008 242,317 12,012
OOV rate (dev) 8.11 2.93 12.13
OOV rate (test) 3.47 3.13 12.46

Table 2: Statistics of the employed datasets in
numbers of words.

4.2 Experimental Results

Both segmentation (Seg) and joint segmentation
and POS tagging (Seg&Tag) are evaluated in our
experiments.4 We employ word-level recall (R),
precision (P) and F1-score (F) as the evaluation
metrics. A series of feature experiments are car-
ried out on the development sets to evaluate the ef-
fectiveness of the proposed approaches for vector
representations of the characters. Finally, the best
performing model according to the feature experi-
ment is applied to the test sets in the forms of sin-
gle as well as ensemble and compared with ZPar.

4The evaluation script is downloaded from:
http://people.sutd.edu.sg/ yue zhang/doc/doc/joint files
/evaluate.py

4.2.1 Feature Experiments

Table 3 shows the evaluation results of using
concatenated n-grams up to different orders as
the character representations. By introducing 2-
grams, we can obtain vast improvements over
solely using the conventional character embed-
dings, which indicates that not all the local infor-
mation can be effectively captured by the BiRNN
using context-free character representations. Util-
ising the concatenated n-grams ensures that the
same character has different but yet closely related
representations in different contexts, which is an
effective way to encode contextual features.

From the table, we see that notable improve-
ments can be achieved further via employing 3-
grams. 4-grams still help but only to CTB9 while
adding 5-grams achieves almost no improvement
on any of the datasets. The results imply that con-
catenating higher-order n-grams can be detrimen-
tal, especially on datasets in smaller sizes due to
the fact that higher-order n-grams are more sparse
in the training data and their vector representations
cannot be trained well enough. Besides, adopting
higher-order n-grams also substantially increases
the numbers of weights and therefore both train-
ing and decoding become less efficient. Under the
circumstances, we consider that 3-gram model is
optimal for our task and it is employed in the fol-
lowing experiments for all the datasets.

The concatenated n-grams have a bigger size
compared to the basic character representation.
We conduct one additional experiment using a ba-
sic 1-gram character model with a larger character
vector size of 300. The evaluation scores are sim-
ilar to the basic character model with the size of
64, which shows that the improvements obtained
by the n-gram model are not matched by enlarg-
ing the size of the vector representation.

The evaluation scores of the sub-character level
features are reported in Table 4. The relevant fea-
tures are added on top of the 3-gram model. Em-
ploying radicals and graphical features achieves
similar improvements for segmentation while util-
ising radicals obtains better results for joint POS
tagging on CTB5. However, radicals are not a very
effective feature on CTB9, UD1 and UD2 whereas
a notable enhancement is observed when employ-
ing graphical features on UD1. Using CNNs to
extract graphical features is computationally much
more expensive than simply adopting radicals via
a lookup table, especially when GPU is not avail-
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CTB5 CTB9 UD1 UD2
Seg Seg&Tag Seg Seg&Tag Seg Seg&Tag Seg Seg&Tag

size = 300 95.22 91.71 95.53 90.89 91.84 85.43 92.40 85.63
1-gram 95.14 91.52 95.25 90.43 91.74 85.07 91.83 84.93
2-gram 97.08 93.72 96.30 91.66 94.50 88.36 94.42 88.14
3-gram 97.14 94.01 96.47 91.75 94.36 88.27 94.43 88.32
4-gram 97.13 94.02 96.48 91.89 94.25 88.37 94.16 88.24
5-gram 96.94 93.84 96.50 91.88 94.40 88.47 94.25 88.03

Table 3: Evaluation of concatenated n-gram representations on the development sets in F1-scores

CTB5 CTB9 UD1 UD2
Seg Seg&Tag Seg Seg&Tag Seg Seg&Tag Seg Seg&Tag

3-gram 97.14 94.01 96.47 91.75 94.36 88.27 94.43 88.32
+radicals 97.26 94.42 96.42 91.74 94.37 88.21 94.39 88.36

+graphical 97.25 94.08 96.50 91.78 94.50 88.59 94.23 87.95

Table 4: Evaluation of sub-character level features on the development sets in F1-scores.

CTB5 CTB9 UD1 UD2
Seg Seg&Tag Seg Seg&Tag Seg Seg&Tag Seg Seg&Tag

1-gram 95.14 91.52 95.25 90.43 91.74 85.07 91.83 84.93
+GloVe 95.82 92.45 95.44 90.57 92.77 86.48 93.01 86.48

3-gram, radicals 97.26 94.42 96.42 91.74 94.37 88.21 94.39 88.36
+GloVe 97.42 94.58 96.56 91.96 95.12 89.69 95.02 89.20

Table 5: Evaluation of the pre-trained character embeddings on the development sets in F1-scores.

able.
From Table 5, we can learn that employing pre-

trained embeddings as initial vector representa-
tions for the characters achieves improvements in
general, whereas the improvements are compara-
tively smaller if the the concatenated n-gram rep-
resentations and the radicals are added. Addition-
ally, the improvements obtained on UD Chinese
are more significant than on CTBs, which indi-
cates that the pre-trained character embeddings are
more beneficial to the datasets in smaller sizes.

In general, the feature experiments indicate that
the proposed Chinese character representations are
all sensitive to dataset size. Using higher-order
n-grams requires more data for training. On the
other hand, the pre-trained embeddings are more
vital if the dataset is small. In addition, the
different representations are sensitive to tagging
schemes as the evaluation results on UD1 and
UD2 are quite diverse. Taking both robustness and
efficiency into consideration, we select 3-grams
along with radicals and pre-trained character em-
beddings as the best setting for final evaluation.

4.2.2 Final Results

Table 6 shows the final scores on the test sets.
The complete evaluation results in precision, re-

call and F1-scores are contained in Table 11 and
Table 12 in Appendix. Our system is compared
with ZPar. We retrained a ZPar model on CTB5
that reproduces the evaluation scores reported in
Zhang and Clark (2010). We also modified the
source code so that it is applicable to CTB9 and
UD Chinese. In addition, we perform the mid-p
McNemar’s test (Fagerland et al., 2013) to exam-
ine the statistical significances.

As shown in Table 6, the single model is
worse than the ensemble model but still outper-
forms ZPar on all the tested datasets. ZPar in-
corporates discrete local features at both character
and word levels and employs structured percep-
tron for global optimisation, whereas we encode
rich local information in the character represen-
tations and employ BiRNN to effectively extract
global features and capture long term dependen-
cies. The chain CRF layer is used for sentence-
level optimisation, which functions similarly to
structured perceptron. As opposed to the tag-
gers built with traditional machine learning algo-
rithms, our model avoids heavy feature engineer-
ing and benefits from large plain texts via utilis-
ing pre-trained character embeddings. It is also
very flexible to add sub-character level features as
parts of the character representations. The model
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CTB5 CTB9 UD1 UD2
Seg Seg&Tag Seg Seg&Tag Seg Seg&Tag Seg Seg&Tag

ZPar 97.77 93.82 96.28 91.62 93.75 88.11 93.98 88.16
Single (3-gram, rad., GloVe) 97.89 94.07** 96.47** 91.89** 94.85** 89.41** 94.93** 89.00**

Ensemble (4 models) 98.02* 94.38** 96.67** 92.34** 95.16** 89.75* 95.09* 89.42**

OOV recall
ZPar 76.98 68.34 75.83 63.71 78.69 64.40 79.56 64.86

Single 78.78 69.78 74.16 62.58 81.36 67.40 81.16 66.73
Ensemble 77.34 70.50 75.52 64.14 82.16 68.14 81.56 68.00

Table 6: Evaluations of the best model on the final test sets in F1-scores as well as the recalls of out-of-
vocabulary words. Significance tests for Single are in comparison to ZPar, while tests for Ensemble are
in comparison to Single (**p < 0.01, *p < 0.05)

performs very well despite being fully character
based. Moreover, it has clear advantages when ap-
plied to smaller datasets like UD Chinese, while
the prevalence is much smaller on CTB5.

Both our model and ZPar segment OOV words
in UD Chinese with higher accuracies than the
ones in CTBs despite that UD Chinese is no-
tably smaller and the overall OOV rate is higher.
Compared to CTB, the words in UD Chinese are
more fine-grained and the average word length is
shorter, which makes it easier for the tagger to
correctly segment the OOV words as Zhang et al.
(2016) show that the longer words are more diffi-
cult to be segmented correctly. For joint POS tag-
ging for OOV words, the two systems both per-
form significantly better on CTB5 as it is only
composed of news text.

In general, our model is more robust to OOV
words than ZPar, except that ZPar yields better re-
sult for segmentation by a small margin on CTB9.
ZPar also obtains higher accuracy for joint POS
tagging than the single model on CTB9. The dif-
ferences between ZPar and our model for both seg-
mentation and POS tagging are more substantial
on UD Chinese, which indicates that our model
is relatively more advantageous for handling OOV
words when the training sets are small, whereas
ZPar is able to perform equally well when sub-
stantial amount of training data is available as they
achieve similar results on the CTB sets.

The single model is further improved by
ensemble-averaging four independently trained
models. The improvements are not drastic but they
are observed systematically across all the datasets.
In general, ensemble decoding is beneficial to han-
dling OOV words as well except that a small drop
for segmentation on CTB5 is observed.

Table 7 displays the evaluation of the ensem-
ble model and ZPar on the decomposed test sets

Ensemble ZPar
Seg Seg&Tag Seg Seg&Tag

BN 97.89* 94.48** 97.68 94.22
CS 96.67** 91.78** 95.61 90.15
FM 96.54** 91.92** 96.30 91.51
MG 94.54** 89.23** 94.22 88.60
NS 97.56 93.92** 97.49 93.70
SM 96.43** 91.78** 96.13 90.32
SP 97.29** 93.93** 96.69 93.35

WB 94.27** 88.44** 93.38 86.88

Table 7: Evaluation on Broadcast News (BN),
Conversations (CS), Forum (FM), Magazine
(MG), News (NS), Short Messages (SM), Speech
(SP) and Weblogs (WB) in CTB9. (**p < 0.01,
*p < 0.05)

of CTB9 in different genres. Our model surpasses
ZPar on all the genres in both segmentation and
joint POS tagging. The differences are subtle
on the genres in which the texts are normalised,
such as News and Broadcast News. This, to a
very large extent, explains why our model is only
marginally better than ZPar on CTB5, whereas the
experimental results reveal that our model is sub-
stantially better at processing non-standard text as
it yields significantly higher scores on Conversa-
tions, Short Messages and Weblogs. The evalua-
tion results of both our model and ZPar vary sub-
stantially across different genres as some genres
are fundamentally more challenging to process.

Our models are compared with the previous
best-performing systems on CTB5 in Table 8. Our
models are not optimised particularly with respect
to CTB5 but still yield competitive results, espe-
cially for joint POS tagging. We are the first to re-
port evaluation scores on CTB9 and UD Chinese.

4.3 Tagging Speed

Our joint segmentation and POS tagger is very ef-
ficient with GPU devices and can be practically
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Seg Seg&Tag
Kruengkrai et al. (2009b) 97.98 94.00
Zhang and Clark (2010) 97.78 93.67

Sun (2011) 98.17 94.02
Wang et al. (2011) 98.11 94.18
Shen et al. (2014) 98.02 93.80

Single 97.89 94.07
Ensemble 98.02 94.38

Table 8: Result comparisions on CTB5 in F1-
scores.

used for processing very large files. The mem-
ory demand of decoding is drastically milder com-
pared to training, a large batch size therefore can
be employed. The tagger takes constant time to
build the sub-computational graphs and load the
weights.

With bucket size of 10 and batch size of 500, Ta-
ble 9 shows the tagging speed of the tagger using
a single Tesla K80 GPU card and the pre-trained
model on CTB5. The tagging speed of ZPar is
also presented for comparison. GPU devices are
not supported by ZPar and therefore the tagging
speed is calculated using an Intel Core i7 CPU.

Init. Time (s) Sentence/s Chars/s
Single 20 299.40 40,188.17

Ensemble 23 230.41 30,928.22
ZPar 4 134.59 18,090.09

Table 9: Tagging speed in numbers of sentences
and characters per second

5 Related Work

The fundamental BiRNN-CRF architecture
is task-independent and has been applied to
many sequence tagging problems on Chinese.
Peng and Dredze (2016) adopt the model for Chi-
nese segmentation and named entity recognition
in the context of multi-task and multi-domain
learning. Dong et al. (2016) employ a character
level BiLSTM-CRF model that utilises radical-
level information for Chinese named entity
recognition. Ma and Sun (2016) use a similar
architecture but feed the Chinese characters pair-
wise as edge embeddings instead. Their model
is applied respectively to chunking, segmentation
and POS tagging.

Zheng et al. (2013) model joint Chinese seg-
mentation and POS tagging via predicting the
combinatory segmentation and POS tags. They

employ the adaptation of the feed forward neu-
ral network introduced in Collobert et al. (2011)
that only extracts local features in a context win-
dow. A perceptron-style training algorithm is em-
ployed for sentence level optimisation, which is
the same as the training algorithm of the BiRNN-
CRF model. Their proposed model is not evalu-
ated on CTB5 and therefore difficult to be com-
pared with our system. Kong et al. (2015) apply
segmental recurrent neural networks to joint seg-
mentation and POS tagging but the evaluation re-
sults are substantially below the state-of-the-art on
CTB5.

Bojanowski et al. (2016) retrieve word embed-
dings via representing words as a bag of charac-
ter n-grams for morphologically rich languages.
A similar character n-gram model is proposed
by Wieting et al. (2016). Sun et al. (2014) at-
tempt to encode radical information into the con-
ventional character embeddings. The radical-
enhanced embeddings are employed and eval-
uated for Chinese segmentation. The results
show that radical-enhanced embeddings outper-
form both skip-ngram and continues bag-of-word
(Mikolov et al., 2013) in word2vec.

6 Conclusion

We adapt and apply the BiRNN-CRF model for se-
quence tagging in NLP to joint Chinese segmenta-
tion and POS tagging via predicting the combina-
tory tags of word boundaries and POS tags. Con-
catenated n-grams as well as sub-character fea-
tures are employed along with the conventional
pre-trained character embeddings as the vector
representations for Chinese characters. The fea-
ture experiments indicate that concatenated n-
grams contribute substantially. However, both rad-
icals and graphical features as sub-character level
information are less effective. How to incorpo-
rate the sub-character level information more ef-
fectively will be further explored in the future.

The proposed model is extensively evaluated on
CTB5, CTB9 and UD Chinese. Despite the fact
that different character representation approaches
are sensitive to data size and tagging schemes, we
use one set of hyper-parameters and universal fea-
ture settings so that the model is robust across
datasets. The experimental results on the test sets
show that our model outperforms ZPar which is
built on structured perceptron on all the datasets.
We obtain state-of-the-art performances on CTB5.
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The results on UD Chinese and CTB9 also reveal
that our model has great advantages in processing
non-standard text, such as weblogs, forum text and
short messages. Moreover, the implemented tag-
ger is very efficient with GPU devices and there-
fore can be applied to tagging very large files.
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Appendix

Dataset CTB chapter IDs
Train 0044-0143, 0170-0270, 0400-0899,

1001-1017, 1019, 1021-1035, 1037-
1043, 1045-1059, 1062-1071, 1073-
1117, 1120-1131, 1133-1140, 1143-
1147, 1149-1151, 2000-2915, 4051-
4099, 4112-4180, 4198-4368, 5000-
5446, 6000-6560, 7000-7013

Dev 0301-0326, 2916-3030, 4100-4106,
4181-4189, 4369-4390, 5447-5492,
6561-6630, 7013-7014

Test 0001-0043, 0144-0169, 0271-0301,
0900-0931, 1018, 1020, 1036, 1044,
1060, 1061, 1072, 1118, 1119, 1132,
1141, 1142, 1148, 3031-3145, 4107-
4111, 4190-4197, 4391-4411, 5493-
5558, 6631-6700, 7015-7017

Table 10: The split of Chinese Treebank 9.0

P R F

CTB5
Single 97.49 98.30 97.89

Ensemble 97.57 98.47 98.02

CTB9
Single 96.38 96.55 96.47

Ensemble 96.61 96.74 96.67

UD1
Single 94.71 94.99 94.85

Ensemble 95.07 95.27 95.17

UD2
Single 94.98 94.93 94.93

Ensemble 95.00 95.22 95.11

Table 11: Evaluation of segmentations in preci-
sion, recall and F1-scores

P R F

CTB5
Single 93.68 94.47 94.07

Ensemble 93.95 94.81 94.38

CTB9
Single 91.81 91.97 91.89

Ensemble 92.28 92.40 92.34

UD1
Single 89.28 89.54 89.41

Ensemble 89.67 89.86 89.77

UD2
Single 88.95 89.04 89.00

Ensemble 89.33 89.54 89.43

Table 12: Evaluation of joint segmentations and
POS tagging in precision, recall and F1-scores
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Abstract

Boundary features are widely used in
traditional Chinese Word Segmentation
(CWS) methods as they can utilize un-
labeled data to help improve the Out-of-
Vocabulary (OOV) word recognition per-
formance. Although various neural net-
work methods for CWS have achieved per-
formance competitive with state-of-the-art
systems, these methods, constrained by
the domain and size of the training corpus,
do not work well in domain adaptation. In
this paper, we propose a novel BLSTM-
based neural network model which incor-
porates a global recurrent structure de-
signed for modeling boundary features dy-
namically. Experiments show that the
proposed structure can effectively boost
the performance of Chinese Word Seg-
mentation, especially OOV-Recall, which
brings benefits to domain adaptation. We
achieved state-of-the-art results on 6 do-
mains of CNKI articles, and competitive
results to the best reported on the 4 do-
mains of SIGHAN Bakeoff 2010 data.

1 Introduction

Since Chinese writing system does not have ex-
plicit word delimiters, word segmentation be-
comes an essential first step for further Chinese
language processing. In recent years, Chinese
Word Segmentation (CWS) has experienced great
advancement. One mainstream method is to re-
gard word segmentation task as a sequence label-
ing problem (Xue, 2003; Peng et al., 2004) where
each character is assigned a tag indicating its po-
sition in the word. This method has been proved

∗Corresponding author

effective as it turns word segmentation into a struc-
tured discriminative learning task which can be
handled by supervised learning algorithms such as
Maximum Entropy (ME) (Berger et al., 1996) and
Conditional Random Fields (CRF) (Lafferty et al.,
2001). Furthermore, rich features can be incorpo-
rated into these systems to improve their perfor-
mances and most state-of-the-art systems are still
based on feature-based models.

Recently, neural network models are drawing
increasing attention in Natural Language Process-
ing (NLP) tasks. They significantly reduced fea-
ture engineering effort and achieved competitive
or state-of-the-art results in many NLP tasks. Col-
lobert et al. (2011) developed a general neural net-
work architecture for sequence labeling tasks. Fol-
lowing this work, many neural network model-
s (Zheng et al., 2013; Pei et al., 2014; Chen et al.,
2015a,b) have been applied to CWS and some ap-
proached state-of-the-art performance.

However, these neural network models, as well
as other supervised methods, do not work well
in domain adaptation. In recent years, manual-
ly annotated training corpus mostly come from
the news domain. When it shifts to other do-
mains such as literature or medicine, where there
are many domain-related words that rarely ap-
pear in other domains, Out-of-Vocabulary (OOV)
word recognition becomes an important problem.
Moreover, different domains means different lan-
guage usages and contexts. Therefore, the In-
Vocabulary (IV) word segmentation performance
is also affected. As a result, CWS accuracies can
drop gravely on cross-domain corpora. For ex-
ample, consider a sentence “三聚氰胺(melamine)
/ 致(lead to) / 婴幼儿(baby) / 泌尿系(urinary
tract) / 结石(stones)”. Here the word “三聚氰
胺(melamine)” is a chemical that often appears in
medicine-related domains while seldom appears in
other domains. It is a four-Chinese-character word
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where each character stands for ‘three’, ‘gather’,
‘cyanide’ and ‘amine’. The four characters are to-
tally irrelevant. A supervised CWS system trained
on news domain corpus would face great chal-
lenges on segmenting this word correctly

Several approaches have been proposed to ad-
dress the domain adaption problem for CWS. One
major family proposed to compose boundary fea-
tures by fitting the relevance of consecutive char-
acters using Accessor Variety (AV) (Feng et al.,
2004a,b), or Chi-square Statistics (Chi2) (Chang
and Han, 2010). Combining the boundary fea-
tures with other hand-crafted features, these meth-
ods were shown to achieve better performance on
OOV words.

Inspired by these models, we propose a nov-
el BLSTM-based neural network model which in-
corporates a global recurrent structure designed to
model boundary features dynamically. This struc-
ture can learn to utilize the target domain corpus
and extract the correlation or irrelevance between
characters, which is a reminiscence of the discrete
boundary features such as Accessor Variety (AV).

The contributions of this paper are two folds:

• First, we propose a global recurrent structure
and incorporate it in the BLSTM-based neu-
ral network model for CWS. The structure
can capture correlations between characters,
and thus is especially efficient for segmenting
OOV words and enhancing the performance
of CWS on non-news domains.

• We obtain competitive results comparing to
the best reported in the literature on the
SIGHAN Bakeoff 2010 data, which is a
benchmark dataset for cross-domain CWS.

2 BLSTM Architecture for Chinese
Word Segmentation

We regard Chinese word segmentation task as a
character-based sequence labeling problem, by la-
beling each character a tag from {S, B, E, M}.
These tags indicate the position of the character
in the segmented word. B, E, M represents Begin,
Middle, End of a multi-character segmentation re-
spectively, while S represents a single-character
segmentation.

Figure 1 illustrates the general BLSTM archi-
tecture for Chinese word segmentation.

Figure 1: General architecture for Chinese word
segmentation.

2.1 Embeddings

The outputs of the embedding layer is a concatena-
tion of three parts: character embeddings, bigram
embeddings and boundary feature embeddings.

We adopt the the local window approach which
assumes that the tag of a character largely depend-
s on its neighboring characters. For each charac-
ter ci in a given input sentence c[1:n], the context
characters c[i−w/2:i+w/2] and their corresponding
bigrams are chosen to be fed into the network-
s, where w is the context window size. As most
CWS methods do, we will set w = 5 in our exper-
iments.

Given a character set V of size |V |, each char-
acter c ∈ V will be mapped into a d-dimensional
embedding space as Embc(c) ∈ Rd by a lookup
table Mc ∈ Rd×|V |. Similarly, each bigram b ∈
{c1c2|c1 ∈ V, c2 ∈ V } will be mapped into a d-
dimensional embedding space as Embb(b) ∈ Rd

by a lookup table Mb ∈ Rd×|V |×|V |.
The boundary feature embeddings are hidden

vectors computed from the current bigrams and
the whole bigarm history, which will be explained
in detail in Section 3.
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Three kinds of embeddings of the context char-
acters c[i−2:i+2] and their corresponding bigram-
s are then concatenated into a single vector xi ∈
RH1 , whereH1 = 5d+4d+4dbf . dbf is the num-
ber of hidden units output by the boundary feature
embeddings. Then, this vector xi is fed into the
BLSTM layer.

2.2 Bidirectional LSTM Network
Following the embedding layer is an one-layer
BLSTM network (Graves and Schmidhuber,
2005). By combining hidden states from two sep-
arate LSTM layers, it can incorporate long period-
s of contextual information from both directions.
The LSTM cell is implemented as follows (Graves
et al., 2013):

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)
ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf )
ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc)
ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)
ht = ottanh(ct)

(1)

where σ is the logistic sigmoid function, and i,
f , o and c are the input gate, forget gate, output
gate and the cell respectively, all of which are the
same dimension as the hidden output h. The sub-
scripts of the weight matrix describe the meaning
as the name suggests. For instance, Wxi is the in-
put gate weight matrix for input x.

The outputs of the BLSTM layer are the con-
catenation of a forward hidden sequence

→
h and a

backward hidden sequence
←
h which will be fed to

the decoding layer that contains a linear transfor-
mation with no non-linear function:

f(ti|c[i−w/2:i+w/2]) = Wd(
→
hi ⊕

←
hi) + bd (2)

where Wd ∈ R|T |×H2 , bd ∈ R|T |. H2 is
the number of hidden units of the outputs for the
BLSTM layer. f(ti|c[i−w/2:i+w/2]) ∈ R|T | is the
score vector for each possible tag. Here in Chinese
word segmentation, we set T = {S,B,E,M}.
2.3 Tag Inference
To model the correlations between tags in neigh-
borhoods and jointly decode the best chain of tags
for a given sentence, a transition scoreAij is intro-
duced to measure the probability of jumping from

tag i ∈ T to tag j ∈ T (Collobert et al., 2011).
For an input sentence c[1:n] with a tag sequence
t[1:n], a sentence-level score can be formulated as
follows:

s(c[1:n], t[1:n], θ) =
n∑
i=1

(Ati−1ti+fθ(ti|c[i−2:i+2]))

(3)
where fθ(ti|c[i−2:i+2]) indicates the score out-

put for the ith tag computed by the neural network
described above with parameters θ.

3 Global Recurrent Structure

Chinese word segmentation is essentially a task of
resolving the relevance of consecutive characters.
Lacking knowledge of such relevance, recogniz-
ing out-of-domain words has been the bottleneck
of domain adaption in CWS. However, Bound-
ary features such as Accessor Variety (AV) (Feng
et al., 2004a,b), Mutual Information (Sun and X-
u, 2011) and Chi-square Statistics (Chi2) (Chang
and Han, 2010) are features designed to fit such
relevance. A significant advantage of boundary
features is that they can compute the correlation
of characters from a large scale corpora, annotated
or not, to boost the OOV word recognition perfor-
mance. As a result, they are especially effective
for cross-domain CWS.

In this paper, we propose 5 novel global recur-
rent structures to generate embeddings that mim-
ic the boundary features for further computing,
which needs minimal pre-processing and feature
engineering. The structures are designed to cap-
ture the intuition that nearby sentences in a single-
domain corpus often share certain words. Thus the
correlation of characters within or across certain
words can be learned, and those involving OOV
words notably enhance domain adaption for CWS.
GRS-1 The basic structure(GRS-1) is illustrat-
ed in Figure 2. It looks like LSTM-2 (Chen et al.,
2015b) when incorporated into the BLSTM mod-
el. However, the difference is that common re-
current networks will reset the hidden states every
time they process a new sentence in NLP problem-
s while the hidden states in our structure are never
reset.

hk+1,0, ck+1,0 = hk,nk
, ck,nk

(4)

where hk,i and ck,i are the hidden state and cell
vector of the kth sentence at the ith step, nk is the
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Figure 2: Global recurrent structure.

length of the kth sentence. For simplicity, in the
following part we will ignore the subscript k and
always indicate the current sentence.

As a result of such warm start mechanism, our
structure can to some extent record the history in-
formation in recent sentences. And some informa-
tion may last long in the structure.

Here we choose the LSTM cell as it can learn
to keep relatively long term memory. We fol-
low the equations (1) to implement it and direct-
ly take hi as the boundary feature embeddings for
the bigram bi = cici+1 in the basic structure,
where the input is the concatenation of embed-
dings of a bigram and its corresponding characters
Embb(bi)⊕ Embc(ci)⊕ Embc(ci+1).

Embbf (bi) = hi (5)

where hi is the output of the recurrent network at
the ith step.

We also propose four more variants of the struc-
ture that are shown in Figure 3.
GRS-2 To better fit the boundary features, we
add a full-connection hidden layer following the
recurrent network. The boundary feature embed-
dings are calculated as follows:

Embbf (bi) = σ(Wbfhi + bbf ) (6)

where σ is the logistic sigmoid function.
GRS-3 Considering the hidden states are noisy
and contains much information of other words, we
want the hidden values more relevant to the current
bigram, so a gate is introduced to the structure.
The boundary feature embeddings are calculated

as follows:

Ei = Embc(ci)⊕ Embc(ci+1)⊕ Embb(bi)
g(bi) = σ(WgEi + bg)
Embbf (bi) = g(bi)hi

(7)

where ⊕ is the symbol for concatenation.
GRS-4 GRS-4 is a combination version of GRS-
2 and GRS-3 by adding a full-connection hidden
layer following the gated output.
GRS-5 GRS-5 is a more complicated version
which tries to mimic the Accessor Variety(AV)
criterion. AV criterion is a feature describing the
number of distinct characters that precede or suc-
ceed a certain string s. For simplicity, we only
focus on strings with length = 2, in other word-
s, bigrams. Therefore, we substitute the input of
GRS-4 with a bigarm and its preceding character
to fit its left AV and similarly with a bigram and
its succeeding character to fit its right AV. At last,
we simply concatenate the two embeddings as the
final boundary feature embeddings (Actually they
are trigram boundary feature embeddings):

ELi = Embc(ci−1)⊕ Embb(bi)
ERi = Embc(ci+1)⊕ Embb(bi−1)

gL(trii) = σ(WL
g E

L
i + bLg )

gR(trii) = σ(WR
g E

R
i + bRg )

EmbLbf (trii) = σ(WL
bfg

L(trii)hLi + bLbf )

EmbRbf (trii) = σ(WR
bfg

R(trii)hRi + bRbf )

Embbf (trii) = EmbLbf (trii)⊕ EmbRbf (trii)
(8)

where trii = ci−1cici+1 and other values have the
same meanings as above.

4 Training

Instead of using the Max-Margin criterion (Taskar
et al., 2005) adopted by previous neural network
models for CWS (Zheng et al., 2013; Pei et al.,
2014; Chen et al., 2015a,b), we try to directly
maximize the log-probability of the correct tag se-
quence following Lample et al. (2016):

log(p(y|X)) = s(X, y)− log(
∑
ỹ∈YX

es(X,ỹ))

= s(X, y)− logadd
ỹ∈YX

s(X, ỹ)
(9)

187



Figure 3: Four variants of the global recurrent structure.

where YX represents all possible tag sequences
for a sentence X . While decoding, we predict the
output sequence which obtains the maximum s-
core as follows:

y∗ = argmax
ỹ∈YX

s(X, ỹ) (10)

The optimal sequence can be computed using
dynamic programming. We use Adam (Kingma
and Ba, 2014) to maximize the objective function.

5 Experiments

5.1 Experimental Setup

Data. We use the PKU corpus drawn from news
domain for the source-domain training. The PKU
dataset is provided by SIGHAN Bakeoff 2005 (E-
merson, 2005). We regard the random 90% sen-
tences of the training data as training set and the
rest 10% sentences as development set. We also
use the test part of the PKU dataset to measure
the in-domain segmentation ability of our mod-
els. Following Liu et al. (2014)’s settings, our
domain adaption experiments are performed on
the four testing sets from the SIGHAN Bakeoff
2010 (Zhao and Liu, 2010) whose domains cov-
er finance, computer, medicine and literature. In
addition, we manually annotate six more corpora
from non-news domains as testing sets, including
finance, medicine, geology, agriculture, material
and weather domains, which are extracted from
abstracts of papers in CNKI1. These data are an-
notated following the guideline proposed by Yu et
al. (2001). The OOV rate of these data are relative-
ly high because they are more academic. Statistics

1http://www.cnki.net/

of the training and testing data are shown in the
Table 1.

All datasets are pre-processed by replacing the
Chinese idioms and the continuous English letters
and digits with a unique token.
Embeddings. We use word2vec2 to pre-train
character embeddings on the training corpus. The
bigram embeddings are initialized with the aver-
age of the corresponding two characters’ embed-
dings.
Discrete Boundary Features. The discrete
boundary features which will be used in Sec-
tion 5.3 are extracted from the datasets mentioned
above and the Chinese Gigaword corpus3, follow-
ing methods in Sun and Xu (2011)’s paper.
Hyper-parameters. The hyper-parameters are
tuned according to the experimental results. The
detailed values are shown in Table 2.

Character & bigram embedding size 100
Boundary feature embedding size 100
Hidden unit number(cell in GRS) 300
Hidden unit number(cell in BLSTM) 300
Batch size 10
Early stop 5
Initial learning rate 0.02
Dropout rate on input layer 0.2
Regularization 10−4

Table 2: Settings of the hyper-parameters.

5.2 Model Selection
We evaluate the baseline BLSTM model and our
five proposed structures with the parameter set-
tings in Table 2 on the PKU test data and six do-

2 http://word2vec.googlecode.com/
3https://catalog.ldc.upenn.edu/LDC2003T05
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Dataset
Train Test Test-Bakeoff2010

PKU Finance Computer Medicine Literature
# of Sent. 19056 1945 561 1330 1309 671

# of Words 1109947 104372 33035 35319 31499 35735
OOV Rate 0.0575 0.0874 0.1522 0.1102 0.0694

Dataset
Test-CNKI

Finance Medicine Geology Agriculture Material Weather
# of Sent. 100 100 100 100 100 100

# of Words 27549 37803 29251 28780 26778 27228
OOV Rate 0.0437 0.2247 0.1910 0.1689 0.2224 0.1449

Table 1: Statistics of datasets used in this paper.

mains from the CNKI dataset. The results are
shown in Table 3. The BLSTM+GRS-4 model
with a gate and an additional full-connection hid-
den layer achieves the best performances among
all domains. Surprisingly, the most delicate struc-
ture GRS-5 seems to be of no help to the CWS
task.

To examine whether OOV recognition can ben-
efit from GRS, we also look into the IV and OOV
recalls of the PKU dataset respectively. Table 4
and Table 5 show that the proposed GRS can effec-
tively improve the segmentation performance on
OOV words, which empirically proves its domain
adaption ability. BSLTM-2, similar to LSTM-
2 (Chen et al., 2015b), is an architecture comprised
of two stacking bidirectional LSTM hidden layers.
GRS-4 is short for BLSTM+GRS-4 model.

Methods IV Recall OOV Recall
BLSTM 97.12 83.01

BLSTM-2 96.89 82.59
GRS-4 96.91 83.78

Table 4: IV and OOV recalls on the PKU develop-
ment data.

Methods IV Recall OOV Recall
BLSTM 96.35 82.67

BLSTM-2 96.11 82.01
GRS-4 96.25 83.96

Table 5: IV and OOV recalls on the PKU test data.

5.3 Final Results

In this section, We compare our BLSTM+GRS-4
model with previous state-of-the-art methods.

Experimental results on the four test domain-
s from SIGHAN Bakeoff 2010 are shown in Ta-

ble 6. We also attempt to integrate discrete bound-
ary features into the models. In our experiments,
we choose the Accessor Variety(AV) (Feng et al.,
2004a,b) which is a feature widely used in tradi-
tional Chinese word segmentation. Our F-scores
and OOV recalls are competitive to those report-
ed by Liu et al. (2014) and Jiang et al. (2013).
However, following Liu et al. (2014)’s setting,
we choose the PKU dataset as the training cor-
pus while Jiang et al. (2013)’s model is trained
on a different corpus. The results are not direct-
ly comparable. The results prove the incredible
effectiveness of the global recurrent structure on
OOV recognition and overall segmentation, com-
parable to the BLSTM model that directly incor-
porates discrete AV features. Adding discrete AV
features into our model seem not to be a notable
improvement, which also confirms that our model
already has certain domain adaption ability.

Models PKU MSRA
(Zheng et al., 2013) 92.8 93.9

(Pei et al., 2014) 95.2 97.2
(Chen et al., 2015a) 96.4 97.6
(Chen et al., 2015b) 96.5 97.4
(Chen et al., 2015a)* 94.5 95.4
(Chen et al., 2015b)* 94.8 95.6
(Cai and Zhao, 2016) 95.5 96.5
(Zhang et al., 2016) 95.7 97.7

BLSTM 95.9 97.0
This work 95.9 97.1

Table 7: Comparison of our model with previous
neural models on the PKU and MSRA datasets.
Results with * are from runs on their released im-
plementation (Cai and Zhao, 2016).

We compare the in-domain experimental result-
s on the PKU and MSRA datasets with previ-
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Dataset Baseline(F%) GRS-1(F%) GRS-2(F%) GRS-3(F%) GRS-4(F%) GRS-5(F%)
PKU 95.91 95.17 95.90 95.35 95.92 94.81

Out-of-Domain
Finance 96.87 97.15 96.78 96.68 97.15 96.09

Medicine 85.01 86.24 85.98 85.83 87.13 85.97
Geology 87.59 88.52 88.90 88.38 89.22 86.90

Agriculture 89.51 90.54 91.16 90.90 91.18 90.08
Material 87.29 88.84 89.04 88.28 89.62 87.79
Weather 90.62 92.21 92.70 92.21 93.21 91.15

Table 3: Experimental results of the baseline BLSTM model and our proposed structures on the PKU
test data and six domains from the CNKI dataset.

Method
Finance Computer Medicine Literature

Avg-F Avg-Roov
F Roov F Roov F Roov F Roov

BLSTM 94.70 86.02 92.17 81.84 91.34 73.51 92.51 73.80 92.68 78.79
BLSTM+AV 95.77 90.91 93.57 82.82 92.50 83.12 93.79 84.60 93.91 85.36

GRS-4 95.81 91.21 93.99 83.81 92.26 83.27 94.33 81.30 94.10 84.90
GRS-4+AV 95.77 91.02 93.20 83.97 91.80 82.17 93.50 82.01 93.57 84.77

Liu2014 95.54 88.53 93.93 87.53 92.47 78.28 92.49 76.84 93.61 82.80
Jiang2013 93.16 91.19 93.34 93.53 92.80

Table 6: Experimental results of the baseline BLSTM model, best-performance BLSTM+GRS-4 model,
models with discrete AV features and models proposed by others on the SIGHAN Bakeoff2010 data.

ous neural models, which is shown in Table 7.
The baseline BLSTM model with no modification
or augmentation can achieve comparative result-
s while the GRS does little help to the in-domain
Chinese word segmentation task.

5.4 Error Analysis

We collect and analyze the errors on the Medicine
corpus from Sighan Bakeoff 2010 in light of the
fact that the results are the worst among the four
domains. We calculate accuracies of individual
OOV words, where accuracies are simply treat-
ed as 0 or 1 for further counting, and catego-
rize them according to their frequencies in the
testing corpus. Statistics are shown in Figure 4.
From the trendlines we can infer that in our pro-
posed GRS more occurrences yield higher accura-
cy while common BLSTM models can rarely ben-
efit from this. That conforms to the intuition of
our model that can utilize correlation information
of testing corpora. Our model thereupon performs
better with the increase of the size of testing cor-
pus as long as the OOV words appear more.

Although the trendline of our model is promis-
ing, there are some OOV words that occurs fre-
quently but are wrongly segmented. Some ex-
amples are listed in Table 8. Errors involving

“肾脏”(kidney) and “维生素C”(vitamin C) are
typical examples of the Combination Ambigui-
ty, where there are some words containing “肾
脏” such as “肾脏病学”(nephrology). Likewise,
“维生素”(vitamin) is a frequent word that con-
fuses our model. “甲型H1N1流感”(influenza
A(H1N1)) reveals another severe problem that
most CWS systems confront when processing the
mix of Chinese characters and digits, punctuation-
s or letters from other languages. The commonly
used methods by treating consecutive digits or let-
ters as one indeed boost the performance on cor-
pora where most characters are Chinese. However,
with the increase of characters other than Chinese,
it is becoming a problem that should be reconsid-
ered carefully.

OOV Word English Correct Total
肾脏 kidney 15 39

甲型H1N1流感 influenza A 0 30
(H1N1)

维生素C vitamin C 2 23

Table 8: Some examples of wrongly segmented
OOV words with high frequency.
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Figure 4: OOV word recognition accuracies on the Medicine corpus.

6 Related Work

Word segmentation has been pursued with consid-
erable efforts in the Chinese NLP community. One
mainstream method is regarding word segmenta-
tion task as a sequence labeling problem (Xue,
2003; Peng et al., 2004). Recently, researcher-
s have tended to explore neural network based
approaches (Collobert et al., 2011; Zheng et al.,
2013; Qi et al., 2014) to reduce efforts of feature
engineering. Pei et al. (2014) used a neural ten-
sor model to capture the complicated interactions
between tags and context characters. Experiments
in his paper also show that bigram embeddings are
of great benefit. To incorporate complicated com-
binations and long-term dependency information
of the context characters, gated recursive mod-
el (Chen et al., 2015a) and LSTM model (Chen
et al., 2015b) were used respectively. Moreover,
Xu and Sun (2016) proposed a dependency-based
gated recursive model which merges the benefit-
s of the two models above. Coincidentally, Cai
and Zhao (2016) and Zhang et al. (2016) both ad-
dressed the problem of lacking word-based fea-
tures that previous neural CWS models have. Cai
and Zhao (2016) proposed a novel gated com-
bination neural network which thoroughly elim-
inates context windows and can utilize complete
segmentation history. Zhang et al. (2016) pro-
posed a transition-based neural model which re-
places manually designed discrete features with
neural features.

Domain adaption for Chinese word segmenta-
tion has been widely exploited before neural CWS
models are proposed. Jiang et al. (2013) utilized
the web text(160K Wikipedia) to improves seg-

mentation accuracies on several domains. Zhang
et al. (2014) studied type-supervised domain adap-
tation for Chinese segmentation by making use
of domain-specific tag dictionaries and only un-
labeled target domain data. Liu et al. (2014) pro-
posed a variant CRF model to leverage both fully
and partially annotated data transformed from dif-
ferent sources of free annotations consistently.

Some researches which focus on making use
of unlabeled data for word segmentation also do
help to domain adaption. Zhao and Kit (2008)
and Zhang et al. (2013a) improved segmentation
performance by mutual information between char-
acters, collected from large unlabeled data. Li
and Sun (2009) used punctuation information in
a large raw corpus to learn a segmentation mod-
el, and achieve better recognition of OOV word-
s. Sun and Xu (2011) explored several statisti-
cal features derived from both unlabeled data to
help improve character-based word segmentation.
Zhang et al. (2013b) proposed a semi-supervised
approach that dynamically extracts representation-
s of label distributions from both in-domain corpo-
ra and out-of-domain corpora.

7 Conclusion and Perspectives

In this paper, we propose a novel global recurren-
t structure to model dynamic boundary features
and incorporate it in the BLSTM-based neural net-
work model for Chinese Word Segmentation. The
structure can capture correlations between charac-
ters, and thus is especially effective for segment-
ing OOV words and enhancing the performance of
CWS on non-news domains.

The proposed global recurrent structure is not
limited to the Chinese word segmentation task. It
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can be easily adapted to other sequence labeling
problems that may benefit from the history infor-
mation carried in the structure.

Although the structure is effective in this task,
it’s admittedly hard to train a stable model. As
our future work, we would like to try some pre-
training methods to handle this problem. And we
plan to apply our method to other natural language
processing tasks, such as Name Entity Recogni-
tion (NER). Also, the hybrid model is a great idea
to try and we will do it later.
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Abstract

We present a novel technique for segment-
ing chat conversations using the infor-
mation bottleneck method (Tishby et al.,
2000), augmented with sequential conti-
nuity constraints. Furthermore, we utilize
critical non-textual clues such as time be-
tween two consecutive posts and people
mentions within the posts. To ascertain
the effectiveness of the proposed method,
we have collected data from public Slack
conversations and Fresco, a proprietary
platform deployed inside our organiza-
tion. Experiments demonstrate that the
proposed method yields an absolute (rel-
ative) improvement of as high as 3.23%
(11.25%). To facilitate future research, we
are releasing manual annotations for seg-
mentation on public Slack conversations.

1 Introduction

The prolific upsurge in the amount of chat con-
versations has notably influenced the way peo-
ple wield languages for conversations. Moreover,
conversation platforms have now become preva-
lent for both personal and professional usage. For
instance, in a large enterprise scenario, project
managers can utilize these platforms for various
tasks such as decision auditing and dynamic re-
sponsibility allocation (Joty et al., 2013). Logs
of such conversations offer potentially valuable
information for various other applications such
as automatic assessment of possible collaborative
work among people (Rebedea et al., 2011).

? indicates that both authors contributed equally. $ indi-
cates that the author was at TCS Research New-Delhi during
the course of this work.

It is thus vital to invent effective segmentation
methods that can seperate discussions into small
granules of independent conversational snippets.
By ’independent’, we meant a segment should as
much as possible be self-contained and discussing
the same topic, such that a segment can be sug-
gested if any similar conversation occurs again.
As an outcome of this, various short text simi-
larity methods can be employed directly. Seg-
mentation can also potentially act as an empower-
ing preprocessing step for various down-streaming
tasks such as automatic summarization (Dias et al.,
2007), text generation (Barzilay and Lee, 2004),
information extraction (Allan, 2012), and conver-
sation visualization (Liu et al., 2012). It is worth
noting that chat segmentation presents a number
of gruelling challenges such as, the informal na-
ture of the text, the frequently short length of the
posts and a significant proportion of irrelevant in-
terspersed text (Schmidt and Stone).

Research in text segmentation has a long his-
tory going back to the earliest attempt of Koz-
ima (1993). Since then many methods, includ-
ing but not limited to, Texttiling (Hearst, 1997),
Choi’s segmentation (Choi, 2000), representation
learning based on semantic embeddings (Alemi
and Ginsparg, 2015), and topic models (Du et al.,
2015a) have been presented. Albeit, very little re-
search effort has been proposed for segmenting in-
formal chat text. For instance, Schmidt and Stone
have attempted to highlight the challenges with
chat text segmentation, though they have not pre-
sented any algorithm specific to chat text.

The Information Bottleneck (IB) method has
been successfully applied to clustering in the NLP
domain (Slonim and Tishby, 2000). Specifically,
IB attempts to balance the trade-off between accu-
racy and compression (or complexity) while clus-
tering the target variable, given a joint probability
distribution between the target variable and an ob-
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served relevant variable. Similar to clustering, this
paper interprets the task of text segmentation as
a compression task with a constraint that allows
only contiguous text snippets to be in a group.

The focus of this paper is to develop text seg-
mentation methods for chat text utilizing the IB
framework. In the process, this paper makes the
following major contributions:

(i) We introduce an IB inspired objective func-
tion for the task of text segmentation.

(ii) We develop an agglomerative algorithm to
optimize the proposed objective function that
also respects the necessary sequential conti-
nuity constraint for text segmentation.

(iii) To the best of our knowledge, this paper is a
first attempt that addresses segmentation for
chat text and incorporates non-textual clues.

(iv) We have created a chat text segmentation
dataset and releasing it for future research.

The remainder of this paper is organized as fol-
lows: we present a review of related literature in
Section 2. Then, we formulate the text segmen-
tation problem and define necessary notations in
Section 3. Following this, we explain the proposed
methodology in Section 4. Section 5 presents ex-
periments and provides details on the dataset, ex-
perimental set-up, baselines, results, and effect of
parameters. Finally, conclusions and potential di-
rections for future work are outlined in Section 6.

2 Related Work

The IB method (Tishby et al., 2000) was origi-
nally introduced as a generalization of rate distor-
tion theory which balances the tradeoff between
the preservation of information about a relevance
variable and the distortion of the target variable.
Later on, similar to this work, a greedy bottom-up
(agglomerative) IB based approach (Slonim and
Tishby, 1999, 2000) has been successfully applied
to NLP tasks such as document clustering.

Furthermore, the IB method has been widely
studied for multiple machine learning tasks, in-
cluding but not limited to, speech diarization
(Vijayasenan et al., 2009), image segmentation
(Bardera et al., 2009), image clustering (Gordon
et al., 2003), and visualization (Kamimura, 2010).
Particularly, similar to this paper, image segmenta-
tion has considered segmentation as the compres-

sion part of the IB based method. But, image seg-
mentation does not involve continuity constraints
as their application can abolish the exploitation of
similarity within the image. Yet another similar
attempt that utilizes information theoretic terms
as an objective (only the first term of the IB ap-
proach) has been made for the task of text segmen-
tation and alignment (Sun et al., 2006).

Broadly stating, a typical text segmentation
method comprises of a method that: (a) con-
sumes text representations for every independent
text snippet, and (b) applies a search procedure for
segmentation boundaries while optimizing objec-
tives for segmentation. Here, we review literature
of text segmentation by organizing them into 3 cat-
egories based on their focus: Category1 - (a), Cat-
egory2 - (b), and Category3 - both (a) and (b).

Category1 approaches utilize or benefit from a
great amount of effort put in developing robust
topic models that can model discourse in natural
language texts (Brants et al., 2002). Recently, Du
et al. (2013, 2015b) have proposed a hierarchical
Bayesian model for unsupervised topic segmen-
tation that integrates a point-wise boundary sam-
pling algorithm used in Bayesian segmentation
into a structured (ordering-based) topic model.
For a more comprehensive view of classical work
on topic models for text segmentation, we refer to
Misra et al. (2009); Riedl and Biemann (2012).
This work does not explore topic models and is
left as a direction for future research.

Category2 approaches comprise of different
search procedures proposed for the task of text
segmentation, including but not limited to, divi-
sive hierarchical clustering (Choi, 2000), dynamic
programming (Kehagias et al., 2003), and graph
based clustering (Pourvali and Abadeh, 2012;
Glavas et al., 2016; Utiyama and Isahara, 2001).
This work proposes an agglomerative IB based hi-
erarchical clustering algorithm - an addition to the
arsenal of the approaches that falls in this category.

Similar to the proposed method, Category3 cuts
across both of the above introduced dimensions
of segmentation. Alemi and Ginsparg (2015)
have proposed the use of semantic word embed-
dings and a relaxed dynamic programming proce-
dure. We have also argued to utilize chat clues
and introduced an IB based approach augmented
with sequential continuity constraints. Yet an-
other similar attempt has been made by Joty et al.
(2013) in which they use topical and conversa-
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tional clues and introduce an unsupervised random
walk model for the task of text segmentation.

Beyond the above mentioned categorization, a
significant amount of research effort has been put
up in studying the evaluation metric for text seg-
mentation (Pevzner and Hearst, 2002; Scaiano and
Inkpen, 2012). Here, we make use of the classi-
cal and most widely utilized metric introduced by
Beeferman et al. (1999). Also, there have been
attempts to track topic boundaries for thread dis-
cussions (Zhu et al., 2008; Wang et al., 2008).
While these methods look similar to the proposed
method, they differ as they attempt to recover
thread structure with respect to the topic level view
of the discussions within a thread community.

The most similar direction of research to this
work is on conversation trees (Louis and Cohen,
2015) and disentangling chat conversations (El-
sner and Charniak, 2010). Both of these direc-
tions cluster independent posts leading to topic la-
belling and segmentation of these posts simulta-
neously. It is important to note that these methods
do not have a sequential continuity constraint and
consider lexical similarity even between long dis-
tant posts (Elsner and Charniak, 2011). Moreover,
if these methods are applied only for segmenta-
tion then they are very likely to produce segments
with relatively very smaller durations; as reflected
in the ground truth annotations of correspondingly
released dataset (Elsner and Charniak, 2008). It is
worth noting that Elsner and Charniak (2010) have
also advocated to utilize time gap and people men-
tions similar to the proposed method of this work.

3 Problem Description And Notations

Let C be an input chat text sequence C =
{c1, ..., ci, ..., c|t|} of length |C|, where ci is a text
snippet such as a sentence or a post from chat text.
In a chat scenario, text post ci will have a corre-
sponding time-stamp cti. A segment or a subse-
quence can be represented as Ca:b = {ca, ..., cb}.
A segmentation of C is defined as a segment se-
quence S = {s1, ..., sp}, where sj = Caj :bj and
bj + 1 = aj+1. Given an input text sequence C,
the segmentation is defined as the task of finding
the most probable segment sequence S.

4 Proposed Methodology

This section firstly presents the proposed IB in-
spired method for text segmentation that conforms
to the necessary constraint of sequential continu-

ity, in Section 4.1. Next, in Section 4.2, the pro-
posed IB inspired method is augmented to incor-
porate important non-textual clues that arise in a
chat scenario. More specifically, the time between
two consecutive posts and people mentions within
the posts are integrated into the proposed IB in-
spired approach for the text segmentation task.

4.1 IB Inspired Text Segmentation Algorithm

The IB introduces a set of relevance variables R
which encapsulate meaningful information about
C while compressing the data points (Slonim and
Tishby, 2000). Similarly, we propose that a seg-
ment sequence S should also contain as much
information as possible about R (i.e., maximize
I(R,S)), constrained by mutual information be-
tween S and C (i.e., minimize I(S,C)). Here, C
is a chat text sequence, following the notation in-
troduced in the previous section. The IB objective
can be achieved by maximizing the following:

F = I(R,S)− 1
β
× I(S,C) (1)

In other words, the above IB objective function
attempts to balance a trade-off between the most
informative segmentation of R and the most com-
pact representation of C; where β is a constant
parameter to control the relative importance.

Similar to Tishby et al. (2000), we model R as
word clusters and optimize F in an agglomerative
fashion, as explained in Algorithm 1. In simple
words, the maximization of F boils down to ag-
glomeratively merging an adjacent pair of posts
that correspond to least value of d. In Algorithm
1, p(s) is equal to p(si) + p(si+1) and d(si, si+1)
is computed using the following definition:

d(si, si+1) = JSD[p(R|si), p(R|si+1)]−
1
β
× JSD[p(C|si), p(C|si+1)]

(2)

Here, JSD indicates Jensen-Shannon-
Divergence. The computation of R and p(R,C)
is explained later in Section 5.2. Stopping crite-
rion for Algorithm 1 is SC > θ, where SC is
computed as follows:

SC =
I(R,S)
I(R,C)

(3)

The value of SC is expected to decrease due to
a relatively large dip in the value of I(R,S) when
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Algorithm 1: IB inspired text segmentation
Input : Joint distribution: p(R,C),

Tradeoff parameter: β
Output : Segmentation sequence: S
Initialization: S ← C

Calculate ∆F (si, si+1) =
p(s)× d(si, si+1) ∀ si ∈ S

1 while Stopping criterion is false do
2 {i} = argmini′∆F (si′ , si′+1);
3 Merge {si, si+1} ⇒ s ∈ S;
4 Update ∆F (s, si−1) and ∆F (s, si+2);
5 end

more dissimilar clusters are merged. Therefore,
SC provides strong clues to terminate the pro-
posed IB approach. The inspiration behind this
specific computation of SC has come from the
fact that it has produced stable results when exper-
imented with a similar task of speaker diarization
(Vijayasenan et al., 2009). The value of θ is tuned
by optimizing the performance over a validation
dataset just like other hyper-parameters.

The IB inspired text segmentation algorithm
(Algorithm 1) respects the sequential continuity
constraint, as it considers merging only adjacent
pairs (see step 2, 3, and 4 of Algorithm 1) while
optimizing F ; unlike the agglomerative IB cluster-
ing (Slonim and Tishby, 2000). As a result of this,
the proposed IB based approach requires a limited
number of involved computations, more precisely,
linear in terms of number of text snippets.

4.2 Incorporating Non-Textual Clues
As mentioned above, we submit that non-textual
clues (such as time between two consecutive posts
and people mentions within the posts) are critical
for segmenting chat text. To incorporate these two
important clues, we augment Algorithm 1, devel-
oped in the previous section. More precisely, we
modify d of Equation 2 to d as follows:

d(si, si+1) = w1 × d(si, si+1) + w2×
(ctai+1

− ctbi) + w3 × ||spi − spi+1||
(4)

Here, ctai+1
, ctbi and spi represent time-stamp of

the first post of segment si+1, time-stamp of last
post of segment si, and representation for poster
information embedded in segment si, respectively.
The spi representation is computed as a bag of
posters counting all the people mentioned in the

posts and posters themselves in a segment. w1,w2,
w3 are weights indicating the relative importance
of distance terms computed for all three different
clues. ||.|| in Equation 4 indicates euclidean norm.

It is important to note that Algorithm 1 utilizes
d of Equation 2 to represent textual dissimilarity
between a pair of posts in order to achieve the op-
timal segment sequence S. Following the same
intuition, d in Equation 4 measures weighted dis-
tances based not only on textual similarity but also
based on information in time-stamps, posters and
people mentioned. The intuition behind the sec-
ond distance term in d is that if the time difference
between two posts is small then they are likely to
be in the same segment. Additionally, the third
distance term in d is intended to merge segments
that involve a higher number of common posters
and people mentions. Following the same intu-
ition, in addition to the changes in d, we modify
the stopping criterion as well while the rest stays
the same as in Algorithm 1. The stopping criterion
is defined as SC > θ, where SC is as follows:

SC = w1 × I(R,S)
I(R,C)

+ w2×

(1− G(S)
Gmax

) + w3 × H(S)
Hmax

(5)

Here, the G(S) and H(S) mentioned in Equa-
tion 5 are computed as follows:

G(S) =
∑
si∈S

ctbi − ctai
(6)

H(S) =
|S|∑
i=1

||spi − spi+1|| (7)

The first term in SC in Equation 5 is taken from
the stopping criterion of Algorithm 1 and the re-
maining second and third terms are similarly de-
rived. Both the second and third terms decrease as
the cardinality of S is decreased and reflect anal-
ogous behaviour to the two introduced important
clues. The first term computes the fraction of in-
formation contained in S about R, normalized by
the information contained in C about R; similarly,
the second term computes the fraction of time du-
ration between segments normalized by total du-
ration of chat text sequence (i.e. 1 - fraction of
durations of all segments normalized by total du-
ration), and the third term computes the sum of
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Slack Fresco
# Threads 4 46
# Posts 9000 5000
# Segments 900 800
# Documents 73 73

Table 1: Statistics of the chat datasets.

inter segment distances in terms of poster infor-
mation normalized by the maximum distance of
similar terms (i.e. when each post is a segment).

5 Experiments

This section starts with a description of the
datasets collected from the real world conversa-
tion platforms in Subsection 5.1. Later in Subsec-
tion 5.2, we explain the evaluation metric utilized
in our experiments. Subsection 5.3 describes the
meaningful baselines developed for a fair compar-
ison with the proposed IB approach. Next in Sub-
sections 5.4 and 5.5, we discuss the performance
accomplished by the proposed approach on both
of the collected datasets. Lastly, we analyse the
stability of the proposed IB approach with respect
to parameters β and θ in Subsection 5.6.

5.1 Dataset Description

We have collected chat text datasets,
namely, Slack and Fresco, respectively from
http://slackarchive.io/ and http://talk.fresco.me/.
After that, we have manually annotated them for
the text segmentation task. We have utilized the
annotations done by 3 workers with problematic
cases resolved by consensus. Datasets’ statistics is
mentioned in Table 1. The collected raw data was
in the form of threads, which was later divided
into segments. Further, we have created multiple
documents where each document contains N
continuous segments from the original threads. N
was selected randomly between 5 and 15. 60%
of these documents were used for tuning hyper-
parameters which include weights (w1, w2, w3),
θ, and β; and the remaining were used for testing.

A small portion of one of the documents from
the Slack dataset is depicted in Figure 1(a). Here,
manual annotations are marked by a bold black
horizontal line, and also enumerated as 1), 2), and
3). Every text line is a post made by one of the
users on the Slack platform during conversations.
As mentioned above, in a chat scenario, every post
has following three integral components:

1) poster (indicated by corresponding identity in
Figure 1, from beginning till ‘-=[*says’),
2) time-stamp (between ‘-=[*’ and ‘*]=-)’, and
3) textual content (after ‘*]=-::: ’till end).
One must also notice that some of the posts also
have people mentions within the posts (indicated
as ‘<@USERID>’ in Figure 1).

To validate the differences between the col-
lected chat datasets and traditional datasets such
as Choi’s dataset (Choi, 2000), we computed the
fraction of words occurring with a frequency less
than a given word frequency, as shown in Figure 2.
It is clearly evident from the Figure 2 that chat seg-
mentation datasets have a significantly high pro-
portion of less frequent words in comparison to the
traditional text segmentation datasets. The pres-
ence of large infrequent words makes it hard for
textual similarity methods to succeed as it will in-
crease the proportion of out of vocabulary words
(Gulcehre et al., 2016). Therefore, it becomes
even more critical to utilize the non-textual clues
while processing chat text.

5.2 Evaluation and Setup
For performance evaluation, we have employed
Pk metric (Beeferman et al., 1999) which is
widely utilized for evaluating the text segmenta-
tion task. A sliding window of fixed size k (usu-
ally half of the average of length of all the seg-
ments in the document) slides over the entire doc-
ument from top to bottom. Both inter and intra
segment errors for all posts k apart is calculated
by comparing inferred and annotated boundaries.

We model the set of relevance variables R as
word clusters estimated by utilizing agglomera-
tive IB based document clustering (Slonim and
Tishby, 2000) where posts are treated as relevance
variables. Consequently, R comprises of infor-
mative word clusters about posts. Thus, each en-
try p(ri, cj) in matrix p(R,C) represents the joint
probability of getting a word cluster ri in post
cj . We calculate p(ri, cj) simply by counting the
common words in ri and cj and then normalizing.

5.3 Baseline Approaches
For comparisons, we have developed multiple
baselines. In Random, 5 to 15 boundaries are in-
serted randomly. In case of No Boundary, the en-
tire document is labelled as one segment. Next, we
implemented C-99 and Dynamic Programming,
which are classical benchmarks for the text seg-
mentation task. Another very simple and yet effec-
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Figure 1: (a) Manually created ground truth for Slack public conversations. Black color lines represents
segmentation boundaries. (b) Results obtained for multiple approaches. Text best read magnified.

Methods Span of Weights Slack Fresco
Random – 60.6 54
No Boundary – 36.76 45
Average Time – 32 35
C-99 – 35.18 37.75
Dynamic Programming – 28.7 35
Encoder-Decoder Distance – 29 38
LDA Distance – 36 44
IB Variants:
Text w1 = 1, w2 = 0, w3 = 0 33 42
TimeDiff w1 = 0, w2 = 1, w3 = 0 26.75 34.25
Poster w1 = 0, w2 = 0, w3 = 1 34.52 41.50
Text + TimeDiff ∀w ∈ {w1, w2}, w ∈ (0, 1); w3 = 0; w1 + w2 = 1 26.47 34.68
Text + Poster ∀w ∈ {w1, w3}, w ∈ (0, 1); w2 = 0; w1 + w3 = 1 28.57 38.21
Text+TimeDiff+Poster ∀w ∈ {w1, w2, w3}, w ∈ (0, 1); w1 + w2 + w3 = 1 25.47 34.80

Table 2: Performance evaluation: Pk metric [in terms of % error] for various methods. Lower is better.
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Figure 2: Fraction of words less than a given word
frequency.

tive baseline Average Time is prepared, in which
boundaries are inserted after a fixed amount of
time has elapsed. Fixed time is calculated from
a certain separate portion of our annotated dataset.

Next baseline utilized in our experiments is
Encoder-Decoder Distance. In this approach,
we have trained a sequence to sequence RNN
encoder-decoder (Sutskever et al., 2014) utilizing
1.5 million posts from the publicly available Slack
dataset excluding the labelled portion. The net-
work comprises of 2 hidden layers and the hid-
den state dimension was set to 256 for each. The
encoded representation was utilized and greed-
ily merged in an agglomerative fashion using Eu-
clidean distance. The stopping criterion for this
approach was similar to the third term in Equa-
tion 5 corresponding to poster information. The
optimization of hidden state dimension was com-
putationally demanding hence left for further ex-
ploration in future. Similar to Encoder-Decoder
Distance, we have developed LDA Distance where
representations have come from a topic model
(Blei et al., 2003) having 100 topics.

5.4 Quantitative Results

The results for all prepared baselines and vari-
ants of IB on both Slack and Fresco datasets
are mentioned in Table 2. For both Slack and
Fresco datasets, multiple variants of IB yield su-
perior performance when compared against all the
developed baselines. More precisely, for Slack
dataset, 4 different variants of the proposed IB
based method achieve higher performance with an
absolute improvement of as high as 3.23% and a
relative improvement of 11.25%, when compared
against the baselines. In case of Fresco dataset, 3

Figure 3: Normalized frequency distribution of
segment length for both the collected chat datasets.

different variants of the proposed method achieve
superior performance but not as significantly in
terms of absolute Pk value, as they do for the Slack
dataset. We hypothesize that such a behaviour
is potentially because of the lesser value of posts
per segment for Fresco (5000/800=6.25) in com-
parison to Slack (9000/900=10). Also, note that
just the time clue in IB framework performs best
on Fresco dataset indicating that the relative im-
portance of time clue will be higher for a dataset
with smaller lengths of segments (i.e. low value
of posts per segment). To validate our hypothesize
further, we estimate the normalized frequency dis-
tribution of segment length (number of posts per
segment) for both datasets, as shown in Figure 3.

It is worth noting that the obtained empirical re-
sults support the major hypothesis of this work.
As variants of IB yield superior performance on
both the datasets. Also, on incorporation of in-
dividual non-textual clues, superior improvements
of 3.23% and 7.32% are observed from Text to
Text+TimeDiff for Slack and Fresco, respectively;
similarly, from Text to Text+Poster improvements
of 4.43% and 3.79% are observed for Slack and
Fresco, respectively. Further, the best perfor-
mance is achieved for both the datasets on fusing
both the non-textual clues indicating that clues are
complementary as well.

5.5 Qualitative Results

Results obtained for multiple approaches,
namely, Average Time, IB:TimeDiff, and
IB:Text+TimeDiff+Poster, corresponding to a
small portion of chat text placed in part (a) of
Figure 1 are presented in part (b) of Figure 1.
Average Time baseline (indicated by purple)
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managed to find three boundaries, albeit one of
the boundary is significantly off, potentially due
to the constraint of fixed time duration.

Similarly, the next IB:TimeDiff approach also
manages to find first two boundaries correctly but
fails to recover the third boundary. Results seem
to indicate that the time clue is not very effec-
tive to reconstruct segmentation boundaries when
segment length varies a lot within the document.
Interestingly, the combination of all three clues
as happens in the IB:Text+TimeDiff+Poster ap-
proach, yielded the best results as all of three seg-
mentation boundaries in ground truth are recov-
ered with high precision. Therefore, we submit
that the incorporation of non-textual clues is criti-
cal to achieve superior results to segment chat text.

5.6 Effect Of Parameters

To analyse the behaviour of the proposed IB based
methods, we compute the average performance
metric Pk of IB:Text with respect to β and θ, over
the test set of Slack dataset. Also, to facilitate the
reproduction of results, we mention optimal val-
ues of all the parameters for all the variants of the
proposed IB approach in Table 5.5.

Figure 4 shows the behaviour of the average of
performance evaluation metric Pk over the test set
of Slack dataset with respect to hyper-parameter
β. As mentioned above also, the parameter β rep-
resents a trade-off between the preserved amount
of information and the level of compression. It is
clearly observable that the optimal value of β does
not lie on extremes indicating the importance of
both the terms (as in Equation 1) of the proposed
IB method. The coefficient of the second term (i.e.
1
β equals to 10−3) is smaller. One could interpret
the behaviour of thr second term as a regulariza-
tion term because 1

β controls the complexity of the
learnt segment sequence S. Furthermore, optimal
values in Table 5.5 for variants with fusion of two
or more clues indicate complementary and relative
importance of the studied non-textual clues.

The average performance evaluation metric Pk
over test set of the Slack dataset with respect to
hyper-parameter θ is depicted in Figure 5. Figure
5 makes the appropriateness of the stopping cri-
terion clearly evident. Initially, the average of Pk
value decreases as more coherent posts are merged
and continues to decrease till it is less than a partic-
ular value of θ. After that, the average of Pk value
starts increasing potentially due to the merging of

Figure 4: Average evaluation metric Pk over Slack
dataset with respect to hyper-parameter β.

Figure 5: Average evaluation metric Pk over Slack
dataset with respect to hyper-parameter θ.

more dissimilar segments. The optimal values of
θ varies significantly from one variant to another
requiring a mandatory tuning over the validation
dataset, as mentioned in Table 5.5, for all IB vari-
ants proposed in this work.

6 Discussion And Future Work

We started by highlighting the increasing impor-
tance of efficient methods to process chat text,
in particular for text segmentation. We have col-
lected and introduced datasets for the same. Our
introduction of chat text datasets has enabled us
to explore segmentation approaches that are spe-
cific to chat text. Further, our results demonstrate
that the proposed IB method yields an absolute
improvement of as high as 3.23%. Also, a sig-
nificant boost (3.79%-7.32%) in performance is
observed on incorporation of non-textual clues in-
dicating their criticality. In future, it will be inter-
esting to investigate the possibility of incorporat-
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IB Variants: Slack Fresco
β (w1, w2, w3) θ β (w1, w2, w3) θ

Text 1000 (1,0,0) 0.4 1000 (1,0,0) 0.5
TimeDiff 750 (0,1,0) 0.9 750 (0,1,0) 0.9
Poster 750 (0,0,1) 0.09 750 (0,0,1) 0.1
Text+TimeDiff 750 (0.3,0.7,0) 0.75 750 (0.3,0.7,0) 0.75
Text+Poster 750 (0.1,0,0.9) 0.2 ∞ (0.3,0,0.7) 0.2
Text+TimeDiff+Poster 750 (0.24,0.58,0.18) 0.65 750 (0.10,0.63,0.27) 0.65

Table 3: Optimal values of parameters corresponding to results obtained by IB variants in Table 2.

ing semantic word embeddings in the proposed IB
method (Alemi and Ginsparg, 2015).
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Abstract
We test whether distributional models can
do one-shot learning of definitional prop-
erties from text only. Using Bayesian
models, we find that first learning overar-
ching structure in the known data, regular-
ities in textual contexts and in properties,
helps one-shot learning, and that individ-
ual context items can be highly informa-
tive. Our experiments show that our model
can learn properties from a single expo-
sure when given an informative utterance.

1 Introduction

When humans encounter an unknown word in text,
even with a single instance, they can often infer
approximately what it means, as in this example
from Lazaridou et al. (2014):

We found a cute, hairy wampimuk sleep-
ing behind the tree.

People who hear this sentence typically guess
that a wampimuk is an animal, or even that it is a
mammal. Distributional models, which describe
the meaning of a word in terms of its observed
contexts (Turney and Pantel, 2010), have been
suggested as a model for how humans learn word
meanings (Landauer and Dumais, 1997). How-
ever, distributional models typically need hun-
dreds of instances of a word to derive a high-
quality representation for it, while humans can of-
ten infer a passable meaning approximation from
one sentence only (as in the above example). This
phenomenon is known as fast mapping (Carey and
Bartlett, 1978), Our primary modeling objective in
this paper is to explore a plausible model for fast-
mapping learning from textual context.

While there is preliminary evidence that fast
mapping can be modeled distributionally (Lazari-
dou et al., 2016), it is unclear what enables it.

How do humans infer word meanings from so
little data? This question has been studied for
grounded word learning, when the learner per-
ceives an object in non-linguistic context that cor-
responds to the unknown word. The literature
emphasizes the importance of learning general
knowledge or overarching structure, which we de-
fine as the information that is learned by accumu-
lation across concepts (e.g. regularities in property
co-occurrence), across all concepts (Kemp et al.,
2007), In grounded word learning, overarching
structure that has been proposed includes knowl-
edge about which properties. For example knowl-
edge about which properties are most important to
object naming (Smith et al., 2002; Colunga and
Smith, 2005), or a taxonomy of concepts (Xu and
Tenenbaum, 2007).

In this paper we study models for fast mapping
in word learning1 from textual context alone, us-
ing probabilistic distributional models. Our task
differs from the grounded case in that we do not
perceive any object labeled by the unknown word.
In that context, learning word meaning means
learning the associated definitional properties and
their weights (see Section 3). For the sake of inter-
pretability, we focus on learning definitional prop-
erties We ask what kinds of overarching structure
in distributional contexts and in properties will be
helpful for one-shot word learning.

We focus on learning from syntactic context.
Distributional representations of syntactic context
are directly interpretable as selectional constraints,
which in manually created resources are typi-
cally characterized through high-level taxonomy
classes (Kipper-Schuler, 2005; Fillmore et al.,
2003). So they should provide good evidence for

1In this paper, we interchangeably use the terms unknown
word and unknown concept, as we learn properties, and prop-
erties belong to concepts rather than words, and we learn
them from text, where we observe words rather than concepts.
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the meaning of role fillers. Also, it has been shown
that selectional constraints can be learned distri-
butionally (Erk et al., 2010; Ó Séaghdha and Ko-
rhonen, 2014; Ritter et al., 2010). However, our
point will not be that syntax is needed for fast word
learning, but that it helps to observe overarching
structure, with syntactic context providing a clear
test bed.

We test two types of overarching structure for
their usefulness in fast mapping. First, we hypoth-
esize that it is helpful to learn about commonali-
ties among context items, which enables mapping
from contexts to properties. For example the syn-
tactic contexts eat-dobj and cook-dobj should pre-
fer similar targets: things that are cooked are also
things that are eaten (Hypothesis H1).

The second hypothesis is that it will be use-
ful to learn co-occurrence patterns between prop-
erties. That is, we hypothesize that in learning
an entity is a mammal, we may also infer it is
four-legged (Hypothesis H2).

We do not intent to make strong cognitive
claims, for which additional experimentation will
be in order, and we leave this for future work. This
work sets its goal on building a plausible compu-
tational model that models human fast-mapping in
learning (i) well from limited grounded data, (ii)
effectively from only one instance.

2 Background

Fast mapping and textual context. Fast map-
ping (Carey and Bartlett, 1978) is the human abil-
ity to construct provisional word meaning repre-
sentations after one or few exposures. An impor-
tant reason for why humans can do fast mapping
is that they acquire overarching structure that con-
strains learning (Smith et al., 2002; Colunga and
Smith, 2005; Kemp et al., 2007; Xu and Tenen-
baum, 2007; Maas and Kemp, 2009). In this paper,
we ask what forms of overarching structure will be
useful for text-based word learning.

Lazaridou et al. (2014) consider fast mapping
for grounded word learning, mapping image data
to distributional representations, which is in a way
the mirror image of our task. Lazaridou et al.
(2016) were the first to explore fast mapping for
text-based word learning, using an extension to
word2vec with both textual and visual features.
However, they model the unknown word simply
by averaging the vectors of known words in the
sentence, and do not explore what types of knowl-

edge enable fast mapping.
Definitional properties. Feature norms are def-

initional properties collected from human partici-
pants. Feature norm datasets are available from
McRae et al. (2005) and Vigliocco et al. (2004). In
this paper we use feature norms as our target rep-
resentations of word meaning. There are several
recent approaches that learn to map distributional
representations to feature norms (Johns and Jones,
2012; Rubinstein et al., 2015; Făgărăşan et al.,
2015; Herbelot and Vecchi, 2015a). We also map
distributional information to feature norms, but we
do it based on a single textual instance (one-shot
learning).

In the current paper we use the Quantified
McRae (QMR) dataset (Herbelot and Vecchi,
2015b), which extends the McRae et al. (2005)
feature norms by ratings on the proportion of cate-
gory members that have a property, and the An-
imal dataset (Herbelot, 2013), which is smaller
but has the same shape. For example, most al-
ligators are dangerous. The quantifiers are given
probabilistic interpretations, so if most alligators
are dangerous, the probability for a random alli-
gator to be dangerous would be 0.95. This makes
this dataset a good fit for our probabilistic distri-
butional model. We discuss QMR and the Animal
data further in Section 4.

Bayesian models in lexical semantics. We
use Bayesian models for the sake of interpretabil-
ity and because the existing definitional property
datasets are small. The Bayesian models in lexi-
cal semantics that are most related to our approach
are Dinu and Lapata (2010), who represent word
meanings as distributions over latent topics that
approximate senses, and Andrews et al. (2009)
and Roller and Schulte im Walde (2013), who use
multi-modal extensions of Latent Dirichlet Allo-
cation (LDA) models (Blei et al., 2003) to repre-
sent co-occurrences of textual context and defini-
tional features. Ó Séaghdha (2010) and Ritter et al.
(2010) use Bayesian approaches to model selec-
tional preferences.

3 Models

In this section we develop a series of models to test
our hypothesis that acquiring general knowledge is
helpful to word learning, in particular knowledge
about similarities between context items (H1) and
co-occurrences between properties (H2). The
count-based model will implement neither hypoth-
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esis, while the bimodal topic model will imple-
ment both. To test the hypotheses separately, we
employ two clustering approaches via Bernoulli
Mixtures, which we use as extensions to the count-
based model and bimodal topic model.

3.1 The Count-based Model

Independent Bernoulli condition. Let Q be a
set of definitional properties, C a set of concepts
that the learner knows about, and V a vocabulary
of context items. For most of our models, con-
text items w ∈ V will be predicate-role pairs such
as eat-dobj. The task is determine properties that
apply to an unknown concept u 6∈ C. Any con-
cept c ∈ C is associated with a vector cInd (where
“Ind” stands for “independent Bernoulli probabil-
ities”) of |Q| probabilities, where the i-th entry
of cInd is the probability that an instance of con-
cept c would have property qi. These probabil-
ities are independent Bernoulli probabilities. For
instance, alligatorInd would have an entry of 0.95
for dangerous. An instance c ∈ {0, 1}|Q| of a
concept c ∈ C is a vector of zeros and ones drawn
from cInd, where an entry of 1 at position i means
that this instance has the property qi.

The model proceeds in two steps. First it learns
property probabilities for context items w ∈ V .
The model observes instances c occurring textu-
ally with context itemw, and learns property prob-
abilities for w, where the probability that w has
for a property q indicates the probability that w
would appear as a context item with an instance
that has property q. In the second step the model
uses the acquired context item representations to
learn property probabilities for an unknown con-
cept u. When u appears withw, the context itemw
“imagines” an instance (samples it from its prop-
erty probabilities), and uses this instance to update
the property probabilities of u. Instead of mak-
ing point estimates, the model represents its uncer-
tainty about the probability of a property through
a Beta distribution, a distribution over Bernoulli
probabilities. As a Beta distribution is character-
ized by two parameters α and β, we associate each
context item w ∈ V with vectors wα ∈ R|Q| and
wβ ∈ R|Q|, where the i-th α and β values are the
parameters of the Beta distribution for property qi.
When an instance c is observed with context item
w, we do a Bayesian update on w simply as

wα = wα + c
wβ = wβ + (1− c)

(1)

because the Beta distribution is the conjugate prior
of the Bernoulli. To draw an instance from w, we
draw it from the predictive posterior probabilities
of its Beta distributions, wInd = wα/(wα + wβ).

Likewise, we associate an unknown concept u
with vectors uα and uβ . When the model observes
u in the context of w, it draws an instance from
wInd, and performs a Bayesian update as in (1) on
the vectors associated with u. After training, the
property probabilities for u are again the posterior
predictive probabilities uInd = uα/(uα+uβ). The
model can be used for multi-shot learning and one-
shot learning in the same way.

Multinomial condition. We also test a multi-
nomial variant of the count-based model, for
greater comparability with the LDA model below.
Here, the concept representation cMult is a multi-
nomial distribution over the properties in Q. (That
is, all the properties compete in this model.) An
instance of concept c is now a single property,
drawn from c’s multinomial. The representation
of a context item w, and also the representation
of the unknown concept u, is a Dirichlet distribu-
tion with |Q| parameters. Bayesian update of the
representation ofw based on an occurrence with c,
and likewise Bayesian update of the representation
of u based on an occurrence with w, is straight-
forward again, as the Dirichlet distribution is the
conjugate prior of the multinomial.

The two count-based models do not implement
either of our two hypotheses. They compute sep-
arate selectional constraints for each context item,
and do not attend to co-occurrences between prop-
erties. In the experiments below, the count-based
models will be listed as Count Independent and
Count Multinomial.

3.2 The Bimodal Topic Model

We use an extension of LDA (Blei et al., 2003)
to implement our hypotheses on the usefulness
of overarching structure, both commonalities in
selectional constraints across predicates, and co-
occurrence of properties across concepts. In par-
ticular, we build on Andrews et al. (2009) in us-
ing a bimodal topic model, in which a single topic
simultaneously generates both a context item and
a property. We further build on Dinu and Lapata
(2010) in having a “pseudo-document” for each
concept c to represent its observed occurrences.
In our case, this pseudo-document contains pairs
of a context item w ∈ V and a property q ∈ Q,
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Figure 1: Plate diagram for the Bimodal Topic
Model (bi-TM)

meaning that w has been observed to occur with
an instance of c that had q.

The generative story is as follows. For each
known concept c, draw a multinomial θc over top-
ics. For each topic z, draw a multinomial φz over
context items w ∈ V , and a multinomial ψz over
properties q ∈ Q. To generate an entry for c’s
pseudo-document, draw a topic z ∼ Mult(θc).
Then, from z, simultaneously draw a context item
from φz and a property from ψz . Figure 1 shows
the plate diagram for this model.

To infer properties for an unknown concept u,
we create a pseudo-document for u containing just
the observed context items, no properties, as those
are not observed. From this pseudo-document du
we infer the topic distribution θu. Then the proba-
bility of a property q given du is

P (q|du) =
∑
z

P (z|θu)P (q|ψz) (2)

For the one-shot condition, where we only observe
a single context item w with u, this simplifies to

P (q|w) =
∑
z

P (z|w)P (q|ψz) (3)

We refer to this model as bi-TM below. The
topics of this model implement our hypothesis
H1 by grouping context items that tend to occur
with the same concepts and the same properties.
The topics also implement our hypothesis H2 by
grouping properties that tend to occur with the
same concepts and the same context items. By
using multinomials ψz it makes the simplifying
assumption that all properties compete, like the
Count Multinomial model above.

3.3 Bernoulli Mixtures
With the Count models, we investigate word learn-
ing without any overarching structures. With the
bi-TMs, we investigate word learning with both
types of overarching structures at once. In order
to evaluate each of the two hypotheses separately,
we use clustering with Bernoulli Mixture models
of either the context items or the properties.

A Bernoulli Mixture model (Juan and Vidal,
2004) assumes that a population ofm-dimensional
binary vectors x has been generated by a set of
mixture components K, each of which is a vector
of m Bernoulli probabilities:

p(x) =
|K|∑
k=1

p(k)p(x|k) (4)

A Bernoulli Mixture can represent co-occurrence
patterns between the m random variables it mod-
els without assuming competition between them.

To test the effect of modeling cross-predicate
selectional constraints, we estimate a Bernoulli
Mixture model from n instances w for each w ∈
V , sampled from wInd (which is learned as in
the Count Independent model). Given a Bernoulli
Mixture model of |K| components, we then assign
each context item w to its closest mixture compo-
nent as follows. Say the instances of w used to es-
timate the Bernoulli Mixture were {w1, . . . ,wn},
then we assign w to the component

kw = argmaxk

n∑
j=1

p(k|wj) (5)

We then re-train the representations of context
items in the Count Multinomial condition, treating
each occurrence of c with context w as an occur-
rence of c with kw. This yields a Count Multino-
mial model called Count BernMix H1.

To test the effect of modeling property
co-occurrences, we estimate a |K|-component
Bernoulli Mixture model from n instances of each
known concept c ∈ C, sampled from cInd. We
then represent each concept c by a vector cMult, a
multinomial with |K| parameters, as follows. Say
the instances of c used to estimate the Bernoulli
Mixture were {c1, . . . , cn}, then the k-th entry in
cMult is the average probability, over all ci, of be-
ing generated by component k:

ck =
1
n

n∑
j=1

p(k|cj) (6)
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This can be used as a Count Multinomial model
where the entries in cMult stand for Bernoulli Mix-
ture components rather than individual properties.
We refer to it as Count BernMix H2.2

Finally, we extend the bi-TM with the H2
Bernoulli Mixture in the same way as a Count
Multinomial model, and list this extension as bi-
TM BernMix H2. While the bi-TM already im-
plements both H1 and H2, its assumption of com-
petition between all properties is simplistic, and
bi-TM BernMix H2 tests whether lifting this as-
sumption will yield a better model. We do not
extend the bi-TM with the H1 Bernoulli Mixture,
as the assumption of competition between context
items that the bi-TM makes is appropriate.

4 Data and Experimental Setup

Definitional properties. As we use probabilis-
tic models, we need probabilities of properties
applying to concept instances. So the QMR
dataset (Herbelot and Vecchi, 2015b) is ideally
suited. QMR has 532 concrete noun concepts,
each associated with a set of quantified proper-
ties. The quantifiers have been given probabilistic
interpretations, mapping all→1, most→0.95,
some→0.35, few→0.05, none→0.3 Each con-
cept/property pair was judged by 3 raters. We
choose the majority rating when it exists, and
otherwise the minimum proposed rating. To ad-
dress sparseness, especially for the one-shot learn-
ing setting, we omit properties that are named
for fewer than 5 concepts. This leaves us with
503 concepts and 220 properties We intentionally
choose this small dataset: One of our main objec-
tives is to explore the possibility of learning effec-
tively from very limited training data. In addition,
while the feature norm dataset is small, our distri-
butional dataset (the BNC, see below) is not. The
latter essentially serves as a pivot for us to propa-
gate the knowledge from the feature norm data to
the wider semantic space.

It is a problem of both the original McRae et al.
(2005) data and QMR that if a property is not
named by participants, it is not listed, even if it ap-
plies. For example, the property four-legged

2We use the H2 Bernoulli Mixture as a soft clustering be-
cause it is straightforward to do this through concept repre-
sentations. For the H1 mixture, we did not see an obvious
soft clustering, so we use it as a hard clustering.

3The dataset also contains KIND properties that do not
have probabilistic interpretations. Following Herbelot and
Vecchi (2015a) we omit these properties.

is missing for alligator in QMR. So we addition-
ally use the Animal dataset of Herbelot (2013),
where every property has a rating for every con-
cept. The dataset comprises 72 animal concepts
with quantification information for 54 properties.

Distributional data. We use the British Na-
tional Corpus (BNC) (The BNC Consortium,
2007), with dependency parses from Spacy. 4 As
context items, we use pairs 〈pred, dep〉 of pred-
icates pred that are content words (nouns, verbs,
adjectives, adverbs) but not stopwords, where a
concept from the respective dataset (QMR, Ani-
mal) is a dependency child of pred via dep. In to-
tal we obtain a vocabulary of 500 QMR concepts
and 72 Animal concepts that appear in the BNC,
and 29,124 context items. We refer to this syn-
tactic context as Syn. For comparison, we also
use a baseline model with a bag-of-words (BOW)
context window of 2 or 5 words, with stopwords
removed.

Models. We test our probabilistic models as
defined in the previous section. While our focus
is on one-shot learning, we also evaluate a multi-
shot setting where we learn from the whole BNC,
as a sanity check on our models. (We do not test
our models in an incremental learning setting that
adds one occurrence at a time. While this is pos-
sible in principle, the computational cost is pro-
hibitive for the bi-TM.) We compare to the Partial
Least Squares (PLS) model of Herbelot and Vec-
chi (2015a)5 to see whether our models perform
at state of the art levels. We also compare to a
baseline that always predicts the probability of a
property to be its relative frequency in the set C of
known concepts (Baseline).

We can directly use the property probabilities in
QMR and the Animal data as concept representa-
tions cInd for the Count Independent model. For
the Count Multinomial model, we never explicitly
compute cMult. To sample from it, we first sample
an instance c ∈ {0, 1}|Q| from the independent
Bernoulli vector of c, cInd. From the properties
that apply to c, we sample one (with equal prob-
abilities) as the observed property. All priors for
the count-based models (Beta priors or Dirichlet
priors, respectively) are set to 1.

For the bi-TM, a pseudo-document for a known

4https://spacy.io
5Herbelot and Vecchi (2015a) is the only directly relevant

previous work on the subject. Further, to the best of our
knowledge, for one-shot property learning from text (only),
our work has been the first attempt.
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Models QMR Animal
BOW5 Syn Syn

Baseline 0.12 0.16 0.63
PLS 0.24 0.35 0.71
Count Mult. 0.13 0.25 0.64

Ind. 0.11 0.23 0.64
BernMix H1 0.11 0.17 0.65
BernMix H2 0.10 0.18 0.63

bi-TM plain 0.23 0.36 0.80
BernMix H2 0.20 0.34 0.81

Table 1: MAP scores, multi-shot learning on the
QMR and Animal datasets

concept c is generated as follows: Given an occur-
rence of known concept c with context item w in
the BNC, we sample a property q from c (in the
same way as for the Count Multinomial model),
and add 〈w, q〉 to the pseudo-document for c. For
training the bi-TM, we use collapsed Gibbs sam-
pling (Steyvers and Griffiths, 2007) with 500 it-
erations for burn-in. The Dirichlet priors are uni-
formly set to 0.1 following Roller and Schulte im
Walde (2013). We use 50 topics throughout.

For all our models, we report the average per-
formance from 5 runs. For the PLS benchmark,
we use 50 components with otherwise default set-
tings, following Herbelot and Vecchi (2015a).

Evaluation. We test all models using 5-fold
cross validation and report average performance
across the 5 folds. We evaluate performance using
Mean Average Precision (MAP) , which tests to
what extent a model ranks definitional properties
in the same order as the gold data. Assume a sys-
tem that predicts a ranking of n datapoints, where
1 is the highest-ranked, and assume that each dat-
apoint i has a gold rating of I(i) ∈ {0, 1}. This
system obtains an Average Precision (AP) of

AP =
1∑n

i=1 I(i)

n∑
i=1

Preci · I(i)

where Preci is precision at a cutoff of i. Mean
Average Precision is the mean over multiple AP
values. In our case, n = |Q|, and we compare a
model-predicted ranking of property probabilities
with a binary gold rating of whether the property
applies to any instances of the given concept. For
the one-shot evaluation, we make a separate pre-
diction for each occurrence of an unknown con-
cept u in the BNC, and report MAP by averaging
over the AP values for all occurrences of u.

5 Results and Discussion

Multi-shot learning. While our focus in this pa-
per is on one-shot learning, we first test all mod-
els in a multi-shot setting. The aim is to see how
well they perform when given ample amounts of
training data, and to be able to compare their per-
formance to an existing multi-shot model (as we
will not have any related work to compare to for
the one-shot setting.) The results are shown in
Table 1, where Syn shows results that use syntac-
tic context (encoding selectional constraints) and
BOW5 is a bag-of-words context with a window
size of 5. We only compare our models to the
baseline and benchmark for now, and do an in-
depth comparison of our models when we get to
the one-shot task, which is our main focus.

Across all models, the syntactic context outper-
forms the bag-of-words context. We also tested
a bag-of-words context with window size 2 and
found it to have a performance halfway between
Syn and BOW5 throughout. This confirms our as-
sumption that it is reasonable to focus on syntactic
context, and for the rest of this paper, we test mod-
els with syntactic context only.

Focusing on Syn conditions now, we see that
almost all models outperform the property fre-
quency baseline, though the MAP scores for the
baseline do not fall far behind those of the weak-
est count-based models.6 The best of our models
perform on par with the PLS benchmark of Her-
belot and Vecchi (2015a) on QMR, and on the
Animal dataset they outperform the benchmark.
Comparing the two datasets, we see that all mod-
els show better performance on the cleaner (and
smaller) Animal dataset than on QMR. This is
probably because QMR suffers from many false
negatives (properties that apply but were not men-
tioned), while Animal does not. The Count In-
dependent model shows similar performance here
and throughout all later experiments to the Count
Multinomial (even though it matches the construc-
tion of the QMR and Animal datasets better), so to
avoid clutter we do not report on it further below.

One-shot learning. Table 2 shows the perfor-

6This is because MAP gives equal credit for all prop-
erties correctly predicted as non-zero. When we evaluate
with Generalized Average Precision (GAP) (Kishida, 2005),
which takes gold weights into account, the baseline model
is roughly 10 points below other models. This indicates our
models learn approximate property distributions. We omit
GAP scores because they correlate strongly with MAP for
non-baseline models.
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Models oracle AvgCos
all top20 top20

Q
M

R
Count Mult. 0.16 0.37 0.28

BernMix H1 0.14 0.33 0.21
BernMix H2 0.15 0.31 0.22

bi-TM plain 0.21 0.47 0.35
BernMix H2 0.18 0.45 0.34

A
ni

m
al

Count Mult. 0.58 0.77 0.61
BernMix H1 0.60 0.80 0.57
BernMix H2 0.59 0.81 0.59

bi-TM plain 0.64 0.88 0.63
BernMix H2 0.65 0.89 0.66

Table 2: MAP scores, one-shot learning on the
QMR and Animal datasets

mance of our models on the one-shot learning task.
We cannot evaluate the benchmark PLS as it is not
suitable for one-shot learning. The baseline is the
same as in Table 1. The numbers shown are Av-
erage Precision (AP) values for learning from a
single occurrence. Column all averages over all
occurrences of a target in the BNC (using only
context items that appeared at least 5 times in the
BNC), and column oracle top-20 averages over the
20 context items that have the highest AP for the
given target. As can be seen, AP varies widely
across sentences: When we average over all oc-
currences of a target in the BNC, performance is
close to baseline level.7 But the most informa-
tive instances yield excellent information about an
unknown concept, and lead to MAP values that
are much higher than those achieved in multi-shot
learning (Table 1). We explore this more below.

Comparing our models, we see that the bi-TM
does much better throughout than any of the count-
based models. Since the bi-TM model imple-
ments both cross-predicate selectional constraints
(H1) and property co-occurrence (H2), we find
both of our hypotheses confirmed by these re-
sults. The Bernoulli mixtures improved perfor-
mance on the Animal dataset, with no clear pattern
of which one improved performance more. On
QMR, adding a Bernoulli mixture model harms
performance across both the count-based and bi-
TM models. We suspect that this is because of
the false negative entries in QMR; an inspection
of Bernoulli mixture H2 components supports this
intuition, as the QMR ones were found to be of
poorer quality than those for the Animal data.

Comparing Tables 1 and 2 we see that they show
7Context items with few occurrences in the corpus per-

form considerably worse than baseline, as their property dis-
tributions are dominated by the small number of concepts
with which they appear.

Count
Mult.

clothing, made of metal, differ-
ent colours, an animal, is long

bi-TM clothing, made of material, has -
sleeves, different colours,
worn by women

bi-TM
one-shot

clothing, is long, made of -
material, different colours,
has sleeves

Table 3: QMR: top 5 properties of gown. Top 2
entries: multi-shot. Last entry: one-shot, context
undo-dobj

Top undo-dobj (0.70), nylon-nmod (0.66),
pink-amod (0.65), retie-dobj (0.64), silk-
amod (0.64)

Bottom sport-nsubj (0.01), contemplate-dobj
(0.01), comic-amod (0.01), wait-nsubj
(0.01), fibrous-amod (0.01)

Table 4: QMR one-shot: AP for top and bottom 5
context items of gown

the same patterns of performance: Models that do
better on the multi-shot task also do better on the
one-shot task. This is encouraging in that it sug-
gests that it should be possible to build incremen-
tal models that do well both in a low-data and an
abundant-data setting.

Table 3 looks in more detail at what it is that the
models are learning by showing the five highest-
probability properties they are predicting for the
concept gown. The top two entries are multi-
shot models, the third shows the one-shot re-
sult from the context item with the highest AP.
The bi-TM results are very good in both the
multi-shot and the one-shot setting, giving high
probability to some quite specific properties like
has sleeves. The count-based model shows
a clear frequency bias in erroneously giving high
probabilities to the two overall most frequent
properties, made of metal and an animal.
This is due to the additive nature of the Count
model: In updating unknown concepts from con-
text items, frequent properties are more likely
to be sampled, and their effect accumulates as
the model does not take into account interactions
among context items. The bi-TM, which models
these interactions, is much more robust to the ef-
fect of property frequency.

Informativity. In Table 2 we saw that one-shot
performance averaged over all context items in the
whole corpus was quite bad, but that good, infor-
mative context items can yield high-quality prop-
erty information. Table 4 illustrates this point fur-
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Model Freq. Entropy AvgCos

Q
M

R
Count Mult. 0.09 -0.12 0.18
Count BernMix H1 0.07 -0.10 0.17
Count BernMix H2 0.10 -0.09 0.17
bi-TM plain 0.15 -0.09 0.41·
bi-TM BernMix H2 0.16 -0.10 0.39·

A
ni

. bi-TM plain 0.25 -0.40 0.49*
bi-TM BernMix H2 0.23· -0.37· 0.52*

Table 5: Correlation of informativity with AP,
Spearman’s ρ. * and · indicate significance at
p < 0.05 and p < 0.1

ther. For the concept gown, it shows the five con-
text items that yielded the highest AP values, at
the top undo-obj, with an AP as high as 0.7.

This raises the question of whether we can pre-
dict the informativity of a context item.8 We test
three measures of informativity. The first is simply
the frequency of the context item, with the ratio-
nale that more frequent context items should have
more stable representations. Our second measure
is based on entropy. For each context item w,
we compute a distribution over properties as in
the count-independent model, and measure the en-
tropy of this distribution. If the distribution has
few properties account for a majority of the prob-
ability mass, then w will have a low entropy, and
would be expected to be more informative. Our
third measure is based on the same intuition, that
items with more “concentrated” selectional con-
straints should be more informative. If a context
item w has been observed to occur with known
concepts c1, . . . , cn, then this measure is the av-
erage cosine (AvgCos) of the property distribu-
tions (viewed as vectors) of any pair of ci, cj ∈
{c1, . . . , cn}.

We evaluate the three informativity measures
using Spearman’s rho to determine the correlation
of the informativity of a context item with the AP
it produces for each unknown concept. We expect
frequency and AvgCos to be positively correlated
with AP, and entropy to be negatively correlated
with AP. The result is shown in Table 5. Again, all
measures work better on the Animal data than on
QMR, where they at best approach significance.
The correlation is much better on the bi-TM mod-
els than on the count-based models, which is prob-
ably due to their higher-quality predictions. Over-
all, AvgCos emerges as the most robust indicator

8Lazaridou et al. (2016), who use a bag-of-words context
in one-shot experiments, propose an informativity measure
based on the number of contexst that constitute properties.
we cannot do that with our syntactic context.

Type MAP
Function 0.45
Taxonomic 0.62
Visual 0.34
Encyclopaedic 0.35
Perc 0.40

Table 6: QMR, bi-TM, one-shot: MAP by prop-
erty type over (oracle) top 20 context items

for informativity.9 We now test AvgCos, as our
best informativity measure, on its ability to se-
lect good context items. The last column of Ta-
ble 2 shows MAP results for the top 20 context
items based on their AvgCos values. The results
are much below the oracle MAP (unsurprisingly,
given the correlations in Table 5), but for QMR
they are at the level of the multi-shot results of Ta-
ble 1, showing that it is possible to some extent
to automatically choose informative examples for
one-shot learning.

Properties by type. McRae et al. (2005) clas-
sify properties based on the brain region taxon-
omy of Cree and McRae (2003). This enables us
to test what types of properties are learned most
easily in our fast-mapping setup by computing av-
erage AP separately by property type. To com-
bat sparseness, we group property types into five
groups, function (the function or use of an entity),
taxonomic, visual, encyclopaedic, and other per-
ceptual (e.g., sound). Intuitively, we would expect
our contexts to best reflect taxonomic and function
properties: Predicates that apply to noun target
concepts often express functions of those targets,
and manually specified selectional constraints are
often characterized in terms of taxonomic classes.
Table 6 confirms this intuition. Taxonomic prop-
erties achieve the highest MAP by a large margin,
followed by functional properties. Visual proper-
ties score the lowest.

6 Conclusion

We have developed several models for one-shot
learning word meanings from single textual con-
texts. Our models were designed learn word prop-
erties using distributional contexts (H1) or about
co-occurrences of properties (H2). We find evi-
dence that both kinds of general knowledge are

9We also tested a binned variant of the frequency measure,
on the intuition that medium-frequency context items should
be more informative than either highly frequent or rare ones.
However, this measure did not show better performance than
the non-binned frequency measure.
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helpful, especially when combined (in the bi-TM),
or when used on clean property data (in the Ani-
mal dataset). We further saw that some contexts
are highly informative, and preliminary expire-
ments in informativity measures found that aver-
age pairwise similarity of seen role fillers (Avg-
Cos) achieves some success in predicting which
contexts are most useful.

In the future, we hope to test with other
types of general knowledge, including a taxon-
omy of known concepts (Xu and Tenenbaum,
2007); wider-coverage property data (Baroni and
Lenci, 2010, Type-DM); and alternative modal-
ities (Lazaridou et al., 2016, image features as
“properties”). We expect our model will scale to
these larger problems easily.

We would also like to explore better informa-
tivity measures and improvements for AvgCos.
Knowledge about informative examples can be
useful in human-in-the-loop settings, for exam-
ple a user aiming to illustrate classes in an on-
tology with a few typical corpus examples. We
also note that the bi-TM cannot be used in for
truly incremental learning, as the cost of global
re-computation after each seen example is pro-
hibitive. We would like to explore probabilistic
models that support incremental word learning,
which would be interesting to integrate with an
overall probabilistic model of semantics (Good-
man and Lassiter, 2014).
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flexible, corpus-driven model of regular and inverse
selectional preferences. Computational Linguistics,
36(4).
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Abstract

A distributed representation has become
a popular approach to capturing a word
meaning. Besides its success and practical
value, however, questions arise about the
relationships between a true word meaning
and its distributed representation. In this
paper, we examine such a relationship via
polymodal embedding approach inspired
by the theory that humans tend to use di-
verse sources in developing a word mean-
ing. The result suggests that the existing
embeddings lack in capturing certain as-
pects of word meanings which can be sig-
nificantly improved by the polymodal ap-
proach. Also, we show distinct character-
istics of different types of words (e.g. con-
creteness) via computational studies. Fi-
nally, we show our proposed embedding
method outperforms the baselines in the
word similarity measure tasks and the hy-
pernym prediction tasks.

1 Introduction

Word representations based on the distributional
hypothesis of Harris (1954) have become a domi-
nant approach including word2vec (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014), which
show remarkable performances in a wide spec-
trum of natural language processing. However,
a question arises about a relationship between a
true word meaning and its distributed representa-
tion. While the context-driven word representa-
tions seem to be able to capture word-to-word re-
lations, for example, men is to women as king is
to queen, it still remains unclear what aspects of

∗Currently at Search Solutions Inc., Seongnam, 13561,
Korea

word meaning they capture and miss. For exam-
ple, a word, coffee, can be understood from mul-
tiple perspectives. It may be associated with a ce-
ramic cup filled with dark brown liquid from the
perceptual perspective or an emotion such as hap-
piness or tranquility. It may provoke other related
concepts like bagel or awakening. We raise the
question of how well the current distributed repre-
sentation captures such aspects of word meanings.

In order to help answering this question, we pro-
pose a polymodal word representation based on
the theory that humans tend to use diverse sources
in developing a word meaning. In particular, we
construct six modules for polymodality including
linear context, syntactic context, visual percep-
tion, cognition, emotion, and sentiments based on
the human cognitive model proposed by Maruish
and Moses (2013). They are combined to build a
single word representation.

We conduct a series of experiments to examine
the relationships between word meanings and their
distributed representations and compare the re-
sults with other representations such as word2vec,
GloVe, and meta-embedding (Yin and Schütze,
2015). We attempt to understand how well the
model capture the diverse aspects of word mean-
ings via two experiments: the property norms
analysis and the sentiment polarity analysis. The
result suggests that the existing embedding meth-
ods lack in capturing visual properties and senti-
ment polarities and show that they can be much
improved by adopting polymodal approaches.

Finally, we examine distinct characteristics of
different types of words via computational studies,
focusing along the dimension of concept concrete-
ness and similarity. We find that the importance of
a certain module (e.g. visual perception or lexical
relations) varies depending on the word properties.
Our study provides some computational evidence
for the heterogeneous nature of word meanings,
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which has been extensively studied in the field of
psycholinguistics. We briefly introduce it in the
following subsection.

2 Related Work

2.1 Theoretical works

Word meanings are thought to have diverse as-
pects. Steels (2008) address that languages are
inherently built upon our cognitive system to ful-
fill the purpose of communication between mu-
tually unobservable internal representations. So
many psycholinguistic theories have attempted
to understand the diverse nature of word mean-
ings by human minds. Barsalou (1999) claims
that many human modalities such as concep-
tual/perceptual systems cooperate with each other
in a complex way and influence word meanings,
while Pulvermüller (1999) argues that concepts
are grounded in complex simulations of physical
and introspective events, activating the frontal re-
gion of the brain that coordinates the multimodal
information. Studies on semantic priming (Plaut
and Booth, 2000) also supports them that words
can be similar to each other in various ways to
foster the priming effect. The experiments in this
paper are designed to provide some computational
evidence on such studies on the multifaceted na-
ture of word meanings.

2.2 Multimodal approaches

From a computational point of view, there exist
a number of bimodal approaches that extend the
semantic representation to include perceptual in-
formation or understandings of the world around
us. Bruni et al. (2014) and Kiros et al. (2014a)
propose a way to augment text-based word em-
beddings using public image datasets while Roller
and Im Walde (2013) integrate visual features into
LDA models. A recent study on Image caption
generation (Xu et al., 2015) suggests an inter-
esting way to align word embeddings and im-
age features. Moreover, Kiros et al. (2014b)
jointly trains the image abstraction network and
sentence abstraction network altogether, making
the visual features naturally combined into word
embeddings. Similar attempts have been made
not only for visual perception but also auditory
(Kiela and Clark, 2015) and olfactory (Kiela et al.,
2015) perception. On the other hand, Henriksson
(2015) demonstrates that semantic space ensemble
models created by exploiting various corpora are

able to outperform any single constituent model.
Yin and Schütze (2015) propose meta-Embedding
that ensembles multiple semantic spaces trained
by different methods with different tasks such as
word2vec, GloVe, HLBL (Luong et al., 2013)
and C&W (Collobert and Weston, 2008). Above
works succeed to improve word embedding qual-
ity by extending the semantic representation, but it
still remains unclear how those improvements are
related to the word meanings.

3 Polymodal word embedding

To embrace the multifaceted nature of word mean-
ings, we propose a polymodal word embedding.
More specifically, we take into account percep-
tion, sentiment, emotion, and cognition (lexical re-
lation) derived from diverse sources, in addition to
linear context and syntactic context obtained from
the corpus. Note that the term polymodal is used
to distinguish it from bimodal (Kiela, 2017). In
bimodal approach, a single cognitive modality is
used whereas more than one modalities are used
in polymodal.

3.1 Modules

We describe each of the modules in detail.
Linear context refers to linear embed-

dings (Mikolov et al., 2013) comprising 300-
dimensional vectors trained over 100 billion
words from the Google News dataset using
skip-gram and negative sampling.

Syntactic context takes a similar skip-gram ap-
proach as in linear context but defines the context
window differently using a dependency parsing
result (Levy and Goldberg, 2014). While the lin-
ear skip-gram defines the contexts of a target word
w as w−k, w−k+1, ..., wk−1, wk where k is a size
of the window, syntactic context defines them as
(m1, lbl1), (m2, lbl2), ..., (mk, lblk), (m−1, lbl−1)
where m is the modifiers of word w and lbl is the
type of dependency relation.

Both linear and syntactic contexts are similar
in the sense that they capture word characteris-
tics from the corpus. However, the different def-
initions of the contexts make the model focus on
the different aspects of word meanings. Levy and
Goldberg (2014) report that linear context tends to
capture topical similarity whereas syntactic con-
text captures functional similarity. For example,
the word Florida is close to Miami in linear con-
text but close to California in syntactic context.
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We harness both types of contexts to take into ac-
count functional and syntactic similarities.

Cognition (Lexical relation) encompasses all
the relations between words, which are captured
in the form of a lexicon or ontology in a cog-
nitive system. In this paper, we mainly focus
on synonym, hypernym and hyponym relations
in WordNet (Miller, 1995) which contains 149k
words and 935k relations between them. We
train lexical-relation-specific word embedding us-
ing retro-fitting (Faruqui et al., 2015).

Specifically, let V = {w1, ..., wn} be a vocab-
ulary and Ω be an ontology that encodes semantic
relations between words in V . Ω can be repre-
sented as a set of edges of undirected graph where
(wi, wj) ∈ Ω ifwi andwj holds semantic relation-
ship of interest. The matrix Q̂ is the collection of
the vector representation of q̂i ∈ Rd for each word
wi ∈ V where d is the length of pre-trained word
vectors. In this experiment, we use GloVe as such
vectors. The objective of learning is to train the
matrix Q = (q1, ..., qn) so as to make qi close to
its counterpart q̂i and also to its adjacent vertices
in Ω. Thus the objective function to be minimized
can be written as

Ψ(Q) =
n∑
i=1

[
αi||qi−q̂i||2+

∑
(i,j)∈Ω

βij ||qi−qj ||2
]

where αi and βij are hyperparameters. This pro-
cedure of training transforms the manifold of se-
mantic space to make words in relations located
more closer in Euclidean distance.

Perception is a vital component for human cog-
nition and has a significant influence on word
meanings. In this paper, we only consider visual
perception. We jointly train the embeddings of im-
ages and sentences together into the multi-modal
vector space to build vision-specific word embed-
dings (Kiros et al., 2014b).

In particular, let T be the training dataset where
one image Ii is associated with a correspond-
ing caption sentence Si, i.e., (Ii, Si) ∈ T . An
embedding of image Ii, xi ∈ Rd, can be ob-
tained through convolutional neural networks, in
this case, 19-layer OxfordNet (Simonyan and Zis-
serman, 2014), where d is the size of the dimen-
sion of multimodal space. Similarly, an embed-
ding of sentence Si, xs ∈ Rd, can be composed
through one of the sentence modeling networks,
in this case, LSTM (Hochreiter and Schmidhuber,
1997). These two image and sentence modeling

networks are jointly trained together to minimize
the pairwise ranking loss function

L =
∑
xi

∑
xŝ

max(0, α− xi · xs + xi · xŝ) +

∑
xs

∑
xî

max(0, α− xs · xi + xs · xî)

to place correct samples closer while separating
negative samples farther in the joint space. α is a
hyperparameter and xŝ and xî are incorrect image
and sentence pair obtained through negative sam-
pling. We use MS COCO dataset (Lin et al., 2014)
to train the network which contains 300k images
and 5 captions per image. Final perception em-
beddings of dimension 1024 are sampled from the
joint space regarding one word as a sentence.

Sentiment, either positive or negative, is de-
termined for words that have sentiment orienta-
tions depending on their inherent meanings, us-
ages, backgrounds etc. To capture the sentiment
polarity of words (positive and negative), we use
SentiWordNet3.0 (Baccianella et al., 2010), a lex-
ical resource that automatically annotates the de-
gree of positivity, negativity, and neutrality of En-
glish words. It is a one-dimensional value and
if a word has multiple senses, we take the dif-
ference between the maximum positivity and the
minimum negativity.

Emotion are considered by using NRC Emo-
tion Lexicon (Mohammad and Turney, 2013) to
reflect the emotional characteristics of words. It
contains 15k words that are annotated with 10
emotion categories: anger, anticipation, disgust,
fear, joy, sadness, surprise, trust, negative and pos-
itive. We built 10-dimensional one-hot emotion
vectors based on this dataset.

Note that some embedding sets may not cover
every word in our set of test vocabulary. In that
case, out-of-vocabulary (OOV) words are initial-
ized to zero for the missing modules. All embed-
dings are L2-normalized.

3.2 Ensemble methods
While the most rudimentary way for the amalga-
mation of several vectors is a concatenation with
weights, other ensemble methods are expected to
produce the vectors with improved quality (Hen-
riksson, 2015). Faruqui and Dyer (2015) suggest
that singular value decomposition (SVD) can be
a promising way to merge the information by ap-
proximating the original matrix. Motivated by

216



their work, we examine two matrix factorization
techniques, SVD and non-negative matrix factor-
ization (NMF). In addition, we explore an unsu-
pervised ensemble method via autoencoder (AE)
networks. The details of these methods are illus-
trated below. Hyperparameters such as dimension
d are selected to obtain the highest Spearmans cor-
relation score in the RG-65 dataset (Rubenstein
and Goodenough, 1965), which is used as a de-
velopment set to minimize the interference on the
test set. Note that before applying SVD, NMF, and
AE, embeddings from different modules are con-
catenated with weights.

Concatenation (CONC) is used as the first step
for ensembling multiple vectors of different di-
mensions. That is, let S be a set of n seman-
tic spaces and si be a single vector space in S.
eid ∈ si is a representation of word wd in the se-
mantic space si ∈ S. Then the resulting concate-
nated embedding ed of word wd is

ed = α1ed1 ⊕ ...⊕ αiedi ⊕ ...⊕ αnedn

where ⊕ is the concatenation operator and∑
i αi = 1. RG-65 is used as a development set to

tune the weights αi of particular embedding edi.
Singular Value Decomposition (SVD) is a

generalization of eigenvalue decomposition to any
m × n matrix where it is reported to be effective
in signal processing (Sahidullah and Kinnunen,
2016). Let V be the set ofmwords and k is the di-
mension of word embedding ei for word wi ∈ V .
The dictionary matrix M is a m× k matrix where
each row vector mi of M is an embedding vector
of ei of word wi. Then this matrix M is decom-
posed intoM = UΣV T whereU and V arem×m
and n × n real unitary matrices respectively, and
Σ is a m× n non-negative real rectangular diago-
nal matrix. uid is the first d dimension of i-th row
vector ui of U and we use it as a representation of
word wi. d is 230 for SVD. The size of vocabulary
m is 20150.

Non-negative matrix factorization (NMF)
has been reported to be effective method in various
research areas including bioinformatics (Taslaman
and Nilsson, 2012), signal denoising (Schmidt
et al., 2007), and topic modeling (Arora et al.,
2013). Two non-negative matrix W and H are
optimized to approximate the dictionary matrix
MT ≈ WH by minimizing the frobenius norm
||MT −WH||F where W,H ≥ 0. NMF has an
inherent property of clustering the column vectors

of the target matrix. To make MT non-negative,
we normalize the values of each embedding into
the [0,1]. Let sid be the first d dimension of i-th
column vector si of W . Then we use sid as a rep-
resentation of word wi. d is 200 for NMF.

Autoencoder (AE) is a neural network used for
unsupervised learning of efficient coding for data
compression or dimensionality reduction (Hinton
and Sejnowski, 1986). Previous work suggests
that an autoencoder may be able to learn relation-
ships between the modules and result in higher-
level embeddings (Silberer and Lapata, 2014).
Our autoencoder consists of simple feedforward
network. We trained two matrices Wenc of size
k × d and Wdec of size d × k to learn efficient
coding of word representation where k is the di-
mension of original word embedding and d is the
dimension of compressed representation. Param-
eters are optimized to minimize cosine proximity
loss:

L =
∑
x∈T

1− x̃ · x
||x̃|| · ||x||

where x is a k-dimensional word embedding, T
is a training data set of size 20150 words, x̃ =
f(Wdecf(Wencx+ benc) + bdec) and f is a ReLU
non-linear activation function. We set d = 900.

4 Experiments

We introduce the experiments taken to examine
how well the representations embed word mean-
ings incorporating distinct properties. First, we
apply our proposed embedding method to a word
similarity measure task and a hypernym prediction
task to measure its overall quality. Then we con-
ducted a series of experiments for analyzing the
characteristics of word meanings.

4.1 Word Similarity Measure and Hypernym
Prediction

To assess the overall quality of proposed embed-
ding method, we examined its performance via the
word similarity task on SimLex-999 (Hill et al.,
2016), WordSim-353 (Agirre et al., 2009), and
MEN (Bruni et al., 2014) datasets. The similar-
ity of each word pair is computed through cosine
proximity, and we use Spearman’s rank correla-
tion as an evaluation metric. We also measure
the performance of the different ensemble meth-
ods described in subsection 3.2. The result is com-
pared with three baselines: Word2Vec, GloVe, and
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Meta-embedding(1toN) (Yin and Schütze, 2015).
The result is shown on table 1.

Baseline SL WS MEN
Word2Vec .442 .698 .782

GLoVe .453 .754 .816
MetaEmb .464 .745 .816

Polymodal (CONC) .533 .622 .778
Polymodal (SVD) .580 .775 .838
Polymodal (AE) .507 .599 .751

Polymodal (NMF) .414 .509 .589
Avg. Human .780 .791 .840

Table 1: Spearman’s correlation score on
SimLex-999 (SL), WordSim-353 (WS), and MEN
datasets. “Avg. Human” score is an inter-
agreement between human annotators.

Our proposed method clearly outperforms the
baselines in all the datasets, with near-human
performance in WordSim-353 and MEN. Among
the ensemble methods, SVD gave the best result
showing its strong capability of combining infor-
mation from different modules for this task.

We also conducted a hypernym prediction ex-
periment using HyperLex dataset (Vulić et al.,
2016) to analyze the quality of proposed embed-
ding from a different perspective. Given a pair of
two words, the task is to predict the degree of the
first word being a type of the second word, for
example “To what degree is chemistry a type of
science?”. We build a 2-layer feedforward net-
work of dimensions 1000 and 500 respectively
with a ReLU activation function to predict the hy-
pernyms. Then the network is trained to predict
the degree of hypernymity of the scale from 0.0
to 10.0 to minimize categorial cross-entropy loss
using AdaGrad optimizer on the training set. The
final evaluation metrics are obtained by calculat-
ing Spearman’s correlation between the predicted
degrees and the test set.

As in Table 2, the proposed method shows the
highest correlation to the test set among all the
cases including the baselines. Among the ensem-
ble method, SVD again shows the highest perfor-
mance. For the hypernym prediction, NMF gives
a slightly better result than the simple weighted
concatenation.

4.2 Property Norms Analysis

While the corpus-driven word representations
such as Word2vec and GLoVe have been shown to

Test correlation (ρ)
Word2Vec .319

GloVe .391
MetaEmb .400

Polymodal (CONC) .445
Polymodal (SVD) .463
Polymodal (NMF) .454
Polymodal (AE) .434

Table 2: Spearman’s correlation score of Hyper-
Lex test dataset and predictions. The proposed
method shows the highest correlation with the test
dataset.

embed some word-to-word relations such as men
is to women as king is to queen, but it is still un-
certain that they are also able to capture the prop-
erties like has four legs or is delicious. To
see how well the models capture such properties
of words, we perform the property norms analy-
sis. We utilize the CSLB concept property norms
dataset (Devereux et al., 2014) which annotates
the normalized feature labels to the set of con-
cepts. This dataset provides the normalized fea-
tures of five categories: visual perceptual, other
perceptual, taxonomic, encyclopedic, and func-
tional. C is the set of all concepts and F is the set
of all normalized features in CSLB dataset where
|C| = 638 and |F | = 5929. For f ∈ F and c ∈ C,
c ∈ Cf if and only if c has the feature f where
Cf ⊂ C. The valid feature set Fv is a subset of F
such that f ∈ Fv only if there exist more than three
concepts that have f , or equivalently, |Cf | > 3.
Then the |Fv| = 1053.

To examine how well each representation cap-
tures the normalized feature fi ∈ Fv, we calculate
the cosine similarity betweenR(c) for c ∈ Cfi

and
R(Cfi

) where R(·) is a mapping from concept to
its distributed representation and Cfi

is a centroid
of all concepts in Cfi

or

Cfi
=

1
|Cfi
|
∑
c∈Cfi

R(c)

In other words, Cfi
is a centroid of concepts that

share the feature fi. We define the feature density
as the cosine similarity between the concept and
the centroid. That is,

feature density(c, f) = R(c) · Cf
We calculate the feature density of all target
concept-feature pairs assuming vectors that share
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Figure 1: The feature density of different types of embedding on CSLB Concept Property Norms dataset.

Word2Vec GloVe MetaEmb Proposed
All features .308 .262 .283 .343

Visual Perceptual .204 .162 .188 .241
Other Perceptual .122 .143 .148 .148

Taxonomic .271 .236 .244 .263
Encyclopedic .138 .129 .145 .136

Functional .314 .288 .280 .310

Table 3: Spearman’s correlation between the CSLB normalized feature representation and the target
distributed representation.

the same features will also be distributionally sim-
ilar (Erk, 2016).

In Figure 1 that summarizes the result, the pro-
posed embedding method shows higher averages
and lower deviations of feature densities across all
the categories. It shows that our proposed embed-
ding method is more capable of capturing normal-
ized features than the baselines.

To further cement the observations, we cal-
culate Spearman’s correlation of word similarity
measures between the normalized feature repre-
sentation and the target distributed representation.
The normalized feature representation of a con-
cept is constructed as an one-hot vector which as-
signs 1 if the concept has the feature and 0 oth-
erwise, and then L2-normalized to have length 1.
Then we calculate the correlations of similarity
measures by the feature categories. The results
are shown in Table 3. While the proposed embed-
ding method shows the highest correlation to the
case of using all normalized features, it also shows
a noticeable improvement in the visual perceptual
category.

4.3 Positive vs Negative

One of the critical weakness of context-based
word representation is that it cannot differ-
entiate the sentiment polarity correctly. So
we examine the ratio of neighbors that have
same/opposite/neutral sentiment polarities with a

Figure 2: The ratio of 10 nearest neighbors that
have same/opposite/neutral sentiment polarities of
15010 words.

target word among 15010 words and see how this
problem can be mitigated. Figure 2 illustrates the
result. The three context-based approaches show
roughly 20% of incorrect sentiment differentia-
tion. This can be benefited greatly from the sen-
timent module of the proposed approach as this is-
sue is almost perfectly resolved by simply attach-
ing sentiment values to the embedding. The result
might be straightforward but this can improve the
quality of embedding greatly.

4.4 Concrete vs Abstract

We hypothesize that the role of a certain module
would be different depending on word characteris-
tics such as the degree of concreteness. To validate
this idea, we divided the Simlex-999 dataset into
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two groups for different degrees of concept con-
creteness. This corresponds to 500 pairs of con-
crete words vs. 499 pairs of abstract words. Then
we examine the relative importance of the differ-
ent modules to each group via an ablation test. The
result is reported in Table 4.

Modules All Concrete Abstract
L (linear) .442 .462 .449

T (syntactic) .446 .439 .459
C (cognition) .464 .451 .456
P (perception) .157 .355 .010
S (sentiment) .221 -.100 .293
E (emotion) .376 .350 .385
All-but-L .527O .464O .538O
All-but-T .524O .478O .501O
All-but-C .514O .466O .492O
All-but-P .531O .476O .570N
All-but-S .503O .491N .484O
All-but-E .526O .488N .540O

All .533 .483 .545

Table 4: Ablation tests for different word groups
in Simlex-999. The metric is Spearman’s cor-
relation. Embeddings here are ensembled via
weighted concatenation.

Interesting properties are revealed through the
ablation test. By comparing the results between
the different word groups, we can observe that the
importance of a certain word aspect varies depend-
ing on the word characteristics. While concrete
words profit from perception embeddings, the sen-
timent and emotion aspects are somewhat disturb-
ing. We can observe an opposite result for abstract
words. This result is quite intuitive since we can
easily imagine the perceptual image from a con-
crete concept but not from an abstract one like
love.

For a deeper analysis, we further investigate the
role of each module in different word groups. For
instance, since concrete concepts are perception-
revealing, they would benefit from a strong em-
phasis on the perception embedding. On the other
hand, emotion-revealing word groups such as ab-
stract concepts would be opposite. Noting that the
different types of words may have different sen-
sitivity toward the modules, we adjusted the rel-
ative weights for a particular aspect of interest to
be from 0.1 to 3.5 while maintaining others to 1.0.
Then we observed the changes of the performance
in word similarity task. The result is shown in Fig-

ure 3.

Figure 3: The result of sensitivity analysis. The
weight of aspect-of-interest is adjusted while oth-
ers are fixed to 1. These graphs reveal the distinct
profiles of different word groups. Gradual pat-
terns of emotion and perception are opposite for
the concrete and abstract word groups.

The result of sensitivity analysis supports the
idea that different word groups are influenced by
each module with varying degrees. The x-axis
refers to the relative weight of a particular as-
pect while setting the others to 1.0. The y-axis
indicates the changes of Spearman’s correlation
score ρ on Simlex-999. The results in Figure 3
illustrate the different preferences among different
word groups, which show the distinct nature be-
tween the two groups. In particular, the gradual
patterns revealed by increasing relative weights of
perception and emotion are contrary to concrete
and abstract words. Increasing the weight of per-
ception is beneficial for concrete word groups but
detrimental to abstract word groups. However an
exactly reverse pattern can be observed for the
emotion. Increasing the weight of emotion is ad-
vantageous for abstract words but adverse for con-
crete words.

4.5 Similarity vs Relatedness

The “similarity” between two words is more strict
term than the “relatedness”. While the relatedness
measures how much the two words are related to
each other in some senses, the similarity measures
how much the two words can be regarded as “sim-
ilar” than just simply related. For example, con-
sider the three word pairs: (bread, butter), (bread,
toast), and (bread, stale). All of them can be re-
garded as “related” but only the (bread, toast) pairs
can be regarded as “similar” because the other two
words (butter and stale) are related but not similar
to the “bread”.

The two data sets SimLex-999 and WordSim-
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353 capture this difference of similarity and relat-
edness. While the scores of WordSim-353 focus
on the relatedness, those of the Simlex-999 de-
liberately try to distinguish between them. For
example, a word pair (cloth, closet) is scored
8.00 in WordSim-353 dataset whereas 1.96 in the
SimLex-999 dataset. To capture the difference
between relatedness and similarity and see what
modules contributes most to capture the similarity
or the relatedness, we conduct a sensitivity analy-
sis on WordSim-353 and SimLex-999 dataset.

Figure 4: The result of sensitivity analysis on
word similarity and word relatedness. While con-
text information is important to the relatedness,
sentiment polarity and lexical relations are impor-
tant to the similarity.

Figure 4 shows the result of sensitivity anal-
ysis. In the SimLex-999 dataset which focuses
on the word similarity, the cognition (lexical re-
lation) and the sentiment modules turned out to be
important. On the other hand, in the WordSim-
353 dataset which focuses on the word related-
ness, both linear context and syntactic context are
turned out to be critical. This difference can be in-
terpreted that the word properties extracted from
the contexts are of the word relatedness, and in or-
der to differentiate the similarity from the related-
ness, additional properties such as lexical relations
and sentiment polarities need to be introduced.

5 Conclusion

In this paper, we raise a question if the current dis-
tributed word representations sufficiently capture
different aspects of word meanings. To address the
question, we proposed a novel method for com-
posing word embeddings, inspired by a human
cognitive model. We compared our proposed em-
bedding to the current state-of-the-art distributed
word embedding methods such as Word2Vec,
GloVe, and Meta-embedding from the perspective

of capturing diverse aspects of word meanings.
Our proposed embedding performs better in the

word similarity and hypernym prediction tasks
than the baselines. We further conducted a series
of experiments to study how well the word mean-
ings are reflected by the representations and ana-
lyze the relationships between the modules and the
word properties. From the property norms analy-
sis, our findings show that the proposed method
can capture the visual properties of words better
than the baselines. Also, harnessing sentiment val-
ues helps the embedding greatly to resolve the sen-
timent polarity issue which is a limitation of cur-
rent context-driven approaches. Based on the ex-
perimental results, we can conclude that some as-
pects of word meanings are not captured enough
from the corpus and we can further improve the
word embedding by referring to additional data re-
lated to a human mind model.

Finally, using our proposed method we show
the different characteristics of concrete and ab-
stract word groups and the difference between
the concept relatedness and the concept similar-
ity. We observe that emotional information is
more important than the perceptual information
for the abstract words whereas the opposite result
is observed for the concrete words. Also, we see
that the context-driven embeddings mostly capture
the word relatedness and therefore lexical relation
and sentiment polarities would be beneficial when
considering the word similarity.

In conclusion, we concentrate on analyzing the
relationships between the diverse aspects of word
meanings and their distributed representations and
propose a way to improve them by harnessing ad-
ditional information based on the human cognitive
model. Since our proposed method largely relies
on the labeled extra data, this work has a limita-
tion in terms of the scalability. For future research,
we need to explore unsupervised ways of introduc-
ing perceptual properties and lexical relationships
of words and annotating their sentiment and emo-
tional properties. It will make our method more
scalable.
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Abstract

Word embeddings are commonly com-
pared either with human-annotated word
similarities or through improvements in
natural language processing tasks. We
propose a novel principle which compares
the information from word embeddings
with reality. We implement this princi-
ple by comparing the information in the
word embeddings with geographical po-
sitions of cities. Our evaluation linearly
transforms the semantic space to optimally
fit the real positions of cities and mea-
sures the deviation between the position
given by word embeddings and the real
position. A set of well-known word em-
beddings with state-of-the-art results were
evaluated. We also introduce a visualiza-
tion that helps with error analysis.

1 Introduction

In recent years the improvements in quality of
word embeddings led to significant improvements
in many natural language processing (NLP) tasks,
e.g. sentiment analysis (Maas et al., 2011), named
entity recognition (Lample et al., 2016), or ma-
chine translation (Zou et al., 2013). New mod-
els for word embeddings and improvements to
the old ones are introduced rapidly (Bojanowski
et al., 2017; Salle et al., 2016; Yin and Schütze,
2016). As the number of various word embed-
dings increases, it becomes very time consuming
to choose word embeddings for a particular task
(Nayak et al., 2016).

To mitigate the problem, it is necessary to pro-
vide appropriate evaluation together with the word
embeddings. The evaluation should cover multi-
ple properties of word embeddings in order to al-
low the user to choose the model directly based on

the results (Nayak et al., 2016). Many evaluation
approaches have already been proposed and they
can be roughly divided to intrinsic and extrinsic
(Schnabel et al., 2015).

The intrinsic evaluation measures the quality of
the model directly by comparison with human-
annotated data that capture semantic information.
The advantage of this approach is that it is fast,
simple, and easy to reproduce and analyze (Schn-
abel et al., 2015; Nayak et al., 2016). The main
issue is that the evaluation score often does not
correlate with improvements in NLP tasks (Chiu
et al., 2016).

The extrinsic evaluation is indirect and mea-
sures the improvements through other tasks – cur-
rently mainly through NLP tasks. The advantage
of this approach is that for each task we know
which model to choose. The disadvantage is the
computational complexity (Nayak et al., 2016).
For each new word embeddings we need to train
models for several approaches to several tasks
and find the optimal hyperparameters of the mod-
els. Moreover, the same data and implementations
should be used by all researchers for the evalua-
tion.

We propose a new evaluation paradigm that is
in between the intrinsic and extrinsic evaluation
(actually, half the people believe its intrinsic and
the other half believe its extrinsic). We measure
neither the semantic word similarity as in intrinsic
evaluation nor improvements in a particular task
that uses word embeddings. We compare the in-
formation encoded in word embeddings directly
with real-world data. We implement the paradigm
with geographical data. We take GPS coordinates
of cities and measure to what degree is the infor-
mation encoded in the word embeddings.

The paper is organized as follows. In Sec-
tion 2 we describe commonly used evaluation ap-
proaches for word embeddings and discuss their
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strengths and weaknesses. Our evaluation metric
is introduced in Section 3. In Section 4 we pro-
vide various experiments with our evaluation met-
ric, including evaluation of state-of-the-art word
embeddings. Finally, we conclude in Section 5.

2 Related Work

There are two common tasks which fall under in-
trinsic evaluation: word similarity and word anal-
ogy tasks.

In the word similarity task, the evaluation data
consist of pairs of words and their similarity anno-
tated by humans. The word embeddings are com-
pared with the evaluation data usually by Spear-
man rank correlation. The word similarity task has
a long tradition in the semantics research (Ruben-
stein and Goodenough, 1965). Currently there are
multiple corpora created to test different properties
of the word embeddings (Finkelstein et al., 2001;
Agirre et al., 2009; Luong et al., 2013; Hill et al.,
2015).

The word analogy task evaluates the ability of
the word embeddings to capture relations between
words consistently. The evaluation data consists
of questions (with answers) in the form: if word
a is related to word b the same way as word c is
related to word d, what word is d given a, b, and
c? The word embeddings are compared based on
their accuracy. The Google Word Analogy cor-
pus is usually used for evaluation (Mikolov et al.,
2013a). The word analogy task is closest to our
evaluation because some of the questions are also
based on real-world data, e.g. countries and their
capital cities. Unlike our evaluation, they handle
city names as common words, use the global se-
mantic space, and compare them using cosine sim-
ilarity.

The extrinsic evaluation uses other NLP tasks
for comparison of word embeddings. Many tasks
are used for extrinsic evaluation, e.g. senti-
ment analysis (Schnabel et al., 2015), named en-
tity recognition (Konkol et al., 2015), or parsing
(Bansal et al., 2014). Word embeddings are com-
pared based on the improvements measured with
standard evaluation metrics for the given task.

Both intrinsic and extrinsic evaluations have
their advantages and disadvantages. The word
similarity task was analysed and criticized by mul-
tiple authors (Faruqui et al., 2016; Chiu et al.,
2016; Batchkarov et al., 2016; Gladkova and
Drozd, 2016). The advantages of word similar-

ity evaluation are that it is very fast and can be
easily interpreted from the linguistic point of view
(or generally by human). The corpora often suf-
fer from a subset of the following disadvantages:
low correlation with extrinsic evaluation (appli-
cations), polysemy is not supported, subjectivity
of single value similarity, overfitting (no training,
heldout, test sets), significance tests are not com-
mon for word similarity, and the data are often
small.

The word analogy task has the same disadvan-
tages as the word similarity task; moreover the
evaluation is quite slow, because it is necessary
to sort all words based on their similarity with the
question. Linzen (2016) provides a detailed analy-
sis of the word analogy task and shows that results
in this evaluation are to a large extent based on
proximity in the semantic space rather than con-
sistent offsets between the word pairs.

The main advantage of the extrinsic evaluation
is that it directly measures application improve-
ments. The main disadvantage is computational
complexity. There exist many tasks that could be
used for evaluation, but it is intractable to use all
of them (Nayak et al., 2016). Moreover, there
exist many approaches to all the tasks and some
embeddings might be good for one approach and
bad for the others. Choosing a single approach
as a general benchmark could lead to incorrect
conclusions. If we still want to choose a single
model, then which one? On one hand, the state-
of-the-art approaches of the tasks evolve in time –
state-of-the-art method may well become a base-
line in a few years. On the other hand, using base-
line approaches loses the ability to measure ap-
plication improvements. Word embeddings may
have a high score with the baseline approach, but
may contain the same information that is already
present in the state-of-the-art approach. Other em-
beddings may have low score with the baseline ap-
proach, but the information may be usable in the
state-of-the-art approach.

Many disadvantages of intrinsic evaluation are
also related to particular tasks in extrinsic evalu-
ation, e.g. named entity recognition or sentiment
analysis usually do not use significance tests, are
subjective, or use small data sets.

Nayak et al. (2016) propose a system for stan-
dard automatic extrinsic evaluation. They selected
a representative subset of tasks for the evaluation
and chose a single approach for each task (based
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on standard neural network architectures) in order
to achieve reasonable evaluation times (4-5 hours).
Even though this approach has the disadvantages
presented in the previous two paragraphs, it is def-
initely a step forward to a standardized evaluation.

3 Proposed Evaluation

The evaluation data set consists of a list of n names
of cities and their GPS coordinates stored in ma-
trix G ∈ Rn×2. We assume that Earth is perfectly
spherical and its radius is 6,371. Given the as-
sumption, the GPS coordinates in matrix G can
be transformed to Euclidean coordinates in ma-
trix Y ∈ Rn×3 and back. The word embed-
dings of cities are in matrix X ∈ Rn×d with a
d-dimensional vector for each city name. We nor-
malize rows of X and Y, because it is helpful for
stability of the optimization and we need only the
cosine similarity between the rows.

The first step of our evaluation is to find a sub-
space of the original d-dimensional word embed-
dings space that contains the information about
city locations. The word embeddings transformed
to the subspace are represented by matrix W ∈
Rn×3. The matrices W and Y have to share
the same dimensions because we want to com-
pare the distances between their rows (cities). We
are looking for a linear transformation W = XT
parametrized by transformation matrix T ∈ Rd×3.
We use the least squares cost function, the op-
timal transformation matrix T∗ is defined as a
transformation matrix that minimizes squared dis-
tances between real and approximate city posi-
tions ‖W −Y‖2. This optimization problem is
highly prone to overfitting as n ≈ d; moreover
the row rank of X is likely lower than n, because
the embeddings for cities are highly correlated and
thus they are likely linearly dependent. Thus we
employ L2 regularization. The final optimization
problem is given by Equation (1), where α is the
regularization weight.

T∗ = arg min
T

(‖XT−Y‖2 + α ‖T‖2) (1)

Finally, we can compare W and Y. The pri-
mary metric for the evaluation is mean geographic
distance, i.e. the distance between two points on a
globe measured on the surface. We firstly need to
normalize rows of W because the vectors can be
above or below the surface. The geographic dis-
tance can be measured using Equation (2), where

g is the geographic distance, wi and yi denote the
i-th row of W and Y respectively, and r is the
radius of Earth.

g = r · arccos(wi · yi) (2)

While the mean geographic distance is a good
metric for a global view, it does not take the lo-
cal structure into account, i.e. a random model
moves the cities in all directions and breaks the lo-
cal structure (nearest neighbors), but other model
(with the same mean geographic distance) can
move the cities in one direction and preserve lo-
cal structure. We measure the ability of the em-
beddings to capture local structure by Precision at
K (Prec@K). This metric creates two sets of K
nearest neighbors for each city, one for the eval-
uation data Y and one for the transformed word
embeddings W. The precision between these two
sets is averaged over all cities.

We also provide more statistics that help with
understanding of the primary score. Median ge-
ographic distance gives a better idea about com-
mon distances, because it is not affected by ex-
treme values. Sometimes, we found it easier to
think about the errors in angles rather than dis-
tances, mainly because angles are independent of
the size of the globe.

4 Experiments

In this section we firstly describe the data used for
the proposed evaluation. Then we briefly intro-
duce the word embeddings used to demonstrate
the proposed evaluation. Finally, we follow with
experiments that show some properties of the eval-
uation.

4.1 Data

We downloaded the list of 640 known cities
from https://www.timeanddate.com/
worldclock/full.html and further ad-
justed it. We removed cities that consist of
multiple words from the list, because the eval-
uated models were trained only on single word
expressions. It has lead to a reduction of the set
to 540 cities. Then we created a dictionary of the
top 10,000 words from Wikipedia and filtered out
cities not present in the models, which resulted
into a set of 483 cities. Finally we removed cities
with ambiguous names and inconsistent use of
diacritics, leaving us with 440 cities.
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Model Data Dimension Mean distance Median distance Mean angle Prec@10 Prec@20
Random placement — — 10007 10007 90◦ 0.03 0.06
Random embeddings — 300 10040 10422 90.3◦ 0.031 0.065
GloVe 6B 50 3776 3086 34.0◦ 0.144 0.236
GloVe 6B 100 3177 2565 28.6◦ 0.150 0.258
GloVe 6B 200 2756 2158 24.8◦ 0.210 0.336
GloVe 6B 300 2604 2116 23.4◦ 0.218 0.339
GloVe 42B 300 2504 1948 22.5◦ 0.192 0.313
GloVe 840B 300 2044 1681 18.4◦ 0.260 0.408
LexVec – cc 58B 300 1992 1662 17.9◦ 0.267 0.414
LexVec – w + nc 7B 300 1908 1508 17.2◦ 0.304 0.439
MetaEmbeddings — 200 3322 2845 29.9◦ 0.129 0.237
SkipGram – BoW2 1-5B 300 2279 1762 20.5◦ 0.278 0.407
SkipGram – BoW5 1-5B 300 1985 1642 17.9◦ 0.273 0.422
SkipGram – Dep 1-5B 300 3240 2464 29.1◦ 0.176 0.265
FastText 1-5B 300 1686 1429 15.2◦ 0.338 0.482
WoRel 2.5B 300 1921 1487 17.3◦ 0.284 0.446
LSA 1-5B 300 1437 1159 12.9◦ 0.423 0.563
PPMI-SVD 2.5B 300 1869 1487 16.8◦ 0.331 0.466

Table 1: Results of the selected set of word embeddings.

The data needed to be split into the training and
test set. The training set is used to find optimal
transformation matrix T∗ and optimal regulariza-
tion weight α. The test set is used for the evalua-
tion.

We manually selected the train set from the
cities to evenly cover geographical area by the
cities with the highest Wikipedia term frequency.
The final train set contains 124 cities and the final
test set contains 316 cities.

4.2 Word Embeddings

We chose a set of well-known word embeddings
to show their differences using the proposed eval-
uation. In the following paragraphs we briefly in-
troduce the chosen word embeddings.

SkipGram is a neural network based model
(Mikolov et al., 2013b). Levy and Goldberg
(2014) provide trained SkipGram models with two
sizes of the context window (2, 5) and their own
model that uses dependency-based context, de-
noted by SkipGram - BoW2, SkipGram - BoW5,
and SkipGram - Dep, respectively.

GloVe is a log-bilinear model that tries to find
word embeddings that are good at predicting
global word co-occurence statistics (Pennington
et al., 2014). We use embeddings provided by au-
thors of the model trained on various corpus sizes
(6, 42, and 840 billions words) and with various
vector dimensions (50, 100, 200, 300).

FastText is an extension to SkipGram, where
the word is represented as character n-grams
(Bojanowski et al., 2017). We use embeddings
provided by authors of the model trained on
Wikipedia.

LexVec is based on factorization of posi-
tive point-wise mutual information matrix using
proven strategies from GloVe, SkipGram, and
methods based on singular value decomposition
(Salle et al., 2016). We use two models provided
by the authors of the model trained on Wikipedia
and News Crawl (LexVec - w + nc), and Common
Crawl (LexVec - cc).

MetaEmbeddings is an ensemble method that
combines several embeddings (Yin and Schütze,
2016). We use the embeddings provided by the
authors of the model.

WoRel is an extension of SkipGram, where a
phrase (instead of a word) is used to guess the
context words (Konkol, 2017). We use the model
provided by the authors trained on Wikipedia and
Gigaword corpus.

LSA is a count based method that creates a
word-document co-occurrence matrix and reduces
its dimension by singular value decomposition
(SVD) (Landauer et al., 1998). We trained the
models on Wikipedia.

PPMI-SVD creates word co-occurrence matrix
where the co-ocurence is measured by positive
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pointwise mutual information. The dimension
of the matrix is then reduced by SVD. We used
the hyperwords package (Levy et al., 2015) and
trained it on Wikipedia and Gigaword corpus.

4.3 Evaluation

In our first experiment we evaluate the selected set
of embeddings with the proposed evaluation met-
ric. The results are shown in Table 1.

We provide results for two baselines. The first
baseline (random placement) places cities ran-
domly on the globe. The results for this base-
line are computed analytically. The second base-
line generates random embeddings, each value is
selected randomly from uniform distribution be-
tween−1 and 1. The random embeddings are then
evaluated in the same way as normal embeddings.
The results show average results for five random
embeddings. The comparison of the baselines
show that the evaluation works as expected: ran-
dom embeddings produce randomly placed cities.

The results show that all the evaluated word
embeddings are significantly better than the base-
lines. This proves that the embeddings do not cap-
ture only the similarity between words but also
nontrivial knowledge about the world.

Most geographic information was clearly cap-
tured by LSA, followed by FastText. A group
of models, namely WoRel, SkipGram – BoW5,
PPMI-SVD, and LexVec, achieved similar results
and are only slightly worse than FastText. Surpris-
ingly, GloVe (trained with similar amount of data)
performed significantly worse. MetaEmbeddings
achieved the worst results, probably because the
ensemble was optimized for other purposes.

There is a high correlation between the per-
formance in the mean geographic distance and
Prec@10 measures. Models that are good at cap-
turing global structure tend to be good at capturing
local structure.

The type of the training data is probably more
important than the size of the data. This can
be seen on the LexVec models, where the model
trained on Wikipedia and news articles outper-
forms the other model trained on significantly
more data. Still, an extreme amount of data leads
to good results as seen on the results of GloVe
trained on various corpus sizes.

Recently, most of the NLP tasks use word em-
beddings based on local (window-based) context.
Surprisingly, our evaluation shows that LSA, a
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Figure 1: Distribution of distance errors.

method based on global (document-wide) con-
text, outperforms all the other models in the pro-
posed evaluation. The comparison of count based
(PPMI-SVD) and predictive models (e.g. Skip-
Gram, FastText) shows no significant differences
between these two approaches.

Our evaluation shows that the mainstream mod-
els such as SkipGram and GloVe that perform sim-
ilarly in intrinsic word similarity and extrinsic task
based evaluations may have very different results
in other types of evaluation.

4.4 Error Analysis

Figure 1 shows the distribution of geographic dis-
tance errors for individual cities. The distance er-
ror is reasonable (≤ 2500 km) for approximately
90% of the cities for most of the word embed-
dings. Unfortunately, the rest of the cities has sig-
nificantly larger error. In this section, we try to
identify the source of the extreme errors.

Firstly, we suspected that the reason is sparse-
ness and the extreme errors are caused by under-
represented words. In Figure 2 we show a re-
lation between the number of occurrences of the
city name in Wikipedia (training data for most of
the methods) and the mean distance error. The
word occurrences are equidistantly grouped into
ten bins. We concluded that there is no clear rela-
tion between the number of occurrences of a city
name and the distance error.

We also suspected ambiguity with common
words. To check this hypothesis, we counted how
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Figure 2: Relation between the number of occur-
rences of the city name and the distance error for
LSA.

many times the city name appears as lowercase
and how many times with a capital letter. We
found out that most of the words does not appear at
all in lowercase version. A small portion of words
has significant number of occurrences of the low-
ercase version (e.g. Phoenix), but they do not cor-
relate with the distance error.

Lastly, we manually checked all the cities with
extreme distance errors. We found out that the
main problem is ambiguity with other named en-
tities that are more famous than the city, e.g. the
city Kobe is overshadowed by Kobe Bryant, Bis-
marck by Otto von Bismarck, Montgomery by the
common first name. A special case of this problem
is multiple cities with the same name. This is not
a problem if there is large difference between the
fame of the cities (e.g. London), but it is a prob-
lem for cities that are similar in size and fame (e.g.
Midland, Kingstown, Bridgetown).

4.5 Embeddings Dimension

The dimension of the word embeddings obviously
affects their results (Table 1). In this experiment
we explore the effect of higher dimensions on the
results. This should provide a hint to the authors of
the semantic spaces how to choose the appropriate
dimension.

In Figure 3, we show the results of LSA with
dimension ranging from 100 to 1000. The perfor-
mance degrades quickly as we decrease the dimen-
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Figure 3: The relation between dimension of the
vector space and the mean distance error for LSA.

sion under 300. The results slightly improve as we
increase the dimension from 300 to 600. There
are no significant improvements as the dimension
is increased over 600.

4.6 Regularization

The proposed evaluation uses regularization and
requires the regularization weight α. Setting opti-
mal regularization weight is difficult for some al-
gorithms. We conducted an experiment to prove
that the regularization weight does not play an im-
portant role in the evaluation, i.e. the scores of the
embeddings are not heavily affected by our inabil-
ity to find optimal regularization weights.

We performed randomized 10-fold cross-
validation to find optimal regularization weight
multiple times. The variance of the found regu-
larization weights and also the impact of this vari-
ance were very small for a particular word embed-
dings method. Moreover, the optimal regulariza-
tion weight is very similar for all the word em-
beddings. Figure 4 shows the mean geographic
distance as a function of the regularization weight
and suggests that the function can be easily opti-
mized.

4.7 Noise Sensitivity

Given a set of models, the evaluation metric
should be able to rank them reliably based on their
quality. Batchkarov et al. (2016) propose a test
of the reliability. They incrementally add noise to
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Figure 4: Influence of the regularization weight
α = eβ on the mean geographic distance. The
values are computed using 10 fold cross-validation
on the training data.

word embeddings and assume that word embed-
dings with more noise have lower quality. The
metric should be able to capture the differences
of the quality and smoothly and monotonically go
from good results to results of random embed-
dings.

In Figure 5 we show the behavior of the pro-
posed metric. We use the best embeddings (LSA)
as a starting point. Then we add noise uniformly
sampled from interval [0, p] to each value in the
embeddings. The parameter p is incrementally in-
creased with step 0.01 from 0 to 1. For each value
of p we repeat the evaluation 1000 times. The pro-
posed metric works as expected. Firstly, the mean
distance error almost linearly increases. As the
embeddings become more random the increases
slow down until they converge to the results of ran-
dom embeddings.

4.8 Visualization

As a side effect, our evaluation approach also pro-
duces a natural visualization presented in Figure 6.
The visualization can be used for comparison of
methods, error analysis, or demonstration of se-
mantics and unsupervised learning. The transfor-
mation also allows us to visualize common words
on the map, not only city names.
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Figure 5: The effect of noise added to LSA em-
beddings. The figure shows mean value and stan-
dard deviation of 1000 runs. The red line on the
top represents random city placement.

5 Conclusion

We have proposed a new evaluation method for
word embeddings. It measures how much infor-
mation about geographic location of cities is con-
tained in word embeddings. This type of eval-
uation differs from previously presented evalua-
tions and forms a new word embeddings evalua-
tion paradigm. The new paradigm does not evalu-
ate the embeddings from the natural language pro-
cessing view, but rather from the artificial intelli-
gence view, where the algorithm tries to capture
some information about the world.

We have analyzed both the evaluation metric
and commonly used embeddings. We have shown
that the metric is stable and can reliably distin-
guish between good and poor models.

LSA achieved the best results with mean geo-
graphic distance error of 1437 kilometers. Surpris-
ingly, it outperformed mainstream models such
as SkipGram. GloVe, with state-of-the-art results
from other evaluations, performed rather poorly in
the proposed evaluation.

In the future, we would like to implement the
proposed paradigm with other similar evaluations,
where we try to find out if the model is able to
capture a specific real-world information.

The dataset and the evaluation software can be
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Abstract

To enhance the expression ability of
distributional word representation learn-
ing model, many researchers tend to in-
duce word senses through clustering, and
learn multiple embedding vectors for each
word, namely multi-prototype word em-
bedding model. However, most related
work ignores the relatedness among word
senses which actually plays an impor-
tant role. In this paper, we propose a
novel approach to capture word sense re-
latedness in multi-prototype word embed-
ding model. Particularly, we differenti-
ate the original sense and extended senses
of a word by introducing their global oc-
currence information and model their re-
latedness through the local textual con-
text information. Based on the idea
of fuzzy clustering, we introduce a ran-
dom process to integrate these two types
of senses and design two non-parametric
methods for word sense induction. To
make our model more scalable and ef-
ficient, we use an online joint learning
framework extended from the Skip-gram
model. The experimental results demon-
strate that our model outperforms both
conventional single-prototype embedding
models and other multi-prototype embed-
ding models, and achieves more stable
performance when trained on smaller data.

1 Introduction

Word embedding, representing words in a low di-
mentional vector space, plays an increasing im-
portant role in various IR and NLP related tasks,
such as language modeling (Bengio et al., 2006;

∗Corresponding author.

Mnih and Hinton, 2009), named entity recog-
nition and disambiguation (Turian et al., 2010;
Collobert et al., 2011), and syntactic parsing
(Socher et al., 2011, 2013). This trend has
been accelerated by the CBOW and the Skip-
gram models of (Mikolov et al., 2013b,a) due to
its efficiency and remarkable semantic composi-
tionality of embedding vectors (e.g. vec(king)-
vec(queen)=vec(man)-vec(woman)). However,
the assumption that each word is represented by
only one single vector is problematic when deal-
ing with the polysemous words.

Figure 1: Relatedness among senses of the word
“book”.

To enhance the expression ability of the embed-
ding model, recent research has a rising enthusi-
asm for representing words at sense level. That
is, an individual word is represented as multiple
vectors, where each vector corresponds to one of
its meanings. Pervious work mostly focus on us-
ing clustering to induce word senses (each clus-
ter refers to one of the senses) and then learn the
word sense representations respectively (Reisinger
and Mooney, 2010; Huang et al., 2012; Tian et al.,
2014; Neelakantan et al., 2014; Li and Jurafsky,
2015). However, the above approaches ignore the
relatedness among the word senses. Hence the fol-
lowing limitations arise in the usage of hard clus-
tering. First of all, many clustering errors will
be caused by using hard clustering based method
because the senses of the polysemous word actu-
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ally have no distinct semantic boundary (Liu et al.,
2015). Secondly, due to dividing the occurrences
of a word into separate clusters, the embedding
model will suffer from more data sparsity issue as
compared to the Skip-gram model. Thirdly, the
embedding quality is considerably sensitive to the
clustering results due to the isolation of different
sense clusters.

To address this problem, we learn the embed-
ding vectors of the word senses with some com-
mon features if the senses are related. Instead
of clearly cutting the sense cluster boundaries,
one occurrence of the word will be assigned into
multiple sense clusters with different probabili-
ties, which agrees with a classic task of word
sense annotation, Graded Word Sense Assignment
(Erk and McCarthy, 2009; Jurgens and Klapaftis,
2013).

Actually, the senses of a polysemous word
are related not only by the contiguity of mean-
ing within a semantic field1, but also by the ex-
tended relationship between the original meaning
and the extended meaning (Von Engelhardt and
Zimmermann, 1988). We investigate the relat-
edness of the synsets (word senses) in WordNet
(Miller, 1995) through the Wu & Palmer mea-
sure2 (Wu and Palmer, 1994), and present an in-
teresting example of the word “book” in Figure
1. The right side is the similarity matrix of its 11
nominal synsets, where si denotes the ith synset.
Each tile represents a similarity value between
two synsets whose color deepens as the value in-
creases. The left side is their frequencies in Word-
Net. On one hand, we can see apparent correla-
tions among these senses in different levels. Note
that (s1, s2, s11) are strongly related, and so are
(s6, s7) and (s8, s9, s10). This is because of their
extended relationship. Take (s1, s2, s11) for ex-
ample, s1 refers to the sense of “the written work
printed on pages bound together”, s2 refers to
“physical objects consisting of a number of pages
bound together” and s3 refers to “a number of
sheets (or stamps, etc.) bound together”. Obvi-
ously, s1 is the original meaning, s2 and s11 are
the extended meanings. Moreover, the relatedness
suggests that the senses share some common tex-
tual features in the contexts. On the other hand,
the frequency of the original meaning s1 is much

1According to https://en.wikipedia.org/wiki/Polysemy.
2The Wu & Palmer measure is an edge based approach

that is tied to the structure of WordNet. Also, one can try
different relatedness approaches and will find similar results.

higher than that of the extended meanings s2 and
s11, which suggests that the word sense distribu-
tion in corpus should be taken into account when
modeling word sense relatedness.

In this paper, we propose a novel method,
namely FCSE (Fuzzy Clustering-based multi-
Sense Embedding model), that models the relat-
edness among word senses by using the fuzzy
clustering based method for word sense induc-
tion, and then learns sense embeddings via a vari-
ant of Skip-gram model. The basic idea behind
fuzzy clustering is that the senses may be related
and share common features through the overlaps
of the sense clusters. Based on our observations
of the original meaning and the extended mean-
ing, we further design two non-parametric meth-
ods, FCSE-1 and FCSE-2, to model the local
textual context information of senses as well as
their global occurrence distribution by incorporat-
ing the Generalized Polya Urn (GPU) model. For
efficiency and scalability, our proposed model also
adopts an online joint learning procedure.

Figure 2: Framework of FCSE

2 The Framework of FCSE

FCSE adopts an online procedure that induces
the word sense and learns the sense embed-
dings jointly. Given a word sequence D =
{w1, w2, . . . , wM}, we obtain the input of our
model, the word and its context words, by sliding
a window with the length of 2k + 1. The output
is also the context words. During the learning pro-
cess, two types of vectors are maintained for each
word, the global vector wi and its sense vectors3

3All the vectors are randomly initialized.

234



wsi
i . Note that the number of senses |Si| is vary-

ing because the cluster method is non-parametric.
As shown in Figure 2, there are mainly two

steps: the clustering step and the embedding learn-
ing step. The former step incrementally clus-
ters all the occurrences of one word according
to its context vectors by computing the average
sum of the global vectors of the context words:
wc

i = 1
2k

∑
−k≤j≤k wi+j. Each cluster refers to

one word sense, thus each occurrence will be an-
notated with at least one sense.

In the second step, we update the sense em-
beddings via a variant of the Skip-gram model
(Mikolov et al., 2013b). The main difference be-
tween our model and Skip-gram is that we aim to
predict the context words given the exact sense of
the target word instead of the word itself. More-
over, because several senses are assigned to the
current word with probabilities, we leverage all
the related senses to predict the context words.
The intuition is that the related senses tend to have
common context words as mentioned in Section
1. Thus, all the assigned sense vectors will be up-
dated with weights simultaneously as follows:

L(D) =
1
M

M∑
i=1

∑
−k≤j≤k

|Si|∑
si

λsi log p(wi+j |wsi
i )

(1)
where the probability of p(wi+j |wsi

i ) is defined
using softmax function, and si denotes the sense
index of word wi. Si is the set of existing senses,
λsi is the update weight of sense si. We set the
weights proportional to the probabilities of the
current word being annotated with sense si, which
is equivalent to the results of fuzzy clustering,
the likelihood of the context wci assigned into the
sense cluster si:

λsi ∝
{
p(si|wci ) si is sampled

0 otherwise
(2)

Finally, we use negative sampling technique 4 for
efficient learning.

3 Word Sense Induction

Section 2 describes the framework of our model
including how to obtain the input features of clus-
tering and to use the cluster results for the sense

4More detailed information can be found in (Mikolov
et al., 2013b).

embedding learning. In this section, we present
two fuzzy clustering based methods for clustering-
based word sense induction, FCSE-1 and FCSE-2.
Both of them are non-parametric and conduct on-
line procedures.

Based on our observations in Section 1, the oc-
currence of word senses is usually distinguishing
between the original meaning and the extended
meaning, while the original meaning and its ex-
tended meanings are semantically related with
some common textual contexts. Considering both
of the two aspects, in FCSE-1, we induce the word
sense according to the cluster probability propor-
tional to the distance of its centroid to the cur-
rent word’s contexts; and FCSE-2 utilizes a ran-
dom process, the Generalized Polya Urn (GPU)
model, to further incorporate the senses’ global
occurrence distribution.

3.1 FCSE-1

Adopting an online procedure, FCSE-1 clusters
the contexts of one word incrementally. When
first meet one word, we create a cluster with the
centroid of its context vector. Then, for each oc-
currence of the word, several existing clusters are
sampled following a probability distribution; or
a new cluster is created only if all the probabili-
ties of the context belonging to the clusters equal
to zero. Finally, all the sampled clusters will be
updated by adding the current context vector into
them.

Remember that each word wi is associated with
a global vector, varying number of clusters, and
the corresponding sense vectors. FCSE-1 mea-
sures the semantic distance of the context vector
to its cluster centers, and aims to sample the near-
est ones (maybe multiple related senses). Given
the context vector wci , the probability of the word
belonging to the existing lth sense is:

p(si = l|wci ) =
{

1
ZSim(µli, w

c
i )

0 if Sim(µli, w
c
i ) < εunder

(3)
where µli denotes the centroid of the lth sense

cluster, Z is the normalization term and Sim(·, ·)
can be any similarity measurement. In the experi-
ments we use cosine similarity as the semantic dis-
tance measurement. εunder is a pre-defined thresh-
old that indicates how easily we create a new sense
cluster. Similarly, we use another threshold εupper
for deciding the number of sampled clusters. Sup-
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pose that the probabilities {pni |ni ∈ Si} is ranked
in descending order, then we pick up the clus-
ters with top ni probabilities until pni − pni+1 >
εupper. Note that the hyper-parameters meet 0 ≤
εunder, εupper ≤ 1.

3.2 FCSE-2

Since FCSE-1 uses two hyper-parameters to re-
spectively control a new cluster initialization and
the number of clusters sampled, which is difficult
to set manually. So, instead of the fixed thresholds,
we make a further randomization by introducing a
random process, GPU, in FCSE-2. Besides, more
inherit properties of the word senses can be taken
into account, including not only the local informa-
tion of the semantic distance from the context to
the cluster centers, but also the frequency, which
is related to how likely the current sense is an orig-
inal meaning or an extended meanings.

In this section, we will firstly give a brief sum-
marization of the GPU model, and then introduce
how to incorporate it into our model.

3.2.1 Generalized Polya Urn model
Polya urn model is a type of random process that
draws balls from an urn and replaces it along with
extra balls. Suppose that there are some balls of
colors in the urn at the beginning. For each draw,
the ball of the ith color is selected followed by the
distribution:

p(color = i) =
mi

m

where m is the total number of balls, and mi is
the number of balls of the ith color. A standard
urn model returns the ball back along with an extra
ball of the same color, which can be seen as a rein-
forcement and sometimes expressed as the richer
gets richer. More detailed information can be
found in the survey paper (Pemantle et al., 2007).
Polya urn model can be used for non-parametric
clustering, where each data point refers to a ball
in the urn, and its cluster label is denoted by the
ball’s color.

Since the fixed replacement lacks of flexibility,
the GPU model conducts the reinforcement pro-
cess following another distribution over the colors.
That is, when a ball of color i is drawn, another
Aij balls of color j will be put back. Then, for
each draw, we replace the ball with different num-
ber of balls of various colors according to the dis-
tribution matrix A. As repeating this process, the

drawing probability will be altered if the number
of extra balls are nonzero.

3.2.2 Incorporating GPU into Embedding
model

The induction process of the word senses can be
regarded as a GPU model. The original meaning
is sampled firstly, and then the extended meanings
are sampled through the reinforcement. That is,
we sample an extended meaning according to a
conditional probability given the original mean-
ing. The basic idea is that knowing the original
meaning is necessary for understanding the tar-
get word annotated with an extended meaning in a
document. For example, the extended meaning of
the word “milk” when used in the terms “glacier
milk” won’t be well understood unless we know
the original meaning of “milk”.

Correspondingly, in the GPU model, a urn de-
notes a word, the ball and the color refers to the
occurrence and the sense, respectively. Note that
each ball has an index that distinguishes different
occurrences. Thus, the balls of the same color cor-
respond to a sense cluster.

We sample the related senses in two stages. In
the first stage, for the occurrence of the word wi,
we sample a sense sio = l considering the global
distribution of the word senses as well as the se-
mantic distance from the context features to the
cluster center. In the second stage, several senses
are sampled conditioned on the previous result:
p(sie = l′|sio = l).

In this way, we find the original meaning and
the extended meanings separately following dif-
ferent distributions. Considering the observation
that the original meaning occurs more frequently
(as described in Section 1), we define the probabil-
ity distribution of the original meaning as follows:

p(sio = l|wci ) ∝
{

mil
γ+mi

· Sim(µli, w
c
i ) l ∈ Si

γ
γ+mi

l is new

(4)
where mi is the total number of occurrences of

the target word wi, mil is the number of the lth
cluster and we have

∑Si
l mil = mi. Note that γ is

a hyper-parameter that indicates how likely a new
cluster will be created, and its impact decreases as
the size of training data mi increases.

The probability of sampling an extended mean-
ing is proportional to the semantic distance of the
corresponding cluster center to the context fea-
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tures as well as the cluster center sampled in the
first stage, which is defined as follows:

p(sie = l′|sio = l, wci ) ∝ εe·Sim(wsie
i ,

wsio
i + wci

2
)

(5)
where εe varies from 0 to 1 and controls the

strength of the reinforcement. We will talk about
it in the next subsection.

Sampling separately, the relatedness of the orig-
inal meaning and the extended meanings are mod-
eled and each occurrence of the word has been
annotated with one original sense and several ex-
tended senses (or there is no additional extended
meanings). Note that the likelihood of the oc-
currence of the word annotated with an extended
meaning is p(sie = l′|sio = l, wci )p(sio = l|wci ).
Clearly, the probabilities of sampling the extended
meanings are always lower than that of the origi-
nal meaning.

3.3 Relationship with State-of-the-art
Methods

FCSE-1 The hyper-parameters meet 0 ≤
εunder, εupper ≤ 1. εupper is used to control the
number of clusters assigned to the current word,
and FCSE-1 will degrade to hard assignment if
we set εupper = 0, which is similar with the NP-
MSSG model in (Neelakantan et al., 2014). We
can use εunder to control the sense number of each
word, and an extreme case of εunder = 0 denotes
that we create only a sense cluster for each word,
then the model is equivalent to the Skip-gram.

FCSE-2 The number of the extended meanings
|Sie| varies from 0 to |S−li |, where S−li denotes
the set excluding the original meaning sli. The
hyper-parameter 0 ≤ εe ≤ 1 is used to control
the strength of the GPU reinforcement as well as
the number of the extended meanings. Particu-
larly, if we set εe = 0, the second sample for
the extended meanings has been turned off, and
then FCSE-2 degrades to the SG+ model in (Li
and Jurafsky, 2015), which is another state-of-the-
art method for multi-prototype word embedding
model based on hard clustering. By setting γ = 0
in Equation 4, which is used to control the proba-
bility of creating a new sense, FCSE-2 won’t cre-
ate new senses. Learning a single sense for each
word makes the step of sense sampling becomes
meaningless. Thus, FCSE-2 uses the only em-
bedding of the current word to predict its context

words, which is equivalent to the Skip-gram.

4 Empirical Evaluation

In this section, we demonstrate the effectiveness
of our model from two aspects, qualitative and
quantitative analysis. For qualitative analysis, we
presents nearest 10 neighbors for each word sense
to give an intuitive impression. For quantitative
analysis, we conduct a series of experiments on
the NLP task of word similarity using two bench-
mark datasets, and explore the influence of the size
of training corpus.

4.1 Data Preparation

We train our model on Wikipedia, the April 2010
dump also used by (Huang et al., 2012; Liu et al.,
2015; Neelakantan et al., 2014). Before training,
we have conducted a series of preprocessing steps.
At first, the articles have been splitted into sen-
tences, following by stemming and lemmatization
using the python package of NLTK5. Then, we
rank the vocabulary according to their frequencies,
and only learn the embeddings of the top 200,000
words. The other words out of the vocabulary are
replaced by a pre-defined mark “UNK”. Note that
FCSE is slower than word2vec6, but the efficiency
is far away from being an obstacle on training.

Below we describe three baseline methods and
parameter settings, followed by qualitative anal-
ysis of nearest neighbors of each word sense.
Then, quantitative performance will be presented
via experiments on two benchmark word similar-
ity tasks.

4.2 Baseline Methods

Word Embedding model can be roughly divided
into two types: single vector embedding model
and multi-prototype embedding model. To vali-
date the performance, we compare our model with
three models of both the two types: Skip-gram,
NP-MSSG and SG+. The reason why we select
them as the baseline methods is because: (i) they
are the state-of-the-art methods of word embed-
ding model; (ii) NP-MSSG and SG+ adopts the
similar learning framework to our model.

• Skip-gram∗ aims to leverage the current
word to predict the context words and learn

5http://www.nltk.org/
6https://code.google.com/archive/p/

word2vec/.
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Apple
Skip-gram∗ iigs, boysenberry, apricot, nectarine, ibook, ipad, blackberry, blackcurrants,

loganberry, macintosh

NP-MSSG∗ nectarine, boysenberry, peach, blackcurrants, pear, passionfruit, feijoa, lo-
ganberry, elderflower, apricot
macintosh, mac, iigs, macworks, macwrite, bundled, compatible, laser-
writer, ibook, ipod

FCSE-1
nectarine, blackcurrants, loganberry, pear, boysenberry, strawberry, apricot,
plum, cherry, blueberry
macintosh, imac, iigs, ibook, ipod, pcpaint, iphone, booter, ipad, macbook

Berry
Skip-gram∗ greengage, thimbleberry, loganberry, dewberry, boysenberry, pome, pas-

sionfruit, acai, maybellene, blackcurrant
NP-MSSG∗ thimbleberry, pome, nectarine, greengage, fruit, boysenberry, dewberry,

acai, loganberry, ripe

FCSE-1
nectarine, thimbleberry, blueberry, fruit, pome, loganberry, apple, elder-
berry, passionfruit, litchi
gordy, taylor, lambert, osborne, satchell, earland, thornton, fullwood, allen,
sherrell

Table 1: Nearest 10 neighbors of each sense of the words “apple” and “berry”, computed by cosine
similarity, for different models.

the embeddings within a two-layer neural
network.

• NP-MSSG∗ measures the distance of the cur-
rent word to each sense, picks up the nearest
one and learning its embedding via a standard
Skip-gram model.

• SG+∗ improves the NP-MSSG model by in-
troducing a random process that induces the
word sense with probabilities.

The symbol ∗ denotes that we, instead of using
their released codes, carefully reimplement these
models for the sake of making the comparisons as
fairly as possible. Thus, all the models share the
same program switched by the correspondingly
parameters (as described in Section 3.3). Note that
there may be some minor differences such as op-
timizing tricks between our program and that of
their released.

4.3 Parameter Setting

As discussed in Section 3.3, our model can de-
grade to the baseline methods by switching dif-
ferent parameters: the threshold εupper, εe and the
max number of word sensesNMAX . All the meth-

ods are implemented on the same java program7,
and use, at the greatest extent, the same settings in-
cluding the training corpus, shared parameters and
the program code, etc.

Switching parameters For FCSE-1 and NP-
MSSG, εupper is set 0.05 and 0, respectively. Sim-
ilarly, We set εe = 1 for FCSE-2, and εe = 0 for
SG+. When setting NMAX = 1, all the multi-
prototype word embedding models degrade to sin-
gle vector embedding model, that is, the Skip-
gram model.

Shared parameters Following the original pa-
pers of NP-MSSG and SG+, the threshold εunder
in FCSE-1 is also set with -0.5, and γ = 0.01 is
used in both FCSE-2 and SG+. The initial learn-
ing rate α = 0.015 is used for parameter estima-
tion. We pick up 5 words as the context window,
and 400 dimensional vectors to learn sense embed-
dings of the top 200,000 frequent words. Note that
all the parameters including the embedding vec-
tors are initialized randomly.

7We will publish the code if accepted, which
is based on the published project of SG+ in
https://github.com/jiweil/mutli-sense-embedding.
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4.4 Qualitative Analysis

Before conducting the experiments on word simi-
larity task, we first give qualitative analysis of our
model as well as two baseline models8 by repre-
senting the word sense with its nearest neighbors,
which are computed through cosine similarity of
the embeddings between each of the word senses
and the senses of the other words.

Table 1 presents the nearest 10 neighbors of
each sense of two words ranked through the sim-
ilarity. Skip-gram shows a mixed result of differ-
ent senses, while the other two models produce a
reasonable number of word sense, and their neigh-
bors are indeed semantically correlated. For the
word “Apple”, there are two meanings of the fruit
and technology company. NP-MSSG and FCSE-
1 can differentiate the two senses, but FCSE-1
clearly achieves a more coherent ranking results.
For the word “Berry”, FCSE-1 outperforms NP-
MSSG for it successfully identifies another sense
of person’s name except the dominant sense of
fruit. This is because “Berry” is used as a person’s
name much less frequently than a fruit. Thus, it
may cause the data sparsity issue, while our model
is capable of addressing this problem by improv-
ing the usage of training corpus, which will be fur-
ther discussed in Section 4.5.3.

4.5 Word Similarity

In this subsection, we evaluate our embeddings
on two classic tasks of measuring word similarity:
word similarity and contextual word similarity. To
better test the ability of our model to address the
problem of data sparsity, we train it using only
30% of the training corpus (sampled randomly).
Also, we give comparisons with the performance
using all the training data.

WordSim353 (Finkelstein et al., 2001) is a
benchmark dataset for word similarity. It contains
353 word pairs and their similarity scores assessed
by 16 subjects. SCWS, released by (Huang et al.,
2012), is a benchmark dataset for contextual word
similarity, which computes the semantic related-
ness between two words conditioned on the spe-
cific context. It consists 2,003 pairs of words and
their sentential contexts. WordSim353 focuses on
the ambiguity among similar words, and SCWS is
for the ambiguity of word senses in different con-

8To be fair, we only show the comparisons among FCSE-
1, NP-MSSG and Skip-gram, since the paper of SG+ (Li and
Jurafsky, 2015) didn’t give the qualitative results.

texts.

4.5.1 Evaluation Metrics
To evaluate the performance of our model, we
compute the similarity between each word pair
through some measurement, and then use the
spearman correlation between our results and the
human judgments to evaluate the performance of
the model.

Working on WordSim353, we compute the
average similarity between the word pairs the
same as(Reisinger and Mooney, 2010; Neelakan-
tan et al., 2014). And working on SCWS, we
use two similarity measurements, avgSimC and
maxSimC, proposed by (Neelakantan et al., 2014;
Liu et al., 2015). avgSimC focuses on evaluating
the average similarity between all the senses of the
two words, and maxSimC evaluates the similarity
between the senses with max probability for the
current word.

4.5.2 Results and Analysis
Table 2 and 3 shows the overall performance of
our proposed model as well as the baseline meth-
ods on WordSim353 and SCWS datasets. We
only obtain lower performance numbers for SG+,
which suggests that they may be more susceptible
to noise and worse generalization ability. How-
ever, this is a fair comparison because all the meth-
ods share the same parameter settings and the
code. The following is indicated in the results:

Model ρ× 100
NP-MSSG∗ 67.3
SG+∗ 66.9
Skip-gram∗ 66.7
FCSE-1 68.8
FCSE-2 69.5

Table 2: Results on the wordsim353 dataset. The
table presents spearman correlation ρ between
each model’s similarity rank results and the human
judgement.

• Both of FCSE-1 and FCSE-2 outperform all
of the baseline methods, because it models
the relatedness among word senses through
the common features, which inherits the ad-
vantages of multi-prototype model and en-
sures adequate training data as compared to
single vector model.

239



Model avg max

NP-MSSG∗ 64.0 65.2
SG+∗ 64.4 65.6
Skip-gram∗ 64.1 65.5
FCSE-1 67.1 67.1
FCSE-2 66.3 67.5

Table 3: Results on the SCWS dataset. “avg” and
“max” respectively denotes the similarity mea-
surements of avgSimC and maxSimC.

• The skip-gram model achieves rather com-
parative performance due to its good general-
ization ability, especially in a smaller training
set as compared to hard-cluster based multi-
prototype word embedding models.

• FCSE-2 achieves the best performance due
to the separately sample for the original
meaning and the extended meanings, which
follows different distributions incorporating
both the global and local information.

We also investigate the ability of our method
that helps address the data sparsity issue by train-
ing on different size of data.

4.5.3 Training on Different Size Data
Generally speaking, the embedding model per-
forms better when trained on a larger corpus. The
multi-prototype embedding model suffers more
data sparsity issue than single prototype embed-
ding due to its further partition on the set of words’
contexts by clustering, and then performs even
worse using a smaller training corpus. In this sub-
section, we study the capability of FCSE to helps
address this problem by testing the performance
when training on different size corpus.

Figure 3 shows the comparison between the per-
formance of all the models trained on 30% data
and on 100% data. As the training data decreases,
all the models perform worse especially the hard
clustering based method. Compared to full cor-
pus, we can see more apparent gap between NP-
MSSG and FCSE-1 (from 2.6% to 3.1%), SG+
and FCSE-2 (from 0.1% to 1.9%). That is, the
gap between FCSE and other methods gets closer
when there are adequate training corpus, which is
in accordance with the intuition. The data spar-
sity issue gradually vanishes along with the growth
of training data. Besides, the performance of the
single-prototype word embedding model increases

Figure 3: The performance of each model when
training on different size of data

only 1.6%. Our proposed model, both FCSE-1 and
FCSE-2, achieves more stable performance (0.2%
and 0.6% changes).

5 Related Work

Multi-prototype word embedding has been exten-
sively studied in the literature (Chen et al., 2014;
Cao et al., 2017; Liu et al., 2015; Reisinger and
Mooney, 2010; Huang et al., 2012; Tian et al.,
2014; Neelakantan et al., 2014; Li and Jurafsky,
2015). They can be roughly divided into three
groups. The first group is clustering based meth-
ods. As described in Section 1, (Reisinger and
Mooney, 2010; Huang et al., 2012; Tian et al.,
2014; Neelakantan et al., 2014; Li and Jurafsky,
2015) use clustering to induce word sense and then
learn sense embeddings via Skip-gram model. The
second group is to introduce topics to represent
different word senses, such as (Liu et al., 2015)
considers that a word under different topics leads
to different meanings, so it embeds both word
and topic simultaneously and combines them as
the word sense. However, it is difficult to de-
termine the number of topics. The third group
incorporates external knowledge (i.e. knowledge
bases) to induce word/phrase senses. (Chen et al.,
2014) jointly represents and disambiguates the
word sense on the basis of the synsets in Word-
Net. (Cao et al., 2017) regards entities in KBs
as word/phrase senses, and first learn word/phrase
and sense embeddings separately, then align them
via Wikipedia anchors. However, it fails to deal
with the words that are not included in knowledge
bases.
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6 Conclusion

In this paper, we propose a novel method that
models the word sense relatedness in multi-
prototype word embedding model. It considers
the difference and relatedness between the orig-
inal meanings and the extended meanings. Our
proposed method adopts an online framework to
induce the word sense and learn sense embeddings
jointly, which makes our model more scalable
and efficient. Two non-parametric methods for
fuzzy clustering produce flexible number of word
senses. Particularly, FCSE-2 introduces the Gen-
eralized Polya Urn process to integrate both the
global occurrence information and local textual
context information. The qualitative and quantita-
tive results demonstrate the stable and higher per-
formance of our model.

In the future, we are interested in incorporating
external knowledge, such as WordNet, to super-
vise the clustering results, and in extending our
model to learn more precise sentence and docu-
ment embeddings.
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Abstract

Unsupervised segmentation of phoneme
sequences is an essential process to ob-
tain unknown words during spoken dia-
logues. In this segmentation, an input
phoneme sequence without delimiters is
converted into segmented sub-sequences
corresponding to words. The Pitman-Yor
semi-Markov model (PYSMM) is promis-
ing for this problem, but its performance
degrades when it is applied to phoneme-
level word segmentation. This is be-
cause of insufficient cues for the seg-
mentation, e.g., homophones are improp-
erly treated as single entries and their dif-
ferent contexts are also confused. We
propose a phoneme-length context model
for PYSMM to give a helpful cue at
the phoneme-level and to predict suc-
ceeding segments more accurately. Our
experiments showed that the peak per-
formance with our context model out-
performed those without such a context
model by 0.045 at most in terms of F-
measures of estimated segmentation.

1 Introduction

1.1 Motivation

The final goal of our current project is to achieve
the development of robots or systems that ac-
quire knowledge during spoken interactions be-
tween them and human beings in the open world.
Unknown or new words appear frequently in our
daily lives, and because their meanings may be
different for the systems deployed in different ar-
eas, automatic lexicon acquisition is a useful func-
tion for maintenance-free spoken dialogue sys-
tems.

I ate tempura

yesterday

Goal:  Unsupervised lexicon acquisition through spoken dialogue 

Focus of this study:  Segmentation of phoneme sequences

Word

Phoneme

I ate témpərə yesterday

άɪ  éɪt témpərə jéstɚdèɪ

άɪéɪttémpərəjéstɚdèɪ

Signal

segmentation

témpərə

is unknown

Phoneme recognition

Phoneme
sequence

Input:

Segmented
tokens

Output:

Word conversion & context understanding

Symbol

Figure 1: Our target problem

In this paper, we focus on the phoneme-level
representation of utterance – not in the signal-level
– to relax the problem, which results in an issue
with phoneme sequence segmentation. The seg-
mentation converts an input phoneme sequence
into segmented sub-sequences corresponding to
individual words. The focus of our study is illus-
trated in Figure 1. When the robot listens to a hu-
man utterance that includes an unknown word like
“tempura,” the robot will estimate the unknown
segment “tempura” by the iterative search based
on trial-and-error of many hypotheses among dif-
ferent layers. Here, the phoneme sequence of
an unknown word is necessary as an intermedi-
ate representation between signals and lexicon be-
cause we cannot directly obtain the spelling of
an unknown word just from sound information.
Note that our assumption of a phoneme sequence
given is partly supported by the high accuracy of
state-of-the-art speech and phoneme recognition
(Dahl et al., 2012; Hinton et al., 2012; Seide et al.,
2011a,b).

Approaches based on Bayesian nonparametrics
are promising methods to achieve lexical acqui-
sition from unsegmented characters or phonemes.
These methods estimate the segmentation labels of
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άɪ

éɪt
jéstɚdèɪ

si:

si:

I

ate

yesterday

see

sea

2

3
8

2

2

Word
(character) Phoneme

Phoneme
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I      see   him  [EOS]Word

Length

άɪ si: hím [EOS]Phoneme

0   2      2      3      0

Context
(Bi-gram) (2,0) (2,2) (3,2) (0,3)

Our idea

Figure 2: Example of phoneme-length and its con-
text

phonemes corresponding to words with an unsu-
pervised manner. The label represents the bound-
ary of each word. Mochihashi et al. proposed
the nested Pitman-Yor language model (NPYLM)
(Mochihashi et al., 2009), or Pitman-Yor semi-
Markov model (PYSMM) in other words. The
model achieved high computational efficiency
and high segmentation accuracy compared with
a previous method based on the hierarchical
Dirichlet process using simple Gibbs sampling
(Goldwater et al., 2006). Uchiumi et al. also
proposed a method that estimates the segmenta-
tion labels and part-of-speech tagging of words
at the same time based on Pitman-Yor hidden
semi-Markov models (PYHSMM) for character-
level segmentation (Murphy, 2002; Uchiumi et al.,
2015). PYHSMM has not been applied to the seg-
mentation of phoneme sequences.

The difficulty with phoneme sequence segmen-
tation is insufficient cues to distinguish or predict
the context and segmentation labels. For example,
the homophones are improperly treated as single
entry and their different contexts are also confused
in phoneme-level segmentation. This is a sim-
ilar situation with the homographs in character-
level segmentation, but it occurs much more fre-
quently in phoneme-level segmentation, resulting
in more serious problem. Although NPYLM and
PYHSMM have been applied to character-level
segmentation, they do not utilize cues useful for
phoneme-level segmentation. We need to deter-
mine such useful cues to achieve accurate segmen-
tation of phoneme sequences. Note that the per-
formance comparison of NPYLM and PYHSMM
methods in phoneme-level segmentation have not
been conducted. We believe that comparing these
methods on the basis of phoneme sequences is also
useful for further improvement of the model.

We propose a phoneme-length context model
for segmentation, which was not used in the
NPYLM and PYHSMM. Note that the length is
not the duration of a phoneme (the phoneme ‘a’
continues for three frames in the time axis, for

example), which is used in signal-level segmen-
tation (Lee and Glass, 2012). Figure 2 illustrates
phoneme length and its contexts in the case of
bi-grams. The phoneme sequence of ‘see’ and
‘sea’ is same and both lengths are two as shown
in the left side of Fig. 2. The context of phoneme
length is the sequence of these lengths. For ex-
ample, if ‘him’ succeeds to ’see’, the bi-gram of
phoneme length is the pair of 3 and 2 where 3 is
the length of phonemes ‘him’ and 2 is the length
of phonemes ’si:’. We denote the pair as (3, 2) as
shown in the right side of Fig. 2. Since the length
of each segmented phoneme also depends on the
previously segmented phonemes, this context rep-
resents one aspect of parts of speech. For exam-
ple, the phoneme-length context captures the ten-
dency that the length of the adposition is usually
short and the length of the succeeding segment
will be relatively long. We expect the phoneme-
length context to be another cue for segmenta-
tion because the phoneme-length context is more
abstract than word-level context. This phoneme-
length model is expected to capture a rhythmic as-
pect of language.

We model the phoneme-length context as a
prior probability distribution of sequential seg-
mentation labels. This is because the probability
distribution is expected to control how long each
segmented phoneme becomes. Since the joint
prior probability distribution of sequential seg-
mentation labels were decomposed into factorized
probabilities like N -gram, the phoneme-length
model follows the Markov process and has a tran-
sition probability. The transition probability is
also modeled and smoothed by using the Pitman-
Yor N -gram model as other language models did.
Our method, using NPYLM and PYHSMM, is
evaluated by using a conversational corpus in En-
glish and Japanese in terms of the F-measures of
the estimated segmentation labels. Because the
corpus contains fillers and hesitations, the prop-
erty of utterance used for evaluation matches our
research purpose.

1.2 Related Work

There are several approaches based on Bayesian
nonparametrics to achieve lexical acquisi-
tion from raw audio signals (Neubig et al.,
2010; Lee and Glass, 2012; Kamper et al.,
2016; Taniguchi et al., 2016), unsegmented
phonemes, or words (Mochihashi et al., 2009;
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άɪ  éɪt témpərə jéstɚ dèɪSegmented
phoneme seq.

Figure 3: Word segmentation

Goldwater et al., 2009; Elsner et al., 2013;
Uchiumi et al., 2015). The lexical acquisition
technique is necessary in other areas, such as
dialogue system that acquires knowledge through
dialogue (Ono et al., 2016).

The advantages of Bayesian approach com-
pared with other approaches (Kuo et al., 2007;
Räsänen et al., 2015) are that a) the number of
words in the system’s vocabulary can be increased
automatically in accordance with the amount of
data and b) the semi-supervised learning of seg-
mentation labels is easy to apply to utilize our
knowledge of language. A typical estimation
procedure is a Gibbs-sampling-based iteration of
1) the estimation of borders (segmentation la-
bels) given a temporal N -gram language model
(Goodman, 2001) and 2) the estimation of an N -
gram language model given the temporal segmen-
tation labels.

2 Unsupervised Segmentation and
Baselines

We explain the overview and segmentation al-
gorithm of NPYLM and PYHSMM as baseline
methods. PYHSMM is an extended model of
NPYLM to estimate the part-of-speech tagging of
segmented words at the same time.

2.1 Overview

The unsupervised segmentation problem is de-
fined finding the latent segmentation labels z =
[z1, ..., zLc ]T that correspond to each phoneme in
the phoneme sequence c = [c1, ..., cLc ]T with
length Lc. If the binary label zi = 1, the phoneme
sequence is separated after the phoneme ci. Fig-
ure 3 illustrates the role of z. Other latent param-
eters m = [m1, ...,mLm ] with length Lm are also
introduced to represent part of speech labels for
each segmented phoneme sequences if necessary.
The number of classes of part of speech label, M ,
is defined in advance of this study. The latent pa-
rameters are estimated by maximizing the follow-

ing probabilities:

arg max
z

p(z|c) ∝ p(c|z) or (1)

arg max
z,m

p(z,m|c) ∝ p(c|z,m)p(m), (2)

where NPYLM uses Eq. (1) and PYHSMM uses
Eq. (2). The definition of each likelihood, such as
p(c|z) and p(c|z,m), is important. Because the
border of phonemes z is given in these models, the
likelihood can be factorized like N -gram probabil-
ity. For example, the likelihood can be factorized
as p(ci+1, ..., cN |c1, ..., ci, z)p(c1, ..., ci|z), where
the phoneme segments are considered to be two
word segments w1 = c1...ci and w2 = ci+1...cLc .
This N -gram modeling is also adopted to decom-
pose the part-of-speech label m, and this controls
the grammar and the number of words.

The nested hierarchical Pitman-Yor language
model (NPYLM) is used to represent the fac-
torized N -gram probability (Mochihashi et al.,
2009). Here, we represent the context of N -gram
as �h and the depth of the hierarchical context tree
of �h as |�h|. Given the seating arrangement of cus-
tomers that are represented by hidden variables
�s in the hierarchical Chinese restaurant process
(CRP), the conditional probability of a word seg-
ment w with the context �h is defined as follows:

p(w|�s,�h) =
c�hw

− d|�h|t�hw

c�h∗ + θ|�h|
+

θ�h
+ d|�h|t�h∗

c�h∗ + θ|�h|
p(w|�s,�h′), (3)

where c�hw is the count of word w at context �h, and
c�h∗ =

∑
w c�hw

is its sum. �h′ is the reduced con-
text of �h, in which the relationship |�h′| = |�h| − 1
exists. t�hw

is the number of tables at context �h,
and t�h∗ is its sum. θ|�h| and d|�h| are the common

parameters of �h with the same depth |�h|. Here,
the uni-gram segment probability p(w = ci...cj) is
smoothed by the phoneme-level N -gram probabil-
ity p(ci, ..., cj) = p(cj |ci, ..., cj−1)p(ci, ..., cj−1).
Please see the work of Teh (2006) for the sampling
algorithm of seating arrangement.

The segmentation labels z and other parameters
such as the N -gram language model are updated
iteratively. If the segmentation labels are given, we
can calculate the statistics of the N -gram model.
If the N -gram model is given, we can estimate the
probability of the segmentation labels. Because
the update of the N -gram model is well known,
we explain the update of the estimation of the seg-
mentation labels in the latter parts of this section.
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Algorithm 1 Backward sampling: Θ represents
parameter set
Require: t← N, i← 0, w0 ← E

while t > 0 do
Draw k ∝ p(wi|ct

t−k+1, Θ)α[t][k]
Set wi ← ct

t−k+1

Set t← t− k, i← i + 1
end while

2.2 Inference for NPYLM

Mochihashi et al. (2009) proposed introducing the
forward-backward inference to estimate the seg-
mentation labels efficiently. This method uses a
semi-Markov model, and it considers the prob-
lem as a sequential estimation of the hidden labels.
The procedure consists of two steps: forward fil-
tering and backward sampling.

The forward filtering calculates the forward
probability that is used for the Bayesian learn-
ing of the hidden Markov model (HMM) (Scott,
2002). The following equation denotes α[t][k] as
the probability of generating the partial phonemes
c1, ..., ct of c using the last k phonemes in the case
of bi-grams.

α[t][k] =
t−k∑
j=1

p(ct
t−k+1|ct−k

t−k−j+1)α[t − k][j], (4)

where α[0][0] = 1 and cn, ..., cm = cm
n .

Backward sampling is achieved by drawing a
phoneme segment w from the end of a sentence
by using forward probability α[t][k]. Because the
end of sentence is represented by the special sym-
bol E, we can start sampling a word with the prob-
ability proportional to p(E|cN

N−k). The algorithm
is summarized in Alg. 1.

Note that we do not use the correction of
phoneme-level N -gram probability based on the
phoneme length using the Poisson distribution in
the NPYLM. This is because the length property
is embedded into our model naturally.

2.3 Inference for PYHSMM

The PYHSMM, which is an extended model of
NPYLM, estimates the parts of speech of each
segmented phoneme. We expect that the per-
formance of PYHSMM is better than that of
NPYLM. The forward probability, α[t][k][m], is
newly introduced in the case of bi-grams, and the
following equation denotes it as the probability
of generating the partial phonemes c1, ..., ct with

part-of-speech m from the last k phonemes.

α[t][k][m] =
t−k∑
j=1

M∑
r=0

p(ct
t−k+1|ct−k

t−k−j+1,m)

p(m|r)α[t − k][j][r] (5)

where p(m|r) is the transition probability of the
latent parts of speech and assumed the hierarchical
Pitman-Yor language model.

The algorithm of the backward sampling is sim-
ilar to that of NPYLM. The parts of speech are
sampled as well as the segmentation label. Be-
cause the end of the sentence and its parts of
speech are represented using the special sym-
bol E, we can start sampling a word with the
probability proportional to p(E|cN

N−k, E)p(E|m)
like NPYLM. Note that the computational cost of
PYHSMM is larger than that of NPYLM due to the
search part-of-speech labels.

3 Analysis and Our Approach

We focus on the distribution of phoneme length to
distinguish the confused contexts. If we have two
different words with the same pronunciation, we
can sometimes distinguish the phoneme represen-
tations of them on the basis of the lenght of the
preceding or succeeding phoneme segments. The
phoneme-length context will capture the tendency
that the length of the adposition is usually short
and the length of the succeeding segment will be
relatively long.

Figure 4 illustrates the real phoneme-length dis-
tribution in the English and Japanese spoken-
dialogue transcriptions used in our evaluation
(Sec. 5.2). Given that the function len(w) re-
turns the phoneme length of word w, the ma-
trices represent the bi-gram length probability
p(len(wn)|len(wn−1)), and the horizontal axis
is len(wn−1) and the vertical axis is len(wn).
wn represents the n-th word in each sentences.
The line graphs represent the uni-gram length
probability p(len(wn)). These probabilities were
calculated on the basis of maximum likeli-
hood estimation. Verb and Noun represent the
phoneme-length probability of verbs and nouns
in Japanese data, respectively. The definitions
of bi-gram and uni-gram probability for Verb and
Noun are p(len(wn)|len(wn−1), pos(wn)) and
p(len(wn|pos(wn)), where pos(w) is a function
that returns a part-of-speech tag of the word w.

We determined that the phoneme-length prob-
ability depends on 1) language, 2) context, and
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Figure 4: Real phoneme-length distribution

3) parts of speech. The bi-gram phoneme-length
probabilities in English are relatively similar to
each other but different from those in Japanese.
Some bi-gram probabilities have several peaks,
and they vary in accordance with parts of speech.
If we utilize this information, we will achieve an
accurate segmentation.

The straightforward approach to exploit
phoneme-length information is to utilize the prior
distribution of the segmentation labels z that is not
used in either NPYLM and PYSHMM. Because
the prior probability is considered to be the source
that determines the length of each phoneme
segment, embedding this prior into a model is
expected to improve the segmentation perfor-
mance. Therefore, we need to construct a model
that considers the prior of the segmentation labels
and should also reveal the performance of these
models for phoneme-level word segmentation.

4 Phoneme-Length Context Model for
Pitman-Yor Semi-Markov Models

We extend the NPYLM and PYHSMM to exploit
the phoneme-length patterns of each phoneme
segment. First, we explain our problem state-
ment for unsupervised segmentation of phoneme
sequences. Next, we derive the context model
of the phoneme length and show the forward-
backward algorithms for our extended NPYLM

and PYHSMM.

4.1 Problem Statement and Model

We exploit the probability of phoneme length in
estimating latent segmentation labels z and latent
part-of-speech labels m. The parameters are esti-
mated by maximizing the following probabilities:

arg max
z

p(z|c) ∝ p(c|z)p(z) or (6)

arg max
z,m

p(z,m|c) ∝ p(c|z,m)p(z|m)p(m). (7)

The former objective function is for NPYLM, and
the latter is for PYHSMM. The probabilities of
segmentation labels p(z) in Eq. (6) and p(z|m) in
Eq. (7) are used in our objective functions. p(z)
is a prior probability distribution of segmentation
labels z in Eq. (6).

We decompose each joint probability into N -
gram probabilities. For an easy explanation of this
decomposition, here we use the length of part-
of-speech labels Lm and the correct segmenta-
tion labels as if these are given, which are actu-
ally searched for during training. The non-zero
indices of segmentation labels z are represented
by g = [g1, ..., gW ], where W is the number of
“true” phoneme segments. W equals Lm in the
case of part-of-speech estimation. We also define
g′i = gi + 1. The factorized models in the case
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of bi-grams for NPYLM and PYHSMM are repre-
sented as follows:

p(c|z)=
∏

i

p(cgi

g′i−1
|cgi−1

g′i−2
, zgi

g′i−1
, z

gi−1

g′i−2
), (8)

p(z)=
∏

i

p(zgi

g′i−1
|zgi−1

g′i−2
), (9)

p(c|z,m)=
∏

i

p(cgi

g′i−1
|cgi−1

g′i−2
, zgi

g′i−1
, z

gi−1

g′i−2
,mi),(10)

p(z|m)=
∏

i

p(zgi

g′i−1
|zgi−1

g′i−2
,mi), (11)

p(m)=
∏

i

p(mi|mi−1), (12)

where p(mi|mi−1) is a transition probability of la-
tent part-of-speech labels, zgi

g′i−1
= zgi−1+1, ..., zgi

and p(zgi

g′i−1
|zgi−1

g′i−2
) and p(zgi

g′i−1
|zgi−1

g′i−2
,mi) are tran-

sition probabilities of the segmentation labels. The
transition probability of segmentation labels is de-
rived naturally. The latent variables for the seating
arrangement of N -gram probability in Eq. (3) are
omitted in these equations.

We design the transition probability of segmen-
tation labels, such as p(zgi

g′i−1
|zgi−1

g′i−2
), to depend on

the length of each phoneme segment. Because
the length of each segment can be represented us-
ing the non-zero indices g, the bi-gram transition
probability is rewritten as

p(zgi

g′i−1
|zgi−1

g′i−2
) = p(gi − gi−1|gi−1 − gi−2) (13)

where mgi is omitted in the case of PYHSMM,
and each integer, such as gi − gi−1, is considered
as a symbol or label. This transition probability is
the phoneme-length bi-gram probability as men-
tioned in Sec. 3, and it is also modeled by the hi-
erarchical Pitman-Yor language model (HPYLM)
not by a Poisson distribution (Mochihashi et al.,
2009) because HPYLM is a count-based represen-
tation, which is appropriate for multimodal distri-
bution. Such probability for duration modeling is
also seen in (Kuo et al., 2007).

4.2 Inference

We derived the forward-backward algorithms to
estimate the segmentation labels and part-of-
speech labels. The inference for NPYLM is in-
troduced first; then, the inference of PYHSMM is
explained. Note that the segmentation label z and
part-of-speech labels m are estimated simultane-
ously.

The forward probability α[t][k] of NPYLM
with phoneme-length context is modified as fol-
lows.

α[t][k] =
t−k∑
j=1

p(ct
t−k+1|ct−k

t−k−j+1, k, j)

p(k|j)α[t − k][j] (14)

where p(k|j) is a transition probability of the
length of each phoneme segment. The forward
probability is modified by the bi-gram probabil-
ity of lengths. We can use p(ct

t−k+1|ct−k
t−k−j+1, k)

instead of p(ct
t−k+1|ct−k

t−k−j+1, k, j) because infor-
mation of length j is included in the phoneme se-
quence representation, ct−k

t−k−j+1.
As with NPYLM, the context of phoneme

lengths can be embedded into PYHSMM. The for-
ward probability is also represented as

α[t][k][m]=
t−k∑
j=1

M∑
r=0

p(ct
t−k+1|ct−k

t−k−j+1, k, j,m)

p(k|j,m)p(m|r)α[t − k][j][r] (15)

where m represents a part of speech. The
forward probability is also biased by a
transition probability of the length of each
phoneme segment p(k|j,m). We can also use
p(ct

t−k+1|ct−k
t−k−j+1, k,m). Because the number

of parameters is large in this case of latent parts
of speech, the convergence speed will degrade
compared with NPYLM. Backward sampling
of both cases is achieved in the same way as in
NPYLM. The details are omitted due to space
limitation.

4.3 Substitution

We substitute the conditional probability into sim-
pler one by ignoring the dependency on length k
in this work as follows:

p(ct
t−k+1|ct−k

t−k−j+1, k):=p(ct
t−k+1|ct−k

t−k−j+1).(16)

The probability should be ideally normalized only
on the tokens that have length k, and this sub-
stitution makes a double count of the length in-
formation of token ct

t−k+1. On the other hand,
the difference between NPYLM and our pro-
posed model in the inference is clear. The tran-
sition probability p(k|j) is added in our model,
and its implementation becomes simple. Our
strict model will be evaluated in the future work.
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We also use p(ct
t−k+1|ct−k

t−k−j+1,m) instead of
p(ct

t−k+1|ct−k
t−k−j+1, k,m).

Note that there are several options on the
back-off structure of the conditional probabil-
ity p(ct

t−k+1|ct−k
t−k−j+1, k). For example, the

word uni-gram p(ct
t−k+1|k) might be smoothed

by un-conditioned word uni-gram or by the k-
conditioned character N -gram. If the amount of
data is limited, the parameter estimation of the
conditional character N -gram may fail. We adopt
the existing model, NPYLM, as the structure in
this work. The optimal structure should also be
investigated in the future work.

5 Experiments

5.1 Evaluation Procedure
We evaluated each model by comparing the es-
timated segmented labels with the correct seg-
mented original phoneme text (transcription of
speech corpus). Utterances in the corpus were di-
vided manually, and each utterance was treated as
one sentence. The unsegmented phoneme text is
generated by replacing the word-segmented tran-
scription text into phoneme text with a dictionary
and by removing whitespaces.

The criteria for the evaluations were the F-
measures of the estimated lexicon set and segmen-
tation label set. These F-measures are the har-
monic mean of recall and precision; therefore, we
could consider the recall and precision at the same
time. The lexicon set after unsupervised segmen-
tation was compared with that of the original seg-
mented phoneme text. The estimated set of seg-
mentation labels was also compared with that of
the original phoneme text.

We used a development set to monitor the max-
imum performance of segmentation methods. The
1% data set was randomly selected from each
test set, and its F-measure of segmentation la-
bels was used to determine the epochs for cal-
culating F-measures. Since we can obtain some
correctly-transcribed text in a real situation, this
evaluation process is reasonable. First, we ran
each method over a sufficient number of epochs.
Next, we calculated the F-measure of each devel-
opment set’s segmentation label and identified the
20-epoch section where the averaged F-measure
was the highest. We calculated the F-measures of
test sets that averaged over 20 epochs correspond-
ing to the identified 20-epoch section. Note that
each method is based on sampling and the max-

Table 1: Parameters of experiment
English Japanese

Target text SwitchBoard CSJ
# of sentences 5,239 17,493
# of segments 88,127 132,900
# of phonemes 276,329 264,544
Vocab. size (word) 6,203 8,325
Vocab. size (phoneme) 5,422 6,589
Phoneme set 43 79

imum likelihood estimation sometimes does not
match the segmentation on the basis of linguistic
definitions.

5.2 Data
We used two types of speech transcription in En-
glish and Japanese for evaluation. This is because
the distribution of phoneme length also differs in
languages as mentioned in Sec. 3.

We used the Switchboard-1 Telephone Speech
Corpus (Godfrey et al., 1992) for the English set,
which includes the transcription of conversational
dialogue speech1. We selected 5,239 sentences
from the session “ID 20,” which included 88,127
word segments with 6,203 unique words. These
words were converted into phonemes, totaling
276,329 phoneme characters. The vocabulary size
in terms of phoneme representation was 5,422, and
this was a unique number of phoneme sequences
of words. For example, because the pronuncia-
tion of the words “see” and “sea” is the same “si:”,
the phoneme sequence “si:” is considered to be a
unique vocabulary item. The phoneme set used in
the English corpus included 43 phonemes in total
including end-of-sentence symbols. The proper-
ties of the corpus are summarized in Table 1.

We used the Corpus of Spontaneous Japanese
(CSJ) for the Japanese set, which is a collection
of spoken dialogue recordings and their transcrip-
tions (Maekawa, 2003). We used 17,493 sen-
tences, including 132,900 word segments with
8,325 of them being unique words. The phoneme
set for Japanese includes the combination of con-
sonants and vowels and almost completely corre-
sponds to “katakana” in Japanese to remove re-
dundancy. The words were also transformed into
phonemes (“katakana”), resulting in 264,544 of
them. The vocabulary size in terms of phoneme
representation was 6,589, and this was the unique
number of phoneme sequences of words. The
phoneme set used in the Japanese corpus included

1http://www.isip.msstate.edu/projects/switchboard/releases/
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79 phonemes in total including end-of-sentence
symbols. The properties of the corpus are also
summarized in Table 1.

5.3 Parameter Settings
The parameters of NPYLM were the same for
all models. The hyper parameters of the word
language model were initialized as θ|h| = 2.0,
d|h| = 0.5, and the other parameters of prior prob-
ability distribution were all set to 1.0, such as the
parameters of the beta distribution in NPYLM.

The hyper parameters of the phoneme (char-
acter) language, part-of-speech model and length
model were the same as those in the language
model. We set the maximum length of the
phoneme sequence Lc to 10 due to the computa-
tional complexity. The number of classes of part
of speech label, M , was set to 4 due to the small
corpus size and computational cost. The initial la-
bels of parts of speech were initialized randomly
within the number of classes.

5.4 Results
The maximum F-measures of the lexicon and seg-
mentation are listed in Tables 2 and 3 for the En-
glish and Japanese test sets. The notations Lex.
and Seg. represent the F-measures of the lexi-
con and segmentation, respectively. NPYLM-D
denotes the proposed NPYLM with our phoneme-
length context model in Table 2, and PYHSMM-D
denotes the proposed PYHSMM with our context
model in Table 3.

The F-measures of the proposed NPYLM-D
outperformed the NPYLM for both the English
and Japanese test sets as shown in Table 2. The im-
provements in the Japanese corpus, 0.067 (Lex.)
and 0.045 (Seg.), were larger than those in the En-
glish corpus, 0.003 (Lex.) and 0.01 (Seg.). This
is because the bi-gram probability of phoneme
length varies more in Japanese than in English,
and the NPYLM-D could capture such tenden-
cies. The NPYLM does not use any information
other than the context of a segmented phoneme se-
quence. Therefore, the length model is useful to
model the phoneme-level features. The lower per-
formance of NPYLM-D after convergence might
be caused by the conditional probability substitu-
tion and its double-count of length information.

The F-measures of the proposed PYHSMM-D
were worse than those of PYHSMM for both the
English and Japanese test sets as shown in Ta-
ble 3. The performances of these methods were

Table 2: F-measures of segmentation by NPYLM
and NPYLM-D

NPYLM NPYLM-D
(baseline) (proposed)

English Lex. 0.602 0.605
Seg. 0.897 0.907

Japanese Lex. 0.344 0.411
Seg. 0.748 0.793

Table 3: F-measures of segmentation by
PYHSMM and PYHSMM-D

PYHSMM PYHSMM-D
(baseline) (proposed)

English Lex. 0.528 0.471
Seg. 0.825 0.788

Japanese Lex. 0.202 0.158
Seg. 0.499 0.437

worse than those of NPYLM and NPYLM-D. The
reasons for this are due to 1) the smaller amount
of data to treat latent context variable m and 2)
the overlap of contextual information between the
phoneme length and the latent variable m. Since
the latent variable m represents the class of con-
text, a sufficient amount of data will be required
for achieving stable performance compared with
NPYLM. Moreover, the context information rep-
resented by the latent variable m possibly includes
our phoneme length context. Thus, it might be
difficult for the PYHSMM-D to separate these
two contexts in the case of completely unsuper-
vised training. These problems may be solved in
the semi-supervised case where we exploit pre-
labeled data with already segmented words and
their tagged parts of speech.

The F-measures of segmentation during training
for the English and Japanese test sets are shown
in Figures 5 and 6, respectively. The horizontal
axis represents the epoch of Gibbs sampling, and
the vertical axis represents the F-measures for the
segmentation label set. The Gibbs sampling was
stopped after at least ten days. Note that the F-
measure of segmentation does not necessarily cor-
relate with the likelihood and all methods were
based on stochastic segmentation.

The F-measures of NPYLM and PYHSMM for
the English and Japanese corpora improved in pro-
portion to the number of epochs, and those of
PYHSMM and PYHSMM-D did not converge as
shown in Figures 5 and 6. Because the number of
hidden parameters of PYHSMM and PYHSMM-
D was large, their convergence speeds were slow.
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Figure 5: F-measures of segmentation for English
test set
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Figure 6: F-measures of segmentation for
Japanese test set

The proposed NPYLM-D had peak F-measures at
100–200 epochs, and they went down and con-
verged as the number of epochs increased. This
was mainly because the phoneme-length context
model accelerated the segmentation in the early
epochs, and the small number of observations
and un-supervised condition caused over-fitting.
Therefore, the performance of the NPYLM-D is
expected to be improved by using a larger corpus
or by optimizing hyper parameters to match the
actual prior probability of phoneme length.

The semi-supervised training would be effec-
tive for segmentation in practical use because it
matches the actual use case. Evaluating the per-
formance under such a condition is planned for
future work. We expect the PYHSMM-D to work
well more after 1000 epochs, but it requires a large
computational cost. Its results could also be im-
proved with a larger corpus and semi-supervised
condition.

6 Conclusions

Unsupervised segmentation of phoneme se-
quences is an essential process to obtain unknown
words during spoken dialogues with users. The
PYSMM is a promising model to achieve unsuper-
vised segmentation, but its performance degrades
when it is applied to phoneme-level word segmen-
tation. We proposed a phoneme-length context
model for PYSMM to give a helpful cue at the
phoneme-level and to predict succeeding phoneme
segmentation more accurately. Our experiments
showed that the peak performances with our con-
text model outperformed those without such a
context model by 0.045 at most in terms of F-
measures of estimated segmentation labels.

There are the several future works on 1) op-
timization of parameters, 2) evaluation of semi-
supervised training and other languages, and 3)
improvement of our model and inference method.
To further improve our method, we must investi-
gate the hyper parameters setting for the estima-
tion of segmentation labels to operate efficiently.
The semi-supervised training will also improve the
performance of our method. We will evaluate our
method not only for English and Japanese but also
other languages, such as African languages be-
cause the rhythmic information might be vivid.
The performance of our strict model and the op-
timal back-off structure should be investigated to
reveal the limitation of our model. The modifica-
tion of inference algorithm will be required due to
the computational efficiency when we use longer
context information more than tri-gram. Since the
rhythm information of latent segmentation might
not be captured well by bi-grams, the challenge of
using longer context is one of the important issues
for our purpose.
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Abstract

Convolutional Neural Networks (CNNs)
have recently achieved remarkably strong
performance on the practically important
task of sentence classification (Kim, 2014;
Kalchbrenner et al., 2014; Johnson and
Zhang, 2014; Zhang et al., 2016). How-
ever, these models require practitioners to
specify an exact model architecture and set
accompanying hyperparameters, includ-
ing the filter region size, regularization pa-
rameters, and so on. It is currently un-
known how sensitive model performance
is to changes in these configurations for
the task of sentence classification. We thus
conduct a sensitivity analysis of one-layer
CNNs to explore the effect of architecture
components on model performance; our
aim is to distinguish between important
and comparatively inconsequential design
decisions for sentence classification. We
focus on one-layer CNNs (to the exclu-
sion of more complex models) due to their
comparative simplicity and strong empiri-
cal performance, which makes it a modern
standard baseline method akin to Support
Vector Machine (SVMs) and logistic re-
gression. We derive practical advice from
our extensive empirical results for those
interested in getting the most out of CNNs
for sentence classification in real world
settings.

1 Introduction

Convolutional Neural Networks (CNNs) have re-
cently been shown to achieve impressive results
on the practically important task of sentence cate-
gorization (Kim, 2014; Kalchbrenner et al., 2014;
Wang et al., 2015; Goldberg, 2015; Iyyer et al.,

2015; Zhang et al., 2016, 2017). CNNs can cap-
italize on distributed representations of words by
first converting the tokens comprising each sen-
tence into a vector, forming a matrix to be used
as input (e.g., see Fig. 1). The models need not be
complex to realize strong results: Kim (2014), for
example, proposed a simple one-layer CNN that
achieved state-of-the-art (or comparable) results
across several datasets. The very strong results
achieved with this comparatively simple CNN ar-
chitecture suggest that it may serve as a drop-in
replacement for well-established baseline models,
such as SVM (Joachims, 1998) or logistic regres-
sion. While more complex deep learning models
for text classification will undoubtedly continue
to be developed, those deploying such technolo-
gies in practice will likely be attracted to simpler
variants, which afford fast training and prediction
times.

Unfortunately, a downside to CNN-based mod-
els – even simple ones – is that they require prac-
titioners to specify the exact model architecture
to be used and to set the accompanying hyperpa-
rameters. In practice, tuning all of these hyper-
parameters is simply not feasible, especially be-
cause parameter estimation is computationally in-
tensive. Emerging research has begun to explore
hyperparameter optimization methods, including
random search (Bengio, 2012), and Bayesian op-
timization (Yogatama and Smith, 2015; Bergstra
et al., 2013). However, these sophisticated search
methods still require knowing which hyperparam-
eters are worth exploring to begin with (and rea-
sonable ranges for each).

In this work our aim is to identify empirically
the settings that practitioners should expend effort
tuning, and those that are either inconsequential
with respect to performance or that seem to have
a ‘best’ setting independent of the specific dataset,
and provide a reasonable range for each hyperpa-
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rameter. We take inspiration from previous empir-
ical analyses of neural models due to Coates et al.
(2011) and Breuel (2015), which investigated fac-
tors in unsupervised feature learning and hyperpa-
rameter settings for Stochastic Gradient Descent
(SGD), respectively. Here we report the results
of a large number of experiments exploring differ-
ent configurations of CNNs run over nine sentence
classification datasets. Most previous work in this
area reports only mean accuracies calculated via
cross-validation. But there is substantial variance
in the performance of CNNs, even on the same
folds and with model configuration held constant.
Therefore, in our experiments we perform replica-
tions of cross-validation and report accuracy/Area
Under Curve (AUC) score means and ranges over
these.

2 Background and Preliminaries

Deep and neural learning methods are now well
established in machine learning (LeCun et al.,
2015; Bengio, 2009). They have been espe-
cially successful for image and speech process-
ing tasks. More recently, such methods have be-
gun to overtake traditional sparse, linear models
for NLP (Goldberg, 2015; Bengio et al., 2003;
Mikolov et al., 2013; Collobert and Weston, 2008;
Collobert et al., 2011; Kalchbrenner et al., 2014;
Socher et al., 2013).

Recently, word embeddings have been ex-
ploited for sentence classification using CNN ar-
chitectures. Kalchbrenner (2014) proposed a
CNN architecture with multiple convolution lay-
ers, positing latent, dense and low-dimensional
word vectors (initialized to random values) as in-
puts. Kim (2014) defined a one-layer CNN archi-
tecture that performed comparably. This model
uses pre-trained word vectors as inputs, which
may be treated as static or non-static. In the for-
mer approach, word vectors are treated as fixed
inputs, while in the latter they are ‘tuned’ for
a specific task. Elsewhere, Johnson and Zhang
(2014) proposed a similar model, but swapped in
high dimensional ‘one-hot’ vector representations
of words as CNN inputs. Their focus was on clas-
sification of longer texts, rather than sentences (but
of course the model can be used for sentence clas-
sification).

The relative simplicity of Kim’s architecture –
which is largely the same as that proposed by
Johnson and Zhang (2014), modulo the word vec-

tors – coupled with observed strong empirical per-
formance makes this a strong contender to sup-
plant existing text classification baselines such as
SVM and logistic regression. But in practice one
is faced with making several model architecture
decisions and setting various hyperparameters. At
present, very little empirical data is available to
guide such decisions; addressing this gap is our
aim here.

2.1 CNN Architecture
We begin with a tokenized sentence which we
then convert to a sentence matrix, the rows of
which are word vector representations of each to-
ken. These might be, e.g., outputs from trained
word2vec (Mikolov et al., 2013) or GloVe (Pen-
nington et al., 2014) models. We denote the di-
mensionality of the word vectors by d. If the
length of a given sentence is s, then the dimen-
sionality of the sentence matrix is s× d. Suppose
that there is a filter matrix w with region size h; w
will contain h · d parameters to be estimated. We
denote the sentence matrix by A ∈ Rs×d, and use
A[i : j] to represent the sub-matrix of A from row
i to row j. The output sequence o ∈ Rs−h+1 of
the convolution operator is obtained by repeatedly
applying the filter on sub-matrices of A:

oi = w ·A[i : i+ h− 1], (1)

where i = 1 . . . s − h + 1, and · is the dot prod-
uct between the sub-matrix and the filter (a sum
over element-wise multiplications). We add a bias
term b ∈ R and an activation function f to each
oi, inducing the feature map c ∈ Rs−h+1 for this
filter:

ci = f(oi + b). (2)

One may use multiple filters for the same re-
gion size to learn complementary features from
the same regions. One may also specify multi-
ple kinds of filters with different region sizes (i.e.,
‘heights’). The dimensionality of the feature map
generated by each filter will vary as a function of
the sentence length and the filter region size. A
pooling function is thus applied to each feature
map to induce a fixed-length vector. A common
strategy is 1-max pooling (Boureau et al., 2010b),
which extracts a scalar from each feature map. To-
gether, the outputs generated from each filter map
can be concatenated into a fixed-length, ‘top-level’
feature vector, which is then fed through a softmax
function to generate the final classification. At this
softmax layer, one may apply ‘dropout’ (Hinton
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et al., 2012) as a means of regularization. This en-
tails randomly setting values in the weight vector
to 0. One may also impose an l2 norm constraint,
i.e., linearly scale the l2 norm of the vector to a
pre-specified threshold when it exceeds this. Fig.
1 provides a schematic illustrating the model ar-
chitecture just described. The training objective to
be minimized is the categorical cross-entropy loss.
The parameters to be estimated include the weight
vector(s) of the filter(s), the bias term in the acti-
vation function, and the weight vector of the soft-
max function. In the ‘non-static’ approach, one
also tunes the word vectors. Optimization is per-
formed using SGD and back-propagation (Rumel-
hart et al., 1988).

3 Datasets

We use nine sentence classification datasets in all;
seven of which were also used by Kim (2014).
Briefly, these are summarized as follows. (1)
MR: sentence polarity dataset from (Pang and
Lee, 2005). (2) SST-1: Stanford Sentiment Tree-
bank (Socher et al., 2013). To make input repre-
sentations consistent across tasks, we only train
and test on sentences, in contrast to the use in
(Kim, 2014), wherein models were trained on both
phrases and sentences. (3) SST-2: Derived from
SST-1, but pared to only two classes. We again
only train and test models on sentences, excluding
phrases. (4) Subj: Subjectivity dataset (Pang and
Lee, 2005). (5) TREC: Question classification
dataset (Li and Roth, 2002). (6) CR: Customer
review dataset (Hu and Liu, 2004). (7) MPQA:
Opinion polarity dataset (Wiebe et al., 2005). Ad-
ditionally, we use (8) Opi: Opinosis Dataset,
which comprises sentences extracted from user re-
views on a given topic, e.g. “sound quality of ipod
nano”. There are 51 such topics and each topic
contains approximately 100 sentences (Ganesan
et al., 2010). (9) Irony (Wallace et al., 2014): this
contains 16,006 sentences from reddit labeled as
ironic (or not). The dataset is imbalanced (rela-
tively few sentences are ironic). Thus before train-
ing, we under-sampled negative instances to make
classes sizes equal.1 For this dataset we report the
Area Under Curve (AUC), rather than accuracy,
because it is imbalanced.

1Empirically, under-sampling outperformed over-
sampling in mitigating imbalance, see also Wallace (2011).

4 Baseline Models

4.1 Baseline Configuration

We give a baseline CNN configuration described
in Table 1. We argue that it is critical to assess the
variance due strictly to the parameter estimation
procedure. Most prior work, unfortunately, has not
reported such variance, despite a highly stochastic
learning procedure. This variance is attributable to
estimation via SGD, random dropout, and random
weight parameter initialization.

Description Values
input word vectors Google word2vec
filter region size (3,4,5)

feature maps 100
activation function ReLU

pooling 1-max pooling
dropout rate 0.5

l2 norm constraint 3

Table 1: Baseline configuration. ‘feature maps’
refers to the number of feature maps for each filter
region size. ‘ReLU’ refers to rectified linear unit
(Maas et al., 2013), a commonly used activation
function in CNNs.

Then we consider the effect of different archi-
tecture decisions and hyperparameter settings. To
this end, we hold all other settings constant (as per
Table 1) and vary only the component of interest.
For every configuration that we consider, we repli-
cate the experiment 10 times, where each replica-
tion constitutes a run of 10-fold CV. We report av-
erage CV means and associated ranges achieved
over the replicated CV runs.

4.2 Effect of input word vectors

A nice property of sentence classification models
that start with distributed representations of words
as inputs is the flexibility such architectures afford
to swap in different pre-trained word vectors dur-
ing model initialization. Therefore, we first ex-
plore the sensitivity of CNNs for sentence classi-
fication with respect to the input representations
used. Specifically, we replaced word2vec with
GloVe representations. Google word2vec uses a
local context window model trained on 100 billion
words from Google News (Mikolov et al., 2013),
while GloVe is a model based on global word-
word co-occurrence statistics (Pennington et al.,
2014). We used a GloVe model trained on a cor-
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Figure 1: Illustration of a CNN architecture for sentence classification. We depict three filter region sizes:
2, 3 and 4, each of which has 2 filters. Filters perform convolutions on the sentence matrix and generate
(variable-length) feature maps; 1-max pooling is performed over each map, i.e., the largest number from
each feature map is recorded. Thus a univariate feature vector is generated from all six maps, and these
6 features are concatenated to form a feature vector for the penultimate layer. The final softmax layer
then receives this feature vector as input and uses it to classify the sentence; here we assume binary
classification and hence depict two possible output states.

pus of 840 billion tokens of web data. For both
word2vec and GloVe we induce 300-dimensional
word vectors. We report results achieved using
GloVe representations in Table 2. Here we only
report non-static GloVe results (which uniformely
outperformed the static variant).

We also experimented with concatenating
word2vec and GloVe representations, thus cre-
ating 600-dimensional word vectors to be used
as input to the CNN. Pre-trained vectors may
not always be available for specific words (ei-
ther in word2vec or GloVe, or both); in such
cases, we randomly initialized the correspond-
ing sub-vectors. Results are reported in the fi-
nal column of Table 2. The relative performance

achieved using GloVe versus word2vec depends
on the dataset, and, unfortunately, simply concate-
nating these representations does necessarily seem
helpful. For how to better utilize multiple sets of
embeddings, we refer to (Zhang et al., 2016).

We also experimented with using long, sparse
one-hot vectors as input word representations, in
the spirit of Johnson and Zhang (2014). In this
strategy, each word is encoded as a one-hot vec-
tor, with dimensionality equal to the vocabulary
size. Though this representation combined with
one-layer CNN achieves good results on docu-
ment classification, it is still unknown whether
this is useful for sentence classification. We keep
the other settings the same as in the basic con-
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Dataset Non-static word2vec-CNN Non-static GloVe-CNN Non-static GloVe+word2vec CNN
MR 81.24 (80.69, 81.56) 81.03 (80.68,81.48) 81.02 (80.75,81.32)

SST-1 47.08 (46.42,48.01) 45.65 (45.09,45.94) 45.98 (45.49,46.65)
SST-2 85.49 (85.03, 85.90) 85.22 (85.04,85.48) 85.45 (85.03,85.82)
Subj 93.20 (92.97, 93.45) 93.64 (93.51,93.77) 93.66 (93.39,93.87)

TREC 91.54 (91.15, 91.92) 90.38 (90.19,90.59) 91.37 (91.13,91.62)
CR 83.92 (82.95, 84.56) 84.33 (84.00,84.67) 84.65 (84.21,84.96)

MPQA 89.32 (88.84, 89.73) 89.57 (89.31,89.78) 89.55 (89.22,89.88)
Opi 64.93 (64.23,65.58) 65.68 (65.29,66.19) 65.65 (65.15,65.98)

Irony 67.07 (65.60,69.00) 67.20 (66.45,67.96) 67.11 (66.66,68.50)

Table 2: Performance using non-static word2vec-CNN, non-static GloVe-CNN, and non-static
GloVe+word2vec CNN, respectively. Each cell reports the mean (min, max) of summary performance
measures calculated over multiple runs of 10-fold cross-validation. We will use this format for all tables
involving replications

figuration, and the one-hot vector is fixed during
training. Compared to using embeddings as in-
put to the CNN, we found the one-hot approach
to perform poorly for sentence classification tasks.
We believe that one-hot CNN may not be suit-
able for sentence classification, likely due to spar-
sity: the sentences are perhaps too brief to provide
enough information for this high-dimensional en-
coding. Alternative one-hot architectures (John-
son and Zhang, 2015) might be more appropriate
for this scenario.

4.3 Effect of filter region size

Region size MR
1 77.85 (77.47,77.97)
3 80.48 (80.26,80.65)
5 81.13 (80.96,81.32)
7 81.65 (81.45,81.85)
10 81.43 (81.28,81.75)
15 81.26 (81.01,81.43)
20 81.06 (80.87,81.30)
25 80.91 (80.73,81.10)
30 80.91 (80.72,81.05)

Table 3: Effect of single filter region size. Due to
space constraints, we report results for only one
dataset here, but these are generally illustrative.

We first explore the effect of filter region size
when using only one region size, and we set the
number of feature maps for this region size to 100
(as in the baseline configuration). We consider re-
gion sizes of 1, 3, 5, 7, 10, 15, 20, 25 and 30, and
record the means and ranges over 10 replications
of 10-fold CV for each. We report results in Ta-
ble 3 and Fig. 2. Because we are only interested
in the trend of the accuracy as we alter the region
size (rather than the absolute performance on each
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Figure 2: Effect of the region size (using only
one).

task), we show only the percent change in accu-
racy (AUC for Irony) from an arbitrary baseline
point (here, a region size of 3).

From the results, one can see that each dataset
has its own optimal filter region size. Practically,
this suggests performing a coarse grid search over
a range of region sizes; the figure here suggests
that a reasonable range for sentence classification
might be from 1 to 10. However, for datasets
comprising longer sentences, such as CR (max-
imum sentence length is 105, whereas it ranges
from 36-56 on the other sentiment datasets used
here), the optimal region size may be larger. We
also explored the effect of combining different fil-
ter region sizes, while keeping the number of fea-
ture maps for each region size fixed at 100. We
found that combining several filters with region
sizes close to the optimal single region size can
improve performance, but adding region sizes far
from the optimal range may hurt performance. For
example, when using a single filter size, one can
observe that the optimal single region size for the
MR dataset is 7. We therefore combined several
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different filter region sizes close to this optimal
range, and compared this to approaches that use
region sizes outside of this range. From Table
5, one can see that using (5,6,7),and (7,8,9) and
(6,7,8,9) – sets near the best single region size –
produce the best results. The difference is espe-
cially pronounced when comparing to the base-
line setting of (3,4,5). Note that even only using
a single good filter region size (here, 7) results in
better performance than combining different sizes
(3,4,5). The best performing strategy is to sim-
ply use many feature maps (here, 400) all with re-
gion size equal to 7, i.e., the single best region size.
However, we note that in some cases (e.g., for the
TREC dataset), using multiple different, but near-
optimal, region sizes performs best. We report its
results in table 4.

Multiple region size Accuracy (%)
(3) 91.21 (90.88,91.52)
(5) 91.20 (90.96,91.43)

(2,3,4) 91.48 (90.96,91.70)
(3,4,5) 91.56 (91.24,91.81)
(4,5,6) 91.48 (91.17,91.68)
(7,8,9) 90.79 (90.57,91.26)

(14,15,16) 90.23 (89.81,90.51)
(2,3,4,5) 91.57 (91.25,91.94)
(3,3,3) 91.42 (91.11,91.65)

(3,3,3,3) 91.32 (90.53,91.55)

Table 4: Effect of filter region size with several
region sizes using non-static word2vec-CNN on
TREC dataset

In light of these observations, we believe it ad-
visable to first perform a coarse line-search over a
single filter region size to find the ‘best’ size for
the dataset under consideration, and then explore

Multiple region size Accuracy (%)
(7) 81.65 (81.45,81.85)

(3,4,5) 81.24 (80.69, 81.56)
(4,5,6) 81.28 (81.07,81.56)

(10,11,12) 81.52 (81.27,81.87)
(11,12,13) 81.53 (81.35,81.76)
(3,4,5,6) 81.43 (81.10,81.61)
(6,7,8,9) 81.62 (81.38,81.72)
(7,7,7) 81.63 (81.33,82.08)

(7,7,7,7) 81.73 (81.33,81.94)

Table 5: Effect of filter region size with several
region sizes on the MR dataset.
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Figure 3: Effect of the number of feature maps.

the combination of several region sizes nearby this
single best size, including combining both differ-
ent region sizes and copies of the optimal sizes.

4.4 Effect of number of feature maps for
each filter region size

We again hold other configurations constant, and
thus have three filter region sizes: 3, 4 and 5. We
change only the number of feature maps for each
of these relative to the baseline of 100; we con-
sider values ∈ {10, 50, 100, 200, 400, 600, 1000,
2000}. We report results in Fig. 3.

The ‘best’ number of feature maps for each fil-
ter region size depends on the dataset. However,
it would seem that increasing the number of maps
beyond 600 yields at best very marginal returns,
and often hurts performance (likely due to overfit-
ting). Another salient practical point is that it takes
a longer time to train the model when the number
of feature maps is increased.

In practice, the evidence here suggests perhaps
searching over a range of 100 to 600. Note that
this range is only provided as a possible standard
trick when one is faced with a new similar sen-
tence classification problem; it is of course possi-
ble that in some cases more than 600 feature maps
will be beneficial, but the evidence here suggests
expending the effort to explore this is probably not
worth it. In practice, one should consider whether
the best observed value falls near the border of the
range searched over; if so, it is probably worth ex-
ploring beyond that border, as suggested in (Ben-
gio, 2012).

4.5 Effect of activation function
We consider seven different activation functions in
the convolution layer, including: ReLU (as per the
baseline configuration), hyperbolic tangent (tanh),
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Sigmoid function (Maas et al., 2013), SoftPlus
function (Dugas et al., 2001), Cube function (Chen
and Manning, 2014), and tanh cube function (Pei
et al., 2015). We use ‘Iden’ to denote the iden-
tity function, which means not using any activa-
tion function.

We show the numerical results of tanh, Softplus,
Iden and ReLU in table 6. For 8 out of 9 datasets,
the best activation function is one of Iden, ReLU
and tanh. The SoftPlus function outperform these
on only one dataset (MPQA). Sigmoid, Cube, and
tanh cube all consistently performed worse than
alternative activation functions. The performance
of the tanh function may be due to its zero cen-
tering property (compared to Sigmoid). ReLU has
the merits of a non-saturating form compared to
Sigmoid, and it has been observed to accelerate
the convergence of SGD (Krizhevsky et al., 2012).
One interesting result is that not applying any acti-
vation function (Iden) sometimes helps. This indi-
cates that on some datasets, a linear transformation
is enough to capture the correlation between the
word embedding and the output label. However, if
there are multiple hidden layers, Iden may be less
suitable than non-linear activation functions. Prac-
tically, with respect to the choice of the activation
function in one-layer CNNs, our results suggest
experimenting with ReLU and tanh, and perhaps
also Iden.

4.6 Effect of pooling strategy

We next investigated the effect of the pooling strat-
egy and the pooling region size. We fixed the filter
region sizes and the number of feature maps as in
the baseline configuration, thus changing only the
pooling strategy or pooling region size.

In the baseline configuration, we performed 1-
max pooling globally over feature maps, inducing
a feature vector of length 1 for each filter. How-
ever, pooling may also be performed over small
equal sized local regions rather than over the en-
tire feature map (Boureau et al., 2011). Each small
local region on the feature map will generate a sin-
gle number from pooling, and these numbers can
be concatenated to form a feature vector for one
feature map. The following step is the same as 1-
max pooling: we concatenate all the feature vec-
tors together to form a single feature vector for the
classification layer. We experimented with local
region sizes of 3, 10, 20, and 30, and found that
1-max pooling outperformed all local max pooling

configurations. This result held across all datasets.
We also considered a k-max pooling strategy

similar to (Kalchbrenner et al., 2014), in which the
maximum k values are extracted from the entire
feature map, and the relative order of these values
is preserved. We explored the k ∈ {5, 10, 15, 20},
and again found 1-max pooling fared best, consis-
tently outperforming k-max pooling.

Next, we considered taking an average, rather
than the max, over regions (Boureau et al., 2010a).
We experimented with local average pooling re-
gion sizes {3, 10, 20, 30}. We found that aver-
age pooling uniformly performed (much) worse
than max pooling, at least on the CR and TREC
datasets.

Our analysis of pooling strategies shows that 1-
max pooling consistently performs better than al-
ternative strategies for the task of sentence clas-
sification. This may be because the location of
predictive contexts does not matter, and certain
n-grams in the sentence can be more predictive
on their own than the entire sentence considered
jointly.

4.7 Effect of regularization

Two common regularization strategies for CNNs
are dropout and l2 norm constraints; we explore
the effect of these here. ‘Dropout’ is applied to the
input to the penultimate layer. We experimented
with varying the dropout rate from 0.0 to 0.9, fix-
ing the l2 norm constraint to 3, as per the baseline
configuration. The results for non-static CNN are
shown in in Fig. 4, with 0.5 designated as the base-
line. We also report the accuracy achieved when
we remove both dropout and the l2 norm con-
straint (i.e., when no regularization is performed),
denoted by ‘None’.

Separately, we considered the effect of the
l2 norm imposed on the weight vectors that
parametrize the softmax function. Recall that the
l2 norm of a weight vector is linearly scaled to
a constraint c when it exceeds this threshold, so
a smaller c implies stronger regularization. (Like
dropout, this strategy is applied only to the penulti-
mate layer.) We show the relative effect of varying
c on non-static CNN in Figure 5, where we have
fixed the dropout rate to 0.5; 3 is the baseline here
(again, arbitrarily).

From Figures 4 and 5, one can see that non-zero
dropout rates can help (though very little) at some
points from 0.1 to 0.5, depending on datasets. But
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Dataset tanh Softplus Iden ReLU
MR 81.28 (81.07, 81.52) 80.58 (80.17, 81.12) 81.30 (81.09, 81.52) 81.16 (80.81, 83.38)

SST-1 47.02 (46.31, 47.73) 46.95 (46.43, 47.45) 46.73 (46.24,47.18) 47.13 (46.39, 47.56)
SST-2 85.43 (85.10, 85.85) 84.61 (84.19, 84.94) 85.26 (85.11, 85.45) 85.31 (85.93, 85.66)
Subj 93.15 (92.93, 93.34) 92.43 (92.21, 92.61) 93.11 (92.92, 93.22) 93.13 (92.93, 93.23)

TREC 91.18 (90.91, 91.47) 91.05 (90.82, 91.29) 91.11 (90.82, 91.34) 91.54 (91.17, 91.84)
CR 84.28 (83.90, 85.11) 83.67 (83.16, 84.26) 84.55 (84.21, 84.69) 83.83 (83.18, 84.21)

MPQA 89.48 (89.16, 89.84) 89.62 (89.45, 89.77) 89.57 (89.31, 89.88) 89.35 (88.88, 89.58)
Opi 65.69 (65.16,66.40) 64.77 (64.25,65.28) 65.32 (64.78,66.09) 65.02 (64.53,65.45)

Irony 67.62 (67.18,68.27) 66.20 (65.38,67.20) 66.77 (65.90,67.47) 66.46 (65.99,67.17)

Table 6: Performance of different activation functions
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Figure 4: Effect of dropout rate. The accuracy
when the dropout rate is 0.9 on the Opi dataset
is about 10% worse than baseline, and thus is not
visible on the figure at this point.

imposing an l2 norm constraint generally does not
improve performance much (except on Opi), and
even adversely effects performance on at least one
dataset (CR).

We then also explored dropout rate effect when
increasing the number of feature maps. We in-
crease the number of feature maps for each filter
size from 100 to 500, and set max l2 norm con-
straint as 3. The effect of dropout rate is shown
in Fig. 6. We see that the effect of dropout rate
is almost the same as when the number of feature
maps is 100, and it does not help much. But we
observe that for the dataset SST-1, dropout rate ac-
tually helps when it is 0.7. Referring to Fig. 3, we
can see that when the number of feature maps is
larger than 100, it hurts the performance possibly
due to overfitting, so it is reasonable that in this
case dropout would mitigate this effect.

We also experimented with applying dropout
only to the convolution layer, but still setting the
max norm constraint on the classification layer to
3, keeping all other settings exactly the same. This
means we randomly set elements of the sentence
matrix to 0 during training with probability p, and

1 2 3 4 5 10 15 20 25 30 None
l2 norm constraint on weight vectors

1.0

0.5

0.0

0.5

1.0

C
h
a
n
g
e
 i
n
 a

cc
u
ra

cy
 (

%
)

MR SST-1 SST-2 Subj TREC CR MPQA Opi Irony

Figure 5: Effect of the l2 norm constraint on
weight vectors.
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Figure 6: Effect of dropout rate when using 500
feature maps.

then multiplied p with the sentence matrix at test
time. The effect of dropout rate on the convolu-
tion layer is shown in Fig. 7. Again we see that
dropout on the convolution layer helps little, and
large dropout rate dramatically hurts performance.

To summarize, contrary to some of the existing
literature (Srivastava et al., 2014), we found that
dropout had little beneficial effect on CNN perfor-
mance. We attribute this observation to the fact
that one-layer CNN has a smaller number param-
eters than multi-layer deep learning models. An-
other possible explanation is that using word em-
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Figure 7: Effect of dropout rate on the convolution
layer (The accuracy when the dropout rate is 0.9
on the Opi dataset is not visible on the figure at
this point, as in Fig. 4)

beddings helps to prevent overfitting (compared
to bag of words based encodings). However, we
are not advocating completely foregoing regular-
ization. Practically, we suggest setting the dropout
rate to a small value (0.0-0.5) and using a rela-
tively large max norm constraint, while increasing
the number of feature maps to see whether more
features might help. When further increasing the
number of feature maps seems to degrade perfor-
mance, it is probably worth increasing the dropout
rate.

5 Conclusions

We have conducted an extensive experimental
analysis of CNNs for sentence classification. We
conclude here by summarizing our main findings
and deriving from these practical guidance for re-
searchers and practitioners looking to use and de-
ploy CNNs in real-world sentence classification
scenarios.

From our experimental analysis we draw sev-
eral conclusions that we hope will guide future
work and be useful for researchers new to using
CNNs for sentence classification.

• We find that, even when tuning them to the
task at hand, the choice of input word vector
representation (e.g., between word2vec and
GloVe) has an impact on performance, how-
ever different representations perform better
for different tasks. At least for sentence
classification, both seem to perform better
than using one-hot vectors directly. Con-
sider starting with the basic configuration
described in Table 1 and using non-static
word2vec or GloVe.

• The filter region size can have a large ef-
fect on performance, and should be tuned.
Line-search over the single filter region size
to find the ‘best’ single region size. A rea-
sonable range might be 1∼10. However, for
datasets with very long sentences like CR, it
may be worth exploring larger filter region
sizes. Once this ‘best’ region size is iden-
tified, it may be worth exploring combining
multiple filters using regions sizes near this
single best size, given that empirically multi-
ple ‘good’ region sizes always outperformed
using only the single best region size.
• 1-max pooling uniformly outperforms other

pooling strategies.
• Consider different activation functions if pos-

sible: ReLU and tanh are the best overall can-
didates.
• Alter the number of feature maps for each fil-

ter region size from 100 to 600, and when this
is being explored, use a small dropout rate
(0.0-0.5) and a large max norm constraint.
Pay attention whether the best value found is
near the border of the range (Bengio, 2012).
If the best value is near 600, it may be worth
trying larger values.
• When assessing the performance of a model

(or a particular configuration thereof), it is
imperative to consider variance. Therefore,
replications of the cross-fold validation pro-
cedure should be performed and variances
and ranges should be considered.

Of course, the above suggestions are applicable
only to datasets comprising sentences with simi-
lar properties to the those considered in this work.
And there may be examples that run counter to our
findings here. Nonetheless, we believe these sug-
gestions are likely to provide a reasonable starting
point for researchers or practitioners looking to ap-
ply a simple one-layer CNN to real world sentence
classification tasks.

We recognize that manual and grid search over
hyperparameters is sub-optimal, and note that our
suggestions here may also inform hyperparameter
ranges to explore in random search or Bayesian
optimization frameworks.
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Abstract

We propose a neural network model for
coordination boundary detection. Our
method relies on two common properties
— similarity and replaceability in con-
juncts — in order to detect both sim-
ilar and dissimilar pairs of conjuncts.
The model improves the identification of
clause-level coordination using bidirec-
tional recurrent neural networks incorpo-
rating two properties as features. We show
that our model outperforms existing state-
of-the-art methods for the coordination an-
notated Penn Treebank and Genia corpus
without any syntactic information from
parsers.

1 Introduction

Coordination is a common structure and one of
major ambiguities in human languages. Although
coordination gives a large amount of syntactic or
semantic information of coordinated phrases, dis-
ambiguating coordination still remains one of the
difficult problems that state-of-the-art parsers can-
not cope with.

Given a coordinator word, how can we find
conjuncts? Coordinate structures are character-
ized by two properties: (1) similar structures of-
ten appear in conjuncts, and (2) one conjunct can
be replaced with another conjunct without los-
ing sentence consistency in syntax or semantics.
However, many previous studies of coordination
disambiguation rely only on the similarities be-
tween conjuncts, despite the fact that similarities
are not always helpful (Shimbo and Hara, 2007;
Hara et al., 2009; Hanamoto, 2012). For example,
the sentence “[at least two commercial versions
have been put on the U.S. market], and [an esti-
mated 500 have been sold].” does not have sim-

ilar phrases around the coordinating conjunction
“and.” Thus, existing methods sometimes fail to
capture coordination. In addition to the case where
there is a lack of similarities, many similarity-
based methods use handcrafted features, heuristic
rules, or external resources such as thesauri.

To overcome these problems, Ficler and Gold-
berg (2016) proposed a neural network model with
the replaceability feature as well as the similar-
ity feature. Their model produces candidate pairs
of conjuncts using probabilities assigned by the
Berkeley Parser. All candidate pairs are scored
on the basis of the similarity, replaceability and
parser-derived features, and then the best scored
pair is picked. Their approach outperforms ex-
isting constituent parsers for the Penn Treebank
and similarity-based coordination disambiguation
methods such as those by Shimbo and Hara (2007)
and Hara et al. (2009) for the Genia treebank. Al-
though Ficler and Goldberg’s (2016) method im-
proves performance significantly, it heavily de-
pends on the syntactic parser. They use the outputs
from the parser not only for candidates generation
and the feature for scoring, but also for computa-
tion of the similarities. The problems of propa-
gated errors from the parser and dependencies on
external resources still remain in their work.

In this work, we propose a neural network
model for coordination disambiguation that does
not require any external syntactic parser. Our
model exploits both the similarity and replaceabil-
ity properties to avoid suffering from an absence of
these properties (Section 2). We use bidirectional
recurrent neural networks (RNNs) to obtain the
contextual information of candidate conjuncts and
then compute similarity and replaceability fea-
tures without syntactic information (Section 3).
We show that our model performs well for both
types of coordination: NP coordination (whose
conjuncts tend to be similar) and S coordination
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(whose conjuncts make sense individually) and
outperforms the methods by Ficler and Goldberg
(2016) and Hara et al. (2009) in Section 4.

The contributions of our work include the fol-
lowing:

(i) Our model can capture dissimilar conjuncts
as well as similar ones using the similarity
and replaceability features.

(ii) Our model performs better than others with-
out any thesauri, feature engineering, or syn-
tactic parsers to extract conjunct features.

2 Coordinate Structure Analysis

2.1 Task Description

Coordination is a frequently occurring syntactic
structure along with several phrases, known as
conjuncts. The task of coordination disambigua-
tion is identifying the boundaries of each conjunct
with a single coordinator word as one coordinate
structure instance. Given a coordinator word (e.g.,
“and,” “or,” or “but”), a system must return each
conjunct span if the word actually plays the role of
a coordinator; otherwise, NONE is output for the
absence of coordination. The task sounds simple,
yet is difficult because two complex phenomena
appear in coordination.

1. A coordinator does not always connect two
conjuncts. Sometimes, a coordinate structure
consists of three or more consecutive con-
juncts. For example1,

“It was not an unpleasant evening, certainly,
thanks to [the high level of performance],
[the compositional talents of Mr. Douglas],
and25 [the obvious sincerity with which Mr.
Stoltzman chooses his selection].”

2. Two or more coordinate structures can be
found in the same sentence. In addition, one
coordinate structure can be nested inside an-
other. For example,

“Aside from [the Soviet economic plight]
and7 [talks on cutting (strategic) and12

(chemical) arms], one other issue the Sovi-
ets are likely to want to raise is naval force
reduction.”

1We write coordinator words with their position in a sen-
tence in the form of wordposition to distinguish them.

Figure 1: The coordination identification task and
our subtask.

In this work, we solve this task by focusing on
identifying the beginning and end of an entire co-
ordinate structure. Figure 1 shows our task. We at-
tempt to identify two conjuncts to the left and right
sides of a conjunction. We call these conjuncts the
preconjunct and post-conjunct, respectively2. In
addition, we assume that the end of the precon-
junct and the beginning of the post-conjunct adjoin
a coordinator word; thus it appears that we work
on the subtask of coordinate structure span identi-
fication. After identifying a coordination span, we
recover individual conjuncts within the span.

2.2 Conjunct Properties

Coordination has many unique traits other than its
structure. We focus on the key properties between
conjuncts that can be helpful to disambiguate a co-
ordination boundary.

(a) Similarity: Conjuncts in a coordination have
a similar structure or meaning.

(b) Replaceability: A conjunct can be replaced
with another conjunct in the same coordina-
tion.

Conjuncts tend to have similar semantic or syn-
tactic constituents. For example, the three con-
juncts “the high level of performance,” “the com-
positional talents of MR. Douglas,” and “the ob-
vious sincerity with which Mr. Stolzman chooses
his selection” have part-of-speech (POS) tag se-
quences starting with “DT JJ NN(S) IN NN(P)

2If two or more conjuncts appear before a conjunction, we
regard them as one conjunct.
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(a) Similar structures between conjuncts

1. Aside from [the Soviet economic plight], one other . . .

2. Aside from [talks on cutting (strategic) arms], one other . . .

3. Aside from [talks on cutting (chemical) arms], one other . . .

(b) Replaceability

Figure 2: Characteristic of conjuncts

. . . ” in common. At a phrase level, they all are
categorized as NP and have identical tree struc-
tures (Figure 2 (a)). Many previous works exploit
this characteristic to detect conjuncts (Shimbo and
Hara, 2007; Hara et al., 2009).

The replaceability of conjuncts is also often ob-
served. A sentence is still consistent even if one
conjunct is replaced with another one. For exam-
ple, the coordination “Aside from [the Soviet eco-
nomic plight] and [talks on cutting (strategic) and
(chemical) arms]” can be transformed into “Aside
from [talks on cutting (chemical) and (strategic)
arms] and [the Soviet economic plight]” by ex-
changing conjuncts. Using this property, we can
expand a coordinate structure as one sentence by
one conjunct (Figure 2 (b)). Replaceability has re-
cently been used to capture conjuncts (Ficler and
Goldberg, 2016).

The two properties described above are essen-
tial clues to identify conjunct spans; however, they
are not always available. Coordination sometimes
has different types of conjuncts or an ellipsis in
conjuncts. For similarity, when conjuncts belong
to the S type or are different types of syntactic
categories, their semantic and syntactic structures
can be apart from each other (e.g., “[We turned
the trading system on]S, and [it did whatever it
was programmed to do]S.” ; “Bill is [in trou-
ble]PP and [trying to come up with an excuse]VP.”).
For replaceability, when words are omitted in a
latter conjunct, we cannot replace one conjunct
with another unless we supplement omitted words
(e.g., “[Honeywell’s contract totaled $69.7 mil-
lion], and [IBM’s $68.8 million].”). To cope with
the case where there is a lack of similarity or
replaceability, our proposed method incorporates
both features.

3 Proposed Method

Our proposed model calculates the scores of
all possible preconjunct and post-conjunct pairs.
Given a sentence x = {x1, x2, x3, . . . , xN} and
coordinator word xk, the preconjunct and post-
conjunct can be written as s1 = {xi, . . . , xk−1}
(1 ≤ i ≤ k − 1) and s2 = {xk+1, . . . , xj}
(k + 1 ≤ j ≤ N), respectively. As we mentioned
in Section 2, we fix the end of the preconjunct at
k − 1 and the beginning of the post-conjunct at
k + 1. Thus, our model learns and predicts a set
of spans (i, j), which indicate the two positions
of the beginning and end of a coordination. We
identify preconjuncts and post-conjuncts by pick-
ing the highest scoring pairs as predicted conjunct
spans.

Figure 3 shows an overview of our neural net-
work architecture. This model consists of four
components.

Input Layer: Map a sequence of one-hot words
and POS tags onto their representations from
embeddings.

RNN Layer: Produce a sequence of sentence-
level representations based on contexts using
a bidirectional RNN.

Feature Extractor: Generate the conjunct
phrase representations and feature vectors of
possible pairs of conjuncts.

Output Layer: Calculate the scores of pairs of
conjuncts using MLP.

In the following subsections, we describe these
components in detail.

3.1 Input Layer

The first step of our neural network model is to
represent a sequence of words and POS tags in
distributed vectors, known as embeddings (Ben-
gio et al., 2003). Our model receives a sequence of
one-hot encoded words and POS tags {xwordn }Nn=1,
{xtagn }Nn=1 and then looks them up in the matri-
ces Eword ∈ Rdword×|vword|, Etag ∈ Rdtag×|vtag |,
resulting in a sequence of real-valued vectors
hwordn ∈ Rd, htagn ∈ Rd, respectively. These real-
valued vectors are concatenated as the input of the
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Figure 3: Overview of the architecture for coordination analysis.

next layer.

hwordt = Wwordxwordt

htagt = W tagxtagt

h(0)
t = [hwordt ;htagt ]

h(0) =
{
h(0)

1 , . . . ,h(0)
N

} (1)

3.2 RNN Layer
A sequence of distributed vectors is transformed
into hidden state vectors using stacked bidirec-
tional RNNs. Bidirectional RNNs process a time
series of inputs from the past to a future direc-
tion and from the future to a past direction. We
can make use of left-to-right (forward) and right-
to-left (backward) contexts using these networks.
The output of the `-th layer of stacked bidirec-
tional RNNs at a time step t in the forward direc-
tion, which is denoted as hf`,t, is computed as

hf`,t = f(hf`,t−1,h`−1,t) (2)

where hf`,t−1 is the hidden state vector of the same
layer at the previous time step t−1 in the same di-
rection and h`−1,t is the hidden state vector of the
previous bidirectional layer at the same time step
t. The hidden vector of the `-th layer of stacked
bidirectional RNNs at a time step t in the back-
ward direction is also computed in the same way.
The stacked bidirectional RNNs that we use in this
work output hidden state vectors by concatenating

the vectors {hf`,t}Tt=1 from the forward direction
and {hb`,t}Tt=1 from the backward direction at each
time step t in every layer.

In general, an RNN has a function f(·) ex-
pressed as

f(xt,ht−1) = g(Wxt + Uht−1)

where g(·) is an arbitrary nonlinear function such
as the hyperbolic tangent tanh(·) or rectified lin-
ear unit (ReLU). We use the long short term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
as the function f(·) to prevent backpropagated er-
rors from vanishing or exploding, which arise in
RNNs (Pascanu et al., 2013).

3.3 Feature Extractor
This component produces a feature vector based
on a representation of a preconjunct and post-
conjunct and a series of vectors {ht}Tt=1 from bidi-
rectional RNNs. We compute the preconjunct rep-
resentation vprei and post-conjunct vpostj using the
function g(·). In this work, we define element-
wise averaging as the function g(·).
g(hl:m) = average

(
hl,hl+1, . . . ,hm−1,hm

)
(3)

Thus, vprei and vpostj are expressed as

vprei = g(hi:k−1) (1 ≤ i ≤ k − 1)

vpostj = g(hk+1:j) (k + 1 ≤ j ≤ N)
(4)
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Then vprei and vpostj are fed into the following two
feature extraction functions.

Similarity feature vector
In order to capture the similarity between the pre-
conjunct and the post-conjunct, the feature vector
is computed as follows:

fsim(vprei ,vpostj ) =
[|vprei − vpostj |;vprei � vpostj

]
(5)

where |vprei − vpostj | is the absolute value of
element-wise subtraction, and vprei � vpostj is
element-wise multiplication. These subtraction
and multiplication operations are intended to
model the semantic distance and relatedness (Ji
and Eisenstein, 2013; Tai et al., 2015; Hashimoto
et al., 2016).

Replaceability feature vector
We define a feature vector based on the conjunct
replaceability as follows.

frepl(h1:N , i, j, k) =[|hi−1 � hi − hi−1 � hk+1|;
|hj � hj+1 − hk−1 � hj+1|

] (6)

where hi−1 is the context vector that is linked to
the heads of conjuncts and hj+1 is the context vec-
tor that is linked to the tails of conjuncts. The first
subtraction |hi−1�hi−hi−1�hk+1| is the differ-
ence between two context-conjunct connections at
the beginning of coordination. The second sub-
traction |hj � hj+1 − hk−1 � hj+1| is the differ-
ence between two context-conjunct connections at
the end of coordination. These distance measures
can be interpreted as difficulty in replacing con-
juncts. Note that the function frepl(h1:N , i, j, k)
returns a zero vector when i = 0 or j = N .

3.4 Output Layer
This layer computes the scores of pairs of con-
juncts based on the similarity feature vectors and
the replaceability feature vectors. The network is
a multilayered perceptron (MLP) that consists of
multiple layers of computational units intercon-
nected in a feed-forward way. The score of a pre-
conjunct (i, k − 1) and post-conjunct (k + 1, j)
candidate pair is calculated as

Score(i, j) =

MLP
([
fsim(vprei ,vpostj );

frepl(h1:N , i, j, k)
]) (7)

To cope with the absence of coordination
against a coordinator, we also calculate the score
for a candidate of NONE. The score NONE is sim-
ply computed as the product of a weight vector and
the sentence-level representation of the coordina-
tor from the RNN layer.

Score(NONE) = w · hk + b (8)

Using these scoring functions, we assign scores
to all possible pairs of conjuncts. Thus, when the
length of a sentence is N and a coordinator ap-
pears as the k-th word, we obtain (k − 1)× (N −
k)+1 candidates and choose the pair with the best
score as the predicted conjuncts with the softmax
function.

s = [Score(NONE); Score(1, k + 1); . . . ;
Score(1,N); . . . ; Score(k − 1, N)]

p̂θ(y|x) = softmax(s)
ŷ = arg max

y

(
p̂θ(y|x)

)
(9)

3.5 Learning

The loss function is the negative log-likelihood of
the true pair of conjuncts y(k):

J(θ) = −
D∑
d=1

log p̂θ(y(d)|x(d)) +
λ

2
‖θ‖2 (10)

where D is the number of occurrences of coor-
dinator words in a training dataset, θ is a set of
model parameters, and the hyperparameter λ ad-
justs the regularization strength. The model pa-
rameters are optimized by minimizing the loss us-
ing the stochastic gradient descent (SGD).

4 Experiments

We evaluate our proposed model using the coor-
dination annotated Penn Treebank (Ficler, 2016)
and the Genia treebank beta (Kim et al., 2003). We
present the number of occurrences of coordinator
words and the number of sentences with coordina-
tion in Table 13.

3We consider “and,” “or,” “but,” “nor,” and “and/or” in the
PTB and “and,” “or,” and “but” in the Genia as coordinator
words following Ficler and Goldberg (2016) and Hara et al.
(2009).
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# Coordinators # Sentences
Penn Treebank 27903 (24450) 21314 (19095)

Training 22670 (17893) 17282 (13932)

Development 953 (848) 742 (673)

Testing 1282 (1099) 985 (873)

Genia 3598 (3598) 2508 (2508)

Table 1: The number of coordinators in the
datasets. (#count) indicates the number of actual
presences of coordination.

4.1 Evaluation Using the Penn Treebank

4.1.1 Experimental Setup
We use the coordination annotated Penn Treebank
and divide it into wsj 2-21 as the training set, wsj
22 as the development set, and wsj 23 as the test-
ing set. We use pretrained 200-dimensional word
embeddings from the New York Times section
in English Gigaword (fifth edition) (Parker et al.,
2011) using Word2Vec4 with its default parameter.
For the POS tags, we use 10-way jackknifing using
the Stanford POS Tagger (Toutanova et al., 2003)
and initialize the 50-dimensional embeddings with
the uniform distribution within [−1, 1]. We use
three-layer bidirectional LSTMs as an RNN layer.
The dimensionality of the LSTM hidden vectors
in each direction is selected from {400, 600}. Our
MLP consists of one hidden layer with ReLU ac-
tivation, and an output layer. The number of the
hidden layer units is selected from {1200, 2400}.
The model parameters are optimized by the mini-
batched SGD with a batch size of 20. The learning
rate is automatically tuned by Adam (Kingma and
Ba, 2014). When training, we apply dropout (Sri-
vastava et al., 2014) to the embeddings, input vec-
tors of each LSTM in bidirectional LSTMs (except
the first layer), and the hidden layer of the MLP.
Dropout ratio is selected from {0.33, 0.50}. We
choose the regularization strength λ from {0.0001,
0.0005, 0.001}. We train our model for 50 itera-
tions and choose the model that achieves the best
F1 score5 on the development set and evaluate it
with the testing set. We present the final hyperpa-
rameters choice in Table 2.

4.1.2 Evaluation Metrics
We evaluate our model on the basis of the abil-
ity to predict the beginning and end of each co-

4https://code.google.com/archive/p/word2vec/
5This F1 score is measured for the whole criterion, which

is mentioned later.

Parameter Value
Dimension of the LSTM hidden vector 600
MLP units in the hidden layer 2400
Dropout ratio (all) 0.50
Regularization term λ 0.0001

Table 2: The final hyperparameters in the experi-
ment for the Penn Treebank.

ordination (whole) with the precision, recall, and
F1 measures. In another setup, we focus on NP
coordination6. To compare the performance with
Ficler and Goldberg (2016), we also evaluate our
model with two conjunct spans that are adjacent
to the coordinator (inner), the first and last con-
juncts (outer), and all complete conjuncts (exact).
Furthermore, in order to investigate the effective-
ness of our proposed features, we perform the ex-
periment with a simple baseline model that uses
two averaged vectors as features (Eq. 3) and feeds
them into the MLP instead of the similarity and
replaceability features (Eq. 7).

Note that our proposed model learns and pre-
dicts the coordinate structure boundaries and not
each conjunct; thus, when evaluating the inner,
outer, and exact metrics, we simply divide the pre-
conjuncts into subconjuncts using the character “,”
as the divider.

4.1.3 Results
We present the results in Table 3. For all metrics,
the recall values are low compared with the preci-
sion values. Our model is likely to produce NONE

for some coordinators by mistake. The proposed
model suffers from a worse outer metric than the
inner metric. Intuitively, this is because the pre-
conjunct for the inner prediction is placed next to
a coordinator and it is easier to identify its span,
while outer conjuncts occur apart from the coordi-
nators.

Table 4 summarizes the performance of differ-
ent uses of features. The similarity and replace-
ability features work better than the baseline inde-
pendently. However, the joint model performs the
best by exploiting both features.

Table 5 presents a comparison with existing
methods. For all coordination, our proposed
method outperforms the state-of-the-art models
with a test set F1 score of 72.81 (0.11 better than

6We consider that NP and NX are NP coordination as in
Ficler and Goldberg (2016).
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All NP
P R F P R F

whole 75.92 72.87 74.36 77.90 75.05 76.45
outer 72.48 69.57 70.99 76.24 73.45 74.82
inner 74.07 71.10 72.56 77.43 74.59 75.99
exact 72.11 69.22 70.63 75.77 72.99 74.35

Table 3: Performance difference by the metrics for
the PTB development set.

All NP
P R F P R F

Baseline 70.83 68.75 69.77 74.27 72.87 73.57
fsim 71.79 69.92 70.84 74.76 73.22 73.98
frepl 74.29 71.58 72.91 76.12 73.68 74.88
Both 75.92 72.87 74.36 77.90 75.05 76.45

Table 4: Performance of different sets of features
for the PTB development set for the outer met-
ric. “fsim,” “frepl,” and “Both” indicate the use
of similarity feature vectors, replaceability feature
vectors, and both feature vectors, respectively.

the previously reported result). For NP coordina-
tion, our model achieves competitive results, de-
spite the rough extraction of conjuncts from pre-
conjuncts, even for inner-conjunct prediction.

4.2 Evaluation Using Genia

4.2.1 Experimental Setup
We also evaluate our model with the Genia tree-
bank beta to compare with the previous work of
Hara et al. (2009) and Ficler and Goldberg (2016).
The settings of this experiment are based on those
presented in Section 4.1.1, except for the follow-
ing hyperparameters: Word embeddings are ini-
tialized by the pretrained 200-dimensional repre-
sentation that BioASQ (Tsatsaronis et al., 2012)
provides. These embeddings are trained from
biomedical abstracts by using Word2Vec. We use
gold POS as in Hara et al. (2009), and the dimen-
sion of the POS embeddings is 50. For regulariza-
tion, we set λ = 0.0005 and train our model for
20 iterations.

4.2.2 Evaluation Metrics
As in Hara et al. (2009), we measure the recall val-
ues of coordinate structure boundary prediction,
disregarding individual conjunct spans7. Thus, we
do not decode conjuncts because our model can
be compared directly. Coordination phrases in the

7In the Genia corpus, all coordinator words are associated
with conjuncts; thus, there is no absence of coordination, as
described in Table 1.

Dev Test
P R F P R F

All Coordination
Berkeley 70.14 70.72 70.42 68.52 69.33 68.92
Zpar 72.21 72.72 72.46 68.24 69.42 68.82
Ficler16 72.34 72.25 72.29 72.81 72.61 72.7
Ours 74.07 71.10 72.56 73.46 72.16 72.81

NP Coordination
Berkeley 67.53 70.93 69.18 69.51 72.61 71.02
Zpar 69.14 72.31 70.68 69.81 72.92 71.33
Ficler16 75.17 74.82 74.99 76.91 75.31 76.1
Ours 77.43 74.59 75.99 75.87 74.76 75.31

Table 5: Performance of inner-conjunct prediction
on all coordination and on NP coordination for the
PTB. The results for the three methods other than
our method are reported in Ficler16 : (Ficler and
Goldberg, 2016).

COOD # Ours Ficler16 Hara09
Overall 3598 65.98 64.14 61.5

NP 2317 66.59 65.08 64.2
VP 465 63.87 71.82 54.2

ADJP 321 78.50 74.76 80.4
S 188 52.65 17.02 22.9

PP 167 53.89 56.28 59.9
UCP 60 50.00 51.66 36.7

SBAR 56 78.57 91.07 51.8
ADVP 21 85.71 80.95 85.7
Others 3 33.33 33.33 66.7

Table 6: Recall with Genia treebank beta. The
numbers in the columns “Ficler16” and “Hara09”
are taken from their papers; Ficler16 : (Ficler and
Goldberg, 2016) ; Hara09 : (Hara et al., 2009).

Genia treebank are explicitly annotated with a spe-
cial label (COOD). Making use of this label, we
also measure the performance for each type of co-
ordination, as reported in previous work. We eval-
uate our model by five-fold cross-validation, as in
Hara et al. (2009).

4.2.3 Results
We present the results in Table 6. For all coordina-
tion, our model outperforms the scores reported by
Hara et al. (2009) and Ficler and Goldberg (2016).
In the evaluation of each type, our method greatly
improves the performance for VP, SBAR, and es-
pecially the S type of coordination compared with
the similarity-based method of Hara et al. (2009).
Regarding the S type, our results are considerably
better than those of Ficler and Goldberg (2016).
As presented in Table 4, our proposed replaceabil-
ity feature significantly contributes to the detection
of this type of coordination, where only the simi-
larity feature does not work because of a collapse
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of similarity between conjuncts. The results for
NP coordination, which accounts for nearly 65%
of all coordination, are fairly good for the Genia
corpus; however, the model proposed by Ficler
and Goldberg (2016) exhibits better performance
than ours for the PTB for the inner metric.

5 Related Works

Approaches using the similarity property between
conjuncts have been developed in previous works.
Regarding the task of coordination identification
in Japanese, Kurohashi and Nagao (1994) used
a chart to compute the similarity between con-
juncts and identify conjunct spans with a dy-
namic programming technique. Shimbo and Hara
(2007) proposed a sequence alignment model with
dynamic programming to capture locally similar
structures in two conjuncts on the basis of the
set of features including word surfaces, POS tags,
and morphological characteristics. The similar-
ity score in their work is computed by a weighted
linear combination (perceptron) of manually de-
signed features assigned to edges and nodes in
graphs, while the score in the work of Kurohashi
and Nagao (1994) is calculated from a score func-
tion that uses some rules based on the observa-
tion of coordination. Although the method of
Shimbo and Hara (2007) could not handle nested
coordinate structures, Hara et al. (2009) extended
their work to cope with nested coordination as
well as three or more than consecutive conjuncts.
Their proposed method defined several production
rules to build consistent coordination trees with
discriminative functions based on the similarity
score. Hanamoto (2012) used dual decomposi-
tion to combine an HPSG parser with the model
of Hara et al. (2009).

The method of use of the replaceability prop-
erty has recently been adopted by Ficler and Gold-
berg (2016). They incorporated the replaceability
property between conjuncts into the feature repre-
sentations, as well as the similarity property. They
made use of these properties to assign scores to
candidate pairs of conjuncts. Their method con-
sists of three components: a binary classifier to
detect the presence of coordination, the parser ex-
tended from the Berkeley Parser (Petrov et al.,
2006) to generate candidate pairs, and a discrim-
inative neural network to identify conjuncts. As
similarity features, they compute the Euclidean
distance between the two representations of con-

juncts, which are computed from syntactic trees
generated by the parser, and this is more effi-
cient with respect to the time complexity com-
pared with the methods with graphs. The replace-
ability feature vectors are produced from bidirec-
tional LSTMs by processing two sentences that
are produced by leaving out one of two conjuncts.
Their model then scores all candidate pairs of con-
juncts from feature vectors including similarities,
replaceabilities, and additional three values de-
rived from the probabilities assigned by the parser.
The best scored pair is selected as the most prob-
able conjuncts. For the Genia corpus, their model
outperformed the method of Hara et al. (2009)
which only relied on the similarity property. Us-
ing neural networks, they overcame the problems
of manually elaborated features and of access to
external sources such as thesauri. However, their
method heavily depends on their extension of the
Berkeley Parser. Therefore, the problem of error
propagation between components and the parser
still remains.

Kawahara and Kurohashi (2008) tried to resolve
coordination disambiguation without any similar-
ities on the basis of the dependency relations and
generative probabilities of phrases including con-
juncts. Yoshimoto et al. (2015) extended the
graph-based dependency parsing algorithm to han-
dle coordinations.

6 Conclusions

We propose a neural network model to disam-
biguate coordinate structure boundaries. Our
method relies on two properties: (i) conjuncts tend
to have a similar structure in syntax or semantics
and (ii) conjuncts can be replaced with each other,
maintaining sentence consistency. On the basis of
these observations, we compute two feature vec-
tors from a sequence of vectors produced by bidi-
rectional RNNs. Our model can capture the con-
nections between conjuncts and other parts of sen-
tences and sentence-level coordination. As a re-
sult, our model outperforms existing methods and
achieves state-of-the-art performance. The biggest
contribution of our work is resolving dependency
on information from syntactic parsers.

We plan to improve our model to handle three or
more conjuncts in future work. In addition, since
our method treats nested coordinate structures in-
dividually, we expect to create constraints to build
non-overlapping coordination spans.
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Abstract

In this article, we propose to investigate
a new problem consisting in turning a
distributional thesaurus into dense word
vectors. We propose more precisely a
method for performing such task by asso-
ciating graph embedding and distributed
representation adaptation. We have ap-
plied and evaluated it for English nouns
at a large scale about its ability to re-
trieve synonyms. In this context, we have
also illustrated the interest of the devel-
oped method for three different tasks: the
improvement of already existing word em-
beddings, the fusion of heterogeneous rep-
resentations and the expansion of synsets.

1 Introduction

Early work about distributional semantics
(Grefenstette, 1994; Lin, 1998; Curran and
Moens, 2002) was strongly focused on the notion
of distributional thesaurus. Recent work in this
domain has been more concerned by the notions
of semantic similarity and relatedness (Budanitsky
and Hirst, 2006) and by the representation of dis-
tributional data. This trend has been strengthened
even more recently with all work about distributed
word representations and embeddings, whether
they are built by neural networks (Mikolov et al.,
2013) or not (Pennington et al., 2014).

From a more global perspective, distributional
thesauri and distributional data, i.e. distributional
contexts of words, can be considered as dual rep-
resentations of the same semantic similarity infor-
mation. Distributional data are an intensional form
of this information that can take an extensional
form as distributional thesauri by applying a simi-
larity measure to them. Going from an intensional
to an extensional representation corresponds to the

distributional
context wi

word mi word mk

distributional
context wk

entries

w1
…

wi
…

wn

neighbors

thesaurus embedding

thesaurus building

Figure 1: Duality of semantic information

rather classical process underlying the building of
distributional thesauri. In the context of word em-
beddings, Perozzi et al. (2014a) extend this pro-
cess to the building of lexical networks.

Going to the other way, from an extensional
to an intensional representation, is, as far as we
know, a new problem in the context of distribu-
tional semantics. The interest of this transforma-
tion is twofold. First, whatever the initial form
of the semantic knowledge, it can be turned into
the most suitable form for a particular use. For
instance, thesauri are more suitable for tasks like
query expansion while word embeddings are more
adapted as features for statistical classifiers. Sec-
ond, each form is also associated with specific
methods of improvement. A lot of work has
been done for improving distributional contexts
by studying various parameters, which has led to
an important improvement of distributional the-
sauri. Conversely, work such as (Claveau et al.,
2014) has focused on methods for improving the-
sauri themselves. It would clearly be interesting
to transpose the improvements obtained in such
a way to distributional contexts, as illustrated by
Figure 1.

Hence, we propose in this article to investigate
the problem of turning a distributional thesaurus
into word embeddings, that is to say embedding
a thesaurus. We will show that such process can
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be achieved without losing too much information
and moreover, that its underlying principles can
be used for improving already existing word em-
beddings. Finally, we will illustrate the interest
of such process for building word embeddings in-
tegrating external knowledge more efficiently and
extending this knowledge.

2 Embedding Distributional Thesauri

A distributional thesaurus is generally viewed as a
set of entries with, for each entry, a list of semantic
neighbors ranked in descending order of seman-
tic similarity with this entry. Since the neighbors
of an entry are also entries of the thesaurus, such
thesaurus can be considered as a graph in which
vertices are words and edges are the semantic
neighborhood relations between them, weighted
according to their semantic similarity. The result-
ing graph is undirected if the semantic similarity
measure between words is symmetric, which is
the most common case. Such representation was
already adopted for improving distributional the-
sauri by reranking the neighbors of their entries
(Claveau et al., 2014) for instance.

One specificity of distributional thesauri from
that perspective is that although the weight be-
tween two words is representative of their seman-
tic similarity, we know from work such as (Fer-
ret, 2010; Claveau et al., 2014) that the relevance
of the semantic neighbors based on this weight
strongly decreases as the rank of the neighbors
increases. Consequently, our strategy for embed-
ding distributional thesauri is two-fold: first, we
build an embedding by relying on methods for em-
bedding graphs, either by exploiting directly their
structure or from their representation as matrices;
second, we adapt the embedding resulting from
the first step according to the specificities of dis-
tributional thesauri. We detail these two steps in
the next two sections.

2.1 Graph Embedding

The problem of embedding graphs in the perspec-
tive of dimension reduction is not new and was
already tackled by much work (Yan et al., 2007),
going from spectral methods (Belkin and Niyogi,
2001) to more recently neural methods (Perozzi
et al., 2014b; Cao et al., 2016). As graphs can be
represented by their adjacency matrix, this prob-
lem is also strongly linked to the matrix factoriza-
tion problem. The basic strategy is to perform the

eigendecomposition of the matrix as for instance
in the case of Latent Semantic Analysis (LSA)
(Landauer and Dumais, 1997). However, such de-
composition is computationally expensive and for
large matrices, as in the context of Collaborative
Filtering (Koren, 2008), less constrained matrix
factorization techniques are used.

For turning a distributional thesaurus into word
embeddings, we tested three different methods:
• the LINE algorithm (Tang et al., 2015), a re-

cent method for embedding weighted graphs;
• the application of Singular Value Decompo-

sition (SVD) to the adjacency matrix of the
thesaurus;
• the matrix factorization approach proposed

by Hu et al. (2008), also applied to the ad-
jacency matrix of the thesaurus.

LINE defines a probabilistic model over the
space V ×V , with V , the set of vertices of the con-
sidered graph. This probabilistic model is based
on the representation of each vertex as a low-
dimensional vector. This vector results from the
minimization of an objective function based on the
Kullback-Leibler divergence between the proba-
bilistic model and the empirical distribution of
the considered graph. This minimization is per-
formed by the Stochastic Gradient Descent (SGD)
method. Tang et al. (2015) propose more precisely
two probabilistic models: one is based on the di-
rect relation between two vertices while the sec-
ond defines the proximity of two vertices accord-
ing to the number of neighbors they share. We
adopted the second model, which globally gives
better results on several benchmarks.

In our second option, SVD factorizes T , the ad-
jacency matrix of the thesaurus to embed, into the
product U ·Σ ·V ᵀ. U and V are orthonormal and Σ
is a diagonal matrix of eigenvalues. We classically
adopted the truncated version of SVD by keeping
only the first d elements of Σ, which finally leads
to Td = Ud·Σd·V ᵀ

d . Levy et al. (2015) investigated
in the context of word co-occurrence matrices the
best option for the low-dimensional representation
of words as the usual setting was Ud · Σd while
Caron (2001) suggested that Ud · ΣP

d with P < 1
would be a better option. They found that P = 0
or P = 0.5 are clearly better than P = 1, with a
slight superiority for P = 0. Similarly, we found
P = 0 to be the best option.

Our last choice is based on a less constrained
form of matrix factorization where T is decom-
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posed into two matrices in such a way that U ·V =
T̂ ≈ T , with T ∈ Rm·n, U ∈ Rm·d, V ∈ Rd·n and
d � m,n. U and V are obtained by minimizing
the following expression:∑

i,j

(tij − uᵀ
i vj)

2 + λ(‖ui‖2 + ‖vj‖2) (1)

where the first term minimizes the reconstruction
error of T by the product U · V while the sec-
ond term is a regularization term, controlled by the
parameter λ for avoiding overfitting. We used U
as embedding of the initial thesaurus. (Hu et al.,
2008) is a slight variation of this approach where
tij is turned into a confidence score and the min-
imization of equation 1 is performed by the Al-
ternating Least Squares method. One of the in-
terests of this matrix factorization approach is its
ability to deal with undefined values, which im-
plements an implicit feedback in the context of
recommender systems and can deal in our con-
text with the fact that the input graph is generally
sparse and does not include the furthest semantic
neighbors of an entry.

2.2 From Graph to Thesaurus Embeddings

As mentioned previously, all the graph embedding
methods of the previous section exploit the seman-
tic similarity between words but for an entry, this
similarity is not linearly correlated with the rank
of its relevant neighbors in the thesaurus. In other
words, the relevance of the semantic neighbors of
an entry strongly decreases as their rank increases
and the first neighbors are particularly important.

For taking into account this observation, we
have adopted a strategy consisting in using the first
neighbors of each entry of the initial thesaurus as
constraints for adapting the embeddings built from
this thesaurus by the graph embedding methods
we consider. Such adaptation has already been
tackled by some work in the context of the in-
jection of external knowledge made of semantic
relations into embeddings built mainly by neural
methods such as the Skip-Gram model (Mikolov
et al., 2013). Methods for performing such injec-
tion can roughly be divided into two categories:
those operating during the building of the embed-
dings, generally by modifying the objective func-
tion supporting this building (Yih et al., 2012;
Zhang et al., 2014), and those applied after the
building of the embeddings (Yu and Dredze, 2014;
Xu et al., 2014). We have more particularly used
or adapted two methods from the second category

and transposed one method from the first category
for implementing our endogenous strategy.

The first method we have considered is the
retrofitting method from Faruqui et al. (2015).
This method performs the adaptation of a set of
word vectors qi by minimizing the following ob-
jective function through a label propagation algo-
rithm (Bengio et al., 2006):

n∑
i=1

[
‖qi − q̂i‖2 +

∑
(i,j)∈E

‖qi − qj‖2
]

(2)

where q̂i are the qi vectors after their adaptation.
The first term is a stability term ensuring that the
adapted vectors do not diverge too much from the
initial vectors while the second term represents an
adaptation term, tending to bring closer the vec-
tors associated with words that are part of a rela-
tion from an external knowledge source E. In our
case, this knowledge corresponds to the relations
between each entry of the initial thesaurus and its
first neighbors.

The second method, counter-fitting (Mrkšić
et al., 2016), is close to retrofitting and mainly
differentiates from it by adding to the objective
function a repelling term for pushing vectors cor-
responding to antonymous words away from each
other. However, a distributional thesaurus does not
contain identified antonymous words1. Hence, we
discarded this term and used the following objec-
tive function, minimized by SGD:

(3)

N∑
i =1

∑
j ∈N(i)

τ(dist(q̂i, q̂j)− dist(qi, qj))

+
∑

(i,j) ∈E
τ(dist(q̂i, q̂j))

with dist(x, y) = 1 − cos(x, y) and τ(x) =
max(0, x). As in equation 2, the first term tends
to preserve the initial vectors. In this case, this
preservation does not focus on the vectors them-
selves but on the pairwise distances between a vec-
tor and its nearest neighbors (N(i)). The second
term is quite similar to the second term of equa-
tion 2 with the use of a distance derived from
the Cosine similarity instead of the Euclidean dis-
tance2.

1We tried to exploit semantic neighbors that are not very
close to their entry as antonyms but results were globally bet-
ter without them.

2Since the Cosine similarity is used as similarity measure
between words through their vectors, this distance should be
more adapted in this context than the Euclidean distance.
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The last method we have used for improving the
embeddings built from the initial thesaurus, called
rank-fitting hereafter, is a transposition of the
method proposed by Liu et al. (2015). The objec-
tive of this method is to integrate into embeddings
order constraints coming from external knowledge
with the following form: similarity(wi, wj) >
similarity(wi, wk), abbreviated sij > sik in what
follows. This kind of constraints particularly fits
our context as the semantic neighbors of an en-
try in a distributional thesaurus are ranked and can
be viewed as a set of such constraints. More pre-
cisely, i corresponds in this case to an entry and
j and k to two of its neighbors such that rank(j)
> rank(k). However, the method of Liu et al.
(2015) is linked to the Skip-Gram model and was
defined as a modification of the objective function
underlying this model. We have transposed this
approach for its application to the adaptation of
embeddings after their building, without a specific
link to the Skip-Gram model.

The general idea is to adapt vectors to minimize
sij − sik ∀(i, j, k) ∈ E. The objective to min-
imize takes more specifically the following form:

∑
(i,j,k)∈E

f(sik − sij) (4)

where f(sik − sij) = max(0, sik − sij) corre-
sponds to a kind of hinge loss function and the
similarity between words i and j, sij , is given by
the Cosine measure between their associated vec-
tors. The minimization of this objective is per-
formed as for counter-fitting by SGD.

Finally, we have also defined a mixed counter-
rank-fitting method that associates constraints
about the proximity of word vectors and their rela-
tive ranking. This association was done by mixing
the objective functions of counter-fitting and rank-
fitting through the addition of the second term of
equation 3, i.e. its adaptation term, and equation 4.
In this configuration, the first term of the counter-
fitting function, that preserves the initial embed-
dings, was not found useful anymore in prelimi-
nary experiments.

3 Evaluation of Thesaurus Embedding

3.1 Experimental Framework

For testing and evaluating the proposed approach,
we needed first to choose a reference corpus and to
build a distributional thesaurus from it. We chose

the AQUAINT-2 corpus, already used for vari-
ous evaluations, a middle-size corpus of around
380 million words made of news articles in En-
glish. The main preprocessing of the corpus was
the application of lemmatization and the removal
of function words. According to (Bullinaria and
Levy, 2012), the lemmatization of words leads to
only a small improvement in terms of results but
it is also a way to obtain the same results with a
smaller corpus.

The building of our reference distributional the-
saurus, Tcnt, was achieved by relying on a clas-
sical count-based approach with a set of parame-
ters that were found relevant by several systematic
studies (Baroni et al., 2014; Kiela and Clark, 2014;
Levy et al., 2015):

• distributional contexts: co-occurrents re-
stricted to nouns, verbs and adjectives hav-
ing at least 10 occurrences in the corpus, col-
lected in a 3 word window, i.e. +/-1 word
around the target word;
• directional co-occurrents, which were found

having a good performance by Bullinaria and
Levy (2012);
• weighting function of co-occurrents in con-

texts = Positive Pointwise Mutual Informa-
tion (PPMI) with the context distribution
smoothing factor proposed by (Levy et al.,
2015), equal to 0.75;
• similarity measure between contexts, for

evaluating the semantic similarity of two
words = Cosine measure;
• filtering of contexts: removal of co-

occurrents with only one occurrence.

The building of the thesaurus from the distri-
butional data was performed as in (Lin, 1998) or
(Curran and Moens, 2002) by extracting the clos-
est semantic neighbors of each of its entries. More
precisely, the similarity measure was computed
between each entry and its possible neighbors.
Both the entries of the thesaurus and their possi-
ble neighbors were nouns with at least 10 occur-
rences in the corpus. These neighbors were then
ranked in the decreasing order of the values of this
measure.

The evaluation of distributional objects such as
thesauri or word embeddings is currently a subject
of research as both intrinsic (Faruqui et al., 2016;
Batchkarov et al., 2016) and extrinsic (Schnabel
et al., 2015) evaluations exhibit insufficiencies that
question their reliability. In our case, we per-

276



Method #eval.
words

#syn./
word R@100 Rprec MAP P@1 P@2 P@5

Tcnt
10,544 2.9

29.0 11.3 13.1 15.7 11.4 6.6
GloVe 21.3 6.7 8.0 9.8 7.4 4.5
SGNS 22.4 8.7 10.3 12.3 8.8 5.2

Table 1: Evaluation of the initial thesaurus and two reference models of embeddings (values x 100)

formed an intrinsic evaluation relying on the syn-
onyms of WordNet 3.0 (Miller, 1990) as Gold
Standard. This choice was first justified by our
overall long-term perspective, illustrated in Sec-
tion 5, which is the extraction of synonyms from
documents and the expansion of already existing
sets of synonyms. However, it is also likely to
alleviate some evaluation problems as it narrows
the scope of the evaluation, by restricting to a spe-
cific type of semantic relations, but performs it
at a large scale, the combination of which mak-
ing its results more reliable. For focusing on the
evaluation of the extracted semantic neighbors, the
WordNet 3.0’s synonyms were filtered to discard
entries and synonyms that were not part of the
AQUAINT-2 vocabulary. The number of evalu-
ated words and the average number of synonyms
in our Gold Standard for each entry are given by
the second and the third columns of Table 1.

In terms of methodology, the kind of evaluation
we have performed follows (Curran and Moens,
2002; Ferret, 2010) by adopting an Information
Retrieval point of view in which each entry is con-
sidered as a query and its neighbors are viewed
as retrieved synonyms. Hence, we adopted the
classical evaluation measures in the field: the R-
precision (Rprec) is the precision after the first R
neighbors were retrieved, R being the number of
Gold Standard synonyms; the Mean Average Pre-
cision (MAP) is the mean of the precision values
each time a Gold Standard synonym is found; pre-
cision at different cut-offs is given for the 1, 2, 5
first neighbors. We also give the global recall for
the first 100 neighbors.

Table 1 shows the evaluation according to these
measures of our initial distributional thesaurus
Tcnt along with the evaluation in the same frame-
work of two reference models for building word
embeddings from texts: GloVe from Pennington
et al. (2014) and Skip-Gram with negative sam-
pling (SGNS) from Mikolov et al. (2013)3. The

3Following (Levy et al., 2015), SGNS was preferred to the
Continuous Bag-Of-Word (CBOW) model.

input of these two models was the lemmatized ver-
sion of the AQUAINT-2 corpus as for Tcnt but
with all its words. Each model was built with
the best parameters found from previous work and
tested on this corpus. For GloVe: vectors of 300
dimensions, window size = 10, addition of word
and context vectors and 100 iterations; for SGNS:
vectors of 400 dimensions, window size = 5, 10
negative examples and default value for down-
sampling of highly frequent words.

Two main trends can be drawn from this evalu-
ation. First, Tcnt significantly outperforms GloVe
and SGNS for all measures4. This superiority of a
count-based approach over two predict-based ap-
proaches can be seen as contradictory with the
findings of Levy et al. (2015). Our analysis is
that the use of directional co-occurrences, a rarely
tested parameter, explains a large part of this su-
periority. The second conclusion is that SGNS
significantly outperforms GloVe for all measures.
Hence, we will report results hereafter only for
SGNS as a reference word embedding model.

3.2 Graph Embedding Evaluation

We have evaluated the three methods presented
in Section 2.1 for embedding our initial thesaurus
Tcnt according to the evaluation framework pre-
sented in the previous section. For all methods,
the main parameters were the number of neighbors
taken into account and the number of dimensions
of the final vectors. In all cases, the number of
neighbors was equal to 5,000, LINE being not very
affected by this parameter, and the size of the vec-
tors was 6005. For LINE, 10 billion samplings of
the similarity values were done and for the matrix
factorization (MF) approach, we used λ = 0.075.

According to Table 2, SVD significantly ap-
pears as the best method even if LINE is a compet-
itive alternative. SVD outperforms GloVe while

4The statistical significance of differences were judged
according to a paired Wilcoxon test with p-value < 0.05. The
same test was applied for results reported hereafter.

5The values of these parameters were optimized on an-
other thesaurus, coming from (Ferret, 2010).
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Method Rprec MAP P@1 P@2 P@5

Tcnt 11.3 13.1 15.7 11.4 6.6
SGNS 8.7 10.3 12.3 8.8 5.2

SVD 7.8 9.5 11.3 8.1 5.0
LINE 6.8 8.3 9.7 7.1 4.4
MF 4.0 4.9 5.9 4.4 2.7

Table 2: Evaluation of the embedding of a the-
saurus as a graph

LINE is equivalent to it, which is a first inter-
esting result: this first embedding step of a dis-
tributional thesaurus is already able to produce
better word representations than a state-of-the-art
method, even if it does not reach the level of the
best one (SGNS). However, Table 2 also shows
that there is still room for improvement for reach-
ing the level of the initial thesaurus Tcnt. Finally,
the matrix factorization approach is obviously a
bad option, at least under the tested form.

3.3 Thesaurus Embedding Evaluation

Table 3 shows the results of the evaluation of
the word embedding adaptation methods of Sec-
tion 2.2, which is also the evaluation of the global
thesaurus embedding process. For all methods,
the input embeddings were produced by apply-
ing SVD to the initial thesaurus Tcnt, which
was shown as the best option by Table 2. For
retrofitting (Retrofit) and counter-fitting (Counter-
fit), only the relations between each entry of the
thesaurus and its first and second neighbors were
considered. For rank-fitting (Rankfit), the neigh-
borhood was extended to the first 50 neighbors.
For the optimization processes, we used the de-
fault settings of the methods: 10 iterations for
retrofitting and 20 iterations for counter-fitting.
We also used 20 iterations for rank-fitting and
counter-rank-fitting (Counter-rankfit). For all op-
timizations by SGD, the learning rate was 0.01.

Several observations can be done. First, all
the tested methods significantly improve the ini-
tial embeddings. Second, the results of the dif-
ferent methods are quite close for all measures.
retrofitting outperforms counter-fitting but not sig-
nificantly for Rprec. rank-fitting is significantly
the worst method and its association with counter-
fitting is better than retrofitting for P@1 only, but
not significantly. However, we can globally note
that the association of SVD and the best adapta-

Method Rprec MAP P@1 P@2 P@5

Tcnt 11.3 13.1 15.7 11.4 6.6
SGNS 8.7 10.3 12.3 8.8 5.2

SVD 7.8 9.5 11.3 8.1 5.0

Retrofit 10.9 12.9 15.2 11.4 6.8
Counterfit 10.6 12.8 14.0 11.9 7.3
Rankfit 9.0 10.5 12.6 9.0 5.3
Counter-rankfit 10.7 12.4 15.2 11.0 6.3

Table 3: Evaluation of the global thesaurus em-
bedding process

tion methods obtains results close to the results of
the initial Tcnt (the difference is even not signifi-
cant for Rprec and P@5). As a consequence, we
can conclude, in connection with our initial ob-
jective, that embedding a distributional thesaurus
while preserving its information in terms of se-
mantic similarity is possible.

4 Applications of Thesaurus Embedding

4.1 Improvement of Existing Embeddings
In the previous section, we have shown that the
strongest relations of a distributional thesaurus can
be used for improving word vectors built from the
embedding of this thesaurus. Since this adapta-
tion is performed after the building of the vectors,
it can actually be applied to all kinds of embed-
dings elaborated from the corpus used for build-
ing the distributional thesaurus. As for the pro-
cess of the previous section, this is a kind of boot-
strapping approach in which the knowledge ex-
tracted from a corpus is used for improving the
word representations elaborated from this corpus.
Moreover, as GloVe and most word embedding
models, SGNS relies on first-order co-occurrences
between words. From that perspective, adapting
SGNS embeddings with relations coming from a
distributional thesaurus built from the same cor-
pus as these embeddings is a way to incorporate
second-order co-occurrence relations into them.

Method Rprec MAP P@1 P@2 P@5

(S)GNS 8.7 10.3 12.3 8.8 5.2
Embretrof (Tcnt) 10.9 12.9 15.2 11.4 6.8

S+Counter-rankfit 9.5 11.1 13.8 9.9 5.6
S+Retrofit 9.3 10.6 13.2 9.6 5.5

Table 4: Evaluation of the adaptation of SGNS
embeddings with thesaurus relations

For this experiment, we applied both retrofitting
and counter-rank-fitting with exactly the same pa-
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rameters as in Section 3.3. The results of Ta-
ble 4 clearly validate the benefit of the technique:
both retrofitting and counter-rank-fitting signifi-
cantly improve SGNS embeddings. As in Sec-
tion 3.3, the results of retrofitting and counter-
rank-fitting are rather close, with a global advan-
tage for counter-rank-fitting. We can also note that
the improved versions of SGNS embeddings are
still far from the best results of our thesaurus em-
bedding method (SVD + Retrofit).

4.2 Fusion of Heterogeneous Representations
Being able to turn a distributional thesaurus into
word embeddings also makes it possible to fu-
sion different types of distributional data. In the
case of thesaurus, fusion processes were early pro-
posed by Curran (2002) and more recently by Fer-
ret (2015). In the case of word embeddings, the
recent work of Yin and Schütze (2016) applied en-
semble methods to several word embeddings. By
exploiting the possibility to change from one type
of representation to another, we propose a new
kind of fusion, performed between a thesaurus and
word embeddings and leading to improve both the
input thesaurus and the embeddings.

The first step of this fusion process consists in
turning the input word embeddings into a distribu-
tional thesaurus. Then, the resulting thesaurus is
merged with the input thesaurus, which consists in
merging two lists of ranked neighbors for each of
their entries. We followed (Ferret, 2015) and ap-
plied for this fusion the CombSum strategy to the
similarity values between entries and their neigh-
bors, normalized with the Zero-one method (Wu
et al., 2006). Finally, we applied the method of
Section 2 for turning the thesaurus resulting from
this fusion into word embeddings.

Method Rprec MAP P@1 P@2 P@5

(T)cnt 11.3 13.1 15.7 11.4 6.6
(S)GNS 8.7 10.3 12.3 8.8 5.2

Fusion T-S 12.5 14.8 17.2 12.8 7.5
Embretrof (
fusion T-S) 11.8 13.8 16.7 12.4 7.0

Table 5: Evaluation of the fusion of a distribu-
tional thesaurus T and word embeddings S

The evaluation of this fusion process, per-
formed in a shared context as the considered the-
saurus and word embeddings are built from the
same corpus, is given in Table 5. The Fusion T-S
line corresponds to the evaluation of the thesaurus

resulting from the second step of the fusion pro-
cess. The significant difference with the results of
Tcnt and SGNS confirms the conclusions of Ferret
(2015) about the interest of merging thesauri built
differently. The Embretrof (fusion T-S) line shows
the evaluation of the word embeddings produced
by the global fusion process. In a similar way to
the findings of Section 3.3, the embeddings built
from the Fusion T-S thesaurus are less effective
than the thesaurus itself but the difference is small
here too. Moreover, we can note that these embed-
dings have significantly higher results than SGNS,
the input embeddings, but also higher results than
the input thesaurus Tcnt, once again without any
external knowledge.

5 Knowledge Injection and Synset
Expansion

In this section, we will illustrate how the improve-
ment of a distributional thesaurus, obtained in our
case by the injection of external knowledge, can
be transposed to word embeddings. Moreover, we
will show that the thesaurus embedding process
achieving this transposition obtains better results
for taking into account external knowledge than
methods, such as retrofitting, that are applied to
embeddings built directly from texts (SGNS in our
case). We will demonstrate this superiority more
precisely in the context of synset expansion.

The overall principle is quite straightforward:
first, the external knowledge is integrated into a
distributional thesaurus built from the source cor-
pus (Tcnt in our experiments). Then, the result-
ing thesaurus is embedded following the method
of Section 2. This external knowledge is supposed
to be made of semantic similarity relations. We
have considered more particularly pairs of syn-
onyms (E,K) such that E is an entry of Tcnt and
K is a synonym of E randomly selected from the
WordNet 3.0’s synsets E is part of. Each E is part
of only one pair (E,K).

5.1 Injecting External Knowledge into a
Thesaurus

The integration of the semantic relations into a dis-
tributional thesaurus is done for each entry E by
reranking the neighbor K of the (E,K) pair at
the highest rank with the highest similarity. The
line Tcnt+K of Table 6 gives the evaluation of this
integration for 10,544 pairs (E,K) of synonyms,
which means one synonym by entry.
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Evaluation of memorization Global evaluation

Method Rprec MAP P@1 P@2 P@5 Rprec MAP P@1 P@2 P@5

SGNS 6.5 9.7 6.5 4.6 2.6 8.7 10.3 12.3 8.8 5.2
SGNS+retrof(K) 82.4 90.3 82.4 47.8 19.9 80.1 82.0 98.1 72.3 36.9

Tcnt 8.5 12.4 8.5 5.9 3.2 11.3 13.1 15.7 11.4 6.6
svd(Tcnt) 5.8 9.0 5.8 4.0 2.3 7.8 9.5 11.3 8.1 5.0
svd(Tcnt)+retrof(K) 86.6 92.8 86.6 48.8 20.0 81.5 83.5 98.8 72.6 37.4

Tcnt+K 100 100 100 50.0 20.0 62.7 63.8 100 54.0 23.1
svd(Tcnt+K) 12.0 18.0 12.0 8.3 4.7 13.8 17.1 19.0 13.7 8.1
svd(Tcnt+K)+retrof(K) 88.3 93.9 88.3 49.2 20.0 82.6 84.5 99.5 73.2 38.2

Table 6: Evaluation of the injection of external knowledge into word embeddings for synset expansion

As our evaluation methodology is based on the
synonyms of WordNet, we have split our evalua-
tion in two parts. One part takes as Gold Standard
the synonyms used for the knowledge injection
(see the Evaluation of memorization columns in
Table 6) and evaluates to what extent the injected
knowledge has been memorized. The second part
(see the Global evaluation columns in Table 6)
considers all the synonyms used for the evalua-
tions in the previous sections as Gold Standard for
evaluating the ability of models not only to mem-
orize the injected knowledge but also to retrieve
new synonyms, i.e. synonyms that are not part
of the injected knowledge. In the context of our
evaluation, which is based on synonym retrieval,
this kind of generalization can also be viewed as
a form of synset expansion. This is another way
to extract synonyms from texts compared to work
such as (Leeuwenberg et al., 2016; Minkov and
Cohen, 2014; van der Plas and Tiedemann, 2006).

In the case of Tcnt+K, we can note that the
memorization is perfect, which is not a surprise
since the injection of knowledge into the thesaurus
corresponds to a kind of memorization. No spe-
cific generalization effect beyond the synonyms
already present in the thesaurus is observed for the
same reason.

5.2 From a Knowledge-Boosted Thesaurus to
Word Embeddings

The result of the process described in the previous
section is what we could call a knowledge-boosted
distributional thesaurus. However, its form is not
different from a classical distributional thesaurus
and it can be embedded similarly by applying the
method of Section 2. The only difference with this
method concerns its second step: instead of lever-
aging the first n neighbors of each entry for im-
proving the embeddings obtained by SVD, we ex-

ploited the set of relations used for “boosting” the
initial thesaurus.

The evaluation of the new method we propose
for building word embeddings integrating exter-
nal knowledge is presented in Table 6. More
precisely, three different methods are compared:
a state-of-the-art method, SGNS+retrof(K), con-
sisting in applying retrofitting to SGNS embed-
dings. retrofitting was chosen as it is quick
and gives good results. The second method,
svd(Tcnt)+retrof(K), applies retrofitting to the em-
beddings built from Tcnt by SVD. The last
method, svd(Tcnt+K)+retrof(K), corresponds to
the full process we have presented, where the ex-
ternal knowledge is first injected into the initial
thesaurus Tcnt before its embedding.

First, we can note that all the methods consid-
ered for producing word embeddings by taking
into account external knowledge leads to a very
strong improvement of results compared to their
starting point. This is true both for the memoriza-
tion and global evaluations. From the memoriza-
tion viewpoint, all the injected synonyms can be
found among the first five neighbors returned by
the three methods as illustrated by their P@5 and
even at the first rank in nearly nine times out of ten
for the best method, which is clearly our thesaurus
embedding process (except the pure memorization
performed by Tcnt+K).

We can also observe that the method used
for knowledge injection can reverse initial differ-
ences. For instance, the application of SVD to
a thesaurus built from a corpus, svd(Tcnt), ob-
tains lower results than the application of SGNS
to the same corpus. After the injection of ex-
ternal knowledge, this ranking is reversed: the
values of the evaluation measures are higher for
svd(Tcnt)+retrof(K) than for SGNS+retrofit(K).

More importantly, Table 6 shows that the inte-
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Entries K Synonyms in neighbors of Tcnt+K Synonyms in neighbors of svd(Tcnt+K)+retrof(K)

richness fullness
fullness [1] 1.0, affluence [1,665] 0.06, profusion [1,950]

0.06, fertility [2,000] 0.06, cornucopia [2,919] 0.06

fullness [1] 0.80, affluence [2] 0.71, cornucopia [3] 0.71,

fertility [5] 0.66, profusion [6] 0.44

butchery abattoir

abattoir [1] 1.0, slaughterhouse [2] 0.05, carnage [65]

0.03, slaughter [90] 0.03, massacre [132] 0.03, shambles

[3,735] 0.02

abattoir [1] 0.64, massacre [2] 0.62, carnage [3] 0.61,

slaughterhouse [4] 0.53, shambles [5] 0.45, slaughter

[11] 0.21

idiom dialect
dialect [1] 1.0, phrase [16] 0.09, accent [62] 0.09,

parlance [2,971] 0.07

dialect [1] 0.80, phrase [2] 0.75, accent [3] 0.71,

parlance [4] 0.71

spectator witness witness [1] 1.0, viewer [28] 0.14, watcher [519] 0.12
watcher [1] 0.59, witness [2] 0.56, viewer [3] 0.51,

looker [10] 0.30

Table 7: Examples of the interest of thesaurus embedding for synset expansion. Each synonym is given
with its [rank] among the neighbors of the entry and its similarity value with the entry

gration of external knowledge into the thesaurus
before its embedding is clearly effective as il-
lustrated by the significant differences between
SGNS+retrofit(K) and svd(Tcnt+K)+retrof(K). Fi-
nally, from the synset expansion viewpoint, it
is worth adding that the P@2 value of our best
method means that the first synonym proposed by
the expansion in addition to the injected synonyms
is correct with a precision equal to 46.9, which
represents 4,945 new synonyms and illustrates the
generalization capabilities of the method.

Table 7 illustrates more qualitatively for some
words the interest of the thesaurus embedding
method we propose for the expansion of existing
synsets. In accordance with the findings of Ta-
ble 6, it first shows that the method has a good
memorization capability of the injected knowl-
edge (K) in the initial thesaurus since in the re-
sulting embeddings (svd(Tcnt+K)+retrof(K)), the
synonym provided for each entry appears as the
first or the second neighbor.

Table 7 also illustrates the good capabilities of
the method observed in Table 6 in terms of gen-
eralization as the rank of synonyms of an entry
not provided as initial knowledge tend to decrease
strongly. For instance, for the entry idiom, the
rank of the synonym parlance is equal to 2,971 in
the initial thesaurus with the injected knowledge
(Tcnt+K) while it is only equal to 4 after the em-
bedding of the thesaurus. Interestingly, this im-
provement in terms of rank comes from a change
in the distributional representation of words that
also impacts the evaluation of the semantic sim-
ilarity between words. While the similarity be-
tween the word richness and its synonym profu-
sion was initially very low (0.06), its value after
the embedding process is very much higher (0.66)

and more representative of the relation between
the two words.

6 Conclusion and Perspectives

In this article, we presented a method for build-
ing word embeddings from distributional thesauri
with a limited loss of semantic similarity informa-
tion. The resulting embeddings outperforms state-
of-the-art embeddings built from the same corpus.
We also showed that this method can improve al-
ready existing word representations and the injec-
tion of external knowledge into word embeddings.

A first extension to this work would be to better
leverage the ranking of neighbors in a thesaurus
and to integrate more tightly the two steps of our
embedding method. We also would like to de-
fine a more elaborated method for injecting ex-
ternal knowledge into a distributional thesaurus,
more precisely by exploiting the injected knowl-
edge to rerank its semantic neighbors. Finally, we
would be interested in testing further the capabil-
ities of the embeddings with injected knowledge
for extending resources such as WordNet.
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Abstract

We propose to improve word sense
embeddings by enriching an automatic
corpus-based method with lexicographic
data. Information from a lexicon is intro-
duced into the learning algorithm’s objec-
tive function through a regularizer. The
incorporation of lexicographic data yields
embeddings that are able to reflect expert-
defined word senses, while retaining the
robustness, high quality, and coverage of
automatic corpus-based methods. These
properties are observed in a manual in-
spection of the semantic clusters that dif-
ferent degrees of regularizer strength cre-
ate in the vector space. Moreover, we
evaluate the sense embeddings in two
downstream applications: word sense dis-
ambiguation and semantic frame predic-
tion, where they outperform simpler ap-
proaches. Our results show that a corpus-
based model balanced with lexicographic
data learns better representations and im-
prove their performance in downstream
tasks.

1 Introduction

Word embeddings, as a tool for representing the
meaning of words based on the context in which
they appear, have had a considerable impact on
many of the traditional Natural Language Process-
ing tasks in recent years. (Turian et al., 2010;
Collobert et al., 2011; Socher et al., 2011; Glo-
rot et al., 2011) This form of semantic representa-
tion has come to replace in many instances tradi-
tional count-based vectors (Baroni et al., 2014), as
they yield high-quality semantic representations in
a computationally efficient manner, which allows
them to leverage information from large corpora.

Due to this success, some attention has been de-
voted to the question of whether their represen-
tational power can be refined to further advance
the state of the art in those tasks that can bene-
fit from semantic representations. One instance in
which this could be realized concerns polysemous
words, which has led to several attempts at repre-
senting word senses instead of simple word forms.
Doing so would help avoid the situation in which
several meanings of a word have to be conflated
into just one embedding, typical of simple word
embeddings.

Among the different approaches to learning
word sense embeddings, a distinction can be made
between those that make use of a semantic net-
work (SN) and those that do not. Approaches
in the latter group usually apply an unsupervised
strategy for clustering instances of words based on
the context formed by surrounding words. The re-
sulting clusters are then used to represent the dif-
ferent meanings of a word. These representations
characterize word usage in the training corpus
rather than lexicographic senses, and run the risk
of marginalizing under-represented word senses.
Nonetheless, for well represented word senses,
this strategy proves to be effective and adaptable
to changes.

The alternative is to integrate an SN in the learn-
ing process. This kind of resource encodes a lex-
icon of word senses, connecting lexically and se-
mantically related concepts, usually in the form of
a graph. Methods that take this approach are able
to work with lexicographic word senses as defined
by experts, usually integrating them in different
ways with corpus-learned embeddings. However,
their completeness depends on the quality of the
underlying SN.

In this paper, we present an approach that tries
to achieve a balance between these two variants.
We propose to make use of an SN for learn-
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ing word sense embeddings by leveraging its sig-
nal through a regularizer function that is applied
on top of a traditional objective function used to
learn embeddings from corpora. In this manner,
our model is able to merge these two opposed
sources of data with the expectation that each one
will balance the limitations of the other: flexible,
high-quality embeddings learned from a corpus,
with well defined separation between the expert-
defined senses of any given polysemic word. The
influence of each source of information can be reg-
ulated through a mix parameter.

As the corpus-based part of our model, we use
a version of the Skip-gram (Mikolov et al., 2013)
model that is modified so that it is able to learn
two distinct vocabularies: word senses and word
forms as introduced by Nieto-Piña and Johansson
(2015). Regarding the SN data, we focus our at-
tention on its underlying graph. We assume that
neighboring nodes in such a graph correspond to
semantically related concepts. Thus, given a word
sense, a sequence of related word senses can be
generated from its neighbors. A regularizer func-
tion can then be used to update their correspond-
ing embeddings so that they become closer in the
vector space. This has the benefit of creating clear
separations between the different senses of poly-
semic words, precisely as they are described in the
SN, even in the cases where this separation would
not be clear from the data in a corpus.

We give an overview of related work in Sec-
tion 2, and our model is described in detail in Sec-
tion 3. The resulting word sense embeddings are
evaluated in Section 4 on two separate automated
tasks: word sense disambiguation (WSD) and lex-
ical frame prediction (LFP). The experiments used
for evaluation allow us to investigate the influence
of the lexicographic data on the embeddings by
comparing different model parameterizations. We
conclude with a discussion of our results in Sec-
tion 5.

2 Related Work

The recent success of word embeddings as ef-
fective semantic representations across the broad
spectrum of NLP tasks has led to an increased in-
terest in developing embedding methods further in
order to acquire finer-grained representations able
to handle polysemy and homonymy. This effort
can be divided into two approaches: those that
tackle the problem as an unsupervised task, aiming

to discover different usages of words in corpora,
and those that make use of knowledge resources
as a way of injecting linguistic knowledge into the
models.

Among the earliest efforts in the former group
is the work of Reisinger and Mooney (2010) and
Huang et al. (2012), who propose to cluster occur-
rences of words based on their contexts to account
for different meanings. With the advent of the
Skip-gram model (Mikolov et al., 2013) as an ef-
ficient way of training prediction-based word em-
bedding models, much of the research into obtain-
ing word sense representations revolved around it.
Neelakantan et al. (2014) and Nieto-Piña and Jo-
hansson (2015) make use of context-based word
sense disambiguation (WSD) during corpus train-
ing to allow on-line learning of multiple senses of
a word with modified versions of Skip-gram. Li
and Jurafsky (2015) and Bartunov et al. (2016)
apply stochastic processes to allow for represen-
tations of a variable number of senses per word to
be learnt in unsupervised fashion from corpora.

The embeddings obtained using this approach
tend to be word-usage oriented, rather than repre-
sent formally defined word senses. While this is
descriptive of the texts in the corpus at hand, it can
be problematic for generalization. For instance,
word senses that are underrepresented or absent
in the training corpus will not be assigned a func-
tional embedding. On the other hand, due to the
ability of these models to process large amounts
of data, well-represented word senses will acquire
meaningful representations.

The alternative approach to unsupervised meth-
ods is to include data from knowledge resources,
usually graph-encoded semantic networks (SN)
such as WordNet (Miller, 1995). Chen et al.
(2014) and Iacobacci et al. (2015) propose to
make use of knowledge resources to produce a
sense-annotated corpus, on which known tech-
niques can then be applied to generate word sense
embeddings. A usual way of circumventing the
lack of sense-annotated corpora is to apply post-
processing techniques onto pre-trained word em-
beddings as a way of leveraging lexical informa-
tion to produce word sense embeddings. The fol-
lowing models share this method: Johansson and
Nieto-Piña (2015) formulate an optimization prob-
lem to derive multiple word sense representations
from word embeddings, while Pilehvar and Collier
(2016) and one of the models proposed by Jauhar
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et al. (2015) use graph learning techniques to do
so.

A characteristic of this approach is that these
models can generate embeddings for a complete
inventory of word senses. However, the depen-
dence on manually crafted resources can poten-
tially lead to incompleteness, in case of unlisted
word senses, or to inflexibility in the face of
changes in meaning, failing to account for new
meanings of a word.

The model that we present in this article tries
to preserve desirable characteristics from both ap-
proaches. On one side, the model learns word
sense embeddings from a corpus using a predic-
tive learning algorithm that is efficient, stream-
lined, and flexible with respect to being able to dis-
criminate between different usages of a word from
running text. This learning algorithm is based on
the idea of adding an extra latent variable to the
Skip-gram objective function to account for dif-
ferent senses of a word, that has been explored in
previous work by Jauhar et al. (2015) and Nieto-
Piña and Johansson (2015). On the other side, the
learning process is guided by a regularizer func-
tion that introduces information from an SN, in an
attempt to achieve a clear, complete, and fair divi-
sion between the different senses of a word. Fur-
thermore, from a technical point of view, the effect
of the regularizer function is applied in parallel to
the embedding learning process. This eliminates
the need for a two-step training process or pre-
trained word embeddings, and makes it possible
to regulate the influence that each source of data
(corpus and SN) has on the learning process.

3 Model Description

3.1 Learning Word Sense Embeddings

The Skip-gram word embedding model (Mikolov
et al., 2013) works on the premise of training the
vector for a wordw to be able to predict those con-
text words ci with which it appears often together
in a large training corpus, according to the follow-
ing objective function:

n∑
i=1

log p(ci|w)

where p(ci|w) can be approximated using the soft-
max function, The model, thus, works by main-
taining two separate vocabularies which represent
word forms in their roles as target and context

words. The resulting word embeddings (usually
those vectors trained for the target word vocabu-
lary) are able to store meaningful semantic infor-
mation about the words they represent.

The original Skip-gram model is, however, lim-
ited to word forms in both its vocabularies. Nieto-
Piña and Johansson (2015) introduced a modifica-
tion of this model in which the target vocabulary
holds a variable number of vectors for each word
form, intended to represent its different senses.
The training objective of such a model now has
the following shape:

log p(s|w) +
n∑
i=1

log p(ci|s) (1)

Thus the word sense embeddings are trained to
maximize the log-probability of context words ci
given a word’s sense s plus the log-probability of
that sense given the wordw. For our purposes, this
prior is a constant, p(s|w) = 1

n , as we do not have
information on the probability of each sense of a
given word.

This formulation requires a sense s of word w
to be selected for each instance in which the ob-
jective function above is applied. This word sense
disambiguation is applied on-line at training time
and based on the target word’s context: The sense
s chosen to disambiguate an instance of w is the
one whose embedding maximizes the dot product
with the sum of the context words’ embeddings.

arg max
s

es
∑

i
ci∑

s e
s
∑

i
ci

(2)

This unsupervised model learns different usages
of a word with minimal overhead computation on
top of the original, word-based Skip-gram. The
number of senses per word can be obtained from a
lexicon or set to a fixed number.

3.2 Embedding a Lexicon

In order to adapt the graph-structured nature of the
data in an SN to be used in continuous representa-
tions, we propose to introduce it through a regular-
izer that can act upon the same embeddings trained
by the unsupervised model described above.

Any given node s in a graph will have a set of
neighbors ni directly connected to it. In the graph
underlying an SN, we assume ni to be lexically
or semantically similar to s. In this setting, a col-
lection of sequences composed of word senses s
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and ni can be collected by visiting all nodes in
the SN’s graph and collecting its immediate neigh-
bors. Note that extracting such a collection of se-
quences from a semantic graph follows quite nat-
urally, but in fact it could be generated from any
other resource that relates concepts, such as a the-
saurus, even if it is not encoded in a graph, as long
as the relations it contains are relevant to the model
being trained.

We propose to use a collection of sequences of
related word senses to update their correspond-
ing word sense vectors by pulling any two vectors
closer together in their geometric space whenever
they are encountered in a sequence. This action
can be easily modeled by minimizing the follow-
ing expression:

k∑
i=1

||s− ni||2 (3)

for each sequence of word senses
(s, n1, n2, . . . , nk). By minimizing the dis-
tance in the vector space between vectors
representing interconnected concepts according
to the SN’s organization, the vector model is
effectively representing that organization in a way
that geometrical distance correlates with lexical
or semantical relatedness, a central concept in the
word embedding literature.

3.3 Combined Model

The two preceding sections describe the two parts
of a combined model that is able to learn simulta-
neously from a corpus and an SN. This is achieved
by training embeddings from a corpus with the
objective described in Equation 1, and comple-
menting this procedure with lexicographic data by
means of using Equation 3 as a regularizer. The
extent of the regularizer’s influence on the model
is adapted by a mix parameter ρ ∈ [0, 1]: the
higher the value of ρ, the more influence the SN
data has on the model, and vice versa.

Thus, the objective function of our model is as
follows:

log p(s|w)+(1−ρ)
n∑
i=1

log p(ci|s)−ρ
m∑
j=1

||s−nj ||2

In practice, this objective is realized by alter-
nating updates through each of the model’s parts,
the number of which is regulated by ρ. Updates on
the corpus-based part are executed with Skip-gram

with negative sampling (Mikolov et al., 2013),
adapted to work with a vocabulary of word senses
as explained in §3.1.

On top of the formulation of the lexicon-based
part of the model given in the previous section we
propose two variations on this model in order to
explore the extent to which the SN data can be
used to influence the combined model explained
in the following section. The initial formulation
of the model will be referenced as V0 in this pa-
per.

In the first variation (henceforth V1) we propose
to only apply Equation 3 on word senses pertain-
ing to polysemous words. If by using the SN we
intend to learn clear separations between differ-
ent senses of a word, it attends to reason to limit
its application to those cases, while monosemous
words can be sufficiently well trained by the usual
corpus-based approach, and act as semantic an-
chors in the broader vector space.

The second variation (henceforth V2) deals with
the specific architecture of the corpus-based train-
ing algorithm. As mentioned in the previous sec-
tion, this model trains a target and a context vo-
cabulary. We propose to use the regularizer to act
not only on word sense vectors, but also on con-
text (word form) vectors. By doing this we expect
the context vocabulary to be ready for instances of
different senses of a word, training context vectors
to be potentially more effective in the disambigua-
tion scheme introduced in Equation 2. This varia-
tion introduces an extra term into Equation 3,

n∑
i=0

||w(s)− w(ni)||2

where w(x) is a mapping from a given sense x to
its corresponding word form.

4 Experiments

4.1 Experimental Setting

We trained the three variants of our model using
different parameterizations of ρ ∈ (0, 1). Each of
these instances learned target and context embed-
dings of 50 dimensions, using a window of size 5
on the corpus-based part of the training algorithm,
for a total number of 5 iterations over a number of
updates equal to the size of the training corpus.

Below we describe the lexicon and corpus used
to train the sense embeddings.

287



4.1.1 SALDO: a Semantic Network of
Swedish Word Senses

SALDO (Borin et al., 2013) is the largest graph-
structured semantic lexicon available for Swedish.
The version used here contains roughly 125,000
concepts (word senses) organized into a single se-
mantic network.

The sense nodes in the SALDO network are
connected by edges that are defined in terms of se-
mantic descriptors. A descriptor of a sense is an-
other sense used to define its meaning. The most
important descriptor is called the primary descrip-
tor (PD), and since every sense in SALDO (except
an abstract root sense) has a single unique PD, the
PD subgraph of SALDO forms a tree. In most
cases, the PD of a sense s is a hypernym or a syn-
onym of s, but other types of semantic relations
are also possible.

To exemplify, Figure 1 shows a fragment of
the PD tree. In the example, there are some cases
where the PD edges correspond to hypernymy,
such as hard rock being a type of rock music,
which in turn is a type of music, but there are
also other types of relations, such as music being
defined in terms of to sound.

lata..2 ’to sound’

musik..1 ’music’

rock..2 ’rock music’

ljud..1 ’sound’

jazz..1 ’jazz’ spela..1 ’to play’

’instrument’’hard rock’ instrument..1

gitarr..1 ’guitar’

hardrock..1
o

o

Figure 1: A fragment of the network in SALDO.

4.1.2 Training Corpus
For training the embedding models, we created
a mixed-genre corpus of approximately 1 bil-
lion words downloaded from Språkbanken, the
Swedish language bank.1 The texts were to-
kenized, part-of-speech-tagged and lemmatized.
Compounds were segmented automatically and
when a compound-word lemma was not listed as
an entry in the SALDO lexicon, we used the com-
pound parts instead. For instance, hårdrock ‘hard
rock’ would occur as a single token in the corpus,
while rockstjärna ‘rock star’ would be split into
two separate tokens.

1http://spraakbanken.gu.se

4.2 Qualitative Inspection of Word Senses

By inspecting lists of nearest neighbors to a given
embedding, some insight can be gained into how
a model represents the meaning of the concept it
represents. It is especially interesting in the case
of polysemous words, where the neighbors of each
of its senses can help judging how well it manages
to separate their different meanings.

In Table 1 we list nearest neighbors for each of
the two senses of the Swedish word rock: ‘coat’
and ‘rock music’. The neighboring concepts in the
table are extracted from two separate vector mod-
els trained with different parameterizations for the
mix parameter ρ: The first, ρ = 0.01, has little
influence from the lexicon and thus is similar to
a corpus-only approach; the second, ρ = 0.5, al-
lows for more information from the lexicon to in-
fluence the embeddings. In our corpus, the music
sense is overrepresented; this can be seen in the
table, where both senses trained with ρ = 0.01
have most of their nearest neighbors semantically
related to music. The model that is more influ-
enced by the lexicon with ρ = 0.5 is, however,
able to learn two distinct senses. Note how the mu-
sic sense is not negatively affected by this change:
many of its nearest neighbors are the same in both
models, and all of them keep the music-related
topic in common.

It is also interesting to filter these lists of near-
est neighbors to limit them to unlisted words; i.e.,
words that are not present in the lexicon and ap-
pear only in the corpus. This provides an ob-
servation of how well those embeddings that are
trained by both parts of the model are integrated
with those others whose training is based only on
the corpus. Table 2 contains such lists of unlisted
items for the two senses of rock on two mod-
els with different parameterization. It presents a
similar behavior to the previous experiment: In a
model with low influence from the lexicon, the
representations of both senses tend towards that
of the overrepresented one; when more influence
from the lexicon is allowed, a clear separation of
the two senses into their expected meanings is ob-
served.

4.3 Word Sense Disambiguation

We trained and evaluated several parameteriza-
tions of our model on a Swedish language word
sense disambiguation (WSD) task. The aim of this
task is to select a sense of an instance of a polyse-
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rock-1 ‘coat’ rock-2 ‘rock music’
ρ = 0.01 ρ = 0.5 ρ = 0.01 ρ = 0.5
syrtut ‘frock coat’ syrtut ‘frock coat’ hårdrock ‘hard rock music’ punk ‘punk music’
Rhythm ‘rhythm music’ kappa ‘coat’ pop ‘pop music’ rappa ‘to rap’
rockband ‘rock band’ kåpa ‘cowl’ punk ‘punk music’ rap ‘rap music’
Peepshows ‘peep shows’ päls ‘fur coat’ jazza ‘to jazz’ pop ‘pop music’
skaband ‘ska band’ mudd ‘cuff’ dödsmetall ‘death metal music’ jam ‘music jam’

Table 1: Nearest neighbors for the two senses of rock ‘coat’ and ‘ rock music’ for different ρ.

rock-1 ‘coat’ rock-2 ‘rock music’
ρ = 0.01 ρ = 0.5 ρ = 0.01 ρ = 0.5
Rhythm ‘rhythm music’ jesussandaler ‘Jesus sandals’ nu-metal ‘nu metal’ metal ‘metal music’
Peepshows ‘peep shows’ tubsockar ‘tube socks’ goth ‘ goth music’ rnb ‘RnB music’
skabandk ‘ska band’ blåjeans ‘blue jeans’ psytrance ‘ psytrance music’ indie ‘indie music’
Punkrock ‘punk rock’ snowjoggers ‘snow joggers’ boogierock ‘boogie rock’ dubstep ‘dubstep music’
sleaze ‘to sleaze’ midjekort ‘doublet jacket’ synthband ‘synth music band’ goth ‘goth music’

Table 2: Nearest unlisted neighbors for the two senses of rock ‘coat’ and ‘rock music’ for different ρ.

mous word in context. For this purpose, we use a
disambiguation mechanism similar to the one in-
troduced in §3.1. Given an ambiguous word in
context, a score is calculated for each of its pos-
sible senses by applying the expression in Equa-
tion 2; however, to correct for skewed sense dis-
tributions, we replaced the uniform prior with a
power-law prior P (sk|w) ∝ k−2, where k is the
numerical identifier of the sense. The highest scor-
ing sense is then selected to disambiguate that in-
stance of the word.

As baselines for this experiment, we used ran-
dom sense and first sense2 selection. Additionally,
we show the results achieved by a disambiguation
system, UKB, based on Personalized PageRank
(Agirre and Soroa, 2009), and which was trained
on the PD tree from SALDO. The implementa-
tion of this model makes no assumptions on the
underlying graph and thus it is easily adaptable
to work with any kind of SN. Our models were
all parameterized with ρ = 0.9 based on the re-
sults obtained on the SweFN dataset. All evalu-
ated systems including the baselines are unsuper-
vised: none of them has used a sense-annotated
corpus during training.

4.3.1 Sense-annotated Datasets

We evaluated the WSD systems on eleven differ-
ent datasets, which to our knowledge are all sense-
annotated datasets that exist for Swedish. The
datasets consist of instances, where each instance

2No frequency information is available for SALDO’s
sense inventory and the senses are not ordered by frequency.
The senses are ordered by lexicographers so that the lower-
numbered senses are more “central” or “primitive”, which of-
ten but not always correlates with the sense frequency.

is a sentence where a single target word has been
selected for disambiguation.

Two datasets consist of lexicographical exam-
ples (Lex-Ex): the SALDO examples (SALDO-
ex) and Swedish FrameNet examples (SweFN-ex).
The latter of these is annotated in terms of seman-
tic frames, but there is a deterministic mapping
from frames to SALDO senses.

Two additional datasets are taken from the
Senseval-2 Swedish lexical sample task (Kokki-
nakis et al., 2001). It uses a different sense in-
ventory, which we mapped manually to SALDO
senses. The lexical sample originally consisted
of instances for 40 lemmas, out of which we re-
moved 7 lemmas because they were unambiguous
in SALDO. Since we are using an unsupervised
experimental setup, we report results not only on
the designated test set but also on the training set.

The other datasets come from the Koala anno-
tation project (Johansson et al., 2016). The latest
version consists of seven different corpora, each
sampled from text in a separate domain: blogs,
novels, Wikipedia, European Parliament proceed-
ings, political news, newsletters from a govern-
ment agency, and government press releases. Un-
like the two lexicographical example sets and the
Senseval-2 lexical sample, in which the instances
have been selected by lexicographers to be proto-
typical and to have a good coverage of the sense
variation, the instances in the Koala corpora are
annotated ‘as is’ in running text.

The sentences in all datasets were tokenized,
compound-split, and lemmatized, and for each
target word we automatically determined the set
of possible senses, given its context and inflec-
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Test set Subset Size RND S1 UKB V0 V1 V2
Lex-Ex Average 2,365 39.86 53.90 54.76 61.23 61.26 58.34

SweFN-Ex 1,197 40.43 54.80 54.64 60.90 61.90 59.06
SALDO-Ex 1,168 39.29 53.00 54.88 61.56 60.62 57.62

Senseval Average 8,237 35.90 50.36 44.37 54.29 52.95 53.61
Train 6,995 35.98 50.48 45.43 54.40 53.57 53.11
Test 1,242 35.83 50.24 43.32 54.19 52.33 54.11

Koala Average 11,167 41.83 69.50 67.17 65.17 73.49 68.59
Blogs 2,222 41.86 71.02 66.70 60.98 67.78 64.27
Europarl 1,838 41.80 66.16 65.61 61.26 71.60 68.28
Novels 2,446 41.04 72.85 67.46 67.95 73.47 71.30
Wikipedia 2,444 42.50 75.98 67.59 73.65 76.68 73.98
Political news 1,082 40.60 69.41 69.04 67.47 75.69 69.59
Newsletters 280 42.04 63.57 65.00 58.93 73.21 64.29
Press releases 855 42.99 67.49 68.77 65.96 76.02 68.42

Total 21,769 40.40 63.18 60.77 62.48 67.53 64.00

Table 3: WSD accuracy on baselines, UKB, and the three variants of our model (ρ = 0.9) on all test sets.

tion. We only considered senses of content words:
nouns, verbs, adjectives, and adverbs. Multi-word
targets were not included, and we removed all in-
stances where only one sense was available.3

4.3.2 Disambiguation Results

Table 3 shows disambiguation accuracies for our
models on the datasets described above, along
with the scores achieved by our baselines and the
UKB model. The results of each variant of our
model were obtained with a parameterization of
ρ = 0.9, which was chosen as the best scoring
value on the Swe-FN subset used as validation set.
The model which only applies the regularizer to
polysemous words (V1) dominates most highest
scores, overtaken in some instances by V0 and in
one by the first sense baseline. Note how the gen-
eral magnitudes of the scores within each type of
dataset underline their different characteristics ex-
plained above.

Additionally, for the sake of making a more de-
tailed analysis of the influence of the parameter
ρ that dominates the extent of the lexicon’s influ-
ence on the model, Figure 2 shows the average
performance of our models on each dataset for a
wide range of values for ρ. There is a clear pattern
across all models and datasets by which a greater
input from the SN translates into a better perfor-
mance in WSD. These figures also confirm the su-
perior performance of the variant V1 of our model
seen in Table 3.

3In addition, to facilitate a comparison to the UKB system
as a baseline, we removed a small number of instances that
could not be lemmatized unambiguously.

4.4 Frame Prediction

In our second evaluation, we investigated how
well the sense vector models learned by the dif-
ferent training algorithms correspond to seman-
tic classes defined by the Swedish FrameNet
(Friberg Heppin and Toporowska Gronostaj,
2012). In a frame-semantic model of lexical mean-
ing (Fillmore and Baker, 2009), the meaning of
words is defined by associating them with broad
semantic classes called frames; for instance, the
word falafel would belong to the frame FOOD.
Important classes of frames include those corre-
sponding to objects and people, mainly populated
by nouns, such as FOOD or PEOPLE BY AGE;
verb-dominated frames corresponding to events,
such as IMPACT, STATEMENT, or INGESTION;
and frames dominated by adjectives, often refer-
ring to relations, qualities, and states, e.g. ORIGIN

or EMOTION DIRECTED.
In case a word has more than one sense, it may

belong to more than one frame. In the Swedish
FrameNet, unlike its English counterpart, these
senses are explicitly defined using SALDO (see
§4.1.1): for instance, for the highly polysemous
noun slag, its first sense (‘type’) belongs to the
frame TYPE, the second (‘hit’) to IMPACT, the
third (‘battle’) to HOSTILE ENCOUNTER, etc.

In the evaluation, we trained classifiers to de-
termine whether a SALDO sense, represented as
a sense vector, belongs to a given frame or not.
To train the classifiers, we selected the 546 frames
from the Swedish FrameNet for which at least 5
entries were available. In total we had 28,842
verb, noun, adjective, and adverb entries, which
we split into training (67% of the entries in each
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Figure 2: Average WSD accuracies on all instances of each dataset for different values of ρ on the three
variants of our model.

frame) and test sets (33%). For each frame, we
used LIBLINEAR (Fan et al., 2008) to train a lin-
ear support vector machine, using the vectors of
the senses associated with that frame as positive
training instances, and all other senses listed in
FrameNet as negative instances.
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Figure 3: MAP scores for the frame prediction
classifiers for the different types of models.

4.4.1 Evaluation Results
At test time, for each frame we applied the SVM
scoring function of its classifier to each sense in
the test set. The ranking induced by this score was
evaluated using the Average Precision (AP) met-
ric commonly used to evaluate rankers; the goal of

this ranking step is to score the senses belonging to
the frame higher than those that do not. We com-
puted the Mean Averaged Precision (MAP) score
by macro-averaging the AP scores over the set of
frames.

Figure 3 shows the MAP scores of frame pre-
dictors based on different sense vector models. We
compared the three training algorithms described
in Section 3 for different values of the regulariza-
tion strength parameter ρ. As a baseline, we in-
cluded a model that does not distinguish between
different senses: it represents a SALDO sense with
the word vector of its lemma.

As the figure shows, almost all sense-aware vec-
tor models outperformed the model that just used
lemma vectors. The result shows tendencies that
are different from what we saw in the WSD ex-
periments. The best MAP scores were achieved
with mid-range values of ρ, so it seems that this
task requires embeddings that strike a balance be-
tween representing the lexicon structure faithfully
and representing the cooccurrence patterns in the
corpus. An model with very light influence of the
lexicon was hardly better than just using lemma
embeddings, and unlike what we saw for the WSD
task we see a strong dropoff when increasing ρ.
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In addition, the tendencies here differ from the
WSD results in that the training algorithm that
only applies the lexicon-based regularizer to pol-
ysemous words (V1) gives lower scores than the
other two approaches. We believe that this is be-
cause it is crucial in this task that sense vectors
are clustered into coherent groups, which makes it
more useful to move sense vectors closer to their
neighbors even when they are monosemous; this
as opposed to the WSD task, where it is more
useful to leave the monosemous sense vectors in
place as “anchors” for the senses of polysemous
words. The context-regularized training algorithm
(V2) gives no improvement over the original ap-
proach (V0), which is expected since context vec-
tors are not used in this task.

Frame Lemma V0 V1
ANIMALS 0.73 0.86 0.76
FOOD 0.72 0.84 0.77
REMOVING 0.20 0.50 0.22
MAKE NOISE 0.40 0.62 0.46
ORIGIN 0.90 0.90 0.89
COLOR 0.73 0.88 0.80
FREQUENCY 0.40 0.43 0.35
TIME VECTOR 0.40 0.52 0.27

Table 4: Frame prediction AP scores for selected
frames dominated by nouns, verbs, adjectives, and
adverbs respectively.

To get a more detailed picture of the strengths
and weaknesses of the models in this task, we
selected eight frames: two frames dominated by
nouns, two for verbs, two for adjectives, two for
adverbs. Table 4 shows the AP scores for these
frames of the lemma-vector baseline, the initial
approach (V0), and the version that only regu-
larizes senses of polysemous words (V1). All
lexicon-aware models used a ρ value of 0.7. Al-
most across the board, the V0 method gives very
strong improvements. The exception is the frame
ORIGIN, which contains adjectives of ethnicity
and nationality (Mexican, African, etc); this set of
adjectives is already quite coherently clustered by
a simple word vector model and is not substan-
tially improved by any lexicon-based approach.

5 Conclusion

In this article we have introduced a family of word
sense embedding models that are able to lever-
age information from two concurrent sources of
information: a semantic network and a corpus.
Our hypothesis was that by combining them, the

robustness and coverage of embeddings trained
on a large corpus could achieve a more balanced
and linguistically informed representation of the
senses of polysemic words. This point has been
proved in the evaluation of our models on Swedish
language tasks.

A manual inspection of the word sense repre-
sentation through their nearest neighbors exempli-
fied it in §4.2. Indeed, an increased influence from
the SN causes a clearer distinction between differ-
ent senses of a word, even in the case where one
of them is underrepresented in the corpus.

A WSD experiment was carried out on a variety
of sense-annotated datasets. Our model consis-
tently outperformed random and first sense base-
lines, as well as a comparable graph-based WSD
system trained on a Swedish SN, which underlines
the fact that the strength of our model resides in a
combination of lexicon- and corpus-learning.

This is further confirmed in the evaluation of
our model on a frame prediction task: A well
balanced combination of lexicon and corpus data
produces word sense embeddings that outperform
common word embeddings when used to predict
their semantic frame membership. Furthermore,
this superiority is uniform across common frames
dominated by different parts of speech.

An analysis of different values of our model’s
mix parameter ρ showed the value of using lexi-
cographic information in conjunction with corpus
data. Especially on WSD, larger values of ρ (i.e.,
more influence from the SN) generally lead to im-
proved results.

In conclusion, we have shown that automatic
word sense representation benefits greatly from
using a semantic network in addition to the
usual corpus-learning. The combination of these
sources of information yields robust, high-quality,
and balanced embeddings that excel in down-
stream tasks where accurate representation of
word meaning is crucial. Given these findings, we
intend to continue exploring more refined ways in
which data from a semantic network can be lever-
aged to increase sense-awareness in embedding
models.
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Abstract

Current research in text simplification has
been hampered by two central problems:
(i) the small amount of high-quality par-
allel simplification data available, and (ii)
the lack of explicit annotations of simplifi-
cation operations, such as deletions or sub-
stitutions, on existing data. While the re-
cently introduced Newsela corpus has al-
leviated the first problem, simplifications
still need to be learned directly from par-
allel text using black-box, end-to-end ap-
proaches rather than from explicit anno-
tations. These complex-simple parallel
sentence pairs often differ to such a high
degree that generalization becomes diffi-
cult. End-to-end models also make it hard
to interpret what is actually learned from
data. We propose a method that decom-
poses the task of TS into its sub-problems.
We devise a way to automatically identify
operations in a parallel corpus and intro-
duce a sequence-labeling approach based
on these annotations. Finally, we provide
insights on the types of transformations
that different approaches can model.

1 Introduction

Text Simplification (TS) is the task of reducing the
complexity of a text without changing its meaning.
Simplification can be applied at various linguistic
levels, from lexical substitution to more global op-
erations such as sentence splitting, paraphrasing or
the deletion or reordering of entire clauses.

Existing corpora for TS generally come in one
of two variants. The first focuses on very spe-
cific sub-problems, such as sentence compression

FA and JB contributed equally to this paper.

(Bingel and Søgaard, 2016) or the identification
of difficult words (Paetzold and Specia, 2016a),
and typically encodes relevant simplification op-
erations as discrete labels on tokens. The other
variant includes more general, higher-level types
of simplifications that often entail the rephras-
ing or re-structuring of sentences, with content
added or removed. These “natural” simplifications
are often created for end-users rather than for re-
search purposes. Examples of the latter simplifi-
cation resources include the Newsela (Xu et al.,
2015) and Simple English Wikipedia corpora (Zhu
et al., 2010; Coster and Kauchak, 2011b). These
resources generally encode interdependencies be-
tween different types of simplification better than
single-purpose resources and may thus seem fa-
vorable for learning simplifications. However, the
freedom given to editors and lack of explicit la-
bels on the modifications performed makes gen-
eralization much more difficult, especially when
existing resources are relatively small in compari-
son to corpora for other text-to-text problems like
machine translation (MT). Nevertheless, these cor-
pora have been extensively used to learn phrase-
based statistical and neural models for end-to-end
TS systems that bear resemblance to MT mod-
els (Specia, 2010; Zhu et al., 2010; Coster and
Kauchak, 2011b; Wubben et al., 2012; Narayan
and Gardent, 2014; Xu et al., 2016; Zhang and La-
pata, 2017; Zhang et al., 2017; Nisioi et al., 2017).

Adaptability and interpretability MT-style
models are essentially black boxes that offer
little or no control over the way in which a given
input is modified. Additionally, in most cases the
types of modifications that are actually learned
are limited to paraphrasing of short sequences of
words. We believe a middle ground is missing in
terms of resources and approaches for TS, where
models are learned from a more informed labeled
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dataset of natural simplifications, and can then
be applied in a controlled way, e.g., in adaptive
simplification scenarios that prioritize different
ways of simplifying (e.g. compression or sentence
splitting) depending on a particular user’s needs.

The only previous work on TS via explicitly
predicting simplification operations is that by Bin-
gel and Søgaard (2016), who create training data
from comparable text to label entire syntactic units
and train a sequence labeling model to predict
deletions and phrase substitutions in a complex
sentence. Our approach is different in that it cap-
tures a larger variety of operations in a more global
fashion, by using sentence-wide word alignments
rather than surface heuristics. Furthermore, we
use a more reliable (professionally created) corpus
and our approach is more flexible as we do not rely
on syntactic parse trees at test time.

Contributions This paper introduces the fol-
lowing main contributions: (1) We provide an
in-depth analysis on the potential and limitations
of the dominant approach to TS: end-to-end
MT-style models; (2) We devise a method to
automatically identify specific simplification
operations in aligned sentences from complex-
to-simple simplification corpora. This results in
a corpus that can be used to study how human
experts perform simplification tasks, as well as
to train simplification models to address specific
problems; and (3) We propose a sequence labeling
model built from such a corpus to predict which
simplification operations should be performed
as a first step for a complete simplification
pipeline. This approach is highly modular: once
operations are identified, different methods can
be applied to cover each simplification operation.
We show that this operation-based TS approach
is able to produce simpler texts than end-to-end
models. The code for extracting the simpli-
fication operations is available at https://
github.com/ghpaetzold/massalign,
while our sequence labeling model is released
at https://github.com/jbingel/
ijcnlp2017_simplification.

2 Related Work

In what follows we give a brief description of pre-
vious work on statistical and neural models for
TS. We first compare methods using versions of
Simple English Wikipedia data (Zhu et al., 2010;
Coster and Kauchak, 2011b), before considering

recent work that relies on the professionally edited
Newsela corpus (Xu et al., 2015).

Simple English Wikipedia Zhu et al. (2010)
propose a syntax-based translation model for TS
that learns operations over the parse trees of
the complex sentences. They outperform sev-
eral baselines in terms of Flesch index. Coster
and Kauchak (2011b) train a phrase-based ma-
chine translation (PBMT) system and obtain sig-
nificant improvements in terms of BLEU (Pap-
ineni et al., 2002) over a baseline. Coster and
Kauchak (2011a) extend a PBMT model to in-
clude phrase deletion and outperform Coster and
Kauchak (2011b). Wubben et al. (2012) also train
a PBMT system for TS with a dissimilarity-based
re-ranking heuristic, outperforming Zhu et al.
(2010) in terms of BLEU. Narayan and Gardent
(2014) built TS systems by combining discourse
representation structures with a PBMT model,
which outperforms previous approaches. Xu et al.
(2016) modify a syntax-based MT system in or-
der to use a new metric – SARI – for optimization
and to include special rules for paraphrasing. Al-
though their system does not outperform previous
work in terms of BLEU, it achieves the best results
according to SARI and human evaluation. Zhang
et al. (2017) train a lexically constrained sequence-
to-sequence neural network model for TS, based
on the encoder-decoder architecture for MT. The
system outperforms baseline systems (including a
PBMT system) in terms of BLEU. Finally, Nisioi
et al. (2017) propose a model for TS that is able
to perform lexical replacements and content re-
duction. They use a neural encoder-decoder ap-
proach where they combine pre-trained (general
domain and in-domain) word embeddings for the
source and target sentences. They also perform
beam search, finding the best beam size using ei-
ther BLEU or SARI. Their best model outper-
forms previous PBMT-based approaches in terms
of BLEU.

Newsela corpus To the best of our knowledge,
Zhang and Lapata (2017) is the only work that
explores MT-based approaches on the Newsela
corpus. They train an attention-based encoder-
decoder model (Bahdanau et al., 2014) and use
reinforcement learning with a reward policy com-
bining SARI, BLEU and cosine similarity (to mea-
sure meaning preservation). Their approach shows
improvements over a PBMT system in terms of
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BLEU and SARI, but no insights are given with
respect to the transformations that are actually
learned or how distant from the original sentences
the simplifications are. They also experiment with
the Simple Wikipedia corpus, yet do not outper-
form Narayan and Gardent (2014) on this data.

The neural end-to-end model we implement as a
baseline in this paper is equivalent to that in Zhang
et al. (2017) without the lexical constraints, while
the statistical model is equivalent to the one in
Coster and Kauchak (2011b).

3 Simplification via End-to-End Models

In addition to requiring large amounts of train-
ing data, MT-based approaches to TS are limited
because of their black-box way of addressing the
problem. As we are going to show in this sec-
tion, standard end-to-end systems without special
adaptation to TS do not succeed in learning alter-
native formulations of the original text. With a few
exceptions (by the neural model), they tend to re-
peat the original text. We conjecture that this is be-
cause, for most original-side material, TS corpora
do not consistently enough offer alternative sim-
plified formulations: in the majority of instances,
most words are kept as in the original.

To study the potential and limitations of end-to-
end translation models for TS, we build models us-
ing state-of-the-art MT-based approaches and the
Newsela corpus, arguably the most reliable (pro-
fessionally created) and realistic (aimed at a target
audience rather than research) resource to date.

The Newsela Corpus.1 Newsela is a multi-
comparable corpus where each document comes
in up to six levels of simplicity, from 0 (original)
to 5 (simplest). In our experiments, we only use
sentence pairs stemming from adjacent levels of
simplicity within the same document.2

Translation approaches require data aligned at
the sentence level. Given the original Newsela

1The Newsela Article Corpus was downloaded from
https://newsela.com/data, version 2016-01-29.

2The motivations for only using adjacent levels are (i) that
we assume that these are not “naturally” created (i.e. an ex-
pert would not start from an original text and directly generate
a level 5 text, but rather go from 0 to 1, 1 to 2, ..., 4 to 5), and
(ii) that the high degree of linguistic and stylistic differences
between non-adjacent levels makes learning even more com-
plex. For example, the average edit distance for sentences in
the 0-1 group is 0.19, while for sentences in the 0-5 group, it
is 0.65. As far as the first reason is concerned, note that we
could not find any publicly available simplification guidelines
for the Newsela corpus.

corpus, which only aligns different versions of
the same document, we first align sentences us-
ing the algorithms described in (Paetzold and Spe-
cia, 2016b). Their algorithms search for the best
alignment path between the paragraphs and sen-
tences of parallel documents based on TF-IDF co-
sine similarity and an incremental vicinity search
range. They address limitations of previous strate-
gies (Barzilay and Elhadad, 2003; Coster and
Kauchak, 2011b; Smith et al., 2010; Xu et al.,
2015; Bott and Saggion, 2011) by disregarding
the need for (semi-) supervised training, allow-
ing long-distance alignment skips, and capturing
N-to-N alignments. The alignments produced are
categorized as:

• Identical: The alignment is one-to-one and
the sentences are exactly the same (96,909
pairs across all adjacent levels).

• 1-to-1: The alignment is one-to-one and
the original-simplified sentences are different
(130,790 pairs across all adjacent levels).

• Split: The alignment is 1-to-N (42,545 pairs
across all adjacent levels).

• Join: The alignment is N-to-1 (7,962 pairs
across all adjacent levels).

Translation Models. We built two types of
models using state-of-the-art MT-based ap-
proaches: a phrase-based statistical MT model
using Moses (Koehn et al., 2007),3 and a neural
MT model using Nematus (Sennrich et al., 2017).4

The Neural Text Simplification tool (NTS) made
available by Nisioi et al. (2017) was also used for
comparison.5

For our translation-based experiments, we con-
sider two combinations of sentence alignments,
using (i) only one-to-one alignments (1-to-1)
(130,970 sentence pairs), and (ii) all alignments
(all), i.e., the entire sentence-aligned corpus
with identical, 1-to-1, split and join alignments
(278,206 sentence pairs). The first type of data (1-
to-1) is the focus of this paper (see §4). The latter
variant is included in the experiments for compar-
ison, in particular to address the question whether
more (but not necessarily better) data can aid data-
intensive translation-based approaches. For all

3We follow instructions from http://www.statmt.
org/moses/?n=Moses.Baseline

4We use a vocabulary size of 30, 000 and the same param-
eters as in Sennrich et al. (2016).

5We use the same configurations as Nisioi et al. (2017).
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Hyp vs. Ref Hyp vs. Orig

System BLEU↑ TER↓ BLEU TER %Same↓ SARI↑
Moses (all) 69.64 30.20 98.77 0.41 93.03 27.45
Nematus (all) 36.46 52.66 45.40 42.30 21.60 22.91
NTS (all) 68.35 31.37 90.52 7.19 72.91 27.36

Moses (1-to-1) 57.79 40.19 98.30 0.86 89.50 24.58
Nematus (1-to-1) 46.90 52.84 76.29 20.10 30.45 29.89
NTS (1-to-1) 53.79 45.24 77.63 16.70 42.76 30.44

Silver operations (1-to-1) 67.33 22.66 61.63 26.01 10.83 61.71
Predicted operations (1-to-1) 41.37 48.72 59.71 25.24 14.06 31.29

Table 1: Performance of translation-based and operation-based TS models (using silver or predicted
operation labels, with only DELETION and REPLACE applied). Metrics are BLEU and TER between
simplified version (Hyp) and reference (Ref) or original version (Orig), the percentage of sentences
copied from the input (%Same), and SARI for the simplifications.

experiments, the respectively used data was first
randomly split into training (80%), development
(10%) and test (10%) sets and normalized for en-
tities (incl. names, locations, numbers).

Simplification Quality. The first and second
sections of Table 1 show the results of translation-
based systems according to several metrics: simi-
larity metrics commonly used in MT, comprising
BLEU (Papineni et al., 2002) and TER (Snover
et al., 2006, minimum edit distance), as well a spe-
cific text simplification metric, SARI (Xu et al.,
2016). SARI measures how good the words added,
deleted and kept by a simplification system are, af-
ter comparing the produced output to the original
sentence and the simplification reference(s). It is
similar to BLEU but rewards copying words from
the original sentence. According to experiments
performed by Xu et al. (2016), SARI is the met-
ric that best correlates with human judgments of
simplicity.

For both “all” and “1-to-1” variants, the BLEU
and TER scores between hypotheses and refer-
ences are worse for Nematus, showing that a base-
line neural model tends to be more aggressive
and potentially generate noisier modifications than
Moses equivalents. To measure how strongly the
various approaches modify the input sentences,
these scores are also reported between the gener-
ated simplifications and the original inputs. Again,
these metrics are worse for Nematus-based mod-
els, showing that they indeed perform more mod-
ifications on the sentences. Moses in turn is very
conservative, keeping 90-93% of the test sentences

exactly in their original version. SARI shows low
scores for all systems. NTS is also conservative in
the “all” variant (attested by the high BLEU score
between hypotheses and original sentences). For
“1-to-1”, NTS produces more simplifications, di-
verging more from the original sentences.

Sentence-level Operations. Interestingly, even
though Moses and Nematus are trained on the
same data, they differ substantially with respect to
what they can learn. This is demonstrated by an
automatic inspection we conducted on the simpli-
fications produced by both systems trained over all
types of sentence alignments, i.e. including sen-
tence splits and joins.

Table 2 reports the count and proportion of
instances in the test set representing types of
sentence-level transformation between the origi-
nal and simplified sentence. It can be noted that
Moses is much more conservative than Nema-
tus and simply tends to copy the original as the
output (“Identical” cases). However, as the ma-
jority (57%) of aligned sentences in the profes-
sional Newsela simplifications are edited, we do
not consider copying a valid “simplification” in
most cases. Note also that Moses displays an ex-
cessively high BLEU score between the original
and hypothesis sentences (98.77), while the simi-
larity between the original and reference sentences
is much lower (71.57).

Manually inspecting some of the simplifications
made, we find that when it comes to sentence
splits, both MT-based simplifiers seem to be able
to perform this type of transformation in an accu-
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Moses Nematus

Operation Count % Count %

Identical 25,882 93.03 10,906 39.20
1-to-1 1,920 6.90 15,428 55.45
Split 14 0.05 354 1.27
Join 4 0.01 1,132 4.07

Table 2: Count and proportion of instances af-
fected by each type of simplification transforma-
tion performed by Moses and Nematus.

rate way. However, the proportion of such cases
is very low (0.05% and 1.27% for Moses and Ne-
matus, respectively) compared to the proportion in
the gold data (13.5%) of the sentence pairs contain
at least one split.

Moses only joins sentences in four cases, but
these are all spurious instances where a period is
incorrectly removed. Nematus is more successful
at learning this type of operation. In most cases,
it discards entire clauses that contain less relevant
content. For example, it simplifies the sentence
“Lincoln often cried in public and recited sad po-
etry, according to Joshusa Wolf Shenk, who wrote
a book called Lincoln’s Melancholy” to “Lincoln
often cried in public and recited sad poetry”. We
also find a few examples where the content that is
not discarded is rewritten to some extent, mostly
for grammaticality. The Nematus simplification
of “Frank was what the instructors called a ‘rock
star’; he emerged as a leader who worked hard to
keep the group together” onto “Frank was a leader
who worked hard to keep the group together ” is a
good example of that.

When it comes to 1-to-1 transformations, which
can include a number of different operations (see
§4), most transformations made by Nematus con-
sist of segment deletions, some of which are paired
with localized segment rewritings. As for Moses,
most 1-to-1 outputs are identical to the original ex-
cept for a few spurious typographic and punctua-
tion changes. Because of that, Nematus simplifi-
cations are in average four tokens shorter than both
complex originals and Moses simplifications.

A strong limitation of both models is their in-
ability to address lexical complexity, performing
very few lexical replacements. Most of the sen-
tences that are lexically simplified have only one
word replaced by another that does not preserve
its original meaning. Take, for example, the word
clears in the sentence “It clears the way for troops
on the ground with its huge bullets”, which was

replaced by gathers by Nematus, and the word
agribusiness, which was replaced by offering by
Moses in sentence “Older brother Nate has taken
college courses on livestock raising and agribusi-
ness”. Some of these issues become more evident
in the human evaluation we performed comparing
both end-to-end systems to our proposed approach
(§5.2).

4 Simplification via Sequence Labeling

Our approach to TS differs from translation-based
models by explicitly predicting a set of operations
to be applied at different positions in a complex
sentence. Concretely, we tackle simplification as
a sequence labeling problem, predicting opera-
tions at the token level and applying them down-
stream. As there are no high-quality and large-
scale resources from which such operation se-
quences could be learned, we first generate train-
ing data as explained below.6

4.1 Generating Training Data
Given 1-to-1 sentence pairs, our method for data
generation identifies deletions, additions, substi-
tutions, rewrites (replacing or adding non-content
words), and reorderings performed between sen-
tences pairs.

Automatic operation annotation. The annota-
tion process uses the following set of operation la-
bels: DELETE (D), REPLACE (R), and MOVE (M)
in the original (source) sentence; ADD (A) in the
simplified sentence; and REWRITE (RW) in both.7

We first generate word alignments between the
original and simplified sentences using the aligner
by Sultan et al. (2014). Based on these align-
ments, we perform a word-level annotation for la-
bels DELETE and REPLACE. Our heuristics are
that if two words are aligned and are not an exact
match, then the corresponding label is REPLACE.
If a word in the original sentence is not aligned, it

6For the experiments with the proposed TS approach, only
1-to-1 alignments are suitable. It is indeed not realistic to
expect that complex operations that involve significant struc-
tural changes (e.g., splitting or joining sentences) could be
modeled using sequence labeling approaches. For such com-
plex operations, we believe explicitly representing the sen-
tences’ syntactic structures and learning abstract syntactic
transformation rules (e.g. as in Woodsend and Lapata (2011)
or Feblowitz and Kauchak (2013)) would be more advisable.
However, we note that, as previously shown, translation-
based end-to-end approaches also fail to learn such complex
operations.

7Target-side annotations serve for analysis; they are ig-
nored in our experiments as they are unavailable at test time.
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Figure 1: Example of automatic labeling based on word alignments between an original (top) and a
simplified (bottom) sentence in the Newsela corpus. Unaligned words on the original side receive label
‘D’ (DELETE), while words that are aligned to a different form receive ‘R’ (REPLACE). Aligned words
without an explicit label receive a ‘C’ label (COPY). Sentences are from the Newsela Article Corpus.

Figure 2: Example of automatic annotation for la-
bel MOVE (‘M’). Sentences are from the Newsela
Article Corpus.

must be a DELETE, and if a word in the simplified
sentence is not aligned, it is an ADD. In any other
case, the word receives label C (COPY) or O (not
part of a simplification operation) in the original or
simplified sentence, respectively. For details, see
Algorithm 1 in the supplementary material. Figure
1 presents an example for our automatic labeling
approach. We consider REWRITE labels as special
cases of REPLACE where the words involved are
isolated (not in a group of same operation labels)
and belong to a list of non-content words.

Finally, we label reorderings (MOVE) by de-
termining if the relative index of a word (con-
sidering preceding or following deletions and ad-
ditions) in the original sentence changes in the
simplified one (Algorithm 2). See Figure 2 for
an example. Words or phrases that are kept, re-
placed or rewritten, may be subject to reorder-
ings, such that a token may have more than
one label (e.g. REPLACE and MOVE). For
that, we extend the set of operations by the
compound operations REPLACE+MOVE (RM) and
REWRITE+MOVE (RWM).

Evaluation of automatic labels. To test our al-
gorithms, we compare their output to manual an-
notations for 100 sentences from level pair 0-
1 of the Newsela corpus. The manual annota-
tions were performed by four proficient English
speakers. For 30 of those sentences, we calcu-
lated the pairwise inter-annotator agreement be-
tween annotators, yielding an average kappa value

of 0.57. We obtain an accuracy of 0.92 for all la-
bels, and a micro-averaged F1 score of 0.70 for all
positive labels (i.e. excluding ‘C’ and ‘O’). Ta-
ble 3 presents details on the performance of our
annotation algorithms over the identified opera-
tions. Of the positive labels, the algorithms anno-
tate most accurately additions and deletions. Ac-
cording to the confusion matrix in Table 4, the
relatively low ability of capturing replacements is
due to labeling them as deletions. This is mainly
caused by word miss-alignments and by parser er-
rors that our heuristics cannot recover from. The
same logic applies for labels REPLACE+MOVE and
REWRITE+MOVE. We are also able to capture
most MOVEments (high recall), but our reordering
heuristic still requires improvement.

Label Prec. Rec. F1 Support

A 0.66 0.92 0.77 261
D 0.76 0.90 0.82 371
M 0.17 0.92 0.28 24
R 0.70 0.39 0.50 71

RM 0.22 0.33 0.27 12
RW 0.24 0.07 0.11 57

RWM 0.00 0.00 0.00 6
C 0.99 0.94 0.96 1932
O 0.99 0.95 0.97 2112

avg / total 0.92 0.92 0.92 4846

Table 3: Per-label performance of automatic anno-
tation of operations.

We refer to these automatically generated labels
as silver labels. As we describe in the next sec-
tions, the corpus annotated with these labels will
be used to train our sequence labeling approach,
eliminating the need for costly human-annotated
data (i.e. gold labels). As a second way of evalu-
ating the quality of our automatic labeling, we use
these silver labels in a semi-oracle trial where we
apply the actual simplification operations as given
in the annotated corpus. In other words, we sim-
ply take the automatic labels as true and use the
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Automatically Annotated
A D M R RM RW RWM C O

A 240 0 0 0 0 2 0 0 19
D 15 333 8 4 5 1 1 4 0
M 0 1 22 0 0 0 0 1 0
R 0 33 0 28 6 0 0 4 0

RM 0 8 0 0 4 0 0 0 0
RW 3 31 4 7 2 4 0 6 0

RWM 0 6 0 0 0 0 0 0 0
C 0 24 98 1 1 1 0 1807 0
O 105 0 0 0 0 9 0 0 1998

Table 4: Confusion matrix of true (rows) and au-
tomatically annotated (columns) operations on the
manually annotated data.

alignments between original and simplified words
to apply the actual operations. This is what we re-
fer to as silver operations in Table 1. Using the
automatic labeling would lead to much more accu-
rate and less conservative simplifications than all
translation-based approaches: it achieves the high-
est SARI and BLEU scores, and the lowest rate of
copied input sentences among all systems tested
using the 1-to-1 alignments. Therefore, the chal-
lenges now are (i) to predict such labels (§5.1), and
(ii) to devise high-performing TS modules to ap-
ply simplification operations for each type of label
(§4.2).

4.2 Application of Operations

For our experiments (§5), we consider two of the
operations that our algorithms can identify with
high precision: DELETE and REPLACE.8 Apply-
ing deletions is straightforward and amounts to
simply omitting the respective token when gener-
ating the hypothesis sentence. For the REPLACE

operation, we use the supervised Lexical Simpli-
fication approach of Paetzold and Specia (2017).
Their simplifier generates candidate substitutions
for target words using parallel complex-to-simple
corpora and retrofitted context-aware word em-
bedding models, selects the ones that fit the con-
text of the target word through the unsupervised
boundary ranking approach, then ranks candidates
using a supervised neural ranking model trained

8We focus on this subset of operations since we currently
lack good models to apply to the remaining operations. ADD,
for example, would presume access to an external resource
such as a knowledge base that would serve as a basis for in-
ferring added content (which is oftentimes background infor-
mation, for example an explanation that a certain person has
a certain function). The results we obtain can thus be viewed
as a lower bound on the simplification quality that can be ex-
pected from a model that integrates other operations.

over manually annotated simplifications. It also
performs a final confidence check step: the target
is only replaced by the highest ranking candidate
if the trigram probability of two words preceding
the target is higher for the candidate.

5 Experiments

Based on the automatic annotation procedure out-
lined above, we generate sequence annotations of
1-to-1 simplification operations in the Newsela
corpus. On this data, we explore the questions (i)
whether we can predict simplification operations
to be performed on unseen data, and (ii) to what
degree the prediction of these operations allows us
to generate good simplifications.

5.1 Prediction of Simplification Operations

To predict simplification operations for each input
word, we train a bidirectional recurrent neural net-
work, with an initial embedding layer of size 300
and two hidden LSTM (Long-Short Term Mem-
ory) layers of size 100. The training is done us-
ing Keras (Chollet, 2015), with a batch size of
64, categorical cross-entropy loss and a dropout
rate of 0.2 after the hidden layers. We optimize
the model with Adagrad (Duchi et al., 2011). We
monitor the tagging accuracy on held-out develop-
ment data and employ early stopping when the de-
velopment loss increases. We repeat this process
ten times with random initializations and select the
best model based on development set accuracy.

Table 5 shows that the LSTM model does not
predict the silver labels very well. In particular, the
model is relatively conservative with respect to the
prediction of simplification operations, and tends
to overpredict the majority class (i.e., to copy a to-
ken).9 DELETE is the operation that our model pre-
dicts best. Table 6 shows the relative confusion of
predicted operations versus the silver labels, and
confirms that the main error type of our system is
to keep a token rather than performing some sim-
plification operation on it. We also see a tendency
for other operations to be predicted as deletions.

The results in the lower part of Table 1 (“Pre-
dicted operations (1-to-1)”), however, show that
even though the operation predictions are far from
the silver labels, our system is able to generate
simple output by only applying the DELETE and

9By weighting the loss function by the ground truth class
support at each timestep, we were able to alleviate the effect
of a predominant majority class to some degree.
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Label Prec. Rec. F1 Support

D .30 .49 .37 58,692
M .21 .16 .18 29,719
R .13 .34 .19 7,208

RM .00 .00 .00 2,817
RW .14 .07 .10 646

RWM .00 .00 .00 141
C .68 .51 .58 154,481

avg / total .51 .45 .47 253,704

Table 5: Per-label performance of automatic oper-
ation prediction with the LSTM model.

Predicted
D M R RM RW RWM C

D .49 .06 .07 .00 .00 .00 .38
M .41 .16 .05 .00 .00 .00 .38
R .23 .05 .34 .00 .00 .00 .38

RM .32 .09 .21 .00 .00 .00 .38
RW .38 .00 .00 .00 .07 .00 .54

RWM .62 .03 .00 .00 .04 .00 .32
C .33 .09 .06 .00 .00 .00 .51

Table 6: Confusion matrix of true (rows) and pre-
dicted (columns) operations on the test data.

REPLACE operations. In particular, our method
achieves a better SARI score than all the baseline
systems on the 1-to-1 alignments. As we consider
the extrinsic evaluation of the final TS results to be
more indicative of the quality of our model than its
intrinsic evaluation in the sequence labeling task,
we view this as a positive result.

5.2 Human Evaluation
We finally conduct a human evaluation of 100 sim-
plifications produced by five simplifiers:

• The experts’ Reference simplification.

• The Moses simplifier (1-to-1).

• The Nematus simplifier (1-to-1).

• The NTS simplifier (1-to-1).

• Our Sequence Labeling (SL) simplifier.

Human evaluators (four NLP experts) are given
the original sentence and the simplification in each
of the above versions, and are asked to judge each
of them with respect to their grammaticality (G),
meaning preservation (M) and simplicity (S), us-
ing a Likert scale between 1 (worst) and 5 (best)
for each aspect. We define “simplicity” as the ex-
tent to which the sentence was simpler than the
original and thus easier to understand. A control

set of 20 sentences is evaluated by all annotators
in order to compute inter-annotator agreement.

G M S

Reference 5.00±0.0 4.45±0.9 2.70±1.3
SL 4.16±1.0 3.91±1.1 1.66±0.9
Nematus 4.49±0.9 3.99±1.2 1.46±0.9
Moses 4.98±0.2 4.99±0.1 1.14±0.4
NTS 4.75±0.6 4.08±1.26 1.53±1.0

Fleiss’ Kappa 0.372 0.457 0.342

Table 7: Average scores and standard deviation for
grammaticality (G), meaning preservation (M) and
simplicity (S) for the systems evaluated. The last
row shows the inter-annotator agreement scores in
terms of Fleiss’ Kappa.

Table 7 illustrates the average scores and stan-
dard deviations obtained by each system according
to each criterion. As expected, the Moses simpli-
fier obtains the highest grammaticality and mean-
ing preservation scores, but the lowest simplicity
scores, given that it tends to merely reproduce the
input. Although Nematus and NTS manage to ob-
tain slightly higher simplification scores, they still
average very close to the lower end of the simplic-
ity scale. Our SL approach, in turn, shows signifi-
cantly higher simplicity scores than the other sys-
tems (according to a t-test with p < 0.05). Its less
conservative edits, however, may in some cases
come at the cost of lower scores for grammati-
cality and meaning preservation. The last row in
Table 7 shows the values of inter-annotator agree-
ment in terms of Fleiss’ Kappa for each evaluation
aspect. Table 8 exemplifies some of the sentences
for which our system was rated better and worse
than the baselines. It is important to mention that,
although the first two reference simplifications in
Table 8 feature only minor punctuation changes,
only 2,538 references (0.8%) in the dataset are of
this type.

6 Conclusions and Further Work

We presented a novel approach to sentence sim-
plification that uses automatically labeled training
data from a large simplification corpus. Based on
this annotated corpus, we devise a sequence la-
beling approach to text simplification that predicts
simplification operations for individual words in
the original sentence. Specific modules are then
triggered to deal with each predicted operation.
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SL better than other Moses, Nematus and NTS

O Kyarra Garrett has learned how to take blood pressure and perform CPR – and she is not even out
of high school yet.

R Kyarra Garrett has learned how to take blood pressure and perform CPR, and she is not even out
of high school yet.

M Kyarra Garrett has learned how to take blood pressure and perform CPR – and she is not even out
of high school yet.

N UNK Garrett loves out to take blood pressure and perform, and she is not even out of high school
yet.

T Chance Garrett has learned how to take blood pressure.
L Kyarra Garrett has learned how to take blood pressure and perform CPR.

O in her mind she stops at particular locations to pick up the correct cookie crumbs.
R in her mind, she stops at particular locations to pick up the correct cookie crumbs.
M in her mind she stops at particular locations to pick up the correct cookie crumbs.
N she stops at particular locations to pick up the correct cookie UNK.
T in her mind she stops at particular locations to pick up the correct cookie momentum.
L in her mind she stops at particular areas to pick up cookie crumbs.

SL worse than Moses, Nematus or NTS

O despite the limitations, Palestinian cooking is not without its fans.
R despite the limitations, Palestinian cooking has its fans.
M despite the limitations, Palestinian cooking is not without its fans.
N Palestinian cooking is not without its fans.
T even Palestinian cooking is not without its fans.
L despite the limitations, Palestinian cooking is not without its fans.

O “we always thought there has to be a more efficient way of doing this,” Zach Fiene said.
R he said he always thought there had to be a better way of doing it.
M “we always thought there has to be a more efficient way of doing this,” Zach Fiene said.
N “we always thought there has to be a more efficient way of doing this,” said Zach Ghani, who is

the 18-year-old said.
T Zach Fiene said there has to be a more efficient way of doing this.
L “we always thought there has to be more efficient way doing this said.

Table 8: Example including original (O) and reference (R) sentences from the Newsela Article Corpus,
and outputs generated by Moses (M), Nematus (N), NTS (T) and our sequence labeling approach (L).

The experiments reported here cover only dele-
tions and lexical substitutions as operations.

Our approach has several theoretical advantages
over end-to-end translation models, including eas-
ier interpretability of the types of simplification
learned, as well as the possibility for late decoding
for adaptive simplification. In practical terms, we
showed that our system outperforms translation-
based approaches on a number of metrics and
overcomes the problems of excessive repetition of
the original content.

According to human evaluation, our system
achieves higher simplicity scores than the base-
line systems, although this comes at the cost of

slightly lower meaning preservation and grammat-
icality. We hypothesize that some of the problem-
atic cases stem from not realizing the addition op-
eration. In general, our approach will likely profit
from good models for the remaining operations,
especially those that can also operate on spans of
several tokens, making research on such models a
natural direction for further work.
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Abstract

RDF ontologies provide structured data on
entities in many domains and continue to
grow in size and diversity. While they can
be useful as a starting point for generating
descriptions of entities, they often miss
important information about an entity that
cannot be captured as simple relations. In
addition, generic approaches to generation
from RDF cannot capture the unique style
and content of specific domains. We des-
cribe a framework for hybrid generation of
entity descriptions, which combines gene-
ration from RDF data with text extracted
from a corpus, and extracts unique aspects
of the domain from the corpus to create
domain-specific generation systems. We
show that each component of our appro-
ach significantly increases the satisfaction
of readers with the text across multiple ap-
plications and domains.

1 Introduction

RDF ontologies are a wonderful source for genera-
tion: they feature standardized structure, are con-
stantly expending and span many interesting dom-
ains. However, generation from RDF introduces
two major difficulties. First, RDF contains relati-
onships between entities but often lacks other im-
portant information about an entity (e.g., historical
background and context) which is hard to capture
with simple relations. Second, RDF data spans
many domains, and presents the difficulty of hand-
ling specific domains in generation.

Generally speaking, there are three approaches:
domain-specific approaches (with hand-written or
other rules relevant to each domain), which are
not scalable; generic approaches (generating in

∗Work done while at Columbia University

exactly the same way for all domains) which re-
sult in unnatural text and miss important content;
and domain adaptation, which attempts to automa-
tically transfer an approach from one domain to
another.

Our approach aims to leverage the advantages
of all three. We present a generic framework
of generation meta-systems for RDF applications,
which uses domain adaptation to create domain-
specific systems. Biography and Company Des-
cription are examples of applications (an applica-
tion is the description of RDF entities of a particu-
lar type), while Politician and Model are examples
of domains within the Biography application.

The reason our framework is able to adapt to
new domains automatically is that it relies on hy-
brid concept-to-text (C2T) and text-to-text (T2T)
generation: part of the generated text consists of
messages that are created from structured data ac-
cording to a generic recipe, while another part co-
mes from messages extracted from a domain cor-
pus. In addition, we use existing methods to ex-
tract paraphrases and discourse models from the
domain corpus, which further refines how text is
generated differently for each domain.

2 Related Work

Generation from RDF data is not a new to-
pic. Duboue and McKeown (2003) described a
content selection approach for generation from
RDF data. Sun and Mellish (2006) present a
domain-independent approach for sentence gene-
ration from RDF triples. Duma and Klein (2013)
propose an architecture for learning end-to-end
generation systems from aligned RDF data and
sampled generated text. End-to-end concept-to-
text systems were proposed by Galanis et al.
(2009), Androutsopoulos et al. (2013) and Cimi-
ano et al. (2013), among others. For a survey of the
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history of generation from semantic web data and
its difficulties, see (Bouayad-Agha et al., 2014).

Generation meta-systems which can be automa-
tically adapted to a new domain have been explo-
red in recent years. Angeli et al. (2010) learn to
make decisions about content selection and (se-
parately) template selection from an aligned cor-
pus of database records and text describing them.
Kondadadi et al. (2013) describe a framework
that learns domain-specific templates, content se-
lection, ordering and template selection from an
aligned corpus. Both approaches rely on supervi-
sed learning from an aligned corpus of data and
sample texts generated from the data, which is a
rare resource that does not exist for most domains.

Other recent work has focused on domain adap-
tation for existing generation systems (as opposed
to creating adaptable meta-systems). There has
been work on adapting generated text for different
user groups (Janarthanam and Lemon, 2010; Gkat-
zia et al., 2014); adapting summarization systems
to new genres (Lloret and Boldrini, 2015); adap-
ting dialog generation systems to new applications
(Rieser and Lemon, 2011) and domains (Walker
et al., 2007); and parameterizing existing hand-
crafted systems to increase the range of domains
they can handle (Lukin et al., 2015).

In comparison, hybrid C2T-T2T generation is
fairly unexplored territory. One recent example is
Saldanha et al. (2016), which evaluated two ap-
proaches to generating company descriptions - one
with Wikipedia structured data, the other utilizing
web search results - and determined that the best
results were achieved by combining the two. Ho-
wever, the hybrid system in this case was only a
concatenation of two independent approaches.

3 Framework Overview

Our approach is a framework for creating genera-
tion meta-systems for specific applications of RDF
entity description, such as biography and company
description generation. Each meta-system, in turn,
can be automatically adapted to a new domain
within the application (e.g., the politician dom-
ain within the biography application) with only
a simple text corpus, resulting in a concrete ge-
neration system that is specifically adapted to the
domain. The generation system uses hybrid ge-
neration, building core messages from RDF data
(C2T) and adding domain-specific secondary mes-
sages from the text corpus (T2T).

3.1 Semantic Data Structures

Our main data structure is the Semantic Typed
Template (STT). An STT is a tuple 〈V,R,L〉 con-
sisting of a set of vertices labeled with entity types
V = {v1, . . . , vn}, a set of edges labeled with re-
lations among the vertices R = {r1, . . . , rm} and
a set of lexical templates L = {l1, . . . , lk}. The
lexical templates L are all assumed to be lexicali-
zations of the semantics of the STT and paraphra-
ses of each other, and must be phrases or senten-
ces (that is, multiple-sentence lexicalizations are
not allowed). The STT represents both the mea-
ning and possible realizations of a sentence-level
unit of semantics, without directly modeling the
meaning in any way other than through the graph
embodied in V and R. Instead, the meaning is
grounded in the lexical template set.

A message is an instance of an STT τ with a
concrete set of entities E. The set of types V (τ)
constrains the number and types of entities that are
allowed to participate in E, and the set of relati-
onsR(τ) constrains them further (the entities must
have the proper relations among them).

3.2 Application Definition

RDF is a framework for organizing data using tri-
ples. Each triple contains a subject, a predicate
and an object. In this paper, we use DBPedia
(Auer et al., 2007) as our source of RDF data.

Each RDF application defines a single entity
type η: each instance of the application is an entity
belonging to this type (that is, there exists a triple
such that the subject is the instance entity, the pre-
dicate is typeOf and the object is η). In Biography,
η = Person, while in Company Description η =
Company. In addition, each application defines a
domain-differentiating predicate π: in Biography,
π = Occupation, while in Company Description
π = Industry. π must be chosen so that for each
instance of the application, there exists an RDF tri-
ple where the subject is the instance entity and the
predicate is π.

4 Domain Preparation

Our framework defines each application as a gene-
ration meta-system: a generic system from which
concrete, domain-adapted systems can be created
using a text corpus. This section describes the pro-
cess of domain adaptation.

In this paper, we use Wikipedia as our source for
domain corpora (each corpus is the set of Wikipe-
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dia articles for all entities of the domain). While
it is convenient to select the corpus in this way,
there is nothing in the framework that requires the
domain corpus to come from Wikipedia.

4.1 Extracting Domain STTs and Messages

Given a new domain corpus, we first extract defi-
nitional sentences: sentences in the corpus which
contain an entity which is an instance of the dom-
ain. For example, in the Company Description ap-
plication, in the Computer Hardware domain, defi-
nitional sentences for the entity Apple may include
“Apple is an American multinational technology
company” and “In 1984, Apple launched the Ma-
cintosh, the first computer to be sold without a pro-
gramming language at all”.

To templatize the sentence and find its paraphra-
ses, we use the approach of (Biran et al., 2016).
Each definitional sentence is parsed, and NNPs
that match an entity in DBPedia become typed
slots, resulting in a template and a set of entities
that match the slot types. The slot types are de-
termined in two stages - sense disambiguation and
hierarchical positioning - both achieved by lever-
aging the DBPedia ontology in combination with
vector representations. We then use the templated
paraphrase detection method described in (Biran
et al., 2016) to compare the template with exis-
ting STTs that match the entities’ types and rela-
tions (all of which are known from the RDF onto-
logy). The paraphrasing approach uses sentence-
level vector representations to calculate the simi-
larity of the template to all of the existing lexica-
lizations of an STT. If the template is determined
to be a paraphrase for an existing STT, it is added
as a new lexicalization; otherwise it is treated as
a new STT. This new STT (or the old STT with a
new lexicalization) can be used for any entity sets
that have the appropriate types and relations.

In addition, we create a domain message from
the STT and the entities found in the definitional
sentence (effectively making the definitional sen-
tence itself a possible lexicalization of this mes-
sage, along with any alternative lexicalizations if
the STT contains any). This gives us the set of po-
tential secodary messages which we will use in the
generation pipeline.

Figure 1 shows an example of this process. Two
definitional sentences for the entity are found and
templatized, and the first is matched to an existing
STT (STT1) as a paraphrase. The first two lexica-

lizations of this STT are the default ones, created
for all RDF triples as explained in Section 5.1; the
third is the template of the definitional sentence.
The STT can be used with any matching entity set,
but in particular, it is matched to the entity set of
the definitional sentence to create domain message
1. The second template cannot be matched to an
existing STT, so a new one is created, along with
domain message 2.

Entity: Candice Bergen (a model)

Definitional sentences (found in Wikipedia):
- “Candice Bergen was born and raised in
Beverly Hills, California”
- “Bergen began her career as a fashion model
and appeared on the front cover of Vogue
magazine”

Templates:
- [Person] was born and raised in [City]
- [Model] began her career as a fashion model
and appeared on the front cover of [Fashion
Magazine]

STT1 (matched through paraphrasing):
V = {Person,City}
R = {v2 birthPlace v1}
L = {
“The birth place of [v1] is [v2]”,
“[v1]’s birth place is [v2]”,
“[v1] was born and raised in [v2]”,
. . . }

Domain message 1:
STT = STT1

E = {Candice Bergen,Beverly Hills}

STT2 (new, no RDF relation):
V = {Model,Fashion Magazine}
R = {∅}
L = { “[v1] began her career as a fashion model
and appeared on the front cover of [v2]” }

Domain message 2:
STT = STT2

E = {Candice Bergen,Vogue Magazine}

Figure 1: An example of the domain STT and mes-
sage extraction process.
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4.2 Extracting the Discourse Planning Model
A discourse planning model is extracted from the
domain corpus as described in (Biran and McKe-
own, 2015). The model provides prior and transi-
tion probabilities for the four top-level Penn Dis-
course TreeBank (PDTB) (Prasad et al., 2008) dis-
course relations: expansion, comparison, contin-
gency and temporal. These probabilities reflect the
discourse style that characterizes the domain, and
will be used in Section 5 to determine the ordering
of, and relations between, generated messages.

4.3 Extracting the Language Model
The language model used in the realization com-
ponent of the pipeline is not a typical n-gram mo-
del. We are not trying to generate words within a
sentence. Instead, we have a set of templates for
each message to generate (which corresponds to a
sentence or phrase in the final text) and we want to
choose one that best fits the context. For this pur-
pose, we define and extract three cross-sentence
language models.

The first language model is a cross-sentence
model for pairs of words that appear in adjacent
sentences. The probability that a word w appears
in a sentence if word v appears in the previous sen-
tence, independently of everything else, is

P (w|v) =
Count(v, w)
Count(v)

For the probability of a particular template T
given a selected previous sentence S, we take the
average over all word pairs:

PLM1(T |S) =

∑
(w,v)∈{T ×S} P (w|v)
|{T × S}|

The second language model is a POS bi-
gram pair model. It treats POS bigrams as
individual words in the first model; in other
words, PLM2(T |S) is defined in the same way as
PLM1(T |S), except thatw and v stand for POS bi-
grams (instead of words) in the candidate template
and the selected previous sentence, respectively.

The third is a sentence length model. Here we
compute the expected length of a sentence T given
the length of the previous sentence S as

E[#T |#S] =

∑
{σi:#σi−1=#S}#σi

|{σi : #σi−1 = #S}|
where #S is the length of sentence S in words.
We then smooth this expectation estimate using

the estimates of nearby lengths:

Ẽ[#T |#S] =

∑#S+3
i=#S−3E[#T |i]

7

Based on this smoothed expectation, we define
the probability of a template T given a selected
previous sentence S:

PLM3(T |S) ∆=
1

(#T − Ẽ[#T |#S])2

This definition is not intended to have a true pro-
babilistic interpretation, but it preserves an order
of likelihood since it increases monotonically as
the length of T approaches the expected values.

These models are used in Section 5 to rank pos-
sible templates for a message being generated.

5 Generation

Once a domain has been prepared, we can gene-
rate text for any instance in that domain. The ge-
neration pipeline contains four components: core
message selection, domain message selection, dis-
course planning and realization.

5.1 Core Message Selection
For each instance, we produce one core message
from each RDF triple that has the instance’s entity
as the subject. To create a message from a triple,
we first match it to an STT based on the predicate.
Each predicate becomes an STT with two entity
types (the type of the subject, which is the instance
entity, and the type of the object) in V ; a single
relation between the two types (the predicate) in
R; and two simple initial templates in L:

• The (PREDICATE) of [v1] is [v2]

• [v1] ’s (PREDICATE) is [v2]

where (PREDICATE) is replaced with the relevant
predicate. Additional templates are then found
using paraphrasal template mining as described in
the previous section. We also create plural versi-
ons for cases where v2 is a list of entities.

For example, in the biography dom-
ain, we create an STT for the birthDate
predicate with V = {person, date};
R = {v1 birthDate v2}; and an initial tem-
plate set L = {“The birth date of [v1] is [v2]”,
“[v1]’s birth date is [v2]”}. In the preparation
stage described in Section 4, L may be expanded
with paraphrasal templates found in the corpus,
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for example “[v1] was born in [v2]” (see Figure 1
for an example).

We then create a message that contains the re-
levant STT and the entities in the triple. In case
there are multiple triples with the same subject and
predicate but different objects, we create a single
message with a plural version of the STT and de-
fine the second entity as the list of all objects. We
shall refer to the set of core messages as C.

In this paper we separate the content selection
problem into two parts. The first (this com-
ponent) is application-dependent and domain-
agnostic, and handles the skeleton or core struc-
ture of the generated text; the next component
handles additional domain-specific content.

5.2 Domain Message Selection

The set of core messages gives us the core entities
which participate in the core messages.

We also have the set of domain messages for
the domain which are prepared (extracted from
the domain corpus) ahead of time as described in
Section 4. The set P of potential domain messa-
ges for generation is the subset of domain messa-
ges which contain the instance entity. In this stage
of the pipeline, we select a subset of these poten-
tial domain messages to include in the generated
text.

To select domain messages, we utilize the
energy minimization framework described by Bar-
zilay and Lapata (2005). They describe a formula-
tion that allows efficient optimization of what they
call independent scores of content units and link
scores among them through the energy minimiza-
tion framework. The function to minimize is:∑
p∈S

indN (p) +
∑
p∈N

indS(p) +
∑
pi∈S
pj∈N

link(pi, pj)

where S is the subset of P selected for genera-
tion, N is the subset not selected (P − S = N ),
indS(p) is p’s intrinsic tendency to be selected,
indN (p) is p’s intrinsic tendency to not be selected
and link(pi, pj) is the dependency score for the
link between pi and pj . A globally optimal parti-
tion of P to S and N can be found in polynomial
time by constructing a particular kind of graph and
finding a minimal cut partition (Greig et al., 1989).

The base preference of a message p is defined

Bp(p) =
{
|R(τ(p))| if M(p) = E(p)

−|E(p) \M(p)|#L(τ(p))
10

otherwise

where M(p) is the subset of E(p) - the entities
of message p - which contains only entities that
participate in at least one relation in R(τ(p)), and
#L(τ(p)) is the average length in words of the
templates of the STT τ(p). This definition results
in a positive score for a message where all enti-
ties participate in a relation, whose weight is the
number of relations it covers; conversely, messa-
ges which have entities that do not participate in
a relation (unaccounted entities), have a negative
score which increases in magnitude with the num-
ber of unaccounted entities and with the length of
the templates realizing them. The intuition is that
a long message containing many entities that ma-
tch no triples is unlikely to be relevant.

Then, we define the individual preference sco-
res ind(p) as an average of the similarity of p to
each of the core messages using the Jaccard coef-
ficient as a similarity score:

ind(p) =
∑

m∈C J(p,m)
|C|

Finally, we define indS(p) and indN (p) as

indS(p) =

{
Bp(p)× ind(p) if Bp(p) ≥ 0
0 otherwise

indN (p) =

{
Bp(p)
ind(p) if Bp(p) < 0

0 otherwise

The link scores link(pi, pj) are defined using
a type similarity score. In contrast to the indivi-
dual preference scores, where we maximize the
entity overlap with core messages (to avoid in-
cluding messages with no connection to the core
of the text), we should not encourage the domain
messages to all share the exact same set of entities.
Instead, we focus on a softer semantic similarity:
shared entity types. This score enhances the co-
herence of the generated text (for example, by en-
couraging a focus on the executives of a company
in a particular instance, and on its products in anot-
her) but allows a flexible range of messages to be
selected. The link score definition is

link(pi, pj) =

∑
(ei,ej)∈{E(pi)×E(pj)} typsim(ei, ej)

|{E(pi)× E(pj)}|
where

typsim(ei, ej) =

{
1 if type(ei) = type(ej)
0 otherwise
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Denoting the subset of P selected by this pro-
cess as selected(P ), at the end of this process, we
have M = C ∪ selected(P ) - the full set of mes-
sages to be generated.

5.3 Discourse Planning

The discourse planning component transforms
the unordered set of messages M into an orde-
red sequence of paragraphs P = (p1, . . . , pk)
where each paragraph pi is an ordered discourse
sequence pi = (m1, r1,m2, r2, . . . , rn−1,mn),
where the alternating mi and ri are messages and
discourse relations, respectively.

First, we calculate the semantic similarity of
each pair of messages in M as follows:

sim(mi,mj) = cos(Vψmi ,Vψmj )link(mi,mj)

where ψmi is the pseudo-sentence of message mi,
constructed by concatenating all of its templates;
Vψmi is the vector representing ψmi , defined as the
geometric mean of the vectors of all words parti-
cipating in ψmi (the word vectors are traditional
context vectors extracted from Gigaword with a
window of 5 words); and link(mi,mj) is defined
as above. Essentially, this is a combination of the
entity type-based semantic similarity and the dis-
tributional similarity of the lexicalizations.

We use single-linkage agglomerative clustering
(with a stopping criteria of sim(mi,mj) ≤ 0.05)
to group the messages into semantic groups of
messages that are similar in topic. Then, within
each semantic group, we find potential discourse
relations for each pair of messages:

1. If the STTs of mi and mj are the same but
they have no entities in common then there is
a potential comparison relation between them

2. If J(mi,mj) ≥ 0.5 then there is a potential
expansion relation between them

3. Manually annotated relations for 20 specific
pairs of RDF predicates, e.g. birthPlace and
residence may have a temporal or a compari-
son relation between them

4. All message pairs can have a norel relation

Next, we use the discourse model extracted
from the domain corpus to generate a discourse
sequence. In order to make sure entity coherence
is taken into account when choosing the ordering
in addition to discourse coherence, we augment

the probabilities coming from the discourse mo-
del PD(ri|Ri−1), where Ri−1 is the sequence of
relations chosen so far, with the entity coherence
score J(mi,mi−1), so that the probability of a re-
lation between two messages is given by

P (ri|Ri−1,mi,mi−1) =PD(ri|Ri−1)J(mi,mi−1)

The discourse sequence is created stochastically
using these probabilities as described in (Biran and
McKeown, 2015). Then, we break the discourse
sequence into paragraphs that do not contain no-
rel relations. Concatenating all of the paragraphs
built from the discourse sequences of all semantic
groups, we have an unordered set of paragraphsP ,
where each pi is an ordered discourse sequence of
messages and relations.

To order the paragraphs, we use the following
importance score:

imp(pi) =

∑
m∈pi |{e|e ∈ E(m)}|Bp(m)

|pi|
which is the average number of entities in a mes-
sage of pi, weighted by the base preference score
Bp(m). The paragraphs are then sorted in decrea-
sing order using this score, so that the paragraphs
containing the most important messages tend to
appear earlier in the text.

5.4 Realization

At this stage, we have the ordered set of para-
graphs P to be realized. To generate a paragraph,
we select a template for each message and then
select a discourse connective, or choose not to use
one, for each discourse relation.

Selecting a template is done using the three lan-
guage models prepared ahead of time, as described
in Section 4. We build a ranker from each model,
and choose the template from {l ∈ L(τ(m))} that
maximizes the the sum of ranks given the previ-
ously realized sentence (in the paragraph) s:

l̂ = argmax
l∈L(τ(m))

3∑
i=1

rank
(
PLMi(l|s)

)
Once the template is chosen, we fill the slots

with the entities E(m) to make it a sentence.
At this point we have the final lexical form of

the message, and the last task is to link it with
the previous sentence. We have a small set of dis-
course connective templates for each one of the 4
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class-level PDTB relations (for example, “mi. Ho-
wever, mj” is one of the templates for the compa-
rison relation), and we know the relation between
the message and the previous message. We rand-
omly select a connective, with a 50% chance of
having no connective and a uniform distribution
among the connectives for the relation, but avoid
using connectives for sentence pairs that are toget-
her larger than 40 words.

At the end of this step, all paragraphs are gene-
rated with lexicalized sentences and connectives.

6 Evaluation

To evaluate our RDF applications we conducted a
crowd-sourced human experiment using texts ge-
nerated from four domains in two applications:
Biographies of Politicians and Models, and Com-
pany Descriptions of Automobile Manufacturers
and Video Game Developers. We picked 100 in-
stances from each domain of each application, for
a total of 400 (we picked the instances that had
the most RDF triples in each domain). Then, we
generated 4 versions for each instance:

1. A full-system version

2. A version that excludes paraphrase de-
tection (so core messages only had the
two manually-created templates, and domain
messages only had a single template each)

3. A version that excludes the discourse model
(so discourse planning was done using only
entity coherence scores)

4. A baseline version that has no domain adap-
tation at all and is fully C2T instead of hybrid
(i.e., only core messages were generated, wit-
hout any extracted domain messages)

Using these 4 versions, we devised 3 questions
for each instance. In each question, the annotator
saw two texts about the same entity - the full sy-
stem version, and one of the other three versions
- and was asked which is better (with an option
of saying they are equal), along several criteria.
The questions were presented in random order and
the systems were anonymized. We showed each
question to three annotators and used the majority
vote, throwing out results where there was total
disagreement between the annotators, which hap-
pened 12% of the time for the baseline version and
17− 21% of the time for the other variants.

The questions included four criteria: the con-
tent of the text (information relevance); the orde-
ring of the sentences and paragraphs; the style of
the text (how human-like it is); and the overall sa-
tisfiability of the text as a description of the per-
son/company in question.

We show the results of the experiment in Ta-
ble 1. The results in this table are for both ap-
plications and all four domains. Each compari-
son (e.g., “No Hybrid VS Full System” shows the
breakdown of preference by annotators when they
were shown texts generated by the two variants:
how many (in percentage) preferred the baseline
system (e.g. No Hybrid), how many preferred
the full system, and how many thought they were
equal. We also show the winning difference bet-
ween the two systems, i.e. those who thought that
the full system was better than the baseline minus
those who thought the opposite, and we measure
statistical significance on these differences. Sta-
tistically significant results are marked with a dag-
ger.

6.1 Discussion

The most striking result of Table 1 is that the full
system is overwhelmingly favored by annotators
over the non-hybrid baseline, with a 32% − 46%
lead in all categories. This result, more than any-
thing, shows the value of our framework and the
hybrid approach. The full system was particularly
better than this baseline in content, which is gene-
rally expected since it by definition contains less
content than the full system (it only generates the
core messages); note, however, that this result sug-
gests that the extracted and selected messages are
relevant and enhance the reader’s satisfaction with
the text. The baseline (which, in addition to not
using extracted domain messages, also does not
use the extracted paraphrasal templates and dis-
course model) also loses heavily to the full system
in ordering and style, as well as overall. In all cri-
teria, the percentage of annotators who thought the
texts were equally good was low (11% − 20%),
suggesting that the difference was very visible.

While the effect of removing a single compo-
nent is not as dramatic as removing both in addi-
tion to the domain messages, it is clearly visible
in the preferences of Table 1. Both reduced ver-
sions (No Paraphrases and No Discourse Model)
lose to the full system in every criteria, often in
double digits. The more meaningful component
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Preference Content Ordering Style Overall
No Hybrid 20% 27% 24% 22%

No Hybrid Equal 14% 11% 20% 14%
VS Full System Full System 66% 62% 56% 64%

Full - baseline win diff. 46% † 35% † 32% † 42% †
No Paraphrases 29% 33% 29% 30%

No Paraphrases Equal 31% 26% 28% 27%
VS Full System Full System 40% 41% 43% 43%

Full - baseline win diff. 11% † 8% † 14% † 13% †
No Discourse Model 33% 34% 32% 34%

No Discourse Model Equal 30% 22% 26% 23%
VS Full System Full System 37% 44% 42% 43%

Full - baseline win diff. 4% 10% † 10% 9% †
Table 1: Preferences, with different criteria, given by the human annotators when presented with two
versions - the full system VS each of the baseline versions. Statistically significant winning differences
are marked with a dagger.

appears to be the paraphrases: the No Paraphrases
version loses to the full system more heavily than
No Discourse in content, style and overall. This
result is not surprising since paraphrases have a
dramatic effect on the text itself (they change the
templates that are used to convey information, en-
hance the diversity of the text and may merge mes-
sages that are duplicates), and it suggests that the
paraphrases we find are generally more satisfying
than the default. It is also not surprising that the
No Discourse Model variant loses most on orde-
ring. While the difference is not as dramatic here,
it is statistically significant and shows that our ex-
tracted domain-specific discourse model produces
a more satisfying ordering of the text.

6.2 Examples
Figure 2 shows the output of the biography for po-
litician Marine Le Pen of the full system and the
non-hybrid baseline. To show the contributions
of different components, we mark sentences ge-
nerated from extracted domain messages in bold,
and sentences generated from core messages using
an extracted paraphrase in italics. Sentences in
unmarked typeface are those that were generated
from core messages using a default template.

The two variants make clear the main advantage
of the full system: it simply has more content. The
full output contains six sentences (messages) more
than the baseline, which are clearly relevant to the
biography. The entire last paragraph, concerned
with Le Pen’s policies and positions - an impor-
tant part of a politician’s biography - is missing

from the baseline. These messages were extracted
from the corpus and show the power of the hybrid
approach. In addition to the final paragraph, two
extracted messages are included which are concer-
ned with Le Pen’s controversial history, and toget-
her with the RDF-derived message about her of-
fices, they comprise a paragraph generally about
her political background. This is typical of the
way that extracted messages contribute to the or-
ganization of the text in addition to the content: in
the baseline version, the offices message is lum-
ped together with messages about her background
in general (alma mater, birth date, religion, partner
etc). It demonstrates how the full system consis-
tently outperforms the baseline in the ordering and
style criteria, in addition to content and overall.

Figure 3 shows the output of the company des-
cription for video game developer Taito Corpo-
ration of the full system and the no-paraphrases
variant. In this case the two outputs contain ex-
actly the same information and have almost the
same organization of the text. The way in which
the text is realized, however, is very different in
the last paragraph. The full system realizes four
of the six messages in that paragraph using ex-
tracted templates, and merges two messages into
a single template in one case (“Taito Corporation
was founded in 1953 by Michael Kogan”, instead
of the two sentences in the no-paraphrases base-
line). The single-sentence messages also look bet-
ter, e.g. “Taito Corporation has around 662 em-
ployees” instead of the awkward-sounding “Taito
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Full system output:

Marine Le Pen’s birth places are Neuilly-sur-Seine and France. Marine Le Pen’s
residences are Millas, Hénin-Beaumont and Saint-Cloud.

The birth name of Marine Le Pen is Marion Anne Perrine Le Pen. Marine Le
Pen’s offices are Leader of the National Front, Municipal Councillor, Member of the
European Parliament and Regional Councillor. Marine Le Pen’s ups and downs in
the political arena follow those of the National Front at the time. Marine Le Pen
stirred up controversy during the internal campaign.

The homepage of Marine Le Pen is http://www.marinelepen.fr/.

The alma mater of Marine Le Pen is Panthéon-Assas University. Marine Le Pen’s birth
date was 1968-08-05. Marine Le Pen’s religion is Catholic Church. Marine Le Pen’s
occupation is Politician. Marine Le Pen’s partner is Louis Aliot.

Marine Le Pen regularly denounces sharp rises in energy prices which has “harm-
ful consequences on the purchasing power of the working and middle-class fami-
lies”. Marine Le Pen denounces the current corporate tax as “a crying injustice”.
Marine Le Pen advocates to “vote for the abolition of the law enabling the regula-
rization of the illegal immigrants”. Marine Le Pen seeks to establish a moratorium
on legal immigration.

Baseline output:

Marine Le Pen’s party is Na-
tional Front. Marine Le Pen’s
occupation is Politician. Ma-
rine Le Pen’s homepage is
http://www.marinelepen.fr/. Ma-
rine Le Pen’s offices are Leader
of the National Front, Municipal
Councillor, Member of the Eu-
ropean Parliament and Regional
Councillor. Marine Le Pen’s birth
name is Marion Anne Perrine Le
Pen. Marine Le Pen’s religion is
Catholic Church. Marine Le Pen’s
alma mater is Panthéon-Assas
University. Marine Le Pen’s birth
date was 1968-08-05. Marine Le
Pen’s partner is Louis Aliot.

The birth places of Marine Le
Pen are Neuilly-sur-Seine and
France. Marine Le Pen’s residen-
ces are Millas, H’enin-Beaumont
and Saint-Cloud.

Figure 2: Output for Marine Le Pen.
Full system output:

The homepage of Taito Corporation is http://www.taito.com.

The products of Taito Corporation are Lufia, Bubble Bobble,
Cooking Mama, Space Invaders, Chase H.Q., Gun Fight and
Puzzle Bobble.

Taito Corporation was founded in 1953 by Michael Kogan.
Taito Corporation has around 662 employees. Taito Corpora-
tion’s location is Shibuya, Tokyo, Japan. Taito Corporation
currently has a subsidiary in Beijing, China. Taito Corpo-
ration was merged with “Square Enix”.

No-paraphrases output:

Taito Corporation’s homepage is http://www.taito.com.

The products of Taito Corporation are Lufia, Bubble Bobble,
Cooking Mama, Space Invaders, Chase H.Q., Gun Fight and
Puzzle Bobble.

Taito Corporation’s founding year is 1953. The founder of
Taito Corporation is Michael Kogan. Taito Corporation’s ow-
ner is Square Enix. Taito Corporation currently has a sub-
sidiary in Beijing, China. Taito Corporation’s location is
Shibuya, Tokyo, Japan. Taito Corporation’s number of em-
ployees is 662.

Figure 3: Output for Taito Corporation.

Corporation’s number of employees is 662”.

7 Conclusion

We introduced a framework for creating hybrid
concept-to-text and text-to-text generation sys-
tems that produce descriptions of RDF entities,
and can be automatically adapted to a new dom-
ain with only a simple text corpus. We showed
through a human evaluation that both the hybrid
approach and domain adaptation result in signi-
ficantly more satisfying descriptions, and that in-
dividual methods of domain adaptation help with
the criteria we expect them to (i.e., finding para-
phrases helps with content and style while an ex-
tracted discourse model helps with ordering). The
code for this framework is available at www.cs.
columbia.edu/˜orb/hygen/.

References
Ion Androutsopoulos, Gerasimos Lampouras, and Di-

mitrios Galanis. 2013. Generating natural language
descriptions from owl ontologies: the naturalowl sy-
stem. Journal of Artificial Intelligence Research, pa-
ges 671–715.

Gabor Angeli, Percy Liang, and Dan Klein. 2010. A
simple domain-independent probabilistic approach
to generation. In Proceedings of the 2010 Confe-
rence on Empirical Methods in Natural Language
Processing, EMNLP ’10, pages 502–512, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.
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Abstract

With the advent of the Internet, the amount
of Semantic Web documents that describe
real-world entities and their inter-links as
a set of statements have grown consid-
erably. These descriptions are usually
lengthy, which makes the utilization of the
underlying entities a difficult task. En-
tity summarization, which aims to cre-
ate summaries for real world entities, has
gained increasing attention in recent years.
In this paper, we propose a probabilistic
topic model, ES-LDA, that combines prior
knowledge with statistical learning tech-
niques within a single framework to cre-
ate more reliable and representative sum-
maries for entities. We demonstrate the
effectiveness of our approach by conduct-
ing extensive experiments and show that
our model outperforms the state-of-the-art
techniques and enhances the quality of the
entity summaries.

1 Introduction

With the emergence of Linked Open Data (LOD)1

as a way of publishing and interacting with the in-
formation, many datasets such as DBpedia (Bizer
et al., 2009) and YAGO (Hoffart et al., 2013)
have been created and are publicly available
on the Web. For example, DBpedia as part
of LOD is a knowledge base extracted from
Wikipedia that consists of Wikipedia resources
(entities) described as RDF statements (i.e., RDF
triples). The Resource Description Framework
(RDF) is the Semantic Web standard data model
used for representing information on the Web.
An RDF triple is represented in the form of

∗Equal contribution
1http://linkeddata.org

< subject, predicate, object >. The latest En-
glish version of DBpedia contains over 4.5 million
entities collectively described by over 1.6 billion
triples. This means that each entity description
has an average of 355 RDF triples. Human users
and computer applications need to consider these
lengthy descriptions while performing various se-
mantic tasks. Thus, entity summarization, a task
of producing more concise, but still sufficient en-
tity description, has garnered a significant amount
of attention.

Recently, with the huge growth of information,
summarization techniques are becoming some of
the main approaches to making the information
more readily available. In fact, summarization
techniques aim to facilitate the identification of
structure and meaning in data. Researchers in
different communities have taken a strong inter-
est in this task and, accordingly, have proposed
various methods for a wide variety of summa-
rization techniques in multiple areas. Document
summarization (Nenkova and McKeown, 2012),
database summarization (Bu et al., 2005), and
graph summarization (Navlakha et al., 2008) are
just a few examples that have been studied by
different communities. RDF data summarization
and in particular entity summarization, has at-
tracted considerable attentions in recent years as
it can benefit many other tasks in the natural lan-
guage processing area, including entity recogni-
tion (Zhao and Kit, 2008), entity disambiguation
(Dai et al., 2011), and many others. Several ap-
proaches have been developed to summarize RDF
data with respect to entities, including RELIN
(Cheng et al., 2011), FACES (Gunaratna et al.,
2015), and LinkSUM (Thalhammer et al., 2016).
RDF summarization differs from document sum-
marization in the sense that RDF triples are struc-
tured and do not have many frequently used words
to help the summarization task, which makes RDF
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summarization more challenging.
Topic modeling has become a popular method

for uncovering the hidden themes from text cor-
pora. Topic models usually consider each doc-
ument as a mixture of topics, where a topic is
a probability distribution over words. When the
topic proportions of documents are estimated, they
can be used as the themes (high-level seman-
tics) of the documents. Topic models have been
widely used for various text mining tasks, such as
machine translation (Su et al., 2015), word em-
bedding (Batmanghelich et al., 2016; Das et al.,
2015), automatic topic labeling (Wan and Wang,
2016; Allahyari and Kochut, 2015; Allahyari et al.,
2017b), and others(Allahyari et al., 2017a).

In this paper, we propose a novel topic model,
called ES-LDA, that integrates prior knowledge
with the topic modeling within a single framework
for RDF entity summarization. In our approach,
each entity, which is considered as a document,
is a multinomial distribution over the predicates
(properties), where each predicate is a probabil-
ity distribution over the subjects and objects of
the triples in the RDF data. We rank the triples
based on their probability distributions and choose
the top-k triples that best describe the underly-
ing entity as its summary. We evaluated our ap-
proach against state-of-the-art techniques and our
experiments indicate that our approach outper-
forms other methods in terms of the quality of
summarization.

The rest of the paper is organized as follows:
Section 2 presents an overview of related work.
Section 3 introduces the baseline for this paper. In
Section 4, we define the main problem and pro-
pose our model in detail and afterwards, in Section
5, we explain the configurations of our model and
describe the experiments. Finally, in Sections 6
and Section 7, we discuss the results and conclude
the paper, respectively.

2 Related Work

Summarization methods can be divided into two
main categories, which are called extractive and
none-extractive (abstractive) summarization. In
extractive approaches, which are usually applica-
ble in text and ontology summarization (Jones,
2007) (Zhang et al., 2007), a set of features is ex-
tracted directly from the input data. On the other
hand, in non-extractive methods, which generally
are employed in graph (Navlakha et al., 2008)

and database (Bu et al., 2005) summarization, new
sentences from the input data are generated (Hahn
and Mani, 2000) to form a summary. In this
research, we focus on extractive summarization.
The concept of entity summarization in the form
of RDF graph data has attracted more attention in
recent years. Cheng et al. (Cheng et al., 2011) pro-
posed entity summarization method, called RE-
LIN, based on the PageRank algorithm to extract
representative triples, called representative fea-
tures for RDF graph entities. Because of the cen-
trality based ranking issue, RELIN highlights the
most similar and central triples, while in summa-
rization, the diversity of summarized triples is the
key point.
SUMMARUM (Thalhammer and Rettinger, 2014)
is a system for a better navigation within Linked
Data through the ranking of triples. This system
also uses the PageRank algorithm to rank triples
according to the popularity of resources with the
help of Wikipedia pages. Two aforementioned
approaches could not meet the diversity require-
ment in the summarization process. FACES (Gu-
naratna et al., 2015), on the other hand, tries to
keep a balance between the centrality and diversity
of the selected triples for each entity. It utilizes
a clustering algorithm, called Cobweb (Fisher,
1987), to cluster related triples before ranking
them to keep the diversity in the summarization.
The recent version of SUMMARUM, which is
called LinkSUM (Thalhammer et al., 2016), fo-
cused more on the objects instead of the diversity
of properties for entities and showed a better result
on the same dataset, in comparison with FACES.
Beside the aforementioned techniques dedicated
to entity summarization, there are various rank-
ing models and tools, including TripleRank (Franz
et al., 2009) and TRank (Tonon et al., 2013) that
rank triples and concepts, respectively, incorporat-
ing ranking algorithms. However, Cheng et al.
(2011) indicated that these methods are not ap-
propriate for the entity summarization problem,
which needs ranking of feature sets based on their
importance to identify the underlying entity.

3 Preliminaries

An RDF data graph is a collection of nodes and
edges that connect the nodes together. Nodes
are usually recognized by unique IDs which are
called Uniform Resource Identifiers (URIs) or ex-
act values (i.e. numbers, dates, etc) namely Lit-
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Table 1: J.C.Penny entity predicates and corresponding objects with the top-5 ES-LDA summary.

Predicate Object Top-5

http://dbpedia.org/property/areaServed http://dbpedia.org/resource/United States 7

http://dbpedia.org/ontology/foundedBy http://dbpedia.org/resource/James Cash Penney 3

http://dbpedia.org/property/founder http://dbpedia.org/resource/James Cash Penney 7

http://dbpedia.org/ontology/industry http://dbpedia.org/resource/Retail 3

http://dbpedia.org/property/keyPerson http://dbpedia.org/resource/Ron Johnson 3

http://dbpedia.org/property/homepage http://www.jcpenney.com/ 7

http://dbpedia.org/ontology/location http://dbpedia.org/resource/Plano, Texas 3

http://dbpedia.org/ontology/regionServed http://dbpedia.org/resource/United States 7

http://dbpedia.org/property/tradedAs http://dbpedia.org/resource/S&P 500 7

http://dbpedia.org/ontology/type http://dbpedia.org/resource/Public company 3

erals. An RDF graph is represented in a form
of a collection of triples, each including a Sub-
ject, Predicate, and Object. In an RDF graph,
an entity is defined as a subject with all pred-
icates and corresponding objects to those predi-
cates, collectively forming the entity’s description.
As Table 1 shows, the J.C.Penny entity is repre-
sented by its predicates (properties) and the corre-
sponding objects in the triple format. For exam-
ple, the triple < J.C.Penny, industry,Retail >
introduces J.C.Penny’s industry as Retail (due to
space limitations we have dropped the first part of
the URIs).

Definition 1 (Entity summary): Given an en-
tity e and a positive integer k, a summary of the
entity e, denoted Sum(e, k), is the top-k subset of
all predicates and corresponding objects that are
most relevant to that entity. As Table1 shows the
top-5 summary for J.C.Penny entity, which is rep-
resented through foundedBy, industry, keyPerson,
location, and type.

3.1 Latent Dirichlet Allocation (LDA)

The Latent Dirichlet Allocation (LDA) is a genera-
tive probabilistic model for extracting thematic in-
formation (topics) from a collection of documents.
LDA assumes that each document is made up of
various topics, where each topic is a probability
distribution over words.

Let D = {d1, d2, . . . , d|D|} be a corpus
of documents and V = {w1, w2, . . . , w|V|} a
vocabulary (words) of the corpus. A topic
zj , 1 ≤ j ≤ K is represented as a multino-
mial probability distribution over the |V| words,
p(wi|zj),

∑|V|
i p(wi|zj) = 1. LDA generates the

words in a two-stage process: words are gener-
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Figure 1: LDA Graphical Representation

ated from topics and topics are generated by doc-
uments. More formally, the distribution of words,
given the document, is calculated as follows:

p(wi|d) =
K∑
j=1

p(wi|zj)p(zj|d) (1)

The graphical model of LDA is shown in Figure
1 and the generative process for the corpus D is:

1. For each topic k ∈ {1, 2, . . . ,K}, sample a
word distribution φk ∼ Dir(β)

2. For each document d ∈ {1, 2, . . . ,D},
(a) Sample a topic distribution θd ∼ Dir(α)
(b) For each word wn, where n ∈
{1, 2, . . . , N}, in document d,

i. Sample a topic zi ∼Mult(θd)
ii. Sample a word wn ∼Mult(φzi)

In the LDA model, the word-topic distribution
p(w|z) and topic-document distribution p(z|d) are
learned entirely in an unsupervised manner, with-
out any prior knowledge about what words are re-
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lated to the topics and what topics are related to
individual documents.

4 Problem Statement

In this section, we first describe the problem and
then define how to utilize topic models for RDF
graphs. Then, we formally introduce our ES-LDA
model and explain how to integrate prior knowl-
edge from RDF data graph within a topic model
for entity summarization.

4.1 Problem Definition

Generating summaries for voluminous Semantic
Web data, and in particular RDF data, for quick
identification of entities has gained considerable
attention as a challenging problem in the Seman-
tic Web community. In the literature, Entity Sum-
marization is defined as selecting a small but rep-
resentative subset of the original triples associated
with an entity. In this context, given an RDF data
set comprising a collection of entities, where each
entity is described by a set of its properties (i.e.,
all triples with the entity as the subject), our goal
is to choose top-k representative triples for each
entity. In other words, since all triples associ-
ated with an entity (as its description) share the
same subject, our objective is to select top-k predi-
cates and their corresponding objects among these
triples that best summarize the entity’s description.

4.2 Topic Models for RDF Graphs

Topic models were originally introduced for text
documents, however, they have been applied to
other types of data, such as images (Blei and Jor-
dan, 2003), and recently (Sleeman et al., 2015)
used topic modeling for RDF graphs. The first
step in applying topic models is to define docu-
ments and word-like elements as the basic build-
ing blocks of documents. Since an RDF graph is
usually represented as a set of triples, where each
triple t consists of a subject s, predicate p, and an
object o, in the form of<s, p, o>, we can consider
a collection of such triples as a “document”.

Definition 2 (document): A document d is de-
fined as a set of triples, d = {t1, t2, · · · , tn},
that describe a single entity e. In other words, all
triples of a document d have the same subject.

“Words” of a document can be extracted from
different parts of its triples. We define a “word” w
as the subject or object of a triple t in document d.
Therefore, each document is represented by a “bag

of words” including all the subjects and objects of
its triples. In this paper, all subjects in the triples of
a document are the same, because each document
corresponds to a single entity, hence, in practice
each document is a “bag of objects”2

Topic models usually utilize some data pre-
processing, such as punctuation removal, down-
casting, and abbreviation expansion, etc., to en-
hance the final performance. We also performed
preprocessing on the RDF data and filtered out
the schema and dataset dependent predicates,
such as sameAs, wikiPageExternalLink, subject,
wikiPageWikiLink, in addition to literals. Since we
work with RDF graphs that differ from typical text
documents in the sense that RDF data are repre-
sented as triples, we need to address several chal-
lenges mentioned in (Sleeman et al., 2015) to be
able to run topic models on RDF data. These chal-
lenges include sparseness, use of unnatural lan-
guage, and the lack of context. RDF data can
be affected by Sparseness. We consider docu-
ments as sets of triples associated with a single
entity. Such a set can be very large, leading to a
large bag of words with a semantic theme, or small
(sparse), resulting in a poor bag of words with less
contextual information. It is also possible that a
document with a high number of triples ends up
having a small bag of words after pre-processing;
for example based on Table 1, J.C.Penny entity
comes with United States, James Cash Penney,
Retail, Ron Johnson, Plano, Texas, United States,
S&P 500 and Public company as a bag of words
for J.C.Penny entity, which shows sparseness in
this document. Unnatural Language can be
problematic for RDF data. A typical text docu-
ment contains sentences where each sentence has
a natural structure. These extra components of
a sentence usually provide a further “context”
for understanding words that are ambiguous or
have multiple meanings, such as polysemous or
homonymous ones. The aforementioned exam-
ple for the J.C.Penny entity also confirms the un-
natural language problem. The ”lack of context”
can further impact RDF data because they are po-
tentially sparse, described by unnatural language,
and often using words that have multiple mean-
ings, difficult to differentiate (J.C.Penny bag of
words example). Additionally, triples are more
prone to pre-processing, because it is not uncom-

2“bag of words” and “bag of objects” are interchangeably
used.
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Figure 2: Entity Summarization Model

mon for triples to contain unexpected characters.
RDF data resemble short texts in terms of the
aforementioned challenges. Sparseness in a short
text causes the model to be less discriminative to
recognize how words are related and the limited
context makes it hard for the model to identify the
meanings of the words in such short text docu-
ments (Yan et al., 2013). In order to alleviate these
issues, researchers usually take two approaches.
They either augment the short text or design cus-
tom versions of the LDA model that address their
specific problems. In this paper, we have used both
approaches. We describe how to supplement the
RDF data in the following section and describe the
details of our model in section 4.4.

4.3 Supplementing RDF Data

As topic modeling is based on statistics of the co-
occurrence of terms (Sleeman et al., 2015), when
we are dealing with short texts with a very lim-
ited number of repetitions, which is the case with
RDF data, we need to find a way to supplement
the data to elevate the performance of the topic
modeling approach. We augment the documents
using two different methods. In the first method,
we increase the frequency of the words in each
document. But the question is “How many times
each word of a document should be repeated?”.

Algorithm 1: ES-LDA Model

1 foreach predicate r ∈ {1, 2, . . . , R} do
2 Draw an object distribution φr ∼

Dir(βr × Λr)
3 end
4 foreach document d ∈ {1, 2, . . . , D} do
5 Draw a predicate distribution θd ∼

Dir(αd)
6 foreach subject s and object o of

document d do
7 Draw a predicate r ∼Mult(θd)
8 Draw a subject s from predicate

r, s ∼Mult(φr)
9 Draw an object o from predicate

r, o ∼Mult(φr)
10 end
11 end

Entities in DBpedia have been organized into a
category network, therefore, every entity has a
number of categories associated with it. The re-
lationship between an entity and a category is
defined by the “http://purl.org/dc/terms/subject”
predicate. Since each word of a document is an
object of a triple, and accordingly, an entity in DB-
pedia, it is related to several categories. We as-
sume that objects (words) of a document that have
more categories are likely more important. Thus,
We expand each document by increasing the fre-
quency of each object by the number of its cate-
gories. In the second method, instead of repeat-
ing each object a certain number of times, we en-
large each document by adding categories of the
objects as extra words, directly to the document.
There are multiple advantages of supplementing
each document by adding object categories: (i) the
sparseness in the document, related to each entity,
is lowered as we are adding a number of related
words to it; (ii) we reduce the ambiguity in the
document, because adding extra categories allevi-
ates the lack of context and helps distinguish the
appropriate meanings of the words with multiple
connotations; and lastly (iii), adding object cat-
egories makes the documents semantically more
relevant to their topical themes. We evaluated our
model using both methods and the results demon-
strate that the first method gives significantly bet-
ter summaries than the second method.
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4.4 Proposed Model
ES-LDA is a probabilistic generative model for
modeling entities in RDF graphs. The key idea
behind our model is twofold: (1) we exploit sta-
tistical topic models as the underlying quantitative
framework for entity summarization; and (2) ES-
LDA incorporates the prior knowledge from the
RDF knowledge base directly into the topic model.
The plate notation is shown in Figure 2.

In our model, each document is a multinomial
distribution over the predicates. If we consider
predicates as topics, at the document level, our
model is the same as standard LDA. However, we
set the number of topics in ES-LDA to be the num-
ber of unique predicates in the corpus. Unlike the
standard LDA, where each topic is a multinomial
distribution over the vocabulary from the Dirichlet
prior β, in our model each predicate is a multino-
mial distribution over all the subjects and objects
of the RDF graph. In our approach, a document
consists of a set of triples describing a single en-
tity, i.e. all these triples share the same subject.
Thus, we constrain the documents to only have the
objects of related triples and also restrict the pred-
icates to be defined only over the objects. In ad-
dition, for each predicate r, we further smooth its
distribution by Λr. Λ is a matrix that has encoded
the background knowledge about predicate-object
values from DBpedia. Section 4.5 explains how Λ
is constructed. The generative process of ES-LDA
is shown in Algorithm 1.

Following this process, the joint probability of
generating a corpus D = {d1, d2, . . . , d|D|}, the
predicate assignments r given the hyperparame-
ters α, β and the prior matrix Λ is:

P (o, s, r|α, β,Λ)

=
∫
φ
P (φ|β; Λ)

∏
d

∑
rd

P (od|rd, φ)P (sd|rd, φ)

×
∫
θ
P (θ|α)P (rd|θ, φ)dθdφ (2)

4.5 Constructing Predicate-Object Prior
Matrix Λ

In the ES-LDA model, each predicate has a prob-
ability distribution over the objects of the RDF
graph. Entity summarization is the task of choos-
ing the top-k predicate-object pairs that best de-
scribe an entity. Presumably, if an object is associ-
ated with more categories in DBpedia, it is likely
more important. We create the the Λ matrix to en-
code the prior weight of the predicate-object pairs

and utilize it to smooth the predicate-object distri-
butions φ by incorporating this domain knowledge
into the topic model. We build the Λ matrix of size
R×O, whereR is the number of predicates andO
is the number of objects in the RDF graph. Let f
be an indicator function where f(i, j) = 1 if there
is a triple in RDF graph with predicate i and object
j, and 1 otherwise, for 1 ≤ i ≤ R and 1 ≤ j ≤ O.
Additionally, let c be the number of categories as-
signed to object j. Then, we define Λij as follows:

Λij =

{
c if f(i, j) = 1
1 otherwise. (3)

For example, the “Barack Obama” entity has
multiple predicate-object pairs in DBpedia, in-
cluding “profession-author”, “profession-lawyer”
and “profession-professor” pairs. According to
DBpedia, cauthor = 2, clawyer = 4 and
cprofessor = 2. It is reasonable to expect a
higher probability for the “profession-lawyer” pair
as it seems to be slightly more important than
the other two pairs for “Barack Obama”. As a
result, Λprofession−lawyer = 4, which promotes
“profession-lawyer” in Eq. 5.

4.6 Inference using Gibbs Sampling

Since the posterior inference of the LDA is in-
tractable, we need to find an algorithm for esti-
mating the posterior inference. A variety of al-
gorithms have been used to estimate the parame-
ters of topic models, such as variational EM (Blei
et al., 2003) and Gibbs sampling (Griffiths and
Steyvers, 2004). In this paper we use the collapsed
Gibbs sampling procedure for our ES-LDA topic
model. Collapsed Gibbs sampling (Griffiths and
Steyvers, 2004) is a Markov Chain Monte Carlo
(MCMC) (Robert and Casella, 2004) algorithm,
which constructs a Markov chain over the latent
variables in the model and converges to the pos-
terior distribution, after a number of iterations. In
our case, we aim to construct a Markov chain that
converges to the posterior distribution over r con-
ditioned on observed subjects s, objects o, hyper-
parameters α, β, and the prior matrix Λ.

In our modified version of the learning algo-
rithm to infer p(oi|rj) and p(rj |d), we (1) con-
strain the objects that are not paired with a pred-
icate to have 0 probability, i.e. p(oi|rj) = 0, if
(ri, oj) /∈ RDF graph, and (2) P (s|rj) = 1, since
all the triples of a document have the same subject
s. We derive the posterior inference from Eq. 2 as
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follows:

P (r|o, s, α, β,Λ) =
P (r,o, s|α, β,Λ)
P (o|α, β,Λ)

∝ P (r,o|α, β,Λ) ∝ P (r)P (o|r)P (s|r)
(4)

P (ri = r|oi = o, r−i,o−i, α, β,Λ) ∝
n

(d)
r,−i + αr∑

r′ (n
(d)
r′,−i + αr′)

× n
(r)
o,−i + Λroβo∑

o′ (n
(r)
o′,−i + Λroβo)

(5)

where n(r)
o is the number of times object o is as-

signed to predicate r. n
(d)
r denotes the number

of times predicate r is associated with document
d. The subscript −i indicates that the contribution
of the current object oi being sampled is removed
from the counts. After Gibbs sampling, we can
use the sampled predicate to estimate the proba-
bility of a predicate, given a document, θdr and the
probability of an object, given a predicate, φro:

θdr =
n

(d)
r + αr∑

r′ (n
(d)
r′ + αr′)

(6)

φro =
n

(r)
o + Λroβo∑

o′ (n
(r)
o′ + Λroβo)

(7)

5 Experiments

We evaluated our ES-LDA model against the state-
of-the-art LinkSUM (Thalhammer et al., 2016)
and FACES (Gunaratna et al., 2015) systems.
Our goal was to show that the ES-LDA model
produces results that are closer to human judg-
ment, in comparison with the other approaches.
We used the same dataset3 that was used in the
experiments conducted with FACES, as well as
LinkSUM models. The dataset contained 50 en-
tities randomly selected from DBpedia (English
version 3.9) in domains including politician, ac-
tors, scientist, song, film, country, city, river, com-
pany, game, etc.. 15 people in the field of Se-
mantic Web were selected as reviewers and each
entity was evaluated by at least 7 reviewers to pro-
duce the top-5 and top-10 summaries. The average
number of properties for each entity was 44.

Based on the two types of RDF supplement
methods we discussed in 4.3, we applied two dif-
ferent configurations for the proposed model. In

3http://wiki.knoesis.org/index.php/FACES

the first experiment, ES-LDA @config-1, we con-
figured the system to supplement each entity (doc-
ument) by repeating each object based on the num-
ber of categories that the object has in the DBpe-
dia knowledge base. For example, for the triple
< J.C.Penney, industry,Retail > we repeated
Retail object, 5 times in that document, as Retail
has five different categories in DBpedia (i.e. ”Re-
tailers, Retailing, French words and phrases, Mer-
chandising, Marketing” )

In the second experiment, ES-LDA @config-2,
we configured the system to supplement each en-
tity (document) by adding the corresponding cate-
gory(ies) of each object into the document. In this
case, each entity is defined as a bag of words in-
cluding objects and categories of each object. For
example, for the aforementioned triple, in addition
to the Retail we included ”Retailers, Retailing,
French words and phrases, Merchandising, Mar-
keting” as the corresponding categories to the Re-
tail object.

For the other parameters, we assumed a sym-
metric Dirichlet prior and set β = 0.01 and α =
50/R, whereR is the total number of unique pred-
icates. We ran the Gibbs sampling algorithm for
1000 iterations and computed the posterior infer-
ence after the last sampling iteration. We selected
the top-5 and top-10 most probable properties for
each entity and calculate the quality of the sum-
mary for each entity through equation 8.

Quality(Sum(e)) =
1

n

n∑
i=1

|Sum(e) ∩ SumI
i (e)| (8)

In our experiments, we used the quality of the
summary proposed in (Cheng et al., 2011), in
which n ideal summaries SumI

i (e) generated by
expert users for i = 1, ..., n and the summaries
generated by the system Sum(e) were compared.
The average of the overlap between an ideal sum-
mary and a summary generated by the system is
denoted as the quality of the summary, which is
0 ≤ Quality(Sum(e)) ≤ k in the top-k settings.

5.1 Experiment Results

The summary in our model is defined as sets of
representative triples that can summarize each en-
tity (sets of triples with the same subject) in a way
close to a human-created summary. We decided to
use the last part of a URI to compare the generated
summaries with the expert summaries and produce
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Table 2: Overall quality results of different
models. Best result are bold.

Model Top-5 Top-10

ES-LDA @ config-1 1.20 3.50
ES-LDA @ config-2 1.10 3.26
LinkSUM@ config-1 1.20 3.15
LinkSUM@ config-2 1.20 3.20
FACES 0.93 2.92

the Summary Quality for each entity and aver-
age them. As (Thalhammer et al., 2016) repro-
duced the FACES overall Summary Quality based
on this criteria and also applied it to their model,
we decided to use their result as it was completely
aligned with our summary definition.

In Table 2, we compare the quality of the
results from LinkSUM, FACES, and ES-LDA
with two distinct configurations (supplementing
by object reputation and object categories). As
Table 2 shows, the quality of our model out-
performs the FACES approach, in both cases.
The ES-LDA @ config-2 demonstrates a com-
parable result with the two configurations of
LinkSUM, while ES-LDA @ config-1 outper-
forms LinkSUM. For some of the entities, the
predicates that ES-LDA selected as top-5 most
probable did not exist in the FACES dataset. It
forced us to calculate the quality of summary for
some of the entities with just 4 predicates instead
of 5. We believe to be the only reason why top-5
Quality of Summary was lower than or equal to
LinkSUM. Although, we had the same issue for
the top-10 results, overall, ES-LDA shows a better
performance in two configurations.

6 Discussion

We evaluated our approach against the state-
of-the-art summarization techniques, including
LinkSUM and FACES. LinkSUM primarily
focuses on the most relevant facts for each entity,
while FACES tries to keep a balance between
diversity and relevancy in entity summarization.
There is usually a trade-off between diversity
and relevancy of the selected predicates. Our
ES-LDA model maintains both diversity and
relevancy, while representing each entity through
top-k predicates. As shown in Table 2, our model
outperforms the state-of-the-art approaches.

Table 3 illustrates a sample of entities from the
dataset along with their top-10 predicates, for all
approaches. As Table 3 shows, the LinkSUM
model is focusing more on the objects, while
predicate repetition is permitted. For example,
<Marie Curie, birthPlace, Warsaw>, <Marie Curie,

birthPlace, Russian Empire>, and <Marie Curie,

birthPlace, Congress Polandare> are representing
Marie Curie’s birth place. Although, they differ
in terms of objects, it is arguable that referring
to the same predicate with multiple objects that
are more likely relevant reduces the chance of
other important triples that could potentially
appear in the summary. It should be noted that
in the current ES-LDA configuration, we have
not considered predicate repetition, thus, all the
predicates of the triples appearing in the resultant
summary are unique. FACES on the other hand,
considers predicate diversity and tries to keep
a balance between the diversity and relevancy
but the overall quality of the FACES model is
lower than LinkSUM and ES-LDA. In the FACES
model, there are selected predicates which seems
to be less informative in the sense to be top-10
representative for a particular entity. For example,
<Marie Curie, thumbnail, 200px-Marie Curie c1920.png>,
which is referring to a png file, could be replaced
with more descriptive one. Additionally, our
proposed technique features several unique
characteristics: (1) the ES-LDA is a knowledge-
based probabilistic model that combines prior
knowledge with statistical learning technique into
a unified framework for entity summarization;
(2) for each entity, it ranks all predicates based
on their importance by computing marginal
probabilities for the predicates. Table 4 illustrates
the top-5 predicates for a sample of two entities;
and finally (3), each predicate can be represented
as a probability distribution over objects in the
ES-LDA model, which allows us to describe the
relations (predicates) of the RDF graph based on
its nodes as shown in Table 5.

7 Conclusions

We have proposed a knowledge-based probabilis-
tic topic model, called ES-LDA, based on the RDF
entity representation for entity summarization. In
our experiments, we have applied two different
configurations: one based on object repetitions
and the other based on adding object’s categories,
to alleviate common RDF data problems including
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Table 3: Top-10 predicates for three randomly selected entities after applying three different models.
MARIE CURIE REIGN OF FIRE SEYCHELLES

ES-LDA LinkSUM FACES ES-LDA LinkSUM FACES ES-LDA LinkSUM FACES

doctoralStudents birthPlace spouse starring country starring leaderName largestCity leaderName
doctoralAdvisor birthPlace field producer starring country governmentType governmentType governmentType
deathPlace field workInstitutions music starring distributor leaderTitle governmentType largestCity
children field birthPlace director starring musicComposer officialLanguage governmentType sovereigntyType
knownFor knownFor deathPlace cinematography studio director capital governmentType source
spouse almaMater doctoralAdvisor country producer editing currency sovereigntyType capital
almaMater birthPlace knownFor distributor producer studio timeZone source leaderTitle
birthPlace knownFor almaMater studio director music legislature capital language
field doctoralAdvisor doctoralStudents editing artist producer anthem language languages
establishedEvent knownFor thumbnail screenplay producer thumbnail callingCode timeZone legislature

Table 4: Probabilities of top-5 predicates for two
randomly selected entities.

LEXUS MORTAL KOMBAT TRILOGY

Predicate Probability Predicate Probability

foundedBy 0.21 platforms 0.30
owner 0.17 publisher 0.18
location 0.15 developer 0.17
keyPerson 0.06 computingMedia 0.07
service 0.04 designer 0.05

Table 5: Distributions of two randomly selected
predicates over top-5 objects.

PARTY STARRING

Object Probability Object Probability

Democratic Party (United States) 0.36 Arnold Schwarzenegger 0.05
Republican Party (United States) 0.17 Angelina Jolie 0.04
Democratic-Republican Party 0.12 Raven Symone 0.03
Communist Party of the Soviet Union 0.08 Matthew McConaughey 0.02
Independent(politician) 0.08 Alan Arkin 0.02

sparseness, unnatural language, and lack of con-
text. We conducted extensive experiments, which
show the quality of the top-10 triples in both con-
figurations outperforms the state-of-the-art tech-
niques, LinkSUM and FACES, while for the top-
5 quality we surpassed FACES and equaled the
LinkSUM results.

There are many interesting future research di-
rections of this work. It would be interesting to in-
vestigate how this model and a much richer set of
topic models that combine prior knowledge with
statistical learning techniques could be used for
various tasks in the Semantic Web domain, such
as ontology summarization, ontology tagging, and
finding similar ontologies.
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Abstract

In recent years, there has been a surge of
interest in automatically describing images
or videos in a natural language. These
descriptions are useful for image/video
search, etc. In this paper, we focus on pro-
cedure execution videos, in which a human
makes or repairs something and propose
a method for generating procedural texts
from them. Since available video/text pairs
are limited in size, the direct application
of end-to-end deep learning is not feasible.
Thus we propose to train Faster R-CNN
network for object recognition and LSTM
for text generation and combine them at
run time. We took pairs of recipe and
cooking video as an example, generated a
recipe from a video, and compared it with
the original recipe. The experimental re-
sults showed that our method can produce
a recipe as accurate as the state-of-the-art
scene descriptions.

1 Introduction

Massive effort has been done to develop a method
for generating text from vision in the field of
natural language processing and computer vision.
More specifically, there are number of studies on
generating captions for given images or videos
(Yang et al., 2011; Rohrbach et al., 2013; Li et al.,
2015; Donahue et al., 2015; Karpathy and Fei-Fei,
2015; Shetty and Laaksonen, 2016; Johnson et al.,
2016). Most of the existing researches for video
captioning, however, deal with simple and short
videos (Li et al., 2015; Donahue et al., 2015; Shetty
and Laaksonen, 2016) such as a ten second video
in which a man playing guitar in a park.

In this paper, we propose a new problem in this
field: generating a procedural text from an execu-

tion video such as cooking or machine assembly.
The goal is to develop a method that takes video
of a chef cooking a dish from ingredients or a me-
chanic assembling a machine from parts as the in-
put, and outputs a procedural text that helps an-
other person reproduce the same product.
We also give an initial solution to the problem,

taking cooking recipe generation as an example.
Because no large scale corpus consisting of re-
lated execution video and procedural text is avail-
able for now, we divide the problem into two sub-
problems, object recognition and text generation,
and train two modules independently using differ-
ent resources as their training set. Then we com-
bine them and search for the best text. The object
recognition module is designed to spot the changes
in state of progress of the procedure from video and
texts are generated at each time. Finally, some of
the generated sentences are selected to cover the
entire procedure with discarding redundant sen-
tences.
In the experiments, we use KUSK Dataset

(Hashimoto et al., 2014), which consists of pairs
of recipes submitted by users to a recipe hosting
service Cookpad and video of cooking according
to that recipe in a laboratory. The experimental
results showed that our method is capable of pro-
ducing a recipe of reasonable quality.

2 Related Work

Recent studies on automatic caption generation
have reported great results both in images (Xu
et al., 2015; Karpathy and Fei-Fei, 2015; Johnson
et al., 2016) and short video clips (Li et al., 2015;
Donahue et al., 2015; Shetty and Laaksonen, 2016)
by using convolutional neural network (CNN), re-
current neural network, and LSTM. (Venugopalan
et al., 2015) improved the accuracywith a sequence
to sequence model (Sutskever et al., 2014). In addi-
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tion, (Laokulrat et al., 2016; Guo et al., 2016) also
improved the accuracy of automatic caption gen-
eration by introducing an LSTM equipped with an
attention mechanism. One of the features of these
end-to-end models is that they directly generate
sentences from videos without determining con-
tent words such as subjects and predicates. Com-
mon datasets (Lin et al., 2014; Chen and Dolan,
2011; Torabi et al., 2015; Rohrbach et al., 2015)
made research on automatic caption generation
popular.

Before the above end-to-end models succeeded,
many researchers concentrated models generating
sentences via content words or intermediate states
(Guadarrama et al., 2013; Rohrbach et al., 2013).
As an advantage of the technique of using interme-
diate states, object recognition or motion recogni-
tion model can be diverted as it is. Thus data of
pairs of a medium and a caption have not been par-
ticularly required. These methods with intermedi-
ate states are inferior in accuracy to the end-to-end
models using CNN and LSTM in case that enough
size of training data are available. On the other
hand, since creation of medium-caption pairs is ex-
pensive, methods using intermediate states are also
considered to be sufficiently practical for a prob-
lem where we have insufficient size of data avail-
able for model training.

Unlike conventional methods using intermedi-
ate states such as subjects, objects, and predicates,
for procedure execution videos, there is a problem
that the use of recognition results of general actions
is not appropriate because of the abstraction level.
It is considered preparing tailored data for motion
recognition for each kind of procedure execution
videos have high cost because it is often vague even
for human annotators to assign every concrete mo-
tions into text-level motion categories. In contrast,
objects directly appear in texts and there is much
less ambiguity than motions. Therefore, it is rea-
sonable for the procedural text generation to focus
more on object recognition than motion recogni-
tion. In addition, the procedure execution videos
generally show works performed by one person,
thus subject recognition is not necessary. It is
preferable to set the object recognition results as
an intermediate state and generate sentences from
it. Since predicates are not easy to be recognized,
they are estimated or supplemented from recog-
nized objects using language knowledge.

Many studies generate a caption consisting of

Table 1: Definition of r-NE tags.
r-NE tag meaning
F Food
T Tool
D Duration
Q Quantity
Ac Action by the chef
Af Action by foods
Sf State of foods
St State of tools

one sentence for a video clip. Studies on the au-
tomatic caption generation of documents consist-
ing of multiple sentences like procedural text do
not attract much attention as far as we know. One
similar study is done by (Kaufman et al., 2016),
which gives captions for a movie that is divided
into scenes beforehand.

3 Task Definition

In this section, we describe our novel task in detail.
Then we present prerequisites of our solution.

3.1 Procedural Text Generation from Video

We propose a task of generating a procedural text
from an execution video. Figure 1 shows the
overview of the task. In general, an execution
video records a sequence of activities to make or
repair something from the beginning to the end.
As the first trial, we deal with cooking videos in
which only one person appears (mainly the hands
only). In the beginning, there are some ingredients
and tools on the cooking table and some appear in
the video later. Then it finishes with a completed
dish. This is the input of the task.
The output of our task is a procedural text, con-

sisting of some sentences in a natural language,
which explains procedures to be conducted by
workers to make or repair something. The counter-
part of cooking videos of the first trial is recipes.
A recipe describes how to cook a certain dish. In
general, a recipe includes the dish name and an in-
gredient list in addition to the instruction text part.
In our task, however, we focus on generating the
text part only. Thus, this is the output of the task.
In the subsequent sections, we refer to that text part
by the term recipe.
As an evaluation metrics, it is preferable to mea-

sure how much the output text helps another chef
produce the same dish. Thus, the ideal may be
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Execution video Procedural text (with pictures)

�
�

���Time

⇒

1. Cut onions.
Cut carrot
and two potatos.
Cut meat into 5cm
size.

2. Boil yarn konjac,
cut them into
10cm size.

3. ...

Figure 1: Task overview.

objective evaluation over the dishes produced by
chefs reading the generated recipes. We propose,
however, to adopt BLEU score as a metric of pro-
cedural text for the convenience of automated eval-
uation.

One of the advantages to choose the cooking do-
main as a benchmark of procedural text genera-
tion from video is that there are a huge number of
recipes available on theWeb. Therefore it is easy to
develop a generative model of recipes for the task.
In addition, there are recipe/video pairs available
for various researches. For example, the KUSK
Dataset (Hashimoto et al., 2014), which we use in
the experiments, contains recipes and their cook-
ing videos. Note that the lengths of these cook-
ing videos are about 20 minutes or more, which
are much longer than video clips used in automatic
video captioning researches. And also note that the
texts are kinds of summaries mentioning only the
necessary objects and actions to complete a certain
mission. Such texts are intrinsically different from
scene descriptions in automatic video (or image)
captioning researches.

3.2 Prerequisites
To solve the problem above, we enumerate the pre-
conditions necessary for our method in the recipe
generation case.

3.2.1 Domain Specific Named Entity
First we assume a set of terms (word sequences)
called named entities (x-NEs) representing impor-
tant object names in the target domain x. They are
the objects to be recognized by computer vision
(CV).

In the recipe case, noun phrases for ingredients
and tools are important object names. In this paper,
we adopt the recipe named entities (r-NEs) defined

in (Mori et al., 2014), whose types are listed in Ta-
ble 1. There are eight r-NE tag types, but our CV
part recognizes only foods (F) and tools (T).We use
the notation “チンゲン 菜/F” (“qing-geng-cai/F”) to
indicate that “チンゲン 菜” is an r-NE and its type
is food (F)1.

3.2.2 Named Entity Recognizer
In order to develop a useful generative model we
must locate x-NEs in given sentences. So-called
named entity recognizer (NER) is suitable for this
task. In this paper, we adopt NERs based on se-
quence labeling techniques that can be trained by
an annotated corpus.

3.2.3 Object Recognition
Our method requires the module that can detect
the appearance and the disappearance of materials
and tools involved in the procedure. In the cook-
ing video case, we use Faster R-CNN model (Ren
et al., 2015) fine-tuned with relatively small set of
images of foods and cooking tools.

3.2.4 Procedural Text Examples
As we mentioned in Section 1, there is no large
amount of video/sentence pairs available for our
problem. But instead, in some cases, large text-
only corpus is available in the domain. The corpus
will allow us to train a generative model of the in-
struction sentences.

4 Proposed Method

In this section, we explain the proposed method for
recipe generation from cooking videos. The out-

1The language resources used in our experiments are in
Japanese. Thus our system outputs recipes in Japanese. How-
ever, our method can generate recipes in another language by
preparing the prerequisites in that language.
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Time 

Cooking video 
(Frame sequence) 

Recognition result 

Recipe sentence 
candidate 

包丁/T で　肉/F を 切る/Ac 
  Cut/Ac meat/F with a knife/T. 

Score: 0.5 Searching the recipe sentence sequence. (E) 

Object recognition by Faster R-CNN (A)  
+ r-NE recognition(B) 

Generating r-NE sequence (C) 

r-NE sequence 

Generating recipe sentence candidate(D) 

Recipe 

r-NE	  Prob.	

包丁/T 
 (knife) 

0.6	

まな板/T 
(cutting board)	

0.3	

r-NE	 Prob.	

肉/F 
(meat) 

0.6	

包丁/T(0.6) 肉/F(0.4) 
    (knife)        (meat) 	

まな板/T(0.6), 肉/F(0.4) 
(cutting board)    (meat)	

Figure 2: Overview of the proposed method.

line of this method is shown in Figure 2. First,
we recognize objects in the video as a sequence of
frames with a CNN and give an r-NE tag to each
object (Figure 2 A, B). Next, we create an r-NE se-
quence from each partial frame sequence (Figure
2 C) and generate a candidate recipe sentence for
each corresponding r-NE sequence (Figure 2 D).
Each candidate recipe sentence is the one which
maximizes the score indicating the likelihood of
a sentence as a procedural text within the partial
frame sequence. Finally, we select the sequence of
recipe candidate sequences that maximizes the to-
tal score through the entire video based on Viterbi
search. We output that sentence sequence as the
procedural text for the input procedure execution
video (Figure 2 E).

4.1 Object Recognition

Object recognition is performed only on the frames
at which the chef picks up an object or places
it, that is provided in KUSK Object Dataset
(Hashimoto et al., 2016) with the object regions.
Note that the provided frames and regions can
contain plural objects because the method used in
(Hashimoto et al., 2016) is based on background
subtraction. To divide the detected region into
object-wise regions, we adopted Faster R-CNN

Figure 3: An example of object recognition by
Faster R-CNN.

(Ren et al., 2015). This neural network outputs
identified object region as a rectangular area while
recognizing its category (Figure 2 A). It also pro-
vides confidence as a probability. An example of
visualization of object recognition is shown in Fig-
ure 3, where a cutting board and a knife are in the
region detected by (Hashimoto et al., 2016) .

We utilized Faster R-CNN’s ability of object re-
gion identification to suppress another type of false
detection. The regions provided in (Hashimoto
et al., 2016) contains objects that are moved only
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slightly by coming in contact with the hands. Such
objects should not be related to the procedure. To
suppress such detection but spot only objects ob-
viously related to the procedure, we compare the
location of object-wise regions before and after
the contact, and ignore object regions if they have
the same object name and have a certain score in
Jaccard index, which is general method to mea-
sure the size of intersection of two regions. Af-
ter the test of region intersection, only the ob-
jects with an obvious location change are regarded
as procedure-related. This module passes only
procedure-related objects to the second module.
Note also that we discarded objects whose name
is not listed in x-NEs before passing them to the
second module.

Hereafter, we only focus the frames with the
procedure-related objects listed in x-NEs, and de-
scribe the sequence of such frames as follows:

f = f1, f2, . . . , f|f |, (1)

where fi is the i-th frame and |f | is the length of
the sequence.

4.2 Recipe Named Entity Recognition

We use the named entity recognizer (Sasada et al.,
2015) to the object in the i-th frame fi (Figure 2
B). Let Ei be the object set whose tags are F or T
in fi. Then, we denote the number of elements in
this set as |Ei|. The j-th r-NE of Ei is denoted as
ej
i . Then P (ej

i |fi) denotes the conditional proba-
bility in which the element ej

i (a food or a tool) is
estimated to exist in the frame fi.

4.3 Recipe Named Entity Sequence

Let f
i+(l−1)
i = fi, fi+1, ..., fi+(l−1) be a sub-

string, of length l, of f that corresponds to a single
recipe sentence. A frame fi may contain some r-
NEs Ei. Then a sequence of r-NEs contained in
f

i+(l−1)
i can be expressed by e ∈ Ei × Ei+1 ×

...×Ei+(l−1). Note that the number of all the pos-

sible sequences is
∏i+(l−1)

k=i |Ek|. For example in
Figure 2, e is (cutting board/T, meat/F) or (knife/T,
meat/F).

In addition, in order to treat a sequence as a set,
we introduce the following notation:

{e} = {ejk
k |i ≤ k ≤ i + (l − 1)}. (2)

Note that jk depends on k.

LSTM	

フライパン	  
(pan)	

に	  
(in)	

LSTM	

フライパン	  
(pan)	

LSTM	

に	  
(in)	

茹で	  
(boil)	

….	

r-‐NE	  set	

C	

B:	

Word	  segmenta=on+	  r-‐NE	  recogni=on	  

フライパンに茹でたパスタをいれる	  
Put	  the	  boiled	  pasta	  in	  a	  pan.	  	  	  	  	

Recipe	  Sentence	  

A:	

フライパン/T	  に/O	  茹で/Ac	  た/O	  パスタ/F	  を/O	  いれ/Ac	  る/O	  
　　  	  

Extrac=ng	  r-‐NE	  set	  	

(フライパン/T, パスタ/F)	  
	  	  	  	  	  	  (pan)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (pasta)	  

(フライパン/T, パスタ/F)	  
	  	  	  	  	  	  (pan)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (pasta)	  

Figure 4: LSTM language model training. This
model generates a sentence given an r-NE set.

Considering the likelihood of object recognition
and the likelihood of a combination of r-NEs in-
cluded in the sequence, we set the likelihood P (e)
that e appears as follows:

P (e) = P (e)× P ({e})−l, (3)

where P (e) is the average of the probability of the
result of object recognition:

P (e) =
1
l

i+(l−1)∑
k=i

P (ejk
k |fk). (4)

This value indicates the likelihood of object recog-
nition. Also P ({e})−l is the likelihood of a com-
bination of r-NEs determined from the frequency
of a sentence in which all the elements of {e} ap-
pear in the corpus.

P ({e}) =
(

count({e})
C

)
, (5)

where C is the number of sentences in the recipe
corpus and count({e}) is the frequency of sen-
tences in which all the elements of {e} appear at
the same time. Thus, this value indicates the like-
lihood of the r-NE combination. In addition as the
number of elements in the r-NE set increases, the
frequency decreases. This is the reason why we in-
troduceP ({e})−l considering the sequence length
l.

4.4 Recipe Sentence Candidate Generation
For each partial frame sequence, we generate the
most likely sentence and its score without referring
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to the neighboring sentences. Some of these sen-
tences may, however, be discarded in the next step.
Thus we call it a recipe sentence candidate. The
input to this process is the r-NE sequence and the
scores of the r-NEs. And the output is the recipe
sentence candidate that maximizes the score for the
given partial frame sequence (Figure 2 D).
For the sentence candidate generation we use an

LSTM language model. It outputs a sentence and
its likelihood. Different from the ordinary LSTM,
it takes a set of r-NEs as the input, but not a se-
quence. In addition, it is trained on the corpus in
which r-NEs are recognized and replaced with r-
NE tags as summarized in Figure 4. The first step
of its training is preprocessing, in which we con-
duct word segmentation (Neubig et al., 2011) (not
necessary for English or some other languages)
and r-NE recognition (Sasada et al., 2015) for each
recipe sentence in the recipe corpus (Figure 4
A). Then we filter out sentences containing r-NEs
other than Ac, F and T and delete Ac tags for the
reasons below:

• We cannot get information about r-NEs other
than F and T by the object recognitionmodule.

• A predicate denoting an action (Ac) is neces-
sary for a complete sentence.

Putting it in another way, our method guesses a
suitable predicate (verb) from the objects (foods
and/or tools) and the corpus. From each of the re-
sultant sentences, we generate a sentence in which
F and T are replaced with tags and the set of the
r-NEs contained in it (Figure 4 B). Finally we train
the LSTM language model on the corpus. The
LSTM can map a set of r-NEs to a recipe sentence
with its likelihood (Figure 4 C).

As the likelihood of this module, our method re-
turns the following score:

Score(e) = PLSTM(rmax(e)|e)× P (e),

where r(e) is the sentence generated by the
LSTM language model given e as the input.
PLSTM(r(e)|e) is the generation probability of
r(e). rmax(e) is the sentence that maximizes
PLSTM(r(e)|e) with the beam search decoder
given e.

rmax(e) = argmax
r(e)∈R(e)

PLSTM(r(e)|e),

whereR(e) is a set of sentences that can be gener-
ated by beam search when e is the input and r(e)

is the sentence corresponding to it. The generation
probability of a sentence is calculated by the fol-
lowing formula:

PLSTM(r(e)|e) =
Nd∏
k=1

P (dk|d1, d2, ..., dk−1; e),

where r(e) = d1, d2, ..., dNd
is a word string

and Nd is the length of the word string. And
P (dk|d1, d2, ..., dk−1; e) denotes the generation
probability of the k-th word dk, when the input is e.
The sentence is generated by the LSTM language
model by beam search. The sentence is, however,
aborted when the word length exceeds 20 or the
terminal symbol appears. P (e) is introduced to re-
flect the likelihood that the r-NE sequences e ap-
pear (see Equation (3)).
Calculating the above scores for all the possible

e of a partial frame sequence, we define emax as
the r-NE sequences which maximize the score. At
this stage, the generated sentence is no more than
a recipe sentence candidate rmax(emax), whose
score is Score(emax). When the scores earned by
partial frame sequences are all 0, no recipe sen-
tence candidate is generated.

4.5 Generating Recipe
As we see above, a set of recipe sentence can-
didates is generated from the partial frame se-
quences. The frame sequence is divided into par-
tial sequences so that the overall score of the di-
vision, which is the sum of the Score(e) in each
partial sequence, is maximized (Figure 2 E). The
partial sequences cover the entire video, thus the
corresponding sentences, sequences of r(e), form
a complete recipe.
Since it is almost impossible for one chef to per-

form two operations in parallel, the corresponding
partial frame sequences of the recipe sentence can-
didates must not overlap. In addition, in order to
prevent the same recipe sentence from appearing
more than once, the score of the recipe sentence
candidate which has appeared once in the recipe
is set to be 0. Under this condition, the score of a
recipe sentence candidate can change. Although it
should be totally searched for score maximization,
we use the Viterbi algorithm for the calculation,
because the change of the score is limited at the
time of generation of the same sentence and it is
considered that it does not occur so much.
By calculating the path of the recipe sentence

candidate sequence for increasing the score, the
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Table 2: The BLEU scores.
BLEU

Configuration N = 1 N = 2 N = 3 N = 4
w/o P ({e})−l 22.73 13.13 7.48 4.11
with P ({e})−l 26.73 15.42 9.09 5.50

generated recipe sentence sequence is output as a
recipe. The higher the score, the more recipe-like
the sentences are.

5 Experiments and Evaluation

In this section we evaluate our method experimen-
tally. We first describe the settings of the exper-
iments, then report the experimental results, and
finally evaluate our method. 2

5.1 Experimental Setting

We used the following dataset to train and evaluate
our model.

5.1.1 Test Dataset
KUSK Dataset This dataset contains 20 recipes
and corresponding cooking videos.

5.1.2 Train Dataset
KUSK Object Dataset This dataset contains
180 categories of objects in total, which comprise
ingredients, cooking tools, and others (bottle cap,
dish cloth, and so on), observed in cooking videos
in KUSK Dataset. Since all videos are recorded at
the same kitchen, exactly the same cooking tools
appear through all videos, including ones in the
test set. More detailed information and examples
are available in (Hashimoto et al., 2016).

Cookpad NII corpus This corpus contains
1720000 recipes collected from cookpad website.
187700 sentences are extracted for training.

Flow Graph Corpus This corpus contains ran-
domly chosen 208 recipes (867 sentences) from
Cookpad NII corpus. The text is annotated with
the r-NE tags. (Mori et al., 2014).

5.1.3 Training Faster-RNN and Named
Entity Recognizer

As the first module, an object recognizer for
frames, we use Faster R-CNN(Ren et al., 2015).

2The code used in our experiment is avail-
able on our website. http://www.ar.
media.kyoto-u.ac.jp/member/hayato/
procedural-text-generation/

We fine-tuned Faster R-CNN with KUSK Object
Dataset. The dataset contains 180 categories in to-
tal, but some categories, for example dish clothes
or bottle caps, will not appear in recipe texts. Thus
we ignored such categories and used 95 categories
to fine-tune the Faster R-CNN model, which is
done in the manner of leave-one-video-out.
Because this module is a pre-process of the sec-

ond module, to achieve higher recall rather than a
higher precision, we used any detection proposals
from Faster R-CNN with more than 0.01% in con-
fidence score, and set the intersection threshold of
Jaccard Index 0.5. This setting earned 78.8% of re-
call and 22.3% of the precision on average through
the 95 categories.
For the second module we trained an NE recog-

nizer PWNER (Sasada et al., 2015), which is based
on support vector machines and Viterbi best path
search, with Flow Graph Corpus. Its accuracy is
about 90% in F-measure (Mori et al., 2014).

5.1.4 Recipe Named Entity Sequence and
Recipe Sentence Candidate Generation

When generating the r-NE sequences, we should
specify the sequence length l. Most of the sen-
tences in our recipe corpus contain no more than
three r-NEs of F or T3. So we set the length of frame
sequences as l = 1 ∼ 3.
The training data of the LSTM language model

consists of 11,705 sentences and the number of r-
NE tokens is 4,025. These training data are a set
of recipe sentences extracted so as to satisfy the
following conditions:

• The total number of F and T is between 1 and
3,

• Each sentence does not contain any r-NE
other than Ac, F, and T (see Section 4.4).

As a result the LSTM language model has a ten-
dency not to generate sentences containing 4 or
more r-NEs.
The setting of the LSTM language model train-

ing is as follows. The epoch number is 100, the
batch size is 100, and the number of units of LSTM
is 1,000. The objective function is the softmax
cross entropy and the optimization algorithm is
Adam (Kingma and Ba, 2014). The beam width
for recipe sentence candidate generation is set to
be 1.

3The percentage is slightly less than 75%.
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ミンチをいためて、色がかわったら、
Sauté the meat mince until the color changes,

他の野菜も入れていためて、
put another vegetable and sauté it.

火が通ったら小麦粉をいれて、
After heating them well, put the flour in the pan.

粘り気がすこしでるまでいためて、味をつける
Sauté it until it gets a little sticky, season it.

卵をといて、1をいれて、フライパンをクルってして、
まく。
Beat an egg, add 1 to the pan and start rolling it 
by the pan.

お皿にもりつけてできあがりぃ。
Serve the dish. It’s ready to eat. 

フライパンに熱を入れ、炒めを炒
める。
Heat the pan, Stir-fry 
something fried.

ボウルを2つ用意。
Prepare two bowls.

包丁ですを使、
Use the knife.

油をしいて炒める
Sauté them after pour the oil 
in the pan.

挽肉を炒める。
Stir-fry minced meat.

お好みででる。
As you like, get out.

. 

(砂糖を使う方は、ここで一緒に。
If you like sugar, please add it.

好みでコショウを加える。
If you like pepper, please add it.

お好みででをかけてもる。
(impossible to translate into English.) 

キャベツはざく切り。
Cut the cabbage into pieces.

卵はほぐしておく。
Beat an egg.

フライパンに豆腐を入れ炒める。
Put tofu in frying pan and stir fry

The original recipe The result of the proposed method

Figure 5: The original recipe for a cooking video and the generated recipe by the proposed method.

5.1.5 Evaluation Metrics
We generated a recipe for each of 16 cooking
videos corresponding to seven recipes in KUSK
Dataset. As we mentioned in Section 3 they are
excluded from the training data. In order to inves-
tigate the effectiveness of P ({e})−l, we compared
the results of the models with and without it.

The evaluation metrics is BLEU (N = 1 ∼ 4)
(Papineni et al., 2002) taking the original human-
written recipes as the reference. The cooking
actions in the KUSK Dataset video part were
performed with following these recipes. Unlike
BLEU calculation inMT, we treat the entire recipe,
a sequence of sentences, as the unit instead of a sin-
gle sentence. This is because one can describe the
same actions in various ways with different num-
ber of sentences. An example pair is “cut onions
and potatoes.” and “cut onions. then cut potatoes.”

5.2 Results and Discussion
Since our task is quite novel and existing end-to-
end video captioning methods do not obviously
work because of lack of large training data, there
is no direct baseline. Thus we discuss absolute
BLEU scores of some settings and examples of
generated sentences.

Table 2 shows the BLEU scores. The absolute
BLEU values (ex. 5.50 for N = 4) are much
higher than the results of cinema caption gener-
ation (Kaufman et al., 2016) (0.8 for N = 4),
which is regarded as one of the state-of-the-arts
of text generation for videos longer than video
clips. This result is worth noting considering that
cooking videos are raw recording of execution and
not edited nor divided into scenes, while input of

cinema caption generation is an edited video and
scene segmentation is available. Our higher accu-
racy may be due to a large amount of text data in
the target domain.
We then examined generated recipes and the

original recipes. Figure 5 presents a recipe exam-
ple actually generated by the proposed method
and its original recipe used in the cooking video
recording. We see that there are suitable sentences
such as “挽肉を炒める。” (“Stir-fry minced
meat.”), “卵はほぐしておく。” (“Beat an egg.”)
in the result. These sentences correspond to
“ミンチをいためて、色がかわったら、”
(“Saute the meat mince until the color changes”)
and “卵をといて、” (“Beat an egg,”) in the
original recipe. On the other hand, the result
contains some unnecessary sentences. For ex-
ample, in the third line of the generation result,
“包丁ですを使” (“Use the knife is.”). The
sentence itself is semantically correct, but is not
suitable for a recipe (and grammatically wrong).
This is actually the difference from the existing
video clip description research.
Even if the object recognition functions per-

fectly, the sentence generation part has to ignore
some objects focusing only on the actions to be
taken. Such errors can be alleviated by consider-
ing the recipe structure such as relations of r-NEs.
There are also ungrammatical sentences such as
“お好みででを” (”pour over it that if if you like
and serve”) in the result. This sort of errors are
caused by the LSTM language model. We may
need a language model incorporating grammatical
structures (Chelba and Jelinek, 2000).
Despite the errors mentioned above, our method
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solves the novel problem, procedural text genera-
tion from execution video in a certain accuracy. As
it is clear from the explanation of ourmethod, it has
the correspondence between the sentence and the
video frame region. Thus one can use our method
for various practical multimedia applications, such
as multimedia document generation from an exe-
cution video.

6 Conclusion

In this paper, we have proposed a novel task of
procedural text generation from an execution video
and the first attempt at solving it. Contrary to the
ordinary video captioning task, it requires some
kind of abstraction, that is, selecting objects to
be mentioned. In addition, no existing end-to-end
method is applicable due to the limited amount of
video/text pairs for training. Instead, our method
decomposes the problem into object recognition
and sentence generation. Then we train the mod-
els for them independently with maximum avail-
able resources for each one. Finally we search for
the best procedural text referring to them at once.
For evaluation, we conduct recipe generation from
cooking videos as an example case. The quality
was as good as or better than the state-of-the-art
scenario description for cinemas. Thus we can say
that our method is promising to solve this novel
task. We also gave some error analyses to allow
further improvements in solutions of this difficult
but interesting task.
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Abstract

Tree-structured Long Short-Term Memo-
ry (Tree-LSTM) has been proved to be an
effective method in the sentiment analy-
sis task. It extracts structural information
on text, and uses Long Short-Term Memo-
ry (LSTM) cell to prevent gradient vanish.
However, though combining the LSTM
cell, it is still a kind of model that extract-
s the structural information and almost
not extracts serialization information. In
this paper, we propose three new mod-
els in order to combine those two kind-
s of information: the structural informa-
tion generated by the Constituency Tree-
LSTM and the serialization information
generated by Long-Short Term Memory
neural network. Our experiments show
that combining those two kinds of infor-
mation can give contributes to the perfor-
mance of the sentiment analysis task com-
pared with the single Constituency Tree-
LSTM model and the LSTM model.

1 Introduction

Text sentiment analysis, namely Opinion mining,
is an important research direction in the field of
Natural Language Processing (NLP). It aims to ex-
tract the author’s subjective information from text
and provide useful values for us. In recent years,
there were more and more researchers paying at-
tention to the study of text sentiment analysis.

Up to date, a variety of methods have been de-
veloped for improving the performance of sen-
timent analysis models. The distributed repre-
sentation for words has been proposed in 2003
(Bengio et al., 2003). This model trained by t-
wo kinds of three-layer neural networks gener-
ates vectors to represent words. Glove, which is

the improvement of the model mentioned above,
has been proposed in 2014 (Pennington et al.,
2014). The improved representation of words
gives contribution to the research of NLP tasks
including sentiment analysis, and are used as
the input of sentiment analysis models. There
are several kinds of deep learning method-
s to extract text features. Sequential models
such as Recurrent Neural Network (Schmidhuber,
1990), Bidirectional Recurrent Neural Networks
(Member et al., 1997), Long Short-Term Memo-
ry (Hochreiter and Schmidhuber, 2012) and Gat-
ed Recurrent Unit (Cho et al., 2014) mainly ex-
tract serialization information of text. Multi-layer
sequential models have also been proposed for
sentiment analysis (Wang et al., 2016)(Tang et al.,
2015)(He et al., 2016)(Yang et al., 2016). Tree-
structured models extract structural information.
The first tree-structured model named Recur-
sive Neural Network has been proposed in 2012
(Socher et al., 2012b), followed by more model-
s such as Matrix-Vector Recursive Neural Net-
work (Socher et al., 2012a) and Recursive Neural
Tensor Network (Socher et al., 2013). In 2015,
Tree-structured Long Short-Term Memory Neural
Network (Tree-LSTM), which combines the LST-
M cell and tree-structured models, has been pro-
posed and it outperforms the traditional LSTM and
tree-structured neural networks (Le and Zuidema,
2015)(Tai et al., 2015)(Zhu et al., 2015). Differ-
ent from the traditional tree-structured model,
Tree-LSTM uses the LSTM cell to control the in-
formation from bottom to top so that it can effec-
tively prevent the vanishing gradient problem.

As mentioned above, though combining the L-
STM cell, Tree-LSTM does not really combine
the structural information and serialization infor-
mation. In this paper, we introduce three models:
Tree-Composition LSTM (TC-LSTM), Leaf-Tree
LSTM (LT-LSTM) and Leaf-Composition-Tree L-
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STM (LCT-LSTM). Those models combine those
two kinds of information and experiments show
that they perform better than the traditional LSTM
and the Constituency Tree-LSTM model.

The remainder of this paper is organized as fol-
lows: Section 2 introduces the LSTM and Tree-
LSTM model which are related to our work. Sec-
tion 3 introduces the models proposed in this pa-
per. Experimental results are shown in Section 4
and in Section 5 we give the conclusions and fu-
ture work.

2 Background

2.1 Long Short-Term Memory
Recurrent Neural Network (RNN) (Schmidhuber,
1990) encodes text information according to time.
Giving a sentence, its words are encoded by the
model in chronological order. For example, xt

represents the vector of input word at time step t,
the hidden unit of time step t can be calculated as
follows:

ht = tanh(Wxt + Uht−1 + b). (1)

ht represents the hidden layer at time step t,
ht−1 represents the hidden state at time step t− 1,
W is the weight matrix of the input layer, U is the
weight matrix between ht−1 and ht, b represents
the bias and tanh is the activation function which
can normalize output information:

tanh(x) =
sinh(x)
cosh(x)

=
ex − e−x

ex + e−x
. (2)

At each time step, the hidden layer produces an
output layer:

ot = softmax(V ht + b). (3)

Usually, the output of the final time step can
be used to represent the feature of a sentence.
Then, after forward propagation, the weights of
model are trained by the backward propagation.
Traditional RNN model has the problem of gra-
dient vanish. Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 2012) Neural Net-
work has effectively solved the problem. The
model has four gates which help to selectively for-
get or remember information. A memory cell has
also been added to memory information transmit-
ted over time steps. The information calculated by
an LSTM unit can be shown as follows (Tai et al.,
2015):

it = σ(W (i)xt + U iht−1 + bi), (4)

ft = σ(W (f)xt + Ufht−1 + bf ), (5)

ot = σ(W (o)xt + Uoht−1 + bo), (6)

ut = tanh(W (u)xt + Uuht−1 + bu), (7)

ct = it ∗ ut + ft ∗ ct−1, (8)

ht = ot ∗ tanh(ct). (9)

Here, it, ft, ut, ot denote the four gates, ct is
the memory cell, ∗ represents element-wise mul-
tiplication. Intuitively, input gate (it) and update
gate (ut) denote how much the memory cell up-
date information, forget gate (ft) determines how
much the memory cell forget history information
and output gate (ot) controls how much the hidden
unit get information from the cell. σ represents the
sigmoid function. The weights of different layers
are different but they are shared at each time step
in the same layer.

2.2 Tree-LSTM

Dependency Tree-LSTM and Constituency Tree-
LSTM are two types of Tree-LSTM structures. We
discuss the latter because it achieves a better per-
formance in the sentiment analysis task (Tai et al.,
2015). Constituency Tree-LSTM includes three
types of layers. Input layer includes the leaf nodes,
it consists of the words in the sentence, each word
is represented by a vector. Composition layer acts
as the hidden layer which composes the informa-
tion flowing from the leaf nodes to the root node.
Each composition unit can be seen as the structural
feature of its leaf nodes. The final composition n-
ode (root node) represents the structural feature of
the whole sentence, it is the input of output lay-
er. LSTM cell is used to control the information
flowed bottom-up. Different from the cell in se-
quential models, the hidden information of a com-
position node comes from their two child nodes:

ij = σ(W (i)xj +
N∑

l=1

U
(i)
l hjl + b(i)), (10)

fjk = σ(W (f)xj +
N∑

l=1

U
(f)
kl hjl + b(f)), (11)

oj = σ(W (o)xj +
N∑

l=1

U
(o)
l hjl + b(o)), (12)
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uj = tanh(W (u)xj +
N∑

l=1

U
(u)
l hjl + b(u)), (13)

cj = ij ∗ uj +
N∑

l=1

fjl ∗ cjl, (14)

hj = oj ∗ tanh(cj). (15)

It is worth noting that, in the input layer, the in-
formation composing the gates only include the in-
put words (xj) but do not have hidden information
(hjl). In the composition layer and output layer,
only hidden information from two sub nodes par-
ticipates in the construction of gates. The struc-
ture of Constituency Tree-LSTM model is shown
in Figure 1.

Figure 1: Constituency Tree-LSTM model. The
upward arrows represent the direction of forward
propagation, the downward arrows represent the
direction of the backward propagation.

3 Our model

In this section, we discuss three new models which
combine the structural information generated by
tree-structured model (Constituency Tree-LSTM)
and serialization information generated by sequen-
tial model (LSTM).

3.1 TC-LSTM
Constituency Tree-LSTM uses composition node
at the root of the tree to represent the feature of
sentence. We propose a new model named Tree-
Composition LSTM (TC-LSTM) which generates
a new feature taking all the leaf nodes, compo-
sition nodes and their sequential information in-
to account. Firstly, we use postorder traversal to
get all the nodes in the tree, and those nodes are

treated as a sequence. The sequence contains not
only the words in the sentence, but also the struc-
tural information in their parent composition n-
odes. Then we put the sequence into LSTM model
for training, thus obtaining the serialization infor-
mation of those hidden nodes with structural in-
formation. It is worth noting that, though sharing
the same hidden nodes, in our first proposed mod-
el, the weights of the original Tree-LSTM module
and the new added LSTM module are trained in-
dependently. The input word vectors firstly per-
form forward propagation on the Tree-LSTM, and
then, the sequence mentioned above is obtained.
Then the forward propagation of the sequence is
performed on the LSTM model. The output er-
ror and gradient of the two modules are obtained
through the training label separately. Finally, the
backward propagation performs independently of
each other. The gradients of back propagation up-
dating the word vectors of input layer only flows
from Tree-LSTM module.

TC-LSTM model is shown in Figure 2. After
training, we only use the output of LSTM mod-
ule to test on test data in order to verify the per-
formance of sequential information extracted from
tree-structured model.

Figure 2: TC-LSTM model. New LSTM module
is added to the original Tree-LSTM model. They
shared the same hidden nodes but trained separate-
ly. Only the output of LSTM module is used to do
the prediction.

3.2 LT-LSTM

We propose the Leaf-Tree LSTM (LT-LSTM)
model to give a combination of the structural in-
formation and sequential information of a sen-
tence. Similar to TC-LSTM, this model has t-
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wo modules but it only has one output. The first
module is the same to Tree-LSTM, and the sec-
ond module is the LSTM module which takes the
leaf nodes of the tree, namely only the words of
a sentence as input. During the forward propaga-
tion, we add the output of two modules and take
the result as the output of the whole model. Gradi-
ent of the whole model is generated by the output,
and then, assigned to the output of two modules
for their backward propagation. Figure 3 shows
the structure of the LT-LSTM model.

The output represents the combination of those
two kinds of information: structural information
and serialization information. Correspondingly,
The gradient of the output layer contains the er-
ror information of the Tree-LSTM module and L-
STM module. Letting the gradient propagate top-
down through those two modules can make them
learn from each other, thus having the chance to
make the comprehensive performance of the w-
hole model better.

Figure 3: LT-LSTM model. The new added LST-
M model only takes the leaf nodes as input. The
output represent the fusion of two kinds of infor-
mation, and its gradient trains the whole model.

3.3 LCT-LSTM

The third model proposed by us is Leaf-
Composition-Tree LSTM (LCT-LSTM).Different
from the LT-LSTM and TC-LSTM, this model
not only takes the composition nodes into consid-
eration when building the LSTM layer, but also
makes sum of the outputs of two modules men-
tioned above. That is, LCT-LSTM can be seen as
the composition of TC-LSTM and LT-LSTM for

the reason of not only building the sequential fea-
ture for the composition nodes which contain the
structural information, but also combining the se-
quential feature and the structural feature of the
input sentence. The structure of LCT-LSTM is
shown in Figure 4.

Figure 4: LCT-LSTM model.

4 Experiment

4.1 Dataset

We evaluate our proposed models on the Stanford
Sentiment Tree Bank (SST) dataset, which con-
tains sentences collected from movie reviews. The
sentences in the dataset are split into three parts:
8544 for training, 1101 for development and 2210
for test. SST dataset has two classification tasks,
one for fine-grained classification (five categories:
very negative, negative, neutral, positive, and very
positive) and the other for binary classification (t-
wo categories: negative and positive). The fine-
grained subtask is evaluated on 8544/1101/2210
splits, and the binary classification is evaluated on
6920/872/1821 splits (there are fewer sentences
because the neutral examples are excluded). Ev-
ery sentence in the dataset is processed into tree
structure, and every phrase (corresponding to the
nodes in the tree) in the sentence is also labeled.

4.2 Hyperparameters and Training Details

We use the Glove vectors of 300 dimension
(Pennington et al., 2014) to represent the input
words. Word embeddings are fine-tuned during
training and the learning rate used for the input
layer is 0.1, for the other layers is 0.05. Adagrad
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θ − all

Models F B θ − com

LSTM 271955 271653 271200
Tree-LSTM 317555 317253 316800
TC-LSTM 499510 498906 498755
LT-LSTM 499510 498906 498755
LCT-LSTM 499510 498906 498755

Table 1: Parameters of models. θ − all represents
the number of all the parameters in a model for F
(fine-grained) tasks and B (binary tasks). θ− com
represents parameters of composition layer. TC-
LSTM, LT-LSTM and LCT-LSTM have the same
number of parameters but they are trained in dif-
ferent ways.

algorithm is used for training, the minibatch size
set by us is 25, L2-regularization is used for each
batch using the value of 1e-4, and the dropout for
the output layer is 0.5.

The dimension of the input layer is the same as
the word vector, and the hidden layer consisted of
tree nodes has the dimension of 150. For the se-
quential module, both of the inputs and the hidden
layer have the dimension of 150, the vectors of leaf
nodes are projected into the 150 dimension when
put into the sequential part. The numbers of pa-
rameters for all the models are shown in Table 1.

Every model is trained on the training set for
20 epochs, and tested on the development set for
validation after finishing every epoch. We choose
the parameters performing best among them to do
the evaluation on the test set. For every model, we
repeat experiments for 8 times and take the aver-
age of their results as the final performance of the
model.

4.3 Baseline

The models proposed by us fuse the structural
information and serialization information, so we
compare those models with other models which
do not combine those two kinds of information.
We choose the Constituency Tree-LSTM, LSTM
and BiLSTM mentioned in 2015 (Tai et al., 2015)
as the baseline models, other tree-structure models
such as RNN, MV-RNN and RNTN are also used
for comparison.

4.4 Result

The results of experiment are shown in Table 2.
We use accuracy to measure the performance of
models.

Models Fine-grained Binary

LSTM (Tai et al., 2015) 46.4 84.9
Bi-LSTM (Tai et al., 2015) 49.1 87.5
RNN (Socher et al., 2013) 43.2 82.4
MV-RNN (Socher et al., 2013) 44.4 82.9
RNTN (Socher et al., 2013) 45.7 85.4
Constituency Tree-LSTM 50.7 88.0

TC-LSTM 49.6 88.2
LT-LSTM 51.0 88.5
LCT-LSTM 50.9 88.7

Table 2: The result of accuracy on the test
set. Fine-grained represents the five-category
classification and the Binary represents the posi-
tive/negative classification.

From Table 2, we can see that on the whole, the
models fusing structural and serialization informa-
tion outperform other models which do not com-
bine those two kinds of information. LT-LSTM
achieves the best performance among our com-
pared models in the fine-grained subtask and LCT-
LSTM has the best performance in the binary sub-
task. TC-LSTM performs slightly better than Con-
stituency Tree-LSTM in the binary subtask but
worse than fine-grained subtask, but it still per-
forms better than other single sequential models
and tree-structured models.

We find that building the serialization feature
for the nodes in tree-structure (TC-LSTM) does
not really help the tree-structural models, but fus-
ing the structural information and serialization in-
formation gives help to it. While fusing, adding
the hidden nodes containing the structural infor-
mation to the sequential model (LCT-LSTM) per-
forms better in the binary subtask, but slightly
worse in the fine-grained subtask compared to the
model does not do so (LT-LSTM).

5 Conclusion

In this paper, we propose three new models in or-
der to explore the effect of fusing the structural
and sequential information. We evaluate our mod-
els on the Stanford Sentiment Tree Bank (SST).
Experiments show that fusing the structural in-
formation and sequential information is an effec-
tive way to improve the performance of model-
s proposed before. Future work can be focused
on finding better ways to fusing those two fea-
tures. Other models, such as the Bidirection-
al Long Short-Term Memory (BiLSTM), Bidi-
rectional Tree-LSTM (Teng and Zhang, 2016) and
TreeGRU (Kokkinos and Potamianos, 2017) can
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be used in place of the tree-structured model and
the sequential model used in our models. Atten-
tion mechanism (Luong et al., 2015) can also be
used to do some improvement.
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Abstract

In this work, we provide insight into three
key aspects related to predicting argument
convincingness. First, we explicitly dis-
play the power that text length possesses
for predicting convincingness in an unsu-
pervised setting. Second, we show that
a bag-of-words embedding model posts
state-of-the-art on a dataset of arguments
annotated for convincingness, outperform-
ing an SVM with numerous hand-crafted
features as well as recurrent neural net-
work models that attempt to capture se-
mantic composition. Finally, we as-
sess the feasibility of integrating exter-
nal knowledge when predicting convinc-
ingness, as arguments are often more con-
vincing when they contain abundant infor-
mation and facts. We finish by analyzing
the correlations between the various mod-
els we propose.

1 Introduction

Predicting argument convincingness has mostly
been studied in relation to the overall quality of a
persuasive essay (Attali and Burstein, 2004; Lan-
dauer, 2003; Shermis et al., 2010), with a recent
focus specifically on predicting argument strength
(Persing and Ng, 2015; Wachsmuth et al., 2016).
Zhang et al. (2016) have also attempted to pre-
dict argument convincingness, in the form of pre-
dicting debate winners. Unfortunately, these are
very rare argumentative formats that are seldom
encountered in everyday life. In practice, at least
at the moment, we tend to digest a large quantity of
our information from social media and engage in
a tremendous amount of interpersonal communi-
cation using it. Since, in social media, communi-
cations are roughly a single paragraph, analyzing

arguments in a persuasive essay or oxford-style
debate is not applicable to our primary means of
community engagement. Presenting an entire con-
vincing argument within a single paragraph can be
an invaluable skill in the modern world. This pa-
per seeks to improve upon previous methodology
for predicting argument convincingness.

Prompt: Is it better to have a lousy father or to
be fatherless? Stance: It is better to have a lousy

father.
Argument 1 Argument 2

It is better to have a
lousy father because
researchers at the
McGill University
have warned that
growing up without
a father can per-
manently change
the structure of a
child’s brain and
make him/her more
aggressive and angry.

Having a lousy fa-
ther is better because
when a child does not
have a father, it causes
him/her to look for a
father figure. Dur-
ing such searches, a
child may end up get-
ting sexual harassed
or being emotionally
exploited to various
degrees.

Table 1: Example of an argument pair where Ar-
gument 1 is more convincing.

Habernal and Gurevych (2016b) have recently
released a dataset of short, single-paragraph ar-
guments annotated for convincingness, which we
will refer to as UKPConvArg. For 16 issues, ar-
guments with the same stance are compared with
each other to determine, given a pair of arguments,
which one is more convincing. Table 1 provides
an example of an argument pair with arguments
from the prompt ‘Is it better to have a lousy fa-
ther or to be fatherless’; and the stance: ‘It is bet-
ter to have a lousy father’. In this pair Argument
1 is chosen to be more convincing. Other such
issues include: ‘Does India have the potential to

342



lead the world?’, ‘Which web browser is better, In-
ternet Explorer or Mozilla Firefox?’, and ‘Should
physical education be mandatory in schools’. In
follow-up work, Habernal and Gurevych (2016a)
examined the reasoning behind the annotations
in their original corpus. That is, why arguments
were selected as more convincing. Overwhelm-
ingly, the reasons could be expressed by the fol-
lowing statement “Argument X has more details,
information, facts or examples / more reasons /
better reasoning / goes deeper / is more specific”.
Although Habernal and Gurevych (2016b) exper-
imented with two promising models, the models
were not intended to directly take into account the
reasons why an argument could be more convinc-
ing, as expressed in the previous quotation. The
primary task of the dataset is, given two arguments
with the same stance toward a topic, determine
which argument is more convincing – this corre-
sponds to outputting a binary label. Most of our
experiments focus on this task, as it was the anno-
tation directive for annotating convincingness in
Habernal and Gurevych (2016b). From the pair-
wise annotation, they also derived convincingness
scores for individual arguments, which is posed as
a regression task. We evaluate on this task in Sec-
tion 3.1.

In our work, we improve upon the initial ex-
periments of Habernal and Gurevych in 3 ways:
(1) we offer heuristic-based methods that requir-
ing no training or fitting of a model to data; (2) we
explore modifications of the initial ‘deep’ model
used by Habernal and Gurevych (2016a), which
was a Bidirectional Long Short-Term Memory
(BLSTM) network; (3) we test the feasibility of
offering factually relevant knowledge in the form
of Wikipedia articles related to the argument top-
ics.

In terms of heuristics, we examine the effec-
tiveness of Metric Entropy (ME) of text to predict
convincingness, which is inspired by the notion
that written English language is well-formed, as
opposed to random. Specifically, high ME corre-
sponds to high randomness. The second heuris-
tic uses a similarity to Wikipedia articles, with the
hypothesis that the Wikipedia articles can act as a
factual support reference for the arguments. We
also hypothesize that Wikipedia articles have the
potential to grade the quality of the writing in the
arguments, on the assumption that arguments that
better match the writing in Wikipedia articles are

more likely to exhibit the qualities that make an
argument convincing. For all methods that use
the presence of Wikipedia articles, we use sev-
eral variations of a corpus to determine how well
the methods leverage topic-specific articles, as op-
posed to randomly selected articles.

In terms of supervised techniques, we first fol-
low previous approaches to classifying paired data
that create separate learned representations of el-
ements in a pair that are then concatenated for
the final predictive model (Bowman et al., 2015;
Mueller and Thyagarajan, 2016; Potash et al.,
2016b). Specifically, we experiment with creat-
ing separate representations using either a BLSTM
or summing individual token embeddings. We
then propose modifications of the supervised mod-
els to leverage external data. The models grow
with increasing complexity, approaching a form of
Memory Network (Sukhbaatar et al., 2015) that
computes a weighted sum of representations of
Wikipedia articles.

Our experimental results reveal several impor-
tant insights into how to approach predicting con-
vincingness. We summarize our findings as fol-
lows: 1) Unsupervised text length is an extremely
competitive baseline that performs on par with
highly-engineered classifiers and deep learning
models; 2) The current state-of-the-art approach
treats tokens as interchangeable, bypassing the
need to model compositionality; 3) Wikipedia ar-
ticles can provide meaningful external knowledge,
though, naive models have trouble dealing with
the noise in a large corpus of documents, whereas
a model that attends to the Wikipedia corpus is bet-
ter equipped to handle the noise.

2 Related Work

Habernal and Gurevych (2016b) present two
methods in their dataset paper: (1) an SVM with
numerous hand-crafted features; (2) a BLSTM
that only uses word embeddings as input. Aside
from the original corpus authors, only one other
work has tested on the UKPConvArg dataset. Cha-
laguine and Schulz (2017) use a feature-selection
method to determine the raw feature representa-
tion that serves as input into a feed-forward neural
network. The authors conduct a thorough abla-
tion study of the performance of individual fea-
ture types. The authors’ best model records an
accuracy of .766, compared to .781 and .757 of
Habernal and Gurevych’s SVM and BLSTM, re-
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spectively. Although the authors make an effort to
determine the influence of individual feature type,
their work continues to use supervised methods,
which obscures the pure predictive power of indi-
vidual features/metrics.

There are few datasets annotated for the con-
vincingness of arguments. Zhang et al. (2016)
published a dataset of debate transcripts, anno-
tated with audience polling that occurs before
and after the debate. In terms of argumenta-
tion, the key distinction between this dataset and
that of Habernal and Gurevych (2016b) is that
in the debate dataset, the debate teams have op-
posing stances on a topic, whereas Habernal and
Gurevych’s dataset has labels for arguments with
the same stance towards a topic. Persing and Ng
(2015) constructed a corpus of persuasive essays
annotated for the essays’ argument strength, which
is slightly different to other annotated persuasive
essay corpora, which have more of a focus on
overall writing quality.

NLP datasets involving the processing of text
pairs have become more prevalent. Examples in-
clude predicting textual entailment (Marelli et al.,
2014; Bowman et al., 2015), predicting semantic
relatedness/similarity (Marelli et al., 2014; Agirre
et al., 2016), and predicting humor (Potash et al.,
2016b; Shahaf et al., 2015). These tasks present
interesting challenges from a modeling perspec-
tive, as methods must allow for semantic compar-
ison between the texts.

Although relatively rare in the argument min-
ing community, leveraging external knowledge
sources is ubiquitous for the task of question-
answering (Kolomiyets and Moens, 2011), using
information retrieval techniques to mine the avail-
able documents for answers. Work such as Berant
et al. (2013) forms a knowledge base from exter-
nal documents, and maps queries to knowledge-
base entries. Weston et al. (2014) have proposed
a neural network-based approach for large-scale
question-answering. In the argument mining com-
munity, Rinott et al. (2015) created a dataset for
predicting potential support clauses for argumen-
tative topics, while Braunstain et al. (2016) rank
Wikipedia sentences for supporting answers made
by online user answers. Conversely, Wachsmuth
et al. (2017) approach the problem of measuring
relevance amongst arguments themselves, propos-
ing a methodology based on PageRank (Page
et al., 1999).

3 Heuristic Methods

As Habernal and Gurevych (2016b) note in their
paper, comparing the SVM and BLSTM systems,
it is desirable for methodologies to require min-
imal preprocessing of text. Along those lines,
methods that use heuristics can circumvent the
need for supervised training. We refer to the
models in this section as heuristic models, as op-
posed to unsupervised models, because they do
not fit themselves to data – they merely com-
pare various metric values to determine convinc-
ingness. We experiment with two types of heuris-
tics: ME and Wikipedia similarity. The motivation
of these heuristics is as follows: Metric Entropy
has previously been applied to the task of predict-
ing tweet deletion (Potash et al., 2016a), with the
idea that tweets with high ME are likely to be
spam. Moreover, ME conveys how well-formed
the language is in a piece of text, since higher ME
means a higher randomness in the language. Con-
versely, Wikipedia similarity attempts to use ex-
ternal knowledge to measure the factual validity
of the arguments, but also potentially measuring
the writing quality of the arguments.

3.1 Metric Entropy
The Shannon Entropy of a text T containing a set
of characters C is defined as:

H(T ) = −
∑
c∈C

P (c) log2 P (c) (1)

where

P (c) =
freq(c)
len(T )

(2)

and freq(c) is the number of times c appears in T .
Consequently, ME is the Shannon entropy divided
by the text length, len(T ). Since ME produces a
continuous output, it is sensible to evaluate it using
the regression task from Habernal and Gurevych
(2016b). Because ME is a combination of Shan-
non Entropy and text length, we also evaluate their
effectiveness separately as well. We admit, how-
ever, that our initial experiments only included ME
and Shannon Entropy, but given the vastly differ-
ent performance of the two metrics, we decided to
test length on its own as well.

3.2 Wikipedia Similarity
Suppose we have vector representations of an ar-
gument a and a Wikipedia article w. The simi-
larity score, sim(a,w) is simply the dot product
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of the two representations, awT. Therefore, given
a corpus of Wikipedia articles W, we define the
Wikipedia Similarity Score, WSS of an argument
a as:

WSS(a) =
∑
w∈W

awT (3)

For pairwise prediction, we predict the argument
with the higher score as the more convincing ar-
gument.

We consider two possible representations for
texts: 1) term-frequency (TF) count, and 2) Sum-
ming the embeddings of all the tokens in the
text. For the TF representation, we use the
CountVectorizer class from Scikit-learn (Pe-
dregosa et al., 2011) to process the text and create
the appropriate representation. For the embedding
representation, we use GloVe (Pennington et al.,
2014) 300 dimensions learned from the Common
Crawl corpus with 840 billion tokens.

Our Wikipedia data is from the May 20th, 2017
dump1. We clean the raw Wikipedia data using
gensim (Řehůřek and Sojka, 2010). We experi-
ment with three different Wikipedia corpora. The
first corpus has a set of 30 hand-picked Wikipedia
articles, chosen to be of the same subject matter
of the various topics in the argument convincing-
ness corpora. We refer to this corpus as Wiki
hand-picked (hp). The second corpus contains 38k
random Wikipedia articles, chosen to be approxi-
mately the length of the hand-picked articles. The
motivation behind the second corpus is to deter-
mine how valuable the topic-specific information
is for assessing the validity of the arguments. The
second corpus also simulates a situation where a
model accesses an arbitrary knowledge base, as
opposed to one that is hand-selected. We refer
this corpus as Wiki random (ran). The third cor-
pus combines the first two corpora, with the goal
of determining how well the heuristic method can
deal with the potential ‘noise’ of randomly chosen
Wikipedia articles. We refer to this corpus as Wiki
hp+ran.

4 Supervised Methods

Habernal and Gurevych (2016b) propose two su-
pervised experiments for predicting argument con-
vincingness: an SVM with numerous hand-crafted
features, and a BLSTM that only uses word em-
beddings as input. While our heuristic methods

1https://dumps.wikimedia.org/enwiki/
20170520/

Model Pearson Spearman
SVM 0.351 0.402
BLSTM 0.270 0.354
SE 0.097 0.227
LEN 0.353 0.425
ME 0.358 0.422

Table 2: Results of the Metric Entropy experi-
ments on the regression task. SE = Shannon En-
tropy, LEN = 1/text length, ME = Metric Entropy.

show promising results, they do not yet achieve
state-of-the-art on the argument convincingness
dataset. In this section, we motivate our super-
vised experiments with a combination of results
from Section 3.2 and Habernal and Gurevych. All
models have the same cost function, which is the
binary cross-entropy of the training set, based on
the sigmoid activation of a continuous value from
a 1-dimensional dense layer.

4.1 Siamese BLSTM

The BSLTM model that Habernal and Gurevych
(2016b) propose concatenates the text of the argu-
ment pairs, separated by a special delimiter. This
single sequence is then run over by forward and
backward LSTMs to produce the BLSTM embed-
ding that is then used for logistic regression. We
propose to model each argument in the argument
pair separately, creating a representation for each
argument pair that is then concatenated together
for logistic regression output. The term ‘Siamese’
refers to the fact that the representations are cre-
ated separately (we adopt the terminology from
Mueller and Thyagarajan (2016)). Each argument
goes through a BLSTM to produce its individual
representation, using GloVe vectors as input to the
BLSTM.

4.2 Siamese BOW Embedding

While a BLSTM model is very logical for most
language tasks, given its sequential nature, work
such as Joulin et al. (2016) shows that simply
summing individual token embeddings can be ex-
tremely competitive for the task of text classifica-
tion. Furthermore, in the current climate of in-
creasingly complex deep learning models, it is im-
portant to continue to compare to simpler models.
For this method, we represent an argument in an
argument pair as the sum of its tokens’ embed-
dings. Given the TF representation of a set of texts
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Topic WS-TF WS-TF WS-TF WS-E WS-E WS-E
(Wiki corpus) hp ran hp+ran hp ran hp+ran

Should physical edu. No 0.792 0.825∗ 0.825∗ 0.783 0.783 0.783
be mandatory? Yes 0.711 0.736 0.736 0.778 0.784 0.784
Ban Plastic No 0.826 0.840 0.840 0.851 0.847 0.847
Water Bottles? Yes 0.905 0.838 0.838 0.833 0.835 0.835
Christianity or Atheism Atheism 0.713 0.777 0.777 0.801 0.801 0.801

Christianity 0.736 0.716 0.716 0.697 0.705 0.705
Evolution vs. Creation Creation 0.772 0.817 0.817 0.848 0.846 0.846

Evolution 0.678 0.634 0.634 0.596 0.603 0.603
Firefox vs. Internet Exp IE 0.785 0.668 0.668 0.796 0.792 0.792

Firefox 0.774 0.768 0.768 0.797 0.793 0.793
Gay marriage - Right 0.802 0.703 0.703 0.762 0.765 0.765
right or wrong? Wrong 0.774 0.841 0.841 0.828 0.830 0.830
Should parents No 0.766 0.796 0.796 0.829 0.821 0.821
use spanking? Yes 0.648 0.672 0.672 0.808 0.814∗ 0.814∗

If your spouse No 0.689 0.601 0.604 0.683 0.677 0.677
committed murder [...] Yes 0.682 0.673 0.673 0.795 0.798∗ 0.798∗

India has the potential No 0.784 0.776 0.776 0.792 0.792 0.792
to lead the world Yes 0.749 0.714 0.714 0.685 0.687 0.687
Lousy father Fatherless 0.707 0.711 0.711 0.760 0.760 0.760
or fatherless? Lousy father 0.675 0.663 0.663 0.666 0.663 0.663
Is porn wrong? No 0.761 0.703 0.703 0.746 0.749 0.749

Yes 0.789 0.838 0.838 0.820 0.829 0.829
Is the school uniform Bad 0.706 0.702 0.702 0.699 0.695 0.695
a good or bad idea? Good 0.722 0.711 0.711 0.825 0.827 0.827
Pro choice vs. Pro life Choice 0.681 0.678 0.678 0.728 0.728 0.728

Life 0.807 0.726 0.726 0.807 0.809 0.809
TV is better than books No 0.747 0.736 0.736 0.721 0.721 0.721

Yes 0.774 0.770 0.770 0.789 0.780 0.780
Personal pursuit or Common 0.728 0.768 0.768 0.720 0.718 0.718
common good? Personal 0.653 0.610 0.610 0.641 0.650 0.650
Farquhar as the No 0.743 0.682 0.682 0.714 0.723 0.723
founder of Singapore Yes 0.660 0.702 0.702 0.828 0.820 0.820
AVERAGE 0.742 0.731 0.731 0.763 0.764 0.764

Table 3: Results of Wikipedia similarity experiments, using either a term-frequency representation (TF)
or a sum of word embeddings (E). We experiment with three types of Wikipedia corpora: 30 hand-picked
articles chosen to been highly relevant to the argument topics (hp); roughly 38k randomly chosen articles
(ran); a combination of the first two corpora (hp+ran).

T in matrix format A and a corresponding embed-
ding matrix E, the BOW Embedding, BOWE,
representation is equivalent to:

BOWE(T ) = AE (4)

For our application, our input will have two matri-
ces, Tl and Tr, representing the left and right ar-
guments in the pair. Once the individual represen-
tations are created, as with the Siamese BLSTM,
we concatenate them together as the input for lo-

gistic regression. Lastly, instead of continuing to
train the initialized embedding matrix E, we fix
E, calling it Efixed, and pass it through a fully-
connected layer, Wemb,

Elearned = EfixedWemb (5)

Thus, Elearned replaces E in Equation 4. Because
we are summing embedding vectors to create the
representation, the values of representations’ di-
mensions could become large, causing a dramati-
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cally increased loss. While such methods as gra-
dient clipping and gradient normalization could be
used, we found it simple enough to divide the rep-
resentation by 100.

4.3 Supervised Wikipedia Similarity
We now begin to modify the methodology de-
scribed in Section 3.2 to add an increasing amount
of complexity to better integrate the Wikipedia ar-
ticles. The first model we propose uses the repre-
sentations from Equation 4 to represent the argu-
ments and Wikipedia articles, however, it is com-
puted slightly differently for the arguments and
wikipedia articles. While the argument represen-
tations use Elearned, the Wikipedia articles use
Efixed, and then the result of BOWE(T ) passes
through a fully-connected layer, Wwiki. Just as
we artificially normalized the argument represen-
tations, we divide the Wikipedia representations
by 10,000, due to their greatly increased length
compared to the argument text. Once we have
the individual representations, we compute a sim-
ilarity score as done in Equation 3. The one dif-
ference, though, is that we apply tanh to the re-
sult of the dot product to keep the summation in
a manageable range, which aids training. The re-
sulting similarity scores, one for each argument in
the pair, become the features for a 2-dimensional
logistic regression model. This model does not use
dropout at the fully-connected layer.

4.4 Memory Network with Wikipedia
The model from Section 4.3 gives equal impor-
tance to the similarity scores from all Wikipedia
articles. However, it’s more intuitive for more rel-
evant articles to have more importance. There-
fore, we construct a model similar to the end-
to-end Memory Network from Sukhbaatar et al.
(2015). We create a weight for each score (also
interpretable as a probability score P j) for each
Wikipedia article, wi, and argument, aj , as2:

P j(wi) = softmax(ajwT
i ) (6)

which is used to create a weighted sum of the
Wikipedia articles, sj , for each argument j:

sj =
|W |∑
i

P j(wi)wi (7)

2We note that we also experimented with an attention
mechanism more akin that of Bahdanau et al. (2014), which
uses a latent vector v to dot product with the sum aj + wi.
However, this yielded the same results as the currently pre-
sented model.

We create the final representation, oj , for argu-
ment j as follows:

oj = aj + sj (8)

which is the representation that is the input to the
logistic regression layer (one for each argument in
the pair).

5 Results

In each table that presents results, bold face indi-
cates that a given system performed highest on a
given topic within that table. An asterisk indicates
that a given system performed highest on a given
topic across all tables.

5.1 Heuristic Methods
Results of our ME experiments are shown in Ta-
ble 2. We present the results on the regression
task. The results of the Wikipedia similarity ex-
periments are shown in Table 3.

5.2 Supervised Methods
Results of our supervised experiments are shown
in Tables 4 and 5. We present the results of the
Siamese BLSTM (SBLSTM), Siamese BOW
Embeddings (SBOWE), Supervised Wikipedia
similarity (SWS), and Memory Network with
Wikipedia (MNW). Each model that uses
Wikipedia articles is run with Wiki hp, Wiki ran,
and Wiki hp+ran, as described in Section 3.2. All
reported results are the average of three different
runs. We report the accuracy on each topic, as
well as the macro average across all topics. We
compare our results with the SVM and BLSTM
models from Habernal and Gurevych (2016b) in
Table 4.

All models have dropout (Srivastava et al.,
2014) of 0.5 at the dense layer (except for the
model described in Section 4.3) and use a batch
size of 32, as done by Habernal and Gurevych
(2016b) in their BLSTM model. All models are
implemented in TensorFLow (Abadi et al., 2016)
and train for four epochs. The entire dataset has
11,650 argument pairs across all 32 topics. Since
one topic is held-out for testing at a time, there is
on average an 11,286/364 train/test split.

6 Discussion

6.1 Heuristic Methods
First, it is rather remarkable that text length alone,
as a stand-alone metric, is able to record state-of-
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Topic SVM BLSTM SBOWE SBLSTM
Should physical edu. be mandatory? No 0.79 0.8 0.788 0.750

Yes 0.79 0.78 0.879∗ 0.801
Ban Plastic Water Bottles? No 0.85 0.76 0.861 0.760

Yes 0.9 0.83 0.910∗ 0.798
Christianity or Atheism Atheism 0.81 0.8 0.832 0.771

Christianity 0.68 0.75 0.747 0.770
Evolution vs. Creation Creation 0.84 0.88 0.893 0.809

Evolution 0.66 0.77 0.809 0.796
Firefox vs. Internet Explorer IE 0.84 0.81 0.931∗ 0.774

Firefox 0.82 0.78 0.893∗ 0.814
Gay marriage - right or wrong? Right 0.76 0.74 0.797 0.735

Wrong 0.82 0.87 0.902 0.799
Should parents use spanking? No 0.84 0.78 0.861∗ 0.745

Yes 0.79 0.68 0.765 0.648
If your spouse committed murder [...] No 0.71 0.64 0.757 0.633

Yes 0.79 0.72 0.795 0.720
India has the potential to lead the world No 0.82 0.77 0.843 0.747

Yes 0.69 0.79 0.874 0.817
Is it better to have a lousy father Fatherless 0.77 0.69 0.765 0.638
or to be fatherless? Lousy father 0.67 0.6 0.731 0.584
Is porn wrong? No 0.82 0.79 0.835 0.790

Yes 0.85 0.85 0.886 0.785
Is the school uniform a good or bad idea? Bad 0.75 0.78 0.839 0.829

Good 0.83∗ 0.74 0.795 0.681
Pro choice vs. Pro life Choice 0.71 0.68 0.741 0.730

Life 0.79 0.8 0.862 0.709
TV is better than books No 0.78 0.73 0.857 0.740

Yes 0.78 0.75 0.860∗ 0.799
Personal pursuit or common good? Common 0.72 0.78∗ 0.773 0.712

Personal 0.67 0.68 0.696∗ 0.661
Farquhar as the founder of Singapore No 0.79 0.63 0.824 0.736

Yes 0.85∗ 0.76 0.806 0.651
AVERAGE 0.781 0.757 0.825∗ 0.742

Table 4: Results of supervised models that do not use Wikipedia. SVM and BLSTM results are reported
from Habernal and Gurevych (2016b).

the-art results on the regression task. Although
Chalaguine and Schulz (2017) directly showed the
power of text length in a supervised setting, our
results show an even simpler method for produc-
ing predictions on par with the previous state-of-
the-art. There is intuitive reasoning for this result,
since, as mentioned in Section 1, arguments are
predominantly more convincing when they pro-
vide more; more facts, more information, more
depth, etc. When evaluated on the pairwise binary
prediction task, Metric Entropy and text length
record 77.2% and 77.3% accuracy, respectively.

Reviewing the Wikipedia similarity results, it is

evident that the BOW embedding representation
does offer greater predictive power when com-
pared to the term-frequency representation. This
unsupervised method even outperforms the su-
pervised methods BLSTM and SBLSTM. Fur-
thermore, compared to other methods that use
Wikipedia articles, this method is more insensitive
to the content of the articles, as it actually shows a
very slight improvement when the hand-picked ar-
ticles are not present, which is the opposite of all
the other Wikipedia-based methods.
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Topic SWS SWS SWS MNW MNW MNW
(Wiki corpus) hp ran hp+ran hp ran hp+ran

Should physical edu. No 0.797 0.819 0.794 0.802 0.792 0.775
be mandatory? Yes 0.880 0.846 0.851 0.877 0.878 0.868
Ban Plastic Water Bottles? No 0.821 0.844 0.811 0.829 0.852 0.862∗

Yes 0.894 0.893 0.901 0.899 0.906 0.906
Christianity or Atheism Atheism 0.822 0.804 0.821 0.800 0.838 0.844∗

Christianity 0.777∗ 0.727 0.747 0.765 0.756 0.743
Evolution vs. Creation Creation 0.904∗ 0.834 0.872 0.883 0.886 0.892

Evolution 0.813 0.802 0.783 0.832∗ 0.795 0.800
Firefox vs. Internet Exp IE 0.901 0.888 0.889 0.925 0.903 0.906

Firefox 0.876 0.884 0.876 0.880 0.840 0.856
Gay marriage - Right 0.815∗ 0.771 0.762 0.814 0.787 0.786
right or wrong? Wrong 0.903 0.889 0.885 0.908∗ 0.891 0.901
Should parents No 0.813 0.816 0.840 0.835 0.857 0.853
use spanking? Yes 0.773 0.748 0.735 0.773 0.782 0.786
If your spouse No 0.761∗ 0.733 0.728 0.760 0.732 0.748
committed murder [...] Yes 0.779 0.780 0.761 0.789 0.798∗ 0.750
India has the potential No 0.833 0.824 0.820 0.842 0.847 0.848∗
to lead the world Yes 0.861 0.869 0.880∗ 0.867 0.870 0.856
Lousy father Fatherless 0.780∗ 0.760 0.751 0.780 0.746 0.753
or fatherless? Lousy father 0.704 0.678 0.711 0.725 0.724 0.732∗

Is porn wrong? No 0.791 0.836 0.834 0.824 0.839∗ 0.816
Yes 0.883 0.861 0.879 0.892∗ 0.892∗ 0.892∗

Is the school uniform Bad 0.840 0.837 0.831 0.851∗ 0.815 0.843
a good or bad idea? Good 0.771 0.752 0.762 0.771 0.792 0.792
Pro choice vs. Pro life Choice 0.746∗ 0.721 0.723 0.733 0.716 0.722

Life 0.856 0.834 0.866∗ 0.852 0.854 0.850
TV is better than books No 0.856 0.861 0.834 0.864∗ 0.846 0.846

Yes 0.837 0.849 0.853 0.835 0.847 0.849
Personal pursuit Common 0.760 0.727 0.714 0.763 0.766 0.719
or common good? Personal 0.682 0.669 0.686 0.680 0.687 0.691
Farquhar as the No 0.794 0.783 0.799 0.820 0.831∗ 0.823
founder of Singapore Yes 0.820 0.776 0.794 0.806 0.814 0.821
AVERAGE 0.817 0.804 0.806 0.821 0.818 0.817

Table 5: We experiment with three types of Wikipedia corpora: 30 hand-picked articles chosen to been
highly relevant to the argument topics (hp); roughly 38k randomly chosen articles (ran); a combining the
first two corpora (hp+ran).

6.2 Supervised Methods
The first result to note is that the BOW Embedding
model posts a new state-of-the-art on the dataset.
This shows that the current best approach to pre-
dicting argument convincingness treats word or-
der as interchangeable. Although, it is reasonable
to surmise that facts and information are depen-
dent on local compositionality, current methods to
model such linguistic phenomena under-perform.

When comparing supervised models that inte-
grate Wikipedia articles, we see that the MNW

model is better equipped to handle the noise from
a large corpus of documents, when compared to
the SWS results, which shows roughly a 1% drop
in accuracy when the ran corpus is added to the hp
corpus.

6.3 Model Correlations

Table 6 presents correlations between various
models when comparing the accuracies of the in-
dividual topics. First, text length has a .96 cor-
relation with the SVM model. This means that
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BLSTM LEN MNW SBLSTM SBOWE SVM SWS WS-E WS-TF
BLSTM 1.000 0.508 0.739 0.733 0.740 0.534 0.785 0.519 0.585
LEN 0.508 1.000 0.574 0.202 0.647 0.964 0.585 0.915 0.530
MNW 0.739 0.574 1.000 0.726 0.969 0.608 0.975 0.465 0.651
SBLSTM 0.733 0.202 0.726 1.000 0.722 0.277 0.723 0.173 0.528
SBOWE 0.740 0.647 0.969 0.722 1.000 0.681 0.948 0.552 0.683
SVM 0.534 0.964 0.608 0.277 0.681 1.000 0.615 0.904 0.584
SWS 0.785 0.585 0.975 0.723 0.948 0.615 1.000 0.528 0.630
WS-E 0.519 0.915 0.465 0.173 0.552 0.904 0.528 1.000 0.505
WS-TF 0.585 0.530 0.651 0.528 0.683 0.584 0.630 0.505 1.000

Table 6: Correlations between systems. Bold indicates the highest correlation for a given row.

the main predictive power of the SVM model can
be distilled into using the text length to predict
argument convincingness. What is perhaps more
surprising is how high LEN correlates with WS-
E. This could potentially be explained by the fact
that articles with more words will sum together
more embeddings, resulting in vectors with larger
norms, which create larger dot-products when
taken with the argument representations. How-
ever, the same argument can be made for the TF
representation, so a more valid reason remains
to be seen (note though that SBOWE and WS-
TF have a low correlation with LEN). Secondly,
we see that all models based on BOW embed-
dings have a very high correlation with each other,
which is an intuitive finding.

7 Conclusion

In this work we have shown three key insights into
the task of predicting argument convincingness:
1) Heuristic text length is an extremely compet-
itive baseline that performs on par with highly-
engineered classifiers and deep learning models;
2) The current state-of-the-art approach treats to-
kens as interchangeable, bypassing the need to
model compositionality; 3) Wikipedia articles can
provide meaningful external knowledge, though,
naive models have trouble dealing with the noise
in a large corpus of document, whereas a model
that attends to the Wikipedia corpus is better
equipped to handle the noise. Future work can fo-
cus on models that better handle compositionality,
as well as integration of external knowledge, with
an aim to surpass our new state-of-the-art on the
corpus. One simple way to potentially enhance
our MNW model is to perform multiple hops, a
technique shown to greatly increase performance
when using Memory Networks for other applica-

tions (Sukhbaatar et al., 2015).
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Abstract

This paper tackles the task of event de-
tection, which involves identifying and
categorizing events. The previous work
mainly exists two problems: (1) the tradi-
tional feature-based methods apply cross-
sentence information, yet need taking a
large amount of human effort to de-
sign complicated feature sets and infer-
ence rules; (2) the representation-based
methods though overcome the problem of
manually extracting features, while just
depend on local sentence representation.
Considering local sentence context is in-
sufficient to resolve ambiguities in identi-
fying particular event types, therefore, we
propose a novel document level Recurrent
Neural Networks (DLRNN) model, which
can automatically extract cross-sentence
clues to improve sentence level event de-
tection without designing complex reason-
ing rules. Experiment results show that
our approach outperforms other state-of-
the-art methods on ACE 2005 dataset nei-
ther the external knowledge base nor the
event arguments are used explicitly.

1 Introduction

Event detection is a crucial subtask of event ex-
traction, which aims to extract event triggers (most
often a single verb or noun) and classify them in-
to specific types in text. For instance, accord-
ing to the ACE 2005 annotation guideline1, in the
sentence “central command says troops were in-
volved in a gun battle yesterday”, an event de-
tection system should be able to detect an Attack
event with the trigger word “battle”. However, this

1
https://www.ldc.upenn.edu/sites/www.ldc.upenn.
edu/files/english-events-guidelines-v5.4.3.pdf.

task is very challenging, as the same event might
appear with various trigger words and a trigger ex-
pression might evoke different event types in dif-
ferent context.

Most of the existing methods either employed
feature-based models with cross-sentence level
information (Ji and Grishman, 2008)(Liao and
Grishman, 2010)(Hong et al., 2011)(Huang and
Riloff, 2012) or followed representation-based
architectures with sentence level context (Chen
et al., 2015)(Nguyen and Grishman, 2015)(Li-
u et al., 2016)(Nguyen and Grishman, 2016)(N-
guyen et al., 2016)(Liu et al., 2017)(Chen et al.,
2017). Both models have some inherent flaws:
(1) feature-based approaches not only need to e-
laborately design rich features and often suffer er-
ror propagation from the existing natural language
processing tools (i.e part of speech tags and de-
pendency), but also the cross-sentence clues are
embodied by devising complex inference rules,
which is difficult to cover all the semantic laws;
(2) though representation-based models can ef-
fectively alleviate the problem of manually ex-
tract features, local sentence context information
may be insufficient for event detection models or
even humans to classify events from isolated sen-
tences. For example, consider the following sen-
tences from ACE2005 dataset:

S1: Saba hasn’t delivered yet.2

S2: I knew it was time to leave.3

It is very difficult to identify S1 as a Be-Born
event with the trigger “delivered”, which means
that a person entity is given birth to. Similarly,
we have low confidence to tag “leave” as a trigger
for End-Position event in the S2, which means that
a person entity stops working for an organization.
However, the wider context that “She wants to cal-

2Selected from the file “CNN IP 20030414.1600.04”.
3Selected from the file “CNN CF 20030303.1900.05”.
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l her pregnant daughter Saba in Sweden to see if
she has delivered.” would give us more confidence
to tag “delivered” as a Be-Born event in the S1.
It is easy to identify the “leave” as a trigger for
End-Position event in the S2, if we know the pre-
vious information that “ this is when you were in
the Senate – less and less information was new,
fewer and fewer arguments were fresh, and the
repetitiveness of the old arguments became tire-
some. I was becoming almost as cynical as my
constituents”.

In fact, each document often has a main con-
tent in ACE 2005 English corpus. For example,
if the content of a document is about terrorist at-
tack, the document is more likely to contain Injure
events, Die events, Attack events, and is unlike-
ly to describe Be-Born events. In other words,
there is a strong association between events ap-
pearing in a document. In addition, event type-
s contained in documents with the related topic-
s are also consistent. Therefore how to use intra
and inter document information becomes particu-
larly important. Although there have been already
some work to capture the clues beyond sentence
to improve sentence level event detection (Ji and
Grishman, 2008)(Liao and Grishman, 2010)(Hong
et al., 2011), they still exist the following dis-
advantages: (1) inherent defects in feature-based
models; (2) document level information was used
by a large number of inference rules, this is not
only complicated and time-consuming, but also d-
ifficult to cover all of the semantic laws.

In this paper, we propose a document level
recurrent neural networks (DLRNN) model for
event detection to solve the above problems. First-
ly, to capture lexical-level clues and minimize the
dependence on supervised tools and resources for
features, we introduce a distributed word repre-
sentation model (Mikolov et al., 2013a), which
has been proved very effective for event detec-
tion (Chen et al., 2015)(Nguyen and Grishman,
2015)(Nguyen and Grishman, 2016). Secondly,
we employ bidirectional recurrent networks to en-
code sentence level clues, which can effectively
reserve the history clues and the following infor-
mation of the current word. Thirdly, to capture
document level and cross-document level clues
without complicated inference rules. We introduce
a document representation, which uses a distribut-
ed vector to represent a document and has been
showed to be able to get better performance on text

classification and sentiment analysis tasks (Le and
Mikolov, 2014). Finally, we use BILOU labeling
method to solve the problem that a trigger contains
multiple words.

In summary, our main contributions are as fol-
lows: (1) we prove the importance of document
level information for event detection. (2) to cap-
ture document level clues, we devise a document
level Recurrent Neural Networks (DLRNN) model
for event detection, which can automatically learn
features beyond sentence. (3) moreover, to solve
the problem that a trigger word contains multiple
words, we introduce BILOU labeling method. (4)
finally, we improve the performance and achieve
the best performance on ACE 2005 dataset neither
the external knowledge base nor the event argu-
ments are used explicitly.

2 Task Description

This paper focuses on addressing event detection
task, which is a crucial subtask of event extrac-
tion. According to Automatic Context Extraction
(ACE) evaluation4, which annotates 8 types and
33 subtypes for event mention. An event is defined
as a specific occurrence involving one or more par-
ticipants. Firstly, we introduce some ACE termi-
nologies to facilitate the understanding of event
extraction task:

Entity: an object or a set of objects in one of
the semantic categories of interests.

Entity mention: a reference to an entity (typi-
cally, a noun phrase).

Event trigger: the main word that most clearly
expresses an event occurrence.

Event arguments: the mentions that are in-
volved in an event (participants).

Event mention: a phrase or sentence within
which an event is described, including the trigger
and arguments.

Given an English document, an event extrac-
tion system should identify event triggers and their
corresponding arguments with specific subtypes or
the roles for each sentence, but an event detec-
tion system only needs to identify event trigger
and their subtype. For instance, for the sentence
“central command says troops were involved in
a gun battle yesterday”, an event extraction sys-
tem is supposed to detect the word “battle” as the
event trigger of Attack event and identify the word

4
https://project.ldc.upenn.edu/ace

353



Figure 1: An illustraction of our DLRNN model for detecting the trigger word “battle” in the input
sentence “central command says troops were involved in a gun battle yesterday”.

“troops”, “gun” and “yesterday” as event argu-
ment whose roles are Attacker, Instrument and
Time-Within. However, for an event detection
system, identifying the word “troops”, “gun” and
“yesterday” as event argument whose roles are At-
tacker, Instrument and Time-Within is not in-
volved. Following previous work, we treat these
simply as 33 separate event types and ignore the
hierarchical structure among them.

3 Model

In this section, we give the details for the DLRNN
model (show in Figure 1). First of all, we formal-
ize the event detection task as a multi-classes clas-
sification problem following previous work. More
precisely, for each word in a sentence, our goal is
to classify them into one of 34 classes (33 trigger
types and None class).

Our DLRNN model primarily includes four
parts: (i) word embedding, which contains lexical
information for each word and is trained from ex-
ternal corpus in an unsupervised manner; (ii) doc-
ument vector, which reveals the topic of a docu-
ment is trained in an unsupervised mechanism; (i-
ii) bidirectional recurrent neural networks encod-
ing, which can learn the historical and future ab-
stractive representation of a candidate trigger; (iv)
trigger prediction, which calculates a confidence
score for each event subtype candidate.

3.1 Word Embedding
The representation of the words as continuous
vectors (word embedding) are proved more pow-
erful than discrete representation (Bengio et al.,
2003)(Mikolov et al., 2013b). Word embedding
not only addresses the problem of dimension dis-
aster, but also makes the word vector contain rich-
er semantic information. The closer the vector s-
pace, the closer the semantic. In addition, word
embedding can automatically learn lexical-level
clues in the process of pre-training. Not only does
not require human ingenuity, but also effectively
alleviates the error propagation brought by other
NLP lexical analysis toolkits. Recent work has
demonstrated that using word embedding can en-
hance the robustness of event detection model (N-
guyen and Grishman, 2015)(Chen et al., 2015)(N-
guyen and Grishman, 2016).

In this paper, we pre-trained word embedding
via skip-gram model (Mikolov et al., 2013b) and
New York Times corpus5. Given a sequence
of training words w1,w2,w3,...,wT , the skip-gram
model trains the embedding by maximizing the av-
erage log probability:

1
T

T−k∑
t=k

log p(wt−k, ...,wt+k|wt) (1)

where wt−k,...,wt+k is the context of wt and the
window size is k, usually it is expressed by the
concatenation or sum of all word vectors in the

5
https://catalog.ldc.upenn.edu/LDC2008T19
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context; p(wt−k,...,wt+k|wt) is calculated via soft-
max. There, we have:

p(wt−k, ...,wt+k|wt) =
eywt−k,...,wt+k∑

i e
yi

(2)

where each of yi is un-normalized log-probability
for each output context of the word i, computed as

y = b+ Uwt (3)

where U,b are the sofmax parameters.

3.2 Document Vector
In order to illustrate the importance of the docu-
ment vector for event detection in terms of disam-
biguity. we propose three hypotheses from intra
and inter document context perspectives.

H1: As we all know, the same word in different
context often has different meanings. For instance,
the word “delivered” in S1 can mean that someone
is born or bring something to a destination, when
given different context.

H2: Events in a document exist consistency.
For example, Die events and Marry events almost
never appear in the same document, but Die events
often occur with Attack events and Injure events in
a document.

H3: The event types in documents with the re-
lated topics exist consistency. For instance, if the
document that describing a financial crisis con-
tains End-Position events and End-Org events, and
then another document related to the financial cri-
sis topic is more likely to happen End-Position
events and End-Org events.

Based on the above three assumptions, we in-
troduced an advanced document representation
method. Documents are represented by the dis-
tributed vector like word embedding, which not
only contains the main content of a document, but
also the more relevant documents, the closer the
document vector. For all the words in a document,
the document vector is shared and is concatenat-
ed with word embedding, serving as the semantic
representation of a word, as shown in Figure 1.
Concatenating the document vector to word em-
bedding has the following advantages: (i) a word
is no longer represented by a unique word vec-
tor, but expressed by different vector in different
documents. This can help event detection mod-
el to disambiguate event type; (ii) the consistency
of events in a document is guaranteed. Since all
the words in a document share a document vector,

which passes the identified event subtype informa-
tion. For example, if some candidate triggers con-
taining a particular document vector are mostly i-
dentified as Attack events, Die events, and Injuries
events, and then the other candidate triggers that
containing the document vector will be less likely
to be identified as Marry events or Be-Born events.
(iii) documents with related topic almost contain
the same event types. Due to the fact that the more
relevant topic of the documents, the closer docu-
ment vectors, the model will be given high confi-
dence to label candidate trigger in a document as
the types that appearing in the relevant topic of the
documents.

In this paper, we trained document vectors
by using the PV-DM model (Le and Mikolov,
2014), which is very similar to the CBOW model
that is another word embedding model (Mikolov
et al., 2013a). Unlike the skip-gram model,
given a document that contains training word-
s w1,w2,w3,...,wT , document vector is trained by
maximizing the average log probability:

1
T

T−k∑
t=k

log p(wt|wt−k, ...,wt+k, doc) (4)

where wt−k,...,wt+k is the context of wt and the
window size is k; doc is the document vector con-
taining the training words, which can be randomly
initialized to a fixed dimension of vector like word
embedding, see (Le and Mikolov, 2014) for detail-
s.

3.3 Bidirectional Recurrent Neural Networks
Encoding

Recurrent neural networks (RNN) has been shown
to perform considerably better than standard feed-
forward architecture (Hammerton, 2003)(Sutskev-
er et al., 2011)(Liu et al., 2014)(Sundermeyer
et al., 2014). In this paper, we used RNN to en-
code word level information and document level
clues. In the following, we describe our encoding
model in detail.

The traditional RNN predicts the current tag
with the consideration of the current input and his-
tory information before the current input. It los-
es the following information after the current in-
put. In order to address this problem, we ran t-
wo RNNs, one of the RNNs is responsible for
encoding the history information, and the other
one is responsible for encoding the future infor-
mation. In addition, the standard RNN often suf-
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fers from gradient vanishing or gradient explod-
ing problems during training via backpropagation
(Bengio et al., 1994). To remedy this problem, we
used long short-term memory (LSTM) (Hochreiter
and Schmidhuber, 1997) that is a variant of RNN
to replace the standard RNN.

Formally, given candidate input sequence X =
{x1,x2, ...,xn}. We run LSTM1 to get the hidden
representation {hf1 ,hf2 , ...,hfn} and run LSTM2
to get the hidden representation {hb1 ,hb2 , ...,hbn}.
Each hfi

and hbi are computed by:

hfi
=
−−−−→
LSTM(xi, hfi−1

) (5)

hbi =
←−−−−
LSTM(xi, hbi+1

) (6)

where xi is the concatenation of the word embed-
ding of token i in candidate sentence and docu-
ment vector that contains token i, as shown in Fig-
ure 1; hfi−1

contains the historical information be-
fore xi; hbi+1

contains the future clues after xi.
Eventually, we obtain the context information over
the whole sentence {h1,h2, ...,hn} with a greater
focus on the position i by concentrating {hf1 ,hf2 ,
...,hfn} and {hb1 ,hb2 , ...,hbn}, where hi = [hfi

,hbi].

3.4 Trigger Prediction

In the actual situation, due to the fact that a trig-
ger may contain multiple words, we introduce the
BILOU labeling method, which has been shown to
be able to achieve better results than BIO labeling
in entity recognition tasks (Gupta et al., 2016). In
the BILOU labeling method, B represents the be-
ginning of a trigger word, I indicates that the word
is inside a trigger word, L represents that the word
is the last word for a trigger word, O signifies that
the word is not a trigger word, U denotes the trig-
ger word contains unique word.

After bidirectional long short-term memory
(BiLSTM) encoding, we get the global abstract
representation hi that encapsulates all context of
the input sentence (see in section 3.3). And then,
we feed hi into a feed-forward neural network with
a softmax layer (as shown in Figure 1). In the end,
we get a 34 dimensions vector 6, where the k-th
term ok is the probability value for classifying xi
to the k-th event type.

Given all of our (suppose T) training samples
(x(i);y(i)), we can then define the loss function as

6As a result of the BILOU tag, the actual dimension is
more than 34 dimensions, but it is described as 34 dimensions
for ease of understanding.

the average negative log-likelihood:

J(θ) = − 1
T

T∑
i=1

log p(y(i)|x(i), θ) (7)

In order to compute the network parameter θ, we
minimize the average negative log-likelihood J(θ)
via stochastic gradient descent (SGD) over shuf-
fled mimi-batches with Adam update rule (King-
ma and Ba, 2014) and the dropout regularization
(Zaremba et al., 2014).

4 Experiments

4.1 Dataset and Experimental Setup
We evaluate our DLRNN model on the ACE2005
English corpus. For fair comparisons, the same
with (Ji and Grishman, 2008)(Liao and Grishman,
2010)(Hong et al., 2011)(Liu et al., 2017)(Chen
et al., 2017), we select the same 40 newswire doc-
uments as the test set, the same 30 documents
from different genres as development set and the
remaining 529 documents are used as training
set. Furthermore, we also follow the criteria of
the previous work (Ji and Grishman, 2008)(Liao
and Grishman, 2010)(Hong et al., 2011)(Li et al.,
2013)(Liu et al., 2017)(Chen et al., 2017) to judge
the correctness of the predicted event mentions
and use Precision (P), Recall (R), F-measure (F1)
as the evaluation metrics.

We set the the dimension of word embedding
to 200, the dimension of document vectors to 100,
the size of hidden layer to 300, the size of mini-
batch to 100, the dropout rate to 0.5, the learning
rate to 0.002. All of the above hyper-parameter are
adjusted on the development set.

4.2 Baseline Methods
In order to validate our DLRNN model, we choose
the following models as our baselines, which are
the state-of-the-art methods in sentence level and
cross-sentence level event detection models.
Cross-Sentence Level Baselines:

1) Cross-Document Inference: It is the
feature-based model proposed by (Ji and Grish-
man, 2008), which is the first time to use docu-
ment information to assist in sentence level event
detection. They employed document theme clus-
tering and designed a lot of reasoning rules to en-
sure event consistency within the scope of the doc-
ument and clustering.

2) Cross-Event Inference: This is the feature-
based method proposed by (Liao and Grishman,
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Methods P R F1

Ji’s cross-document† 60.2 76.4 67.3
Liao’s cross-event† 68.7 68.9 68.8

Hong’s cross-entity† 72.9 64.3 68.3
Li’s joint model 73.7 62.3 67.5
Ngyuen’s JRNN 66.0 73.0 69.3
Chen’s DMCNN 75.6 63.6 69.1

Chen’s DMCNN+DS 75.7 66.0 70.5
Liu’s ANN 79.5 60.7 68.8

Liu’s ANN+Attention 78.0 66.3 71.7
Our DLRNN† 77.2 64.9 70.5

Table 1: Overall Performance on Blind Test Da-
ta. “†” designates the model that employs the evi-
dences beyond sentence level. The boldface indi-
cates that the model is representation-based mod-
el.

2010), which not only used the consistency infor-
mation of the same type events in a document, but
also explored the clues from the co-occurrence of
different event types in the same document.

3) Cross-Entity Inference: It is the feature-
based approach proposed by (Hong et al., 2011),
which used the entity co-occurrence as a key fea-
ture to predict event mention.
Sentence Level Baselines:

4) Joint Model: It is the feature-based mod-
el proposed by (Li et al., 2013), which exploit-
ed argument information implicitly and captured
the dependencies between two triggers within the
same sentence.

5) Joint RNN: It is the representation-based
method proposed by (Gupta et al., 2016), which
exploited the inter-dependence of event trigger and
event argument.

6) DMCNN + Distant Supervision: It is the
representation-based method proposed by (Chen
et al., 2017), which used the Freebase and
FrameNet to extend the training corpus through
distant supervision.

7) ANN + Attention: It is the representation-
based approach proposed by (Liu et al., 2017),
which exploited argument information explicitly
for event detection via supervised attention mech-
anisms.

4.3 Performance Comparison

Table 1 are the comparisons of experimental re-
sults of our method with the baseline methods on
the same blind test dataset. Seen from Table 1, we

make the following observations:

1) The performance of representation-based
models is better than that of feature-based mod-
els. It indicates the artificially well-designed fea-
tures are not sufficient for event detection, and
automatically extracting features based on neu-
ral networks can capture richer semantic clues.
In detail, the F1 score of our DLRNN model is
higher than state-of-the-arts feature-based mod-
el (Liao’s cross-event) by 1.7%; the other three
representation-based models achieved better ex-
perimental results than that of Liao’s cross-event
model, which gain 0.5%,1.7% and 2.9% improve-
ment, respectively.

2) The feature-based models that using cross-
sentence information is more advantageous than
the sentence level model. More accurately, in the
cross-sentence models, only the performance of
the Ji’s cross-document method is slightly lower
than Li’s joint model (-0.2%), but the performance
of the remaining models is better than Li’s joint
model (an improvement of 0.8% and 1.3% in F1 s-
core). It proves the clues beyond sentence are very
important for event detection.

3) Our DLRNN method outperforms all cross-
sentence level feature-based event detection mod-
els. In detail, DLRNN gains 3.2% improvement
on F1 score than Ji’s cross-document, gains 1.7%
improvement on F1 score than Liao’s cross-event
and gains 2.2% improvement on F1 score than
Hong’s cross-entity. The reasons are as follows:
on the one hand, artificially constructed inference
rules are difficult to cover all semantic laws; on the
other hand, our DLRNN is better able to capture
document level clues (including intra and inter-
document context).

4) In spite that the performance of our DLRNN
model does not improve the F1 score compared
with Chen’s DMCNN+DS model, even the per-
formance is not as good as Liu’s ANN+Attention
model. However, our method neither explicitly
utilized event argument information, nor extend-
ed training data through using world knowledge
(Freebase) and linguistic knowledge (FrameNet).
If removed the event argument information and
the knowledge base (Chen’s DMCNN and Liu’s
ANN), the F1 score of our DLRNN model is su-
perior to the DMCNN and ANN methods, which
are -1.4% and -1.7% lower, respectively. This not
only illustrates that document level clues are very
effective for the representation-based model, but
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also prove that the effectiveness of the proposed
method.

4.4 The Effectiveness of Document Vector

In order to verify the effectiveness of the docu-
ment vector trained by PV-DM model for even-
t detection, we design four experiments as base-
lines for comparison with our DLRNN (as shown
in Table 2): BiLSTM, BiLSTM+TF-IDF, BiLST-
M+AVE and BiLSTM+LDA.

1) BiLSTM: BiLSTM is similar to DLRNN ex-
cept for removing the document vectors, only uses
word embedding as the input of model.

2) BiLSTM+TF-IDF: Selected the word vector
of the most important word for each document as
the document vector for the document.

3) BiLSTM+AVE: The document vector is ob-
tained by averaging the vector of each word in the
document.

4) BiLSTM+LDA: The probability that each
document corresponds to each topic is the docu-
ment vector of the document.

5) DLRNN: DLRNN model uses the document
vector, which is trained by PV-DM approach in-
stead of averaging the word vector in the docu-
ment7.

Methods P R F1

BiLSTM 76.1 63.5 69.3
BiLSTM+TF-IDF† 74.2 64.6 69.1

BiLSTM+AVE† 75.4 64.7 69.6
BiLSTM+LDA† 74.3 66.1 70.0

DLRNN† 77.2 64.9 70.5

Table 2: Overall Performance on Blind Test Da-
ta. “†” designates the model that employs the ev-
idences beyond sentence level.“+TF-IDF” repre-
sents the document vector was obtained by TF-
IDF.“+LDA” represents the document vector was
obtained by LDA.“+AVE” represents the docu-
ment vector was obtained by averaging the word
vector in the document.

Seen from Table 2, we get the following obser-
vations: 1) in addition to BiLSTM+TF-IDF, the
event detection models with the document vector
can achieve better experimental results. In de-
tail, BiLSTM+AVE, BiLSTM+LDA and DLRN-
N are 0.3%, 0.7% as well as 1.2% better than

7we clean the documents up by converting everything to
lower case and removing punctuation and the stop words.

BiLSTM on F1 score, respectively. This indi-
cates that document level clues can contribute to
sentence level event detection model. 2) com-
pared to BiLSTM+TF-IDF, BiLSTM+AVE, BiL-
STM+LDA, DLRNN gains 1.4%, 0.9%, 0.5% on
F1 score. This illustrates PV-DM model is able to
capture richer semantic information.

In addition, in order to illustrate the documents
that their vectors are similar contain the consistent
event types. We visualize the document vectors.
In detail, we randomly selected a document con-
taining the events from ACE2005 English corpus,
and found a document that is most similar to the
selected document by calculating the cosine sim-
ilarity of document vectors. Finally, we system-
atically compared the events contained in the two
documents.

We randomly selected the document C-
NNHL ENG 20030624 133331.33 as a
source document, and found the document
CNNHL ENG 20030624 230338.34 is most
similar to it by computing the cosine similarity
of document vectors8. Seen from Figure 2,
we observe that the two documents contain the
same event types, except that the document
CNNHL ENG 20030624 133331.33 does not
contain Attack event. Event type overlapping rate
is up to 80%. This proves that there is correlation
between the documents of similar document
vectors.

Figure 2: The comparison of event types on the
most similar documents.

4.5 The Event Consistency in a Document

Seen from the Table 3, we observe that the In-
jure event often appears along with the Attack
events, the Die events, and the Transport events

8The cosine similarity is 0.992
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Event Subtype Conditional Probability
Attack 0.4399

Die 0.2018
Transport 0.1555

Meet 0.0287
Demonstrate 0.0221

...... ......
Nominate 0.0

Elect 0.0

Table 3: The ranking probability of events co-
occurrence with Injure events.

in the same document. The total probability of the
above three types of events concurrence with In-
jure event is about 0.797. Furthermore, the Nomi-
nate events, the Elect events, and so on, have nev-
er been appeared in the same document containing
the Injure events. This indicates that only certain
types of events can occur in the same documen-
t, therefore the introduction of the document vec-
tor will help to predict event types in a document.
Thus, the inter-document information reflected in
document vector is useful to event detection.

4.6 The Effectiveness of BILOU Labeling
According to statistics, ACE2005 English corpus
contains 235 trigger words, which are composed
of multiple words, about 4.39% of the total trig-
ger words. It is not appropriate to treat identifying
the triggers that contains multiple words as a word
classification task, because most of the triggers of
multiple words contain prepositions. However, the
prepositions in such triggers do not trigger event
independently. Therefore, using BILOU encoding
helps to treat the multiple words trigger as a w-
hole. Table 3 demonstrates the effectiveness of the
BILOU encoding (an improvement of 0.2% on F1

score).

Methods P R F1

DLRNN-BILOU 78.8 63.5 70.3
DLRNN 77.2 64.9 70.5

Table 4: Overall Performance on Blind Test Da-
ta. “-BILOU” indicates that the model has not the
BILOU labeling.

5 Related Work

Event detection is a challenging task in the field
of natural language processing, which has attract-

ed more and more researchers’ attention in recen-
t years. The current event detection models can
roughly be divided into: (1) the sentence level
event detection models and (2) the cross-sentence
level event detection models.

(1) The sentence level event detection models:
they are designed to use the sentence information
for event classification. According to the differ-
ences in how to use sentence information, they can
be divided into two categories: the feature-based
models and the representation-based models. The
early event detection models are almost all feature-
based models, which transformed lexical features,
syntactic features and semantic features into one-
hot vectors by other natural language processing
toolkits, and then sended these well-designed fea-
tures into the classifiers (eg: structure percep-
tron or support vector machine) and eventually
completed the event classification (Ahn, 2006)(Li
et al., 2013). With the success of deep learning in
entity identification and relationship classification
(Collobert and Weston, 2008)(Zeng et al., 2014),
many event detection researchers turned to focus
on the representation-based models. This kind of
models do not need to extract the features man-
ually. They used the distributed word vector as
the input and encoded the word vector into low-
dimensional abstractive representation by the neu-
ral network to complete event detection (Nguyen
and Grishman, 2015)(Chen et al., 2015)(Nguyen
et al., 2016)(Nguyen and Grishman, 2016)(Liu
et al., 2016)(Liu et al., 2017)(Chen et al., 2017).

(2) The cross-sentence level event detection
models: they aim to explore the clues beyond sen-
tence to improve sentence level event detection.
Remarkable researches are cross-document infer-
ence (Ji and Grishman, 2008), cross-event infer-
ence (Liao and Grishman, 2010), cross-entity in-
ference (Hong et al., 2011) and modeling textual
cohesion (Huang and Riloff, 2012). There main-
ly have two disadvantages: 1) The existing cross-
sentence event detection models are feature-based
models, which not only need to construct com-
plex manual features and lack generalization abil-
ity; 2) utilizing the clues beyond sentence through
designing complex and numerous reasoning rules,
is not only complex, but also can not cover all
semantic phenomenon. Different from the above
methods, our approach makes the machine auto-
matically learn the document level information by
the representation based way to improve the per-
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formance of event detection.

6 Conclusion

In this paper, we propose a novel model (DLRN-
N) to automatically extract cross-sentence level
clues for event detection by concatenating word
vector and document vector. Moreover, we use
BILOU encoding to solve the problem that con-
tains multiple words in a trigger word. In order
to prove the effectiveness of the proposed method,
we systematically conduct a series of experiments
on ACE2005 dataset. Experimental results show
that the proposed method is better than state-of-
the-arts cross-sentence level feature-based models
and the sentence level representation-based mod-
els without using argument information and exter-
nal corpus, such as Freebase and FrameNet (Li-
u et al., 2017)(Chen et al., 2017), which demon-
strates that intra and inter-document context is ef-
fective for event detection.
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Abstract
Current supervised name tagging ap-
proaches are inadequate for most low-
resource languages due to the lack of anno-
tated data and actionable linguistic knowl-
edge. All supervised learning methods
(including deep neural networks (DNN))
are sensitive to noise and thus they are
not quite portable without massive clean
annotations. We found that the F-scores
of DNN-based name taggers drop rapidly
(20%-30%) when we replace clean man-
ual annotations with noisy annotations in
the training data. We propose a new so-
lution to incorporate many non-traditional
language universal resources that are read-
ily available but rarely explored in the Nat-
ural Language Processing (NLP) commu-
nity, such as the World Atlas of Linguis-
tic Structure, CIA names, PanLex and sur-
vival guides. We acquire and encode vari-
ous types of non-traditional linguistic re-
sources into a DNN name tagger. Ex-
periments on three low-resource languages
show that feeding linguistic knowledge
can make DNN significantly more robust
to noise, achieving 8%-22% absolute F-
score gains on name tagging without using
any human annotation 1.

1 Introduction

There is a general agreement that Deep Neural
Networks provides a general, powerful underlying
model for Information Extraction (IE), confirmed
by improved state-of-the-art performance on many
tasks such as name tagging (Chiu and Nichols,
2016; Lample et al., 2016), relation classifica-
tion (Zeng et al., 2014; Liu et al., 2015; Nguyen

1We make all cleaned resources and converted linguistic
features publicly available at http://nlp.cs.rpi.edu/denoise

and Grishman, 2015b; Yang et al., 2016) and event
detection (Nguyen and Grishman, 2015b; Chen
et al., 2015; Nguyen and Grishman, 2015a, 2016;
Feng et al., 2016). For example, our experiments
on several languages show that aDNN-based name
tagger generally outperforms (up to 6% F-score
gain) a Conditional Random Fields (CRFs) model
trained from the same labeled data and feature set.
DNN architecture is attractive to couple with char-
acter/word embeddings for IE tasks because it is
easy to learn and usually effective enough to elim-
inate the need of explicit linguistic feature design.
However, training general models like DNN

usually requires a massive amount of clean an-
notated data, which is often not available for
low-resource languages and difficult to obtain
during emergent settings (Zhang et al., 2016a).
In order to compensate this data requirement,
various automatic annotation generation methods
have been proposed, including knowledge base
driven distant supervision (An et al., 2003; Mintz
et al., 2009; Ren et al., 2015), cross-lingual pro-
jection (Li et al., 2012; Kim et al., 2012; Che
et al., 2013; Wang et al., 2013; Wang and Man-
ning, 2014; Zhang et al., 2016b), and lever-
aging naturally existing noisy annotations such
as Wikipedia markups (Nothman et al., 2008;
Dakka and Cucerzan, 2008; Ringland et al., 2009;
Alotaibi and Lee, 2012; Nothman et al., 2012; Al-
thobaiti et al., 2014; Pan et al., 2017). Anno-
tations produced from these methods are usually
very noisy, while DNN is sensitive to noise just
like many other machine learning methods. Our
name tagging experiment shows that the F-score of
the same DNN model learned from noisy training
data is 20-30% lower than that trained from clean
data. One major reason is that most of these meth-
ods solely rely on implicit embedding features in
order to be (almost) language-independent.
Moreover, certain types of linguistic properties
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are difficult to be captured by embeddings, such
as: (1) language-specific structures. For exam-
ple, the Subject (S), Verb (V) and Object (O) or-
ders in Tagalog are VS, VO, and VSO, which indi-
cates that the word at the beginning of a sentence
is usually a verb and thus unlikely to be a name.
(2) culture-specific knowledge. For example, a
Uyghur person’s last name is the same as his/her
father’s first name.
On an almost parallel research avenue, linguists

and domain experts have created a wide variety
of multi-lingual resources, such as World Atlas of
Linguistic Structure (WALS) (Dryer and Haspel-
math, 2013b), Central Intelligence Agency (CIA)
Names, grammar books, and survival guides. Such
resources have been largely ignored by the main-
stream statistical NLP research, because they were
not specifically designed for NLP purpose at the
first place and they are often far from complete.
Thus they are not immediately actionable - con-
verted into features, rules or patterns for a target
NLP application. In this paper we design various
methods to convert them into machine readable
features for a new DNN architecture. Very little
work has used non-traditional resourcesmentioned
in this paper for practical downstream NLP appli-
cations. Limited work only used them for resource
building (e.g., (Sarma et al., 2012)) or studying
word order typology (Ostling, 2015). To the best
of our knowledge, our work is the first to encode
them as actionable knowledge for IE.
We aim to answer the following research ques-

tions: How to effectively acquire linguistic knowl-
edge from non-traditional resources, and represent
them for computational models? How much fur-
ther gain can be obtained in addition to traditional
resources?

2 Approach Overview

2.1 A Typical Baseline DNN Model

A typical supervised name tagger is presented
in (Lample et al., 2016), consisted of Bi-directional
Long Short-Term Memory networks (Bi-LSTM)
and CRFs. We can consider name tagging as a
sequence labeling problem, to tag each token in a
sentence as the Beginning (B), Inside (I) or Outside
(O) of a name mention with a certain type. In this
paper we classify names into three types: person
(PER), organization (ORG) and location (LOC).
Predicting the tag for each token needs evidence
from both of its previous context and future context

Languages # of Documents # of Names # of Sentences

Train Test Train Test Train Test
Hausa 137 100 3,414 1,320 3,156 1,130
Turkish 128 100 2,341 2,173 1,973 2,119
Uzbek 127 100 3,577 3,137 3,588 3,037

Table 1: Data Statistics.

in the entire sentence. Bi-LSTM networks (Graves
et al., 2013) meet this need by processing each se-
quence in both directions with two separate hid-
den layers, which are then fed into the same out-
put layer. Moreover, there are strong classification
dependencies among name tags in a sequence. For
example, “I-LOC” cannot follow “B-ORG”. CRFs
model, which is particularly good at jointly mod-
eling tagging decisions, can be built on top of the
Bi-LSTM networks.

2.2 Baseline’s Sensitiveness to Noise

In low-resource settings where few clean anno-
tations are available, we could try to automati-
cally generate some annotations to train the above
model. For instance, we can project automatic an-
notations from a high-resource language (HL) to a
low-resource language (LL) through parallel data.
Figure 1 shows an example of projecting English
automatic name annotations to Hausa through a
parallel sentence pair.
We are interested in studying how sensitive

DNN is to noise in such automatically generated
training data. For our experiments we use En-
glish as the HL and use three LLs with different
linguistic properties: Turkish, Uzbek and Hausa.
We evaluate our approaches using the ground-
truth name tagging annotations from the DARPA
LORELEI program 2. For fair comparison with
previous LORELEI work (Tsai et al., 2016; Zhang
et al., 2016a; Pan et al., 2017), we use the same
100 test documents. Table 1 shows detailed data
statistics.
We use 80% of the name annotated LL docu-

ments for training and 20% for development, and
parallel sentences to artificially create noisy train-
ing data as follows. We use S to denote the sen-
tences in LL and T to denote the sentences in HL.
We apply Stanford English name tagger (Manning
et al., 2014) on T and project English names onto
S, using the following measurements to determine
whether a candidate LL name string nl matches an
expected English name ne: (1) If the edit distance

2http://www.darpa.mil/program/low-resource-languages-
for-emergent-incidents
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Da take jawabi albarkacin bikin kaddamarwa, shugabar kungiyar [AU]ORG , [Nkosazana Dlamini-
Zuma]PER , ta bayyana jin dadinta kan wannan tallafi dake fitowa daga yankunan [Afrika]LOC daban 
daban domin yaki da annobar cutar Ebola a [yammacin Afrika]LOC. 

While speaking on the launch, the [AU]ORG president, [Nkosazana Dlamini-Zuma]PER, expressed her 
joy over the assistance coming from different parts of [Africa]LOC for the fight against Ebola 
virus in [West Africa]LOC.

English

Hausa

1 234

* Projection 1 is incorrect and results in a noisy instance in the automatically generated Hausa annotations. The correct name
mention is “kungiyar AU (Africa Union)” instead of “AU”.

Figure 1: Noisy Training Data Generation by Projecting English Automatic Name Annotations to Hausa.

between ne and nl is not greater than two. (2)
We check the pronunciations of ne and nl based
on Soundex (Odell, 1956), Metaphone (Philips,
1990) and NYSIIS (Taft, 1970) algorithms. We
consider two codes match if their edit distance is
not greater than two. (3) If ne and nl are aligned in
the parallel data by running GIZA++ word align-
ment tool (Och and Ney, 2003).
In this way we obtain an automatically gen-

erated noisy training data set Trainnoise. We
denote Trainclean as the ground truth which is
manually created by human annotators on set S.
We mix Trainnoise and Trainclean in differ-
ent proportions to obtain a training set Trainmix

on various noise levels. We define noise level
as 1 − fscore(Trainmix) where the f-score of
Trainmix is computed against Trainclean. For
example, when Trainmix is full of manually cre-
ated clean data, the noise level is 0; when we mix
half Trainnoise and half Trainclean of the Hausa
data, the f-score of Trainmix is 80.1%, and the
noise level is 19.9%.
To learn embeddings, we use 12,624 Hausa

documents from the LORELEI program, and use
288,444 Turkish documents and 128,763 Uzbek
documents from a June 2015 Wikipedia dump.
Figure 2 shows the performance of the baseline
tagger trained from Trainmix for three languages.
We can clearly see that the performance drops
rapidly as the training data includes more noise.

2.3 A New Improved Model

Wepropose to acquire non-traditional linguistic re-
sources and encode them as new actionable fea-
tures (Section 3). In Figure 3, we design three in-
tegration methods to incorporate explicit linguistic
features into Bi-LSTM networks: (1) concatenate
the linguistic features and word embeddings at the
input level, (2) concatenate the linguistic features
and the bidirectional encodings of each token be-
fore feeding them into the output layer that com-
putes the tag probability, and (3) use an additional
Bi-LSTM to consume the feature embeddings of

Turkish Uzbek Hausa
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Figure 2: Performance of baseline DNN Name
Taggers Trained from Data with Various Noise
Levels (The noise level is created by assigning
the proportion of Trainnoise in Trainmix as 0%,
25%, 50%, 75% and 100% respectively. )

each token and concatenate both Bi-LSTM encod-
ings of feature embeddings and word embeddings
before the output layer. We set the word input di-
mension to 100, word LSTM hidden layer dimen-
sion to 100, character input dimension to 50, char-
acter LSTM hidden layer dimension to 25, input
dropout rate to 0.5, and use stochastic gradient de-
scent with learning rate 0.01 for optimization.

3 Incorporating Non-traditional
Linguistic Knowledge

In this section we will describe the detailed meth-
ods to acquire and encode various types of non-
traditional resources. We call them as non-
traditional because they have been rarely used in
previous NLP research.

3.1 Basic Knowledge about the Language
Wikipedia Description. An English Wikipedia
page about a language usually provides us gen-
eral descriptions of the language. In particular, the
list of usable characters, gender indicators, capi-
talization information, transliteration and number
spelling rules are most useful for name tagging.
The list of usable characters for regular words in a
particular language can help us detect foreign bor-
row words, which are likely to be names. For ex-
ample, “th” usually does not appear at the begin-
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Figure 3: Three Integration Methods to Incorporate Explicit Linguistic Features into DNN.

ning of a Turkish word. Thus “Thomas Marek” is
likely to be a foreign name.
Grammar Book. From grammar books we

can also extract more language-specific contex-
tual words, prefixes, suffixes and stemming rules.
Name related lists contain: case suffix, prepo-
sition, postposition, ordinal number, definite ar-
ticle, negation, conjunction, pronoun, quantifier,
numeral, time, locative, question particle, demon-
strative, degree word, plural prefix/suffix, subor-
dinator, reduplication, possessive, situational and
epistemic markers. Table 2 shows some examples
of name related suffix features.

3.2 Linguistic Structure
Recently linguists have made great efforts at build-
ing linguistic knowledge bases for thousands of
languages in the world. Two such examples are
WALS database (Dryer and Haspelmath, 2013a)
and Syntactic Structures of the World’s Lan-
guages 3. These databases classify languages ac-
cording to a large number of topological properties
(phonological, lexical and grammatical). For ex-
ample, WALS consists of 141maps with accompa-
nying text on diverse properties, gathered from de-
scriptive materials (such as reference grammars).
Altogether there are 2,676 languages and more
than 58,000 data points; each data point is a (lan-
guage, feature, feature value) tuple that specifies
the value of the feature in a particular language.
(e.g., (English, canonical word order, SVO)). In
total we extract 188 linguistic properties related
to name tagging, belonging to 20 Phonology, 13
Lexicon, 12 Morphology, 29 Nominal, 8 Nomi-
nal Syntax, 17 Verbal Categories, 56 Word Order,

3http://sswl.railsplayground.net/

26 Simple Clauses, and 7 Complex Sentences cat-
egories respectively. Table 3 shows some exam-
ples.

3.3 Multi-lingual Dictionaries
CIA Names. We utilize the CIA Name Files 4,
which include biographical sketches, memoran-
dums, telegrams, legislative records, legal docu-
ments, statements, and other records. We used the
version cleaned up by Lawson et al. 5 that includes
documents about names in 41 languages. Besides,
person names in certain regions often include some
common syllable patterns. Table 4 presents some
examples. In languages such as Turkish, Uzbek
and Uyghur, a person’s last name inherits from his
or her father’s first name. In Uyghur, there are no
additional suffixes. In Uzbek, additional suffixes
include “-ov”, “-ev”, “-yev”, “-eva” and “-yeva”.
In Turkish, a male’s first name often ends with a
consonant, and his last name consists of his father’s
first name and a suffix “-oğlu (son of)”. We exploit
this kind of knowledge to improve gazetteer match
and name boundary identification.
Unicode CLDR. Unicode Common Locale

Data Repository (CLDR) 6 is a data collection for
194 languages, maintained by the Unicode Con-
sortium to support software internationalization
and localization. We extract bi-lingual location
gazetteers, and exploit patterns and lists of curren-
cies, months, weekdays, day periods and time units
to remove them from name candidates because
they share some features with names (e.g., capi-
talization, “Ocak” in Turkish means “January”).

4https://www.archives.gov/iwg/declassified-records/rg-
263-cia-records

5https://www.researchgate.net/profile/Edwin_Lawson
6http://cldr.unicode.org/
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Languages Features Description Examples

Uzbek Name -ni (accusative), -ning (possessive),
-da (locative), -dan (ablative)

Turkiyaning (of Turkey), Turkiyada (in Turkey),
Turkiyaga (to Turkey), Turkiyadan (from Turkey).

Non-Name Suffix -roq indicates adjectives qoraroq (darker)
Suffixes -lar/-ler indicate plurals qizlar (daughters)

Name

Foreign namewith >1 tokens and an
adjective marker

New York-i (from New York)

Most names with adjective or verbal
suffix are lowercased

Balzac + -os⇒ balzacos

Hungarian Possession relation Péter-ék (Peter and his group), Péter-é (that of Peter)
Affixes associated with names Sartre-nak (to Sartre), Bordeaux-ban (in Bordeaux),

Smith-ért (for Smith)
Non-Name Non-Name POS tag adjectives (-tlen: “-less”), verbs tense (meg-

:“completed”), conjunctions (-ért: “because of”)
Complete inflectional for nominals karoknak (for arms)→ karok (arms)→ kar (arm)

Uyghur Name Animacy suffixes ning, ni, luq, and lik
Geopolitical or location suffixes ke, ge, qa, gha, te, de, ta, da, tin, din, tiki, diki,

kiche, giche, qiche, and ghiche.
Turkish Name Postpositions karaköyde (in Karaköy)

Table 2: Name-related Knowledge Summarized from Grammar Books.

Languages Categories Description Name Related Characteristics
Tagalog Subject, Verb,

Object Order
VS, VO, VSO the word at the beginning of a

sentence is unlikely to be a name
Turkish Negation Suffix -me at the root of a verb indicates negations not a name
Bengali Animacy -ta is a case that indicates inanimacy
Thai Nested Name

Structure
Delimiter between modifier and head, [ORG
กระทรวงต่างประเทศ] ของ[LOC อินโดนีเซีย] ([ORG
Foreign Ministry ] of [LOC Indonesia])

Name boundary

Tamil Conjunction
Structure

Name1-yum Name2-yum (Name1 and Name2) Name type consistency

Table 3: Name-related Knowledge Extracted from WALS.

Languages Frequent Syllable Patterns Examples
Slavic Suffixes: -ov, -ev -ova, -eva; -ovich, -ich, -enko, -ko, -

chuk, -yuk, -ak, -chenko, -skiy, -ski, -vych, -vich
Karimov, Yuriy Yarov, Abdulaziz Komilov,
Yamonkulov Yaxshiboyevich, Shevchenko

Arabic Prefixes: al-, Ahl, Abdul-, Abdu- Abdul Khaliq, Abdul Latif, Abdul Maajid
Suffixes: -allah, -ullah Daifallah, Dhikrullah, Faizullah, Fathallah

Uzbek Suffixes: -ov, -ova, -ev -yev, -eva, -yeva; -ovich, -evich,
-ich

Karim Ahmedov, Ahmed Aliev, Zulfiya
Karimova, Karmm Sharafovich Rashidov

Table 4: Common Syllable Patterns Extracted from CIA Names.

Wiktionary. Wiktionary 7 is a web-based col-
laborative project to create an English content dic-
tionary of all words in many languages. We col-
lected dictionaries in 1,247 languages.
Panlex. Panlex 8 (Baldwin et al., 2010;

Kamholz et al., 2014) database contains 1.1 bil-
lion pairwise translations among 21 million ex-
pressions in about 10,000 language varieties.
Multilingual WordNet. We leverage three ver-

sions of multi-lingual WordNet: (1) Open Mul-
tilingual WordNet (Bond and Paik, 2012) which
links words in many languages to English Word-
Net based onWiktionary and CLDR; (2) Universal
WordNet (de Melo and Weikum, 2019) which au-

7https://en.wiktionary.org
8http://panlex.org/

tomatically extends English WordNet with around
1.5 million meaning links for 800,000 words in
over 200 languages, based on WordNets, transla-
tion dictionaries and parallel corpora; and (3) Ety-
mological WordNet (de Melo and Weikum, 2010;
de Melo, 2014) that provides information about
how words in various languages are etymologi-
cally related based on Wiktionary.

Phrase Pairs Mined from Wikipedia. From
Wikipedia we extracted all pairs of titles that are
connected by cross-lingual links. And we ex-
tracted more phrase translation pairs using paren-
thesis patterns from the beginning sentences of
Wikipedia pages. For example, from the first
sentence of the English Wikipedia page about
Ürümqi: “Ürümqi (ئۈرۈمچى) is the capital of the
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Xinjiang Uyghur Autonomous Region of the Peo-
ple’s Republic of China in Northwest China,” we
can extract an Uyghur-English name translation
pair of ”ئۈرۈمچى“ and “Ürümqi”. Moreover, we re-
trieved relatedWikipedia articles, and mined com-
mon names in many languages and regions.
GeoNames. We exploit the geo-political

and location entities in multilingual GeoNames
database 9. It contains over 10 million geographi-
cal names and over 9 million unique features of the
following properties: id, name, asciiname, alter-
nate names, latitude, longitude, feature class, fea-
ture code, country code, administrative code, pop-
ulation, elevation and time zone.
JRC Names. Finally we include the JRC

Names (Steinberger et al., 20011), a large list of
person and organization names (about 205,000 en-
tries) in over 20 different scripts. Some entries in-
clude additional information such as frequency, ti-
tle and date ranges.
Grounding to KB and Typing. For names that

we are able to acquire English translations, we fur-
ther ground (“wikify”) them to an external knowl-
edge base (KB, DBpedia in our work) if they are
linkable. We use two measures (Pan et al., 2015)
for linking: (1) Popularity: we prefer popular en-
tities in the KB; (2) Coherence: we link a pair of
a foreign name and its English translation simulta-
neously and favor their candidate entities that are
also strongly connected in the KB through a di-
rect cross-lingual page link, a common neighbor,
or sharing similar properties. After linking, we
assign an entity type to each pair based on their
properties in the KB (e.g., an entity with a birth-
date and a death-date is likely to be a person). The
typing component is a Maximum Entropy model
learned from the Abstract Meaning Representa-
tion (Banarescu et al., 2013) corpus that includes
both entity type and Wikipedia link for each entity
mention, using KB properties as features.

3.4 Phrase Books
Finallywe exploit phrase books that include phrase
translations between many languages and English.
Language Survival Kits. FAMiliarization 10

offers language survival kits (LSKs) for 100 lan-
guages, each of which has up to 10 kits of different
topics. LSK encodes phrases, translations, and ro-
manizations and is available for 55 languages. FA-
Miliarization also provides translations of name-

9http://www.geonames.org/
10http://fieldsupport.dliflc.edu/

Language Gazetteer Title Non-Name Suffix

PER LOC ORG
Hausa 1,174 5,123 199 42 391 21
Turkish 2,819 7,271 262 231 411 181
Uzbek 1,771 5,331 103 178 271 209

Table 5: NameRelated List Statistics (# of entries).

related words and phrases.
For each language, we first extracted 2, 000 to

3, 000 parallel sentence/phrase pairs. Then we
ran GIZA++ over these pairs and combined struc-
ture rules from WALS to obtain word translation
pairs. We also extracted translations of the fol-
lowing English lists: cardinal number, currency,
disease, location affixes, title, nationalities, topical
keywords, organization suffixes, temporal words,
locations and people, and stop words which are un-
likely to be names.
Elicitation Corpus. An elicitation corpus is a

controlled corpus translated by a bilingual consul-
tant in order to produce high quality word aligned
sentence pairs. During the elicitation process, the
user will translate a subset of these sentences that is
dynamically determined to be sufficient for learn-
ing the desired grammar rules. We extracted word
and phrase translation pairs from the Elicitation
corpus developed by CMU (Probst et al., 2001; Al-
varez et al., 2005) 11 for the DARPA LORELEI
which contains pairs of sentences in a low-resource
language and English.

3.5 Encoding Linguistic Features
Wemerged the linguistic resources collected above
into three types of features: (1) name gazetteers;
(2) list of suffixes and contextual words (e.g., ti-
tles) that indicate names; and (3) list of words that
indicate non-names (e.g., time expressions). Ul-
timately we obtained 30 explicit linguistic feature
categories. Table 5 shows the statistics of the en-
coded features.
For each token wi in a sentence, we check

whetherwi, its previous tokenwi−1 and its next to-
ken wi+1 exist in these lists, and concatenate them
into an initial feature vector for wi. For any re-
sources (e.g., lexicons and phrase books) that con-
tain English translations, we also use them to trans-
late each wi, and check whether its translation is
capitalized or exists in English name tagging re-
sources (contextual words, gazetteers), whether its
contexts match any English patterns as described

11http://www.cs.cmu.edu/afs/cs.cmu.edu/project/cmt-
40/Nice/Elicitation/Elicitation_Corpus-LDC/
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in (Zhang et al., 2016a).

4 Experiments

Using the data sets mentioned in Section 2.2, we
conduct experiments for three languages: Hausa,
Turkish and Uzbek.

4.1 Overall Performance
Table 6 compares the results of three feature inte-
gration methods described in Section 2.3 and Fig-
ure 3. We can see that the third integration method
(Integration 3) consistently outperforms the others
for all three languages.

Models Hausa Turkish Uzbek
Bi-LSTMs 65.7 65.9 64.1
+ Integration 1 71.1 71.8 67.4
+ Integration 2 71.5 73.1 67.2
+ Integration 3 72.2 74.3 68.4

Table 6: Feature IntegrationMethods Comparison.

We compare the following models: a baseline
model that uses only character and word embed-
ding features, a model adding traditional linguistic
features as described in (Zhang et al., 2016a), and
a model further adding non-traditional linguistic
features using the third integration method. Fig-
ure 4 presents the results. Clearly models trained
with linguistic features substantially outperform
the baseline models on all noise levels for all lan-
guages. As the noise level increases, the per-
formance of the baseline model drops drastically
while the model trained with linguistic features
successfully curbs the downward trend and forms a
relatively flat curve at last. Adding non-traditional
linguistic features provides further gains in almost
all settings. Notably for Turkish, adding linguis-
tic features and using 100% automatically gener-
ated noisy training data, our approach achieves
the same performance as the baseline model using
75% manually created clean data and 25% auto-
matically created noisy data. In other words, ex-
plicit linguistic knowledge has significantly saved
annotation cost (2,367 sentences). Our results
without using any manually labeled training data
aremuch better than state-of-the-art reported in our
previous work (Zhang et al., 2016a) which used
most traditional resources mentioned in this paper
and (Pan et al., 2017) which derived noisy training
data from Wikipedia markups. On the same test
sets we achieved 5.5% higher F-score for Hausa
than (Zhang et al., 2016a), 27.7% higher F-score

Category Hausa TurkishUzbek
A Embedding feature 45.8 39.5 43.3
B (A)+Pattern mining and projection 46.7 40.9 45.4
C (B)+Basic knowledge and linguis-
tic structure

50.4 53.3 52.4

D (C)+Dictionaries 52.0 57.7 56.1
E (D)+Phrase books 53.8 60.0 57.8

Table 7: Contributions of Various Categories of
Linguistic Knowledge (F-score (%)).

for Turkish and 13.6% higher F-score for Uzbek
than (Pan et al., 2017).

4.2 Detailed Analysis

Table 7 presents the contribution of each linguistic
feature category when using 100% automatically
created training data. Figure 5 shows some exam-
ples of errors corrected by each category. Some
remaining challenges pertain to the lack of contex-
tual clues for identifying the boundaries of long or-
ganizations, especially when they include nested
or conjunction structures (e.g., “Uluslararası ve
Stratejik Araştırmalar Merkezi’nde (International
and Strategic Research Center)” in Turkish). The
performance of organization tagging is 16%-31%
lower than that of persons and locations. We also
observe a “popularity bias” challenge, especially
because we don’t have enough resources and tools
to perform a deep understanding of the contexts.
For example, when a journal name “NewEngland”
appears in Hausa texts, all of its mentions are mis-
takenly labeled as location instead of organization,
because the dominant type label of “NewEngland”
is location in all of our resources.

5 Related Work

The major novel contribution of this paper is to
systematically explore many non-traditional lin-
guistic resources which have been largely ne-
glected by the mainstream NLP community. Some
previous efforts used WALS to study the typologi-
cal relations across languages (Rama and Prasanth,
2012; O’Horan et al., 2016; Yamauchi and Mu-
rawaki, 2016) but very little work used it for prac-
tical NLP applications. Most DNNmethods solely
relied on character embeddings and word embed-
dings as features for name tagging (e.g., (Huang
et al., 2015; Lample et al., 2016; Chiu and Nichols,
2016)). (Shimaoka et al., 2017) used hand-crafted
features to improve the performance of DNN
on fine-grained entity typing. (Chiu and Nichols,
2016) attempted to incorporate gazetteers as ex-
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Figure 4: Name Tagging Performance.
Pattern mining and projection
Turkish Quinnipiac Üniversitesi, CBS haber kanalı ve New York Times gazetesi tarafından yapılan seçim anketlerinde… 
Model A
Model B
Translation Polls of Quinnipiac University, CBS news channel, and the New York Times …
Basic knowledge and linguistic structure
Turkish Ankara , ve muğladan yüzyüze satılacaktır …
Model B
Model C                                               Model C uses morphological suffix “-dan” (from/via) to identify the name.
Translation It would be sold personally from Ankara and Muğla...
Dictionaries
Hausa An samu dukkan gawawwakin wadanda suka mutu sakamakon balaʼin zabtarewar kasa a lardin Yunnan.
Model C
Model D      Model D identifies the location with location designator “lardin (province)” in the dictionary
Translation It is found all the bodies of those who died in the disastrous landslides in Yunnan Province.
Phrase books
Uzbek AQShning Xonobod bazasi uchun to’lov masalasi tortishuvga sabab bo’lmoqda.
Model D                                                                Model E correctly classifies the mention as ORG since “Xonobod bazasi (Khanabad base)” is in
Model E                                                                the phrase book.
Translation US-Khanabad base to debate the issue of payment.

ORG LOC Missing

Model B corrects the boundary of “CBS harber kanalı” by 
using the pattern: [<Namei> …], <Namen-i> <single term> 
<Namen>, where all names have the same type.

Figure 5: Examples of Corrections Made by Each Category of Linguistic Knowledge.

plicit linguistic features, and found that gazetteers
are not very effective when they have a low cov-
erage of name variants or when they contain many
ambiguous entries. We addressed this challenge by
integrating gazetteers gathered from a much wider
range of sources.

Some recent studies (Zhang et al., 2016a; Lit-
tell et al., 2016a; Tsai et al., 2016; Pan et al., 2017)
under the DARPA LORELEI program focused on
name tagging for low-resource languages. Most
noise tolerant supervised learning algorithms (By-
lander, 1994; Dredze et al., 2008; Crammer et al.,
2009; Kalapanidas et al., 2003; Scott et al., 2013)
have been applied for improving image classifi-
cation (Mnih and Hinton, 2012; Natarajan et al.,
2013; Sukhbaatar et al., 2014; Xiao et al., 2015).
Coupling our idea with these algorithms is also
likely to yield further improvement.

6 Conclusions and Future Work

Using name tagging as a case study, we demon-
strated the power of acquiring and encoding
non-traditional linguistic resources. Experiments
showed that they can significantly improve the
quality of supervised models like DNNs and make
them much more robust to noise in automatically
created training data. Recent trend of DNN re-
search in the NLP community boasts getting rid
of explicit feature design. Our work argues that
data-driven implicit knowledge like word embed-
dings cannot cover all linguistic phenomena in
low-resource settings. We propose to embrace the
readily available universal resources for many lan-
guages, and proved this process of making them
actionable is not costly and does not require a sys-
tem developer to “know” the language. Many
more non-traditional linguistic resources remain to
explore in the future, including Lexvo (de Melo,
2015), Multilingual Entity Taxonomy (de Melo
and Weikum, 2010), EZGlot, URIEL knowledge
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base (Littell et al., 2016b), travel phrase books
and yellow phone books. We will also investigate
whether these linguistic resources can make DNN
more robust to other factors such as data size and
topical relatedness.
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Abstract

The recent technological shift in machine
translation from statistical machine trans-
lation (SMT) to neural machine transla-
tion (NMT) raises the question of the
strengths and weaknesses of NMT. In this
paper, we present an analysis of NMT
and SMT systems’ outputs from narrow
domain English-Latvian MT systems that
were trained on a rather small amount of
data. We analyze post-edits produced by
professional translators and manually an-
notated errors in these outputs. Analysis
of post-edits allowed us to conclude that
both approaches are comparably success-
ful, allowing for an increase in transla-
tors’ productivity, with the NMT system
showing slightly worse results. Through
the analysis of annotated errors, we found
that NMT translations are more fluent than
SMT translations. However, errors re-
lated to accuracy, especially, mistransla-
tion and omission errors, occur more often
in NMT outputs. The word form errors,
that characterize the morphological rich-
ness of Latvian, are frequent for both sys-
tems, but slightly fewer in NMT outputs.

1 Introduction

For many years, the central problem in machine
translation (MT) has been the quality. MT qual-
ity has been recognized as a complicated research
question when translation is performed into a mor-
phologically rich (and also under-resourced) lan-
guage with a relatively free word order, e.g., Bul-
garian, Croatian, Estonian, Finnish, Greek or Lat-
vian. Possible solutions for widely used statistical
machine translation have been studied for many
years (e.g., Koehn and Hoang 2007; Tamchyna

and Bojar 2013; Burlot and Yvon 2015).
Today machine translation is experiencing a

paradigm shift from (phrase-based) statistical ma-
chine translation (SMT) to neural machine trans-
lation (NMT). The first results obtained in recent
years are promising, as it can be seen from the
results of WMT 2016 (Bojar et al., 2016) and
WMT 2017 (Bojar et al., 2017).

As NMT becomes more and more popular, the
question of what can we expect from NMT in
terms of quality becomes very important. Recent
analysis of English to German SMT and NMT
outputs of manual transcripts of short speeches
showed that NMT can decrease the post-editing
effort (Bentivogli et al., 2016). A comparison of
NMT and SMT systems for nine language direc-
tions (English to and from Czech, German, Ro-
manian, Russian, and English to Finnish) on news
stories made by Toral and Sánchez-Cartagena
(2017) showed that translations produced by NMT
systems are more fluent and more accurate in
terms of word order compared to translations pro-
duced by SMT systems. By analyzing of man-
ually error-annotated outputs of generic English-
Croatian MT systems, Klubička et al. (2017)
found that NMT handles all types of agreement
better than SMT (including factored models).

In this paper, we delve further into analyzing
the strengths and weaknesses of NMT from the
perspective of translation quality and the needs of
the localization industry. We analyze translations
of good quality domain-specific (medicine related)
English-Latvian SMT and NMT systems that were
trained on a rather small (ca. 325K sentences) data
set. The target language - Latvian - is a morpho-
logically rich under-resourced language (about 1.5
million speakers). As it is a synthetically inflected
language, words change their form according to
their grammatical function. In Latvian only half
of the word endings are unambiguous, while for
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the rest, multiple base forms may be derived from
the inflected form (Skadiņa et al., 2012).

We analyze outputs of NMT and SMT systems
in a post-editing (PE) scenario. Data on PE time,
keystrokes, and typical operations were collected
during the PE process. Analysis of these data al-
lowed us to conclude that both approaches (SMT
and NMT) are comparably successful allowing
to increase translator productivity, with the NMT
system showing slightly worse results. We be-
lieve that the reason translations from the SMT
system are better in our case, is that from the small
amount of data, SMT learns better terminology
and phrases which are specific for the particular
narrow domain. The situation could be different
for broad domain MT systems, as it can be seen
from recent WMT 2017 English-Latvian news do-
main results, where NMT and hybrid approaches
were better (Bojar et al., 2017; Pinnis et al., 2017).

In addition, for a small sub-set of the MT sys-
tem translations, manual error annotation was per-
formed. This allowed us to identify the main
error categories for each MT system. Through
analysis of annotated errors, we found that NMT
translations are more fluent than SMT translations,
NMT produces significantly fewer typography er-
rors than SMT. At the same time errors related to
accuracy, especially, mistranslation and omission
errors, occur more often in NMT outputs. The
word form errors, which characterize the morpho-
logical richness of Latvian, are slightly fewer in
NMT outputs.

2 Related work

Questions on how to evaluate the quality and use-
fulness of machine translation have been stud-
ied for several decades. For localization industry
needs, MT quality and PE productivity have been
analyzed by Flournoy and Duran (2009); Groves
and Schmidtke (2009); Plitt and Masselot (2010);
Skadiņš et al. (2011); Pinnis et al. (2016) and
others. These studies report significant produc-
tivity increase when good quality SMT systems
are used. Recently, for English-Spanish Sanchez-
Torron and Koehn (2016) reported that ”for 1-
point increase in BLEU, there is a PE time de-
crease of 0.16 seconds per word, about 3-4%”.

Several studies have recently compared SMT
and NMT systems. Bentivogli et al. (2016) con-
ducted a detailed analysis of SMT and NMT
output for the English-German language pair on

translations of manual transcripts of TED talks 1.
They found that NMT decreases post-editing ef-
fort, but degrades faster than SMT for longer sen-
tences. They also found that NMT output con-
tains fewer morphology errors, lexical errors and
substantially fewer word order errors. Toral and
Sánchez-Cartagena (2017) compared NMT and
SMT systems submitted to WMT16 news trans-
lation task for nine translation directions (English
to and from Czech, German, Romanian, Russian,
and English to Finnish). The authors found that
the translations produced by NMT systems were
more fluent and more accurate in terms of word
order compared to translations produced by SMT
systems. They observed that NMT systems are
also more accurate at producing inflected forms,
but they perform poorly when translating very
long sentences.

However, when Farajian et al. (2017) com-
pared the performance of generic English-French
NMT and SMT systems, that were trained on a
generic parallel corpus composed of data from dif-
ferent domains, they found that on such multi-
domain data SMT outperforms its neural coun-
terpart. Moreover, Castilho et al. (2017) in their
study, in which human evaluators compared NMT
and SMT output for a range of language pairs, re-
ported mixed results from the human evaluation.
Similarly to the previous authors, they reported an
increase in fluency, but inconsistent results for ad-
equacy (the neural model showed a greater num-
ber of errors of omission, addition, and mistrans-
lation) for NMT when compared to SMT. They
argue that, although ”NMT shows significant im-
provements for some language pairs and specific
domains, there is still much room for research and
improvement before broad generalizations can be
made.”

Analysis of NMT and SMT errors was re-
cently made by Klubička et al. (2017) for English-
Croatian MT systems. The authors analyzed man-
ual error annotations of SMT and NMT system
translations in the news domain and concluded
that the NMT system reduces the errors produced
by the SMT system by 54%.

3 Data and MT Systems

The SMT and NMT systems were trained on
the parallel corpus from the European Medicines
Agency (EMEA), which is a part of the OPUS cor-

1http://www.ted.com/
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Corpus Sentences Sentences
before filtering after filtering

Parallel 378,869 325,332
Monolingual 378,869 332,652

Table 1: Statistics of the training corpora

pus (Tiedemann, 2009), and the latest documents
from the EMEA website (years 2009-2014) 2.

Prior to the training of the MT systems, we pre-
processed the training data using tools for corpora
cleaning, filtering, non-translatable token (e.g.,
URL, e-mail address, different code, etc.) identi-
fication, tokenization, and true-casing. The statis-
tics of the training corpora before and after pre-
processing are given in Table 1.

3.1 Statistical Machine Translation System

The SMT system is a standard phrase-based sys-
tem that was trained on the Tilde MT platform
(Vasiļjevs et al., 2012) with Moses (Koehn et al.,
2007). The system features a 7-gram translation
model and a 5-gram language model. The lan-
guage model was trained with KenLM (Heafield,
2011). The system was tuned with MERT
(Bertoldi et al., 2009) using a held-out set of 2,000
sentence pairs.

3.2 Neural Machine Translation System

We used the sub-word neural machine translation
toolkit Nematus (Sennrich et al., 2017) for train-
ing the NMT system. The toolkit allows train-
ing attention-based encoder-decoder models with
gated recurrent units in the recurrent layers. For
word splitting in sub-word units, we use the byte
pair encoding tools from the subword-nmt toolkit
(Sennrich et al., 2015). The NMT system was
trained using a vocabulary of 40,000 word parts
(39,500 for byte pair encoding), a projection (em-
bedding) layer of 500 dimensions, recurrent units
of 1024 dimensions, a batch size of 20 and dropout
enabled. All other parameters were set to the de-
fault parameters as used by the developers of Ne-
matus for their WMT 2016 submissions (Sennrich
et al., 2016).

3.3 MT System Evaluation

SMT and NMT systems were evaluated on a held-
out set of 1000 randomly selected sentence pairs.

2http://www.ema.europa.eu/

System BLEU NIST ChrF2
SMT 46.57±1.46 9.45±0.18 0.7586
NMT 38.44±1.62 8.63±0.15 0.7065

Table 2: Automatic evaluation results

Figure 1: Human comparative evaluation results
for SMT and NMT systems

The automatic evaluation results are given in Ta-
ble 2. The results show that the SMT system
achieves better results than the NMT system. This
could be explained by the relatively small size of
the parallel corpus and a very narrow domain, i.e.,
from the small amount of data, SMT learns better
terminology and phrases which are specific for the
particular narrow domain.

When translation is performed into a morpho-
logically rich language, such as Latvian, automatic
metrics (e.g. BLEU score) are not always good in-
dicators of translation quality. Table 3 illustrates a
case, where both translations have the same qual-
ity, but because of different word order the SMT
translation received 41.38 BLEU points, while the
NMT translation - only 24.42 points. To validate
the automatic evaluation results, we performed a
small blind comparative evaluation task. The task
was performed by 5 professional translators who
evaluated 198 segments in total. The results of the
comparative evaluation show that the translations
of the SMT system are preferred more often by
evaluators than the translations of the NMT system
(see Figure 1). However, the difference is not sta-
tistically significant according to the methodology
by Skadiņš et al. (2010). Therefore, both systems
were further used in the post-editing and error an-
notation experiments.

4 What Can Be Learned from Post-edits?

4.1 Post-editing process

For post-editing, we compiled a list of 22,500 seg-
ments (360,000 words) from EMEA documents.
Then, we split the list into documents consisting of
100 segments so that the original sequence of sen-
tences is preserved, and translated the documents
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Sentence BLEU Text
Source - Seek medical advice straight away if you develop a severe rash, itching or

shortness of breath or difficulty breathing.
Human 100.00 Nekavējoties meklējiet medicı̄nisku palı̄dzı̄bu , ja Jums parādās izsitumi ,

rodas nieze vai elpas trūkums , vai apgrūtināta elpošana .
SMT 41.38 Nekavējoties meklējiet medicı̄nisko palı̄dzı̄bu , ja Jums rodas smagi izsitumi ,

nieze vai elpas trūkums vai apgrūtināta elpošana .
NMT 24.42 Ja Jums rodas smagi izsitumi, nieze vai elpas trūkums vai apgrūtināta

elpošana , nekavējoties meklējiet medicı̄nisko palı̄dzı̄bu .

Table 3: Influence of word order on BLEU score for similar translations by SMT and NMT systems

with both MT systems.
At first, translators were asked to post-edit SMT

translations. Then, three months later, they were
asked to post-edit NMT translations. For the
NMT post-editing task, the documents were redis-
tributed to translators, to ensure that each trans-
lator has different set of documents in SMT and
NMT post-editing tasks.

We asked translators to post-edit translated seg-
ments with the post-editing tool PET (Aziz et al.
2012). It allowed us to track the time spent on
each segment and to log all keystrokes that the
translator performed while post-editing each seg-
ment. Translators were asked not to spend exces-
sive amounts of time on each segment because the
quality expectations were not ”human translation
quality”, but rather ”post-editing quality”.

To assist post-editing, translators were provided
with an automatically extracted in-domain term
collection that was integrated into PET and pro-
vided translation suggestions for known terms.

After post-editing each segment, translators
were asked to evaluate the quality of the MT trans-
lation, marking it as one of the following: ”near
perfect”, ”very good”, ”poor”, and ”very poor”. If
the translator did not apply any changes, the sys-
tem automatically assigned the highest quality rat-
ing - ”Unchanged”.

Five professional translators were involved in
the SMT post-editing task and seven in the NMT
post-editing task. Finally, we asked the translators
who participated in both tasks (4 in total) to trans-
late two documents without pre-translated seg-
ments in order to measure each translator’s pure
translation productivity.

4.2 Post-editing Results

Most of the translators involved in this experiment
post-edited 20 documents (in each post-editing

Doc. Segments Tokens
Translation 8 797 14,924
SMT 80 5,280 99,375
NMT 80 4,688 86,651
Total 168 10,765 200,950

Table 4: Statistics of post-edited data
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Figure 2: Distribution of rankings for MT seg-
ments

task). To perform a fair comparison between SMT
and NMT post-editing tasks, we limit our analysis
to the first 20 documents post-edited by each trans-
lator participating in both post-editing tasks. We
perform the analysis only on segments that were
not found in the MT system training data (approx-
imately 36% of segments were discarded). The
statistics of the post-edited data that are used for
the further analysis is given in Table 4.

We start the analysis by examining the MT
quality assessments produced by translators dur-
ing post-editing. The Figure 2 summarizes the dis-
tribution of rankings showing that the SMT system
produced a larger proportion of near perfect and
perfect translations than the NMT system - 50.2%
compared to just 39.3%.

The detailed logs of each translators work al-
lowed to measure the time spent on post-editing
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Figure 4: Segment count and editing time distri-
bution for different quality MT segments

in three distinct intervals: the amount of time that
elapsed between the appearance of an MT segment
and the first click, or ”reading time”; the amount
of time between the first edit and approval of the
segment, or ”editing time”; and the amount of time
spent between approval of the segment and com-
pletion of the quality assessment, referred to as
”assessment time”. The results of the log data
analysis in Figure 3 show that on average it takes
30% more time for translators to start editing SMT
translations. It is also obvious that editing of good,
very good and near perfect SMT translations re-
quires 16-62% more time than for NMT transla-
tions. However, the situation is opposite for poor
and very poor translations - it requires 3-25% more
time to post-edit NMT translations. This differ-
ence is more noticeable in Figure 4, which shows
that post-editing poor and very poor NMT transla-
tions (24% of all post-edited NMT translations) re-
quired more than half of the editing time (55.1%).
In comparison post-editing of poor SMT transla-
tions (16.8% of all post-edited SMT translations)
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Figure 5: Individual translator productivity (to-
kens translated/post-edited per hour) based on ac-
tually measured numbers
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Figure 6: Translation and post-editing produc-
tivity (tokens translated/post-edited per hour) for
segments with different length with linear trend-
lines

required just 34.4% of time.
In terms of productivity (see Figure 5), it is

evident that both tasks (SMT and NMT post-
editing) obtain higher productivity than pure trans-
lation. However, the productivity is higher for
post-editing SMT translations (104% compared to
94%).

When analyzing the effect of the length of
segments on productivity (tokens translated/post-
edited per hour), the results in Figure 6 showed
that there is an obvious decrease in post-editing
productivity for longer segments, with the NMT
post-editing productivity decreasing faster than for
SMT post-editing. It is interesting that there is al-
most no change in productivity when translating
without MT support.

The information on the time spent on each seg-
ment allows us to analyze the relationship be-
tween the post-editing productivity and the post-
editing effort that is expressed with the help of
the Human-targeted Translation Edit Rate (HTER;
Snover et al. 2006). Figure 7 depicts the aver-

377



0

1000

2000

3000

4000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pure translation SMT post-editing NMT post-editing

MT increases 

productivity

MT has a 

minimal effect 
on productivity

MT decreases 

productivity

Figure 7: Average productivity (tokens
translated/post-edited per hour; y axis) at different
MT suggestion quality thresholds (HTER; x axis)

age productivity for different MT translation qual-
ity intervals. It shows that we can identify aver-
age MT system quality thresholds, at which post-
editing becomes productive (HTER of 0.4 or less)
and at which it stops being productive (HTER of
0.7 or higher). The average HTER scores of the
SMT and NMT systems are 0.22 and 0.31 respec-
tively. The figure also shows that there is little
difference between SMT and NMT post-editing,
with the NMT post-editing being faster at individ-
ual quality levels. Still, because the NMT system
produced more poor translations, the overall post-
editing productivity is higher for the SMT post-
editing task.

To validate, whether the post-edits are of good
quality, we performed quality assessment of the
post-edits according to the LISA Quality Assur-
ance model3. The quality assessment was per-
formed by professional editors from our localiza-
tion department. The results in Figure 8 show that
even though the task for translators was to perform
light post-editing, the quality of the post-edited
translations is rated as excellent (i.e., the average
error score for both SMT and NMT post-edits is
below 10 per 1000 words).

5 MT Error Annotation

The aim of the error annotation task was to iden-
tify common and specific errors for both MT ar-
chitectures and their influence on the overall qual-
ity of MT output.

5.1 Error Annotation Task
For error annotation (EA), 1800 English segments
and their translations into Latvian by SMT and

3LISA QA model: http://web.archive.org/web/
20080124014404/http://www.lisa.org/products/qamodel/
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Figure 8: Average error score (per 1000 words)

NMT systems were selected. Only translations
that were marked as ”Very good” during post-
editing for both MT systems were included. The
main reason for including only segments that have
good translations was the necessity to avoid wrong
annotations due to very bad input.

The error classification used, in this task,
is based on Multidimensional Quality Metrics
(MQM; Lommel et al. 2014). More specifically,
the subset that is defined by Burchardt and Lom-
mel (2014) was used. In this classification, errors
are divided into three top categories: accuracy,
fluency, and terminology. These top level cate-
gories then include more detailed categories from
the MQM issue type hierarchy.

The EA was performed four months after finish-
ing both post-editing tasks. Two translators, who
participated in both post-editing tasks, were in-
volved to ensure consistency between post-editing
and error annotation tasks and to avoid a situation
when translators annotate errors, which were not
requested to be corrected during post-editing.

The error annotation was performed in the
Translate54 platform. Before translators started
the error annotation, they were introduced to a
video tutorial, written guidelines, and the decision
process. During annotation, translators saw the
source segment, MT output, and post-edited MT
output.

Each translator annotated 1000 segments trans-
lated by the SMT system and the same 1000 seg-
ments translated by the NMT system. Although
inter-annotator agreement was not our main inter-
est, 200 translations from each system were anno-
tated by both translators.
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Error type SMT error annotation NMT error annotation
Count Total % Count Total %

Accuracy 39 1078 28% 50 1634 44%
Addition 282 282 7% 271 271 7%
Mistranslation 275 275 7% 683 683 19%
Omission 402 402 10% 568 568 15%
Untranslated 80 80 2% 62 62 2%
Fluency 234 2734 71% 213 2023 55%
Grammar 11 1329 35% 2 1006 27%
Function words 0 171 4% 0 136 4%
Extraneous 49 49 1% 49 49 1%
Incorrect 56 56 1% 55 55 1%
Missing 66 66 2% 32 32 1%
Word form 282 809 21% 266 714 19%
Part of speech 38 38 1% 35 35 1%
Agreement 429 429 11% 367 367 10%
Tense/aspect/mood 60 60 2% 46 46 1%
Word order 338 338 9% 154 154 4%

Spelling 326 326 8% 394 394 11%
Typography 835 835 22% 396 396 11%
Unintelligible 10 10 0% 14 14 0%
Terminology 35 35 1% 31 31 1%
All types 3847 100% 3688 100%

Table 5: Summary of error annotation task (count - number of errors for particular category; total - sum
of errors, including subcategories)

5.2 Observations from the Error Annotation
Task

The overall results of the error annotation task
are summarized in Table 5. Results show that al-
though the segments were ranked as good, most
of them contain more than one error per segment.
The total number of errors is higher for SMT.
There are twice as many errors related to fluency
(77%) as to accuracy (28%) for SMT, while for
NMT the fluency errors comprise 55% of errors,
but accuracy errors - 44%.

The complexity of Latvian morphology is a rea-
son why more than 1/4 of errors are grammar
errors (35% for SMT and 27% for NMT), from
which almost 1/5 of errors are word form errors
(SMT 21%, NMT - 19%). For instance, both
MT systems generate the wrong form for the word
”aerosols (spray)” when translating the sentence
”How to use the nasal spray”: the SMT system
generates the singular nominative form aerosols
(spray), while the NMT system generates singu-
lar genitive form aerosola (spray).

A significant difference between SMT and
4http://translate5-metashare.dfki.de

NMT outputs has been observed for three error
subcategories - typography (the subcategory of
fluency), mistranslation (the subcategory of accu-
racy) and omission (the subcategory of accuracy).

Typography errors are much more widespread
in SMT (21.70%) than in NMT (11%). Usu-
ally these are cases where spaces are wrongly
used (e.g. ”beta - 2 - agonisti” instead of ”beta-
2-agonisti” (beta-2-agonists), or wrong separa-
tors appear in numbers (e.g. ”3,644” instead of
”3644”, or ”0.5” instead of ”0,5”). These errors,
especially wrong separators, are not frequent in
NMT translations.

The Latvian language has a very rich,
morphology-based word-building potential
(words are usually built by adding affixes to the
stem). This feature resulted in a high number
(19%) of mistranslations from the NMT system.
Typical cases of mistranslation from the NMT
system include the incorrect translation of num-
bers (e.g., 30 July 2012 is translated as 2008.
gada 30. jūlijs), terms (e.g., drop (piliens) is
translated as injekcija (injection)) and named en-
tities (e.g., Naglazyme (Naglazyme) is translated
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as MabCampath).
Latvian also has a relatively free word order. In

the case of a formal, narrow domain, where usu-
ally the word order is strict, it has a rather small
influence even for the SMT system (9% of errors),
while in the case of more general systems this
could have much greater impact.

Errors of omission are much more frequent for
NMT (15%) than for SMT outputs (10%). NMT
also produces fewer (4%) word order errors than
SMT (9%), while SMT has fewer (8%) spelling
errors than NMT (11%).

5.3 Inter-annotator Agreement

Although the aim of this research was not to study
consistency between annotations, but to identify
and analyze the main error categories, 200 seg-
ments translated by SMT and NMT systems were
annotated by two translators. The reason for hav-
ing only two annotators was seriously debated in
the consortium of the QT21 project 5 by a number
of leading MT researchers. It was agreed that, to
show inconsistencies/issues, common understand-
ing of the annotation task, it is enough to have two
annotators. The inter-annotator agreement is more
like a sanity check for the fine-grained annotation
levels (whether annotators have common under-
standing or not). Table 6 presents the summary
on errors annotated in these segments.

Similarly to the whole error annotation task,
slightly more errors are found in the SMT system’s
output. Table 6 also confirms the finding from the
overall error annotation task, that NMT produces
less typography and word order errors than SMT,
but it produces more mistranslation and omission
errors.

There are several error categories where trans-
lators have different opinions about the appli-
cability of the particular categories. The table
clearly demonstrates that the most complicated
case was the identification of a correct subcategory
for wrong word form errors. The annotator A1
mostly assigned the top category ”word form” for
such errors, while the annotator A2 marked them
as agreement errors.

Another case of significant disagreement be-
tween annotators can be observed for fluency er-
rors in the NMT post-editing task. As there was no
consistent correspondence between an error cate-
gory assigned by annotator A2 for cases where an-

5http://www.qt21.eu/

Error type SMT NMT
A1 A2 A1 A2

Accuracy 2 0 0 10
Addition 42 37 32 23
Mistranslation 11 16 17 24
Omission 32 26 37 22
Untranslated 8 10 8 10
Fluency 3 0 33 4
Grammar 6 0 0 0
Function words 0 0 0 0
Extraneous 1 2 0 7
Incorrect 0 3 0 4
Missing 1 3 0 12

Word form 43 0 41 1
Part of speech 0 5 0 2
Agreement 4 41 8 46
Tense/aspect/mood 3 8 0 8

Word order 18 16 6 4
Spelling 43 44 58 56
Typography 84 71 43 42
Unintelligible 3 1 1 1
Terminology 3 0 0 5
All categories 307 283 284 281

Table 6: Error annotation summary for 200 seg-
ments annotated by 2 translators (A1 and A2)

notator A1 marked fluency errors, we asked anno-
tator A1 to explain her reasoning. She told us that
she marked fluency errors where a post-editor dur-
ing post-editing applied just stylistic corrections.
After inspecting these cases, we agreed with her
explanation.

For inter-annotator agreement, we calculated
free-marginal kappa under three different condi-
tions (see Table 7): perfect match analysis (i.e., by
taking the precise positions and (sub)categories of
errors into account), error count analysis (i.e., by
ignoring error positions), and error presence anal-
ysis (i.e., by just looking at whether both anno-
tators identified that a segment contains a certain
(sub)category of errors)6. The results show that
when taking positions into account, there is just
slight agreement between the annotators. This is
explained by the different understanding of where
errors need to be marked: one translator annotated
errors at the character level, while the other - at
the token level. For instance, in the case of wrong

6Free-marginal kappa is interpreted as: 0.01-0.20 = slight
agreement, 0.21-0.40 = fair agreement, 0.41-0.60 = moderate
agreement, 0.61-0.80 = substantial agreement, 0.81-1.00 =
almost perfect agreement (Landis and Koch, 1977)
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SMT NMT Both
Perfect match analysis
Instances 493 446 939
Agreed inst. 54 54 108
Kappa 0.065 0.077 0.071
Agreement % 11% 12% 12%
Error count analysis
Instances 401 418 819
Agreed inst. 189 147 336
Kappa 0.445 0.319 0.381
Agreement % 47% 35% 41%
Error presence analysis
Instances 355 388 743
Agreed inst. 172 133 305
Kappa 0.459 0.310 0.381
Agreement % 48% 34% 41%

Table 7: Inter-annotator agreement (free-marginal
kappa) on the 200 segment data sets

separators in numbers (e.g. 7.5), one annotator
marked only the punctuation mark, while the other
- the whole number. If we analyze the agreement
on just error count and error presence levels, we
see that the annotators reached moderate agree-
ment for the annotation of errors for the SMT sys-
tem’s translations, but only fair agreement for the
NMT system’s translations. This is mainly due to
the disagreement on how to annotate fluency er-
rors.

The inter-annotator agreement scores highlight
the necessity for improvements in the general
guidelines to mitigate the potential for disagree-
ment. That being said, the inter-annotator agree-
ment in the higher error levels (i.e., if we do not
split errors up in 4 levels of sub-categories, but an-
alyze only the top 2 levels) is good (over 0.6) for
SMT and moderate (over 0.4) for NMT.

6 Conclusion

In this paper, we presented an analysis of narrow
domain English-Latvian SMT and NMT systems,
that were trained on a rather small in-domain cor-
pus.

Translations of both systems were post-edited
by professional translators and ranked depending
on the complexity of editing. 83% of SMT trans-
lations and 73% of NMT translations were ranked
as perfect, near perfect or very good, thus con-
firming the fact that in-domain MT systems can
produce good quality translations even when the

amount of training data is limited. The analysis of
post-edited data allowed us to conclude that both
approaches allow for an increase in translator pro-
ductivity, with the NMT system showing slightly
worse results in general, but better for good quality
MT output. We believe that the lower results for
the NMT system are linked to the relatively small
size of the parallel corpus and the narrow domain.

By analysis of the manually annotated errors,
we found that the SMT system produced twice as
many errors related to fluency (77%) in compari-
son to those related to accuracy (28%), while for
the NMT system the fluency errors comprise 55%
of all errors, but accuracy errors - 44%. In terms
of error subcategories, widespread errors for both
systems are grammar errors (35% for SMT and
27% for NMT), especially wrong word form er-
rors (21% for SMT and 19% for NMT), indicat-
ing that morphologically rich languages, e.g., Lat-
vian, are problematic for both MT systems, while
improving with NMT. A significant difference be-
tween SMT and NMT outputs has been observed
for three error subcategories - typography (22%
for SMT and 11% for NMT), mistranslation (7%
for SMT and 19% for NMT) and omission (10%
for SMT and 15% for NMT).

The obtained results show that in the case of a
narrow domain, if MT systems are trained on a
small amount of data, the SMT system performs
better than the NMT system. The reason why the
SMT system in our case is better, is that from the
small amount of data, SMT learns better terminol-
ogy and phrases which are specific for the particu-
lar narrow domain. The situation differs for broad
domain MT systems, as it has been demonstrated
by recent WMT 2017 English-Latvian news do-
main results, where NMT and hybrid approaches
were better.
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Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Shujian Huang,
Matthias Huck, Philipp Koehn, Qun Liu, Varvara
Logacheva, Christof Monz, Matteo Negri, Matt
Post, Raphael Rubino, Lucia Specia, and Marco
Turchi. 2017. Findings of the 2017 conference
on machine translation (wmt17). In Proceedings
of the Second Conference on Machine Translation,
Volume 2: Shared Task Papers, pages 169–214,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Aljoscha Burchardt and Arle Lommel. 2014. Practical
guidelines for the use of mqm in scientific research
on translation quality. Preparation and Launch of a
Large-scale Action for Quality Translation Technol-
ogy, report, page 19.

Franck Burlot and François Yvon. 2015. Morphology-
aware alignments for translation to and from a syn-
thetic language. In Proc. IWSLT, pages 188–195.

Sheila Castilho, Joss Moorkens, Federico Gaspari,
Iacer Calixto, John Tinsley, and Andy Way. 2017.
Is neural machine translation the new state of the
art? The Prague Bulletin of Mathematical Linguis-
tics, 108(1):109–120.

M Amin Farajian, Marco Turchi, Matteo Negri, Nicola
Bertoldi, and Marcello Federico. 2017. Neural vs.
phrase-based machine translation in a multi-domain
scenario. EACL 2017, page 280.

Raymond Flournoy and Christine Duran. 2009. Ma-
chine translation and document localization at
adobe: From pilot to production. MT Summit
XII: proceedings of the twelfth Machine Translation
Summit, pages 425–428.

Declan Groves and Dag Schmidtke. 2009. Identifica-
tion and analysis of post-editing patterns for mt. In
Proceedings of MT Summit, volume 12, pages 429–
436.

Kenneth Heafield. 2011. KenLM : Faster and Smaller
Language Model Queries. In Proceedings of the
Sixth Workshop on Statistical Machine Translation,
2009, pages 187–197. Association for Computa-
tional Linguistics.
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Abstract

While neural machine translation (NMT)
has become the new paradigm, the pa-
rameter optimization requires large-scale
parallel data which is scarce in many do-
mains and language pairs. In this paper,
we address a new translation scenario in
which there only exists monolingual cor-
pora and phrase pairs. We propose a new
method towards translation with partially
aligned sentence pairs which are derived
from the phrase pairs and monolingual
corpora. To make full use of the partially
aligned corpora, we adapt the conventional
NMT training method in two aspects. On
one hand, different generation strategies
are designed for aligned and unaligned tar-
get words. On the other hand, a different
objective function is designed to model the
partially aligned parts. The experiments
demonstrate that our method can achieve a
relatively good result in such a translation
scenario, and tiny bitexts can boost trans-
lation quality to a large extent.

1 Introduction

Neural machine translation (NMT) proposed by
Kalchbrenner et al.(2013), Sutskever et al.(2014)
and Cho et al.(2014) has achieved significant
progress in recent years. Different from traditional
statistical machine translation(SMT) (Koehn et al.,
2003; Chiang, 2005; Liu et al., 2006; Zhai et al.,
2012) which contains multiple separately tuned
components, NMT builds an end-to-end frame-
work to model the whole translation process. For
several language pairs, NMT is reaching signif-
icantly better translation performance than SMT
(Luong et al., 2015b; Wu et al., 2016).

In general, in order to obtain an NMT model

外交部发言人刘建超今天在例行的机制招待会上说，

美国司法部长来北京进行了访问。

Speaking at a regular press briefing Wednesday, Turkish 

foreign ministry deputy spokesman said that turkey 

hoped the peace talks would continue as planned.

Partial Aligned

Part 2

Partial Aligned

Part 1

Figure 1: An example of our partially aligned
training data, in which the source sentence and tar-
get sentence are not parallel but they include two
parallel parts (highlight in blue and red respec-
tively).

of great translation quality, we usually need large-
scale parallel data. Unfortunately, the large-scale
parallel data is always insufficient in many do-
mains and language pairs. Without sufficient par-
allel sentence pairs, NMT tends to learn poor esti-
mates on low-count events.

Actually, there have been some effective meth-
ods to deal with the situation of translating lan-
guage pairs with limited resource under different
scenarios (Johnson et al., 2016; Cheng et al., 2017;
Sennrich et al., 2016a; Zhang and Zong, 2016).
In this paper, we address a new translation sce-
nario in which we do not have any parallel sen-
tences but have massive monolingual corpora and
phrase pairs. The previous methods are hard to be
used to learn an NMT model under this situation.
In this paper, we propose a novel method to learn
an NMT model using only monolingual data and
phrase pairs.

Our main idea is that although there does not
exist the parallel sentences, we can derive the sen-
tence pairs which are non-parallel but contain the
parallel parts (in this paper, we call these sen-
tences as partially aligned sentences) with the
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monolingual data and phrase pairs. Then we can
utilize these partially aligned sentences to train
an NMT model. Figure 1 shows an example of
our data. Source sentence and target sentence
are not fully aligned but contain two translation
fragments: (”外交部发言人”, ”foreign ministry
deputy”) and (”在例行的记者招待会上说”,
”speaking at a regular press”). Intuitively, these
kinds of sentence pairs are useful in building an
NMT model.

To use these partially aligned sentences, the
training method should be different from the orig-
inal methods which are designed for parallel cor-
pora. In this work, we adapt the conventional
NMT training method mainly from two perspec-
tives. On one hand, different generation strate-
gies are designed for aligned and unaligned target
words. For aligned words, our method guides the
translation process based on both the context of
source side and previously predicted words. When
generating the unaligned target words , our model
only depends on the words previously generated
without considering the context of source side. On
the other hand, we redesign the objective function
so as to emphasize the partially aligned parts in
addition to maximizing the log-likelihood of the
target sentence.

The contributions of our paper are twofold:

1) Our approach addresses a new translation sce-
nario, where there only exists monolingual data
and phrase pairs. We propose a method to
train an NMT model under this scenario. The
method is simple and easy to implement, which
can be used in arbitrary attention-based NMT
framework.

2) Empirical experiments on the Chinese-English
translation tasks under this scenario show that
our method can achieve a relatively good re-
sult. Moreover, if we only add a tiny parallel
corpus, the method can obtain significant im-
provements in terms of translation quality.

2 Review of Neural Machine Translation

Our approach can be easily applied to any end-
to-end attention-based NMT framework. In this
work, we follow the neural machine translation
architecture by Bahdanau et al. (2015), which we
will summarize in this section.

Given the source sentence X =
{x1, x2, ..., xTx} and the target sentence

Y = {y1, y2, ..., yTy}. The goal of machine
translation is to transform source sentence into the
target sentence. The end-to-end NMT framework
consists of two recurrent neural networks, which
are respectively called encoder and decoder. First,
the encoder network encodes the X into context
vectors C. Then, the decoder network generates
the target translation sentences one word each
time based on the context vectors C and target
words previously generated. More specifically,
that is p(yi|y<i, C).

In encoding stage, it transforms X into a se-
quence of vectors henc =

{
hk1, h

k
2, h

k
3, ..., h

k
T

}
us-

ing m stacked LSTM (Hochreiter and Schmidhu-
ber, 1997) layers. Finally, the encoder chooses the
hidden states of the top encoder layer as htop =
{hm1 , hm2 , hm3 , ..., hmT } that we will use in attention
mechanism to calculate context vector later.

In decoding stage, it generates one target
word at a time from conditional probability
p(yi|y<i, C; θ) also via m stacked LSTM lay-
ers parameterized by θ. Supposing we have ob-
tained the context vector, the conditional probabil-
ity p(yi|y<i, C; θ) is calculated as follows:

p(yi|y<i, C; θ) = p(yi|y<i, ci)
= softmax(g(Wyi , z

m
i , ci))

(1)

Where Wyi is embedding of the target word, zmi is
current hidden states of top layer in decoder net-
work. Note that the first hidden states of decoder
zk0 are set to the last hidden states of encoder as
follows:

zk0 = hkT (2)

ci can be computed as a weighted sum of the
source-side hs as follows:

ci =
Tx∑
j=1

aijh
m
i (3)

Where aij is alignment probability, which can
be calculated in multiple ways (Luong et al.,
2015a). In our method, we use a simple single-
layer feed forward network. This alignment prob-
ability measures how relevant i-th context vector
of source sentence is in deciding the current sym-
bol in translation. The probability will be further
normalized:

aij =
exp(eij)∑Tx

k=1 exp(eik))
(4)
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A detailed introduction of the encoder-decoder
framework is described in Bahdanau et al. (2015).
In order to train NMT system, we use parallel data
to optimize the network parameters by maximiz-
ing the conditional log-likelihood:

L(θ,D) =
1
N

N∑
n=1

Ty∑
i

log(p(y(n)
i |p(y(n)

<i , X
(n), θ))

(5)

3 NMT with Partially Aligned Data

In §2 we gave a brief description of the attention-
based NMT models whose network parameters are
trained using parallel sentence pairs. However,
in the translation scenario where there only exists
monolingual corpora and phrase pairs, the con-
ventional NMT framework is hard to be used in
training a model. In this section, we first explain
how we actually obtain the partially aligned cor-
pora with aligned positions using phrase pairs and
monolingual corpora, then introduce our method
to train the NMT models using the partially
aligned sentences according to the particular prop-
erties of the corpora.

3.1 Constructing partially Aligned Corpora

Assuming there exists abundant phrase pairs and
monolingual sentences in source and target lan-
guages, we define our approach to extract partially
aligned sentence pairs for training.

Given a phrase pair (ph s, ph t), ph s may ap-
pear in a source-side monolingual sentence X, and
ph t may appear in a target-side monolingual sen-
tence Y. Then, X and Y are non-parallel but con-
tain the parallel part. We call these kinds of data
the partially aligned sentences. In this work, we
collect the partially aligned sentences by search-
ing the phrase pairs in both of the source and target
monolingual data simultaneously. In order to re-
duce the time of the searching process, the mono-
lingual training corpora are first split into many
parts. Then, we retrieve the source phrase in each
part to restrict the source range of partially aligned
corpus. With the retrieved results, we can search
the final results of the partially aligned sentences
pairs easily. In this way we can construct our
corpora, in which only one or more phrases are
aligned in every sentence pairs. We denote a par-
tially aligned sentence (X = x1, x2, ...xTx,Y =
y1, y2, ..., yTy), in which a set of the phrase pairs

aligned with each other. We call these pairs par-
tially aligned part:

P (k)
x = xk1, ..., xkp

P (k)
y = yk1, ..., xkq

(6)

P
(k)
x and P (k)

y are the phrases in the source and tar-
get sentences respectively, and they are translation
equivalents.

3.2 Model Descriptions
In §3.1, we acquired the partially aligned cor-
pora with the phrase pairs and monolingual sen-
tences. Now, we need to use them to train the
NMT model. As the traditional NMT model is de-
signed for the parallel sentences, it is not suitable
for partially aligned sentences. Thus we redesign
the traditional NMT model as follows. Figure 2
shows the basic framework of our training method.
Our model has 4 different parts from conventional
NMT model, including initial states, generation
process, objective functions and vocabulary size.

3.2.1 Initial States
The first difference is the initial hidden states of
decoder. In the conventional NMT model, the
initial hidden states of decoder zk0 is set to the
last hidden state in encoder hkTx, including initial
states, generation process, objective functions and
vocabulary size. shown in Eq. (2). For parallel
sentences, this setting is reasonable, while for par-
tially aligned sentence, this initial method is inap-
propriate. The reason is that the hidden state of last
word in source sentence is irrelevant to the target
sentence, considering the fact that under our sce-
nario, the target side sentences may entirely un-
correlated to the source sentences. Thus, in our
model, zk0 is set to a zero vector as follows:

Zk0 = 0 (7)

In Figure 2, the hidden state of ”<start>” symbol
is set to zero vector when y1 does not belong to
parallel part of the sentence pair.

3.2.2 Generation Process
The second difference is the generation process.
In the conventional NMT system, the model gen-
erates each target word based on the context vector
ci and previously predicted words y<i as shown
in Eq. (1). This generation strategy is unsuit-
able for the partially aligned corpora, since there
exists many unaligned target words. Intuitively,
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Figure 2: The framework of our training method
for partially aligned sentence, in which (x2,x3)
and (y2,y3) are parallel parts.

when the model generates the non-parallel parts,
it is unnecessary to take the context vector ci into
consideration. As Figure 2 illustrated, (x2,x3) and
(y2,y3) are parallel parts in this partially aligned
sentence pair, and we use context vector which is
generated by attention mechanism only when the
decoder outputs y2 and y3. Therefore, the decoder
in our model can be described as follows:

ci =

{∑Tx
j aijhi if yi ∈ P (k)

y

0 if yi /∈ P (k)
y

(8)

where aij is calculated as Eq. (2), P (k)
y is the

target partial part, as shown in Eq. (5). In Eq.
(8), our model generates the aligned target words
based on the context vector ci and previously pre-
dicted words y<i. When generating the unaligned
target words, the model sets the context vector ci
to zero, indicating that the model generates these
words only based on the LSTM-based RNN lan-
guage model.

3.2.3 Objective Function

Third, we redesign the objective function. Given
the parallel data, the objective function is to max-
imize the log-likelihood of each target word as
shown in Eq. (5). For the partially aligned sen-
tence, besides the source and target sentence, we
know the phrase alignment information. Hence,
apart from maximizing the log-likelihood of each
target word, we also hope to make the source and
target words in partially aligned part align to each
other. As shown in Figure 2, when predicting the
words y2 and y3, we want to attend more infor-
mation of corresponding words x2 and x3. Thus,
we inject an auxiliary object function to achieve
it. More specifically, our objective function is de-

signed as follows:

LP (θ,D) =

1
N

N∑
n=1

{
Ty∑
i

log(p(y(n)
i |p(y(n)

<i , X
(n); θ))

+ λ×4(a(n), â(n)); θ)}

(9)

Where a(n) is defined in Eq. (4),4 is a loss func-
tion that encourages the agreement between a(n)

and â(n). â(n) is the supervised attention deter-
mined by alignment relationship between PX and
PY , and can be calculated as follows:

â
(n)
i,j =

{
1 if xj ∈ PX and yi ∈ PY
0 others

(10)

λ > 0 is a hyper-parameter that balances the pref-
erence between likelihood and agreement. In this
paper, it is set to 0.3.

As shown in Eq. (8), our objective func-
tion does not only consider to maximize the log-
likelihood of the target sentence, but also encour-
ages the alignment aij produced by NMT to have
a larger agreement with the prior alignment in-
formation. This objective function is similar to
that used by the supervised attention method (Mi
et al., 2016a; Liu et al., 2016). Inspired by Liu et
al. (2016), the agreement between a(n) and â(n)

can be defined in different ways:

• Multiplication (MUL)

4(a(n), â
(n)
i,j ; θ)

= −
Ty∑
i=0

Tx∑
j=0

a(θ)(n)
i,j × â(n)

i,j

(11)

where â(n)
i,j is computed by Eq. (10)

• Mean Squared Error (MSE)

4(a(n), â
(n)
i,j ; θ)

= −
Ty∑
i=0

Tx∑
j=0

1
2
(a(θ)(n)

i,j − â(n)
i,j )2

(12)

3.2.4 Limited Vocabulary
The last difference is the vocabulary size during
decoding. To make use of phrase pairs as much
as possible, we extract a number of special phrase
pairs whose source and target are both one word.
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In decoding phase, as what Mi et al. (2016b) have
done, we can use these special phrase pairs to re-
duce the vocabulary size when computing the final
score distribution. In this way, we can not only ac-
quire more accurate translation of each word, but
also accelerate the decoding speed. The vocabu-
lary size can be reduced as follows:

V = V1 ∪ V2 (13)

Where V1 contains the most frequently target
words and V2 is a target words set. This set V2

is made up of all the target words of the special
phrase pairs whose corresponding source words
belong to the source sentence.

4 Experiment

In this section, we perform the experiment on
Chinese-English translation tasks to test our
method.

4.1 Dataset

We evaluate our approach on large-scale monolin-
gual data set from LDC corpus, which includes
13M Chinese sentences and 10M English sen-
tences. Table 1 shows the detailed statistics of
our training data. To test our model, we use NIST
2003(MT03) as development set, and NIST 2004-
2006(MT04-06) as test set. The evaluation metric
is case-insensitive BLEU (Papineni et al., 2002) as
calculated by the multi-bleu.perl.

Corpus Chinese English

monolingual
#Sent. 13.33M 10.03M
#Word 327.10M 276.07M
Vocab 1.83M 1.07M

Table 1: The statistics of monolingual dataset on
the LDC corpus.

4.2 Data Preparing and Preprocessing

Considering the fact that the amount of manually
annotated phrase pairs is not enough, in order to
imitate the environment of experiment, we extract
phrase pairs from parallel corpora automatically
to make up for the shortage of quantity. To do
this, we use Moses (Koehn et al., 2007) in its
training step to learn a phrase table from LDC
corpus, which includes 0.63M sentence pairs. In
order to simulate the experiment as far as possi-
ble, we adopt three strategies to filter low quality

phrase pairs: 1) the phrases containing the punc-
tuation should be filtered out. (The special phrase
parirs introduced in §3.2.4 should be retain) 2) the
length of source phrase and target phrase should
be greater than 3. 3) only the phrase pairs whose
translation probability exceed 0.5 should be retain.
In this way, we can get 3M phrase pairs in our ex-
periment. According to our analysis, the average
length of phrases are 4.15 and 4.70 on source and
target side respectively.

When we search the phrase pairs in monolin-
gual sentences, an obstacle is that one phrase pair
will get different source sentences with same tar-
get sentence or same source sentence with differ-
ent target sentences. Therefore, for one phrase
pair, we have to restrict the number n of both
source sentences and target sentences. To balance
the search speed of the phrase pairs in monolin-
gual corpora and the amount of partially aligned
sentences, we set the hyper-parameter n to 7. We
can search for 5M partially aligned sentences in
our experiment. We also calculate the average
length ratio of aligned phrases against the whole
sentence, which is only 21% and 23% respectively
on source and target side.

To ensure the quality of the partially aligned
corpora, we also set the number of phrases that
aligned to each other in one sentence pair must
be greater than a threshold. Here, the threshold
is set to 2. That is to say the partially aligned
sentence pair should contain at least two aligned
phrase pairs.

4.3 Training Details

We build our described method based on the
Zoph RNN toolkit1 written in C++/CUDA. Both
encoder and decoder consist of two stacked LSTM
layers. We set minibatch size to 128. The word
embedding dimension of both source and target
sides is 1000, and the dimensions of hidden lay-
ers unit is set to 1000. In our baseline model,
we limit the vocabulary of both source and target
languages to 30K most frequent words, and other
words are replaced by a special symbol“UNK”.
We run our model on the training corpus 20 iter-
ations in total with stochastic gradient decent al-
gorithm. We set learning rate to 0.1 at the begin-
ning and halve the threshold while the perplexity
increases on the development set. Dropout is ap-
plied to our model, and the rate is set to 0.2. For

1https://github.com/isi-nlp/ZophRNN
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# System MT03 MT04 MT05 MT06 Ave

1 Phrase NMT Model 3.64 4.25 3.55 3.77 3.80
2 Partially Aligned Model(MUL) 3.80 4.37 3.75 4.24 4.04
3 Partially Aligned Model(MSE) 5.11 5.04 4.26 4.95 4.84
4 Partially Aligned Model(MSE) + LimitedVocab 6.63 6.81 5.59 5.77 6.20
5 Phrase NMT model + LimitedVocab 3.78 4.33 3.63 3.94 3.92

Table 2: Translation results (BLEU score) for different translation methods.

testing, we employ beam search algorithm, and the
beam size is 12.

4.4 Training Methods
We conduct our experiment on the dataset men-
tioned above, and we list the training methods
used as follows:

1) Phrase NMT Model: As mentioned above,
the only parallel resource is phrase pairs. We
use attention-based NMT system to train only
on the 3M phrase pairs to get our baseline re-
sult.

2) Partially Aligned Model(MUL): We train our
NMT model using the objective function of
multiplication method on the partially aligned
sentences.

3) Partially Aligned Model(MSE): We train our
NMT model using the objective function of
Mean Squared Error(MSE) method.

4) Partially Aligned Model(MSE) + Limited-
Vocab: It is similar to Partially Aligned
Model(MSE) and the only difference is that we
restrict the final score distribution on a limited
target vocabulary, which is described in §3.2.4.

5) Phrase NMT Model + LimitedVocab: It is
the method that LimitedVocab is used in Phrase
NMT model.

5 Results and Analysis

5.1 Phrase NMT Model vs. Partially Aligned
Method

We present the translation results in BLEU scores
of different systems in Table 2. Our first concern is
whether the proposed model can actually improve
the translation quality. As Table 2 shows, we find
that our partially aligned model (both MUL super-
vised method and MSE supervised method) is su-
perior to the Phrase NMT Model, which indicates

that our Partially Aligned method is effective in
improving the translation quality.

布什说：“此项计划将对劳动大众提供

减税优惠。”

The bush says the <UNK> tax concessions 

be made a possible member

Bush said, the scheme will provide tax 

concessions to the community.

Source sentence:

Phrase NMT model:

Our model:

Figure 3: A translation example comparing be-
tween phrase NMT model and our partially
aligned method.

Figure 3 lists a comparison example of Phrase
NMT model and our model. Obviously, our
model can achieve the correct translation while the
Phrase NMT model generates the unfaithful result.
It demonstrates that our model is actually hav-
ing the ability to learn translation adequacy from
aligned parts and fluency from both aligned and
unaligned parts.

In §3.2, we described two objective functions in
our model. We focus on the difference of these
two approaches. As a comparison, MSE method
(Row 3) outperforms the MUL method (Row 2)
with an average improvement of 0.8 BLEU points,
indicating that MSE method is more effective as
an object function for our partially aligned model.
In the following experiment, we adopt the MSE
method as the new objective function used in our
model.

5.2 Effect of Limited Vocabulary

In Table 2, an interesting result is that using
a reduced vocabulary can significantly improve
the performance (+1.36 BLEU points), but it
can only achieve 0.12 BLEU points improvement
for Phrase NMT model. According to Mi et
al. (2016b), this approach is useful in conventional
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NMT model. Our result is in agreement with their
findings, and the improvement is more prominent
in our partially aligned model. Under our scenario,
compared to the parallel corpora, fewer parallel
parts appear in sentence pairs. The faithfulness of
our translation result is relatively poor while the
fluency is relatively good. With the limited rele-
vant vocabulary, the faithfulness of the translation
results is much improved.
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Figure 4: Translation results (BLEU score) of dif-
ferent lengths.

5.3 Result of Different Sentence Lengths

The performance of our partially aligned model
with different lengths is another problem we
care about. We randomly select 1000 sen-
tences from translation results of test set (MT03-
08), which are trained by the Partially Aligned
Model(MSE)+ReduceDict method. We classify
them into five categories according to the length.
Figure 4 shows the results of the experiment.

We find that the sentences with shorter length
(lower than 40) yield better results than the long
sentences. When the length of sentences exceeds
80, the quality of translation is rather poor. The
reason is that we mainly use phrase pairs in our
method, and the length of phrase is relative short
compared to whole sentence. So our model is
more suitable for the translation of short sen-
tences. When we translate long sentences, the pa-
rameters in our model are not adjusted for tuning,
and our approach can not produce translation of
high quality.

5.4 Effect of Adding Small Parallel Corpus

We concern that when we have a tiny parallel cor-
pus, whether the small scale parallel corpus can
boost the translation performance of the partially
aligned method. Here, we fine-tune the partially

aligned translation model on these corpora. The
details of these corpora are introduced in Table 3.

Corpus Chinese English

parallel
#Sent. 0.1M
#Word 3.00M 3.86M
Vocab 0.07M 0.04M

Table 3: The statistics of small-scale parallel
datasets.

The result is presented in Table 4. We can ob-
serve that the translation result tends to be poor
by only using a small-scale parallel corpora. It
indicates that conventional NMT system cannot
learn a good model on the small-scale datasets.
However, when fine-tuning our partially aligned
model with this small parallel corpus, we can get
a surprising improvement. The results suggest
that when under a scenario in which we only have
monolingual corpora and phrase pairs, even a few
bitexts can boost translation quality to a large ex-
tent.

We investigate the effect of the different cor-
pora size on the final translation results. Accord-
ing to Table 4, when the number of parallel sen-
tences is quite small (lower than 60K), we can ac-
quire a measurable improvement (more than 10
BLEU) compared to the conventional NMT sys-
tem result. Especially, when the size of sentence
pairs is 40K and 60K, our method obtains the
enormous improvement over the NMT model by
+13.82 BLEU points and +13.21 BLEU points re-
spectively. When using more than 60K sentence
pairs, we still get a relatively high promotion of
translation quality. However, the promotion is not
very remarkable as Row1-3 reveal in Table 4. We
can see when the number of parallel corpora is
100K(Row 5), the improvement over NMT Model
is +3.95 BLEU points, which indicates that as the
size of parallel corpora increases, the improve-
ment of fine-tuning model is decreasing.

6 Related Work

Most of existing work in neural machine transla-
tion focus on integrating SMT strategies (He et al.,
2016; Zhou et al., 2017; Wang et al., 2017; Shen
et al., 2015), handling rare words (Li et al., 2016;
Sennrich et al., 2016b; Luong et al., 2015b) and
designing the better framework (Tu et al., 2016;
Luong et al., 2015a; Meng et al., 2016). As for
translation scenarios, training NMT model under
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#Sent. Method MT03 MT04 MT05 MT06 Ave

20K
NMT Model 1.60 1.22 1.05 1.70 1.39

Partially Aligned Model(MSE) + Para 12.36 15.07 11.64 14.61 13.42

40K
NMT Model 1.87 2.00 1.47 2.24 1.90

Partially Aligned Model(MSE) + Para 14.12 17.84 13.66 17.26 15.72

60K
NMT Model 3.72 5.04 3.49 4.47 4.18

Partially Aligned Model(MSE) + Para 15.54 19.62 15.16 19.25 17.39

80K
NMT Model 7.96 11.85 8.16 10.53 9.63

Partially Aligned Model(MSE) + Para 17.16 21.18 16.65 20.61 18.90

100K
NMT Model 14.50 18.21 14.29 17.49 16.12

Partially Aligned(MSE) Model + Para 18.30 22.50 17.92 21.55 20.07

Table 4: Effect of different data size of parallel corpus. Method NMT Model means the result of
conventional NMT system trained on these low-count parallel sentences. Partially Aligned Model(MSE)
+ Para means the result of our model fine-tuned by these parallel sentences.

different scenarios has drawn intensive attention
in recent years. Actually, there have been some
effective methods to deal with them. We divide
the related work into three categories:

6.1 Pivot-based Scenario

Pivot-based scenario assumes that there only ex-
ists source-pivot and pivot-target parallel cor-
pora, which can be used to train source-to-pivot
and pivot-to-target translation models. Cheng et
al. (2017) propose to translate source language
into pivot language, and then the pivot language
will be translated into target language. According
to the fact that parallel sentences should have close
probabilities of generating a sentence in a third
language, Chen et al. (2017) construct a Teacher-
Student framework, in which existing pivot-target
NMT model guides the learning process of the
source-target model.

6.2 Multilingual Scenario

In multilingual scenario, there exists multiple lan-
guage pairs but no source-target sentence pairs.
Johnson et al. (2016) use parallel corpora of mul-
tiple languages to train a universal NMT model.
This universal model learns translation knowledge
from multiple different languages, which makes
zero-shot translation feasible. Firat et al. (2016)
present a multi-way, multilingual model to resolve
the zero-resource translation. They use other lan-
guage to train a multi-way NMT model. The
model generates pseudo parallel corpora to fine-
tune attention mechanism, so as to achieve better

translation.

6.3 Monolingual Data Scenario

In this scenario, an NMT model of good quality
has been trained on existing parallel corpora, but a
preferable translation result is still in need by in-
corporating additional data resource. Gülçehre et
al. (2015) propose to incorporate target-side cor-
pora as a language model. Sennrich et al. (2016a)
attempt to enhance the decoder network model
of NMT by incorporating the target-side mono-
lingual data. Luong et at. (2016) explore the
sequence autoencoders and skip-thought vectors
method to exploit the monolingual data of source
language. Zhang and Zong (2016) propose two
approaches, self-training algorithm and multi-
task learning framework, to incorporate source-
side monolingual data. Besides that, Cheng
et al. (2016) have explored the usage of both
source and target monolingual data using a semi-
supervised method to reconstruct both source
and target side monolingual language, where two
NMT frameworks will be used.

Above methods are designed for different sce-
narios, and their work can achieve great results on
these scenarios. However, when in the scenario we
propose in this work, that is we only have mono-
lingual sentences and some phrase pairs, their
methods are hard to be utilized to train an NMT
model. Under this scenario, monolingual data
can be acquired easily, and high quality phrase
pairs can be obtained using some effective meth-
ods (Zhang et al., 2014). To learn a good NMT
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model in our translation scenario, we adapt the
conventional training procedure by designing a
different generation mechanism and a different ob-
jective function.

7 Conclusion

In this paper, we have presented a new transla-
tion scenario for NMT in which we have only
monolingual data and bilingual phrase pairs. We
obtain large-scale partially aligned sentence pairs
from the monolingual data and phrase pairs by an
information retrieval algorithm. The generation
process and objective function are specially de-
signed in NMT training to take full advantage of
the partially aligned corpora. The empirical exper-
iments show that the proposed method is capable
to achieve a relatively good result. We further find
that only a little amount of parallel sentences can
significantly boost the translation quality.

We also notice that the proposed approach with
only partially aligned data cannot obtain high
translation quality. In the future, we plan to design
better approaches to model the partially aligned
corpus. We also attempt to evaluate our approach
on other language pairs, especially low-resource
language pairs.
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cehre, Dzmitry Bahdanau, Fethi Bougares Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings
of EMNLP 2014.

Orhan Firat, Baskaran Sankaran, Yaser Alonaizan,
Fatos T. Yarman Vural, and Kyunghyun Cho. 2016.
Zero-resource translation with multi-lingual neural
machine translation. In Proceedings of EMNLP
2016.
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Abstract

In this paper we introduce the problem of
identifying usage expression sentences in
a consumer product review. We create a
human-annotated gold standard dataset of
565 reviews spanning five distinct product
categories. Our dataset consists of more
than 3, 000 annotated sentences. We fur-
ther introduce a classification system to la-
bel sentences according to whether or not
they describe some “usage.” The system
combines lexical, syntactic, and semantic
features in a product-agnostic fashion to
yield good classification performance. We
show the effectiveness of our approach us-
ing importance ranking of features, error
analysis, and cross-product classification
experiments.

1 Introduction

Identification of usage expressions — phrases or
sentence snippets describing product use in re-
views — is an important problem in mining con-
sumer product reviews. Identifying such usage
expressions accurately allows us to view the re-
lationship between consumers and products more
clearly (e.g., by indicating how frequently a con-
sumer uses a product). Further, the language and
style employed in describing product use bring rel-
evant and unseen aspects of the products to the
fore (e.g., describing usage of a product in non-
traditional and unique ways).

Usage expressions can take several forms, such
as which aspects of the product are used, why the
product is used, where it is used, how it is used,
when it is used, and so forth (c.f. Section 3 for
specific examples). The product could be used by
a consumer in a number of ways, sometimes in
unique ways not intended for originally. Hence

enumerating all possible uses of a product is com-
putationally intractable. In this paper, therefore,
we focus on four specific cases of product usage:
why the product is used, where it is used, how it
is used, and if there are any non-standard or non-
traditional use (cf. Section 3).

While the relationship between product usage
and consumer behavior has mostly been discussed
by marketing researchers and psychologists, the
question of whether the phenomenon of usage has
any detectable signature in terms of the language
used by consumers has not been addressed thus
far. In this paper, we introduce the task of iden-
tifying usage expressions from consumer product
reviews. In particular, we focus on classifying re-
view sentences as to whether they contain a us-
age expression or not. We create our own human-
annotated corpus of 565 reviews on five distinct
product categories containing more than 3000 sen-
tences. We introduce a system that classifies sen-
tences according to whether they contain a usage
expression or not with 87.2% accuracy. We also
show that an appropriate combination of lexical,
syntactic, and semantic features performs better
than individual feature categories.

2 Related Work

Existing research could be organized into six
self-consistent psycho-sociological theories,
namely psycho-analysis, social theories, stimulus-
response theories, trait and factor theories,
self-theories, and life style theories. Kassarjian
(1971) offers a comprehensive review of the lit-
erature on consumer behavior and psychological
traits. Robertson and Myers (1969) found weak
relationships between opinion leadership and
innovative buying behavior, but observed that the
relationship strength varied by product category.
Tucker and Painter (1961), and Sparks and Tucker
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(1971) showed that there were correlations be-
tween personality traits and the types of products
used. Dolich (1969) posited that products as sym-
bols were organized into congruent relationships
with the consumer’s self-image. More recently,
Govers and Schoormans (2005) found that people
preferred products with a product personality
that matched their self-image, and the positive
effect of product-personality congruence was
independent of user-image congruence.

In natural language processing research, the
closest problem to usage expressions is perhaps
that of opinion mining from product reviews and
product aspects. Dave et al. (2003) classified
reviews as expressing positive or negative senti-
ment. They identified four problems with review
classification, including rating inconsistency, am-
bivalence, data sparseness, and skewed distribu-
tion. Hu and Liu (2004) extracted product features
from the reviews of a single product, taking user
opinion into account. Opinion/product features
were mined if a reviewer had commented on them.
Popescu and Etzioni (2005) presented OPINE, an
unsupervised information extraction system that
mined reviews in order to build a model of im-
portant product features, their evaluation by re-
viewers, and their relative quality across prod-
ucts. OPINE’s use of relaxation labeling led to
strong performance on the tasks of finding opin-
ion phrases and their polarity. Ding et al. (2008)
presented a “holistic lexicon-based approach” for
mining context-dependent opinion words. The
proposed method used an aggregating function
for multiple conflicting opinion words in a sen-
tence. The authors further implemented a system
called “Opinion Observer” based on their method.
Lastly, Wu et al. (2009) implemented a special
dependency parser for opinion mining that used
phrases (rather than words) as the primitive build-
ing blocks. Since many product features are in
fact phrases, this approach led to good results for
extracting relations between product features and
opinion expressions.

Yet another related task is that of mining se-
mantic affordances (Chao et al., 2015). In this
task, “usage” of a product can be viewed as an
action performed on an object with the help of
the product. Relationships between such actions
and objects are known as “semantic affordances”.
As Chao et al. showed, text mining can be very
effective at ascertaining affordance relationships

between verb and noun classes. Similar verb-
noun relationships have also been formulated in
the problem of learning selectional preferences
from text (Resnik, 1997; Brockmann and Lap-
ata, 2003; Erk, 2007; Pantel et al., 2007; Bergsma
et al., 2008; Van de Cruys, 2014), and more gener-
ally, in the problem of probabilistic frame induc-
tion (Chambers and Jurafsky, 2011; Cheung et al.,
2013; Chen et al., 2013).

Another topic of research related to our work is
the problem of research idea extraction from aca-
demic papers. Gupta and Manning (2011) took
the first stab at this problem by implementing a
bootstrapping algorithm on dependency tree ker-
nels. Gupta and Manning’s method was later re-
fined by Tsai et al. (2013) who worked with a more
crisp set of idea categories. We view this prob-
lem as conceptually parallel to ours; however, a
key difference is that usage expressions are typi-
cally more obscure in text as compared to research
ideas.

3 Building a Usage Expression Dataset

Product reviews often contain usage information.
Specifically, in addition to opinions on product
quality, reviewers often share how, where, or why
they use the product. We therefore build our
dataset of product usage expressions starting with
a collection of product reviews.

We collect Amazon product reviews for five dif-
ferent product categories, as shown in Table 1.
The particular product lines we use are: a laun-
dry product: specifically, Downy Unstopables In
Wash Fresh Scent Booster 13.2 Oz; two kinds
of cooking agents, namely, Olive oil: Baja Pre-
cious Extra Virgin Olive Oil from Baja California
(750ml Bottle) and Vinegar: Raw Organic Apple
Cider Vinegar by Bragg (1 gallon); a Medicine:
Kirkland Signature Low Dose Aspirin, 2 bottles
– 365-Count Enteric Coated Tablets each; and a
household item, namely Toothpaste: Colgate Op-
tic White Toothpaste, 4 Ounce (Pack of 2). The re-
views are split into sentences, with the total num-
ber of sentences and average number of sentences
per review as shown in Table 1. In all, there are
3020 sentences in 565 reviews, with an average of
5.34 sentences per review.

With the help of three linguistics undergradu-
ate students, each sentence in the dataset was an-
notated as containing a usage expression or not.
Initially, as an early trial, we asked the annota-
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Product category Product # Reviews # Sentences Avg # Sentences per Review
Laundry product Scent booster 125 695 5.56
Cooking agent Olive oil 110 588 5.35
Cooking agent Vinegar 110 623 5.66
Medicine Aspirin 110 463 4.21
Household item Toothpaste 110 651 5.92
Total – 565 3020 5.34

Table 1: Product categories in our dataset.

tors to indicate if a sentence contained a usage ex-
pression. This approach led to low inter-annotator
agreement, so we refined the annotation process to
a two-step process as follows.

In the first step, we instructed the annotators to
read each product review carefully, identify all us-
age expressions in the review (examples below),
and write them in a given textbox, one usage ex-
pression per line. Annotators were requested to
write the usage expressions in their own words.
This component was employed to make sure an-
notators carefully read and understood the review.

The second step involved answering the follow-
ing four questions on usage types:

(A) Does the sentence describe why the product
was being used? (usage reason/purpose) E.g.,
“I used unstopables to freshen my room.”

(B) Does the sentence describe where the product
was used? E.g., “I used unstopables with my
cat litter.”

(C) Does the sentence describe how the product
was used? E.g., “I use three cups of Downy
Unstopables in every wash.”

(D) Does the sentence describe any
non-traditional or non-standard usage of
the product? E.g., “I always love to add
some hot water to unstopables and make my
own DIY air freshener !”

If a sentence had a positive answer to one or
more of these four questions, then it was labeled
as containing a usage expression.1

Additionally, several specific instructions were
added to deal with potentially difficult or com-
plex cases, by asking annotators to (1) consider
the context (one sentence before and after the tar-
get sentence) before deciding whether to mark a

1Note that in this paper, we ignore the different ways of
product usage (why, where, how, non-traditional), but we
plan to utilize the detailed annotations in future work.

sentence or not. (2) determine if a sentence con-
tains an opinion (“Love it”, “Hate it”, etc.) or a
recommendation (“I’d recommend this product to
all aspiring gardeners”), and if so, pairing it with
an explicit usage expression in some form. (3) de-
termine if a sentence talks about usage of another
product that is not the primary focus of the review
(i.e., a secondary product), then mark the sentence
only if the primary product is being used in addi-
tion to the secondary product. (4) determine if the
secondary product is used instead of the primary
product: “Unstopables were not good, so I used
sheets instead.”, or if only the secondary product
was used: “I used sheets, they are better.” then do
not label the sentence. (5) focus only on products,
and ignore other (named) entities like persons, or-
ganizations, locations, and dates.

Table 2 shows an example product review, and
sentences that were agreed upon by all annotators
to contain, or not, a usage expression. We also
show sentences on which there was no consensus.
Note that such sentences have a fair amount of
ambiguity. For example, the sentence “I do rec-
ommend this for times when you may want extra
freshness for your clothes or towels.” does not
seem to contain an explicit usage expression, but
it does indicate that the consumer used the prod-
uct to obtain extra freshness for clothes or towels.
Sentences like this demonstrate the difficulty of
identifying usage expressions in product reviews.

Inter-annotator agreement values, shown in Ta-
ble 3, indicate that the task is moderately difficult.
We can see that different products have different
difficulty levels, with Vinegar being the least dif-
ficult (highest A3 agreement as well as highest κ),
while for the other four products, κ was between
0.43 and 0.48. This is presumably owing to the
fact that Vinegar is a cooking agent and used in
many different ways, thus providing more oppor-
tunity to find a usage sentence (by several people)
in a product review.

To construct a gold standard, we took the major-
ity of the three votes assigned by the three anno-
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Sample Review
I used this recently when I washed my blankets and
towels, and I was definitely impressed. Just a small
amount (half a capful) was necessary to give my blan-
kets and towels an extra burst of freshness. The scent
is a little bit floral and lasts for a few days. I put the
Downy booster directly into the washer. (Instructions
say NOT to put in your dispenser) And it does work
fine with high efficiency washers. I do recommend this
for times when you may want extra freshness for your
clothes or towels.

Usage annotations (agreed by all)
I used this recently when I washed my blankets and
towels, and I was definitely impressed.
Just a small amount (half a capful) was necessary to
give my blankets and towels an extra burst of freshness.

Non-usage annotations (agreed by all)
The scent is a little bit floral and lasts for a few days.

Mixed usage/non-usage annotations
I put the Downy booster directly into the washer.
(Instructions say NOT to put in your dispenser)
And it does work fine with high efficiency washers.
I do recommend this for times when you may want ex-
tra freshness for your clothes or towels.

Table 2: An example review and its annotations.

tators to each sentence. There were 36 sentences
(1.19% of all sentences) that did not have a major-
ity. One of the authors manually arbitrated these
sentences into “usage” (n = 22) and “not usage”
(n = 14) classes.

4 Finding Usage Expression Sentences

Once the annotated dataset was finalized, our pri-
mary goal was to build a classifier to predict if a
given sentence contains usage expressions or not.
We learn the classifier over five categories of fea-
tures extracted from the sentence and neighboring
context. In this paper, we show the performance
using a logistic regression classifier, chosen based
on its performance on a small development dataset
of usage-annotated sentences drawn from 20 prod-
uct reviews. The following features are included:
(A) Lexical features: As n-grams are usually
very helpful in document classification, we ex-
plore their utility on the task of usage expression
sentence classification. We use word unigrams
and bigrams, part-of-speech (POS) bigrams, and
character trigrams. We use the CRFTagger (Phan,
2006) for POS tagging.
(B) Embeddings: Embeddings encode latent se-
mantics and could reflect usage patterns. We
train a word embedding using word2vec (Mikolov
et al., 2013) over a large corpus of 55, 463 prod-
uct reviews. This corpus is constructed from all
Amazon reviews associated with any product that

has “Unstopables”, “Olive oil”, “Vinegar”, “As-
pirin”, or “Toothpaste” in its title. Once the word
embedding is trained, a sentence is represented by
the weighted average of the embeddings of all the
unique words in it.
(C) Syntax: We use bags of constituency and de-
pendency production rules, obtained from the out-
put of the Stanford parser (Klein and Manning,
2003; Chen and Manning, 2014). For constituency
grammar, we use terminal and non-terminal rules
separately as well as together. For the dependency
grammar, we use the (collapsed) dependency types
(amod, nsubj, etc.), and the lexicalized dependen-
cies (e.g., (nsubj, Kirkland, seems)) as separate
features.
(D) Style: We extract thirteen shallow surface-
level and style features to encode the stylistic
properties of a sentence, in the hope that they
would be predictive of whether the sentence con-
tains a usage expression. These features are: sen-
tence position, average word length (in chars),
sentence length (in words and characters), type-
token ratio, Flesch Reading Ease (Flesch, 1948;
Farr et al., 1951), Automated Readability Index
(Senter and Smith, 1967), Flesch-Kincaid Grade
Level (Kincaid et al., 1975), Coleman-Liau In-
dex (Coleman and Liau, 1975), Gunning Fog In-
dex (Gunning, 1968), SMOG Score (McLaughlin,
1969), Formality (Heylighen and Dewaele, 1999),
and Lexical Density (Ure, 1971).
(E) Semantics: Since usage is above all a seman-
tic phenomenon, a semantic space should be able
to capture the dominant properties of the usage
expression. We use the following feature sets to
capture a semantic space for a sentence. Each fea-
ture set effectively describes a lexicon, and we turn
“on” the features in the lexicon that are present in
the target sentence.

1. Product categories: This feature set consists
of the list of product categories obtained from
the Walmart API.2 We use both main cate-
gories and sub-categories.

2. Concreteness: The set of words, along with
their concreteness scores, available as part of
the Free Association Norms Database (Nel-
son et al., 1998). There are more than 3,000
words available as part of the database.

3. Levin classes: The set of coarse and fine-
grained variations of Levin verb classes and

2https://developer.walmartlabs.com/
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Product type Majority Yes Majority No Majority Not Sure All Yes All No A3 κ
Scent booster 201 494 0 80 385 66.91 0.46
Olive oil 91 493 4 40 395 73.98 0.43
Vinegar 190 430 3 139 369 81.54 0.71
Aspirin 94 366 3 47 282 71.06 0.48
Toothpaste 137 514 0 56 411 71.74 0.46
Overall 713 2297 10 362 1842 72.98 0.52

Table 3: Majority label statistics, and three-way inter-annotator agreement. A3 is the % of sentences
where all three annotators agreed. κ is the Fleiss’ kappa among three annotators (Fleiss, 1971).

verb alternations, leading to four types of fea-
tures (Levin, 1993).

4. LIWC: Like Levin classes, we included an-
other set of features derived from the LIWC
dictionary of psychological word categories
(Tausczik and Pennebaker, 2010).

5. Semantic lexicons: Like Levin classes, we
use the Roget thesaurus and WordNet Affect
word categories, with a binary feature repre-
sentation. If a word falls under any of the Ro-
get word categories, the corresponding fea-
ture is set.

6. Named Entities: We use the Stanford NER
(Finkel et al., 2005) to identify named enti-
ties in our corpus, and then use these enti-
ties as bag-of-features. We use the terms, the
entity types, and the lexicalized entity types
(terms + entities) as our bags. Standard tf,
tfidf, and binary representations are used. We
use the seven-class typology of named enti-
ties (Location, Person, Organization, Money,
Percent, Date, Time).

7. Spatial Prepositions: Recent studies have
shown prepositions to be a precious source
of semantic information (Srikumar and Roth,
2013; Schneider et al., 2015, 2016). We use
a lexicon of spatial prepositions3 as a bag-
of-words feature. The rationale was to ob-
serve if spatial properties of usage of objects
(“use olive oil with celery”, “put detergent in
washer”) can be captured in terms of prepo-
sitions such as on, in, by, with, etc.

8. Semantic Distance: Finally, we added the

3Obtained by combining the two lists at https://owl.
english.purdue.edu/owl/resource/594/04/
and http://www.firstschoolyears.com/
literacy/sentence/grammar/prepositions/
resources/Spatial%20Prepositions%20word%
20bank.pdf.

(weighted) WordNet distance4 between all
words and the verb use, where weights are
set as binary, tf, and tfidf, as before. The ra-
tionale behind this feature is that it captures
words similar to the verb use in the sentence,
and their relative importance.

5 Evaluation

We use the dataset introduced in Section 3 to eval-
uate the accuracy of the usage detection classifier.
20% of the data for each product is held out as test
data, and the remaining 80% is used for training.

We start by evaluating each individual feature
using a ten-fold cross-validation on the training
data. We then explore three combination meth-
ods, applied on a subset of seven feature sets,
selected based on their performance and diver-
sity: word unigrams, POS bigrams, character tri-
grams, embeddings, constituency rules, product
categories, and concreteness. We combine these
features through: classifier voting, where we as-
sign the class predicted by the majority of the clas-
sifiers; feature fusion, where we join all the indi-
vidual features into one feature vector used in the
classification; and meta-learning, where we use
the output of the individual classifiers as input into
another classifier (again using logistic regression
for the meta-learner). Table 4 shows the results of
these evaluations. As seen in the table, while sim-
ple features, such as word n-grams and character
trigrams, lead to the best performance among the
individual features, better performance is obtained
when they are combined with other features (bot-
tom rows of Table 4).

The meta-learner based combination strategy
resulted in the best performing classifier during the
cross-validation experiments on training data. We
next evaluate this classifier on the test data con-
sisting of 20% reviews of all five products. Table
5 shows the results obtained on the test data. For

4We use the Wu-Palmer similarity (Wu and Palmer,
1994).
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Feature Type Prec. Rec. F-score Accu.
Word unigrams 71.56 54.94 62.16 83.88
Word bigrams 77.06 30.85 44.06 81.13
Character trigrams 70.06 57.19 62.98 83.80
POS bigrams 55.72 39.69 46.36 77.87
Embeddings 71.92 47.49 57.20 82.88
Constituency 70.49 52.17 59.96 83.22
Dependency 57.53 33.10 42.02 78.00
Style 54.17 11.27 18.65 76.33
Product categories 67.19 44.37 53.44 81.38
Concreteness 59.61 53.21 56.23 80.04
Levin classes 59.72 37.26 45.89 78.83
LIWC 57.14 38.13 45.74 78.20
Semantic lexicons 56.02 50.78 53.27 78.54
Spatial prepositions 41.67 3.47 6.40 75.57
Semantic distance 66.29 20.45 31.26 78.33
Classifier voting 66.84 67.76 67.30 84.13
Feature fusion 63.92 60.49 62.15 82.25
Meta learner 73.61 59.45 65.77 85.09

Table 4: Micro-averaged sentence-level results
(%) under 10-fold cross-validation on the training
data. Maximum value in each column (within each
section) is boldfaced.

Feature Type Prec. Rec. F-score Accu.
Majority 0.00 0.00 0.00 76.13
Word unigrams 71.82 58.09 64.23 85.92
Meta learner 76.92 58.82 66.67 87.20

Table 5: Micro-averaged sentence-level results
(%) on the test set (20% of all products). Maxi-
mum value in each column is boldfaced.

comparison, the table also shows the performance
of the word unigram classifier, as well as a ma-
jority class baseline that labels every sentence as
“non-usage.” As before, the meta-learner signifi-
cantly improves over the unigram classifier,5 and
also over the majority class baseline.6

We also report the performance of the meta-
learner classifier on individual products in Table
6. Across all the products, vinegar appears to have
the highest F-score. This can be partly explained
by the high inter-annotator agreement: the same
product had the highest three-way agreement in
the manual annotations, as shown in Table 3, likely
an indication of a less difficult dataset.

6 Additional Analyses

To gain further insights, we perform several addi-
tional analyses, to determine: the role played by
different features; the relation between classifier
performance and amount of training data; the role
of in-domain vs. cross-domain classification; and

5Paired t-test, p-value=0.07
6Paired t-test, p-value < 0.0001

Product Prec. Rec. F-score Accu.
Scent booster 78.57 68.75 73.33 87.69
Olive oil 50.00 25.00 33.33 89.26
Vinegar 81.58 79.49 80.52 88.37
Aspirin 70.00 36.84 48.28 84.54
Toothpaste 80.00 53.33 64.00 85.00

Table 6: Micro-averaged sentence-level results
(%) per product using the meta learner.
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Figure 1: Learning curve using micro-averaged
sentence-level results for the meta-learner classi-
fier.

finally the types of errors produced by the system.

6.1 Feature Importance Ranking
Table 7 shows the top features (ranked by their
Gini importance (Breiman et al., 1984)) for three
prominent individual feature-based classifiers —
viz. word unigrams, category words, and con-
creteness — and the meta-learner. Note that top-
ranking words include product properties (smell),
secondary objects on which the product was used
(clothes), how the product was used (day, daily,
drink, water), usage verbs (use), prepositions and
conjunctions (and, for, with), pronouns (i, it, this),
and articles (a, the). For the meta learner, lexical
features (character trigrams and word unigrams)
and embedding features (Word2vec) are among
the top-ranked feature classes.

6.2 Learning Curve
Next, we experiment with varying the size of the
training data to understand the learning curve. We
gradually increased the amount of training data
from 10% to 80%, in steps of 5%; and evaluated
on the full test data. Figure 1 shows the vari-
ation of F-score achieved by the meta-learner as
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Word unigrams Category words Concreteness Meta learner
and 0.023 the 0.040 smell 0.025 Character trigrams 0.309
my 0.019 my 0.036 use 0.024 Word2vec 0.236
smell 0.014 smell 0.029 day 0.023 Word unigrams 0.171
day 0.014 a 0.028 for 0.019 Constituency 0.119
use 0.014 use 0.025 clothes 0.017 Concreteness 0.077
it 0.011 day 0.023 i 0.016 Category words 0.053
clothes 0.010 this 0.020 with 0.014 POS bigrams 0.035
a 0.010 clothes 0.018 drink 0.014
bought 0.009 daily 0.015 water 0.013
drink 0.009 drink 0.013 daily 0.013

Table 7: Feature importance ranking for four feature types. We show ten top-ranked features along with
their importance scores. For the meta-learner, we show the ranking over the subset of seven feature sets
used in this classifier.

Feature Type Prec. Rec. F-score Accu.
Baseline 0.00 0.00 0.00 76.39
Word unigrams 69.15 35.20 46.65 80.99
Meta-learner 70.62 38.43 49.77 81.69

Table 8: Cross-domain classification: Micro-
averaged sentence-level results (%), where test set
is an individual product, and training set is four
other products. Maximum value in each column is
boldfaced.

the training data is increased, smoothed over three
consecutive data points. The test performance was
the highest when trained on 60% of training data
and then decreased gradually, which suggests that
the system might not benefit from additional train-
ing data.

6.3 The Role of In-Domain Data

To understand the role played by in-domain data,
we further experiment with two different configu-
rations of training and test sets.

In one configuration, we train on four products,
and test on the remaining product (cross-domain
training). As can be seen from Table 8, this re-
sults in lower F-scores than Table 5. This suggests
that identifying usage expressions of a product is
intimately related to the identity of the product,
echoing the findings by Govers and Schoormans
(2005).

In the second configuration, we train on 80% of
a product, and test on 20% of the same product
(in-domain training). The results, averaged over
the five products, are shown in Table 9. Note that
the F-score values are much improved compared
to the previous configuration, and are compara-
ble to the results shown in Table 5. This suggests
that when storage/memory might be a concern, we
could simply use training data from within the do-

Feature Type Prec. Rec. F-score Accu.
Baseline 0.00 0.00 0.00 78.24
Word unigrams 74.19 50.74 60.26 85.44
Meta-learner 76.53 55.15 64.10 86.56

Table 9: In-domain classification: Micro-averaged
sentence-level results (%), where test set is 20% of
an individual product, and training set is 80% of
the same product. Maximum value in each column
is boldfaced.

main to achieve comparable performance. This
strategy also results in a faster training time and a
smaller model, similar to the findings in (Buciluǎ
et al., 2006).

6.4 Error Analysis

Finally, we also conducted a manual inspection
of two broad categories of errors – false posi-
tives, i.e. “not usage” sentences marked as “us-
age” (n = 25), and false negatives, i.e. “usage”
sentences marked as “not usage” (n = 56). This
analysis revealed the following sub-categories for
the false positives:

• Number expressions: Seven instances
(29.17%) of errors can be attributed to nu-
meric expressions occurring within sentences
(“two years”, “3am”, “third bottle”, etc.).

• Erroneous gold labels: Six instances (25%)
were actually correctly labeled as “usage” by
the system, whereas the gold label was wrong
(“I really love the smell of fresh laundry, and
the smell of Downy.”).

• Shortcomings: Six examples (25%) talk
about actual or perceived shortcoming(s) of
a product. “Olive oil used for healthy prop-
erties doesn’t keep well in plastic.[sic]”
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• Others: Five instances (20.83%) were not
captured by the above categories: “I used to
drink a small shot each day, but haven’t for a
while.”

False negatives have the following sub-
categories:

• Positive adjectives and adverbs: 21 in-
stances (37.5%) can be attributed to posi-
tive adjectives (“good”, “great”, “excellent”),
and/or positive adverbs (“really”, “impres-
sively”, “well”). “It smells amazing and lasts
forever.”

• Use-related verb in primary clause: Eleven
examples (19.64%) contain a use-related
verb (“use”, “help”, “need”) in the primary
clause: “I use this to eat, not to cook with.”

• Erroneous gold labels: Nine instances
(16.07%) are actually correctly labeled as
“not usage” by the system, but the gold
label was wrong (“When I have to hang
dry clothes, they get this horrible egg water
odor.”).

• Non-traditional usage: There are three
instances (5.36%) that talk about non-
traditional or innovative usage of a product:
“I have since made small sachet bags for my
closets, car and as gifts.”

• Others: Twelve instances (21.43%) were not
captured by the above categories: “I actually
saw results after the first use.”

7 Conclusion

In this paper, we introduced the task of identifying
usage expression sentences in consumer product
reviews. A dataset comprising more than 3, 000
annotated sentences was created from reviews of
five products. We also trained a binary classifier
to identify sentences that talk about the usage of a
product. Extensive feature tuning and fusion ex-
periments resulted in performance values compa-
rable to the inter-annotator agreement. Detailed
feature ranking, error analysis, and per-product
performance numbers have been reported. Di-
rections for future research include: experiments
on a larger dataset of reviews with more diverse
product types, expanding to other genres of re-
views such as product blogs, and identifying types

of usage expressions (how, where, why, and non-
traditional uses). The work can also be extended
to model the “personality” of a product with the
“personality” of users – perhaps measured by the
average personality of all people using the target
product.

The annotated dataset is publicly available
for research use from http://lit.eecs.
umich.edu/downloads.html.
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Abstract

This article presents a contrastive anal-
ysis between reading time and syn-
tactic/semantic categories in Japanese.
We overlaid the reading time annota-
tion of BCCWJ-EyeTrack and a syntac-
tic/semantic category information anno-
tation on the ‘Balanced Corpus of Con-
temporary Written Japanese’. Statistical
analysis based on a mixed linear model
showed that verbal phrases tend to have
shorter reading times than adjectives, ad-
verbial phrases, or nominal phrases. The
results suggest that the preceding phrases
associated with the presenting phrases
promote the reading process to shorten the
gazing time.

1 Introduction

Most of the studies on sentence processing by
humans are based on confirmatory data analy-
sis. The methodology involves developing a hy-
pothesis, constructing sample sentences, includ-
ing the target language phenomena, and perform-
ing a psycholinguistic experiment, such as record-
ing reading time or event-related potentials. In
recent times, the ‘Balanced Corpus of Contem-
porary Written Japanese’ (hereafter ‘BCCWJ’)
(Maekawa et al., 2014) was compiled and pub-
lished. The reading time annotation on BCCWJ:
BCCWJ-EyeTrack (Asahara et al., 2016) is avail-
able for the linguistic research community. The
data in the BCCWJ enable us to perform ex-
ploratory data analysis in fair and reproducible en-
vironments.

We measured the readability of humans. More
concretely, we performed a contrast comparison
between reading time and syntactic/semantic cat-
egories of words. We prepared the annotation

of word senses on BCCWJ based on ‘Word List
by Semantic Principles’ (国立国語研究所, 1964,
2004). The original WLSP label annotation is on
both short unit words and long unit words in the
BCCWJ. We then mapped these annotations into
Bunsetsu(base phrase)-units.

The statistical analysis using a mixed linear
model shows that verbal phrases tend to have
shorter reading times than adjective/adverbial
phrases or nominal phrases.

Section 2 presents the related research. Section
3 shows the data and methods. Section 4 presents
the results, and Section 5 is the discussion. Sec-
tion 6 concludes this article and presents the im-
plications of our current work and the future work
we plan to conduct.

2 Related Work

First, we present related work on eye tracking. The
Dundee Eyetracking Corpus (Kennedy and Pynte,
2005) contains reading times for English and
French newspaper editorials from 10 native speak-
ers of each language that were recorded us-
ing eye-tracking equipment. The corpus does
not target a specific set of linguistic phenom-
ena but instead provides naturally occurring
texts for testing diverse hypotheses. For exam-
ple, (Demberg and Keller, 2008) used the cor-
pus to test Gibson’s dependency locality the-
ory (DLT) (Gibson, 2008) and Hale’s surprisal
theory (Hale, 2001). The corpus also allows
for replications to be conducted; for example,
(Roland et al., 2012) concluded that previous anal-
yses (Demberg and Keller, 2007) had been dis-
torted by the presence of a few outlier data points.

Second, we present language analyses or mod-
els with reading time or eye tracking gaze infor-
mation. (Barrett et al., 2016) presented a POS
tagging model with gaze patterns. (Klerke et al.,
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Table 1:Data format of BCCWJ-EyeTrack
name type decription

surface factor surface form
time int reading time

logtime num reading time (log)
measure factor reading time type
sample factor sample name

article factor article information
metadata orig factor document structure tag

metadata factor metadata
length int number of characters
space factor segment boundary with

space or not
subj factor participant ID

setorder factor presentation order
dependent int syntactic dependency
sessionN int session order
articleN int article display order
screenN int screen display order

lineN int line display order
segmentN int segmentation display
is first factor the left most
is last factor the right most

is second last factor the second right most
WLSPLUWFALSE factor unknown word in

WLSP
WLSPLUWA factor semantic category in

WLSP
WLSPLUWB factor syntactic category in

WLSP

2015) presented a grammaticality detection model
for machine-processed sentences. (Iida et al.,
2013) presented an analysis of eye-tracking data
for the annotation of predicate–argument rela-
tions.

Our paper is slightly different from these pre-
ceding papers. We present a corpus-based psy-
cholinguistic research on the relationship between
reading time and syntactic/semantic categories.

3 Data and Method

We used the overlaid data of BCCWJ-EyeTrack
and syntactic/semantic categories, as given in Ta-
ble1. We present the data below in detail.

3.1 BCCWJ and its annotation

We used BCCWJ (Maekawa et al., 2014) and its
annotation data. BCCWJ is a balanced corpus of
Japanese. We used newspaper articles from the
core data. The data were sampled by their produc-
tion. The sentences were segmented into word unit
boundaries of short unit words, long unit words,
andbunsetsu. The morphological information for
the short unit words and long unit words was an-
notated by human annotators.

We also usedbunsetsu-based syntactic depen-

dency annotation(Asahara and Matsumoto, 2016)
for the data to investigate the correlation be-
tween syntactic dependency attachments and read-
ing time.

3.2 Reading Time Data: BCCWJ-EyeTrack

We now explain the two methods used for measur-
ing the reading time: eye tracking and self-paced
reading. The order of tasks was fixed with eye
tracking in the first session and self-paced read-
ing in the second session. Each participant saw
each text once with the task and segmentation of
the texts counterbalanced across participants.

Eye tracking was recorded with a tower-
mounted EyeLink 1000 (SR Research Ltd). The
view was binocular, but data were collected from
each participant’s right eye at a resolution of 1000
Hz. Participants looked at the display using a half-
mirror; their heads were fixed with their chins on
a chin rest. Unlike self-paced reading, during eye
tracking all segments were shown simultaneously.
This allowed more natural reading because each
participant could freely return and reread earlier
parts of the text on the same screen. However,
participants were not allowed to return to previous
screens. Stimulus texts were shown in a fixed full-
width font (MS Mincho 24 point) and displayed
horizontally as is customary with computer dis-
plays for Japanese; there were five lines per screen
on a 21.5-in display.1 Under the segmented con-
dition, a half-width space was used to indicate the
boundary between segments. In order to improve
vertical tracking accuracy, three empty lines were
placed between the lines of text. A line break
was inserted at the end of a sentence or when the
maximum 53 full-width characters per line was at-
tained. Moreover, line breaks were inserted at the
same points in the segmented and unsegmented
conditions to guarantee that the same number of
non-space characters was shown under both con-
ditions.

The same procedure was adopted for the self-
paced reading presentation except that the chin
rest was not used, and participants could move
their heads freely while looking directly at the
display. Doug Rohde’s Linger program Version
2.942 was used to record keyboard-press laten-
cies while sentences were shown using a non-
cumulative self-paced moving-window presenta-

1EIZO FlexScan EV2116W (resolution:1920×1080 pix-
els) set at 50 cm from the chin rest.

2http://tedlab.mit.edu/ ˜ dr/Linger/
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tion. This had the best correlation with eye-
tracking data when different styles of presenta-
tion were compared for English (Just et al., 1982).
Sentence segments were initially shown masked
with dashes. Participants pressed the space key of
the keyboard to reveal each subsequent segment of
the sentence, while all other segments reverted to
dashes. Participants were not allowed to go back
and reread earlier segments.

Twenty-four native Japanese speakers, who
were 18 years or older at the time, participated in
the experiment with due financial compensation.
The experiments were conducted from Septem-
ber to December 2015. The collected profile
data included the age (in 5-year brackets), gen-
der, educational background, eyesight (all par-
ticipants had uncorrected vision or vision cor-
rected with soft contact lenses or prescription
glasses), geographical linguistic background (i.e.,
the prefecture within Japan where they lived un-
til the age of 15), and parents’ place of birth.
The vocabulary size of the participants was mea-
sured using a Japanese language vocabulary eval-
uation test (Amano and Kondo, 1998). Partici-
pants indicated words they knew from a list of
50 words, and scores were calculated by taking
word-familiarity estimates into consideration. As
a measure of the working memory capacity, the
Japanese version of a reading span test was con-
ducted (Osaka and Osaka, 1994). Each partici-
pant read sentences aloud, each of which con-
tained an underlined content word. After each set
of sentences, the participants recalled the under-
lined words. If they successfully recalled all the
words, the set size was increased by one sentence
(sets of two to five sentences were used). The final
score was the largest set for which all words were
correctly recalled; a half point was added if half
the number of words were recalled in the last trial.

Reading times were collected for a subset of the
core data of the BCCWJ (Maekawa et al., 2014),
which consisted of newspaper article (PN: pub-
lished newspaper) samples. Articles were chosen
if they were annotated with information such as
syntactic dependencies, predicative clausal struc-
tures, co-references, focus of negation, and similar
details following the list of articles that were given
annotation priority in the BCCWJ.

The 21 newspaper articles3 chosen were divided

3The original BCCWJ-EyeTrack paper (Asahara et al.,
2016) presented 20 articles. However, there were two con-

into four data sets containing five articles each:
A, B, C, and D. Table2 presents the numbers of
words, sentences, and screens (i.e., pages) for each
data set. Each article was presented starting on a
new screen.

Table 2:Data set sizes

Data set Segments Sentences Screens
A 470 66 19
B 455 67 21
C 355 44 16
D 363 41 15

Articles were shown segmented or unsegmented
(i.e., with or without a half-width space to mark
the boundary between segments). Segments con-
formed to the definition forbunsetsuunits (a
content word followed by functional morphology,
e.g., a noun with a case marker) in the BCCWJ as
prescribed by the National Institute for Japanese
Language and Linguistics. Each participant was
assigned to one of eight groups of three partici-
pants each. Each group was subjected to one of the
eight experimental conditions with varying com-
binations of measurement methods, and boundary
marking for different data sets was presented in
different orders.

During the self-paced reading session, each seg-
ment was displayed separately, and participants
could not return to reread earlier parts of the text.
Therefore, the latencies for the button presses are
straightforward measures of the time spent on each
segment.

With regard to data from eye tracking, five types
of measurements were used: first fixation time
(FFT), first pass time (FPT), regression path time
(RPT), second pass time (SPT), and total time
(TOTAL). These are explained in Figure1.

The FFT is the duration of fixation measured
when the gaze first enters the area of interest. In
the figure, the FFT for “the first fiscal year settling
of accounts also” (hereafter “the area of interest”)
is the duration of fixation 5.

The FPT is the total duration of fixation from
the moment the gaze first stops within the area of
interest until it leaves the focus area by moving to
the right or left of this area. In the figure, the FPT

secutive articles in data set C. These two articles were pre-
sented on separate screens. Thus, we split them into two for
statistical analysis.

406



1                     2                          3         4               5             6

                     7                    8                                        9                               10

                                                                                     11                             12

開業一年間の 稼働率は 当初目標を 上回り、 初年度決算も 黒字確実で

occupancy 
rate is 

the original 
goal surpass

the first fiscal year 
settling of 
accounts also

achieve a 
surplus 
certainly

of the first one 
year

Figure 1:Example of fixations

is the sum of the durations of fixations 5 and 6.
The RPT is the total span of time from the mo-

ment the gaze enters the area of interest until it
crosses the right boundary of this area for the first
time. In the figure, the RPT is the sum of the dura-
tions for fixations 5–9. The RPT can include fixa-
tions to the left of the left boundary (e.g., 7 and 8)
and the durations of fixations when the gaze re-
turns to the area of interest (e.g., 9).

The SPT is the total span of time the gaze rests
in the area of interest excluding the FPT. In the
figure, the SPT is the sum of the durations of fixa-
tions 9 and 11.

The TOTAL is the total duration the gaze rests
within the area of interest. In other words, it is the
sum of SPT and FPT. In the figure, TOTAL is the
sum of the durations of fixations 5, 6, 9, and 11.

Table 1 presents the data. surface is
the surface form of the word. The reading
time (i.e., time ) is converted into log scale
(i.e., logtime ). measure is the reading
type {SELF, FFT, FPT, RPT, SPT, TOTAL}.
sample, article, metadata orig,
metadata are information related to the article.
length is the number of characters in the
surface form. space denotes spaces, if they
are present between segments.subj is the
participant ID, which is used as a random effect
for the statistical analysis.dependent is the
number of dependents for the segments. The
dependency relation is annotated by humans
(Asahara and Matsumoto, 2016). sessionN,
articleN, screenN, lineN,
segmentN are the display order of the elements.
is first,is last,is second first

are the layout features on the screen.
WLSPLUWFALSE, WLSPLUWA, WLSPLUWB
are described in the next subsection.

3.3 WLSP and annotation

‘Word List by Semantic Principles’ (Bunrui Goi-
hyo) (国立国語研究所, 1964) is ‘a A collection of
words classified and arranged by their meanings’.
The first published version of WLSP in 1964 in-
cludes around 33,000 words. The revised and en-
larged version of WLSP (国立国語研究所, 2004)
was published in 2004. The data include around
79,000 word tokens with 100,000 word sense to-
kens.

Table 3 shows an example entry ‘この (kono:
this)’ in WLSP. The article number ‘3.1010’ iden-
tifies a word belonging to the syntactic/semantic
category. The first digit of the article number
refers to ‘class’, which is a syntactic category of
the entry: class ‘1’ represents a ‘体’ nominal en-
try; class ‘2’ represents a ‘用’ verbal entry; class
‘3’ is an ‘相’ adjective entry; and class ‘4’ is a ‘他’
other entry including conjunctive and interjection.
This category classification is originally from the
‘Awakening of Faith in the Mahayana’ (大乘起信
論;大乗起信論) in Mahayana Buddhism.

The digits to the right of a period identify the se-
mantic category. The first decimal digit represents
a ‘division’, which is a major semantic category:
division ‘.1’ is a ‘抽象的関係 (関係)’ relation en-
try; division ‘.2’ is a ‘人間活動の主体 (主体)’ sub-
ject entry; division ‘.3’ is a ‘精神および行為 (活
動)’ action entry; division ‘.4’ is a ‘生産物および
用具 (生産物)’ product entry; and division ‘.5’ is a
‘自然物および自然現象 (自然)’ nature entry. The
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Table 3:WLSP example entry ‘この (kono)’ (article number 3.1010)
class devision section article
相 (3) 関係 (.1) 真偽 (.10) こそあど (.1010)

Adj/adv Relation Boolean Demonstrative

first two decimal digits refer to the ‘section’. Four
decimal digits refer to the ‘article’, which is article
number 895, of the finest semantic categories.

We annotated the words from these WLSP arti-
cle numbers based on the BCCWJ core samples.
The annotation was carried out for content words
for short unit words and long unit words of BC-
CWJ. Functional words were not annotated in the
WLSP category. Now, the samples of BCCWJ-
EyeTrack have already been annotated. We de-
fined the set of right-most long unit words as the
category of thebunsetsu. The semantic category
(class) and syntactic category (division) were reas-
signed on segments. We called themWLSPLUWA
andWLSPLUWB, respectively. We note that, there
are still unassigned entries for the segment even if
all the words have been manually checked. We as-
signed the boolean value ofWLSPLUWFALSEfor
the unassigned words.

3.4 Statistical Analysis

We investigated the reading time (logtime ) of
NPs that were annotated with the WLSP labels.
Whereas Asahara et al.’s paper was based on
time , ours was based onlogtime to reduce the
outliers in the model. During the preprocessing,
we excluded data{authorsData , caption ,
listItem , profile , titleBlock } of
metadata . We also excluded zero-millisecond
data points from the eye tracking data. The
number of data points were 17,628 for SELF
(100.0%); 13,232 for FFT, FPT, RPT, and TOTAL
(75.0%); and 4,769 for SPT (27.0%). After
model-based trimming was used to eliminate
points beyond 3.0 standard deviations, the model
was rebuilt (Baayen, 2008). subj andarticle
were considered as random effects, as expressed
in the formula in Figure2. We used the lme4
package on R.

4 Results

Table 4 shows the results. Each number shows
the coefficient with the standard error in brack-
ets. A negative value of the coefficient indi-
cates that the factor shortens the reading time.

A positive value of the coefficient indicates that
the factor lengthens the reading time. The base
fixed effect of the syntactic category is the nom-
inal phrase(WLSPLUWA1), and the base fixed
effect of the semantic category is the relation
(WLSPLUWB1). Note that the time is based on log-
arithm.

First, we confirm the results of the non-WLSP
related terms. The presentation withspace s
between segments makes the reading time of
FPT, RPT, SPT, and TOTAL faster than the one
without space s for eye tracking methods. To
improve the readability of texts, one should
simply introduce spaces atBunsetsuboundaries.
The longer length of the segment makes
reading times long except for FFT, because
the gazing area in this case is correlated to the
probability of the fixation. Moredependency
arcs make shorter reading times for the segment.
This fact supports Anti-locality (Konieczny,
2000). The layout information (is first,
is last, is second last ) is for the eye
movement at the text wrap. All reading times
other than SPT is longer at the left most seg-
ment (is first ). The reading time of FPT,
RPT, and Total is longer at the right most and
the second right most segments (is last,
is second last ). With regard to the pre-
sentation order (sessionN, articleN,
screenN, lineN, segmentN ), As the
experiment progressed, the reading time became
shorter. This means that the subject participants
become more familiar with the experiment.

Next, we confirm the results related to the
WLSP syntactic categories. For all types of read-
ing times, the verbal segments (WLSPLUWA2)
had significantly shorter reading times than the
nominal segments (WLSPLUWA1). For read-
ing time types other than FFT, the adjec-
tive/adverbial segments (WLSPLUWA3) had sig-
nificantly shorter reading times than the nominal
segments (WLSPLUWA1). For reading time types
other than SPT, the adjective/adverbial segments
(WLSPLUWA3) had significantly longer reading
times than the verbal segments (WLSPLUWA1).
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logtime ˜ space * sessionN + length + dependent
+ is_first + is_last + is_second_last
+ articleN + screenN + lineN + segmentN
+ WLSPLUWFALSE + WLSPLUWA + WLSPLUWB
+ (1 | subj) + (1 | article)

Figure 2:Lmer formula for the statistical analysis

Table 4:The results of statistical analysis

Dependent variable:

logtime

SELF FFT FPT SPT RPT TOTAL

space =True −0.001 −0.006 −0.017∗∗∗ −0.039∗∗∗ −0.018∗∗∗ −0.029∗∗∗

(0.002) (0.004) (0.005) (0.009) (0.006) (0.005)
length 0.086∗∗∗ −0.003 0.135∗∗∗ 0.022∗∗∗ 0.115∗∗∗ 0.130∗∗∗

(0.001) (0.002) (0.003) (0.005) (0.003) (0.003)
dependent −0.008∗∗∗ −0.003 −0.016∗∗∗ −0.016∗∗∗ −0.012∗∗∗ −0.018∗∗∗

(0.002) (0.002) (0.003) (0.006) (0.004) (0.003)
is first 0.052∗∗∗ 0.019∗∗∗ 0.090∗∗∗ −0.027∗∗ 0.030∗∗∗ 0.069∗∗∗

(0.004) (0.006) (0.008) (0.013) (0.009) (0.008)
is last 0.033∗∗∗ −0.009 0.014∗ −0.052∗∗∗ 0.088∗∗∗ −0.007

(0.004) (0.006) (0.008) (0.016) (0.010) (0.008)
is second last −0.010∗∗∗ −0.001 0.034∗∗∗ −0.005 0.045∗∗∗ 0.034∗∗∗

(0.004) (0.006) (0.007) (0.012) (0.008) (0.007)
sessionN −0.022 −0.022 −0.041∗ −0.036∗∗ −0.049∗ −0.047∗

(0.021) (0.016) (0.024) (0.018) (0.025) (0.024)
articleN −0.028∗∗∗ −0.004 −0.005 −0.002 −0.007 −0.001

(0.005) (0.004) (0.007) (0.007) (0.007) (0.008)
screenN −0.029∗∗∗ −0.004 −0.018∗∗∗ −0.015∗∗∗ −0.017∗∗∗ −0.025∗∗∗

(0.002) (0.003) (0.003) (0.006) (0.004) (0.003)
lineN −0.010∗∗∗ −0.010∗∗∗ −0.018∗∗∗ −0.018∗∗∗ −0.007∗∗ −0.018∗∗∗

(0.001) (0.002) (0.003) (0.005) (0.003) (0.003)
segmentN −0.004∗∗∗ 0.003∗∗∗ −0.005∗∗∗ −0.009∗∗∗ −0.013∗∗∗ −0.012∗∗∗

(0.001) (0.001) (0.001) (0.002) (0.002) (0.001)
WLSPLUWFALSE −0.030 0.020 −0.075 −0.031 −0.109 −0.160∗∗

(unassigned word) (0.019) (0.061) (0.076) (0.299) (0.092) (0.079)
WLSPLUWA2 −0.047∗∗∗ −0.038∗∗∗ −0.096∗∗∗ −0.029∗∗ −0.088∗∗∗ −0.101∗∗∗

(verb) (0.004) (0.006) (0.007) (0.014) (0.009) (0.008)
WLSPLUWA3 −0.036∗∗∗ −0.003 −0.056∗∗∗ −0.034∗ −0.054∗∗∗ −0.071∗∗∗

(adj/adv) (0.005) (0.008) (0.010) (0.020) (0.012) (0.010)
WLSPLUWA4 −0.031∗ −0.020 −0.127∗∗∗ −0.238∗∗ −0.137∗∗∗ −0.189∗∗∗

(other) (0.018) (0.033) (0.040) (0.100) (0.049) (0.042)
WLSPLUWB.2 0.001 0.014∗∗ 0.018∗∗ 0.011 0.005 0.018∗∗

(subject) (0.004) (0.006) (0.007) (0.013) (0.009) (0.008)
WLSPLUWB.3 −0.007∗∗ 0.015∗∗∗ 0.024∗∗∗ 0.012 0.021∗∗∗ 0.023∗∗∗

(action) (0.003) (0.005) (0.006) (0.011) (0.007) (0.006)
WLSPLUWB.4 0.017∗∗∗ 0.005 0.022∗ 0.009 0.018 0.037∗∗∗

(product) (0.007) (0.010) (0.013) (0.021) (0.015) (0.013)
WLSPLUWB.5 0.014 0.034∗∗ 0.017 0.054 0.024 0.040∗∗

(nature) (0.010) (0.015) (0.019) (0.034) (0.023) (0.020)
space1:sessionN −0.016 0.044 0.059 0.060∗ 0.061 0.061

(0.042) (0.031) (0.049) (0.035) (0.050) (0.048)
Constant 2.790∗∗∗ 2.299∗∗∗ 2.532∗∗∗ 2.456∗∗∗ 2.603∗∗∗ 2.672∗∗∗

(0.022) (0.017) (0.026) (0.023) (0.027) (0.026)

Observations 17,628 13,232 13,232 4,769 13,232 13,232

Note: ∗p<0.1;∗∗p<0.05;∗∗∗p<0.01

Finally, we confirm the result related to
WLSP semantic categories. The abstract rela-
tion (WLSPLUWB.1) shows significantly longer
reading times of FFT and TOTAL than of

others such as subject (WLSPLUWB.2), action
(WLSPLUWB.3), and product (WLSPLUWB.4).
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5 Discussions

In this section, we discuss why reading time varies
in syntactic and semantic categories.

Anti-locality is the term used to describe the
phenomenon in which segments with more de-
pendents in their preceding context have shorter
reading times (Konieczny, 2000). This phe-
nomenon was reported for German double objects
(Konieczny and D̈oring, 2003). It was then inves-
tigated for Japanese double objects (Uchida et al.,
2014). These shortened reading times cannot be
explained by the predictions of the working mem-
ory models, in which segments with more depen-
dents load for the reading (Gibson, 2008), or in
which the number of dependents do not affect the
reading time of the succeeding segments.

This phenomenon is compatible with surprisal
theory (Hale, 2001; Levy and Gibson, 2013). It
explains how double objects of head final lan-
guages, in which the predicate has both a di-
rect and an indirect object tend to have shorter
reading times than one that has only a direct ob-
ject. Asahara et al.(2016) investigated theanti-
locality phenomenon in more general settings
with the dependency from BCCWJ-DepPara
(Asahara and Matsumoto, 2016). The results
show that the segment with higher dependency has
a shorter reading time than a segment with a lower
dependency.

In this research, the reading time tends to be
shorter in the order of Noun (体, WLSPLUWA1)
> Adjective/Adverb (相, WLSPLUWA3) > Verb
(用, WLSPLUWA2) in the syntactic categories. The
noun (WLSPLUWA1) tends to indicate the object
and to become the argument of a predicate such
as a verb or an adjective. Although the noun can
also become a predicate with a copula verb, the
modifier or argument for the noun is limited. The
category (WLSPLUWA3) includes a predicative ad-
jective with arguments. The verb (WLSPLUWA2)
tends to be a predicate with arguments at the
clause end. The tendency is reliable because the
standard errors of the coefficients are very small.
Though we includeddependency as a fixed fac-
tor, we observed these tendencies for the reading
time, in which the syntactic category with more ar-
gument tends to have a shorter reading time than
the others. It indicates that arguments of a predi-
cate in Japanese tend not to be overtly Appearing
in the context. The omitted arguments may help
predict the upcoming predicate, although the ar-

guments tend to be omitted in the context. There-
fore, the results do not support the working mem-
ory model, in which the load to memorize the pre-
ceding contexts interferes with the reading. The
prediction model is a more plausible hypothesis
than the working memory model.

In the semantic category, the abstract relation
has a shorter reading time than others. The relation
has at least two arguments. The existence of the
arguments helps to promote the reading time.

6 Conclusions

This article explores the correlation between read-
ing time and the syntactic/semantic category of
the text. The reading time tends to be shorter in
the order of Noun (1)> Adjective/Adverb (3)>
Verb (2) in the syntactic categories. The relation
(WLSPLUWB.1) tends to be the shortest in the se-
mantic categories. The results show that thebun-
setsuwith arguments tend to have shorter reading
times than the ones without arguments. This fact
supports theanti-locality (Konieczny and D̈oring,
2003) and Hale’s surprisal theory (Hale, 2001).

Our current work comprises two analyses. The
first one is a contrastive analysis between read-
ing time and information structure annotation. We
overlaid the annotation of information structures
(Miyauchi et al., 2017) on the reading time data.
The result showed that reading time can reveal the
difference in whether the target nominal phrase is
hearer-new or bridging (Asahara, 2017). The sec-
ond one is contrastive analysis between reading
time and the clause boundary category annotation.
The result shows that the clause end segments tend
to have shorter reading times. Furthermore, the
reading time of clause boundaries vary according
to the classification of the clauses.

In our future work, we plan to introduce
Bayesian linear mixed model (Sorensen et al.,
2016) for the statistical modelling. We also
hope to investigate the correlation between read-
ing time and word familiarity rate. Word fa-
miliarity rate is the fundamental data to esti-
mate Japanese language vocabulary evaluation
test (Amano and Kondo, 1998). However, word-
familiarity-rate data were constructed around 20
years ago. We now plan to reconstruct word-
familiarity-rate data on WLSP entries by crowd
sourcing using a Bayesian linear mixed model.

410



Acknowledgments

The work reported in this article was supported by
the NINJAL research project of the Center for Cor-
pus Development. This work was also supported
by JSPS KAKENHI Grant Number JP25284083
and JP17H00917.

References

S. Amano and T. Kondo. 1998. Estimation of men-
tal lexicon size with word familiarity database. In
Proceedings of International Conference on Spoken
Language Processing. volume 5, pages 2119–2122.

M. Asahara. 2017. Between reading time and infor-
mation structure. InProceedings of the 31st Pa-
cific Asia Conference on Language, Information and
Computation (PACLIC 31). page (to appear).

M. Asahara and Y. Matsumoto. 2016. BCCWJ-
DepPara: A Syntactic Annotation Treebank on
the ‘Balanced Corpus of Contemporary Written
Japanese’. InProceedings of the 12th Workshop on
Asian Langauge Resources (ALR12). pages 49–58.

M. Asahara, H. Ono, and E. T. Miyamoto. 2016.
Reading-Time Annotations for ‘Balanced Corpus of
Contemporary Written Japanese’. InProceedings
of COLING 2016, the 26th International Confer-
ence on Computational Linguistics: Technical Pa-
pers. pages 684–694.

R. H. Baayen. 2008.Analyzing Linguistic Data: A
practical Introduction to Statistics using R. Cam-
bridge University Press.

M. Barrett, J. Bingel, F. Keller, and A. Søgaard.
2016. Weakly supervised part-of-speech tagging us-
ing eye-tracking data. InProceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers). pages
579–584.

V. Demberg and F. Keller. 2007. Eye-tracking evidence
for integration cost effects in corpus data. InPro-
ceedings of the 29th Meeting of the Cognitive Sci-
ence Society (CogSci-07). pages 947–952.

V. Demberg and F. Keller. 2008. Data from eye-
tracking corpora as evidence for theories of syntactic
processing complexity.Cognition109(2):193–210.

E. Gibson. 2008. Linguistic complexity: Locality of
syntactic dependencies.Cognition68:1–76.

J. Hale. 2001. A probabilistic earley parser as a psy-
cholinguistic model. InProceedings of the second
conference of the North American chapter of the as-
sociation for computational linguistics. volume 2,
pages 159–166.

R. Iida, K. Mitsuda, and T. Tokunaga. 2013. Investi-
gation of annotator’s behaviour using eye-tracking
data. InProceedings of the 7th Linguistic Annota-
tion Workshop and Interoperability with Discourse.
pages 214–222.

M. A. Just, P. A. Carpenter, and J. D. Woolley. 1982.
Paradigms and processes in reading comprehen-
sion. Journal of Experimental Psychology: General
3:228–238.

A. Kennedy and J. Pynte. 2005. Parafoveal-on-foveal
effects in normal reading.Vision Research45:153–
168.

Sigrid Klerke, H́ector Mart́ınez Alonso, and Anders
Søgaard. 2015. Looking hard: Eye tracking for de-
tecting grammaticality of automatically compressed
sentences. InProceedings of the 20th Nordic Con-
ference of Computational Linguistics (NODALIDA
2015). pages 97–105.

L. Konieczny. 2000. Locality and parsing complexity.
Journal of Psycholinguistic Research29(6).

L. Konieczny and P. D̈oring. 2003. Anticipation of
clause-final heads. evidence from eye-tracking and
srns. InProceedings of the 4th International Con-
ference on Cognitive Science.

R. Levy and E. Gibson. 2013. Surprisal, the pdc, and
the primary locus of processing difficulty in relative
clauses.Frontiers in Psychology4(229).

K. Maekawa, M. Yamazaki, T. Ogiso, T. Maruyama,
H. Ogura, W. Kashino, H. Koiso, M. Yamaguchi,
M. Tanaka, and Y. Den. 2014. Balanced Corpus
of Contemporary Written Japanese.Language Re-
sources and Evaluation48:345–371.

T. Miyauchi, M. Asahara, N. Nakagawa, and S. Kato.
2017. Annotation of Information Structure on
‘The Balanced Corpus of Contemporary Written
Japanese’. InProceedings of PACLING 2017. pages
166–175.

M. Osaka and N. Osaka. 1994. [working memory
capacity related to reading: measurement with the
japanese version of reading span test] (in japanese).
Shinrigaku Kenkyu: The Japanese Journal of Psy-
chology65(5):339–345.

D. Roland, G. Mauner, C. O’Meara, and H. Yun. 2012.
Discourse expectations and relative clause process-
ing. Journal of Memory and Language66(3):479–
508.

T. Sorensen, S. Hohenstein, and S. Vasishth. 2016.
Bayesian linear mixed models using stan: A tutorial
for psychologists, linguists, and cognitive scientists.
Quantitative Methods for Psychology12:175–200.

S. Uchida, E. T. Miyamoto, Y. Hirose, Y. Kobayashi,
and T. Ito. 2014. An erp study of parsing and mem-
ory load in japanese sentence processing – a compar-
ison between left-corner parsing and the dependency

411



locality theory –. InProceedings of the Thought
and Language/the Mental Architecture of Process-
ing and Learning of Language 2014.

国立国語研究所, editor. 1964.分類語彙表. 秀英出版.

国立国語研究所, editor. 2004.分類語彙表 –増補改訂
版–. 大日本図書.

412



Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 413–422,
Taipei, Taiwan, November 27 – December 1, 2017 c©2017 AFNLP

WiNER: A Wikipedia Annotated Corpus for Named Entity Recognition

Abbas Ghaddar
RALI-DIRO
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Abstract

We revisit the idea of mining Wikipedia
in order to generate named-entity anno-
tations. We propose a new methodology
that we applied to the English Wikipedia
to build WiNER, a large, high quality, an-
notated corpus. We evaluate its useful-
ness on 6 NER tasks, comparing 4 popular
state-of-the art approaches. We show that
LSTM-CRF is the approach that benefits
the most from our corpus. We report im-
pressive gains with this model when using
a small portion of WiNER on top of the
CONLL training material. Last, we pro-
pose a simple but efficient method for ex-
ploiting the full range of WiNER, leading
to further improvements.

1 Introduction

Named-Entity Recognition (NER) is the task of
identifying textual mentions and classifying them
into a predefined set of types. It is an important
pre-processing step in NLP and Information Ex-
traction. Various approaches have been proposed
to tackle the task, including conditional random
fields (Finkel et al., 2005), perceptrons (Ratinov
and Roth, 2009), and neural network approaches
(Collobert et al., 2011; Lample et al., 2016; Chiu
and Nichols, 2016).

One issue with NER is the small amount of
annotated data available for training, and their
limited scope (see Section 4.1). Furthermore,
some studies (Onal and Karagoz, 2015; Augen-
stein et al., 2017) have demonstrated that named-
entity systems trained on news-wire data perform
poorly when tested on other text genres. This mo-
tivated some researchers to create a named-entity
labelled corpus from Wikipedia. This was notably
attempted by Nothman et al. (2008) and more re-

cently revisited by Al-Rfou et al. (2015) in a mul-
tilingual context. Both studies leverage the link
structure of Wikipedia to generate named-entity
annotations. Because only a tiny portion of texts in
Wikipedia are anchored, some strategies are typ-
ically needed to infer more annotations (Ghad-
dar and Langlais, 2016b). Such a process typi-
cally yields a noisy corpus for which filtering is
required.

In this paper, we revisit the idea of auto-
matically extracting named-entity annotations out
of Wikipedia. Similarly to the aforementioned
works, we gather anchored strings in a page as
well as their type according to Freebase (Bol-
lacker et al., 2008) but, more importantly, we
also generate annotations for texts not anchored
in Wikipedia. We do this by considering coref-
erence mentions of anchored strings as candidate
annotations, and by exploiting the out-link struc-
ture of Wikipedia. We applied our methodology
on a 2013 English Wikipedia dump, leading to a
large annotated corpus called WiNER, which con-
tains more annotations than similar corpora and,
as we shall see, is more useful for training NER
systems.

We discuss related work in Section 2 and
present the methodology we used to automati-
cally extract annotations from Wikipedia in Sec-
tion 3. The remainder of the article describes the
experiment we conducted to measure the impact
of WiNER for training NER systems. We describe
the datasets and the different NER systems we
trained in Section 4. We report the experiments
we conducted in Section 5. We propose a simple
but efficient two stage strategy we designed in or-
der to benefit the full WiNER corpus in Section 6.
We report error analysis in Section 7 and conclude
in Section 8.
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2 Related Work

Turning Wikipedia into a corpus of named enti-
ties annotated with types is a task that received
some attention in a monolingual setting (Toral and
Munoz, 2006; Nothman et al., 2008), as well as
in a multilingual one (Richman and Schone, 2004;
Al-Rfou et al., 2015).

In (Nothman et al., 2008) the authors describe
an approach that exploits links between articles
in Wikipedia in order to detect entity mentions.
They describe a pipeline able to detect their types
(ORG, PER, LOC, MISC), making use of hand-
crafted rules specific to Wikipedia, and a boot-
strapping approach for identifying a subset of
Wikipedia articles where the type of the entity
can be predicted with confidence. Since anchored
strings in Wikipedia lack coverage (in part be-
cause Wikipedia rules recommend that only the
first mention of a given concept be anchored in a
page), the authors also describe heuristics based
on redirects to identify more named-entity men-
tions. They tested several variants of their corpus
on three NER benchmarks and showed that sys-
tems trained on Wikipedia data may perform bet-
ter than domain-specific systems in an out-domain
setting.

Al-Rfou et al. (2015), follow a similar path al-
beit in a multilingual setting. They use Freebase to
identify categories (PER, LOC, ORG), and trained
a neural network on the annotations extracted.
In order to deal with non-anchored mentions in
Wikipedia, they propose a first-order coreference
resolution algorithm where they link mentions in
a text using exact string matching (thus Obama
will be linked to the concept Barack Obama and
labelled PER). They still had to perform some sen-
tence selection, based on an oversampling strat-
egy, in order to construct a subset of the original
training data.

Our work revisits the idea developed in these
two studies. Our main contribution consists in
dealing specifically with non anchored strings in
Wikipedia pages. We do this by analyzing the out-
link structure in Wikipedia, coupled to the infor-
mation of all the surface forms that have been used
in a Wikipedia article to mention the main concept
being described by this article. This process, de-
tailed in the next section, leads to a much larger set
of annotations, whose quality obviates the need for
ad-hoc filtering or oversampling strategies.

3 WiNER

We applied the pipeline described hereafter to
a dump of English Wikipedia from 2013, and
obtained WiNER, a resource built out of 3.2M
Wikipedia articles, comprising more than 1.3G to-
kens accounting for 54M sentences, 41M of which
contain at least one named-entity annotation. We
generated a total of 106M annotations (an average
of 2 entities per sentence).

3.1 Annotation Pipeline

The pipeline used to extract named-entity
annotations from Wikipedia is illustrated in
Figure 1, for an excerpt of the Wikipedia article
Chilly Gonzales, hereafter named the target
article. Similarly to (Nothman et al., 2008;
Al-Rfou et al., 2015), the anchored strings of
out-links in the target article are elected mentions
of named entities. For instance, we identify
Warner Bros. Records and Paris as mentions in
our target article. In general, a Wikipedia article
has an equivalent page in Freebase. We remove
mentions that do not have such a page. This
way, we filter out anchored strings that are not
named entities (such as List of Presidents of the
United States). We associate a category with
each mention by a simple strategy, similar to
(Al-Rfou et al., 2015), which consists in mapping
Freebase attributes to entity types. For instance,
we map organization/organization,
location/location and people/person
attributes to ORG, LOC and PER, respectively. If
an entry does not belong to any of the previous
classes, we tag it as MISC.

Because the number of anchored strings in
Wikipedia is rather small — less than 3% of the
text tokens according to (Al-Rfou et al., 2015) —
we propose to leverage: (1) the out-link struc-
ture of Wikipedia, (2) the information of all the
surface strings used to describe the main concept
of a Wikipedia article. For the latter, we rely on
the resource1 described in (Ghaddar and Langlais,
2016a) that lists, for all the articles in Wikipedia
(those that have a Freebase counterpart), all the
text mentions that are coreferring to the main con-
cept of an article. For instance, for the article
Chilly Gonzales, the resource lists proper names
(e.g. Gonzales, Beck), nominal (e.g. the per-

1http://rali.iro.umontreal.ca/rali/en/
wikipedia-main-concept
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[Chilly Gonzales]PER (born [Jason Charles Beck]PER; 20 March 1972)
is a [Canadian]MISC musician who resided in [Paris]LOC, [France]LOC

for several years, and now lives in [Cologne]LOC, [Germany]LOC.
Though best known for his first MC [...], he is a pianist, producer,
and songwriter. He was signed to a three-album deal with Warner
Music Canada in 1995, a subsidiary of [Warner Bros. Records]ORG

. . . While the album’s production values were limited [Warner
Bros.]ORG simply . . .

Paris LOC

↪→ Europe, France, Napoleon, . . .

Cologne LOC

↪→ Germany, Alsace, . . .

Warner Bros. Records ORG

↪→Warner, Warner Bros., . . .

France LOC

↪→ French Republic, Kingdom. . .

OLT

CT

Figure 1: Illustration of the process with which we gather annotations into WiNER for the target page
https://en.wikipedia.org/wiki/Chilly_Gonzales. Bracketed segments are the anno-
tations, underlined text are anchored strings in the corresponding Wikipedia page. OLT represents the
out-link table (which is compiled from the Wikipedia out-link graph structure), and CT represents the
coreference table we gathered from the resource.

former) and pronominal (e.g. he) mentions that
refer to Chilly Gonzales. From this resource, we
consider proper name mentions, along with their
Freebase type.

Our strategy for collecting extra annotations is
a 3-step process, where:

1. We consider direct out-links of the target arti-
cle. We search in its text the titles of the ar-
ticles we reach that way. We also search for
their coreferences as listed in the aforemen-
tioned resource. For instance, we search (exact
match) Warner Bros. Records and its corefer-
ences (e.g. Warner, Warner Bros.) in the target
article. Each match is labelled with the type
associated (in Freebase) with the out-linked ar-
ticle (in our example, ORG).

2. We follow out-links of out-links, and search
in the target article (by an exact string match)
the titles of the articles reached. For instance,
we search for the strings Europe, France,
Napoleon, as well as other article titles from
the out-link list of the article Paris. The
matched strings are elected named entities and
are labeled with their Freebase type.

3. For the titles matched at step 2, we also match
their coreferent mentions. For instance, be-
cause we matched France, we also search its
coreferences as listed in the coreference table
(CT).

During this process, some collisions may occur.
We solve the issue of overlapping annotations by
applying the steps exactly in the order presented
above. Our steps have been ordered in such a

way that the earlier the step, the more confidence
we have in the strings matched at that step. It
may also happen that two out-link articles contain
the same mention (for instance Washington State
and George Washington both contain the mention
Washington), in which case we annotate this am-
biguous mention with the type of the closest2 un-
ambiguous mention.

Step 1 of our pipeline raises the coverage3 from
less than 3% to 9.5%, while step 2 and 3 increase
it to 11.3% and 15% respectively. This is actually
very close to the coverage of the manually anno-
tated CONLL-2003 dataset, which is 17%. Con-
sidering that we do not apply any specific filtering,
as is done for instance in (Nothman et al., 2008),
our corpus contains many more annotations than
existing Wikipedia-based named-entity annotated
corpora.

3.2 Manual Evaluation

We assessed the annotation quality of a ran-
dom subset of 1000 mentions. While we measure
an accuracy of 92% for mentions detected during
step 1, the accuracy decreases to 88% and 77%
during step 2 and 3 respectively. We identified two
main sources for errors in the coreferent mentions
detection procedure. One source of error comes
from the resource used to identify the mentions
of the main concept. We measured in a previous
work (Ghaddar and Langlais, 2016a), that the pro-
cess we rely on for this (a binary classifier) has an
accuracy of 89%. Example (a) of Figure 2 illus-

2Before or after the named-entity.
3Ratio of annotated tokens.
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trates such a mistake where the family name Pope
is wrongly assumed coreferent to the brewery El-
dridge Pope. We also found that our 3-step pro-
cess and the disambiguation rule fails in 15% of
the cases. Figure 2 illustrates an example where
we erroneously recognize the mention Toronto (re-
ferring to the town) as a coreferent of the (non am-
biguous mention) Toronto FC, simply because the
latter is close to the former.

a) [Eldridge Pope]ORG was a traditional brew-
ery.....Sixteen years later the [Pope]ORG?

brothers floated the business...

b) Montreal Impact’s biggest rival is [Toronto
FC]ORG because Canada’s two largest cities
have rivalries in and out of sport. Mon-
treal and [Toronto]ORG? professional soccer
teams have competed against each other for
over 40 years.

c) I didn’t want to open up my [Rolodex]ORG?

and get everyone to sing for me.

Figure 2: Examples of errors in our annotation
pipeline. Faulty annotations are marked with a
star.

Table 1 shows the counts of token strings anno-
tated with at least two types. For instance, there
are 230k entities that are annotated in WiNER as
PER and LOC. It is reassuring that different men-
tions with the same string are labelled differently.
The cells on the diagonal indicate the number of
mentions labelled with a given tag.

PER LOC ORG MISC

PER 28M 230k 80k 250k
LOC - 29M 120k 190k
ORG - - 13M 206k
MISC - - - 36M

Table 1: Number of times a text string (mention) is
labelled with (at least) two types in WiNER. The
cells on the diagonal indicate the number of anno-
tations.

We further examined a random subset of 100
strings that were annotated differently (in different
contexts) and found that 89% of the time, the cor-
rect type was identified. For instance, in example
Figure 2c) — a sentence of the Chilly Gonzales
article — the mention Rolodex is labelled as ORG,

while the correct type is MISC. Our pipeline fails
to disambiguate the company from its product.

4 Protocol

4.1 Data Sets

We used a number of datasets in our experiments.
For CONLL, MUC and ONTO, that are often used
to benchmark NER, we used the test sets dis-
tributed in official splits. For the other test sets,
that are typically smaller, we used the full dataset
as a test material.

CONLL the CONLL-2003 NER Shared Task
dataset (Tjong Kim Sang and De Meulder, 2003)
is a well known collection of Reuters newswire
articles that contains a large portion of sports
news. It is annotated with four entity types (PER,
LOC, ORG and MISC).

MUC the MUC-6 (Chinchor and Sundheim,
2003) dataset consists of newswire articles from
the Wall Street Journal annotated with PER,
LOC, ORG, as well as a number of temporal
and numerical entities that we excluded from our
evaluation for the sake of homogeneity.

ONTO the OntoNotes 5.0 dataset (Pradhan et al.,
2012) includes texts from five different text
genres: broadcast conversation (200k), broad-
cast news (200k), magazine (120k), newswire
(625k), and web data (300k). This dataset is an-
notated with 18 fine grained NE categories. Fol-
lowing (Nothman, 2008), we applied the proce-
dure for mapping annotations to the CONLL tag
set. We used the CONLL 2012 (Pradhan et al.,
2013) standard test set for evaluation.

WGOLD WikiGold (Balasuriya et al., 2009) is a
set of Wikipedia articles (40k tokens) manually
annotated with CONLL-2003 NE classes. The
articles were randomly selected from a 2008 En-
glish dump and cover a number of topics.

WEB Ratinov and Roth (2009) annotated 20 web
pages (8k tokens) on different topics with the
CONLL-2003 tag set.

TWEET Ritter et al. (2011) annotated 2400 tweets
(comprising 34k tokens) with 10 named-entity
classes, which we mapped to the CONLL-2003
NE classes.
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4.2 Metrics

Since we use many test sets in this work, we
are confronted with a number of inconsistencies.
One is the definition of the MISC class, which
differs from a dataset to another, in addition to
not being annotated in MUC. This led us to re-
port token-level F1 score for 3 classes only (LOC,
ORG and PER). We computed this metric with the
conlleval script.4

We further report ODF1, a score that measures
how well a named-entity recognizer performs on
out-domain material. We compute it by randomly
sampling 500 sentences5 for each out-domain test
set, on which we measure the token-level F1.
Sampling the same number of sentences per test
set allows to weight each corpus equally. This pro-
cess is repeated 10 times, and we report the aver-
age over those 10 folds. On average, the newly as-
sembled test set contains 50k tokens and roughly
3.5k entity mentions. We excluded the CONLL-
2003 test set from the computation since this cor-
pus is in-domain6 (see section 5.2).

4.3 Reference systems

We chose two feature-based models: the
StanfordNER (Finkel et al., 2005) CRF clas-
sifier, and the perceptron-based Illinois NE
Tagger (Ratinov and Roth, 2009). Those systems
have been shown to yield good performance over-
all. Both systems use handcrafted features; the lat-
ter includes gazetteer features as well.

We also deployed two neural network systems:
the one of (Collobert et al., 2011), as implemented
by Attardi (2015), and the LSTM-CRF system of
Lample et al. (2016). Both systems capitalize on
representations learnt from large quantities of un-
labeled text7. We use the default configuration for
each system.

5 Evaluation of WiNER

5.1 Other Wikipedia-based corpora

We compare WiNER to existing Wikipedia-based
annotated corpora. Nothman et al. (2008) re-
leased two versions of their corpus, WP2 and
WP3, each containing 3.5 million tokens. Both

4http://www.cnts.ua.ac.be/conll2000/
chunking/conlleval.txt

5The smallest test set has 617 sentences.
6Figures including this test set do not change drastically

from what we observe hereafter.
7We use the pre-trained representations.

versions enrich the annotations deduced from an-
chored strings in Wikipedia by identifying coref-
erences among NE mentions. They differ by the
rules used to conduct coreference resolution. We
randomly generated 10 equally-sized subsets of
WiNER (of 3.5 million tokens each). On each
subset, we trained the Illinois NER tagger
and compared the performances obtained on the
CONLL test set by the resulting models, compared
to those trained on WP2 and WP3. Phrase-level F1
score are reported in Table 2. We also report the
results published in (Al-Rfou et al., 2015) with the
Polyglot corpus, which is unfortunately not avail-
able.

with MISC w/o MISC
WP2 68.2 72.8
WP3 68.3 72.9

Polyglot - 71.3
WiNER 71.2 [70.3,71.6] 74.5 [73.4,75.2]

Table 2: Performance of the Illinois toolkit
on CONLL, as a function of the Wikipedia-based
training material used. The figures on the last line
are averaged over the 10 subsets of WiNER we
randomly sampled. Bracketed figures indicate the
minimum and maximum values.

Using WiNER as a source of annotations sys-
tematically leads to better performance, which val-
idates the approach we described in Section 3.
Note that in order to generate WP2 and WP3, the
authors applied filtering rules that are responsible
for the loss of 60% of the annotations. Al-Rfou
et al. (2015) also perform sentence selection. We
have no such heuristics here, but we still observe
a competitive performance. This is a satisfactory
result considering that WiNER is much larger.

5.2 Cross-domain evaluation
In this experiment, we conduct a cross-domain
evaluation of the reference systems described in
Section 4.3 on the six different test sets presented
in Section 4.1. Following a common trend in the
field, we evaluate the performance of those sys-
tems when they are trained on the CONLL mate-
rial. We also consider systems trained on CONLL

plus a subset of WiNER. We report results ob-
tained with a subset of randomly chosen sentences
summing up to 3 million tokens, as well as a vari-
ant where we use as much as possible of the train-
ing material available in WiNER. Larger datasets
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CONLL ONTO MUC TWEET WEB WGOLD ODF1

CRF
CONLL 91.6 70.2 80.3 38.7 61.9 68.4 67.0
+WiNER(3M) - - - - - - -
+WiNER(1M) 89.3 (-2.4) 71.8 (+1.7) 78.6 (-1.8) 49.2 (+10.5) 63.0 (+1.1) 69.1 (+0.8) 69.2(+2.2)
Illinois
CONLL 92.6 71.9 84.1 44.9 57.0 71.4 68.3
+WiNER(3M) 85.5 (-6.9) 71.4 (-0.5) 76.2 (-7.9) 51.1 (+6.2) 65.5 (+8.5) 71.8 (+0.4) 69.5(+1.2)
+WiNER(30M) 82.0 (-10.6) 71.6 (-0.3) 75.6 (-8.5) 52.2 (+7.3) 63.3 (+6.3) 71.6 (+0.3) 69.0(+0.7)
Senna
CONLL 90.3 68.8 73.2 36.7 58.6 70.0 64.3
+WiNER(3M) 86.6 (-3.7) 70.1 (+1.3) 73.9 (+0.7) 43.2 (+6.4) 62.6 (+4.0) 69.9 (-0.1) 67.0(+2.7)
+WiNER(7M) 86.8 (-3.5) 70.0 (+1.2) 72.9 (-0.4) 44.8 (+8.1) 61.5 (+2.9) 69.3 (-0.7) 66.2(+1.9)
LSTM-CRF
CONLL 92.3 71.3 76.6 36.7 57.4 68.0 65.0
+WiNER(3M) 91.5 (-0.8) 74.7 (+3.4) 84.7 (+8.1) 48.1 (+11.4) 62.7 (+5.2) 73.2 (+5.2) 72.0 (+7.0)
+WiNER(5M) 91.1 (-1.2) 76.6 (+5.3) 84.0 (+7.4) 48.4 (+11.7) 64.4 (+7.0) 74.3 (+6.4) 73.0 (+8.0)

Table 3: Cross-domain evaluation of NER systems trained on different mixes of CONLL and WiNER.
Figures are token-level F1 score on 3 classes, while figures in parentheses indicate absolute gains over the
configuration using only the CONLL training material. Bold figures highlight column-wise best results.

were created by randomly appending material to
smaller ones. Datasets were chosen once (no
cross-validation, as that would have required too
much time for some models). Moreover, for the
comparison to be meaningful, each model was
trained on the same 3M dataset. The results are
reported in Table 3.

First, we observe the best overall performance
with the LSTM-CRF system (73% ODF1), the sec-
ond best system being a variant of the Illinois
system (69.5% ODF1). We also observe that the
former system is the one that benefits the most
from WiNER (an absolute gain of 8% in ODF1).
This may be attributed to the fact that this model
can explore the context on both sides of a word
with (at least in theory) no limit on the context
size considered. Still, it is outperformed by the
Illinois system on the WEB and the TWEET

test sets. Arguably, those two test sets have a NE
distribution which differs greatly from the training
material.

Second, on the CONLL setting, our results are
satisfyingly similar to those reported in (Ratinov
and Roth, 2009) and (Lample et al., 2016). The
former reports 91.06 phrasal-level F1 score on 4
classes, while our score is 90.8 .The latter re-
ports an F1 score of 90.94 while we have 90.76.
The best results reported far on the CONLL set-
ting are those of (Chiu and Nichols, 2016) with
a BiLSTM-CNN model, and a phrasal-level F1
score of 91.62 on 4 classes. So while the models

we tested are slightly behind on CONLL, they def-
initely are competitive. For other tasks, the com-
parison with other studies is difficult since the per-
formance is typically reported with the full tagset.

Third, the best performances are obtained by
configurations that use WiNER, with the excep-
tion of CONLL. That this does not carry over to
CONLL confirms the observations made by sev-
eral authors (Finkel et al., 2005; Al-Rfou et al.,
2015), who highlight the specificity of CONLL’s
annotation guidelines as well as the very nature of
the annotated text, where sport teams are overrep-
resented. These teams add to the confusion be-
cause they are often referred to with a city name.
We observe that, on CONLL, the LSTM-CRF
model is the one that registers the lowest drop
in performance. The drop is also modest for the
CRF model. The WiNER’s impact is particularly
observable on TWEET (an absolute gain of 8.8
points) and WEB (a gain of 5.5), again two very
different test sets. This suggests that WiNER helps
models to generalize.

Last, we observe that systems differ in their
ability to exploit large training sets. For the
two feature-based models we tested, the bottle-
neck is memory. We did train models with less
features, but with a significantly lower perfor-
mance. With the CRF model, we could only di-
gest a subset of WiNER of 1 million tokens, while
Illinois could handle 30 times more. As far
as neural network systems are concerned, the is-
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sue is training time. On the computer we used for
this work — a Linux cluster equipped with a GPU
— training Senna and LSTM-CRF required over
a month each for 7 and 5 millions WiNER tokens
respectively. This prevents us from measuring the
benefit of the complete WiNER resource.

6 Scaling up to WiNER

6.1 Our 2-stage approach
Because we were not able to employ the full
WiNER corpus with the NER systems mentioned
above, we resorted to a simple method to leverage
all the annotations available in the corpus. It con-
sists in decoupling the segmentation of NEs in a
sentence — we leave this to a reference NER sys-
tem — from their labelling, for which we train a
local classifier based on contextual features com-
puted from WiNER. Decoupling the two decision
processes is not exactly satisfying, but allows us
to scale very efficiently to the full size of WiNER,
our main motivation here.

6.1.1 Contextual representations
Our classifier exploits a small number of features

computed from two representations of WiNER. In
one of them, each named-entity is bounded by a
beginning and end token tags — both encoding its
type — as illustrated on line MIX of Figure 3. In
the second representation, the words of the named-
entity are replaced with its type, as illustrated on
line CONT. The former representation encodes in-
formation from both the context and the the words
of the segment we wish to label while the second
one only encodes the context of a segment.

WiNER [Gonzales]PER will be featured on [Daft
Punk]MISC .

MIX 〈B-PER〉 Gonzales 〈L-PER〉 will be featured
on 〈B-MISC〉 Daft Punk 〈L-MISC〉

CONT 〈PER〉 will be featured on 〈MISC〉 .

Figure 3: Two representations of WiNER’s anno-
tation used for feature extraction.

With each representation, we train a 6-gram
backoff language model using kenLM (Heafield
et al., 2013). For the MIX one, we also train word
embeddings of dimension 50 using Glove (Pen-
nington et al., 2014).8 Thus, we have the embed-

8We used a window size of 5 in this work.

dings of plain words, as well as those of token tags.
The language and embedding models are used to
provide features to our classifier.

6.1.2 Features
Given a sentence and its hypothesized segmenta-
tion into named-entities (as provided by another
NER system), we compute with the Viterbi al-
gorithm the sequence of token tags that leads to
the smallest perplexity according to each language
model. Given this sequence, we modify the tag-
ging of each segment in turn, leading to a total of
4 perplexity values per segment and per language
model. We normalize those perplexity values so as
to interpret them as probabilities. Table 4 shows
the probability given by both language models to
the segment Gonzales of the sentence of our run-
ning example. We observe that both models agree
that the segment should be labelled PER. We also
generate features thanks to the embedding model.
This time, however, this is done without consid-
ering the context: we represent a segment as the
sum of the representation of its words. We then
compute the cosine similarity between this seg-
ment representation and that of each of the 4 pos-
sible tag pairs (the sum of the representation of the
begin and end tags); leading to 4 similarity scores
per segment. Those similarities are reported on
line EMB in Table 4.

LOC MISC ORG PER

CONT 0.11 0.35 0.06 0.48
MIX 0.26 0.19 0.18 0.37
EMB 0.39 0.23 0.258 0.46

Table 4: Features for the segment Gonzales in the
sentence Gonzales will be featured on Daft Punk.

To these 4 scores provided by each model, we
add 16 binary features that encode the rank of each
token tag according to one model (does 〈tag〉 have
rank 〈i〉 ?). We also compute the score difference
given by a model to any two possible tag pairs,
leading to 6 more scores. Since we have 3 models,
we end up with 78 features.

6.1.3 Training
We use scikit-learn (Pedregosa et al., 2011)
to train a Random Forest classifier9 on the
29k mentions of the CONLL training data. We

9We tried other algorithms provided by the platform with
less success.
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adopted this training material to ensure a fair
comparison with other systems that are typically
trained on this dataset. Another possibility would
be to split WiNER into two parts, one for com-
puting features, and the other for training the clas-
sifier. We leave this investigation as future work.
Because of the small feature set we have, training
such a classifier is very fast.

6.2 Results

We measure the usefulness of the complete
WiNER resource by varying the size of the train-
ing material of both language models and word
embeddings, from 5M tokens (the maximum size
the LSTM-CRF mode could process) to the full
WiNER resource size.

CO ON MU TW WE WG ODF1

5M 84.3 72.0 78.7 39.8 61.9 70.2 68.1
50M 86.8 75.6 82.3 44.9 64.7 73.8 71.7

500M 88.9 76.2 84.8 45.8 66.6 75.5 74.1
All 90.5 76.9 85.9 46.6 65.3 77.0 74.7

Table 5: Influence of the portion of WiNER
used in our 2-stage approach for the CONLL

test set, using the segmentation produced by
LSTM-CRF+WiNER(5M). These results have to
be contrasted with the last line of Table 3.

To this end, we provide the performance of
our 2-stage approach on CONLL, using the seg-
mentation output by LSTM-CRF+WiNER(5M) 10.
Results are reported in Table 5. As expected,
we observe that computing features on the same
WiNER(5M) dataset exploited by LSTM-CRF
leads to a notable loss overall (ODF1 of 68.1 ver-
sus 73.0), while still outperforming LSTM-CRF
trained on CONLL only (ODF1 of 65.0). More
interestingly, we observe that for all test sets,
using more of WiNER leads to better perfor-
mance, even if a plateau effect emerges. Our
approach does improve systematically across all
test sets by considering 100 times more WiNER
data than what LSTM-CRF can handle in our
case. Using all of WiNER leads to an ODF1 score
of 74.7, an increase of 1.7 absolute points over
LSTM-CRF+WiNER(5M).

Table 6 reports the improvements in ODF1 of
our 2-stage approach (RF), which uses all of

10The best configuration according to Table 3.

Native RF
CRF

CONLL 67.0 73.6 (+6.6)
+WiNER(3M) - -
+WiNER(1M) 69.2 73.0 (+2.8)
Illinois

CONLL 68.3 74.4 (+6.1)
+WiNER(3M) 69.5 74.2 (+4.7)
+WiNER(30M) 69.0 74.3 (+4.3)

Senna
CONLL 64.3 70.1 (+5.8)
+WiNER(3M) 67.0 70.8 (+3.8)
+WiNER(7M) 66.2 72.0 (+5.8)
LSTM-CRF

CONLL 65.0 69.7 (+4.7)
+WiNER(3M) 72.0 74.8 (+2.8)
+WiNER(5M) 73.0 74.7 (+1.7)

Table 6: ODF1 score of native configurations, and
of our two-stage approach (RF) which exploits the
full WiNER corpus. Figures in parenthesis indi-
cate absolute gains over the native configuration.

the WiNER material and the segmentation pro-
duced by several native systems. Applying our
2-stage approach systematically improves the per-
formance of the native configuration. Gains are
larger for native configurations that cannot exploit
a large quantity of WiNER. We also observe that
the 2-stage approach delivers roughly the same
level of performance (ODF1 ' 74) when using the
segmentation produced by the Illinois or the
LSTM-CRF systems.

7 Error Analysis

Table 7 indicates the number of disagreements
between the LSTM-CRF+WiNER(5M) system
(columns) and the 2-stage approach (rows). The
table also shows the percentage of times the lat-
ter system was correct. For instance, the bottom
left cell indicates that, on 38 distinct occasions, the
classifier changed the tag PER proposed by the na-
tive system to ORG and that is was right in 85% of
these occasions. We exclude errors made by both
systems, which explains the low counts observed
(1.7% is the absolute difference between the two
approaches).

We observe that in most cases the classifier
makes the right decision when an entity tag is
changed from PER to either LOC or ORG (86% and
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PER LOC ORG

PER - 50% [12] 25% [12]
LOC 86% [20] - 21% [28]
ORG 85% [38] 81% [19] -

Table 7: Percentage of correctness of the 2-
stage system (rows) when tagging a named-entity
differently than the LSTM-CRF+WiNER(5M)
(columns). Bracketed figures indicate the aver-
age number of differences over the out-domain test
sets.

85% respectively). Most often, re-classified enti-
ties are ambiguous ones. Our approach chooses
correctly mostly by examining the context of the
mention. For instance, the entity Olin in example
(a) of Figure 4 is commonly known as a last name.
It was correctly re-classified as ORG thanks to its
surrounding context. Replacing its by his in the
sentence makes the classifier tag the entity as PER.
Similarly, the entity Piedmont in example (b) was
re-classified as ORG, although it is mostly used as
the region name (even in Wikipedia), thanks to the
context-based CONT and MIX features that identify
the entity as ORG (0.61 and 0.63 respectively).

(a) . . . would give [Olin]PER→ORG access to its pro-
duction processes . . .

(b) Wall Street traders said [Piedmont]LOC→ORG

shares fell partly . . .

(c) ? . . . performed as a tenor at New York City ’s
[Carnegie Hall]ORG→LOC.

Figure 4: Example of entities re-classified by our
2-stage approach.

Misclassification errors do occur, especially
when the native system tagged an entity as ORG.
In such cases, the classifier is often misled by a
strong signal emerging from one family of fea-
tures. For instance, in example (c) of Figure 4,
both MIX — p(ORG) = 0.39 vs. p(LOC) = 0.33
— and EMB — p(ORG) = 0.39 vs. p(LOC) =
0.38 — features are suggesting that the entity
should be tagged as LOC, but the CONT signal —
p(LOC) = 0.63 vs. p(ORG) = 0.1 — strongly
impacts the final decision. This was to be ex-
pected considering the simplicity of our classifier,
and leaves room for further improvements.

8 Conclusion and Future Work

We revisited the task of using Wikipedia for
generating annotated data suitable for training
NER systems. We significantly extended the
number of annotations of non anchored strings,
thanks to coreference information and an analysis
of the Wikipedia’s link structure. We applied
our approach to a dump of English Wikipedia
from 2013, leading to WiNER, a corpus which
surpasses other similar corpora, both in terms of
quantity and of annotation quality. We evaluated
the impact of our corpus on 4 reference NER
systems with 6 different NER benchmarks. The
LTSM-CRF system of (Lample et al., 2016)
seems to be the one that benefits the most from
WiNER overall. Still, shortage of memory or
lengthy training times prevent us from measur-
ing the full potential of our corpus. Thus, we
proposed an entity-type classifier that exploits
a set of features computed over an arbitrary
large part of WiNER. Using this classifier for
labelling the types of segments identified by
a reference NER system yields a 2-stage pro-
cess that further improves overall performance.
WiNER and the classifier we trained are available
at http://rali.iro.umontreal.ca/
rali/en/winer-wikipedia-for-ner.
As future work, we want to study the usefulness
of WiNER on a fine-grained entity type task, pos-
sibly revisiting the simple classifier we resorted
to in this work, and testing its benefits for other
currently successful models.
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Abstract

Acoustic emotion recognition aims to cat-
egorize the affective state of the speaker
and is still a difficult task for machine
learning models. The difficulties come
from the scarcity of training data, general
subjectivity in emotion perception result-
ing in low annotator agreement, and the
uncertainty about which features are the
most relevant and robust ones for clas-
sification. In this paper, we will tackle
the latter problem. Inspired by the re-
cent success of transfer learning methods
we propose a set of architectures which
utilize neural representations inferred by
training on large speech databases for the
acoustic emotion recognition task. Our ex-
periments on the IEMOCAP dataset show
10% relative improvements in the accu-
racy and F1-score over the baseline recur-
rent neural network which is trained end-
to-end for emotion recognition.

1 Introduction

Speech emotion recognition (SER) has received
growing interest and attention in recent years. Be-
ing able to predict the affective state of a person
gives valuable information which could improve
dialog systems in human-computer interaction. To
fully understand a current emotion expressed by a
person, also knowledge of the context is required,
like facial expressions, the semantics of a spoken
text, gestures and body language, and cultural pe-
culiarities. This makes it challenging even for peo-
ple that have all this information to accurately pre-
dict the affective state. In this work, we are fo-
cusing solely on inferring the speaker’s emotional
state by analysing acoustic signals which are also
the only source of information in situations when

Figure 1: High-level system architecture. Acous-
tic emotion recognition system uses neural speech
representations for affective state classification.

the speaker is not directly observable.

With recent advances in deep learning, which
made it possible to train large end-to-end mod-
els for image classification (Simonyan and Zis-
serman, 2014), speech recognition (Hannun
et al., 2014) and natural language understanding
(Sutskever et al., 2014), the majority of the current
work in the area of acoustic emotion recognition
is neural network-based. Diverse neural architec-
tures were investigated based on convolutional and
recurrent neural networks (Fayek et al., 2017; Tri-
georgis et al., 2016). Alternatively, methods based
on linear models, like SVM with careful feature
engineering, still show competitive performance
on the benchmark datasets (Schuller et al., 2013,
2009). Such methods were popular in computer
vision until the AlexNet approach (Krizhevsky
et al., 2012) made automatic feature learning more
wide-spread. The low availability of annotated au-
ditory emotion data is probably one of the main
reasons for traditional methods being competitive.
The appealing property of neural networks com-
pared to SVM-like methods is their ability to iden-
tify automatically useful patterns in the data and
to scale linearly with the number of training sam-
ples. These properties drive the research commu-
nity to investigate different neural architectures.
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In this paper, we present a model that neither
solely learns feature representations from scratch
nor uses complex feature engineering but uses the
features learned by a speech recognition network.

Even though the automatic speech recognition
(ASR) task is agnostic to the speaker’s emotion
and focuses only on the accuracy of the lan-
guage transcription, low-level neural network lay-
ers trained for ASR might still extract useful infor-
mation for the task of SER. Given that the size of
the data suitable for training ASR systems is sig-
nificantly larger than SER data, we can expect that
trained ASR systems are more robust to speaker
and condition variations. Recently, a method of
transferring knowledge learned by the neural net-
work from one task to another has been proposed
(Rusu et al., 2016; Anderson et al., 2016). This
strategy also potentially prevents a neural network
from overfitting to the smaller of the two datasets
and could work as an additional regularizer. More-
over, in many applications, such as dialog systems,
we would need to transcribe spoken text and iden-
tify its emotion jointly.

In this paper, we evaluate several dual architec-
tures which integrate representations of the ASR
network: a fine-tuning and a progressive network.
The fine-tuning architecture reuses features learnt
by the recurrent layers of a speech recognition net-
work and can use them directly for emotion classi-
fication by feeding them to a softmax classifier or
can add additional hidden SER layers to tune ASR
representations. Additionally, the ASR layers can
be static for the whole training process or can
be updated as well by allowing to backpropagate
through them. The progressive architecture com-
plements information from the ASR network with
SER representations trained end-to-end. There-
fore, in contrast to the fine-tuning model, a pro-
gressive network allows learning such low-level
emotion-relevant features which the ASR network
never learns since they are irrelevant to the speech
recognition task. Our contribution in this paper
is two-fold: 1) we propose several neural archi-
tectures allowing to model speech and emotion
recognition jointly, and 2) we present a simple
variant of a fine-tuning and a progressive network
which improves the performance of the existing
end-to-end models.

Figure 2: Architecture of the ASR model used in
this work, following the DeepSpeech 2 architec-
ture.

2 Related work

The majority of recent research is aimed at search-
ing for optimal neural architectures that learn
emotion-specific features from little or not pro-
cessed data. An autoencoder network (Ghosh
et al., 2016) was demonstrated to learn to com-
press the speech frames before the emotion clas-
sification. An attention mechanism (Huang and
Narayanan, 2016) was proposed to adjust weights
for each of the speech frames depending on their
importance. As there are many speech frames that
are not relevant to an expressed emotion, such as
silence, the attention mechanism allows focusing
only on the significant part of the acoustic signal.
Another approach probabilistically labeling each
speech frame as emotional and non-emotional was
proposed by (Chernykh et al., 2017). A combi-
nation of convolutional and recurrent neural net-
works was demonstrated by (Trigeorgis et al.,
2016) by training a model directly from the raw,
unprocessed waveform, significantly outperform-
ing manual feature engineering methods.

One of the first examples of the knowledge
transfer among neural networks was demonstrated
by (Bengio, 2012) and (Yosinski et al., 2014).
Eventually, fine-tuning became the de-facto stan-
dard for computer vision tasks that have a small
number of annotated samples, leveraging the abil-
ity of trained convolutional filters to be applicable
to different tasks. Our work is mainly inspired by
recently introduced architectures with an ability to
transfer knowledge between recurrent neural net-
works in a domain different from computer vision
(Rusu et al., 2016; Anderson et al., 2016).

Previously, to our knowledge, there was only
one attempt to analyze the correlation between au-
tomatic speech and emotion recognition (Fayek
et al., 2016). This approach showed the possibil-
ity of knowledge transfer from the convolutional
neural acoustic model trained on the TIMIT cor-
pus (Garofolo et al., 1993) for the emotion recog-
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nition task. The authors proposed several vari-
ants of fine-tuning. They reported a significant
drop in the performance by using the ASR net-
work as a feature extractor and training only the
output softmax layer, compared to an end-to-end
convolution neural network model. Gradual im-
provements were observed by allowing more ASR
layers to be updated during back-propagation but,
overall, using ASR for feature extraction affected
the performance negatively.

3 Models and experiment setup

3.1 Models

We introduce two models that use a pre-trained
ASR network for acoustic emotion recognition.
The first one is the fine-tuning model which only
takes representations of the ASR network and
learns how to combine them to predict an emo-
tion category. We compare two variants of tuning
ASR representations: simply feeding them into a
softmax classifier or adding a new Gated Recur-
rent Units (GRU) layer trained on top of the ASR
features. The second is the progressive network
which allows us to train a neural network branch
parallel to the ASR network which can capture ad-
ditional emotion-specific information. We present
all SER models used in this work in Figure 3.

3.1.1 ASR model
Our ASR model (see Figure 2) is a combina-
tion of convolutional and recurrent layers inspired
by the DeepSpeech (Hannun et al., 2014) archi-
tecture for speech recognition. Our model con-
tains two convolutional layers for feature extrac-
tion from power FFT spectrograms, followed by
five recurrent bi-directional GRU layers with the
softmax layer on top, predicting the character dis-
tribution for each speech frame (ASR network in
all our experiments, left branch of the network in
the Figures 3b, 3c and 3d). The ASR network is
trained on pairs of utterances and the correspond-
ing transcribed texts (see 3.2.2 “Speech data“ sec-
tion for details). Connectionist Temporal classifi-
cation (CTC) loss (Graves et al., 2006) was used as
a metric to measure how good the alignment pro-
duced by the network is compared to the ground
truth transcription. Power spectrograms were ex-
tracted using a Hamming window of 20ms width
and 10 ms stride, resulting in 161 features for each
speech frame. We trained the ASR network with
Stochastic Gradient Descent with a learning rate of

0.0003 divided by 1.1 after every epoch until the
character error rate stopped improving on the val-
idation set (resulting in 35 epochs overall). In all
our experiments we keep the ASR network static
by freezing its weights during training for SER.

3.1.2 Baseline
As a baseline (see Figure 3a), we used a two-
layer bi-directional GRU neural network. Utter-
ances were represented by averaging hidden vec-
tor representations obtained on the second GRU
layer and fed to a softmax layer for emotion clas-
sification. Dropout with the probability of 0.25
was applied to the utterance representation during
training to prevent overfitting. We evaluate this ar-
chitecture as a baseline as it was proven to yield
strong results on the acoustic emotion recogni-
tion task (Huang and Narayanan, 2016). As there
are significantly less emotion-annotated samples
available the SER-specific network is limited to
two layers compared to the ASR network.

3.1.3 Fine-tuning model
We propose several variants of reusing speech rep-
resentations: 1) By averaging hidden memory rep-
resentations of the layer number x of the ASR net-
work (Fine-tuning MP-x later in the text where
MP stands for Mean Pooling), we train only the
output softmax layer to predict an emotion class.
(2) We feed hidden memory representations as in-
put to a new GRU network (emotion-specific) ini-
tialized randomly and trained for emotion classifi-
cation (Fine-tuning RNN-x). The intuition is that
bottom layers of the ASR network can be used as
feature extractors and the top level GRU can com-
bine them to predict the emotion class. Similar
to the Fine-tuning MP-x setup we average repre-
sentations of the newly attached GRU layer and
feed them to the classifier. In both experiments,
dropout with the rate of 0.25 was applied to av-
eraged representations. Figure 3b shows the Fine-
tuning MP-1 model pooling ASR representation of
the first ASR layer, and Figure 3c shows the Fine-
tuning RNN-1 setup.

3.1.4 Progressive neural network
The progressive network combines fine-tuning
with end-to-end training. The scheme of the
model is presented in Figure 3d. It contains two
branches: first, a speech recognition branch (left in
Figure 3d and identical to Figure 2) which is static
and not updated, and second, an emotion recogni-
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Figure 3: (a) Baseline speech emotion recognition (SER) model, containing two bi-directional GRU
layers (b) A variant of the fine-tuning network (Fine-tuning MP-1) which uses the temporal pooled rep-
resentations of the first recurrent layer of the ASR network. (c) A variant of the fine-tuning network
(Fine-tuning RNN-1) which uses hidden memory representations of the first recurrent layer of the ASR
network as input to a new emotion-specific GRU layer. (d) The progressive network combines represen-
tations from the emotion recognition path with the temporal pooled first layer representations of the ASR
network (here Progressive net 1). A concatenated vector is fed into the softmax layer for the final emotion
classification. The ASR branch of the network remains static and is not tuned during backpropagation in
(b), (c) and (d).

tion branch (right), with the same architecture as
the baseline model which we initialized randomly
and trained from scratch. We feed the same fea-
tures to the emotion recognition branch as to the
baseline model for a fair comparison. Theoreti-
cally, a network of such type can learn task spe-
cific features while incorporating knowledge al-
ready utilized in the ASR network if it contributes
positively to the prediction.

3.2 Data

3.2.1 Emotion data
The Interactive Emotional Dyadic Motion Cap-
ture dataset IEMOCAP (Busso et al., 2008) con-
tains five recorded sessions of conversations be-
tween two actors, one from each gender. The total
amount of data is 12 hours of audio-visual infor-
mation from ten speakers annotated with categor-
ical emotion labels (Anger, Happiness, Sadness,
Neutral, Surprise, Fear, Frustration and Excited),
and dimensional labels (values of the activation
and valence from 1 to 5). Similarly as in previous
work (Huang and Narayanan, 2016), we merged
the Excited class with Happiness. We performed
several data filtering steps: we kept samples where
at least two annotators agreed on the emotion la-

bel, discarded samples where an utterance was an-
notated with 3 different emotions and used sam-
ples annotated with neutral, angry, happy and sad,
resulting in 6,416 samples (1,104 of Anger, 2,496
of Happiness, 1,752 of Neutral and 1,064 of Sad-
ness). We use 4 out of 5 sessions for training and
the remaining one for validation and testing (as
there are two speakers in the session, one was used
for validation and the other for testing).

3.2.2 Speech data
We concatenated three datasets to train the ASR
model: LibriSpeech, TED-LIUM v2, and Vox-
Forge. LibriSpeech (Panayotov et al., 2015) con-
tains around 1,000 hours of English-read speech
from audiobooks. TED-LIUM v2 (Rousseau et al.,
2014) is a dataset composed of transcribed TED
talks, containing 200 hours of speech and 1495
speakers. VoxForge is an open-source collection
of transcribed recordings collected using crowd-
sourcing. We downloaded all English record-
ings1, which is around 100 hours of speech. Over-
all, 384,547 utterances containing 1,300 hours of
speech from more than 3,000 speakers were used

1http://www.repository.voxforge1.
org/downloads/SpeechCorpus/Trunk/Audio/
Original/48kHz_16bit/
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Figure 4: Representations of the IEMOCAP utterances generated by the Fine-tuning MP-x and Fine-
tuning RNN-x networks (x stands for the ASR layer number of which the representation is used) pro-
jected into 2-dimensional space using the t-SNE technique. Top: all four classes, bottom: only Sadness
and Anger. Color mapping: Anger - red, Sadness - blue, Neutral - cyan, Happiness - green. We can
observe that Fine-tuning MP-2 and MP-3 networks can separate Anger and Sadness classes even though
these representations are directly computed from the ASR network without any emotion-specific train-
ing. Fine-tuning RNN networks benefit from being trained directly for emotion recognition and form
visually distinguishable clusters.

to train the ASR model. We conducted no prepro-
cessing other than the conversion of recordings to
WAV format with single channel 32-bit format and
a sampling rate of 16,000. Utterances longer than
15 seconds were filtered out due to GPU memory
constraints.

3.3 Extracted features

The ASR network was trained on power spectro-
grams with filter banks computed over windows of
20ms width and 10ms stride. For the progressive
network, we used the same features as for the ASR
branch, and for the SER-specific branch, we used
13 MFCC coefficients and their deltas extracted
over windows of 20ms width and 10ms stride. We
have extracted pitch values smoothed with mov-
ing average with a window size of 15 using the
OpenSMILE toolkit (Eyben et al., 2013). The
reason for the choice of high-level features like
MFCC and pitch for the SER-branch was the lim-
ited size of emotion annotated data, as learning ef-
ficient emotion representation from low-level fea-
tures like raw waveform or power-spectrograms
might be difficult on the dataset of a size of IEMO-

CAP. In addition, such feature set showed state-of-
the-art results (Huang and Narayanan, 2016). In
both cases, we normalized each feature by sub-
tracting the mean and dividing by standard devi-
ation per utterance.

3.3.1 Training

The Adam optimizer (Kingma and Ba, 2014) was
used in all experiments with a learning rate of
0.0001, clipping the norm of the gradient at the
level of 15 with a batch size of 64. During the
training, we applied learning rate annealing if the
results on the validation set did not improve for
two epochs and stopped it when the learning rate
reaches the value of 1e-6. We applied the Sorta-
Grad algorithm (Amodei et al., 2015) during the
first epoch by sorting utterances by the duration
(Hannun et al., 2014). We performed data aug-
mentation during the training phase by randomly
changing tempo and gain of the utterance within
the range of 0.85 to 1.15 and -3 to +6 dB respec-
tively. The model with the lowest cross-entropy
loss on the validation set was picked to evaluate
the test set performance.
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Figure 5: Confusion matrices for our best baseline, Fine-tuning MP and Progressive models averaged
over 10-folds on the IEMOCAP dataset.

Table 1: Utterance-level emotion 4-way classification performance (unweighted and weighted accuracy
and f1-score). Several variants of fine-tuning and progressive networks are evaluated: using first, second
or third ASR layers as input for Fine-tuning MP, Fine-tuning RNN, and progressive networks.

Model U-Acc W-acc F1-score
Most frequent class 0.39± 0.04 0.33± 0.2 NaN
Random prediction 0.25± 0.02 0.25± 0.02 0.24± 0.02
Baseline 64 units 0.52± 0.04 0.54± 0.06 0.48± 0.05
Baseline 96 units 0.53 ± 0.01 0.55 ± 0.03 0.51 ± 0.02
Baseline 128 units 0.50± 0.04 0.51± 0.06 0.47± 0.05
Fine-tuning MP-1 0.46± 0.05 0.52± 0.07 0.31± 0.11
Fine-tuning MP-2 0.54± 0.04 0.54± 0.06 0.52± 0.04
Fine-tuning MP-3 0.55 ± 0.02 0.56 ± 0.03 0.53 ± 0.03
Fine-tuning RNN-1 0.53± 0.04 0.57± 0.04 0.48± 0.08
Fine-tuning RNN-2 0.57 ± 0.03 0.59 ± 0.05 0.56 ± 0.03
Fine-tuning RNN-3 0.56± 0.02 0.57± 0.04 0.55± 0.03
Progressive net-1 0.56± 0.02 0.57± 0.04 0.55± 0.03
Progressive net-2 0.58 ± 0.03 0.61 ± 0.04 0.57 ± 0.03
Progressive net-3 0.57± 0.03 0.59± 0.03 0.56± 0.04

4 Results

Table 1 summarizes the results obtained from
ASR-SER transfer learning. We evaluate several
baseline models by varying the number of GRU
units in a network, and three variants for Fine-
tuning MP-x, Fine-tuning RNN-x and Progressive
net-x by utilizing representations of layer x of
the ASR network. We report weighted and un-
weighted accuracy and f1-score to reflect imbal-
anced classes. These metrics were averaged over
ten runs of a ten-fold leave-one-speaker-out cross-
validation to monitor an effect of random initial-
ization of a neural network. Also, our results re-
veal the difficulty of separating Anger and Hap-
piness classes, and Neutral and Happiness (see

Figure 5). Our best Fine-tuning MP-3 model
achieved 55% unweighted and 56% weighted ac-
curacy, which significantly outperforms the base-
line (p-value ≤ 0.03) end-to-end 2-layer GRU
neural network similar to (Huang and Narayanan,
2016) and (Ghosh et al., 2016). The fine-tuning
model has around 30 times less trainable param-
eters (as only the softmax layer is trained) and
achieves significantly better performance than the
baseline. These results show that putting an ad-
ditional GRU layer on top of ASR representations
affects the performance positively and shows sig-
nificantly better results than the baseline (p-value
≤ 0.0007). Results prove our hypothesis that in-
termediate features extracted by the ASR network
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contain useful information for emotion classifica-
tion.

The progressive network consistently outper-
forms baseline end-to-end models, reaching 58%
unweighted and 61% weighted accuracy. In all
variants, the addition of the second recurrent layer
representations of the ASR’s network contributes
positively to the performance compared to the
baseline. Our results support the hypothesis that
the progressive architecture of the network al-
lows to combine the ASR low-level representa-
tions with the SER-specific ones and achieve the
best accuracy result.

In addition to the quantitative results, we tried
to analyze the reason of such effectiveness of the
ASR representations, by visualizing the represen-
tations of the utterances by Fine-tuning MP-x and
Fine-tuning RNN-x networks (see Figure 4). We
observe that a prior ASR-trained network can sep-
arate Sadness and Anger samples even by pooling
representations of the first ASR layer. On the 3rd
layer, Anger, Sadness and Happiness form visu-
ally distinguishable clusters which could explain
the surprising effectiveness of Fine-tuning MP-2/3
models. Fine-tuning RNN-x networks can sepa-
rate four classes better due to an additional trained
GRU network on top of the ASR representations.
Also, we found that activations of some neurons in
the ASR network correlate significantly with the
well-known prosodic features like loudness. Fig-
ure 6 shows the activation of the neuron number
840 of the second GRU layer of the ASR network
and the loudness value of the speech frame for two
audio files. We found that, on average, the Pear-
son’s correlation between loudness and activation
of the 840th neuron calculated on the IEMOCAP
dataset is greater than 0.64 which is an indica-
tor that the ASR network is capable of learning
prosodic features which is useful for emotion clas-
sification.

5 Discussion and conclusion

In this paper, various neural architectures were
proposed utilizing speech recognition representa-
tions. Fine-tuning provides an ability to use the
ASR network for the emotion recognition task
quickly. A progressive network allows to com-
bine speech and emotion representations and train
them in parallel. Our experimental results confirm
that trained speech representations, even though
expected to be agnostic to a speaker’s emotion,

Figure 6: Activations of the neuron number 840
of the second GRU layer of the ASR model (blue)
and loudness of two utterances selected randomly
from IEMOCAP dataset (orange).

contain useful information for affective state pre-
dictions.

A possible future research direction would be to
investigate the influence of linguistic knowledge
on the speech representations and how it affects
the system performance. Additionally, the ASR
system can be fine-tuned in parallel with the emo-
tion branch by updating the layers of the ASR net-
work. Potentially, this could help the system to
adapt better to the particular speakers and their
emotion expression style. Furthermore, analyz-
ing linguistic information of the spoken text pro-
duced by the ASR network could possibly allevi-
ate the difficulty of separating Anger and Happi-
ness classes, and Neutral and Happiness.
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Abstract

Recently, encoder-decoder neural net-
works have shown impressive perfor-
mance on many sequence-related tasks.
The architecture commonly uses an atten-
tional mechanism which allows the model
to learn alignments between the source
and the target sequence. Most attentional
mechanisms used today is based on a
global attention property which requires
a computation of a weighted summariza-
tion of the whole input sequence gener-
ated by encoder states. However, it is
computationally expensive and often pro-
duces misalignment on the longer input
sequence. Furthermore, it does not fit
with monotonous or left-to-right nature in
several tasks, such as automatic speech
recognition (ASR), grapheme-to-phoneme
(G2P), etc. In this paper, we propose a
novel attention mechanism that has local
and monotonic properties. Various ways
to control those properties are also ex-
plored. Experimental results on ASR, G2P
and machine translation between two lan-
guages with similar sentence structures,
demonstrate that the proposed encoder-
decoder model with local monotonic at-
tention could achieve significant perfor-
mance improvements and reduce the com-
putational complexity in comparison with
the one that used the standard global atten-
tion architecture.

1 Introduction

End-to-end training is a newly emerging approach
to sequence-to-sequence mapping tasks, that al-
lows the model to directly learn the mapping be-
tween variable-length representation of different

modalities (i.e., text-to-text sequence (Bahdanau
et al., 2014; Sutskever et al., 2014), speech-to-
text sequence (Chorowski et al., 2014; Chan et al.,
2016), image-to-text sequence (Xu et al., 2015),
etc).

One popular approaches in the end-to-end map-
ping tasks of different modalities is based on
encoder-decoder architecture. The earlier version
of an encoder-decoder model is built with only two
different components (Sutskever et al., 2014; Cho
et al., 2014b): (1) an encoder that processes the
source sequence and encodes them into a fixed-
length vector; and (2) a decoder that produces the
target sequence based on information from fixed-
length vector given by encoder. Both the encoder
and decoder are jointly trained to maximize the
probability of a correct target sequence given a
source sequence. This architecture has been ap-
plied in many applications such as machine trans-
lation (Sutskever et al., 2014; Cho et al., 2014b),
image captioning (Karpathy and Fei-Fei, 2015),
and so on.

However, such architecture encounters difficul-
ties, especially for coping with long sequences.
Because in order to generate the correct target se-
quence, the decoder solely depends only on the
last hidden state of the encoder. In other words,
the network needs to compress all of the infor-
mation contained in the source sequence into a
single fixed-length vector. (Cho et al., 2014a)
demonstrated a decrease in the performance of
the encoder-decoder model associated with an in-
crease in the length of the input sentence sequence.
Therefore, (Bahdanau et al., 2014) introduced at-
tention mechanism to address these issues. Instead
of relying on a fixed-length vector, the decoder
is assisted by the attention module to get the re-
lated context from the encoder sides, depends on
the current decoder states.

Most attention-based encoder-decoder model
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used today has a “global” property (Bahdanau
et al., 2014; Luong et al., 2015). Every time the
decoder needs to predict the output given the pre-
vious output, it must compute a weighted summa-
rization of the whole input sequence generated by
the encoder states. This global property allows
the decoder to address any parts of the source se-
quence at each step of the output generation and
provides advantages in some cases like machine
translation tasks. Specifically, when the source
and the target languages have different sentence
structures and the last part of the target sequence
may depend on the first part of the source se-
quence. However, although the global attention
mechanism has often improved performance in
some tasks, it is very computationally expensive.
For a case that requires mapping between long se-
quences, misalignments might happen in standard
attention mechanism (Kim et al., 2017). Further-
more, it does not fit with monotonous or left-to-
right natures in several tasks, such as ASR, G2P,
etc.

In this paper, we propose a novel attention
module that has two important characteristics to
address those problems: local and monotonicity
properties. The local property helps our attention
module focus on certain parts from the source se-
quence that the decoder wants to transcribe, and
the monotonicity property strictly generates align-
ment left-to-right from beginning to the end of
the source sequence. In case of speech recog-
nition task that need to produces a transcription
given the speech signal, the attention module is
now able to focus on the audio’s specific tim-
ing and always move in one direction from the
start to the end of the audio. Similar way can
be applied also for G2P or machine translation
(MT) between two languages with similar sen-
tences structure, i.e., Subject-Verb-Object (SVO)
word order in English and French languages. Ex-
perimental results demonstrate that the proposed
encoder-decoder model with local monotonic at-
tention could achieve significant performance im-
provements and reduce the computational com-
plexity in comparison with the one that used the
standard global attention architecture.

2 Attention-based Encoder Decoder
Neural Network

The encoder-decoder model is a neural net-
work that directly models conditional probability

Figure 1: Attention-based encoder-decoder archi-
tecture.

p(y|x), where x = [x1, ..., xS ] is the source se-
quence with length S and y = [y1, ..., yT ] is the
target sequence with length T . Figure 1 shows the
overall structure of the attention-based encoder-
decoder model that consists of encoder, decoder
and attention modules.

The encoder task processes input sequence x
and outputs representative information he =
[he1, ..., h

e
S ] for the decoder. The attention module

is an extension scheme for assisting the decoder
to find relevant information on the encoder side
based on the current decoder hidden states (Bah-
danau et al., 2014; Luong et al., 2015). Usually,
attention modules produces context information ct
at the time t based on the encoder and decoder hid-
den states:

ct =
S∑
s=1

at(s) ∗ hes (1)

at(s) = Align(hes, h
d
t )

=
exp(Score(hes, h

d
t ))∑S

s=1 exp(Score(hes, hdt ))
(2)
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There are several variations for score functions:

Score(hes, h
d
t ) =


〈hes, hdt 〉, dot product
heᵀs Wsh

d
t , bilinear

V ᵀ
s tanh(Ws[hes, h

d
t ]), MLP

(3)

where Score : (RM×RN )→ R,M is the number
of hidden units for encoder and N is the number
of hidden units for decoder. Finally, the decoder
task, which predicts the target sequence probabil-
ity at time t based on previous output and context
information ct can be formulated:

log p(y|x) =
T∑
t=1

log p(yt|y<t, ct) (4)

For speech recognition task, most common input x
is a sequence of feature vectors like Mel-spectral
filterbank and/or MFCC. Therefore, x ∈ RS×D

where D is the number of features and S is the to-
tal frame length for an utterance. Output y, which
is a speech transcription sequence, can be either
phoneme or grapheme (character) sequence. In
text-related task such as machine translation, x and
y are a sequence of word or character indexes.

3 Locality and Monotonicity Properties

In the previous section, we explained the standard
global attention-based encoder-decoder model.
However, in order to control the area and focus
attention given previous information, such mech-
anism requires to apply the scoring function into
all the encoder states and normalizes them with a
softmax function. Another problem is we cannot
explicitly enforce the probability mass generated
by the current attention modules that are always
moving incrementally to the end of the source se-
quence. In this section, we discuss and explain
how to model the locality and monotonicity prop-
erties on the attention module. This way, we could
improve the sensitivity of capturing regularities
and ensure to focus only an important subset in-
stead of whole sequence.

Figure 2 illustrates the overall mechanism of
our proposed local monotonic attention, and de-
tails are described blow.

1. Monotonicity-based Prediction of Central
Position
First, we define how to predict the next cen-
tral position of the alignment illustrated in

Figure 2: Local monotonic attention.

Part (1) of Figure 2. Assume we have source
sequence with length S, which is encoded by
the stack of Bi-LSTM (see Figure 1) into S
encoded states he = [he1, ..., h

e
S ]. At time t,

we want to decode the t-th target output given
the source sequence, previous output yt−1,
and current decoder hidden states hdt ∈ RN .
In standard approaches, we use hidden states
hdt to predict the position difference ∆pt with
a multilayer perceptron (MLP). We use vari-
able ∆pt to determine how far we should
move the center of the alignment compared
to previous center pt−1.

In this paper, we propose two different for-
mulations for estimating ∆pt to ensure a for-
ward or monotonicity movement:

• Constrained position prediction:
We limit maximum range from ∆pt with
hyperparameter Cmax with the follow-
ing equation:

∆pt = Cmax ∗ sigmoid(V ᵀ
p tanh(Wph

d
t ))

(5)

Here we can control how far our
next center of alignment position pt
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relies on our datasets and guarantee
0 ≤ ∆pt ≤ Cmax. However, it requires
us to handle hyperparameter Cmax.

• Unconstrained position prediction:
Compared to a previous formulation,
since we do not limit the maximum
range of ∆pt, here we can ignore hy-
perparameter Cmax and use exponen-
tial (exp) function instead of sigmoid.
We can also use another function (e.g
softplus) as long as the function satisfy
f : R → R+

0 and the result of ∆pt ≥
0. We formulate unconstrained position
prediction with following equation:

∆pt = exp(V ᵀ
p tanh(Wph

d
t )) (6)

Here Vp ∈ RK×1, Wp ∈ RK×N , N is the
number of decoder hidden units and K is the
number of hidden projection layer units. We
omit the bias for simplicity. Both equations
guarantee monotonicity properties since ∀t ∈
[1..T ], pt ≥ (pt−1 + ∆pt).

Additionally, we also used scaling variable λt
to scale the unnormalized Gaussian distribu-
tion that depends on ht. We calculated λt
with following equation:

λt = exp(V ᵀ
λ tanh(Wph

d
t )) (7)

where Vλ ∈ RK×1. In our initial experi-
ments, we discovered that we improved our
model performance by scaling with λt for
each time-step. The main objective of this
step is to generate a scaled Gaussian distribu-
tion aNt :

aNt (s) = λt ∗ exp
(
−(s− pt)2

2σ2

)
. (8)

where pt is the mean and σ is the standard
deviation, both of which are used to calculate
the weighted sum from the encoder states to
generate context vector ct later. In this paper,
we treat σ as a hyperparameter.

2. Locality-based Alignment Generation
After calculating new position pt, we gener-
ate locality-based alignment, as shown in Part
(2) of Figure 2. Based on predicted position
pt, we follow (Luong et al., 2015) to generate

alignment aSt only within [pt − 2σ, pt + 2σ]:

aSt (s) = Align(hes, h
d
t ), (9)

∀s ∈ [pt − 2σ, pt + 2σ].

Since pt is a real number and the indexes for
the encoder states are integers, we convert pt
into an integer with floor operation. After we
know the center of the position pt, we only
need to calculate the scores (Eq. 3) for each
encoder states in [pt−2σ, .., pt+2σ] then cal-
culate the context alignment scores (Eq. 2).

Compared to the standard global attention,
we can reduce the decoding computational
complexity O(T ∗ S) into O(T ∗ σ) where
σ � S and σ is constant, T is total decoding
step, S is the length of the encoder states.

3. Context Calculation
In the last step, we calculate context ct with
alignments aNt and aSt , as shown in Part (3)
of Figure 2:

ct =
(pt+2σ)∑
s=(pt−2σ)

(
aNt (s) ∗ aSt (s)

) ∗ hes (10)

Context ct and current hidden state hdt will
later be utilized for calculating current output
yt.

Overall, we can rephrase the first step as gener-
ating “prior” probabilities aNt based on the previ-
ous pt−1 position and the current decoder states.
Then the second step task generates “likelihood”
probabilities aSt by measuring the relevance of our
encoder states with the current decoder states. In
the third step, we combine our “prior” and “like-
lihood” probability into an unnormalized “poste-
rior” probability at and calculate expected context
ct.

4 Experiment on Speech Recognition

We applied our proposed architecture on ASR
task. The local property helps our attention mod-
ule focus on certain parts from the speech that the
decoder wants to transcribe, and the monotonicity
property strictly generates alignment left-to-right
from beginning to the end of the speech.

4.1 Speech Data
We conducted our experiments on the TIMIT 1

(Garofolo et al., 1993) dataset with the same set-
1https://catalog.ldc.upenn.edu/ldc93s1
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up for training, development, and test sets as de-
fined in the Kaldi s5 recipe (Povey et al., 2011).
The training set contains 3696 sentences from 462
speakers. We also used another sets of 50 speak-
ers for the development set and the test set con-
tains 192 utterances, 8 each from 24 speakers. For
every experiment, we used 40-dimensional fbank
with delta and acceleration (total 120-dimension
feature vector) extracted from the Kaldi toolkit.
The input features were normalized by subtract-
ing the mean and divided by the standard deviation
from the training set. For our decoder target, we
re-mapped the original target phoneme set from 61
into 39 phoneme class plus the end of sequence
mark (eos).

4.2 Model Architectures

On the encoder sides, we projected our input fea-
tures with a linear layer with 512 hidden units fol-
lowed by tanh activation function. We used three
bidirectional LSTMs (Bi-LSTM) for our encoder
with 256 hidden units for each LSTM (total 512
hidden units for Bi-LSTM). To reduce the com-
putational time, we used hierarchical subsampling
(Graves, 2012; Bahdanau et al., 2016), applied it
to the top two Bi-LSTM layers, and reduced their
length by a factor of 4.

On the decoder sides, we used a 64-
dimensional embedding matrix to transform the
input phonemes into a continuous vector, followed
by two unidirectional LSTMs with 512 hidden
units. For every local monotonic model, we used
an MLP with 256 hidden units to generate ∆pt and
λt. Hyperparameter 2σ was set to 3, and Cmax for
constrained position prediction (see Eq. 5) was set
to 5. Both hyperparameters were empirically se-
lected and generally gave consistent results across
various settings in our proposed model. For our
scorer module, we used bilinear and MLP scor-
ers (see Eq 3) with 256 hidden units. We used
an Adam (Kingma and Ba, 2014) optimizer with a
learning rate of 5e− 4.

In the recognition phase, we generated tran-
scriptions with best-1 (greedy) search from the de-
coder. We did not use any language model in this
work. All of our models were implemented on the
Chainer framework (Tokui et al., 2015).

For comparison, we evaluated our proposed
model with the standard global attention-based
encoder-decoder model and local-m attention (Lu-
ong et al., 2015) as the baseline. Most of the con-

figurations follow the above descriptions, except
the baseline model that does not have an MLP for
generating ∆pt and λt.

5 Result and Discussion for Speech
Recognition

Table 1 summarizes our experiments on our pro-
posed local attention models and compares them
to the baseline model using several possible sce-
narios.

5.1 Constrained vs Unconstrained Position
Prediction

Considering the use of constrained and uncon-
strained position prediction ∆pt, our results show
that the model with the unconstrained position
prediction (exp) model gives better results than
one based on the constrained position prediction
(sigmoid) model on both MLP and bilinear scor-
ers. We conclude that it is more beneficial to
use the unconstrained position prediction formu-
lation since it gives better performance and we do
not need to handle the additional hyperparameter
Cmax.

5.2 Alignment Scorer vs Non-Scorer
Next we investigate the importance of the scorer
module by comparing the results between a model
with and without it. Our results reveal that, by
only relying on Gaussian alignment aNt and set
aSt = 1, our model performance’s was worse than
one that used both the scorer and Gaussian align-
ment. This might be because the scorer modules
are able to correct the details from the Gaussian
alignment based on the relevance of the encoder
states in the current decoder states. Thus, we con-
clude that alignment with the scorer is essential for
our proposed models.

5.3 Overall comparison to the baseline
Overall, our proposed encoder-decoder model
with local monotonic attention significantly im-
proved the performance and reduced the compu-
tational complexity in comparison with one that
used standard global attention mechanism (we
cannot compare directly with (Chorowski et al.,
2014) since its pretrained with HMM state align-
ment). We also tried local-m attention from (Lu-
ong et al., 2015), however our model cannot con-
verge and we hypothesize the reason is because
ratio length between the speech and their cor-
responding text is larger than 1, therefore the
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Table 1: Results from baseline and proposed mod-
els on ASR task with TIMIT test set.

Model Test
PER (%)

Global Attention Model (Baseline)
Att Enc-Dec (pretrained with HMM align)

(Chorowski et al., 2014) 18.6

Att Enc-Dec (Pereyra et al., 2017) 23.2
Att Enc-Dec (Luo et al., 2016) 24.5
Att Enc-Dec with MLP Scorer (ours) 23.8
Att Enc-Dec with local-m (ours)

(Luong et al., 2015) -

Local Attention Model (Proposed)
Monotonicity Locality

Pos Prediction
∆pt

Alignment
Score(he

s, h
d
t )

Func.
Type

Test
PER (%)

Const (sigmoid) No - 23.2
Const (sigmoid) Yes Bilinear 21.9
Const (sigmoid) Yes MLP 21.7
Unconst (exp) No - 23.1
Unconst (exp) Yes Bilinear 20.9
Unconst (exp) Yes MLP 21.4

∆pt cannot be represented by fixed value. The
best performance achieved by our proposed model
with unconstrained position prediction and bilin-
ear scorer, and provided 12.2% relative error rate
reduction to our baseline.

6 Experiment on Grapheme-to-Phoneme

We also investigated our proposed architecture on
G2P conversion task. Here, the model need to
generate corresponding phoneme given small seg-
ment of characters and its always moving from left
to right. The local property helps our attention
module focus on certain parts from the grapheme
source sequence that the decoder wants to con-
vert into phoneme, and the monotonicity prop-
erty strictly generates alignment left-to-right from
beginning to the end of the grapheme source se-
quence.

6.1 Dataset

Here, we used the CMUDict dataset2. It contains
113438 words for training and 12753 for testing
(12000 unique words). For validation, we ran-
domly select 3000 sentences from the training set.
The evaluation metrics for this task are phoneme
error rate (PER) and word error rate (WER). In the
evaluation process, there are some words has mul-
tiple references (pronunciations). Therefore, we

2CMUdict: https://sourceforge.net/
projects/cmusphinx/files/G2P%20Models/
phonetisaurus-cmudict-split.tar.gz

select one of the references that has lowest PER
between compared to our hypothesis, and if the
hypothesis completely match with one of those
references, then the WER is not increasing. For
our encoder input, we used 26 letter (A-Z) + sin-
gle quotes (’). For our decoder target, we used 39
phonemes plus the end of sequence mark (eos).

6.2 Model Architectures

On the encoder sides, the characters input were
projected into 256 dims using embedding matrix.
We used two bidirectional LSTMs (Bi-LSTM) for
our encoder with 512 hidden units for each LSTM
(total 1024 hidden units for Bi-LSTM). On the de-
coder sides, the phonemes input were projected
into 256 dims using embedding matrix, followed
by two unidirectional LSTMs with 512 hidden
units. For local monotonic model, we used an
MLP with 256 hidden units to generate ∆pt and
λt. For this task, we only used the unconstrained
formulation because based on previous sections,
we able to achieved better performance and we
didn’t need to find optimal hyperparameter for
Cmax. For our scorer module, we used MLP
scorer with 256 hidden units.

In the decoding phase, we used beam search
strategy with beam size 3 to generate the
phonemes given the character sequences. For
comparison, we evaluated our model with stan-
dard global attention and local-m attention model
(Luong et al., 2015) as the baseline.

6.3 Result Discussion

Table 2 summarizes our experiment on proposed
local attention models. We compared our pro-
posed models with several baselines from other
algorithm as well. Our model significantly im-
proving the PER and WER compared to encoder-
decoder, attention-based global softmax and local-
m attention (fixed-step size). Compared to Bi-
LSTM model which was trained with explicit
alignment, we achieve slightly better PER and
WER with larger window size (2σ = 3).

7 Experiment on Machine Translation

We also conducted experiment on machine trans-
lation task, specifically between two languages
with similar sentences structure. By using our pro-
posed method, we able to focus only to a small
related segment on the source side and the target
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Table 2: Results from baseline and proposed
method on G2P task with CMUDict test set

Model PER
(%)

WER
(%)

Baseline
Enc-Dec LSTM (2 lyr)
(Yao and Zweig, 2015)

7.63 28.61

Bi-LSTM (3 lyr)
(Yao and Zweig, 2015)

5.45 23.55

Att Enc-Dec with
Global MLP Scorer (ours)

5.96 25.55

Att Enc-Dec with local-m
(ours) (Luong et al., 2015)

5.64 24.32

Proposed
Att Enc-Dec + Unconst (exp)
(2σ = 2)

5.45 23.15

Att Enc-Dec + Unconst (exp)
(2σ = 3)

5.43 23.19

generation process usually follows the source sen-
tence structure without many reordering process.

7.1 Dataset

We used BTEC dataset (Kikui et al., 2003)
and chose English-to-France and Indonesian-to-
English parallel corpus. From BTEC dataset, we
extracted 162318 sentences for training and 510
sentences for test data. Because there are no de-
fault development set, we randomly sampled 1000
sentences from training data for validation set. For
all language pairs, we preprocessed our dataset
using Moses (Koehn et al., 2007) tokenizer. For
training, we replaced any word that appear less
then twice with unknown (unk) symbol. In de-
tails, we keep 10105 words for French corpus,
8265 words for English corpus and 9577 words for
Indonesian corpus. We only used sentence pairs
where the source is no longer than 60 words in
training phase.

7.2 Model Architecture

On both encoder and decoder sides, the input
words were projected into 256 dims using embed-
ding matrix. We used three Bi-LSTM for our en-
coder with 512 hidden units for each LSTM (total
1024 hidden unit for Bi-LSTM). For our decoder,
we used three LSTM with 512 hidden units. For
local monotonic model, we used an MLP with 256
hidden units to generate ∆pt and λt. Same as pre-
vious section, we only used the unconstrained for-

mulation for local monotonic experiment. For our
scorer module, we used MLP scorer with 256 hid-
den units. In the decoding phase, we used beam
search strategy with beam size 5 and normalized
length penalty with α = 1 (Wu et al., 2016). For
comparison, we evaluate our model with standard
global attention and local-m attention model (Luo
et al., 2016) as the baseline.

Table 3: Results from baseline and proposed
method on English-to-France and Indonesian-to-
English translation tasks.

Model BLEU
BTEC English to France

Baseline
Att Enc-Dec with
Global MLP Scorer

49.0

Att Enc-Dec with local-m
(ours) (Luong et al., 2015)

50.4

Proposed
Att Enc-Dec + Unconst (exp)
(2σ = 4)

51.2

Att Enc-Dec + Unconst (exp)
(2σ = 6)

51.1

BTEC Indonesian to English
Baseline

Att Enc-Dec
with Global MLP Scorer

38.2

Att Enc-Dec with local-m
(ours) (Luong et al., 2015)

39.8

Proposed
Att Enc-Dec + Unconst (exp)
(2σ = 4)

40.9

Att Enc-Dec + Unconst (exp)
(2σ = 6)

41.8

7.3 Result Discussion
Table 3 summarizes our experiment on proposed
local attention models compared to baseline global
attention model and local-m attention model (Lu-
ong et al., 2015). Generally, local monotonic at-
tention had better result compared to global at-
tention on both English-to-France and Indonesian-
to-English translation task. Our proposed model
were able to improve the BLEU up to 2.2 points on
English-to-France and 3.6 points on Indonesian-
to-English translation task compared to standard
global attention. Compared to local-m attention
with fixed step size, our proposed model able
to improve the performance up to 0.8 BLEU on
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English-to-France and 2.0 BLEU on Indonesian-
to-English translation task.

8 Related Work

Humans do not generally process all of the infor-
mation that they encounter at once. Selective at-
tention, which is a critical property in human per-
ception, allows attention to be focused on particu-
lar information while filtering out a range of other
information. The biological structure of the eye
and the eye movement mechanism is one part of
visual selective attention that provides the ability
to focus attention selectively on parts of the visual
space to acquire information when and where it is
needed (Rensink, 2000). In the case of the cock-
tail party effect, humans can selectively focus their
attentive hearing on a single speaker among var-
ious conversation and background noise sources
(Cherry, 1953).

The attention mechanism in deep learning has
been studied for many years. But, only recently
have attention mechanisms made their way into
the sequence-to-sequence deep learning architec-
tures that were proposed to solve machine transla-
tion tasks. Such mechanisms provide a model with
the ability to jointly align and translate (Bahdanau
et al., 2014). With the attention-based model, the
encoder-decoder model significantly improved the
performance on machine translation (Bahdanau
et al., 2014; Luong et al., 2015) and has success-
fully been applied to ASR tasks (Chorowski et al.,
2014; Chan et al., 2016).

However, as we mentioned earlier, most of
those attention mechanism are based on “global”
property, where the attention module tries to
match the current hidden states with all the states
from the encoder sides. This approach is inef-
ficient and computationally expensive on longer
source sequences. A “local attention” was re-
cently introduced by (Luong et al., 2015) which
provided the capability to only focus small subset
of the encoder sides. They also proposed mono-
tonic attention but limited to fixed step-size and
not suitable for a task where the length ratio be-
tween source and target sequence is vastly differ-
ent. Our proposed method are able to elevated this
problem by predicting the step size dynamically
instead of using fixed step size. After we con-
structed our proposed framework, we found work
by (Raffel et al., 2017) recently that also proposed
a method for producing monotonic alignment by

using Bernoulli random variable to control when
the alignment should stop and generate output.
However, it cannot attend the source sequence out-
side the range between previous and current posi-
tion. In contrast with our approach, we are able to
control how large the area we want to attend based
on the window size.

(Chorowski et al., 2014) also proposed a soft
constraint to encourage monotonicity by invoking
a penalty based on the current alignment and pre-
vious alignments. However, the methods still did
not guarantee a monotonicity movement of the at-
tention.

To the best of our knowledge, only few stud-
ies have explored about local and monotonicity
properties on an attention-based model. This work
presents a novel attention module with locality and
monotonicity properties. Our proposed mecha-
nism strictly enforces monotonicity and locality
properties in their alignment by explicitly mod-
eling them in mathematical equations. The ob-
servation on our proposed model can also pos-
sibly act as regularizer by only observed a sub-
set of encoder states. Here, we also explore var-
ious ways to control both properties and evalu-
ate the impact of each variations on our proposed
model. Experimental results also demonstrate that
the proposed encoder-decoder model with local
monotonic attention could provide a better perfor-
mances in comparison with the standard global at-
tention architecture and local-m attention model
(Luong et al., 2015).

9 Conclusion

This paper demonstrated a novel attention mech-
anism for encoder decoder model that ensures
monotonicity and locality properties. We explored
various ways to control these properties, including
dynamic monotonicity-based position prediction
and locality-based alignment generation. The re-
sults reveal our proposed encoder-decoder model
with local monotonic attention significantly im-
proved the performance on three different tasks
and able to reduced the computational complexity
more than one that used standard global attention
architecture.
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danau, and Yoshua Bengio. 2014a. On the proper-
ties of neural machine translation: Encoder–decoder
approaches. Syntax, Semantics and Structure in Sta-
tistical Translation, page 103.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
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Abstract

In this paper, we extend Recurrent Neural
Network Language Models (RNN-LMs)
with an attention mechanism. We show
that an Attentive RNN-LM (with 14.5M
parameters) achieves a better perplexity
than larger RNN-LMs (with 66M param-
eters) and achieves performance compa-
rable to an ensemble of 10 similar sized
RNN-LMs. We also show that an Attentive
RNN-LM needs less contextual informa-
tion to achieve similar results to the state-
of-the-art on the wikitext2 dataset.

1 Introduction

Language Models (LMs) are an essential compo-
nent in a range of Natural Language Processing
applications, such as Statistical Machine Trans-
lation and Speech Recognition (Schwenk et al.,
2012). An LM provides a probability for a se-
quence of words in a given language, reflecting
fluency and the likelihood of that word sequence
occurring in that language.

In recent years Recurrent Neural Networks
(RNNs) have improved the state-of-the-art in LM
research (Józefowicz et al., 2016). Sequential data
prediction, however, is still considered a challenge
in Artificial Intelligence (Mikolov et al., 2010)
given that, in general, prediction accuracy de-
grades as the size of sequences increase.

RNN-LMs sequentially propagate forward a
context vector by integrating the information gen-
erated by each prediction step into the context used
for the next prediction. One consequence of this
forward propagation of information is that older
information tends to fade from the context as new
information is integrated into the context. As a re-
sult, RNN-LMs struggle in situations where there
is a long-distance dependency because the relevant

information from the start of the dependency has
faded by the time the model has spanned the de-
pendency. A second problem is that the context
can be dominated by the more recent information
so when an RNN-LM does make an error this error
can be propagated forward resulting in a cascade
of errors through the rest of the sequence.

In recent sequence-to-sequence research the
concept of “attention” has been developed to en-
able RNNs to align different parts of the input and
output sequences. Examples of attention based
architectures include Neural Machine Translation
(NMT) (Bahdanau et al., 2015; Luong et al., 2015)
and image captioning (Xu et al., 2015).

In this paper we extend the RNN-LM context
mechanism with an attention mechanism that en-
ables the model to bring forward context infor-
mation from different points in the context se-
quence history. We hypothesis that this atten-
tion mechanism enables RNN-LMs to: (a) bridge
long-distance dependencies, thereby avoiding er-
rors; and, (b) to overlook recent errors by choos-
ing to focus on contextual information preceding
the error, thereby avoiding error propagation.

We show that a medium sized1 Attentive RNN-
LM2 achieves better performance than larger
“standard” models and performance comparable
to an ensemble of 10 “medium” sized LSTM
RNN-LMs on the PTB. We also show that an At-
tentive RNN-LM needs less contextual informa-
tion in order to achieve similar results to state-of-
the-art results over the wikitext2 dataset.

Outline: §2 introduces RNN-LMs and related
research, §3 outlines our approach, §4 describes
our experiments, §5 presents our analysis of the
models‘ performance and §6 our conclusions.

1We adopt the terminology of Zaremba et al. (2015) and
Press and Wolf (2016) when referring to the size of the RNNs.

2Code available at https://github.com/
giancds/attentive_lm
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2 RNN-Language Models

RNN-LMs model the probability of a sequence of
words by modelling the joint probability of the
words in the sequence using the chain rule:

p(w1, . . . , wN ) =
N∏
t=1

p(wn|w1, . . . , wn−1) (1)

where N is the number of words in the sequence.
The context of the word sequence is modelled by
an RNN and for each position in the sequence
the probability distribution over the vocabulary is
calculated using a softmax on the output related
to that position of the RNN‘s last layer (i.e., the
last layer‘s hidden state) (Józefowicz et al., 2016).
Examples of such models include Zaremba et al.
(2015) and Press and Wolf (2016). These mod-
els are composed of LSTM units (Hochreiter and
Schmidhuber, 1997) and apply regularization to
improve the RNN performance. In addition, Press
and Wolf (2016) also uses the same embedding
matrix that is used to transform the input words to
transform the output of the last RNN layer to feed
it to the softmax layer to make the next prediction.

Attention mechanisms were first proposed in
“encoder-decoder” architectures for NMT sys-
tems. Bahdanau et al. (2015) proposed a model
that stores all the encoder RNN’s outputs and uses
them together with the decoder RNN’s state ht−1

to compute a context vector that, in turn, is used
to compute the state ht. In Luong et al. (2015)
a generalization of the model of Bahdanau et al.
(2015) is presented which uses the decoder RNN‘s
state, in this instance ht rather than ht−1, along
with the outputs of the encoder RNN to compute
a context vector that it then concatenated with ht
before making the next prediction. Both models
have similar performance and achieve state-of-the-
art performance for some language pairs; how-
ever, they suffer from repeating words or dropping
translations at the output (Mi et al., 2016).

There is previous work on using past informa-
tion to improve RNN-LMs. Tran et al. (2016) pro-
pose an extension to LSTM cells to include mem-
ory areas, which depend on input words, at the
output of every hidden layer. The model produces
good results but the dependency on input words
expands the number of parameters in each LSTM
cell in proportion to the vocabulary size in use.

Similarly, Cheng et al. (2016) propose storing
the LSTM‘s memory cells of every layer at each
timestep and draw a context vector for each mem-
ory cell for each new input to attend to previous
content and compute its output. Although their
model requires fewer parameters than the model of
Tran et al. (2016), the performance of the model is
worse than regularized “standard” RNN-LM as in
Zaremba et al. (2015) and Press and Wolf (2016).

Daniluk et al. (2017) propose an augmented ver-
sion of the attention mechanism proposed by Bah-
danau et al. (2015) on which their model outputs 3
vectors called key-value-predict. The key (a vector
of real numbers) is used to retrieve a single hidden
state from the past. Grave et al. (2017) propose an
LM augmented with a “memory cache” that stores
tuples of hidden-states plus word embeddings (for
the word predicted from that hidden state). The
memory cache is used to help the current predic-
tion by retrieving the word embedding associated
with the hidden state in the memory most similar
to the current hidden state. Merity et al. (2017)
proposed a mixture model that includes an RNN
and a pointer network. This model computes one
distribution for the softmax component and one
distribution for the pointer network, using a sen-
tinel gating function to combine both distributions.
In spite of the fact that their model is similar to the
model of Grave et al. (2017), their model requires
an extra transformation between the current state
of the RNN and those stored in the memory.

These recent models have a number of draw-
backs. The systems that extend the architecture of
LSTM units struggle to process large vocabularies
because the system memory expands to the size of
the vocabulary. For systems that retrieve a single
hidden-state or word from memory, if the predic-
tion is not correct, the RNN-LM will not receive
the correct past information. Finally, the models
of Merity et al. (2017) and Grave et al. (2017)
use a fixed-length memory of L previous hidden
states to store and retrieve information from the
past (100 states in the case of Merity et al. (2017)
and 2,000 states in the case of Grave et al. (2017)).
As we shall explain in §3 our “attentive” RNN-
LMs have a memory of dynamic-length that grows
with the length of the input and therefore, in gen-
eral, are computationally cheaper.

We see our “attentive” RNN-LM (see §3) as a
generalized version of these models as we rely on
the encoded information in the hidden state of the
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RNN-LM to represent previous input words and
we use a set of attention weights (instead of a
key) to retrieve information from the past inputs.
The main advantages of our approach are: (a) our
model does not need vocabulary sized matrices
in the computations of the attention mechanism
and therefore has a reduced number of parame-
ters; and (b) as we use all previous hidden states
of the RNN-LM in the computation for the atten-
tion weights, all of those states will influence the
next prediction based on the weights calculated.

3 Attentive Language Models

In this work we extend RNN-LMs to include an at-
tention mechanism over previous inputs. We em-
ploy a multi-layered RNN to encode the input and,
at each timestep, we store the output of the last re-
current layer (i.e., its hidden state ht) into a mem-
ory buffer. We compute a score for each hidden
state hi (∀ i ∈ {1, . . . , t − 1}) stored in memory
and use these scores to weight each hi. From these
weighted hidden states we generate a context vec-
tor ct that is concatenated with the current hidden
state ht to predict the next word in the sequence.
Figure 1 illustrates a step of our model when pre-
dicting the fourth word in a sequence.

We propose two different attention score func-
tions that can be used to compute the context
vector ct. One calculates the attention score of
each hi using just the information in the state
(the single(hi) score introduced below). The
other calculates the attention scores for each hi
by combining the information from that state with
the information from the current state ht (the
combined(hi,ht) score described below). Each
of these mechanisms defines a separate Attentive
RNN-LMs and we report results for each of these
LMs in our experiments.

More formally, each ht is computed as follows,
where xt is the input at timestep t:

ht = RNN(xt,ht−1) (2)

The context vector ct is then generated using
Eq. (3) where each scalar weight ai is a softmax
(Eq. (4)) and the score for each hidden state (hi)
in the memory buffer is one of Eq. (5) or Eq. (6).

ct =
t−1∑
i=1

aihi (3)

Figure 1: Illustration of a step of the Attentive
RNN-LM with combined score. In this example,
the model receives the third word as input (w3) af-
ter storing the previous states (h1 and h2) in mem-
ory. After producing h3, the model computes the
context vector (in this case c3) that will be con-
catenated to h3 before the softmax layer for the
prediction of the fourth word w4. Note that if the
single score is in use (Eq. (9)), the arrow from
the RNN output for h3 to the attention layer is
dropped. Also note that h3 is stored in memory
only at the end of this process.

ai =
exp(score(hi,ht))∑t−1
j=1 exp(score(hj ,ht))

(4)

score(hi,ht) =
{
single(hi) (5)

combined(hi,ht) (6)

We then merge ct with the current state ht using
a concatenation layer3, where Wc is a matrix of
parameters and bt is a bias vector.

h′t = tanh(Wc[ht; ct] + bt) (7)

We compute the next word probability using
Eq.8 where W is a matrix of parameters and b
is a bias vector.

3We also have experimented with using a dot product and
a feedforward layer to combine ht and ct and also using only
ct, but those results were far below previous work in RNN-
LM so we do not report them here.
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p(wt|w<t, x) = softmax(Wh′t + b) (8)

Single score. This score is calculated for each
hi using just the information stored the state in it-
self. The score single(hi) is defined as

single(hi) = vs � tanh(Wshi) (9)

where the parameter matrix Ws and vector vs are
both learned by the attention mechanism and �
represents the dot product.

When applying the single(hi) score, we can
think of the score ai as a scalar summary of the
“absolute relevance” of the state hi. When a new
state ht is added to the buffer its scalar summary
ai is calculated by first using Eq.9 to get the score
for the state and then applying a softmax func-
tion over the set of state scores including the score
for the new state. Although the scores for each
state do not change from one timestep to the next,
applying the softmax results in recalculation of
the distribution of the scalar summaries for all the
states h0, . . . ,ht. As a result the ai’s for each state
in Eq.3 changes from one prediction to the next as
new states are added and the weight mass is dis-
tributed across more states.

Combined score. This score is calculated for
each hi by combining the information from that
state with the information from the current state
ht. The score combined(hi,ht) is defined as

combined(hi,ht) = vs � tanh(Wshi + Wqht)
(10)

where the parameter matrices Ws and Wq and
vector vs are learned by the attention mechanism,
and � is the same as in Eq. 9. Notice that because
Wqht does not depend on any other state and is
used in the computations with all other hi, we can
efficiently compute it once and use the results in
Eq. 10, thus reducing computation time.

The score ai defined by combined(hi,ht), can
be understood as the “relative relevance” of state
hi to the current state ht. Using this attention
mechanism the score for each hi is different for
each timestep according to its relevance to the cur-
rent hidden state ht of the RNN. Consequently, the

scores for each hi and the distribution over these
scores changes from one timestep to the next. Us-
ing this scoring, the model can decide whether it
should pay more attention to the current state, to
a previous state or use past states to “supplement”
the information for the next prediction. In §5 we
present and analysis of how the model attends to
different parts of its history as it generates a se-
quence of predictions.

4 Experiments

To evaluate our Attentive RNN-LMs we conducted
experiments over the PTB (Marcus et al., 1994)
and wikitext2 (Merity et al., 2017) datasets. We
first describe the setup of our Attentive RNN-LM
for the PTB (§4.1) and wikitext2 (§4.2) datasets
and then discuss the results (§4.3). We com-
pare our results on PTB to Zaremba et al. (2015)
and Press and Wolf (2016) the best performing
LSTM-LMs on the PTB, two memory augmented
networks (Grave et al. (2017) and Merity et al.
(2017)) and PTB state-of-the-art ensemble mod-
els of Zaremba et al. (2015). On wikitext2 we take
(Merity et al., 2017), the creators of the dataset,
and (Grave et al., 2017), the current state-of-the-
art, as our baselines.

4.1 PTB Setup

We evaluate our Attentive RNN-LM over the PTB
dataset using the standard split which consists of
887K, 70K and 78K tokens on the training, vali-
dation and test sets respectively.

We follow, in part, the parameterization used
by Zaremba et al. (2015) and Press and Wolf
(2016) with some changes. We trained an Atten-
tive RNN-LM with 2 layers of 650 LSTM units
using Stochastic Gradient Descent (SGD) with an
initial learning rate of 1.0, halving the learning rate
at each epoch after 12 epochs, to minimize the av-
erage negative log probability of the target words.

We train the models until we do not get any per-
plexity improvements over the validation set with
an early stop counter of 10 epochs (i.e., patience of
10 epochs). Once the model runs out of patience,
we rollback its parameters and use the model that
achieved the best validation perplexity to calcu-
late the perplexity over the test set. We initialize
the weight matrices of the network uniformly in
[−0.05, 0.05] while all biases are initialized to a
constant value at 0.0. We also apply 50% dropout
(Srivastava et al., 2014) to the non-recurrent con-
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nections and clip the norm of the gradients, nor-
malized by mini-batch size, at 5.0. In all our ex-
periments, we follow Press and Wolf (2016) and
tie the matrix W in Eq. (8) to be the embedding
matrix (which also has 650 dimensions) used to
represent the input words.

Contrary to Zaremba et al. (2015) and Press and
Wolf (2016), we do not allow successive mini-
batches to sequentially traverse the dataset. In
other words, we follow the standard practice to
reinitialize the hidden state of the network at the
beginning of each mini-batch, by setting it to all
zeros. This way, we do not allow the attention
window to span across sentence boundaries4. We
use all sentences in the training set, we truncate
all sentences longer than 35 words and pad all sen-
tences shorter than 35 words with a special symbol
so all sentences are the same size. We use a vo-
cabulary size of 10K words and a batch size of 32.
All UNK words (following the pre-processing of
(2015)) were kept during the training, validation
and testing phases.

4.2 wikitext2 Setup

We also evaluate our Attentive RNN-LM over the
wikitext2 dataset (Merity et al., 2017). We use the
standard train, validation and test splits which con-
sists of around 2M, 217K tokens and 245k tokens
respectively. This dataset is composed of “Good”
and “Featured” articles on Wikipedia.

There is an important difference between how
we trained and tested our models on the wiki-
text2 dataset and how the baseline systems were
trained and tested. Both Merity et al. (2017) and
Grave et al. (2017) permitted the memory buffers
of their systems to span sentence boundaries (and,
indeed, they also did mini-batch traversal which
allowed the memory buffers to traverse mini-batch
boundaries) whereas we reset our systems mem-
ory at each sentence boundary. This difference
is important because in the wikitext2 dataset the
sentences are not shuffled and, therefore, are se-
quentially related to each other. As a result, sys-
tems that carry sequential information from pre-
vious sentences into the current sentence have an
advantage in that they utilise contextual cues from
the preceding sentence to inform the predictions
at the start of the new sentence. By compari-

4We also experimented to with successive mini-batches to
sequentially traverse the dataset as in Zaremba et al. (2015)
but the performance of the model dropped considerably so we
do not report those results here.

son, systems that reset their memory at the start of
each sentence must reconstruct their context mod-
els from scratch and face a “cold-start” problem
for the early predictions in the sentence.

The core reason why (Merity et al., 2017) and
(Grave et al., 2017) did not reset their memo-
ries across sentence boundaries and we do is that
these baseline systems use a fixed length memory
whereas our “attention” mechanism has a variable
length memory. A variable length memory has
benefits in terms of both computational cost and
the fact that the memory size is dynamically fitted
to the context. However, just as the system de-
signer for a fixed length memory LM must fix the
memory size hyper-parameter in some fashion, so
to the designer of a variable length memory LM
must decide when the memory buffer is reset. For
our work, we have decided to reset our memory
buffer at sentence boundaries because many of the
tasks for which LMs are used (e.g. NMT) work on
a sentence by sentence basis. If required it would
be possible for us to extend the memory buffer to
the start of the preceding sentence (or some other
landmark is the sequence history). However, this
would incur extra computational cost, and as we
shall see our Attentive RNN-LMs are still compet-
itive on the wikitext2 dataset despite the fact that
the baselines systems are given access to longer
context sequences.

We trained an Attentive RNN-LM with 2 lay-
ers of 1000 LSTM units using Stochastic Gradient
Descent (SGD) with an initial learning rate of 1.0,
decaying the learning rate by a factor of 1.15 at
each epoch after 14 epochs, to minimize the aver-
age negative log probability of the target words.

Similarly to the PTB model we also train this
model with an early stop counter of 10 epochs
and we initialize the weight matrices of the net-
work uniformly in [−0.05, 0.05] while all biases
are initialized to a constant value at 0.0. We apply
65% dropout to the non-recurrent connections and
clip the norm of the gradients, normalized by mini-
batch size, at 5.0. In all our experiments, we also
follow Press and Wolf (2016) and tie the matrix
W in Eq. (8) to be the embedding matrix (which
has 1000 dimensions for this model) used to rep-
resent the input words. We use all sentences in
the training set, we truncate all sentences longer
than 35 words and pad all sentences shorter than
35 words with a special symbol so all sentences
are the same length. We use a vocabulary size of
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33,278 and a batch size of 32. All UNK words
(following the pre-processing of (2017)) were kept
during the training, validation and testing phases.

4.3 Results
In Table 1 we report the results of our experiments
on the PTB dataset. As we can see in this table,
the Attentive RNN-LMs outperforms all other sin-
gle models on the PTB dataset. Although Atten-
tive RNN-LMs have less parameters (10M) than
the large “regularized” LSTM-LMs (66M param-
eters), they were capable of reducing the perplex-
ity over both validation and test sets. This result
shows that using an Attentive RNN-LM it is pos-
sible to achieve better perplexity scores with far
fewer model parameters. Furthermore, Attentive
RNN-LMs are able to achieve roughly the same
results as the averaging of 10 RNN-LM models
(with no attention) of the same size.

In addition, there is little difference between the
results of the Attentive RNN-LM with single score
(Eq.9) and the Attentive RNN-LM with combined
score (Eq.10) with the single score slightly outper-
forming the the combined score. We believe this
is because the model using the combined(hi,ht)
score has more parameters to optimize and, thus,
more difficulties in settling to a good local optima.

In Table 2 we report the results on the wikitext2
dataset. Despite the fact that we reset the mem-
ory for the Attentive RNN-LM at each sentence
boundary whereas the caches for the baseline sys-
tems span sentence boundaries, our best Attentive
RNN-LM is within 1 perplexity point of the sys-
tem of (2017) (which is allowed to cache 2,000
previous hidden states), and has a lower perplexity
than all of the other baselines.

5 Analysis of the Models

The purpose of our attention mechanism is to en-
able an RNN-LM to bridge long distance depen-
dencies in language. Therefore, we expect the at-
tention mechanism to select previous hidden states
that are relevant to the current predictions. To
analyse whether the attention mechanism is func-
tioning as intend we analysed the evolution of at-
tention weights in our Attentive RNN-LM as we
calculated the perplexity for samples sentences us-
ing the models trained over the wikitext25.

5The behaviour of the models on wikitext2 is similar to
that of the models trained and evaluated on the PTB dataset,
so for space reasons we only present the wikitext2 analysis
here.

Figure 2 show the evolution of attention
weights, using both single and combined scoring,
when calculating perplexities for 2 sentences con-
taining nominal modifiers. In addition, Figure 3
show the evolution of attention weights for two
sentences containing relative clauses, once again
using both single and combined scoring. The
words in the X-axis (horizontal) are the inputs at
each timestep and the words in the Y-axis (verti-
cal) are the next (or predicted) words. We sup-
pressed weights that either equal to 1.0 (black
squares) or 0.0 (white squares). Note that given
the rounding to 4 decimal places, weights in some
rows of the matrices may not sum to 1.0.

None of the attention mechanisms worked as a
proper attention mechanism. In other words, none
of the mechanisms generated larger weights for
specific words in the sentence, in comparison to
the other words in the same sentence. Compar-
ing the attention weights generated by both com-
bined score and single score for both sentences, it
is striking that the distribution of attention weights
is very similar. For both Attentive RNN-LM mod-
els the attention spreads out across the history in a
relatively equal fashion.

Indeed, both models seem to take into consid-
eration all previous states, creating a smoothing
effect for the hidden states in the buffer. There-
fore, no single state dominates the context vector
by receiving a much larger attention weight than
the others. We believe that this behaviour enables
the models to bring forward information from the
beginning of the sentence at the time it is making a
prediction. This way, the models do not let infor-
mation fade away from the context as it progresses
to subsequent steps in a sequence and all previ-
ous information about the words that preceded the
current timestep is available to the classifier in a
manner that disregards recency.

As a consequence of the smoothing effect, the
model does not necessarily need to store informa-
tion about the context of the sequence in the re-
current connections of the RNN. This behaviour
enable the model to retrieve information from the
buffer to remember past words without relying
solely on the RNN’s internal “memory”. There-
fore, the model can maximize the features ex-
tracted about an input word, creating an advantage
over other RNN-LMs that need to both extract fea-
tures and keep context regarding the sequence in
its connections.
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Model Params Valid. Set Test Set

Single Models

Medium Regularized LSTM (Zaremba et al., 2015) 20M 86.2 82.7
Large Regularized LSTM (Zaremba et al., 2015) 66M 82.2 78.4
Large + BD + WT (Press and Wolf, 2016) 51M 75.8 73.2
Neural cache model (size = 500) (Grave et al., 2017) - - 72.1
Medium Pointer Sentinel-LSTM (Merity et al., 2017) 21M 72.4 70.9
Attentive LM w/ combined score function 14.5M 72.6 70.7
Attentive LM w/ single score function 14.5M 71.7 70.1

Model Averaging

2 Medium regularized LSTMs (Zaremba et al., 2015) 40M 80.6 77.0
5 Medium regularized LSTMs (Zaremba et al., 2015) 100M 76.7 73.3
10 Medium regularized LSTMs (Zaremba et al., 2015) 200M 75.2 72.0
2 Large regularized LSTMs (Zaremba et al., 2015) 122M 76.9 73.6
10 Large regularized LSTMs (Zaremba et al., 2015) 660M 72.8 69.5
38 Large regularized LSTMs (Zaremba et al., 2015) 2508M 71.9 68.7

Table 1: Perplexity results over the PTB. Symbols: WT = weight tying (Press and Wolf, 2016); WD =
weight decay and BD = Bayesian Dropout, both suggested by Gal and Ghahramani (2015).

Model Params Valid. Set Test Set

Zoneout + Variational LSTM (Merity et al., 2017) 20M 108.7 100.9
LSTM-LM (Grave et al., 2017) - - 99.3
Variational LSTM (Merity et al., 2017) 20M 101.7 96.3
Neural cache model (size = 100) (Grave et al., 2017) - - 81.6
Pointer LSTM (window = 100) (Merity et al., 2017) 21M 84.8 80.8
Attentive LM w/ combined score function 50M 74.3 70.8
Attentive LM w/ single score function 50M 73.7 69.7
Neural cache model (size = 2000) (Grave et al., 2017) - - 68.9

Table 2: Perplexity results over the wikitext2.

Another interpretation of the smoothing effect is
that it “reinforces” the signal in a similar fashion
to residual connections in other RNNs and Deep
Neural Networks architectures. Other RNN archi-
tectures use these residual connections as a short-
cut to “reinforce” the signal of the current input
and, thus, it still considers the current input only.
The Attentive RNN-LM, however, uses all the pre-
vious hidden states to achieve a similar effect and
create a stronger signal to the softmax classifier.

6 Conclusions

This paper proposes the use of attention mecha-
nisms in RNN-LMs. These attention mechanisms
enable an RNN-LM to consider information from
its past when it is predicting the next word. We
believe that this can help the LM to overcome

the fading of relevant information as it traverses a
long-distance dependency within a sequence and
also to recover from a mistaken prediction by fo-
cusing on the context preceding the error.

Our results show that an Attentive RNN-LM
outperforms both RNN-LM models that use and
that do not use past information to predict the
next word in a sequence when trained on the
PTB dataset. Furthermore, our Attentive RNN-LM
achieves this performance using far fewer units
than the “standard” RNN-LM and, therefore, less
model parameters. Our results also show that our
Attentive RNN-LM achieves similar results to an
ensemble that averages over 10 similar sized (in
terms of number of LSTM units) RNN-LMs.

In addition, our results demonstrate that our At-
tentive RNN-LM achieves similar to state-of-the-

447



art results over the wikitext2 dataset. It is an inter-
esting result given that we do not allow our model
to look beyond the boundaries of the current se-
quence it is processing, whilst the state-of-the-art
model is allowed to store 2,000 previous states in
its cache.

In future work we plan to (a) test the perfor-
mance of ensembles of Attentive RNN-LMs and
(b) to study the use of the Attentive RNN-LM as
the decoder within an NMT system.
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Figure 2: Plot of attention weights for two sentences containing nominal modifiers. On the left column
are the attention weights calculated by the combined score. On the right column are the attention weights
calculated by the single score. The words in the X-axis (horizontal) are the inputs at each timestep and
the words in the Y-axis (vertical) are the next (or predicted) words. We suppressed weights that either
equal to 1.0 (black squares) or 0.0 (white squares). Note that given the rounding to 4 decimal places,
weights in some rows of the matrices may not sum to 1.0.
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Figure 3: Plot of attention weights for two sentences containing relative clauses. On the left column are
the attention weights calculated by the combined score. On the right column are the attention weights
calculated by the single score. The words in the X-axis (horizontal) are the inputs at each timestep and
the words in the Y-axis (vertical) are the next (or predicted) words. We suppressed weights that either
equal to 1.0 (black squares) or 0.0 (white squares). Note that given the rounding to 4 decimal places,
weights in some rows of the matrices may not sum to 1.0.

450



Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 451–461,
Taipei, Taiwan, November 27 – December 1, 2017 c©2017 AFNLP

Diachrony-aware Induction of Binary Latent Representations
from Typological Features

Yugo Murawaki
Graduate School of Informatics, Kyoto University

Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
murawaki@i.kyoto-u.ac.jp

Abstract

Although features of linguistic typology
are a promising alternative to lexical ev-
idence for tracing evolutionary history of
languages, a large number of missing val-
ues in the dataset pose serious difficul-
ties for statistical modeling. In this pa-
per, we combine two existing approaches
to the problem: (1) the synchronic ap-
proach that focuses on interdependencies
between features and (2) the diachronic
approach that exploits phylogenetically-
and/or spatially-related languages. Specif-
ically, we propose a Bayesian model that
(1) represents each language as a se-
quence of binary latent parameters encod-
ing inter-feature dependencies and (2) re-
lates a language’s parameters to those of
its phylogenetic and spatial neighbors. Ex-
periments show that the proposed model
recovers missing values more accurately
than others and that induced representa-
tions retain phylogenetic and spatial sig-
nals observed for surface features.

1 Introduction

Features of linguistic typology such as basic word
order (examples are SVO and SOV) and the pres-
ence or absence of tone constitute a promising
resource that can potentially be used to uncover
the evolutionary history of languages. It has been
argued that in exceptional cases, typological fea-
tures can reflect a time span of 10,000 years or
more (Nichols, 1994). Since typological features,
by definition, allow us to compare an arbitrary
pair of languages, they can be seen as the last
hope for language isolates and tiny language fam-
ilies such as Ainu, Basque, and Japanese, for
which lexicon-based historical-comparative lin-

guistics1 has failed to identify genetic relatives.
Fortunately, the publication of a large typology
database (Haspelmath et al., 2005) made it pos-
sible to take computational approaches to this area
of study (Daumé III and Campbell, 2007).

Murawaki (2015) pursued a pipeline approach
to utilizing typological features for phylogenetic
inference. Exploiting interdependencies found
among features, Murawaki (2015) first mapped
each language, represented as a sequence of sur-
face features, into a sequence of continuous latent
components. It was in this continuous space that
phylogenetic relations among languages were sub-
sequently inferred. Murawaki (2015) argued that
since the conversion and the resulting latent repre-
sentations were designed to reflect typological nat-
uralness, reconstructed ancestral languages were
also likely to be typologically natural.

In this paper, however, we show that Murawaki
(2015) rests on fragile underpinnings so that they
need to be rebuilt. One of the most important
problems underestimated by Murawaki (2015) is
an alarmingly large number of missing values.
The dataset is a matrix where languages are rep-
resented as rows and features as columns, but only
less than 30% of the items are present after a mod-
est preprocessing. What is worse, the situation is
unlikely to change in the foreseeable future be-
cause of the thousands of languages in the world,
there is ample documentation for only a handful.
These missing values pose serious difficulties for
statistical modeling. Ignoring uncertainty in data,
however, Murawaki (2015) relied on point esti-
mates of missing values provided by an existing
method of imputation when inducing latent repre-
sentations. In this paper, we take a Bayesian ap-
proach because it is known for its robustness in

1 By lexicon-based historical-comparative linguistics, we
mean broad topics including sound laws, cognates, and his-
torical changes in inflectional paradigms.
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Figure 1: Overview of the proposed Bayesian generative model. Dotted boxes indicate the latent and
surface representations of a language. Solid arrows show the direction of stochastic generation.

modeling uncertainties. We demonstrate that we
can jointly infer missing values and latent repre-
sentations.

Another question left unanswered is how good
the induced representations are. In this paper, we
present two quantitative analyses of the induced
representations. The first one is rather indirect: we
measure how well a model recovers missing val-
ues, with the assumption that good representations
must capture regularity in surface features. We
show that the proposed method outperformed the
pipelined imputation method of Murawaki (2015)
among others.

The second analysis involves geography. It is
well known that the values of a surface feature
do not distribute randomly in the world but reflect
vertical (phylogenetic) transmissions from parents
to children and horizontal (spatial or areal) trans-
missions between populations (Nichols, 1992).
For example, languages of Mainland Southeast
Asia are known for having similar tone systems
even though they belong to different language
families. To measure the degrees of the two
modes of transmissions, we use an autologistic
model that investigates dependencies among lan-
guages (Towner et al., 2012; Yamauchi and Mu-
rawaki, 2016). Since it requires the input to
be discrete, we evaluate a new model that fo-
cuses on inter-feature dependencies in the same
way as Murawaki (2015) but induces binary la-
tent representations. We show that vertical and
horizontal signals observed for surface features
largely vanish from latent representations when
only inter-feature dependencies are exploited. Al-
though not directly applicable to the model of Mu-
rawaki (2015), our results suggest that the pipeline
approach suffers from noise during phylogenetic
inference. To address this problem, we extend
the induction model to incorporate the autologistic
model at the level of latent representations, rather

than surface features. With this integrated model,
we manage to let induced representations retain
surface signals.

In the end, the Bayesian generative model we
propose induces binary latent representations by
combining inter-feature dependencies and inter-
language dependencies, with primacy given to the
former (Figure 1). Whereas inter-feature depen-
dencies are synchronic in nature, inter-language
dependencies reflect diachrony. Thus we call the
integrated model diachrony-aware induction.

Due to space limitation, we had to put technical
details into the supplementary material. However,
we would like to stress that the proposed model
works only if it is armed with statistical techniques
rarely found in the NLP literature. Together with
missing values and binary representations, a large
number of continuous variables that connect bi-
nary representations to surface features need to
be inferred. Unfortunately, a naı̈ve Metropolis-
Hastings algorithm does not converge within real-
istic time scales. We solve this problem by adopt-
ing Hamiltonian Monte Carlo (Neal, 2011) since
it enables us to efficiently sample a large num-
ber of continuous variables at once. Likewise, the
autologistic model contains an intractable normal-
ization term, which prevents the application of the
standard Metropolis-Hastings sampler. We use an
approximate sampler instead (Liang, 2010).

2 Related Work
2.1 Inter-feature Dependencies
Interdependencies among features have long been
observed across the world’s languages. For exam-
ple, OV (object-verb) languages tend to be AN for
the order of adjective and noun. Greenberg (1963)
proposed dozens of such patterns known as lin-
guistic universals. A statistical model for discov-
ering Greenbergian universals was presented by
Daumé III and Campbell (2007). Itoh and Ueda
(2004) used the Ising model to model the interac-
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tion between features. Although these studies en-
tirely focused on surface patterns, they imply the
presence of some latent structure behind these sur-
face features.

Some generative linguists argue for the ex-
istence of binary latent parameters behind sur-
face features although they are controversial even
among generative linguists (Boeckx, 2014). We
borrow the term parameter from generative lin-
guistics because the name of feature is reserved
for surface variables.

Parameters are part of the principles and pa-
rameters (P&P) framework (Chomsky and Las-
nik, 1993), where, the structure of a language
is explained by (1) a set of universal principles
that are common to all languages and (2) a set of
parameters whose values vary among languages.
Here we skip the former since our focus is on
structural variability. According to P&P, if we
set specific values to all the parameters, then we
obtain a specific language. Each parameter is
binary and, in general, sets the values of mul-
tiple surface features in a deterministic manner.
For example, the head directionality parameter
is either head-initial or head-final. If
head-initial is chosen, then surface features
are set to VO, NA and Prepositions; other-
wise the language in question becomes OV, AN and
Postpositions (Baker, 2002). Baker (2002)
discussed a number of parameters such as head
directionality, polysynthesis, and topic prominent
parameters.

Partly inspired by the P&P framework, we use
a sequence of binary variables as the latent rep-
resentation of a language. However, there are
non-negligible differences between P&P and ours,
which are discussed in Section S.2 of the supple-
mentary material.

What the structure behind surface features looks
like is almost exclusively discussed by generative
linguists, but it should be noted that they are not
the only group who attempts to explain surface
patterns. Roughly speaking, generative linguists
are part of the synchronist camp, as contrasted
with diachronists, who consider that at least some
patterns observed in surface features arise from
common paths of diachronic development (Ander-
son, 2016). An important factor of diachronic de-
velopment is grammaticalization, by which con-
tent words change into function words (Heine and
Kuteva, 2007). For example, the correlation be-

tween the order of adposition and noun and the
order of genitive and noun might be explained by
the fact that adpositions often derive from nouns.

2.2 Inter-language Dependencies
The standard model for phylogenetic inference is
the tree model, where a trait is passed on from a
parent to a child with occasional modifications.
In fact, the recent success in the applications of
statistical models to historical linguistic problems
is largely attributed to the tree model (Gray and
Atkinson, 2003; Bouckaert et al., 2012). In lin-
guistic typology, however, a non-tree-like mode of
evolution has emerged as one of the central top-
ics (Trubetzkoy, 1928; Campbell, 2006). Typo-
logical features, like loanwords, can be borrowed
from one language to another, and as a result, ver-
tical (phylogenetic) signals are obscured by hori-
zontal (spatial) transmission.

The task of incorporating both vertical and hor-
izontal transmissions within a statistical model of
evolution is notoriously challenging because of the
excessive flexibility of horizontal transmissions.
This is the reason why previously proposed mod-
els are coupled with some very strong assump-
tions, for example, that a reference tree is given a
priori (Nelson-Sathi et al., 2010), and that horizon-
tal transmissions can be modeled through time-
invariant areal clusters (Daumé III, 2009).

Consequently, we pursue a line of research
in linguistic typology that draws on information
on the current distribution of typological features
without explicitly requiring the reconstruction of
previous states (Nichols, 1992, 1995; Parkvall,
2008; Wichmann and Holman, 2009). The ba-
sic assumption is that if the feature in question is
vertically stable, then a phylogenetically defined
group of languages will tend to share the same
value. Similarly, if the feature in question is hor-
izontally diffusible, then spatially close languages
would be expected to frequently share the same
feature value. Since the current distribution of ty-
pological features is more or less affected by these
factors, we need to disentangle the effects of each
of these factors. To do this, Yamauchi and Mu-
rawaki (2016) adopted a variant of the autologis-
tic model, which had been widely used to model
the spatial distribution of a feature (Besag, 1974;
Towner et al., 2012). The model was also used
to impute missing values because the phylogenetic
and spatial neighbors of a language had some pre-
dictive power over its feature values.
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3 Data and Preprocessing

The dataset we used in the present study is the
online edition2 of the World Atlas of Language
Structures (WALS) (Haspelmath et al., 2005).
While Greenberg (1963) and generative linguists
have manually induced patterns and parameters,
WALS makes it possible to take computational
approaches to modeling features (Daumé III and
Campbell, 2007; Daumé III, 2009; Murawaki,
2015; Takamura et al., 2016; Murawaki, 2016).

WALS is essentially a matrix where languages
are represented as rows and features as columns.
As of 2017, it contained 2,679 languages and 192
surface features. It covered less than 15% of items
in the matrix, however.

We removed sign languages, pidgins and cre-
oles from the matrix. We imputed some missing
values that could trivially be inferred from other
features. We then removed features that covered
less than 10% of the languages. After the pre-
processing, the number of languages L was 2,607
while the number of features N was reduced to
104. The coverage went up to 26.9%, but the rate
was still alarmingly low.

In WALS, languages are accompanied by addi-
tional information. We used the following fields
to model inter-language dependencies. (1) gen-
era, the lower of the two-level phylogenetic group-
ings, and (2) single-point geographical coordi-
nates (longitude and latitude). By connecting ev-
ery pair of languages within a genus, we con-
structed a phylogenetic neighbor graph. A spatial
neighbor graph was constructed by linking all lan-
guage pairs that were located within a distance of
R = 1000 km. On average, each language had
30.8 and 89.1 neighbors, respectively.

The features in WALS are categorical. For
example, Feature 81A, “Order of Subject, Ob-
ject and Verb” has seven possible values: SOV,
SVO, VSO, VOS, OVS, OSV and No dominant
order, and each language incorporates one of
these seven values. For each language, we ar-
ranged its features into a sequence. A sequence
of categorical features can alternatively be repre-
sented as a binary sequence using the 1-of-Fi cod-
ing scheme: Feature i with Fi possible values was
converted into Fi binary items among which only
one item takes 1. The number of binarized features
M was 723.

2http://wals.info/

L # of languages
K # of parameters
M # of binarized features
N # of categorical features
Z ∈ {0, 1}L×K Binary parameter matrix
W ∈ RK×M Weight matrix
Θ̃ ∈ RL×M Feature score matrix
Θ ∈ [0, 1]L×M Feature probability matrix
X ∈ NL×N Categorical feature matrix

Table 1: Notations.

4 Proposed Method

Since the proposed model is rather complicated,
we present two key components before going into
the integrated model. Table 1 shows notations
used in this paper. Surface features have two ways
of indexing. First, feature values are serialized as
(1, 1), · · ·, (1, F1), (2, 1), · · ·, (i, j), · · ·, (N,FN ),
where (i, j) points to feature i’s j-th value. Then
they are given the flat index 1, · · · ,m, · · · ,M
(M =

∑N
i=1 Fi). Two indices are mapped by the

function f(i, j) = m. We need the flat repre-
sentation because that is what latent parameters
work on. A parameter is expected to capture the
relation between one feature’s particular value
(e.g., VO for the order of object and verb) and
another feature’s particular value (NA for the order
of adjective and noun).

4.1 Inter-feature Dependencies
Figure 2 illustrates how surface features are gen-
erated from binary latent parameters. We use ma-
trix factorization (Srebro et al., 2005; Griffiths and
Ghahramani, 2011) to capture inter-feature depen-
dencies. Since categorical feature matrix X can-
not directly be decomposed into two, we first con-
struct (unnormalized) feature score matrix Θ̃ and
then stochastically generate X using Θ̃.

Θ̃ is a product of binary parameter matrix Z and
weight matrix W . The generation of Z will be de-
scribed in Section 4.2.3 Each item of Θ̃, θ̃l,m, is a
score for language l’s m-th binarized feature. It is
affected only by parameters with zl,k = 1 because

θ̃l,m =
K∑
k=1

zl,kwk,m. (1)

3 Although the natural choice for modeling binary la-
tent matrices is an Indian buffet process (IBP) (Griffiths and
Ghahramani, 2011), we do not take this approach for reasons
we explain in Section S.1 of the supplementary material.
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Figure 2: Stochastic parameter-to-feature generation. Θ̃ = ZW encodes inter-feature dependencies.

We locally apply normalization to Θ̃ to obtain
Θ, in which θl,i,j is the probability of language l
taking value j for categorical feature i

θl,i,j =
exp(θ̃l,f(i,j))∑
j′ exp(θ̃l,f(i,j′))

. (2)

Finally, language l’s i-th categorical feature, xl,i,
is generated from this distribution.

P (xl,i | zl,∗,W ) = θl,i,xl,i
, (3)

where zl,∗ = (zl,1, · · · , zl,K).
Combining Eqs. (1) and (2), we obtain

θl,i,j ∝ exp(
K∑
k=1

zl,kwk,f(i,j))

=
K∏
k=1

exp(zl,kwk,f(i,j)). (4)

We can see from Eq. (4) that this is a product-
of-experts model (Hinton, 2002). If zl,k =
0, parameter k has no effect on θl,i,j because
exp(zl,kwk,f(i,j)) = 1. Otherwise, if wk,f(i,j) >
0, it makes θl,i,j larger, and if wk,f(i,j) < 0, it low-
ers θl,i,j .

Suppose that for parameter k, a certain group
of languages takes zl,k = 1. If two categorical
feature values (i1, j1) and (i2, j2) have positive
weights (i.e., wk,f(i1,j1) > 0 and wk,f(i2,j2) > 0),
the pair must often co-occur in these languages.
Likewise, the fact that two feature values do not
co-occur can be encoded as a positive weight for
one value and a negative weight for the other.

4.2 Inter-language Dependencies
The autologistic model is used to generate each
column of Z, z∗,k = (z1,k, · · · , zL,k). To con-
struct the model, we use two neighbor graphs and
the corresponding three counting functions, as il-
lustrated in Figure 3. V (z∗,k) returns the number

of pairs sharing the same value in the phylogenetic
neighbor graph, and H(z∗,k) is the spatial equiva-
lent of V (z∗,k). U(z∗,k) gives the number of lan-
guages that take the value 1.

We now introduce the following variables: ver-
tical stability vk > 0, horizontal diffusibility hk >
0, and universality −∞ < uk < ∞ for each fea-
ture k. Then the probability of z∗.k conditioned on
vk, hk and uk is given as

P (z∗,k | vk, hk, uk) =

exp
(
vkV (z∗,k) + hkH(z∗,k) + ukU(z∗,k)

)
∑

z′∗,k
exp
(
vkV (z′∗,k) + hkH(z′∗,k) + ukU(z′∗,k)

) .
The denominator is a normalization term, ensuring
that the sum of the distribution equals one.

The autologistic model can be interpreted in
terms of the competition associated with possible
assignments of z∗,k for the probability mass 1. If
a given value, z∗,k, has a relatively large V (z∗,k),
then setting a large value for vk enables it to appro-
priate fractions of the mass from its weaker rivals.
However, if too large a value is set for vk, then it
will be overwhelmed by its stronger rivals.

To acquire further insights into the model, let
us consider the probability of language l taking
value b ∈ {0, 1}, conditioned on the rest of the
languages, z−l,k:

P (zl,k = b | z−l,k, vk, hk, uk) ∝
exp (vkVl,k,b + hkHl,k,b + ukb) , (5)

where Vl,k,b is the number of language l’s phy-
logenetic neighbors that assume value b, and
Hl,k,b is its spatial counterpart. P (zl,k = b |
z−l,k, vk, hk, uk) is expressed by the weighted lin-
ear combination of the three factors in the log-
space. It will increase with a rise in the number of
phylogenetic neighbors that assume value b. How-
ever, this probability depends not only on the phy-

455



1 0 0 1z∗,𝑘𝑘 0

? ?
phylogenetic groups

(ancestral states 
are unknown)
phylogenetic

neighbor graph

𝑉𝑉 z∗,𝑘𝑘 = 2 𝐻𝐻 z∗,𝑘𝑘 = 3

spatial neighbor graph
(connecting languages

within 𝑅𝑅 km)
≤ 𝑅𝑅

1 0 0 1z∗,𝑘𝑘 0

𝑈𝑈 z∗,𝑘𝑘 = 2
1 0 0 1z∗,𝑘𝑘 0

(# of languages 
with z𝑙𝑙,𝑘𝑘 = 1)

(no neighbor graph)

Figure 3: Neighbor graphs and counting functions used to encode inter-language dependencies.

logenetic neighbors of language l, but it also de-
pends on its spatial neighbors and on universality.
How strongly these factors affect the stochastic se-
lection is controlled by vk, hk, and uk.

4.3 Integrated Model

Now we complete the generative model by inte-
grating the two types of dependencies. The joint
distribution is defined as

P (A,Z,W,X)=P (A)P (Z|A)P (W )P (X|Z,W ),

where hyperparameters are omitted for brevity and
A is a set of latent variables that control the gener-
ation of Z:

P (A) =
K∏
k=1

P (vk)P (hk)P (uk).

Their prior distributions are: vk ∼ Gamma(κ, θ),
hk ∼ Gamma(κ, θ), and uk ∼ N (0, σ2).4

Next, z∗,k’s are generated as described in Sec-
tion 4.2:

P (Z | A) =
K∏
k=1

P (z∗,k | vk, hk, uk).

The generation of Z is followed by that of the
corresponding weight matrix W ∈ RK×M , and
then we obtain the feature score matrix Θ̃ = ZW .
Each item of W , wk,m, is generated from Stu-
dent’s t-distribution with 1 degree of freedom. We
choose this distribution for two reasons. First,
it has heavier tails than the Gaussian distribution
and allows some weights to fall far from 0. Sec-
ond, our inference algorithm demands that the
negative logarithm of the probability density func-
tion be differentiable (see Section S.4 for details).

4 In the experiments, we set shape κ = 1, scale θ = 1,
and standard deviation σ = 10. These priors were not non-
informative, but they were sufficiently gentle in the regions
where these parameters typically resided.

The t-distribution satisfies the condition while the
Laplace distribution does not.

Finally, X is generated using Θ̃ = ZW , as de-
scribed in Section 4.1:

P (X | Z,W ) =
L∏
l=1

N∏
i=1

P (xl,i | zl,∗,W ).

4.4 Inference

As usual, we use Gibbs sampling to perform pos-
terior inference. Given observed values xl,i, we
iteratively update zl,k, vk, hk, uk, and wk,∗ as well
as missing values xl,i.

Update xl,i. xl,i is sampled from Eq. (3).

Update zl,k. The posterior probability
P (zl,k | −) is proportional to Eq. (5) times
the product of Eq. (3) for all feature i’s of
language l.

Update vk, hk and uk. We want to sample vk
(and hk and uk) from P (vk | −) ∝ P (vk)P (z∗,k |
vk, hk, uk). This belongs to a class of problems
known as sampling from doubly-intractable distri-
butions (Møller et al., 2006; Murray et al., 2006).
While it remains a challenging problem in statis-
tics, it is not difficult to approximately sample
the variables if we give up theoretical rigorous-
ness (Liang, 2010). The details of the algorithm
we use can be found in Section S.3 of the supple-
mentary material.

Update wk,∗. The remaining problem is how to
update wk,m. Since the number of weights is very
large (K × M ), the simple Metropolis-Hastings
algorithm (Görür et al., 2006; Doyle et al., 2014)
is not a workable option. To address this problem,
we block-sample wk,∗ = (wk,1, · · · , wk,M ) using
Hamiltonian Monte Carlo (HMC) (Neal, 2011). A
sketch of the algorithm can be found in Section S.4
of the supplementary material.

456



5 Experiments

5.1 Missing Value Imputation
We indirectly evaluated the proposed model,
called SYNDIA, by means of missing value im-
putation. If it predicts missing feature values bet-
ter than reasonable baselines, we can say that the
induced parameters are justified. Although no
ground truth exists for the missing portion of the
dataset, missing value imputation can be evaluated
by hiding some observed values and verifying the
effectiveness of their recovery. We conducted a
10-fold cross-validation.

We ran SYNDIA with two different settings:
K = 50 and 100. We performed posterior infer-
ence for 500 iterations. After that, we collected
100 samples of xl,i for each language, one per it-
eration. For each missing value xl,i, we output the
most frequent value among the 100 samples. The
HMC parameters ε and S were set to 0.05 and 10,
respectively.

We applied simulated annealing to the sampling
of zl,k. For the first 100 iterations, the inverse tem-
perature was increased from 0.1 to 1.0.

We compared SYNDIA with several baselines.

MFV For each categorical feature i, always out-
put the most frequent value among observed xl,i.

Surface-DIA An autologistic model applied to
surface features (Yamauchi and Murawaki,
2016). The details of the model are presented in
Section S.5 of the supplementary material.

DPMPM A Dirichlet process mixture of multino-
mial distributions with a truncated stick-breaking
construction (Si and Reiter, 2013) used by Blasi
et al. (2017). It assigns a single categorical latent
variable to each language. As an implementa-
tion, we used the R package NPBayesImpute.

MCA A variant of multiple correspondence anal-
ysis (Josse et al., 2012) used by Murawaki
(2015). We used the imputeMCA function of
the R package missMDA.

SYN A simplified version of SYNDIA, with vk
and hk removed from the model. See Section S.6
of the supplementary material for details.

MFV and Surface-DIA can be seen as the models
of inter-language dependencies while DPMPM,
MCA and SYN are these of inter-feature depen-
dencies.

Table 2 shows the result. We can see that
SYNDIA with K = 50 performed the best.

Type Model Accuracy

Lang.
MFV 60.95%
Surface-DIA 66.22%

Feat.

DPMPM (K∗ = 50) 69.08%
MCA 69.88%
SYN (K = 50) 73.83%
SYN (K = 100) 72.87%

Both
SYNDIA (K = 50) 74.46%
SYNDIA (K = 100) 74.00%

Table 2: Accuracy of missing value imputation.
The first column indicates the types of dependen-
cies the models exploit: inter-language dependen-
cies, inter-feature dependencies and both.

Model Accuracy
Full model (SYNDIA) 74.46%

-vertical 73.89%
-horizontal 74.47%
-vertical -horizontal (SYN) 73.83%

Table 3: Ablation experiments for missing value
imputation. K = 50.

Smaller K yielded higher accuracy although the
likelihood P (X | Z,W ) went up as K increased.
Due to the high ratio of missing values, the model
might have overfitted the data with larger K.

The fact that SYN outperformed Surface-DIA

suggests that inter-feature dependencies have
more predictive power than inter-language depen-
dencies in the dataset. However, they are compli-
mentary in nature as SYNDIA outperformed SYN.

We can confirm the limited expressive power
of single categorical latent variables because
DPMPM performed poorly even if a small value
was set to the truncation level K∗ to avoid over-
fitting. MCA employs more expressive represen-
tations of a sequence of continuous variables for
each language. It slightly outperformed DPMPM
but was beaten by SYN by a large margin. We con-
jecture that MCA was more sensitive to initializa-
tion than the Bayesian model armed with MCMC
sampling. In any case, this result indicates that the
latent representations Murawaki (2015) obtained
were of poorer quality than those of SYN, not to
mention those of SYNDIA.

We also conducted ablation experiments by re-
moving either vk or hk from the model. The result
is shown in Table 3. It turned out that the horizon-
tal factor had stronger predictive power than the
vertical factor, which has a negative implication
on typology-based phylogenetic inference.
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Figure 4: Scatter plots of surface features and induced parameters, with vertical stability vi (vk) as the
y-axis and horizontal diffusibility hi (hk) as the x-axis. Larger vi (hi) indicates that feature i is more
stable (diffusible). Comparing the absolute values of a vi and an hi makes no sense because they are tied
with different neighbor graphs. Features are classified into 9 broad categories (called Area in WALS). vk
(and hk) is the geometric mean of the 100 samples. The induction models are SYNDIA (Top) and SYN

(Bottom). For both models, K = 50.

5.2 Vertical and Horizontal Signals

Hereafter we use all observed features to perform
posterior inference. We examined how vertically
stable and horizontally diffusible the induced pa-
rameters were. For SYNDIA, we simply extracted
vk and hk from posterior samples. For compari-
son, we used Surface-DIA to estimate vertical sta-
bility and horizontal diffusibility of surface fea-
tures. The same autologistic model was used to
estimate vk and hk of SYN after the posterior in-
ference. For details, see Sections S.5 and S.6.2 of
the supplementary material.

Figure 4 summarizes the results. We can see
that the most vertically stable latent parameters of
SYNDIA are comparable to the most vertically sta-
ble surface features. The same holds for the most
horizontally diffusible ones. Thus we can con-
clude that the induced representations retain ver-

tical and horizontal signals observed for surface
features.

On the other hand, SYN halved vertical stabil-
ity and horizontal diffusibility when transform-
ing surface features into latent parameters. A
plausible explanation of this failure is that for
many scarcely documented languages, we sim-
ply did not have enough observed surface fea-
tures to determine their latent representations only
from inter-feature dependencies. Due to the in-
herent uncertainty, zl,k swung between 0 and 1
during posterior inference, regardless of the states
of their neighbors. As a result, these languages
seem to have blocked vertical and horizontal sig-
nals. By contrast, SYNDIA appears to have flipped
zl,k without disrupting inter-language dependen-
cies when there were.

In summary, the experimental results have neg-
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Figure 5: A comparison of a surface feature and a latent parameter in terms of geographical distribution.
Each point denotes a language. (Top) Feature 97A, “Relationship between the Order of Object and Verb
and the Order of Adjective and Noun.” Missing values are denoted as N/A. (Bottom) A parameter of
SYNDIA with K0 = 50. Lighter nodes indicate higher frequencies of zl,k = 1 among 100 samples.

ative implications for the pipeline approach pur-
sued by Murawaki (2015), where the inter-feature
dependency-based induction of latent representa-
tions is followed by phylogenetic inference. For-
tunately, evidence presented up to this point sug-
gests that it can be readily replaced with the pro-
posed model.

5.3 Discussion

Figure 5 compares a latent parameter of SYNDIA

with a surface feature on the world map. Some
surface features show several geographic clusters
of large size, telling something about the evolu-
tionary history of languages. Even with a large
number of missing values, SYNDIA yielded com-
parable geographic clusters for some parameters.
Some geographic clusters were also produced by
SYN, especially when the estimation of zl,k was
stable. In our subjective evaluation, SYNDIA ap-
peared to show clearer patterns than SYN. Need-
less to say, not all surface features were associated
with clear geographic patterns, and not all latent
parameters were. Overall, the results shed a posi-
tive light on the applicability of the induced repre-
sentations to phylogenetic inference.

We also checked the weight matrix W (Fig-

ure S.2). It is not easy to analyze qualitatively but
it deserves future investigation.

6 Conclusion

In this paper, we presented a Bayesian model
that induces binary latent parameters from sur-
face features of linguistic typology. We combined
inter-language dependencies with inter-feature de-
pendencies to obtain the latent representations
of better quality. Gathering various statisti-
cal techniques, we managed to create the com-
plex but workable model. The source code is
publicly available at https://github.com/
murawaki/latent-typology.

We pointed out that typology-based phyloge-
netic inference proposed by Murawaki (2015)
had weak foundations, and we rebuilt them from
scratch. The whole long paper was needed to do
so, but our ultimate goal is the same as the one
stated by Murawaki (2015). In the future, we
would like to utilize the new latent representations
to uncover the evolutionary history of languages.
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Abstract

The popularity of image sharing on social
media and the engagement it creates be-
tween users reflect the important role that
visual context plays in everyday conver-
sations. We present a novel task, Image-
Grounded Conversations (IGC), in which
natural-sounding conversations are gener-
ated about a shared image. To benchmark
progress, we introduce a new multiple-
reference dataset of crowd-sourced, event-
centric conversations on images. IGC falls
on the continuum between chit-chat and
goal-directed conversation models, where
visual grounding constrains the topic of
conversation to event-driven utterances.
Experiments with models trained on so-
cial media data show that the combination
of visual and textual context enhances the
quality of generated conversational turns.
In human evaluation, the gap between hu-
man performance and that of both neu-
ral and retrieval architectures suggests that
multi-modal IGC presents an interesting
challenge for dialog research.

1 Introduction

Bringing together vision & language in one in-
telligent conversational system has been one of
the longest running goals in AI (Winograd, 1972).
Advances in image captioning (Fang et al., 2014;
Chen et al., 2015; Donahue et al., 2015) have
enabled much interdisciplinary research in vision
and language, from video transcription (Rohrbach
et al., 2012; Venugopalan et al., 2015), to an-
swering questions about images (Antol et al.,
2015; Malinowski and Fritz, 2014), to storytelling
around series of photographs (Huang et al., 2016).

* This work was performed at Microsoft.

User1: My son is ahead and surprised!
User2: Did he end up winning the race?
User1: Yes he won, he can’t believe it!

Figure 1: A naturally-occurring Image-Grounded
Conversation.

Most recent work on vision & language fo-
cuses on either describing (captioning) the image
or answering questions about their visible con-
tent. Observing how people naturally engage with
one another around images in social media, it is
evident that it is often in the form of conversa-
tional threads. On Twitter, for example, upload-
ing a photo with an accompanying tweet has be-
come increasingly popular: in June 2015, 28%
of tweets reportedly contained an image (Morris
et al., 2016). Moreover, across social media, the
conversations around shared images range beyond
what is explicitly visible in the image. Figure 1
illustrates such a conversation. As this example
shows, the conversation is grounded not only in
the visible objects (e.g., the boys, the bikes) but
more importantly, in the events and actions (e.g.,
the race, winning) implicit in the image that is ac-
companied by the textual utterance. To humans, it
is these latter aspects that are likely to be the most
interesting and most meaningful components of a
natural conversation, and to the systems, inferring
such implicit aspects can be the most challenging.

In this paper we shift the focus from image
as an artifact (as is in the existing vision & lan-
guage work, to be described in Section 2), to im-
age as the context for interaction: we introduce
the task of Image-Grounded Conversation (IGC)
in which a system must generate conversational
turns to proactively drive the interaction forward.
IGC thus falls on a continuum between chit-chat
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(open-ended) and goal-oriented task-completion
dialog systems, where the visual context in IGC
naturally serves as a detailed topic for a conver-
sation. As conversational agents gain increas-
ing ground in commercial settings (e.g., Siri and
Alexa), they will increasingly need to engage hu-
mans in ways that seem intelligent and anticipa-
tory of future needs. For example, a conversa-
tional agent might engage in a conversation with
a user about a camera-roll image in order to elicit
background information from the user (e.g., spe-
cial celebrations, favorite food, the name of the
friends and family, etc.).

This paper draws together two threads of in-
vestigation that have hitherto remained largely un-
related: vision & language and data-driven con-
versation modeling. Its contributions are three-
fold: (1) we introduce multimodal conversational
context for formulating questions and responses
around images, and support benchmarking with
a publicly-released, high-quality, crowd-sourced
dataset of 4,222 multi-turn, multi-reference con-
versations grounded on event-centric images. We
analyze various characteristics of this IGC dataset
in Section 3.1. (2) We investigate the application
of deep neural generation and retrieval approaches
for question and response generation tasks (Sec-
tion 5), trained on 250K 3-turn naturally-occurring
image-grounded conversations found on Twitter.
(3) Our experiments suggest that the combination
of visual and textual context improves the qual-
ity of generated conversational turns (Section 6-
7). We hope that this novel task will spark new
interest in multimodal conversation modeling.

2 Related Work

2.1 Vision and Language

Visual features combined with language model-
ing have shown good performance both in image
captioning (Devlin et al., 2015; Xu et al., 2015;
Fang et al., 2014; Donahue et al., 2015) and in
question answering on images (Antol et al., 2015;
Ray et al., 2016; Malinowski and Fritz, 2014),
when trained on large datasets, such as the COCO
dataset (Lin et al., 2014). In Visual Question An-
swering (VQA) (Antol et al., 2015), a system is
tasked with answering a question about a given
image, where the questions are constrained to be
answerable directly from the image. In other
words, the VQA task primarily serves to evaluate
the extent to which the system has recognized the
explicit content of the image.

Place near my house is getting ready 
for Halloween a little early.

Don't you think Halloween should be 
year-round, though?

That'd be fun since it's my favorite 
holiday!

It's my favorite holiday as well!

I never got around to carving a 
pumpkin last year even though I 
bought one.

Well, it's a good thing that they are 
starting to sell them early this year!

Is the photo in color?

Yes

Is the photo close up?

No

Is this at a farm?

Possibly

Do you think it's for Halloween?

That is possible

Do you see anyone?

No

Do you see trees?

No

Any huge pumpkins?

No

Figure 2: Typical crowdsourced conversations in
IGC (left) and VisDial (right).

Das et al. (2017a) extend the VQA scenario
by collecting sequential questions from people
who are shown only an automatically generated
caption, not the image itself. The utterances in
this dataset, called ‘Visual Dialog’ (VisDial), are
best viewed as simple one-sided QA exchanges in
which humans ask questions and the system pro-
vides answers. Figure 2 contrasts an example ICG
conversation with the VisDial dataset. As this ex-
ample shows, IGC involves natural conversations
with the image as the grounding, where the lit-
eral objects (e.g., the pumpkins) may not even be
mentioned in the conversation at all, whereas Vis-
Dial targets explicit image understanding. More
recently, Das et al. (2017b) have explored the Vis-
Dial dataset with richer models that incorporate
deep-reinforcement learning.

Mostafazadeh et al. (2016b) introduce the task
of visual question generation (VQG), in which the
system itself outputs questions about a given im-
age. Questions are required to be ‘natural and en-
gaging’, i.e. a person would find them interesting
to answer, but need not be answerable from the im-
age alone. In this work, we introduce multimodal
context, recognizing that images commonly come
associated with a verbal commentary that can af-
fect the interpretation. This is thus a broader, more
complex task that involves implicit commonsense
reasoning around both image and text.
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2.2 Data-Driven Conversational Modeling
This work is also closely linked to research on
data-driven conversation modeling. Ritter et al.
(2011) posed response generation as a machine
translation task, learning conversations from par-
allel message-response pairs found on social me-
dia. Their work has been successfully extended
with the use of deep neural models (Sordoni et al.,
2015; Shang et al., 2015; Serban et al., 2015a;
Vinyals and Le, 2015; Li et al., 2016a,b). Sordoni
et al. (2015) introduce a context-sensitive neu-
ral language model that selects the most probable
response conditioned on the conversation history
(i.e., a text-only context). In this paper, we extend
the contextual approach with multimodal features
to build models that are capable of asking ques-
tions on topics of interest to a human that might
allow a conversational agent to proactively drive a
conversation forward.

3 Image-Grounded Conversations

3.1 Task Definition
We define the current scope of IGC as the follow-
ing two consecutive conversational steps:
• Question Generation: Given a visual context I
and a textual context T (e.g., the first statement in
Figure 1), generate a coherent, natural question Q
about the image as the second utterance in the con-
versation. It has been shown that humans achieve
greater consensus on what constitutes a natural
question to ask given an image (the task of VQG)
than on captioning or asking a visually verifiable
question (VQA) (Mostafazadeh et al., 2016b). As
seen in Figure 1, the question is not directly an-
swerable from the image. Here we emphasize on
questions as a way of potentially engaging a hu-
man in continuing the conversation.
• Response Generation: Given a visual context
I, a textual context T, and a question Q, generate
a coherent, natural, response R to the question as
the third utterance in the conversation. In the in-
terests of feasible multi-reference evaluation, we
pose question and response generation as two sep-
arate tasks. However, all the models presented
in this paper can be fed with their own generated
question to generate a response.

3.2 The ICG Dataset
The majority of the available corpora for devel-
oping data-driven dialogue systems contain task-
oriented and goal-driven conversational data (Ser-
ban et al., 2015b). For instance, the Ubuntu dia-

logue corpus (Lowe et al., 2015) is the largest cor-
pus of dialogues (almost 1 million mainly 3-turn
dialogues) for the specific topic of troubleshooting
Ubuntu problems. On the other hand, for open-
ended conversation modeling (chitchat), now a
high demand application in AI, shared datasets
with which to track progress are severely lacking.
The ICG task presented here lies nicely in the con-
tinuum between the two, where the visual ground-
ing of event-centric images constrains the topic of
conversation to contentful utterances.

To enable benchmarking of progress in the
IGC task, we constructed the IGCCrowd dataset
for validation and testing purposes. We first
sampled eventful images from the VQG dataset
(Mostafazadeh et al., 2016b) which has been ex-
tracted by querying a search engine using event-
centric query terms. These were then served in a
photo gallery of a crowd-sourcing platform we de-
veloped using the Turkserver toolkit (Mao et al.,
2012), which enables synchronous and real-time
interactions between crowd workers on Amazon
Mechanical Turk. Multiple workers wait in a vir-
tual lobby to be paired with a conversation part-
ner. After being paired, one of the workers se-
lects an image from the large photo gallery, af-
ter which the two workers enter a chat window in
which they conduct a short conversation about the
selected image. We prompted the workers to natu-
rally drive the conversation forward without using
informal/IM language. To enable multi-reference
evaluation (Section 6), we crowd-sourced five ad-
ditional questions and responses for the IGCCrowd
contexts and initial questions.

Table 1 shows three full conversations found
in the IGCCrowd dataset. These examples show
show that eventful images lead to conversa-
tions that are semantically rich and appear to
involve commonsense reasoning. Table 2 sum-
marizes basic dataset statistics. The IGCCrowd
dataset has been released as the Microsoft Re-
search Image-Grounded Conversation dataset
(https://www.microsoft.com/en-us/
download/details.aspx?id=55324&
751be11f-ede8).

4 Task Characteristics

In this Section, we analyze the IGC dataset to
highlight a range of phenomena specific to this
task. (Additional material pertaining to the lexi-
cal distributions of this dataset can be found in the
Supplementary Material.)
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Visual
Context
Textual
Context

This wasn’t the way I imagined
my day starting.

I checked out the protest yester-
day.

A terrible storm destroyed my
house!

Question do you think this happened on the
highway?

Do you think America can ever
overcome its racial divide?

OH NO, what are you going to
do?

Response Probably not, because I haven’t
driven anywhere except around
town recently.

I can only hope so. I will go live with my Dad un-
til the insurance company sorts it
out.

VQG
Question

What caused that tire to go flat? Where was the protest? What caused the building to fall
over?

Table 1: Example full conversations in our IGCCrowd dataset. For comparison, we also include VQG
questions in which the image is the only context.

IGCCrowd (val and test sets, split: 40% and 60%)
# conversations = # images 4,222
total # utterances 25,332
# all workers participated 308
Max # conversations by one worker 20
Average payment per worker (min) 1.8 dollars
Median work time per worker (min) 10.0
IGCCrowd−multiref (val and test sets, split: 40% and 60%)
# additional references per question/response 5
total # multi-reference utterances 42,220

Table 2: Basic Dataset Statistics.

4.1 The Effectiveness of Multimodal Context
The task of IGC emphasizes modeling of not only
visual but also textual context. We presented hu-
man judges with a random sample of 600 triplets
of image, textual context, and question (I, T,Q)
from each IGCTwitter and IGCCrowd datasets and
asked them to rate the effectiveness of the visual
and the textual context. We define ‘effectiveness’
to be “the degree to which the image or text is
required in order for the given question to sound
natural”. The workers were prompted to make this
judgment based on whether or not the question al-
ready makes sense without either the image or the
text. As Figure 3 demonstrates, both visual and
textual contexts are generally highly effective, and
understanding of both would be required for the
question that was asked. By way of comparison,
Figure 3 also shows the effectiveness of image and
text for a sample taken from Twitter data presented
in Section 4.4. We note that the crowd-sourced
dataset is more heavily reliant on understanding
the textual context than is the Twitter set.

Figure 3: The effectiveness of textual and visual
context for asking questions.

4.2 Frame Semantic Analysis of Questions
The grounded conversations starting with ques-
tions contain a considerable amount stereotypical
commonsense knowledge. To get a better sense
of the richness of our IGCCrowd dataset, we man-
ually annotated a random sample of 330 (I, T,Q)
triplets in terms of Minsky’s Frames: Minsky de-
fines ‘frame’ as follows: “When one encounters a
new situation, one selects from memory a struc-
ture called a Frame” (Minsky, 1974). A frame
is thus a commonsense knowledge representation
data-structure for representing stereotypical situa-
tions, such as a wedding ceremony. Minsky fur-
ther connects frames to the nature of questions:
“[A Frame] is a collection of questions to be asked
about a situation”. These questions can ask about
the cause, intention, or side-effects of a presented
situation.

We annotated1 the FrameNet (Baker et al.,
1998) frame evoked by the image I , to be called
(IFN ), and the textual context T , (TFN ). Then,
for the question asked, we annotated the frame

1These annotations can be accessed through https://
goo.gl/MVyGzP
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Visual Context Textual Context Question
Look at all this
food I ordered!

Where is
that from?

FN Food Request-Entity Supplier

Table 3: FrameNet (FN) annotation of an example.

My son is ahead and surprised

Did he end up winning the race

Yes, he won he can’t believe it

cause

before

cause

Figure 4: An example causal and temporal
(CaTeRS) annotation on the conversation pre-
sented in Figure 1. The rectangular nodes show
the event entities and the edges are the semantic
links. For simplicity, we show the ‘identity’ rela-
tion between events using gray nodes. The coref-
erence chain is depicted by the underlined words.

slot (QFN−slot) associated with a context frame
(QFN ). For 17% of cases, we were unable to iden-
tify a corresponding QFN−slot in FrameNet. As
the example in Table 3 shows, the image in iso-
lation often does not evoke any uniquely content-
ful frame, whereas the textual context frequently
does. In only 14% of cases does IFN=TFN ,
which further supports the complementary effect
of our multimodal contexts. Moreover,QFN=IFN
for 32% our annotations, whereas QFN=TFN for
47% of the triplets, again, showing the effective-
ness of textual context in determining the question.

4.3 Event Analysis of Conversations
To further investigate the representation of events
and any stereotypical causal and temporal rela-
tions between them in the IGCCrowd dataset, we
manually annotated a sample of 20 conversations
with their causal and temporal event structures.
Here, we followed the Causal and Temporal Re-
lation Scheme (CaTeRS) (Mostafazadeh et al.,
2016a) for event entity and event-event semantic
relation annotations. Our analysis shows that the
IGC utterances are indeed rich in events. On av-
erage, each utterance in IGC has 0.71 event entity
mentions, such as ‘win’ or ‘remodel’. The seman-
tic link annotation reflects commonsense relation
between event mentions in the context of the on-
going conversation. Figure 4 shows an example
CaTeRS annotation. The distribution of semantic

t!
Figure 5: The frequency of event-event semantic
links in a random sample of 20 IGC conversations.

links in the annotated sample can be found in Fig-
ure 5. These numbers further suggest that in ad-
dition to jointly understanding the visual and tex-
tual context (including multimodal anaphora reso-
lution, among other challenges), capturing causal
and temporal relations between events will likely
be necessary for a system to perform the IGC task.

4.4 IGCTwitter Training Dataset
Previous work in neural conversation modeling
(Ritter et al., 2011; Sordoni et al., 2015) has suc-
cessfully used Twitter as the source of natural con-
versations. As training data, we sampled 250K
quadruples of {visual context, textual context,
question, response} tweet threads from a larger
dataset of 1.4 million, extracted from the Twitter
Firehose over a 3-year period beginning in May
2013 and filtered to select just those conversations
in which the initial turn was associated with an im-
age and the second turn was a question.

Regular expressions were used to detect ques-
tions. To improve the likelihood that the authors
are experienced Twitter conversationalists, we fur-
ther limited extraction to those exchanges where
users had actively engaged in at least 30 conversa-
tional exchanges during a 3-month period.

Twitter data is noisy: we performed simple nor-
malizations, and filtered out tweets that contained
mid-tweet hashtags, were longer than 80 charac-
ters2 or contained URLs not linking to the im-
age. (Sample conversations from this dataset can
be found in the Supplementary Material.) A ran-
dom sample of tweets suggests that about 46% of
the Twitter conversations is affected by prior his-
tory between users, making response generation
particularly difficult. In addition, the abundance of
screenshots and non-photograph graphics is poten-
tially a major source of noise in extracting features
for neural generation, though we did not attempt to
exclude these from the training set.

2Pilot studies showed that 80 character limit more effec-
tively retains one-sentence utterances that are to the point.

466



5 Models

5.1 Generation Models
Figure 6 overviews our three generation models.
Across all the models, we use the VGGNet archi-
tecture (Simonyan and Zisserman, 2015) for com-
puting deep convolutional image features. We use
the 4096-dimensional output of the last fully con-
nected layer (fc7) as the input to all the models
sensitive to visual context.

Visual Context Sensitive Model (V-Gen).
Similar to Recurrent Neural Network (RNN) mod-
els for image captioning (Devlin et al., 2015;
Vinyals et al., 2015), (V-Gen) transforms the
image feature vector to a 500-dimensional vec-
tor that serves as the initial recurrent state to a
500-dimensional one-layer Gated Recurrent Unit
(GRU) which is the decoder module. The output
sentence is generated one word at a time until the
<EOS> (end-of-sentence) token is generated. We
set the vocabulary size to 6000 which yielded the
best results on the validation set. For this model,
we got better results by greedy decoding. Un-
known words are mapped to an <UNK> token dur-
ing training, which is not allowed to be generated
at decoding time.

Textual Context Sensitive Model (T-Gen).
This is a neural Machine Translation-like model
that maps an input sequence to an output sequence
(Seq2Seq model (Cho et al., 2014; Sutskever et al.,
2014)) using an encoder and a decoder RNN. The
decoder module is like the model described above,
in this case the initial recurrent state being the 500-
dimensional encoding of the textual context. For
consistency, we use the same vocab size and num-
ber of layers as in the (V-Gen) model.

Visual & Textual Context Sensitive Model
(V&T-Gen). This model fully leverages both
textual and visual contexts. The vision fea-
ture is transformed to a 500-dimensional vec-
tor, and the textual context is likewise encoded
into a 500-dimensional vector. The textual fea-
ture vector can be obtained using either a bag-
of-words (V&T.BOW-Gen) representation, or an
RNN (V&T.RNN-Gen), as depicted in Figure 7.
The textual feature vector is then concatenated to
the vision vector and fed into a fully connected
(FC) feed forward neural network. As a result, we
obtain a single 500-dimensional vector encoding
both visual and textual context, which then serves
as the initial recurrent state of the decoder RNN.

In order to generate the response (the third ut-
terance in the conversation), we need to represent

the conversational turns in the textual context in-
put. There are various ways to represent conversa-
tional history, including a bag of words model, or
a concatenation of all textual utterances into one
sentence (Sordoni et al., 2015). For response gen-
eration, we implement a more complex treatment
in which utterances are fed into an RNN one word
at a time (Figure 7) following their temporal order
in the conversation. An <UTT> marker designates
the boundary between successive utterances.

Decoding and Reranking. For all generation
models, at decoding time we generate the N-best
lists using left-to-right beam search with beam-
size 25. We set the maximum number of tokens to
13 for the generated partial hypotheses. Any par-
tial hypothesis that reaches <EOS> token becomes
a viable full hypothesis for reranking. The first few
hypotheses on top of the N-best lists generated by
Seq2Seq models tend to be very generic,3 disre-
garding the input context. In order to address this
issue we rerank the N-best list using the following
score function:

log p(h|C) + λ idf(h,D) + µ|h|+ κ V (h) (1)

where p(h|C) is the probability of the generated
hypothesis h given the context C. The function
V counts the number of verbs in the hypothesis
and |h| denotes the number of tokens in the hy-
pothesis. The function idf is the inverse document
frequency, computing how common a hypothesis
is across all the generated N-best lists. Here D
is the set of all N-best lists and d is a specific N-
best list. We define idf(h, D) = log |D|

|{d∈D:h∈d}| ,
where we set N=10 to cut short each N-best list.
These parameters were selected following rerank-
ing experiments on the validation set. We optimize
all the parameters of the scoring function towards
maximizing the smoothed-BLEU score (Lin and
Och, 2004) using the Pairwise Ranking Optimiza-
tion algorithm (Hopkins and May, 2011).

5.2 Retrieval Models
In addition to generation, we implemented two
retrieval models customized for the tasks of
question and response generation. Work in vision
and language has demonstrated the effectiveness
of retrieval models, where one uses the annota-
tion (e.g., caption) of a nearest neighbor in the
training image set to annotate a given test image
(Mostafazadeh et al., 2016b; Devlin et al., 2015;

3An example generic question is where is this? and a
generic response is I don’t know.
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Figure 6: Question generation using the Visual Context Sensitive Model (V-Gen), Textual Context Sen-
sitive Model (T-Gen), and the Visual & Textual Context Sensitive Model (V&T.BOW-Gen), respectively.

Visual
Context
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n Textual
Context

The weather was amazing at this
baseball game.

I got in a car wreck today! My cousins at the family re-
union.

Gold
Question

Nice, which team won? Did you get hurt? What is the name of your cousin
in the blue shirt?

V&T-Ret U at the game? or did someone
take that pic for you?

You driving that today? U had fun?

V-Gen Where are you? Who’s is that? Who’s that guy?
V&T-Gen Who’s winning? What happened? Where’s my invite?

R
es

po
ns

e
G

en
er

at
io

n Textual
Context

The weather was amazing at this
baseball game. <UTT> Nice,
which team won?

I got in a car wreck today!
<UTT> Did you get hurt?

My cousins at the family re-
union. <UTT> What is the name
of your cousin in the blue shirt?

Gold
Response

My team won this game. No it wasn’t too bad of a bang
up.

His name is Eric.

V&T-Ret 10 for me and 28 for my dad. Yes. lords cricket ground . beautiful.
V&T-Gen ding ding ding! Nah, I’m at home now. He’s not mine!

Table 4: Example question and response generations on IGCCrowd test set. All the generation models
use beam search with reranking. In the textual context, <UTT> separates different utterances. The
generations in bold are acceptable utterances given the underlying context.
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Figure 7: The visual & textual context sensitive
model with RNN encoding (V&T.RNN-Gen).

Hodosh et al., 2013; Ordonez et al., 2011; Farhadi
et al., 2010).

Visual Context Sensitive Model (V-Ret). This
model uses only the provided image for retrieval.
First, we find a set of K nearest training images
for the given test image based on cosine similarity
of the fc7 vision feature vectors. Then we retrieve
those K annotations as our pool of K candi-
dates. Finally, we compute the textual similarity
among the questions in the pool according to a
Smoothed-BLEU (Lin and Och, 2004) similarity
score, then emit the sentence that has the highest
similarity to the rest of the pool.

Visual & Textual Context Sensitive Model
(V&T-Ret). This model uses a linear combination
of fc7 and word2vec feature vectors for retrieving
similar training instances.

6 Evaluation Setup

We provide both human (Table 5) and automatic
(Table 6) evaluations for our question and re-
sponse generation tasks on the IGCCrowd test set.
We crowdsourced our human evaluation on an
AMT-like crowdsourcing system, asking seven
crowd workers to each rate the quality of candidate
questions or responses on a three-point Likert-like
scale, ranging from 1 to 3 (the highest). To ensure
a calibrated rating, we showed the human judges
all system hypotheses for a particular test case at
the same time. System outputs were randomly or-
dered to prevent judges from guessing which sys-
tems were which on the basis of position. Af-
ter collecting judgments, we averaged the scores
throughout the test set for each model. We dis-
carded any annotators whose ratings varied from
the mean by more than 2 standard deviations.

Although human evaluation is to be preferred,
and currently essential in open-domain generation
tasks involving intrinsically diverse outputs, it is
useful to have an automatic metric for day-to-day

evaluation. For ease of replicability, we use the
standard Machine Translation metric, BLEU (Pa-
pineni et al., 2002), which captures n-gram over-
lap between hypotheses and multiple references.
Results reported in Table 6 employ BLEU with
equal weights up to 4-grams at corpus-level on the
multi-reference IGCCrowd test set. Although Liu
et al. (2016) suggest that BLEU fails to correlate
with human judgment at the sentence level, corre-
lation increases when BLEU is applied at the doc-
ument or corpus level (Galley et al., 2015; Przy-
bocki et al., 2008).

7 Experimental Results

We experimented with all the models presented
in Section 5. For question generation, we used
a visual & textual sensitive model that uses bag-
of-words (V&T.BOW-Gen) to represent the textual
context, which achieved better results. Earlier vi-
sion & language work such as VQA (Antol et al.,
2015) has shown that a bag-of-words baseline
outperforms LSTM-based models for represent-
ing textual input when visual features are avail-
able (Zhou et al., 2015). In response generation,
which needs to account for textual input consisting
of two turns, we used the V&T.RNN-Gen model
as the visual & textual-sensitive model for the re-
sponse rows of tables 5 and 6. Since generating
a response solely from visual context is unlikely
to be successful, we did not use the V-Gen model
in response generation. All models are trained on
IGCTwitter dataset, except for VQG, which shares
the same architecture as with the (V-Gen) model,
but is trained on 7,500 questions from the VQG
dataset (Mostafazadeh et al., 2016b) as a point of
reference. We also include the gold human ref-
erences from the IGCCrowd dataset in the human
evaluation to set a bound on human performance.

Table 4 presents example generations by our
best performing systems. In human evaluation
shown in Tables 5, the model that encodes both
visual and textual context outperforms others. We
note that human judges preferred the top genera-
tion in the n-best list over the reranked best, likely
owing to the tradeoff between a safe and generic
utterance and a riskier but contentful one. The
human gold references are consistently favored
throughout the table. We take this as evidence that
IGCCrowd test set provides a robust and challeng-
ing test set for benchmarking progress.

As shown in Table 6, BLEU scores are low,
as is characteristic for language tasks with intrin-
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Human Generation (Greedy) Generation (Beam, best) Generation (Reranked, best) Retrieval
Gold Textual Visual V & T Textual Visual V & T VQG Textual Visual V & T Visual V & T

Question 2.68 1.46 1.58 1.86 1.07 1.86 2.28 2.24 1.03 2.06 2.13 1.59 1.54
Response 2.75 1.24 – 1.40 1.12 – 1.49 – 1.04 – 1.44 – 1.48

Table 5: Human judgment results on the IGCCrowd test set. The maximum score is 3. Per model, the
human score is computed by averaging across multiple images. The boldfaced numbers show the highest
score among the systems. The overall highest scores (underlined) are the human gold standards.

Generation Retrieval
Textual Visual V & T VQG Visual V & T

Question 1.71 3.23 4.41 8.61 0.76 1.16
Response 1.34 – 1.57 – – 0.66

Table 6: Results of evaluating using multi-
reference BLEU.

sically diverse outputs (Li et al., 2016b,a). On
BLEU, the multimodal V&T model outperforms
all the other models across test sets, except for the
VQG model which does significantly better. We
attribute this to two issues: (1) the VQG train-
ing dataset contains event-centric images similar
to the IGCCrowd test set, (2) Training on a high-
quality crowd-sourced dataset with controlled pa-
rameters can, to a significant extent, produce better
results on similarly crowd-sourced test data than
training on data found ”in the wild” such as Twit-
ter. However, crowd-sourcing multi-turn conver-
sations between paired workers at large scale is
prohibitively expensive, a factor that favors the use
of readily available naturally-occurring but noisier
data.

Overall, in both automatic and human evalua-
tion, the question generation models are more suc-
cessful than response generation. This disparity
might be overcome by (1) implementation of more
sophisticated systems for richer modeling of long
contexts across multiple conversational turns, (2)
training on larger, higher-quality datasets.

8 Conclusions

We have introduced a new task of multimodal
image-grounded conversation, in which, given an
image and a natural language text, the system must
generate meaningful conversational turns, the sec-
ond turn being a question. We are releasing to
the research community a crowd-sourced dataset
of 4,222 high-quality, multiple-turn, multiple-
reference conversations about eventful images.
Inasmuch as this dataset is not tied to the char-
acteristics of any specific social media resource,
e.g., Twitter or Reddit, we expect it to remain sta-

ble over time, as it is less susceptible to attrition in
the form of deleted posts or accounts.

Our experiments provide evidence that captur-
ing multimodal context improves the quality of
question and response generation. Nonetheless,
the performance gap between our best models and
humans opens opportunities further research in the
continuum from casual chit-chat conversation to
more topic-oriented dialog. We expect that addi-
tion of other forms of grounding, such as temporal
and geolocation information, often embedded in
images, will further improve performance.

In this paper, we illustrated the application of
this dataset using simple models trained on con-
versations on Twitter. In the future, we expect that
more complex models and richer datasets will per-
mit emergence of intelligent human-like agent be-
havior that can engage in implicit commonsense
reasoning around images and proactively drive the
interaction forward.
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Abstract

This study addresses the problem of iden-
tifying the meaning of unknown words
or entities in a discourse with respect to
the word embedding approaches used in
neural language models. We proposed
a method for on-the-fly construction and
exploitation of word embeddings in both
the input and output layers of a neural
model by tracking contexts. This extends
the dynamic entity representation used in
Kobayashi et al. (2016) and incorporates a
copy mechanism proposed independently
by Gu et al. (2016) and Gulcehre et al.
(2016). In addition, we construct a new
task and dataset called Anonymized Lan-
guage Modeling for evaluating the abil-
ity to capture word meanings while read-
ing. Experiments conducted using our
novel dataset show that the proposed vari-
ant of RNN language model outperformed
the baseline model. Furthermore, the ex-
periments also demonstrate that dynamic
updates of an output layer help a model
predict reappearing entities, whereas those
of an input layer are effective to predict
words following reappearing entities.

1 Introduction

Language models that use probability distribu-
tions over sequences of words are found in many
natural language processing applications, includ-
ing speech recognition, machine translation, text
summarization, and dialogue utterance genera-
tion. Recent studies have demonstrated that lan-
guage models trained using neural network (Ben-
gio et al., 2003; Mikolov et al., 2010) such as re-
current neural network (RNN) (Jozefowicz et al.,
2016) and convolutional neural network (Dauphin

...  [   1   ] killed [   2   ] with bombs …

... police suspects  [   1   ]  attacked ...

... police will arrest [  1  ] …

...   will  arrest  [  1  ]  soon  …d[2],2 d[1],2

! !!!

x[1]x[2] y[1]y[2]

=
−−−→
RNN(

Figure 1: Dynamic Neural Text Modeling: the
embeddings of unknown words, denoted by coref-
erence indexes “[ k ]” are dynamically computed
and used in both the input and output layers (x[k]
and y[k]) of a RNN language model. These are
constructed from contextual information (d[k],i)
preceding the current (i+ 1)-th sentence.

et al., 2016) achieve the best performance across
a range of corpora (Mikolov et al., 2010; Chelba
et al., 2014; Merity et al., 2017; Grave et al., 2017).

However, current neural language models have
a major drawback: the language model works only
when applied to a closed vocabulary of fixed size
(usually comprising high-frequency words from
the given training corpus). All occurrences of out-
of-vocabulary words are replaced with a single
dummy token “<unk>”, showing that the word is
unknown. For example, the word sequence, Piko-
taro sings PPAP on YouTube is treated as <unk>
sings <unk> on <unk> assuming that the words
Pikotaro, PPAP, and YouTube are out of the vo-
cabulary. The model therefore assumes that these
words have the same meaning, which is clearly in-
correct. The derivation of meanings of unknown
words remains a persistent and nontrivial chal-
lenge when using word embeddings.

In addition, existing language models further
assume that the meaning of a word is the same
and universal across different documents. Neural
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Figure 2: Dynamic Neural Text Modeling: the meaning representation of each unknown word, denoted
by a coreference index “[ k ]”, is inferred from the local contexts in which it occurs.

language models also make this assumption and
represent all occurrences of a word with a single
word vector across all documents. However, the
assumption of a universal meaning is also unlikely
correct. For example, the name John is likely to re-
fer to different individuals in different documents.
In one story, John may be a pianist while another
John denoted in a second story may be an infant. A
model that represents all occurrences of John with
the same vector fails to capture the very different
behavior expected from John as a pianist and John
as an infant.

In this study, we address these issues and pro-
pose a novel neural language model that can build
and dynamically change distributed representa-
tions of words based on the multi-sentential dis-
course. The idea of incorporating dynamic mean-
ing representations into neural networks is not
new. In the context of reading comprehension,
Kobayashi et al. (2016) proposed a model that dy-
namically computes the representation of a named
entity mention from the local context given by
its prior occurrences in the text. In neural ma-
chine translation, the copy mechanism was pro-
posed as a way of improving the handling of out-
of-vocabulary words (e.g., named entities) in a
source sentence (Gu et al., 2016; Gulcehre et al.,
2016). We use a variant of recurrent neural lan-
guage model (RNLM), that combines dynamic
representation and the copy mechanism. The re-
sulting novel model, Dynamic Neural Text Model,
uses the dynamic word embeddings that are con-
structed from the context in the output and input
layers of an RNLM, as shown in Figures 1 and 2.

The contributions of this paper are three-fold.
First, we propose a novel neural language model,
which we named the Dynamic Neural Text Model.
Second, we introduce a new evaluation task and
dataset called Anonymized Language Modeling.
This dataset can be used to evaluate the ability of

a language model to capture word meanings from
contextual information (Figure 3). This task in-
volves a kind of one-shot learning tasks, in which
the meanings of entities are inferred from their
limited prior occurrences. Third, our experimen-
tal results indicate that the proposed model out-
performs baseline models that use only global and
static word embeddings in the input and/or out-
put layers of an RNLM. Dynamic updates of the
output layer helps the RNLM predict reappearing
entities, whereas those of the input layer are ef-
fective to predict words following reappearing en-
tities. A more detailed analysis showed that the
method was able to successfully capture the mean-
ings of words across large contexts, and to accu-
mulate multiple context information.

2 Background

2.1 RNN Language Model
Given a sequence of N tokens of a docu-
ment D = (w1, w2, ..., wN ), an RNN lan-
guage model computes the probability p(D) =∏N
t=1 p(wt|w1, ..., wt−1). The computation of

each factorized probability p(wt|w1, ..., wt−1) can
also be viewed as the task of predicting a following
word wt from the preceding words (w1, ..., wt−1).
Typically, RNNs recurrently compute the proba-
bility of the following word wt by using a hidden
state ht−1 at time step t− 1,

p(wt|w1, ..., wt−1) =
exp(~hᵀ

t−1ywt + bwt)∑
w∈V exp(~hᵀ

t−1yw + bw)
,

(1)

~ht =
−−−→
RNN(xwt ,

~ht−1). (2)

Here, xwt and ywt denote the input and output
word embeddings of wt respectively, V repre-
sents the set of words in the vocabulary, and bw
is a bias value applied when predicting the word
w. The function

−−−→
RNN is often replaced with
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LSTM (Hochreiter and Schmidhuber, 1997) or
GRU (Cho et al., 2014) to improve performance.

2.2 Dynamic Entity Representation

RNN-based models have been reported to achieve
better results on the CNN QA reading compre-
hension dataset (Hermann et al., 2015; Kobayashi
et al., 2016). In the CNN QA dataset, every named
entity in each document is anonymized. This is
done to allow the ability to comprehend a docu-
ment using neither prior nor external knowledge
to be evaluated. To capture the meanings of such
anonymized entities, Kobayashi et al. (2016) pro-
posed a new model that they named dynamic entity
representation. This encodes the local contexts of
an entity and uses the resulting context vector as
the word embedding of a subsequent occurrence
of that entity in the input layer of the RNN. This
model: (1) constructs context vectors d′e,i from the
local contexts of an entity e at the i-th sentence; (2)
merges multiple contexts of the entity e through
max pooling and produces the dynamic represen-
tation de,i; and (3) replaces the embedding of the
entity e in the (i+1)-th sentence with the dynamic
embedding xe,i+1 produced from de,i. More for-
mally,

xe,i+1 = Wdcde,i + be, (3)

de,i = maxpooling(d′e,i,de,i−1), (4)

d′e,i = ContextEncoder(e, i). (5)

Here, be denotes a bias vector, maxpooling is a
function that yields the largest value from the el-
ementwise inputs, and ContextEncoder is an en-
coding function. Figure 2 gives an example of the
process of encoding and merging contexts from
sentences. An arbitrary encoder can be used for
ContextEncoder; Kobayashi et al. (2016) used
bidirectional RNNs, encoding the words surround-
ing the entity e of a sentence in both directions. If
the entity e fails to appear in the i-th sentence, the
embedding is not updated, i.e., de,i = de,i−1.

3 Proposed Method: Dynamic Neural
Text Modeling

In this section, we introduce the extension of dy-
namic entity representation to language modeling.
From Equations 1 and 2, RNLM uses a set of word
embeddings in the input layer to encode the pre-
ceding contextual words, and another set of word
embeddings in the output layer to predict a word

from the encoded context. Therefore, we consider
incorporating the idea of dynamic representation
into the word embeddings in the output layer (yw
in Equation 1) as well as in the input layer (xw in
Equation 2; refer to Figure 1). The novel exten-
sion of dynamic representation to the output layer
affects predictions made for entities that appear
repeatedly, whereas that in the input layer is ex-
pected to affect the prediction of words that follow
the entities.

The procedure for constructing dynamic repre-
sentations of e, de,i is the same as that introduced
in Section 2.2. Before reading the (i + 1)-th sen-
tence, the model constructs the context vectors
[d′e,1, ...,d′e,i] from the local contexts of e in every
preceding sentence. Here, d′e,j denotes the context
vector of e in the j-th sentence. ContextEncoder
in the model produces a context vector d′e for e
at the t-th position in a sentence, using a bidirec-
tional RNN1 as follows:

d′e = ReLU(Whd[~ht−1, ~ht+1]+bd), (6)

~ht =
−−−→
RNN(xwt ,

~ht−1), (7)

~ht =
←−−−
RNN(xwt ,

~ht+1). (8)

Here, ReLU denotes the ReLU activation func-
tion (Nair and Hinton, 2010), while Wdc and Whd

correspond to learnable matrices; bd is a bias vec-
tor. As in the RNN language model, ~ht−1 and
~ht+1 as well as their composition d′e can capture

information necessary to predict the features of the
target e at the t-th word.

Following context encoding, the model merges
the multiple context vectors, [d′e,1, ...,d′e,i], into
the dynamic representation de,i using a merg-
ing function. A range of functions are abailable
for merging multiple vectors, while Kobayashi
et al. (2016) used only max pooling (Equation 4).
In this study, we explored three further func-
tions: GRU, GRU followed by ReLU (de,i =
ReLU(GRU(d′e,i,de,i−1))) and a function that se-
lects only the latest context, i.e., de,i = d′e,i. This
comparison clarifies the effect of the accumulation
of contexts as the experiments proceeded2.

1Equations 2 and 7 are identical but do not share internal
parameters.

2Note that merging functions are not restricted to con-
sidering two arguments (a new context and a merged past
context) recurrently but can consider all vectors over the
whole history [d′e,1, ...,d

′
e,i] (e.g., by using attention mecha-

nism (Bahdanau et al., 2015)). However, for simplicity, this
research focuses only on the case of a function with two
arguments.
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the hottest gift [  1  ] could be [  2  ] , but good luck  
finding one . as [  3  ] reports , many stores have sold out of [  2  ] even …

Anonymized Version

The hottest gift this Christmas could be Sony’s new PlayStation 2, but good luck 

finding one. As Greg Lefevre reports, many stores have sold out of the game even …

Original Version

Figure 3: An example document for Anonymized Language Modeling. Token “[ k ]” is an anonymized
token that appears k-th in the entities in a document. Language models predict the next word from the
preceding words, and calculate probabilities for whole word sequences.

The merging function produces the dynamic
representation de,i of e. In language modeling,
to read the (i + 1)-th sentence, the model uses
two dynamic word embeddings of e in the input
and output layers. The input embedding xe, used
to encode contexts (Equation 2), and the output
embedding ye, used to predict the occurrence of e
(Equation 1), are replaced with dynamic versions:

xe = Wdxde,i + bxe , (9)

ye = Wdyde,i + bye , (10)

where Wdx and Wdy denote learnable matrices,
and bxe and bye denote learnable vectors tied to e.
We can observe that a conventional RNN language
model is a variant that removes the dynamic terms
(Wdxde,i and Wdyde,i) using only the static terms
(bxe and bye) to represent e. The initial dynamic rep-
resentation de,0 is defined as a zero vector, so that
the initial word embeddings (xe and ye) are iden-
tical to the static terms (bxe and bye) until the point
at which the first context of the target word e is ob-
served. All parameters in the end-to-end model are
learned entirely by backpropagation, maximizing
the log-likelihood in the same way as a conven-
tional RNN language model.

We can view the approach in Kobayashi et al.
(2016) as a variant on the proposed method, but
using the dynamic terms only in the input layer
(for xe). We can also view the copy mecha-
nism (Gu et al., 2016; Gulcehre et al., 2016) as a
variant on the proposed method, in which specific
embeddings in the output layer are replaced with
special dynamic vectors.

4 Anonymized Language Modeling

This study explores methods for on-the-fly cap-
ture and exploitation of the meanings of unknown
words or entities in a discourse. To do this, we in-
troduce a novel evaluation task and dataset that we

called Anonymized Language Modeling. Figure 3
gives an example from the dataset. Briefly, the
dataset anonymizes certain noun phrases, treating
them as unknown words and retaining their coref-
erence relations. This allows a language model to
track the context of every noun phrase in the dis-
course. Other words are left unchanged, allowing
the language model to preserve the context of the
anonymized (unknown) words, and to infer their
meanings from the known words. The process
was inspired by Hermann et al. (2015), whose ap-
proach has been explored by the research on read-
ing comprehension.

More precisely, we used the OntoNotes (Prad-
han et al., 2012) corpus, which includes docu-
ments with coreferences and named entity tags
manually annotated. We assigned an anonymous
identifier to every coreference chain in the cor-
pus3 in order of first appearance4, and replaced
mentions of a coreference chain with its identi-
fier. In our experiments, each coreference chain
was given a dynamic representation. Following
Mikolov et al. (2010), we limited the vocabulary to
10,000 words appearing frequently in the corpus.
Finally, we inserted “<bos>” and “<eos>” tokens
to mark the beginning and end of each sentence.

An important difference between this dataset
and the one presented in Hermann et al. (2015) is
in the way that coreferences are treated. Hermann
et al. (2015) used automatic resolusion of corefer-
ences, whereas our study made use of the manual
annotations in the OntoNotes. Thus, the process
of Hermann et al. (2015) introduced (intentional
and unintentional) errors into the dataset. Addi-
tionally, the dataset did not assign an entity iden-

3We used documents with no more than 50 clusters, which
covered more than 97% of the corpus.

4Following the study of Luong et al. (2015), we assigned
“<unk1>”, “<unk2>”, ... to coreference clusters in order of
first appearance.
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Split Train Valid Test
# of documents 2725 335 336
Avg. # of sentences 25.7 27.2 26.4
Avg. # of unique entities 15.6 16.8 15.8
Avg. # of unique entities oc-
curring more than once

9.3 9.9 9.5

Avg. # of occurrences of an
entity

3.2 3.2 3.1

Table 1: Statistics of Anonymized Language
Modeling dataset.

tifier to a pronoun. In contrast, as our dataset has
access to the manual annotations of coreferences,
we are able to investigate the ability of the lan-
guage model to capture meanings from contexts.

Dynamic updating could be applied to words
in all lexical categories, including verbs, adjec-
tives, and nouns without requiring additional ex-
tensions. However, verbs and adjectives were ex-
cluded from targets of dynamic updates in the ex-
periments, for two reasons. First, proper nouns
and nouns accounted for the majority (70%) of
the low-frequency (unknown) words, followed by
verbs (10%) and adjectives (9%). Second, we
assumed that the meaning of a verb or adjective
would shift less over the course of a discourse than
that of a noun. When semantic information of un-
known verbs and adjectives is required, their em-
beddings may be extracted from ad-hoc training
on a different larger corpus. This, however, was
beyond the scope of this study.

5 Experiments

5.1 Setting

An experiment was conducted to investigate the
effect of Dynamic Neural Text Model on the
Anonymized Language Modeling dataset. The
split of dataset followed that of the original cor-
pus (Pradhan et al., 2012). Table 1 summarizes
the statistics of the dataset.

The baseline model was a typical LSTM RNN
language model with 512 units. We compared
three variants of the proposed model, using dif-
ferent applications of dynamic embedding: in the
input layer only (as in Kobayashi et al. (2016)),
in the output layer only, and in both the input and
output layers. The context encoders were bidirec-
tional LSTMs with 512 units, the parameters of
which were not the same as those in the LSTM
RNN language models. All models were trained
by maximizing the likelihood of correct tokens, to

achieve best perplexity on the validation dataset5.
Most hyper-parameters were tuned and fixed by
the baseline model on the validation dataset6.

It is difficult to adequately train the all parts of a
model using only the small dataset of Anonymized
Language Modeling. We therefore pretrained
word embeddings and ContextEncoder (the bi-
directional RNNs and matrices in Equations 6–
8) on a sentence completion task in which clozes
were predicted from the surrounding words in
a large corpus (Melamud et al., 2016)7. We
used the objective function with negative sam-
pling (Mikolov et al., 2013):

∑
e(log σ(x̂ᵀ

exe) +∑
v∈Neg(log σ(−x̂ᵀ

exv))). Here, x̂e is a context
vector predicted by ContextEncoder, xe denotes
the word embedding of a target word e appear-
ing in the corpus, and Neg represents randomly
sampled words. These pretrained parameters of
ContextEncoder were fixed when the whole lan-
guage model was trained on the Anonymized Lan-
guage Modeling dataset. We implemented models
in Python using the Chainer neural network li-
brary (Tokui et al., 2015). The code and the con-
structed dataset are publicly available8.

5.2 Results and Analysis
5.2.1 Perplexity
Table 2 shows performance of the baseline model
and the three variants of the proposed method in
terms of perplexity. The table reports the mean
and standard error of three perplexity values af-
ter training using three different randomly cho-
sen initializations (we used the same convention

5We performed a validation at the end of every half epoch
out of five epochs.

6Batchsize was 8. Adam (Kingma and Ba, 2015) with
learning rate 10−3. Gradients were normalized so that their
norm was smaller than 1. Truncation of backpropagation and
updating was performed after every 20 sentences and at the
end of document.

7We pretrained a model on the Gigaword Corpus, exclud-
ing sentences with more than 32 tokens. We performed train-
ing for 50000 iterations with a batch size of 128 and five
negative samples. Only words that occurred no fewer than
500 times are used; other words were treated as unknown
tokens. Melamud et al. (2016) used three different sets of
word embeddings for the two inputs with respect to the en-
coders (

−−−→
RNN and

←−−−
RNN) and the output (target). However,

we forced the sets of word embeddings to share a single set
of word embeddings in pretraining. We initialized the word
embeddings in both the input layer (xw) and the output layer
(yw) of the novel models, including the baseline model, with
this single set. The word embeddings of all anonymized to-
kens were initialized as unknown words with the word em-
bedding of “<unk>”.

8https://github.com/soskek/dynamic_
neural_text_model
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Models (1) All
(2) Reappearing

entities
(3) Following

entities (4) Non-entities
LSTM LM (Baseline) (A) 64.8±0.6 48.0±2.6 128.6±2.0 68.5±0.2
With only dynamic input (B) 62.8±0.3 42.4±1.1 109.5±1.4 66.4±0.3
With only dynamic output (C) 62.5±0.3 35.9±3.7 129.0±0.7 69.5±0.3
With dynamic input & output (D) 60.7±0.2 34.0±1.3 106.8±0.6 67.6±0.04

Table 2: Perplexities for each token group of models on the test set of Anonymized Language Modeling
dataset. All values are averages with standard errors, calculated respectively by three models (trained
with different random numbers). Dynamic models used GRU followed by ReLU as the merging function.

throughout this paper). Here, we discuss the pro-
posed method using GRU followed by ReLU as
the merging function, as this achieved the best
perplexity (see Section 5.2.2 for a comparison of
functions). We also show perplexitiy values when
evaluating words of specific categories: (1) all
words; (2) reappearing entity words; (3) words fol-
lowing entities; and (4) non-entity words.

All variants of the proposed method outper-
formed the baseline model. Focusing on the cat-
egories (2) and (3) highlights the roles of dynamic
updates of the input and output layers. Dynamic
updates of the input layer (B) had a larger im-
provement for predicting words following entities
(3) than those of the output layer (C). In con-
trast, dynamic updates of the output layer (C) were
quite effective for predicting reappearing entities
(2) whereas those of the input layer (B) were not.
These facts confirm that: dynamic updates of the
input layer help a model predict words following
entities by supplying on-the-fly context informa-
tion; and those of the output layer are effective to
predict entity words appearing multiple times.

In addition, dynamic updates of both the input
and output layers (D) further improved the perfor-
mance from those of either the output (C) or input
(B) layer. Thus, the proposed dynamic output was
shown to be compatible with dynamic input, and
vice versa. These results demonstrated the posi-
tive effect of capturing and exploiting the context-
sensitive meanings of entities.

In order to examine whether dynamic updates of
the input and output embeddings capture context-
sensitive meanings of entities, we present Fig-
ures 4, 5 and 6. Figure 4 depicts the perplexity
of words with different positions in a document9.
The figure confirms that the advantage of the pro-
posed method over the baseline is more evident

9It is more difficult to predict tokens appearing latter in
a document because the number of new (unknown) tokens
increases as a model reads the document.
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Figure 4: Perplexity of all tokens relative to the
time at which they appear in the document.

especially in the latter part of documents, where
repeated words are more likely to occur.

Figure 5 shows the perplexity with respect to
the frequency of words t within documents. Note
that the word embedding at the first occurrence of
an entity is static. This figure indicates that en-
tities appearing many times enjoy the benefit of
the dynamic language model. Figure 6 visualizes
the perplexity of entities with respect to the num-
bers of their antecedent candidates. It is clear from
this figure that the proposed method is better at
memorizing the semantic information of entities
appearing repeatedly in documents than the base-
line. These results also demonstrated the contribu-
tion of dynamic updates of word embeddings.

5.2.2 Comparison of Merging functions
Table 3 compares models with different merging
functions; GRU-ReLU, GRU, max pooling, and
the use of the latest context. The use of the lat-
est context had the worst performance for all vari-
ants of the proposed method. Thus, a proper accu-
mulation of multiple contexts is indispensable for
dynamic updates of word embeddings. Although
Kobayashi et al. (2016) used only max pooling as
the merging function, GRU and GRU-ReLU were
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Models Merging function
# of parameters
(to be finetuned) (1) All

(2) Reappearing
entities

(3) Following
entities (4) Non-entities

Only GRU-ReLU 18.9M (14.2M) 62.8±0.3 42.4±1.1 109.5±1.4 66.4±0.3
dynamic input GRU 18.9M (14.2M) 63.2±0.4 43.3±2.7 111.2±0.7 66.8±0.4

Max pool. 17.3M (12.6M) 63.6±0.4 45.0±2.6 116.0±1.0 67.0±0.2
Only latest 17.3M (12.6M) 64.0±0.4 44.1±1.6 127.6±0.7 67.5±0.2

Only GRU-ReLU 18.9M (14.2M) 62.5±0.3 35.9±3.7 129.0±0.7 69.5±0.3
dynamic output GRU 18.9M (14.2M) 62.6±0.2 39.0±2.0 121.1±8.3 69.1±0.2

Max pool. 17.3M (12.6M) 62.2±0.4 41.1±1.9 126.9±1.5 68.4±0.6
Only latest 17.3M (12.6M) 64.9±0.1 49.8±1.8 129.1±1.6 70.6±0.2

Dynamic GRU-ReLU 19.2M (14.4M) 60.7±0.2 34.0±1.3 106.8±0.6 67.6±0.04
input & output GRU 19.2M (14.4M) 60.9±0.3 37.5±0.3 108.9±0.8 67.2±0.4

Max pool. 17.6M (12.9M) 60.7±0.3 39.5±3.4 107.5±1.3 66.8±0.8
Only latest 17.6M (12.9M) 63.4±0.2 47.9±4.2 116.4±0.4 68.9±0.1

Baseline 12.3M (12.3M) 64.8±0.6 48.0±2.6 128.6±2.0 68.5±0.2

Table 3: Results for models with different merging functions on the test set of the Anonymized Language
Modeling dataset, as same as in Table 2.

60

70

80

90

100

110

120

130

140

150

160

1 2 3-6 7-10 11-

P
er

p
le

x
it

y
 o

f 
to

k
en

s 

fo
ll

o
w

in
g
 e

n
ti

ti
es

t-th occurrence of entities

Baseline Proposed

Figure 5: Perplexity of tokens following the enti-
ties relative to the time at which the entity occurs.

shown to be comparable in performance and supe-
rior to max pooling when predicting tokens related
to entities (2) and (3).

5.2.3 Predicting Entities by Likelihood of a
Sentence

In order to examine contribution of the dynamic
language models on a downstream task, we con-
ducted cloze tests for comprehension of a sentence
with reappearing entities in a discourse. Given
multiple preceding entities E = {e+, e1, e2, ...}
followed by a cloze sentence, the models were re-
quired to predict the true antecedent e+ which al-
lowed the cloze to be correctly filled, among the
other alternatives E− = {e1, e2, ...}.

Language models solve this task by comparing
the likelihoods of sentences filled with antecedent
candidates in E and returning the entity with the
highest likelihood of the sentence. In this experi-
ment, the performance of a model was represented
by the Mean Quantile (MQ) (Guu et al., 2015).
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Figure 6: Perplexity of entities relative to the num-
ber of antecedent entities.

The MQ computes the mean ratio at which the
model predicts a correct antecedent e+ more likely
than negative antecedents in E−,

MQ =
|{e− ∈ E− : p(e−) < p(e+)}|

|E−| . (11)

Here, p(e) denotes the likelihood of a sentence
whose cloze is filled with e. If the correct an-
tecedent e+ yields highest likelihood, MQ gets 1.

Table 4 reports MQs for the three variants and
merging functions. Dynamic updates of the in-
put layer greatly boosted the performance by ap-
proximately 10%, while using both dynamic in-
put and output improved it further. In this ex-
periment, the merging functions with GRUs out-
perform the others. These results demonstrated
that Dynamic Neural Text Models can accumulate
a new information in word embeddings and con-
tribute to modeling the semantic changes of enti-
ties in a discourse.
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Models Merging func. MQ
Baseline .525±.001
Only GRU-ReLU .630±.005
dynamic input GRU .633±.005

Max pool. .617±.002
Only latest .600±.004

Only GRU-ReLU .519±.001
dynamic output GRU .522±.000

Max pool. .519±.001
Only latest .519±.003

Dynamic GRU-ReLU .642±.004
input & output GRU .637±.005

Max pool. .620±.002
Only latest .613±.002

Table 4: Mean Quantile of a true coreferent entity
among antecedent entities.

6 Related Work

An approach to addressing the unknown word
problem used in recent studies (Kim et al., 2016;
Sennrich et al., 2016; Luong and Manning, 2016;
Schuster and Nakajima, 2012) comprises the em-
beddings of unknown words from character em-
beddings or subword embeddings. Li and Juraf-
sky (2015) applied word disambiguation and use
a sense embedding to the target word. Choi et al.
(2017) captured the context-sensitive meanings of
common words using word embeddings, applied
through a gating function controlled by history
words, in the context of machine translation. In fu-
ture work, we will explore a wider range of mod-
els, to integrate our dynamic text modeling with
methods that estimate the meaning of unknown
words or entities from their constituents. When
addressing well-known entities such as Obama
and Trump, it makes sense to learn their embed-
dings from external resources, as well as dynam-
ically from the preceding context in a given dis-
course (as in our Dynamic Neural Text Model).
The integration of these two sources of informa-
tion is an intriguing challenge in language model-
ing.

A key aspect of our model is its incorporation
of the copy mechanism (Gu et al., 2016; Gul-
cehre et al., 2016), using dynamic word embed-
dings in the output layer. Independently of this
study, several research groups have explored the
use of variants of the copy mechanisms in lan-
guage modeling (Merity et al., 2017; Grave et al.,
2017; Peng and Roth, 2016). These studies, how-
ever, did not incorporate dynamic representations
in the input layer. In contrast, our proposal in-
corporates the copy mechanism through the use

of dynamic representations in the output layer, in-
tegrating them with dynamic mechanisms in both
the input and output layers by applying dynamic
entity-wise representation. Our experiments have
demonstrated the benefits of such integration.

Another related trend in recent studies is the
use of neural network to capture the informa-
tion flow of a discourse. One approach has been
to link RNNs across sentences (Wang and Cho,
2016; Serban et al., 2016), while a second ap-
proach has expolited a type of memory space to
store contextual information (Sukhbaatar et al.,
2015; Tran et al., 2016; Merity et al., 2017).
Research on reading comprehension (Kobayashi
et al., 2016; Henaff et al., 2017) and coreference
resolution (Wiseman et al., 2016; Clark and Man-
ning, 2016b,a) has shown the salience of entity-
wise context information. Our model could be lo-
cated within such approaches, but is distinct in be-
ing the first model to make use of entity-wise con-
text information in both the input and output layers
for sentence generation.

We summarize and compare works for entity-
centric neural networks that read a document.
Kobayashi et al. (2016) pioneered entity-centric
neural models tracking states in a discourse. They
proposed Dynamic Entity Representation, which
encodes contexts of entities and updates the states
using entity-wise memories. Wiseman et al.
(2016) also proposed a method for managing sim-
ilar entity-wise features on neural networks and
improved a coreference resolution model. Clark
and Manning (2016b,a) incorporated such entity-
wise representations in mention-ranking corefer-
ence models. Our paper follows Kobayashi et al.
(2016) and exploits dynamic entity reprensetions
in a neural language model, where dynamic re-
poresentations are used not only in the neural en-
coder but also in the decoder, applicable to various
sequence generation tasks, e.g., machine transla-
tion and dialog response generation. Simultane-
ously with our paper, Ji et al. (2017) use dynamic
entity representation in a neural language model
for reranking outputs of a coreference resolution
system. Yang et al. (2017) experiment language
modeling with referring to internal contexts or ex-
ternal data. Henaff et al. (2017) focus on neural
networks tracking contexts of entities, achieving
the state-of-the-art result in bAbI (Weston et al.,
2015), a reading comprehension task. They en-
code the contexts of each entity by an attention-
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like gated RNN instead of using coreference links
directly. Dhingra et al. (2017) also try to improve
a reading comprehension model using coreference
links. Similarly to our dynamic entity representa-
tion, Bahdanau et al. (2017) construct on-the-fly
word embeddings of rare words from dictionary
definitions.

The fisrt key component of dynamic entity
representation is a function to merge more than
one contexts about an entity into a consistent
representation of the entity. Various choices
for the function exist, e.g., max or average-
pooling (Kobayashi et al., 2016; Clark and Man-
ning, 2016b), RNN (GRU, LSTM (Wiseman
et al., 2016; Yang et al., 2017) or other gated
RNNs (Henaff et al., 2017; Ji et al., 2017)), or
using the latest context only (without any merg-
ing) (Yang et al., 2017). This paper is the first
work comparing the effects of those choices (see
Section 5.2.2).

The second component is a function to encode
local contexts from a given text, e.g., bidirec-
tional RNN encoding (Kobayashi et al., 2016),
unidirectional RNN used in a language model (Ji
et al., 2017; Yang et al., 2017), feedforward neu-
ral network with a sentence vector and an entity’s
word vector (Henaff et al., 2017) or hand-crafted
features with word embeddings (Wiseman et al.,
2016; Clark and Manning, 2016b). This study
employs bi-RNN analogously to Kobayashi et al.
(2016), which can access full context with power-
ful learnable units.

In the task setting proposed in this study, a
model must capture the meaning of a given spe-
cific word from a small number of its contexts in
a given discourse. The task could also be seen
as novel one-shot learning (Fei-Fei et al., 2006)
of word meanings. One-shot learning for NLP
like this has been little studied, with the excep-
tion of the study by Vinyals et al. (2016), which
used a task in which the context of a target word is
matched with a different context of the same word.

7 Conclusion

This study addressed the problem of identifying
the meaning of unknown words or entities in a
discourse with respect to the word embedding ap-
proaches used in neural language models. We pro-
posed a method for on-the-fly construction and
exploitation of word embeddings in both the in-
put layer and output layer of a neural model by

tracking contexts. This extended the dynamic en-
tity representation presented in Kobayashi et al.
(2016), and incorporated a copy mechanism pro-
posed independently by Gu et al. (2016) and Gul-
cehre et al. (2016). In the course of the study,
we also constructed a new task and dataset, called
Anonymized Language Modeling, for evaluating
the ability of a model to capture word mean-
ings while reading. Experiments conducted using
our novel dataset demonstrated that the RNN lan-
guage model variants proposed in this study out-
performed the baseline model. More detailed anal-
ysis indicated that the proposed method was par-
ticularly successful in capturing the meaning of
an unknown words from texts containing few in-
stances.
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Abstract

Implicit discourse relation recognition is
an extremely challenging task due to the
lack of indicative connectives. Various
neural network architectures have been
proposed for this task recently, but most
of them suffer from the shortage of la-
beled data. In this paper, we address this
problem by procuring additional training
data from parallel corpora: When humans
translate a text, they sometimes add con-
nectives (a process known as explicita-
tion). We automatically back-translate it
into an English connective, and use it to in-
fer a label with high confidence. We show
that a training set several times larger than
the original training set can be generated
this way. With the extra labeled instances,
we show that even a simple bidirectional
Long Short-Term Memory Network can
outperform the current state-of-the-art.

1 Introduction

When humans comprehend language, their inter-
pretation consists of more than just the sum of
the content of the sentences. Additional seman-
tic relations (known as coherence relations or dis-
course relations) are inferred between sentences
in the text. Identification of discourse relations is
useful for various NLP applications such as ques-
tion answering (Jansen et al., 2014; Liakata et al.,
2013), summarization (Maskey and Hirschberg,
2005; Yoshida et al., 2014; Gerani et al., 2014),
machine translation (Guzmán et al., 2014; Meyer
et al., 2015) and information extraction (Cimiano
et al., 2005). Recently, the task has drawn increas-
ing attention, including two CoNLL shared tasks
(Xue et al., 2015, 2016).

Discourse relations are sometimes expressed

with an explicit discourse connective (DC), such
as “because”, “but”, “if”. Example 1 shows an ex-
plicit discourse relation marked by “because”; the
text spans between which the relation holds are
marked as Arg1 and Arg2. DCs serve as strong
cues and allow us to classify discourse relations
with high accuracy (Pitler et al., 2008, 2009; Lin
et al., 2014).

However, more than half of the discourse rela-
tions in a text are not signalled by a connective.
See for example 2: a contrastive relation can be in-
ferred between the text spans marked as Arg1 and
Arg2. Implicit relation classification is very chal-
lenging and represents a bottleneck of the entire
discourse parsing system.

1. [The city’s Campaign Finance Board has re-
fused to pay Mr Dinkins $95,142 in matching
funds]Arg1 because [his campaign records
are incomplete.]Arg2

— Explicit, Contingency.Cause

2. [They desperately needed somebody who
showed they cared for them, who loved
them.]Arg1 [The last thing they needed was
another drag-down blow.]Arg2

—Implicit, Comparison.Contrast

In order to classify an implicit discourse rela-
tion, it is necessary to represent the semantic con-
tent of the relational arguments, which may give a
cue to the coherence relation, e.g. “care” – “drag-
down blow” in 2. Early methods have focused on
designing various features to overcome data spar-
sity and more effectively identify relevant con-
cepts in the two discourse relational arguments.
(Lin et al., 2009; Zhou et al., 2010; Biran and
McKeown, 2013; Park and Cardie, 2012; Ruther-
ford and Xue, 2014), while recent efforts use dis-
tributed representations with neural network ar-
chitectures (Zhang et al., 2015; Ji and Eisenstein,
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2015; Ji et al., 2016; Chen et al., 2016; Qin
et al., 2016, 2017). Both streams of methods suf-
fer from insufficient annotated data (Wang et al.,
2015), since the Penn Discourse Treebank (PDTB)
(Prasad et al., 2008), which is the discourse anno-
tated resource mostly used by the community, con-
sists of just 12763 implicit instances in the usual
training set and 761 relations in the test set. Some
second-level relations only have about a dozen in-
stances. It is therefore crucial to obtain extra data
for machine learning.

In this paper, we propose a simple approach
to automatically extract samples of implicit dis-
course relations from parallel corpus via back-
translation: Our approach is motivated by the fact
that humans sometimes omit connectives during
translation (implicitation), or insert connectives
not originally present in the source text (explici-
tation) (Laali and Kosseim, 2014; Koppel and Or-
dan, 2011; Cartoni et al., 2011; Hoek and Zuf-
ferey, 2015; Zufferey, 2016). When explicitat-
ing an implicit relation, the human translator is,
in other words, disambiguating the source implicit
relation with an explicit DC in the target language.

Our contribution is twofold: Firstly, we propose
a pipeline to automatically label English implicit
discourse relation samples based on explicitation
of DCs in human translation, which is the target
side of a parallel corpus. Secondly, we show that
the extra instances mined by the proposed method
improve the performance of a standard neural clas-
sifier by a large margin, when evaluated on the
PDTB 2.0 benchmark test set as well as by cross-
validation (Shi and Demberg, 2017).

2 Related Work

Early works addressing discourse relation pars-
ing were trying to classify unmarked discourse
relations by training on explicit discourse rela-
tions with the marker been removed (Marcu and
Echihabi, 2002). While this method promised
to provide almost unlimited training data, it was
shown that explicit relations differ in systematic
ways from implicit relations (Asr and Demberg,
2012), so that performance on implicits is very
poor when learning on explicits only (Sporleder
and Lascarides, 2008).

The release of PDTB (Prasad et al., 2008),
the largest available corpus which annotates im-
plicit examples, lead to substantial improvements
in classification of implicit relations, and spurred

a variety of approaches to the task, including
feature-based methods (Pitler et al., 2009; Lin
et al., 2009; Park and Cardie, 2012; Biran and
McKeown, 2013; Rutherford and Xue, 2014) and
neural network models (Zhang et al., 2015; Ji and
Eisenstein, 2015; Ji et al., 2016; Chen et al., 2016;
Qin et al., 2016, 2017). However, the limited size
of the annotated corpus, in combination with the
difficulty of the task of inferring the type of re-
lation between given text spans, presents a prob-
lem both in training (Rutherford et al. (2017) find
that a simple feed-forward architecture can outper-
form more complex architectures, and argues that
the larger number of parameters can not be esti-
mated adequately on the small amount of training
data) and testing (Shi and Demberg (2017) report
experiments showing that results on the standard
test set are not reliable due to the small set of just
761 relations).

Data extension has therefore been a longstand-
ing goal in discourse relation classification. The
main idea has been to select explicit discourse in-
stances that are similar to implicit ones to add
to the training set. Wang et al. (2012) proposed
to differentiate typical and atypical examples for
each discourse relation, and augment training data
for implicits only by typical explicits. In a similar
vein, Rutherford and Xue (2015) proposed crite-
ria for selecting among explicitly marked relations
ones that contain discourse connectives which can
be omitted without changing the interpretation of
the discourse. These relations are then added to
the implicit instances in training.

On the other hand, Lan et al. (2013) pre-
sented multi-task learning based systems, which
in addition to the main implicit relation classifi-
cation task, contain the task of predicting previ-
ously removed connectives for explicit relations,
and profit from shared representations between
the tasks. Similarly, Hernault et al. (2010) ob-
serves features that occur in both implicit and ex-
plicit discourse relations, and exploit such fea-
ture co-occurrence to extend the features for clas-
sifying implicits using explicitly marked rela-
tions. Mihăilă and Ananiadou (2014) and Hidey
and McKeown (2016) proposed semi-supervised
learning and self-learning methods to improve
recognition of patterns that typically signal causal
discourse relations.

The approach proposed here differs from pre-
vious approaches, because we extend our train-
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ing data only by originally implicit relations, and
obtain the label through the disambiguation that
sometimes happens in human translation.

Parallel corpora have been exploited as a re-
source of discourse relation data in previous work
but have mostly been used with goals different
from ours: Cartoni et al. (2013) and Meyer et al.
(2015) use parallel corpora to label and disam-
biguate discourse connectives in the target lan-
guage based on explicitly marked English rela-
tions, in order to help machine translation. A
second application has been to project discourse
annotation from English onto other languages
through parallel corpora, in order to construct dis-
course annotated resources for the target language
(Versley, 2010; Zhou et al., 2012; Laali and Kos-
seim, 2014).

The approach that is in spirit most similar
to ours is by Wu et al. (2016), who extracted
bilingual-constrained synthetic implicit data from
a sentence-aligned English-Chinese corpus and
got improvements by incorporating these data via
a multi-task neural network on the 4-way classifi-
cation.

3 Method

Our proposed method aims at sentence pairs in
the parallel corpora where an implicit discourse
relations on the source English side has been
translated by human translators into an explicitly
marked relation on the target side. The inserted
connective hence disambiguates the originally im-
plicit relation, and the discourse relation can be
classified with confidence (under the assumption
that the same discourse relation holds in the origi-
nal source text).

The pipeline of our approach is detailed in be-
low steps.

1. The target side of a sentence-aligned paral-
lel corpus, with English as the source text, is
back-translated to English using a pre-trained
machine translation system.

2. An end-to-end discourse relation parser for
English is run on both the source side and
the back-translated target side. The parser
will output a list of explicit and implicit re-
lations, including the relation sense and argu-
ment spans of each relation.

3. Implicit-to-explicit discourse relation align-
ments are identified according to the output

of the end-to-end parser. Implicit relations in
the PDTB are only ever annotated between
consecutive sentences. Therefore, we specif-
ically extract pairs of consecutive sentences
on the source English side:

• that are identified as the Arg1 and Arg2
of an implicit discourse relation1;
• whose corresponding back-translated

target sentences are identified as the
Arg1 and Arg2 of an explicit relation;
• that are not part of the Arg1 or Arg2 of

any other discourse relations2.

4. Label the source English implicit relation
with the relation class of the explicit relation
in back-translated target text. The two con-
secutive sentences are marked as Arg1 and
Arg2 respectively.

Figure 1 illustrates the pipeline of our approach,
which takes an English-to-French parallel corpus
as input and outputs a list of implicit discourse re-
lations, each containing two arguments from the
source English text and a relation class according
to the back-translated French DC.

We then compare the performance of a neural
implicit discourse relation classifier trained with
the annotated implicit relation samples in PDTB
alone and also with the extra training samples
mined from the parallel corpus. The classifier per-
formance is evaluated on the standard PDTB im-
plicit relation test set and by cross-validation.

3.1 Advantages of using back-translation

In the proposed method, we disambiguate implicit
relations according to the explicitated translation.
Instead of directly classifying the explicit relation
in the target language, we back-translate the target
text to the source language by machine translation
(MT) because:

• Discourse parsers on low-resource languages
do not perform well, or are even not available.

• Different languages have different sets of dis-
course relation classes defined. By the means
of back-translation, we can use an English
discourse parser on the target text, and thus

1 Relations signaled by Alternative Lexicalization are
counted as implicit relations and extracted as samples. How-
ever, NoRel and EntRel are excluded.

2 This restriction avoids mis-alignment of relations be-
tween source and target texts.
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Figure 1: Pipeline showing how an implicit discourse relation sample, sentence pair 3-4, is extracted
and labeled using a parallel corpus.

label the implicit relations with the same set
of relation labels defined for English.
• The quality of the MT system has limited im-

pact on our approach. Since the DC tokens
are powerful features to disambiguate an ex-
plicit relation, limited contextual features are
required. We just need correct translation of
the explicit DC tokens, irrespective of word
order and the rest of the translation.

3.2 Inter-sentential and intra-sentential
relations

Only inter-sentential implicit relations are anno-
tated in the PDTB, due to time and resource con-
straints (Prasad et al., 2008). However, this does
not mean that implicit relations only hold between
consecutive sentences.

We decided to extract intra-sentential relation
samples from the parallel corpus based on two
motivations: Firstly, we hypothesize that intra-
sentential implicit relations share similar features
as inter-sentential ones. Including both types may
hence increase dataset size. In fact, we will see in
the experiment results that intra-sentential training
samples largely improve classification of implicit
relations, even though the test data from PDTB
contains inter-sentential samples only. An analysis
on what we learn from the intra-sentential samples
is presented in Section 6.1.

Secondly, intra-sentential relations can poten-
tially be identified with higher reliability: Paral-
lel corpora are typically sentence-aligned. This
makes it a lot easier to extract sentences that
are detected by the end-to-end discourse relation
parser as explicit in the (back-)translation target
side but not on the original source side, without
needing to worry about whether any sentences in
the dataset were removed or the order changed
during preprocessing (which would be detrimen-
tal for detecting intra-sentential relations).

3.3 Argument spans

It is possible but not entirely trivial to determine
the argument spans of the discourse relations la-
beled with the back-translation method. In this
paper, we chose a neural network model that con-
catenates the Arg1 and Arg2 representations (see
Section 4.4), so that determining exact text spans
of Arg1 and Arg2 was not necessary. We are
not the first one to do like this, in the work by
Rönnqvist et al. (2017), they modeled the Arg1-
Arg2 pairs as a joint sequence and did not compute
intermediate representations of arguments sepa-
rately, to make it more generally flexible in model-
ing discourse units and easily extend to additional
contexts.

487



4 Experiment

4.1 Data
Parallel Corpora The corpora used for the ex-
traction of implicit discourse relation samples are
publicly available bilingual English-French paral-
lel datasets compiled by Rabinovich et al. (2015).3

They consist of European parliamentary proceed-
ings, literary works and the Hansard corpus – gen-
res that are different from the PDTB, because we
want to expand the diversity of discourse rela-
tion samples available in the PDTB. These corpora
contain a total of ∼ 1.9M sentence pairs with an
average of 22.7 words per English sentence. Each
corpus contains an originally written part in En-
glish (used as target for the MT system) and its
corresponding human translation in French (used
as source). We use the same corpora to train the
French–English MT system (Section 4.2), to back-
translate the French side into English and to ex-
tract additional discourse training data.
The Penn Discourse Treebank (PDTB) We use
the Penn Discourse Treebank 2.0 (Prasad et al.,
2008) for the training and testing of the implicit
discourse relation classifier. PDTB is the largest
available manually annotated corpus of explicit
and implicit discourse relations based on one mil-
lion word tokens from the Wall Street Journal.
Each discourse relation is annotated with at most
two senses from a three-level hierarchy of dis-
course relations. The first level roughly catego-
rizes the relations into four major classes, each
of which is further categorized in to more dis-
tinct relation types. Conventionally, discourse re-
lation classifiers are either evaluated by the accu-
racy of the first-level 4-way classification(Pitler
et al., 2009; Rutherford and Xue, 2014; Chen
et al., 2016), or the second-level 11-way classifi-
cation (Lin et al., 2009; Ji and Eisenstein, 2015;
Qin et al., 2016, 2017).

4.2 Machine Translation System
We train an MT system to back-translate the target
side of the parallel corpus to English. To produce
the highest-quality back-translation, we use a neu-
ral MT system trained on the same parallel corpus.
The system is implemented by Open-source Neu-
ral Machine Translation (OpenNMT) (Klein et al.,
2017). Source words are first mapped to word vec-
tors and then fed into a recurrent neural network.

3All corpora are available at http://cl.haifa.ac.
il/projects/translationese/

At each target time step, attention is applied over
the source RNN and combined with the current
hidden state to produce a prediction of the next
word, and this prediction would be fed back into
the target RNN.

We evaluate the MT system on newstest2014
and newsdiscusstest2015, reaching 24.63 and
22.58 BLEU respectively. The French side of the
training data back-translated into English is evalu-
ated against the originally written English source,
leading to a BLEU score of 34.17.4 The evalu-
ation of the back-translated corpus indicates that
the source text is not exactly reproduced. Criti-
cally, we assume that the MT system preserves the
explicitness of the target DCs, instead of explici-
tating or implicitating DCs as in the human trans-
lation.

4.3 End-to-end discourse parser

We employ the PDTB-style End-to-End Discourse
Parser (Lin et al., 2014) to identify and classify the
explicit instances from the back-translated English
sentences. It achieved about 87% F1 score for ex-
plicit relations on level-2 types, even higher than
human agreement of 84%. The accuracy on ex-
plicit DC identification is 96%.

On the source side, the end-to-end parser is ap-
plied to pick implicit relations from other types of
relations, i.e. explicit relations or no relation, in
order to extract implicit-to-explicit DC translation
from the parallel corpus5. On the back-translation,
the end-to-end parser is applied to identify only
explicitly marked discourse relations.

4.4 Implicit relation classification model

We use a Bidirectional Long Short-Term Memory
(LSTM) network as the implicit relation classifica-
tion model to evaluate the samples extracted by the
proposed method. This architecture inspects both
left and right contextual information and has been
proven effective in relation classification (Zhou
et al., 2016; Rönnqvist et al., 2017).

The model is illustrated in Figure 2, where each
word from the two discourse relational arguments
is represented as a vector, which is found through
a look-up word embedding. Given the word repre-
sentations [w1,w2,...,wn] as the input sequence, an

4Case sensitive BLEU implemented in mteval-v13a.pl.
Test sets available at http://www.statmt.org/
wmt15/translation-task.html

5 The non-explicit sense classification module of this
parser is thus not used in the proposed method.
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Figure 2: The bidirectional LSTM Network for the
task of implicit discourse relation classification.

LSTM computes the state sequence [h1,h2,...,hn]
with the following equations:

it = σ(Wi
wwt + Wi

hht−1 + Wi
cwt−1 + bi)

ft = σ(Wf
wwt + Wf

hht−1 + Wf
cwt−1 + bf )

gt = tanh(Wc
wwt + Wc

hht−1 + bc)

ct = ft
⊙

ct−1 + it
⊙

gt

ot = σ(Wo
wwt + Wo

hht−1 + bo)

ht = tanh(ct)
⊙

ot

The forward and backward LSTM layers tra-
verse the sequence ei, producing sequences of vec-
tors hif and hib respectively, which are summed
together in the coming sum layer.

Following the preprocessing method in (Lin
et al., 2009), relations with too few instances
(Contingency.Condition, Pragmatic Condition;
Comparison.Pragmatic Contrast, Pragmatic Con-
cession; Expansion.Exception) are removed dur-
ing training and evaluation, resulting in 11 types
of relations. Among instances annotated with two
relation senses, we only use the first sense.

The model is implemented in Keras6, which is
capable of running on top of Theano. We use word
embeddings of 300 dimensions, which are trained
on the original English side of the parallel corpora
as well as PDTB with the Skip-gram architecture
in Word2Vec (Mikolov et al., 2013). We initial-

6https://keras.io/

Relation intra- inter- Total

explicit→ explicit 199,047 111,090 310,137
explicit→ implicit 101,381 29,964 131,345
implicit→ explicit 77,228 25,086 102,314
1 “→” means from source to target side.

Table 1: Numbers of intra/inter-sentence sam-
ples extracted from parallel corpora.

Figure 3: Relation sense distribution of implicit
relations in PDTB and the extra intra- and inter-
sentence samples

ize the weights with uniform random; use standard
cross-entropy as our loss function; employ Ada-
grad as the optimization algorithm of choice and
set dropout layers after the embedding layer and
output layer with a drop rate of 0.2 and 0.5 respec-
tively. Each LSTM has a vector dimension of 300,
matching the embedding size.

We split the PDTB data and evaluate the clas-
sifier in two settings. Firstly, we adopt the stan-
dard PDTB splitting convention, where section 2-
21, 22, and 23 are used as train, validation and test
sets respectively (Lin et al., 2009). Secondly, we
conduct 10-fold cross validation on the whole cor-
pus including sections 0-24, as advocated in (Shi
and Demberg, 2017). And extra samples are only
added into training folds in the CV setting, which
means that testing fold consists of instances from
PDTB only. Models trained with and without ex-
tra samples we extracted, on top of the PDTB data,
are compared.

5 Distribution of additional instances

In total, 102, 314 implicit discourse relation
samples are extracted, of which 25, 086 are
inter-sentential relations and 77, 228 are intra-
sentential7. Inter-sentential relations are much less
abundant because stricter screening strategy is ap-
plied (the end of point 3 in Section 3). From Ta-
ble 1 we can also see that majority of DCs in the

7A dataset containing these additional instances will be
made available to researchers upon publication of the paper.
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Models PDTB Test Set Cross Validation

Most common class 25.36 25.59
Lin et al. (2009) 40.20 -
Qin et al. (2016) 43.81 -
Qin et al. (2017) 44.65 -
Rutherford et al. (2017) 39.56 -
Shi and Demberg (2017) (no surface features) 37.68 34.44

Ours

PDTB only 34.32 30.01
PDTB + inter-sentential samples 42.29 34.14
PDTB + intra-sentential samples 44.29 35.08
PDTB + all samples 45.50 37.84

1 “-” means no result currently.

Table 2: Accuracy of 11-way classification of implicit discourse relations on PDTB test
set and by cross validation.

source side have been translated into the target
side explicitly.

Figure 3 compares the distribution of relation
senses among the annotated implicit relations in
the PDTB and our extracted samples. The relation
distribution generally corresponds to the distribu-
tion in PDTB, but some relations, such as Tem-
poral and Contingency.Condition, are particularly
numerous in the intra-sentential samples.

6 Results

We compare our model with current state-of-the-
art models that were evaluated under the same set-
ting (11-way classification, PDTB section 23 as
test set) (Qin et al., 2016, 2017; Rutherford et al.,
2017), as well as a model based on linguistic fea-
tures (Lin et al., 2009) that uses this setting for
evaluation.

Qin et al. (2017) developed an adversarial
model, which consists of two CNNs in which ar-
guments are represented separately, a four-layer
Perceptron and a dense layer for classification, to
enable an adaptive imitation scheme through com-
petition between the implicit network and a ri-
val feature discriminator. Our model substantially
differs from that setup, as it uses a much sim-
pler network architecture and represents the two
discourse relation arguments jointly, i.e. without
knowledge of the arguments’ spans. We can see
that our baseline model performs substantially less
well than the state of the art, and also less well than
(Shi and Demberg, 2017), who also use an LSTM
but represent discourse relational arguments sepa-
rately. As adding training data can be expected to

be largely orthogonal to the choice of classifica-
tion model, we are here most interested in seeing
whether adding the new instances improves over
the baseline model with identical architecture.

Table 2 shows that including the extra inter-
and intra-sentential instances leads to very sub-
stantial improvements in classification accuracy.
Using the additional data, our method not only im-
proves performance by 11%-points on the PDTB
test set compared to training on the PDTB implicit
relations only, but also outperforms much more
complex neural network models (Qin et al., 2016,
2017) on this task.

The evaluation using cross-validation (around
8% point improvement over the baseline) further-
more shows that the obtained improvements do not
only hold for the PDTB standard test set but also
are stable across the whole PDTB data. These re-
sults strongly support the effectiveness of the im-
plicit relation samples mined from parallel texts.

The accuracies reported for our models are
based on 10 repeat-runs with different initializa-
tions of the network. This allows us to show the
amount of variance in results we obtained in Fig-
ure 4. We found that results sometimes varied a lot
between different runs, and would therefore like to
encourage others in the field to also report variabil-
ity due to initialization or other random factors.
For instance, our best run achieved 49.84% accu-
racy on the PDTB test set trained with all addi-
tional instances, while mean performance for that
setting is 45.50% accuracy. Variances were sub-
stantially smaller for the cross-validation setting,
as the number of overall instances going into the
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Figure 4: Average and variance of classification accuracy evaluated on the PDTB test set
with different sample size.

evaluation is a lot larger in this setting, and hence
yields more stable performance estimates.

6.1 Qualitative Analysis
In order to illustrate what kinds of instances our
method extracts, we show an instances below. The
underlined DC is the explicit DC identified in
the back-translated target text; the discourse rela-
tion is automatically classified based on the back-
translation.

3. [Justice demands it.]Arg1 but [The minister
refuses.]Arg2

— Comparison.Contrast

One strength of the proposed method is that
it can mine and label discourse relations that are
not commonly regarded as discourse relations and
hence not annotated in PDTB. Below are some ex-
amples where the bold DC was identified in the
(back-)translation:

4. A conservative member was kicked out of his caucus
for defending Nova Scotians.

— because, Contingency.Cause

5. A failure to do so would affect our attitude to their even-
tual accession.

—if, Contingency.Condition

These extra samples are in fact an invaluable
resource of discourse-informative patterns, which
are not available to discourse relation parsers that
are trained only on the PDTB dataset. These cases
provide evidence that our proposed method can
not only provide instances that are similar to im-
plicit labelled instances, but detect additional pat-
terns, as attempted in (Mihăilă and Ananiadou,

2014; Hidey and McKeown, 2016) for causal re-
lations, and generalize from the semantic content
observed in such relations to actual implicit dis-
course relations.

For example, as reported in Section 5, numer-
ous Temporal relations are mined from the paral-
lel corpus. These include cases where the origi-
nal text contained a verbal construction which ex-
presses the temporal relation, which through back-
translation gets expressed as a discourse relation,
or where explicit relations include gerunds in the
Arg2, e.g.

“any plan takes time to have the effect
required”→ “before getting the effect required”

“how much longer do women have to wait for
fairness?” → “before women have fairness.”

“having gone over the estimates”→ “after go-
ing over the estimates.”

(source text followed by (back-)translation, where
the explicitated DC is underlined).

In this work, we only extracted inter- and intra-
sentential discourse relations, but the method can
be in principle extended to other discourse rela-
tions that are not annotated in the PDTB, such
as implicit relation between non-consecutive sen-
tences. Discourse parsers that identify a larger
range of relations are more useful in end ap-
plications. More importantly, identification of
discourse-informative linguistic patterns by the
proposed method opens the opportunity to mine
extra samples under a monolingual setting and fur-
ther improve classification performance.
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6.2 Quantitative Analysis

In order to get detailed insights on how much extra
data is most beneficial to the task, we also trained
our classifier with different numbers of additional
extracted samples. Figure 4 compares the clas-
sification accuracy when training on incremental
number of extra instances. We find that the perfor-
mance increases with samples size, but plateaus
after 40, 000 intra-sentential samples.

In fact, this sample size produces the high-
est averaged classification accuracy of 45.87%,
which is even higher than our model which in-
cludes all extracted samples. A possible reason
for not seeing further improvement in adding more
intra-sentential examples is the difference in dis-
tribution and properties of these extra samples
compared to the PDTB data. We also experi-
mented with training on the parallel-text samples
only (i.e., without any PDTB training samples),
but the result was worse than using PDTB only.
Adding more inter-sentential samples might fur-
ther improve the performance, as these instances
are closer to the PDTB data.

6.3 Methodological Discussion

Our proposed method uses back-translated target
DCs to label implicit relations. The quality of the
relation label is intrinsically subject to the transla-
tion policy of the parallel corpora and also extrin-
sically subject to the accuracy of explicit DC clas-
sification by the end-to-end parser and the qual-
ity of the MT system. For example, a partic-
ularly high proportion of Contingency.Condition
relations is found in the intra-sentential samples.
Analyzing these samples, we found numerous in-
stances where the word ‘if’ is wrongly identified
as a DC (e.g. He asked if it was correct.). It is
not surprising to have noisy samples extracted be-
cause limited screening strategy is applied in the
current method.

As a reference for the quality of the relation la-
bel produced, we analysed the intra-sentential re-
lations in the parallel corpus that are explicit on
the source side and also in the (back-)translation.
We found that 68% of the originally explicit DCs
are (back-)translated to the same explicit DCs and
75% to DCs of the same level-2 sense, according
to automatic explicit DC classification of the end-
to-end parser.

7 Conclusion and Future work

We showed that explicitation during human trans-
lation can provide a valuable signal for expanding
datasets for implicit discourse relations. As the ex-
pansion of training instances is orthogonal to the
mechanism of DR classification, this method can
be applied to improve any methods of implicit DR
classification.

We see plenty of room for further improvement
by controlling the sample quality, such as selec-
tion based on explicit discourse connective iden-
tification confidence, restraining the discourse re-
lation structure, identifying Arg1 and Arg2 such
that approaches which use two separate represen-
tations for arguments instead of a single concate-
nated vector become possible, reducing language-
specific bias by mining from parallel corpora of
other language pairs, and fine-tuning the MT sys-
tem for discourse connective translation. We leave
the exploration of these areas to future work.
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Abstract

Identifying implicit discourse relations be-
tween text spans is a challenging task be-
cause it requires understanding the mean-
ing of the text. To tackle this task, re-
cent studies have tried several deep learn-
ing methods but few of them exploited the
syntactic information. In this work, we
explore the idea of incorporating syntac-
tic parse tree into neural networks. Specif-
ically, we employ the Tree-LSTM model
and Tree-GRU model, which are based
on the tree structure, to encode the argu-
ments in a relation. Moreover, we fur-
ther leverage the constituent tags to con-
trol the semantic composition process in
these tree-structured neural networks. Ex-
perimental results show that our method
achieves state-of-the-art performance on
PDTB corpus.

1 Introduction

It is widely agreed that text units such as clauses
or sentences are usually not isolated. Instead, they
correlate with each other to form coherent and
meaningful discourse together. To analyze how
text is organized, discourse parsing has gained
much attention from both the linguistic (Weiss and
Wodak, 2007; Tannen, 2012) and computational
(Marcu, 1997; Soricut and Marcu, 2003) commu-
nities, but the current performance is far from sat-
isfactory. The most challenging part is to identify
the discourse relations between text spans, espe-
cially when the discourse connectives (e.g., “be-
cause” and “but”) are not explicitly shown in the
text. Due to the absence of such evident linguistic
clues, trying to model and understand the mean-
ing of the text becomes the key point in identifying
such implicit relations.

economic performance

future

NP

JJ NN

JJ

NP

measure

VB

VP(a)

(b)

to expand

likely

VP

TO VB

JJ

ADJP

is

VBZ

S

the economy

DET NN

NN VP

(Expansion.Restatement.Specification, wsj_0233)

Arg2: A figure above 50 indicates the economy is 

likely to expand

Arg1: The index is intended to measure future 

economic performance

Figure 1: An example of two sentences
with their discourse relation as Expan-
sion.Restatement.Specification. Subfigure (a)
and (b) are partial parse trees of the two important
phrases with yellow background.

Previous studies in this field treat the task of
recognizing implicit discourse relations as a clas-
sification problem and various techniques in se-
mantic modeling have been adopted to encode the
arguments in each relation, ranging from tradi-
tional feature-based models (Lin et al., 2009; Pitler
et al., 2009) to the currently prevailing deep learn-
ing methods (Ji and Eisenstein, 2014; Liu and Li,
2016; Qin et al., 2017). Despite of the superior
ability of the deep learning models, the syntactic
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information, which proves to be helpful for iden-
tifying discourse relations in many early studies
(Subba and Di Eugenio, 2009; Lin et al., 2009), is
seldom employed by recent work. Therefore we
are curious to explore whether such missing syn-
tactic information can be leveraged in deep learn-
ing methods to further improve the semantic mod-
eling for implicit discourse relation classification.

Tree-structured neural networks, which recur-
sively compose the representation of smaller text
units into larger text spans along the syntactic
parse tree, can tactfully combine syntatic tree
structure with neural network models and recently
achieve great success in several semantic mod-
eling tasks (Eriguchi et al., 2016; Kokkinos and
Potamianos, 2017; Chen et al., 2017). One useful
property of these models is that the representation
of phrases can be naturally captured while com-
puting the representations from bottom up. Taking
Figure 1 for an example, those highlighted phrases
could provide important signals for classifying the
discourse relation. Therefore, we will employ two
latest tree-structuerd models, i.e. the Tree-LSTM
model (Tai et al., 2015; Zhu et al., 2015) and
the Tree-GRU model (Kokkinos and Potamianos,
2017), in our work. Hopefully, these models can
learn to preserve or highlight such helpful phrasal
information while encoding the arguments.

Another important syntactic signal comes from
the constituent tags on the tree nodes (e.g., NP, VP,
ADJP). Those tags, derived from the production
rules, describe the generative process of text and
therefore could indicate which part is more impor-
tant in each constituent. For example, consider-
ing a node tagged with NP, its child node tagged
with DT is usually neglectable. Thus we pro-
pose to incorporate this tag information into the
tree-structured neural networks, where those con-
stituent tags can be used to control the semantic
compostion process.

Therefore, in this paper, we will approach
the discourse relation classification task with two
tree-structured neural networks proposed recently
(Tree-LSTM and Tree-GRU ). To our knowledge,
this is the first time these models are applied to dis-
course relation classification. Moreover, we fur-
ther enhance these models by leveraging the con-
stituent tags to compute the gates in these models.
Experiments on PDTB 2.0 (Prasad et al., 2008)
show that the models we propose can achieve
state-of-the-art results.

2 Related Work

2.1 Implicit Discourse Relation Classication
Discourse relation identification is an important
but difficult sub-component of discourse analysis.
One fundamental step forward recently is the re-
lease of the large-scale Penn Discourse TreeBank
(PDTB) (Prasad et al., 2008), which annotates dis-
course relations with their two textual arguments
over the 1 million word Wall Street Journal corpus.
The discourse relations in PDTB are broadly cat-
egorized as either “Explicit” or “Implicit” accord-
ing to whether there are connectives in the original
text that can indicate the sense of the relations. In
the absence of explicit connectives, identifying the
sense of the relations has proved to be much more
difficult (Park and Cardie, 2012; Rutherford and
Xue, 2014) since the inferring is solely based on
the arguments.

Prior work usually tackles this task of implicit
discourse relation identification as a classification
problem with the classes defined in PDTB cor-
pus. Early attempts use traditional various feature-
based methods and the work inspiring us most is
Lin et al. (2009), in which they show that the syn-
tactic parse structure can provide useful signals
for discourse relation classification. More specif-
ically they employ the production rules with con-
stituent tags (e.g., SBJ) as features and get com-
petitive performance. Recently, with the popular-
ity of deep learning methods, many cutting-edge
models are also applied to our task of implicit dis-
course relation classification. Qin et al. (2016)
tries to model the sentences with Convolutional
Neural Networks. Liu and Li (2016) encodes the
text with Long Short Term Memory model and
employ multi-level attention mechanism to cap-
ture important signals. Qin et al. (2017) proposes a
framework based on adversarial network to incor-
porate the connective information. To be noted,
Ji and Eisenstein (2014) adopts Recursive Neu-
ral Network to exploit the representation of sen-
tences and entities, which is the first yet simple
tree-structured neural network applied in this task.

2.2 Tree-Structured Neural Networks
Tree-structured neural networks are one of the
most widely-used deep learning models in natu-
ral language processing. Such neural networks
usually recursively computes the representation of
larger text spans from its constituent units accord-
ing to the syntactic parse tree. Thanks to this
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compositional nature of text, tree-structured neu-
ral network models show superior ability in a vari-
ety of semantic modeling tasks, such as sentiment
classification (Kokkinos and Potamianos, 2017),
natural language inference (Chen et al., 2017) and
machine translation (Eriguchi et al., 2016).

The earliest and simplest tree-structure neural
network is the Recursive Neural Network pro-
posed by Socher et al. (2011), in which a global
matrix is learned to linearly combine the con-
tituent vectors. This work is further extended
by replacing the global matrix with a global ten-
sor to form the Recursive Neural Tensor Network
(Socher et al., 2013). Based on them, Qian et al.
(2015) first proposes to incorporate tag informa-
tion, which is very similar as our idea described
in Section 3.2, by either choosing a composition
function according to the tag of a phrase (Tag-
Guided RNN/RNTN) or combining the tag em-
beddings with word embeddings (Tag-Embedded
RNN/RNTN). Our method of incorporating tag
information improves from theirs and somewhat
combines these two methods by using the tag em-
bedding to dynamically determine the composi-
tion function via the gates in LSTM or GRU.

One fatal weakness of vanilla RNN/RNTN is
the well-known gradient exploding or vanishing
problem due to the multiple computation steps in
the vertical direction. Therefore Tai et al. (2015)
and Zhu et al. (2015) propose to import the Long
Short Term Memory into tree structured neural
networks and design a novel network architecture
called Tree-LSTM. The adoption of the memory
cell enables the Tree-LSTM model to preserve in-
formation even though the tree becomes very high.
Similar to Tree-LSTM, Kokkinos and Potamianos
(2017) introduces the so-called Tree-GRU net-
work, which replace the LSTM unit with Gated
Recurrent Unit (GRU). With less parameters to
train, Tree-GRU achieves better performance on
the sentiment analysis task. In this work, we will
experiment with these Tree-LSTM and Tree-GRU
models for the semantic modeling in implicit rela-
tion classification.

3 Our Method

This section details the models we use for implicit
discourse relation classification. Given two textual
arguments without explicit connectives, our task is
to classify the discourse relation between them. It
can be viewed as two parts: 1) modeling the se-

mantics of the two arguments; 2) classifying the
relations based on the semantics. Our main contri-
bution concentrates on the semantic modeling part
with two types of tree-structured neural networks
described in Section 3.1 and we further illustrate
how to leverage the constituent tags to enhance
these two models in Section 3.2. In Section 3.3,
we will shortly introduce the relation classifier and
the training procedure of our model. The architec-
ture of our system is illustrated in Figure 2.

Arg1 Word
Embedding

Arg2 Word
Embedding

Relation
Classifier

𝑟" 𝑟#

Pr	(𝑦)|𝑟", 𝑟#)

En
co
de
r Encoder

Figure 2: Architecture of our discourse relation
classification model. Layers with the same color
share the same parameters.

3.1 Modeling the Arguments with
Tree-Structured Neural Networks

In a typical tree-structured neural network, given a
parse tree of the text, the semantic representations
of smaller text units are recursively composed to
compute the representation of larger text spans and
finally compute the representation for the whole
text (e.g., sentence). In this work, we will con-
struct our models based on the constituency parse
tree, as is shown in Figure 1. Following previ-
ous convention (Eriguchi et al., 2016; Zhao et al.,
2017), we convert the general parse tree, where
the branching factor may be arbitrary, into a bi-
nary tree so that we only need to consider the left
and right children at each step. Then the following
Tree-LSTM and Tree-GRU models can be used to
obtain a vector representation of each argument.

Tree-LSTM Model. In a standard sequential
LSTM model, the LSTM unit is repeated at each
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step to take the word at current step and previous
output as its input, update its memory cell and out-
put a new hidden vector. In the Tree-LSTM model,
a similar LSTM unit is applied to each node in the
tree in a bottom-up manner. Since each internal
node in the binary parse tree has two children, the
Tree-LSTM unit has to consider information from
two preceding nodes, as opposed to the single pre-
ceding node in the sequential LSTM model. Each
Tree-LSTM unit (indexed by j) contains an input
gate ij , a forget gate fj

1 and an output gate oj .
The computation equations at node j are as fol-
lows:

ij = σ
(
W (i)xj + U (i)

[
hL

j , hR
j

])
(1)

fj = σ
(
W (f)xj + U (f)

[
hL

j , hR
j

])
(2)

oj = σ
(
W (o)xj + U (o)

[
hL

j , hR
j

])
(3)

uj = tanh
(
W (u)xj + U (u)

[
hL

j , hR
j

])
(4)

cj = ij ⊙ uj + fj ⊙ cL
j + fj ⊙ cR

j (5)

hj = oj ⊙ tanh (cj) (6)

where xj is the embedded word input at current
node j, σ denotes the logistic sigmoid function
and ⊙ denotes element-wise multiplication. hL

j ,
hR

j are the output hidden vectors of the left and
right children, and cL

j , cR
j are the memory cell

states from them, respectively. To save space, we
leave out all the bias terms in affine transforma-
tions and the same is true for other affine transfor-
mations in this paper.

Intuitively, uj can be regarded as a summary of
the inputs at current node, which is then filtered
by ij . The memory from left and right children
are forgotten by fj and then we compose them to-
gether with the new inputs to form the the new
memory cj . At last, part of the information in
memory cj is exposed by oj to generate the output
vector hj for current step. Another thing to note is
that only leaf nodes in the constituency tree have
words as its input, so xj is set to a zero vector in
other cases.

Tree-GRU Model. Similar to Tree-LSTM, the
Tree-GRU model extends the sequential GRU
model to tree structures. The only difference be-
tween Tree-GRU and Tree-LSTM is how they

1The original Binary Tree-LSTM in (Tai et al., 2015) con-
tains separate forget gates for different child nodes but we
find single forget gate performs better in our task.

modulate the flow of information inside the unit.
Specifically, Tree-GRU unit removes the separate
memory cell and only uses two gates to simu-
late the reset and update procedure in informa-
tion gathering. The computation equations in each
Tree-GRU unit are the following:

rj = σ
(
W (r)xj + U (r)

[
hL

j , hR
j

])
(7)

zj = σ
(
W (z)xj + U (z)

[
hL

j , hR
j

])
(8)

h̃j = tanh
(
W (h)xj + U (h)

[
hL

j ⊙ rj , h
R
j ⊙ rj

])
(9)

hj = zj ⊙ h̃j + (1− zj)⊙
(
hL

j + hR
j

)
(10)

where rj is the reset gate and zj is the update gate.
The reset gate allows the network to forget pre-
vious computed representations, while the update
gate decides the degree of update to the hidden
state. There is no memory cell in Tree-GRU, with
only hL

j and hR
j as the hidden states from the left

and right children.

3.2 Controlling the Semantic Composition
with Constituent Tags

The constituent tag in a parse tree describes the
grammatical role of its corresponding constituent
in the context. Bies et al. (1995) defines several
types of constituent tags, including clause-level
tags (e.g., SBAR, SINV, SQ), phrase-level tags
(e.g., NP, VP, PP) and word-level tags (e.g., NN,
VP, JJ). These constituent tags greatly interleave
with the semantics and in some ways can provide
determinant signals for the importance of a con-
stituent. For example, for most of the time, con-
stituents with PP (prepositional phrase) tag are less
important than those with VP (verb phrase) tag.
Therefore we argue that these tags are worth con-
sidering when we compose the semantics in the
tree-structured neural networks.

One way to leverage such tags is using tag-
specific composition functions but that would lead
to large number of parameters and some tags are
very sparse so it’s very hard to train their corre-
sponding parameters sufficiently. To solve this
problem, we propose to use tag embeddings and
dynamically control the composition process via
the gates in our model.

Gates in Tree-LSTM and Tree-GRU units con-
trol the flow of information and thus determine
how the semantics from child nodes are composed
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to a new representation. Furthermore, these gates
are computed dynamically according to the inputs
at a certain step. Therefore, it’s natural to incor-
porate the tag embeddings in the computation of
these gates. Based on this idea, we propose the
Tag-Enhanced Tree-LSTM model, where the in-
put, forget and output gates in each unit are calcu-
lated as follows:

ij = σ
(
W (i)xj + M (i)tj + U (i)

[
hL

j , hR
j

])
(11)

fj = σ
(
W (f)xj + M (f)tj + U (f)

[
hL

j , hR
j

])
(12)

oj = σ
(
W (o)xj + M (o)tj + U (o)

[
hL

j , hR
j

])
(13)

Similarly, we can have the Tag-Enhanced Tree-
GRU model with new reset and update gates:

rj = σ
(
W (r)xj + M (r)tj + U (r)

[
hL

j , hR
j

])
(14)

zj = σ
(
W (z)xj + M (z)tj + U (z)

[
hL

j , hR
j

])
(15)

where tj is the embedding of the tag at current
node (indexed by j).

3.3 Relation Classification and Training
In our work, the two arguments are encoded with
the same network in order to reduce the number of
parameters. After that we get a vector representa-
tion for each argument, which can be denoted as r1

for argument 1 and r2 for argument 2. Supposing
that there are totally n relation types, the predicted
probability distribution ŷ ∈ Rn is calculated as:

ŷ = softmax
(
W (ŷ) [r1, r2] + b(ŷ)

)
(16)

To train our model, the training objective J is
dened as the cross-entropy loss with L2 regular-
ization:

E (ŷ, y) = −
n∑

j=1

yj × log ŷj (17)

J (θ) =
1
N

N∑
k=1

E (ŷ, y) +
λ

2
∥θ∥2 (18)

tanh
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Figure 3: Flow of Information in Tag-Enhanced
Tree-LSTM unit.
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Figure 4: Flow of Information in Tag-Enhanced
Tree-GRU unit.

where ŷ is the predicted probability distribution, y
is the one-hot representation of the gold label and
N is the number of training samples.

4 Experiments

4.1 Experiment Setup

Corpus. We evaluate our method on the Penn
Discourse Treebank (PDTB) (Prasad et al., 2008),
which provides annotations of discourse relations
over the Wall Street Journal corpus. Each relation
instance consists of two arguments, typically adja-
cent pairs of sentences in a text. As is mentioned
in Section 2.1, the relations in PDTB are generally
categorized into either explicit or implicit and our
work focuses on the more challenging implicit re-
lation classification task. Totally, there are 16,224
implicit relation instances in PDTB dataset, with
a three-level hierarchy. The first level is defined
as 4 major classes of the relation, including: Tem-
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Models
Level-1 Classification Level-2 Classification

Dev Test Dev Test
Bi-LSTM 55.10 56.88 35.02 42.44
Bi-GRU 55.21 57.01 35.34 42.46

Tree-LSTM 56.04 58.89 35.76 43.02
Tree-GRU 55.36 58.98 36.09 43.78

Tag-Enhanced Tree-LSTM 56.97 59.85 35.92 45.21
Tag-Enhanced Tree-GRU 56.63 59.75 36.93 44.55

Table 1: The accuracy score of multi-class classification

poral, Contingency, Comparison and Expansion.
Then for each class, it is further divided into dif-
ferent types, which is supposed to provide finer
pragmatic distinctions. This totally yields 16 rela-
tion types at the second level. At last, a third level
of subtypes is defined for some types according to
the semantic contribution of each argument.

Preprocesssing. Following the common setup
convention (Rutherford and Xue, 2014; Ji and
Eisenstein, 2014; Liu and Li, 2016), we split the
dataset into training set (Sections 2-20), develop-
ment set (Sections 0-1), and test set (Section 21-
22). For preprocessing, we employ the Stanford
CoreNLP toolkit (Manning et al., 2014) to lem-
matize all the words and get the constituency parse
tree for each sentence. Then we convert the parse
tree into binary with right branching and we re-
move the internal nodes that have only one child
so that our binary tree-structured models can be
applied. Small portion of the arguments in PDTB
are composed of multiple sentences. In such cases,
we add a new “Root” node and link the original
root nodes of those sentences to this shared “Root”
before converting the tree into binary.

Multi-Class Classification There are mainly
two ways to set up the classification tasks in pre-
vious work. Early studies (Pitler et al., 2009;
Park and Cardie, 2012) train and evaluate separate
“one-versus-all” classifiers for each discourse re-
lation since the classes are extremely imbalanced
in PDTB. However, recent work put more empha-
sis on the multi-class classification, where the goal
is to identify a discourse relation from all possible
choices. According to Rutherford and Xue (2014),
the multi-class classification setting is more natu-
ral and realistic. Moreover, the multi-class clas-
sifier can directly serve as one building block of
a complete discourse parser (Qin et al., 2017).
Therefore, in this work, we will focus on the multi-

class classification task. Moreover, we will ex-
periment on the classification of both the Level-
1 classes and the Level-2 types, so that we can
compare with most of previous systems and thor-
oughly analyze the performance of our method.

It should be noted that roughly 2% of the im-
plicit relation instances are annotated with more
than one types. Following Ji and Eisenstein
(2014), we treat these different types as multiple
instances while training our model. During test-
ing, if the classifier hits either of the annotated
types, we consider it to be correct. We also fol-
low previous studies (Lin et al., 2009; Ji and Eisen-
stein, 2014) to remove the instances of 5 very rare
relation types in the second level. Therefore we
have totally 11 types to classify for Level-2 classi-
fication and 4 classes for Level-1 classification.

4.2 Model Settings
We tune the hyper-parameters of our Tag-
Enhanced Tree-LSTM model based on the devel-
opment set and other models share the same set
of hyper-parameters. The best-validated hyper-
parameters, including the size of the word embed-
dings ω, the size of the tag embeddings τ , the di-
mension of the Tree-LSTM or Tree-GRU hidden
state d, the learning rate η, the weight of L2 regu-
larization term λ and the batch size b are shown in
Table 2.

ω τ d η λ b

50 50 250 0.01 0.0001 10

Table 2: Hyper-parameters of our model

The Pre-trained 50-dimentional Glove Vec-
tors (Pennington et al., 2014), which is case-
insensitive, are used for initializing the word em-
beddings and they are tuned together with other
parameters in the same learning rate during train-
ing.
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We adopt the AdaGrad optimizer (Duchi et al.,
2011) for training our model and we validate the
performance every epoch. It takes around 5 hours
(5 epochs) for the Tag-Enhanced Tree-LSTM and
4 hours (6 epochs) for the Tag-Enhanced Tree-
GRU model to converge to the best performance,
using one INTEL(R) Core(TM) I7 3.4GHz CPU
and one NVIDIA GeForce GTX 1080 GPU.

4.3 Results

The evaluation results of our models on both the
Level-1 classification and the Level-2 classifica-
tion are reported in Table 1. Accuracy score is
used to measure the overall performance and we
present our performance on both the development
set and the test set. In addition to the four tree-
structured neural networks described in Section
3, we also implement two baseline models: the
bi-directional LSTM model and the bi-directional
GRU model. The hyper-parameters of these two
models are tuned separately from other models.
Due to the space limitation, we don’t present the
details here. Comparison of these sequential mod-
els with the tree-structured models are expected to
show the effects of tree structures.

From Table 1, we can see that the sequential Bi-
LSTM model and Bi-GRU model perform worst
for our task, which confirms our hypothesis that
the tree-structured neural networks can really cap-
ture some important signals that are missing in the
sequential models.

Furthermore, if we add the tag information
to tree-structured models, both the Tag-Enhanced
Tree-LSTM model and the Tag-Enhanced Tree-
GRU model provide conspicuous improvement
(around 1%) compared with the no-tag version.
This demonstrates the usefulness of those con-
stituent tags and the effectiveness of our method
to incorporate this important feature. Especially,
since both the Tree-LSTM model and Tree-GRU
model rely on the gating machanism to control the
flow of information, this double confirms that the
tag information can help with the computation of
such gates and therefore can be leveraged to con-
trol the semantic composition process.

Another discovery from our results is that the
GRU models performs similarly as its correspond-
ing variant of LSTM model. This conforms to
previous empirical observation in sequential mod-
els that LSTM and GRU have comparable capabil-
ity (Chung et al., 2014). However, the Tree-GRU

Systems Accuracy
Zhang et al. (2015) 55.39

Rutherford and Xue (2014) 55.50
Rutherford and Xue (2015) 57.10

Liu et al. (2016) 57.27
Liu and Li (2016) 57.57

Ji et al. (2016) 59.50
Tag-Enhanced Tree-LSTM 59.85
Tag-Enhanced Tree-GRU 59.75

Table 3: Accuracy (%) for Level-1 multi-class
classification on the test set, compared with other
state-of-the-art systems.

Systems Accuracy
Lin et al. (2009) 40.66

Ji and Eisenstein (2014) 44.59
Qin et al. (2016) 45.04
Qin et al. (2017) 46.23

Tag-Enhanced Tree-LSTM 45.21
Tag-Enhanced Tree-GRU 44.55

Table 4: Accuracy (%) for Level-2 multi-class
classification on the test set, compared with other
state-of-the-art systems.

model have less parameters to train which could
alleviate the problem of overfitting and also cost
less training time.

4.4 Comparison with Other Systems
For a comprehensive study, we compare our mod-
els with other state-of-the-art systems. The sys-
tems that conduct Level-1 classification are re-
ported in Table 3, including:

• Zhang et al. (2015) proposes to use convo-
lutional neural networks to encode the argu-
ments.

• Rutherford and Xue (2014) manually extracts
features to represent the arguments and use
a maximum entropy classifier for classifi-
cation. Rutherford and Xue (2015) further
exploits discourse connectives to enrich the
training data.

• Liu et al. (2016) employs a multi-task frame-
work that can leverage other discourse-
related data to help with the training of dis-
course relation classifier.

• Liu and Li (2016) represents arguments with
LSTM and introduces a multi-level attention
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mechanism to model the interaction between
the two arguments.

• Ji et al. (2016) treats the discourse relation as
latent variable and proposes to model them
jointly with the sequences of words using a
latent variable recurrent neural network ar-
chitecture.

And in Table 4, we present the following sys-
tems, which focus on Level-2 classification:

• Lin et al. (2009) uses traditional feature-
based model to classify relations. Especially,
constituent and dependency parse trees are
exploited.

• Ji and Eisenstein (2014) models both the se-
mantics of argument and the meaning of en-
tity mention with two recursive neural net-
works, which are then combined to classify
relations.

• Qin et al. (2016) utilize convolutional neural
network for argument modeling and a collab-
orative gated neural network to model their
interaction.

• Qin et al. (2017) proposes to incorporate the
connective information via a novel pipelined
adversarial framework.

The comparison with these latest work shows
that our system achieves currently best perfor-
mance for the Level-1 classification and ranks sec-
ond for the Level-2. With the state-of-the-art per-
formance on both levels, we can verify the effec-
tiveness of our method.

4.5 Qualitative Analysis
To get a deeper insight into the proposed tag-
enhanced models, we project the constituent tag
embeddings learned in our Tag-Enhanced Tree-
LSTM model into two dimensions using the t-SNE
method (Maaten and Hinton, 2008) and normalize
the values in each dimension. The projected em-
beddings are visualized in Figure 5 and we high-
light some representative tags that may share some
kind of commonality in their functions.

According to the definition in Bies et al. (1995),
the tags with red color are all verb-related, while
those with blue color describes noun-related syn-
tax. Despite of some noisy points, we can see
that they are roughly separated into two groups.
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Figure 5: t-SNE Visualization (Maaten and Hin-
ton, 2008) of the constituent tag embeddings

In addition, the purple tags correspond to words
or phrase that are wh-related (e.g., what, when,
where, which) and we can see they are distributed
similarly. Moreover, the green tags are, which are
located in the right-bottom corner, all describe the
clause-level constituents.

Therefore, from this visualization, we can con-
clude that the tag embeddings we learned are
somewhat meaningful and really capture some
functionalities of these tags. Since these em-
beddings are used to compute the gates and the
gates further determine the flow of information,
we argue that these tags can indeed help to con-
trol the semantic composition process in our tree-
structured networks.

5 Conclusion

In this work, we propose to use two latest tree-
structured neural networks to model the arguments
for discourse relation classification. The syntactic
parse tree are exploited from two aspects: first, we
leverage the tree structure to recursively compose
semantics in a bottom-up manner; second, the con-
stituent tags are used to control the semantic com-
position process at each step via gating mecha-
nism. Comprehensive experiments show the effec-
tiveness of our proposed method and our system
achieves state-of-the-art performance for the chal-
lenging task of implicit discourse relation classi-
fication. For future work, we will try other types
of syntax embeddings and we are also working on
incorporating structural attention mechanism into
our tree-based models.
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Abstract

Current approaches to cross-lingual senti-
ment analysis try to leverage the wealth of
labeled English data using bilingual lexi-
cons, bilingual vector space embeddings,
or machine translation systems. Here
we show that it is possible to use a sin-
gle linear transformation, with as few as
2000 word pairs, to capture fine-grained
sentiment relationships between words in
a cross-lingual setting. We apply these
cross-lingual sentiment models to a di-
verse set of tasks to demonstrate their
functionality in a non-English context. By
effectively leveraging English sentiment
knowledge without the need for accurate
translation, we can analyze and extract
features from other languages with scarce
data at a very low cost, thus making sen-
timent and related analyses for many lan-
guages inexpensive.

1 Introduction

Methods for sentiment analysis and classification
have largely been limited to English, making use
of large amounts of labeled data to produce senti-
ment classification. As a consequence, many de-
veloped approaches cannot be readily applied to
other languages, which usually do not have the
wealth of labeled data that is exclusive to English.
Therefore many approaches which deal with other
languages often: i) experiment with small datasets
that are limited in domain or size of training and
testing sets (Lee and Renganathan, 2011; Tan and
Zhang, 2008), or ii) attempt to elucidate sentiment
lexicons for their respective languages (Moham-
mad et al., 2016).

A growing number of publications attempt to
leverage labeled English data to compensate for

the relative lack of training material in the other
languages. This is usually done through the use of
either bilingual lexicons (Balamurali et al., 2012),
machine translation (MT) systems (Salameh et al.,
2015; Zhou et al., 2016), or more recently, through
the use of bilingual vector space embeddings
(Chen et al., 2016).

Unfortunately, in some cases such data is still
expensive to obtain. Many languages do not
have good, or sometimes any, MT systems, and
the cost of producing word alignments or sen-
tence alignments for training bilingual word em-
beddings (BWE) (Zou et al., 2013; Bengio and
Corrado, 2015) or similar techniques (Jain and Ba-
tra, 2015) is prohibitive for data-poor languages.

Here we introduce a high-performance, low-
cost approach to cross-lingual sentiment classifi-
cation, which can be used to benchmark more ex-
pensive methods. We demonstrate the utility of
this approach by highlighting how very limited
training data suffices for effective cross-lingual
sentiment analysis in various contexts (both at the
word and sentence/document level). Our approach
relies on the simple vector space translation matrix
method (Mikolov et al., 2013a), which computes
a matrix to convert from the vector space of one
language to that of another. It hinges on the obser-
vation that sentiment is highly “preserved” even
in the face of poor translation accuracy. We ob-
served that a sentiment classifier trained only with
word vectors from English (hereafter referred to
as the target language) performs well on unseen
words from other unseen languages (referred to
as the source languages) that are translated into
the English vector space through the simple matrix
method, even with very poor translation scores.1

1This work involves transfers in both directions between
English and other languages. We will take the perspective of
the translation matrix (section 3.2) and refer to English as the
target language and the others as source languages.
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We quantitatively evaluate our methods by
training on English and testing on words from
Spanish and Chinese. We chose these languages
in order to show: i) the robustness of the tech-
nique irrespective of the grammar of the source
and target languages and, ii) the ability to validate
the technique (i.e., as baselines for experiments).
We emphasize that, regardless of the source lan-
guages used, we treated them as if they had no
MT systems. We made use of only 2000, 4500, or
8500 word pairs – a task easily accomplished by
a human translator on a data-poor language. We
experiment with differing amounts of data during
training to show the robustness of our observation.
We then apply the fine-grained sentiment regres-
sor to the task of review classification as done by
Chen et al. (2016), and show that our naı̈ve algo-
rithm achieves results similar to their benchmark
but at a much lower cost.

2 Previous Work

2.1 Cross-Lingual Word Embeddings

Monolingual word embedding algorithms use
large unlabeled datasets to learn useful features
about the given language (Pennington et al., 2014;
Mikolov et al., 2013b). These algorithms learn
vector representations for the words of the lan-
guage — an encoding that has proven utility in
a variety of NLP tasks including sentiment anal-
ysis (Maas et al., 2011) and machine translation
(Mikolov et al., 2013a).

When working with more than one language,
we seek to satisfy two objectives: i) monolin-
gually, similar words of the same language have
similar embeddings; and ii) cross-lingually, simi-
lar words across languages also have similar em-
beddings. Satisfying these two criteria would al-
low us to use algorithms trained for the embed-
dings of a single language (such as English, with a
wealth of labeled data) for other languages as well.
Below we discuss algorithms to achieve the cross-
lingual objective, their costs, performance, and the
rationale underlying our algorithm design.

2.1.1 Offline Alignment
The simplest approach to achieving the cross-
lingual objective is to train each monolingual ob-
jective separately (create a model for each lan-
guage), and then learn a transformation to enforce
the second objective. This approach uses a dic-
tionary of paired words in order to learn a trans-

formation or ‘alignment’ from the vector space of
one language to that of another.

First introduced by Mikolov et al. (2013a), and
later extended by Faruqui and Dyer (2014), this
offline alignment is fast and low cost, but does not
achieve a high translation accuracy. A big draw-
back of these approaches is that using a dictionary
ignores the polysemic nature of languages. It is
also not clear or proven that a single transforma-
tion would be able to capture the relationship be-
tween all the words in a cross-lingual setting.

We opt to use offline alignment to show that
such a low-cost approach does, in fact, capture a
significant part of the relationship between words
of different languages when it comes to sentiment.
That is, a single transformation (linear in the case
of our work) is sufficient to learn a projection
which allows one to use labeled English data to
aid in sentiment analysis.

2.1.2 Parallel-Only
An alternative approach to offline alignment is the
parallel-only approach. Approaches which fall
into this group, such as BiCVM (Hermann and
Blunsom, 2013) and bilingual auto-encoder (BAE)
(Sarath Chandar et al., 2014), rely exclusively on
sentence-aligned parallel data to train a model
with similar representations. Such approaches can
be effective, but require extremely expensive data.
Another drawback is that these approaches can be
affected by the writing style of the parallel text
(Bengio and Corrado, 2015).

2.1.3 Jointly-Trained Model
Combining the offline alignment and parallel-only
algorithms is a third class of jointly-trained ap-
proaches. These approaches jointly optimize the
monolingual objective at the same time as the
cross-lingual objective, making use of both mono-
lingual and parallel data. Approaches like those
of Klementiev et al. (2012) and Zou et al. (2013)
use word-aligned data in order to learn the fine-
grained cross-lingual features and tend to be quite
slow. Other approaches (including that of Ben-
gio and Corrado (2015)) rely on sentence-aligned
data and are faster than those using word-aligned
data. While these models are more cost-efficient
than parallel-only approaches, it remains expen-
sive and sometimes prohibitive to obtain sentence
alignments for many languages (a problem that we
seek to avoid).

A lower-cost alternative to these expensive
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jointly trained models was proposed by Duong
et al. (2016) and later used to project multiple lan-
guages in the same vector space (Duong et al.,
2017). The model involved creating and mak-
ing use of translations produced using a bilingual
dictionary during training. Using expectation-
maximization–inspired training, sentence transla-
tions were produced by selecting translations of
words based on context to deal with polysemy, and
this approach demonstrated improvements on the
simple linear transformation method. However,
even this model uses a significantly larger amount
of data than the methods used in this work, with
its smallest dictionary being composed of 35,000
word pairs compared to our approach, which can
use as little as 2000 words for both translation and
sentiment regression.

2.2 Cross-Lingual Sentiment Analysis

Previous approaches to cross-lingual sentiment
analysis can be classified into two main cate-
gories: i) those that rely on parallel corpora to
train BWE’s (i.e., they use pre-trained embed-
dings) (Chen et al., 2016; Sarath Chandar et al.,
2014; Tang and Wan, 2014), and ii) those that use
translation systems (Zhou et al., 2015, 2016) in
order to obtain aligned inputs to learn to extract
features which work on both languages. Both ap-
proaches allow the sentiment portion of training
and testing data to be in the same vector space.
However, many languages have no MT system,
and it is extremely expensive to create one on a
language-by-language basis.

Our proposed approach is simpler in that it re-
quires only a small word-list to learn both the em-
bedding and the sentiment classification, the du-
ality of which cannot be claimed by previous ap-
proaches.

3 Methods and Data

3.1 Data

3.1.1 Vector Space Data
English Vector Space Model For English we used
a model pre-trained on part of the Google News
dataset (which is composed of approximately 100
billion words).2 The words are represented by
300-dimensional vectors.
Spanish Vector Space Model For the Span-
ish word embeddings we opted to use a model

2https://code.google.com/archive/p/word2vec/

pre-trained on the Spanish Billion Word Corpus
(Cardellino, 2016). It consists of just under 1.5
billion words compiled from a variety of Spanish
resources. As with the English model, the words
are represented by 300-dimensional vectors.
Chinese Vector Space Model For Chinese word
embeddings we learned our own vector represen-
tations using a Wikimedia dump3 composed of
around 150 million words from 250,000 articles
in both simplified and traditional Chinese. We
used OpenCC4 to translate the articles in simpli-
fied Chinese to traditional. To segment the text
into tokens we used Jieba5. Finally, to create
the actual word embedding model, we used Gen-
sim (Řehůřek and Sojka, 2011) with the minimum
count set to 1, using continuous bag of words
(CBOW), a window of 8, and vector dimension
set to 300.

3.1.2 Word Lists
Translation Word List For the process of learn-
ing a translation matrix from one language to the
other, a lexicon of approximately 10,000 English
words was obtained online by scraping the most
commonly used words as determined by n-gram
frequency analysis in Google’s “Trillion Word
Corpus”6. The lexicon was then translated using
Google Translate7 in order to obtain correspond-
ing words in Spanish and Chinese. For alignment
lists of smaller sizes during experimentation, a
random subset of the larger list was selected. Dur-
ing the randomized selection, we discarded any
words which were not in the target language vector
space and whose translation was not in the source
language(s) vector space(s).
Binary Sentiment Word List For the task of bi-
nary sentiment classification we used a list8 cu-
rated by Hu and Liu (2004) containing both posi-
tive and negative English opinion words (or senti-
ment words). Google Translate was used to trans-
late the list into the other languages to obtain
cross-lingual word pairs. During training and test-
ing we made sure to balance the dataset and to dis-
card words that were not in the vector space of the
target language or whose translation was not in the
vector space of the source language(s).

3https://dumps.wikimedia.org/zhwiki/latest/
4https://github.com/BYVoid/OpenCC
5https://github.com/fxsjy/Jieba
6https://github.com/first20hours/google-10000-english
7https://translate.google.com/
8 https://github.com/williamgunn/SciSentiment
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Low Stimulus High Stimulus
Arousal relaxed (2.39) infatuation (7.02)

Dominance victim (2.69) confident (7.68)
Valence death (1.61) beauty (7.82)

Table 1: Examples of words on each end of
the spectrum for each of the three dimensions
of ANEW. Numeric stimulus value is shown in
parentheses.

3.1.3 Fine-Grained Data
For fine-grained sentiment regression, we used
Affective Norms for English Words (ANEW)
(Bradley and Lang, 1999). The creators of ANEW
sought to provide emotional ratings for a large
number of words in the English language.

ANEW proposes that all human emotion can be
organized in a vector space with three basic un-
derlying dimensions (or axes). The first dimen-
sion, valence, ranges from pleasant to unpleasant;
the second dimension, arousal, ranges from calm
to excited; and the third dimension, dominance,
ranges from in-control to out-of-control. Exam-
ples are shown in Table 1.

Bradley and Lang (1999) used a nonverbal pic-
tographic measure, the Self-Assessment Manikin
(SAM) (Bradley and Lang, 1994), to measure
stimuli across these three dimensions. The fig-
ures in the SAM consist of bipolar scales depicting
different values along each of the three emotional
dimensions. For example, when considering va-
lence, SAM ranges from a frowning unhappy fig-
ure to a smiling happy figure. Similar ranges are
extended across the two other dimensions. Using
this test, Bradley and Lang were able to arrive at a
numerical value representing a word’s stimulus for
each dimension ranging from 1 to 9; where 1 is the
low value (unpleasant, calm, in-control) and 9 is
the high value (pleasant, excited, out-of-control).

3.1.4 Review Data
In this subsection, we discuss the data used to
replicate the review classification task done by
Chen et al. (2016) as a means of validating the
utility of our model. This experiment was done
using only English and Chinese because there was
no Spanish data for this task and the Arabic review
data-set that Chen et al. (2016) used was not freely
available.
Labeled English Reviews Following Chen et al.
(2016), we obtained a balanced dataset of 700,000
reviews of businesses on Yelp from Zhang et al.

(2015) with their sentiment ratings as labels rang-
ing from 1 for very negative to 5 for very positive.
Labeled Chinese Reviews Here we use a dataset
from Lin et al. (2015). Their work provides ho-
tel reviews, with labels ranging from 1 for very
negative to 5 for very positive. In order to fairly
compare our work with that of Chen et al. (2016),
we use 10,000 reviews for model selection, and
another unseen 10,000 as our test set.

3.2 Translation Matrix Technique
As described by Mikolov et al. (2013a), the trans-
lation matrix technique assumes that we are given
a set of word pairs and their associated vector
space representations. More specifically, we are
given j word pairs, {xi,zi} j

i=1 where xi ∈ Rn is
a vector from the source language of word i and
zi ∈ Rm is the vector representation of the corre-
sponding translated word in the target language.

We then want to find a transformation matrix W
such that Wxi approximates zi. We learn this by
solving the following optimization problem:

min
W

j

∑
i=1
||Wxi− zi||2

Instead of solving with stochastic gradient de-
scent, we instead opt to use the closed-form so-
lution.

To translate a word from source language to tar-
get language, we can map it using z = Wx, and
then find the closest word in that language space
using cosine similarity as the measure of distance.
The method of testing was Monte Carlo cross-
validation run 10 times with a split of 90% training
data and 10% test data.

3.3 Models
3.3.1 Binary Sentiment Analysis Model
The sentiment analysis model, Figure 1(a), is a
simple linear support vector machine (SVM) clas-
sifier. Implemented using Sci-kit Learn’s SGD-
Classifier function (Pedregosa et al., 2011), this
model takes a word represented as a vector with
dimension of 300 and outputs a prediction of ei-
ther −1 or +1 (for negative and positive respec-
tively). The classifier itself performs stochastic
gradient descent (SGD) with l2 regularization to
arrive at the best classification.

The training procedure of this model is quite
simple and involves only the target language. The
model is trained only on word embeddings from
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Figure 1: The three models used in the experi-
ments.

the target language but tested on embeddings re-
turned by the translation of words originally from
the source language(s). We made sure that the En-
glish translation of the test words had not been
seen before in training. The training/testing split
was changed to 80% and 20% from the previous
90%/10% to account for the smaller number of ex-
amples in the dataset (and the fact that we wanted
to test on a representative sample of the data).

3.3.2 Fine-Grained Sentiment Analysis
Model

The fine-grained sentiment analysis model in Fig-
ure 1(b) is a regression model to predict the
ANEW values for each of the three dimensions.
For this task, we built a regressor for each of the
three dimensions whose input is a 300-dimension
vector and whose output is a real number from 1
to 9. The regressor used was a Bayesian Ridge re-
gressor, which estimates a probabilistic model of
the regression problem. The prior for the parame-
ter w is given by a spherical Gaussian:

p(w|λ ) = N (w|0,λ−1Ip).

The model is similar to that of the Ridge regres-
sion. The model was implemented using Sci-kit
Learn’s with hyperparameters alpha 1 and alpha 2
set to 1.

The training procedure of this model is quite
simple and similar to that of the previous model.

1000 WORDS 4500 WORDS 8500 WORDS
Translation P@1 P@5 P@1 P@5 P@1 P@5
EN→ ES 20.3 34.6 33.42 46.13 34.79 47.79
EN→ CN 2.4 11.6 7.60 20.29 8.87 23.01

Table 2: Accuracy of the word translation method.
P@1 and P@5 represent Top-1 and Top-5 accu-
racy respectively.

Again, it only trains on the vector of the target
language, and is tested purely on words from the
source language whose translation into the target
language was not seen in the training of the re-
gressor (so that there may be no chance of skew-
ing the results). The training/testing split here was
75%/25%.

3.3.3 Review Classification Model
For the task of review classification, another
model Figure 1(c), was built to make use of the
previously described fine-grained sentiment anal-
ysis model. The classifier used for this task is a lo-
gistic regression classifier. For a given review ri in
the target language, composed of n words, we con-
struct a 1×Max length sentiment vector (where
Max length is the number of words of the longest
target review). We construct this vector by pass-
ing in the word embedding for every word into the
sentiment analysis model and placing the resulting
values (of 1 to 9) into the constructed array. The
array is then padded with 0’s in order to make it of
length Max length.

For reviews in the source language, the pro-
cess is similar, with the only change being that the
words are first translated from their original vec-
tor space to that of the target language before be-
ing passed into the sentiment classifier. Once the
review vector has been constructed, it is passed to
the classifier to produce a classification of 1 to 5.

As with the previous classifier, the training pro-
cedure is quite simple and involves only the tar-
get language (i.e., the classifier is trained only on
reviews which are originally from the target lan-
guage, but it is tested on reviews only from the
source language).

4 Results

4.1 Translation Accuracy
We first measure the accuracy of the matrix trans-
lation method using the same test described by
Mikolov et al. (2013a). The purpose of these tests
is two-fold: i) verifying that the data used and im-
plementation of the technique reproduces what is
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Figure 2: Top-1 and Top-5 accuracy for Span-
ish and Chinese using various amounts of training
data.

expected, and ii) quantifying how much sentiment
is preserved with low translation accuracy (by ex-
plicitly noting the poor accuracy of the transla-
tion). The data used is described in section 2.1.
Table 2 shows the effect of training size (number
of words) on the accuracy of the translation matrix
method. As expected (and previously shown by
Mikolov et al. (2013a)), the translation accuracy
increases with more training examples, as shown
in Figure 2. The data and methods used in this
work are further validated as the translation accu-
racy results closely approximate those of Mikolov
et al. (2013a), with English-Spanish translational
accuracy achieving 35% and 48% accuracy for
P@1 and P@5 respectively when compared to the
original 33% and 51%. This concordance is fur-
ther validation of the method. It is also interest-
ing to note that Chinese, which is less like En-
glish than Spanish is, also suffers a lower trans-
lation score across both categories. However, we
see that this large drop is not represented signifi-
cantly in later portions.

4.2 Binary Word Sentiment Classification

The second experiment tested the binary cross-
lingual sentiment classification capabilities of the
matrix translation method, i.e., how well can we
differentiate between positive and negative words
of a language we have not seen before using a
model trained only on English words? Here we

Figure 3: F-measure of binary sentiment classi-
fier with varying amounts of training data for both
Spanish and Chinese.

used the binary sentiment word list described in
section 2.1.2 in order to assess whether or not the
translation matrix would preserve sentiment even
with poor translation accuracy scores. Given that
the classifier is trained only on the target language
vectors, we used the translation matrices produced
previously to translate a word from source to target
language embedding space.

As we can see in Table 3 and Figure 3, even
with low translation accuracy, such as the 1000-
word Chinese translation matrix, we are able to
achieve good binary sentiment classification. We
also noted that a significant drop in translation ac-
curacy results in only a relatively small drop in
sentiment classification performance.

4.3 Fine-Grained Sentiment Analysis

In the third experiment, we tested the accuracy
of cross-lingual regression when it comes to pre-
dicting a word’s value in any of the three ANEW
dimensions of valence, arousal, and dominance.
We attempted to predict the valence, arousal, and
dominance of words in source language, having
only trained on target language. As we saw in
the last experiment, massive drop-off in transla-
tion accuracy need not result in a massive drop-off
in sentiment analysis. As this is a regression prob-
lem, Table 4 presents both the r2 and the mean
squared error (MSE) as measurements of model
performance. The MSE per dimension is visual-
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(a) Arousal (b) Dominance (c) Valence

Figure 4: Mean squared error for each regression problem with varying amounts of training data for all
three of the ANEW dimensions. (Lower is better).

Spanish Chinese
1000 Words
Precision 0.77 0.76
Recall 0.79 0.74
F-measure 0.78 0.75

4500 Words
Precision 0.82 0.79
Recall 0.82 0.77
F-measure 0.82 0.78

8500 Words
Precision 0.83 0.80
Recall 0.83 0.77
F-measure 0.83 0.78

Table 3: Results of the binary sentiment classifi-
cation task for each language with each translation
matrix.

ized in Figure 4. Given the data’s scale from 1 to
9 with an average standard deviation among par-
ticipants for each word of 2.02, an average mean
squared error of approximately 1 shows that our
model has high predictive power.

4.4 Sentiment Classification of Reviews

In the fourth experiment, we sought to show that
the regressor developed in section 3.3.2 could be
used as a feature extractor in performing other
tasks. To this end, we replicated the experiment
by Chen et al. (2016), who predicted hotel ratings
from Chinese reviews using a model trained only
on English restaurant reviews.

Chen et al. (2016) had two baseline models
which they beat with their new model: i) a lo-

Spanish Chinese
1000 Words
Arousal 0.24 (0.84) 0.24 (0.84)
Dominance 0.31 (0.73) 0.23 (0.83)
Valence 0.48 (2.08) 0.32 (2.78)

4500 Words
Arousal 0.33 (0.76) 0.28 (0.83)
Dominance 0.39 (0.63) 0.28 (0.74)
Valence 0.54 (1.81) 0.44 (2.27)

8500 Words
Arousal 0.33 (0.77) 0.29 (0.81)
Dominance 0.38 (0.65) 0.31 (0.69)
Valence 0.54 (1.78) 0.43 (2.26)

Table 4: Results of the fine-grained sentiment re-
gression task for each language with each transla-
tion matrix, in the form of r2(MSE).

gistic regression classifier (line 1 in Table 5), and
ii) a non-adversarial variation of adversarial deep
averaging network (ADAN) (line 2), referred to
as DAN (deep averaging network), which is one
of the state-of-the-art neural models for sentiment
classification. These were the only two models
which did not make use of either labeled Chi-
nese examples or an MT system, and therefore
were chosen to serve as a fair comparison to our
method. Both models use bilingual word em-
beddings as an input representation to map words
from both languages into the same vector space.
Our own model (line 3 in Table 5) uses logistic re-
gression on sentence arrays created by predicting
their ANEW values for each dimension to predict
review scores.
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Approach Accuracy
Logistic regression (BWE) 30.58%
Deep averaging network (DAN) 29.11%
Logistic regression (ANEW) 28.05%

Table 5: Model performance on sentiment ex-
tracted vectors versus previous approaches. Lo-
gistic regression on predicted sentiment (ANEW)
values preformed similariy to both regression and
DAN on BWEs.

Table 5 shows that we were able to closely
match the accuracy of the baseline systems imple-
mented by Chen et al. (2016) for Chinese reviews.
These results demonstrate that our sentiment re-
gressors encoded enough information into the sen-
tence vectors to achieve similar results to the base-
line models which took bilingual word embedding
as input, and that the fine-grained sentiment model
can be used to extract sentiment-based features for
other tasks in languages where aligned data might
be expensive to obtain.

5 Discussion and Future Work

We have shown that the matrix translation method
can be used to infer and predict cross-lingual senti-
ment. More notably we observed that: i) sentiment
is preserved accurately even with sub-par trans-
lations, and ii) this low-cost approach also main-
tained fine-grained sentiment information between
languages.

We further cemented these observations through
a variety of experiments. The first experiment pre-
formed was testing the translation accuracy of the
method presented to verify validity of the algo-
rithm. The second experiment, was binary word
classification into either positive and negative for
words in Chinese or Spanish, given a model that
was trained only with English. With a translation
P@5 as low as 11%, our linear classifier was still
able to predict with 75% precision and recall the
polarity of a word’s sentiment. The third experi-
ment, in which we were able to predict a word’s
position on the three-dimensional ANEW 9-point
scale with an error margin of 1 (per dimension),
lent further credibility to the validity and data-
efficiency of our approach. Our fine-grained senti-
ment analysis with the ANEW scale is notable as it
demonstrates how the algorithm works at the word
level — useful in building sentiment lexicons in an
automated fashion at a very low cost and with lit-
tle manual effort. Our last experiment, Chinese

review classification, further highlighted the ro-
bustness of our model, by showing that vectors
created using the regressor encoded enough senti-
ment information to match the baseline methods of
passing in bilingual word embeddings to a trained
model. We showed how competitive the proposed
approach is when compared to much more expen-
sive methods and that it can directly be applied
to sentiment classification tasks for data-poor lan-
guages.

Throughout the experiments, we saw the gen-
eral trend of reduced error and increased accuracy
with more training data. However the increase
in accuracy starts to diminish with around 8500
words. The root of this leveling of accuracy could
be the inherent limitation of either the translation
technique used or the classification or regression
algorithms used or both.

A surprising finding was how well sentence vec-
tors composed of ANEW values for each word
performed when compared to the baselines of
Chen et al. (2016), Table 5. Achieving similar re-
sults to the previous baseline using the same clas-
sification algorithm (logistic regression) means
that the sentence vectors composed of ANEW val-
ues encode enough (and as much) information as
the BWE, or that the classification algorithm used
on the BWEs isn’t strong enough to extract more
meaningful relationships between the values. The
truth is probably a mixture of both reasons.

By choosing the number and type of languages
selected we have shown that this observation holds
across languages with different roots and different
grammar systems, which is further re-affirmed by
the fact that we train our models only on English
data, but test purely on Chinese and Spanish.

We explore the effect of poor translation on fine-
grained sentiment analysis by taking a look at a
few concrete examples of poor translations (Table
6). Table 6 presents four different Chinese words
with predicted valence of varying accuracy. We
can see that even with poor translation (i.e., the
closest five words are all completely unrelated, as
is the case with hungry), sentiment is still accu-
rately predicted. On the other hand we also show
that it is possible to have related words but have
poor prediction, as is the case with misery, because
the base sentiment predictor itself is not perfectly
accurate. This suggests that the sentiment vector
space, a hypothetical space produced by finding
the sentiment value of each point in the original
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Chinese Word
(English)

Computed
English Translation

True Valence
(Predicted Valence)

(Hungry) Mugabe misrule 3.58 (2.85)
Boo hoo
Quagmire
Chikwanine
Sylvain Angerlotte

(Incentive) Circumstances dictate 7.00 (6.17)
Selfless sacrifices
Humilty
President Obama
EquityMarketReport

(Kindness) Really hateful lemmings 7.81 (6.84)
Loving
Dad
Flowering orchids
Dear robin

(Misery) Violence begets violence 1.93 (3.91)
Indignations
Sufferings
Sincerely
Unconfessed sin

Table 6: Four poorly translated Chinese words,
their accompanying true English translation, the
five nearest English words to the translated vector,
and the true (English) valence with the accompa-
nying predicted valence of the translated vector.

embedding space, which we term topological sen-
timent map, has two properties: i) it is maintained
through linear transformation, and ii) it is “flat”
enough that highly accurate mapping (read: trans-
lation) between languages is not required to ar-
rive at usable sentiment classification. This second
property allows for the sentiment analysis of lan-
guages where a large amount of labeled material
is not available at an extremely low cost, and can
also be used to aid in many cross-lingual sentiment
related tasks.

In the future we hope to extend both the analysis
and experiments discussed here to other languages
and applications. For example the cross-lingual
fine-grained sentiment analysis techniques could
possibly be used to study the change in sentiment
of words in a single language over time, leading
to new insights or re-affirming old ones. Future
analysis could compare different transformations
and their effect on sentiment analysis. The ability
to produce a “stable” topographic sentiment map
could also be used to evaluate algorithms which
create the vector spaces as well.

Lastly, future work will focus on developing
other low-cost approaches, possibly by imple-
menting Duong et al. (2016)’s technique to im-
prove the accuracy and precision of sentiment re-
gression. This would serve to demonstrate the (ex-
pected) limits of the linear transformation model’s

in handling polysemy and subsequently its impact
on the topological mapping of sentiment in vector
space.
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Abstract

Target-dependent sentiment analysis in-
vestigates the sentiment polarities on given
target mentions from input texts. Dif-
ferent from sentence-level sentiment, it
offers more fine-grained knowledge on
each entity mention. While early work
leveraged syntactic information, recent
research has used neural representation
learning to induce features automatically,
thereby avoiding error propagation of syn-
tactic parsers, which are particularly se-
vere on social media texts.
We study a method to leverage syntac-
tic information without explicitly build-
ing parser outputs, by training an encoder-
decoder structure parser model on stan-
dard syntactic treebanks, and then lever-
aging its hidden encoder layers when
analysing tweets. Such hidden vectors
do not contain explicit syntactic outputs,
yet encode rich syntactic features. We
use them to augment the inputs to a
baseline state-of-the-art target-dependent
sentiment classifier, observing signifi-
cant improvements on various benchmark
datasets. We obtain the best accuracies on
two different test sets for targeted senti-
ment.

1 Introduction

Target-dependent sentiment analysis investigates
the problem of assigning sentiment polarity labels
to a set of given target mentions in input sentences.
Some example are shown in Table 1. For instance,
given a sentence “I like [Twitter] better than [Face-
book]”, a target-specific sentiment model is ex-
pected to assign a positive (+) sentiment label on

“I like [Twitter]+ better than Facebook”
“I like Twitter better than [Facebook]−”
[lindsay lohan]0 goes on yet another emo rant on
her twitter.
Choose [NBI]+ for insulation, home energy au-
dits, housing repairing, air sealing, windows and
doors,furnaces, air conditioners and en energy
efficient appliances.

Table 1: Target-dependent sentiment analysis

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14

Left Context Target Right Context

⊕ RL

- + 0

Figure 1: Sentence level context

the target Twitter and a negative (−) sentiment la-
bel on the target Facebook.

The task has been addressed using neural net-
work models, which learn target-specific represen-
tations of the input sentence. These representa-
tions are then used for predicting target-dependent
sentiment polarities. In particular, Dong et al.
(2014) derive the syntactic structure of input sen-
tence using a dependency grammar, before trans-
forming the tree structure to a target-centered
form. A recursive neural network is used to trans-
form the dependency syntax of a sentence into a
target-specific vector for sentiment classification.
More recently Vo and Zhang (2015) split the in-
put sentence into three segments, with the target
entity mention being in the center, and its left and
right contexts surrounding it, as shown in Figure 1.
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xb

Hidden Vectors  fb
(Implicit Syntax)

xt
*

xt

Top sentiment Model

Input [web; wet; posb]

Bottom syntactic Model

Figure 2: Model structure

Rich word embedding features are extracted from
the target entity mention and its contexts, which
are then used for classification by a linear SVM
model. Without using syntactic information, this
model gives better accuracies compared with the
method of Dong et al. (2014).

Since syntactic parsing of tweets can be inac-
curate due to intrinsic noise in their writing style,
most subsequent work followed Vo and Zhang
(2015), avoiding the use of syntactic informa-
tion explicitly. Zhang et al. (2016) applied a bi-
directional Gated RNN to learn a dense represen-
tation of the input sentence, and then use a three-
way gated network structure to integrate target en-
tity mention and its left and right contexts. The
final resulting representation is used for softmax
classification. Tang et al. (2015) also use a RNN
(LSTM) to represent the input sentence, yet di-
rectly integrating the target embedding to each
hidden state for deriving a target-specific vector,
which is used for sentiment classification. Liu and
Zhang (2017) extended both Zhang et al. (2016)
and Tang et al. (2015) by introducing the attention
mechanism, obtaining the best accuracies on both
datasets so far.

Intuitively, syntactic information should be
useful for sentiment analysis given a target,
since target-related semantic information such as
predicate-argument structure information is con-
tained in syntactic structures. The main issue of
Dong et al. (2014)’s method is that explicit syn-
tactic structures are inaccurate and noisy. We try
to avoid this issue by using implicit syntactic in-
formation, by integrating the hidden feature layers
of a state-of-the-art neural dependency parsing as
features to the state-of-the-art targeted sentiment
classification models of Liu and Zhang (2017), us-
ing neural stacking (Zhang and Weiss 2016; Chen
et al. 2016). The main structure of our model is
shown in Figure 2.

We choose the parser of Dozat and Manning

(2016) as our syntactic model, which gives the
best results on a WSJ benchmark by using multi-
layer LSTMs to encode rich input information.
The structure of the model is shown in Figure 4,
which first learns a vector form of each input word
(W and T), and then uses a simple bi-affine atten-
tion mechanism to find word-word relations. The
feature vectors (A and D) thus contain rich syn-
tactic information about each word, yet do not ex-
plicitly specify the syntactic structure of the sen-
tence. Hence, using them as features gives our
model more syntactic background of the sentence,
yet without suffering from error propagation.

Results on both the dataset of Zhang et al.
(2016) and the dataset of Tang et al. (2015) show
that syntactic information is highly useful for im-
proving the accuracies of target-dependent senti-
ment analysis. Our final models give the best re-
ported results on both datasets. The source code is
released at https://github.com/CooDL/
TSSSF.

2 Model

As shown in Figure 2, our neural stacking model
consists of two brief components: a bottom level
syntactic model for obtaining the syntactic infor-
mation and a top level sentiment model for target-
dependent sentiment classification.

2.1 Input representation

Given an input sentence, we first obtain its word
representations. In particular, we train two sep-
arate word embedding sets for the bottom level
syntactic model and top level sentiment model, re-
spectively, denoted as web and wet, respectively.
This is because our syntactic parser is trained on
news data, while our sentiment classification is
trained on Twitter data.

In addition, for the bottom syntactic model, we
also use optionally part-of-speech tag embeddings
posb, which are randomly initialised and learned
during the training of the model. Formally, given
a word w, the representation for the bottom level
model is:

xb = web ⊕ posb,
and the input form of the top level model is

xt = x∗t ⊕ fb = wet ⊕Bottom(xb)

Here we use Bottom(xb) indicate the bottom
level syntax model.

517



w1

bilstm layers

w2 wn-1 wn

… classifier layer …

… inputs layer …
… words …

t1 t2 tn-1 tn

l1 l2 ln-1 ln

h1

x1

h2

x2

hn-1

xn-1

hn

xn

… tags …

Figure 3: POS-tagging model

2.2 Syntactic Sub Models

The twitter data suffer poor accuracies by syntax
parsers in contrast with news data such as PTB.
Directly using explicit twitter syntax features has
an error propagation problem. We use a pre-
trained syntax model to turn raw word embeddings
into implicit syntactic features. Both a POS model
and a dependency model are used to utilize syntax
features.

2.2.1 POS Model
We employ a simplified bi-directional LSTM
(BiLSTM) POS-tagging model (see Figure 3),
trained on PTB3 (Toutanova et al. 2003; Labeau
et al. 2015). As for every sentence sequence
w1, w2, ..., wn, its corresponding word embedding
sequence x1, x2, ..., xn, we integrate its word
embedding into a k1-layer BiLSTM:

S′ = [h1, h2, ..., hn]
= BiLSTM([x1, x2, ..., xn])k1 , (1)

where S′ is the k1-layer BiLSTM hidden
state output. A classifier is then used to weight the
hidden state of each word in S′ and derive the la-
bel. HereW1 is the weight matrix and b is the bias:

Labels = Classifier(W1S
′ + b), (2)

The BiLSTM hidden layer h1, h2, ..., hn and
the result of W1S

′ + b (the labels’ logits) will act
as our implicit syntactic features.

2.2.2 Dependency Model
In this model, we use a dependency parser to re-
place the POS-tagging model in Section 2.2.1.
In particular, the model of Dozat and Manning
(2016) is used, which fuses several BiLSTM lay-
ers to encode the input sentence before doing

W T W TW T W T……

……h1 h2 hn-1 hn

MLP MLP MLP MLP……

A D A DA D A D

CLF CLF CLF CLF……

……

S11:n S21:n Sn-11:n Sn1:n……

Figure 4: Dependency parsing model

bi-affine attention to learn dependency arcs be-
twtween different words.

Two different dependency models are trained:
one being a POS⊕ dependency with bottom
input web ⊕ posb, one being no-POS dependency
model with just word embedding web. , given
a sentence sequence w1, w2, ..., wn, it integrates
the word embedding web(W) and POS-tag
embedding posb(T) into a k2-layer BiLSTM
and generate the LSTM states S′ of the words
in sentence S, here xi = weib⊕posib, hi =←−hi⊕−→hi ,

S′ = [h1, h2, ..., hn]
= BiLSTM([x1, x2, ..., xn])k2 , (3)

MLP (Multilayer Perceptron) layers are used to
reduce the dimension size and build features from
the BiLSTM state output S′. Here it gives four
kind features: headarc, headdep, relarc, reldep:

headarc, headdep, relarc, reldep
= MLP([h1, h2, ..., hn])k3 , (4)

Based on the features, a bi-affine classifier gives
every word in the sentence S a corresponding
dependency head using the feature headarc(A)
and headdep(D). We obtain the head relation set
S
′
head = {headji , i, j ∈ [1, n]}:

headji = Classifier(headiarc, head
j
dep) (5)

Another bi-affine classifier is used to clas-
sify the dependency relation based on the
feature headarc(A), headdep(D) and headji ,
and we obtain the rel relation label set
S
′
rel = {relji , i, j ∈ [1, n]}:

relji = Classifier(headiarc, head
j
dep, head

j
i ),(6)
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Classifier P

Figure 5: Target-dependent sentiment analysis
with attention, shadow parts donate the attention
part in a sentence

Using the two classifiers, we obtain the depen-
dency root and relation between every two words
in the sentence S. We pre-train the dependency
parser model with 4 bi-directional LSTM layers
and 2 layers of MLP, and use its intermediate out-
put (the MLP output vector) as implicit syntactic
feature inputs to the top sentiment model.

The normal dependency syntax model shares
the same network frame with the no-POS depen-
dency model. They have slight differences in the
classifier. Both models are end-to-end denpen-
dency parsers with different initial inputs. We
choose the same output (Bi-LSTM hidden vector
and MLP vector) of the two models as implicit
syntactic features.

2.3 Target-dependent Sentiment Model
We use the attention-based model of Liu and
Zhang (2017) as our top level model. The overall
structure is shown in Figure 5. Given a sentence,
it first uses several BiLSTM layers to learn its
syntactic features, and then an attention layer is
used to select the relative wegihts of the words
according to the target entity over the untargeted
words in the whole sentence (Bahdanau et al.
2014; Yang et al. 2016). In particular, for a target
word, it applies the target word hidden vector to
find a weight forevery word (except the target
words) in the sentence (see Figure 5). The model
also uses a BiLSTM to represent the feature
layer from bottom syntactic model fb(b) and the
word embedding wet(w) of a word sequence
w1, w2, ..., wn as the hidden vector of each word.

[h1, h2, ..., hn] = BiLSTM([r1, r2, ..., rn])k4 ,(7)

where ri = f ib ⊕ weit and k4 is the BiLSTM

layer number.
The target phrase words ht1 , ht2 , ..., htm are

represented as one vector ht( ht /∈ [h1, hn]). It
is the average of the target phrase words hidden

vectors, ht = 1
m

m∑
i=1

hti .

We build a vanilla attention model by calcu-
lating a weight value αi for each word in the
sentence. The sentence S then can be represented
as follows:

S′α = Attention([h1, h2, ..., hn], ht)

=
n∑
i=1

αihi, (8)

where αi = exp(βi)/
n∑
j=1

exp(βj).

The weight scores βi are calculated by using
target representation ht and each word hidden
vector representation in the sentence,

βi = UT tanh(W2 · [hi : ht] + b1), (9)

The sentence representation S′α is used to
predict the probability vector P sentiment labels
on target by:

P = Classifier(W3 · S′α + b2), (10)

2.4 Training

Our training procedure consists of two steps, one
being to pre-train the bottom syntactic models, the
other being to apply the pre-trained bottom syn-
tactic model and train the top sentiment analysis
model.

All models are trained by minimizing the sum
of cross-entropy loss and a L2 regularization loss
of all trainable weights ∆W .

loss = 1
n

n∑
i
σ(yi, y′i) + λ

2 ||∆W ||2, (11)

The model feature inputs (word embeddings,
POS-tag embeddings) are the sum of a trainable
embedding and a pre-trained (or learned) embed-
ding. All the weight matrix will be initialized
with an orthogonal loss less than 1e−6.

We choose different intermediate outputs of dif-
ferent bottom level syntax models. For POS-
tagging model, we use the BiLSTM hidden out-
put (lmpos) and POS-tags vector before softmax
(ltpos). For the dependency sub model, we utilize
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Bottom Syntactic Model
LSTM Size(dblstm) 300
MLP Size (dmlp) 100
LSTM Layers(POS Model) (k1) 2
LSTM Layers(Dep. Model) (k2) 4
LSTM Dropout Rate (drblstm) 0.6
MLP Layers ( k3) 2
MLP Dropout Rate (drmlp) 0.67
Batch Size(bb) 1000
Word Embeddings (dbw) 100
POS Embeddings (dpos) 100

Top Sentiment Model
LSTM Size(dtlstm) 200
LSTM Layers(k4) 1
Word Embedding(dtw) 200
Batch Size(bt) 200
LSTM Dropout Rate(drtlstm) 0.5

Same Parameters
Word Minimum Occurance 3
Learning Rate(lr) 0.02
Learning Rate Decay Rate(lrspeed) 0.75
Decay Steps(lrdistance) 1500
Random Seed 1314
Train Iterations 30000

Table 2: Hyper-parameters values

the last BiLSTM layer hidden feature(lmdep) and
the MLP layer output (mlpdep) optionally.

3 Experiments

We evaluate the performances of our model and
compare them with state-of-the-art results using
two standard datasets for target-dependent senti-
ment (Zhang et al., 2016; Tang et al., 2015). The
PTB3 dataset is used to pre-train our bottom level
syntax models.

3.1 Data
We conduct experiments on two datasets, one be-
ing the training/dev/test dataset of Zhang et al.
(2016) (Z-Set), which consists of the MPQA cor-
pus1 and Mitchell et al. (2013)’s corpus2, the other
being the dataset of the benchmark training/test
dataset of ? (T-Set), we label these datasets’ POS-
tags with the open parser tools ZPar (Zhang and
Clark, 2011). Two sets of word embedding are
used in this experiment: The GloVe3 (Penning-
ton et al., 2014) twitter embedding (100 dimen-
sions) for the bottom model, and the GloVe twit-

1http://mpqa.cs.pitt.edu/corpora/mpqa corpus/
2http://www.m-mitchell.com/code/index.html
3https://nlp.stanford.edu/projects/glove/

Total Pos Neg Neu

T-set
Train 6248 1561 1560 3127
Test 692 173 173 346

Z-set
Train 9489 2416 2384 4689
Dev 1036 255 272 509
Test 1170 294 295 581

Table 3: Sentiment Distribution

10 20 30 40

0

100

200

Z-Set
T-Set

Figure 6: Test-set length distribution

ter word embedding (200 dimensions) for the top
target-dependent sentiment analysis model. Also,
due to lack of syntactically labelled twitter data,
we used the PTB3 dataset to pre-train our bottom
models. We follow the standard splits of PTB3,
using 2-21 as the bottom model training data, sec-
tion 22 for the development set and 23 as the test
set.

We calculate statistics on sentiment polorities
and lengths for both datasets. Table 3 shows the
same percentage of three sentiment labels and Fig-
ure 6 shows length distribution on the test sets.

3.2 Trainning Settings

First, we use the PTB3 dataset with the stan-
dard split method pre-train the POS syntax model
and dependency syntax model with the hyper-
parameters listed in Table 2. A best model on the
devset is saved for the neural stacking bottom syn-
tax model.

Once obtaining the pre-trained bottom syntax
model, we build the top sentiment model based on
intermediate output syntax model features fb and
top word embedding wet.

3.3 Hyper-parameters

Embedding Size: Our embedding is a superposi-
tion of a trainable and a pre-trained word embed-
ding. We fixed the word embedding dimension of
web and wet to 100 and 200, respectively to match
two pre-trained GloVe word embeddings set from
Pennington et al. (2014).
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Models Acc.(%) F1(%) UAS LAS
POS-tagging 92.4 91.6 / /
Normal Dep. / / 95.6 93.8
No-POS Dep. / / 94.3 92.7

Table 4: Results for Syntactic Sub Model on PTB3
development set.

Dropout Rate: Dropout wrappers are applied to
both the bottom level syntax model and top level
sentiment model to avoid overfitting and learn bet-
ter features. For the bottom syntax model, we
use the PTB3 dataset to pre-train and tune hyper-
parameters. A dropout rate of ξ = 0.6 for the
BiLSTM layer and a softmax classifier layer to
classify the learned features from hidden BiLSTM
vector are used, respectively. Dropout rates of
ξ = 0.6 and ξ = 0.67 are applied to every sec-
ond BiLSTM layer and MLP layer, respectively,
in the dependency model. We gain the best results
(see Table 4) of different bottom syntax models on
the PTB3 dataset.

For the top sentiment model, we use the model
with only top word embedding inputs as our base-
line. Here, the bottom syntactic features fb are
pre-processed with a dropout wrapper of φ = 0.5
before being concatenated to the top model word
embedding wet, which is also wrapped with a
dropout of ϕ = 0.8 for training models.
Training: We tune the hyper-parameters of the
bottom syntax model on the PTB3 development
set and top sentiment on the Z-Set development
set. Words that occur less than a minimum amount
of 3 times are treated as unknown words. Standard
SGD with a decaying learning rate (2e−2) is used
for optimization, where the decay rate (0.75) is
used to reduce the learning rate after each training
iteration step (lrdistance).

lrnew = lr · (lrspeed)totalsteps/lrdistance , (12)

There are several hyper-parameters in our mod-
els. We tune all the model hyper-parameters on
the dev set with grid-search. With a learning rate
of ϕ = 2e−2, we did a large parameter iteration
on learning rate decay steps lrdistance, decay rate
lrspeed, batch size (bb&bt) and dropout. The batch
size (bb&bt) has a great impact on model weights
gradient and training speeds, and we choose a
balanced point of 200 and 1000 for top and bot-
tom model respectively. The decaying learning
rate can also help in avoiding early overfitting and

Models Acc.(%)
Baseline 73.24
+lmpos 73.53
+ltpos 73.34
+lmpos&ltpos 73.81
+mlpdep 74.23
+lmdep 73.96
+lmdep&mlpdep 74.59

Table 5: Dev set accuracies for sentiment sub
model

73 73.5 74 74.5

4
3

2
1

Top 2
Top 3

All

73.96

73.88

73.67

73.32

74.07

74.13

74.17

Table 6: Dev Results on BiLSTM feature layers

large weights optimization. The details of other
hyper-parameters are listed in Table 2.

3.4 Development Experiments

Syntactic features: We measure the efficience of
different syntax features; the results are listed in
Table 5. Within syntactic features, the baseline
system (our implementation of Liu and Zhang
(2017)) gives an accuracy of 73.24%. With only
POS features, the accuracies can reach 74.23%,
which is significantly (p < 0.01 by T-test) higher.
With dependency information, the accuracy
further rises to 74.59%, which is significant
improved by 1.4 points to the baseline. This
shows that syntactic information is indeed useful
for target-dependent sentiment classification.
BiLSTM Layers: We also concatenate the hidden
BiLSTM vector from different layers to construct
a fast forword feature network to build feature
from the dependency model.

lmdep = MLP(CONCAT(lmdep[1 : n])), (13)

here, MLP is used to reduce the concate-
nated lmdep dimensions and (1 <= n <= 4).
A dropout wrapper of φ = 0.6 is applied for the
concatenated LSTM vectors lmdep[1 : n].

The results of fast forwards features from dif-
ferent LSTM layer are shown in Tabel 6. Here
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Acc.(%) F1(%)
Models Zset Tset Zset Tset

Jiang et al. (2011) / 63.4 / 63.3
Dong et al. (2014) / 66.3 / 65.9
Vo and Zhang (2015) 69.6 71.1 65.6 69.9
Tang et al. (2015) / 71.5 / 69.5
Zhang et al. (2016) 71.9 72.0 69.6 70.9
Liu and Zhang (2017) 73.5 72.4 70.6 70.5
Baseline 73.0 71.7 70.2 70.1
+ lmpos [a] 73.5 72.4 71.2 70.4
+ ltpos [b] 73.2 72.0 70.8 70.2
+ lmpos&ltpos [c] 73.9 72.5 71.4 70.7
+ lmdep 73.5 72.2 70.7 70.6
+ mlpdep 74.0 72.6 71.3 70.9
+ lmdep&mlpdep 74.1 72.7 71.7 71.3
+ lm∗dep [d] 73.3 72.4 70.9 70.5
+ mlp∗dep [e] 74.2 72.8 71.3 70.5
+ lm∗dep&mlp∗dep [f] 74.3 72.8 71.8 71.4

Table 7: Test set results with different syntactic
features, the features with ∗ means they are built
from the no-POS dependency syntax model

we refer to the first BiLSTM layer as 1, and the
last BiLSTM layer as 4. Top 2 indicates the
layer3 & layer4. Without fast forward connec-
tions, the results are 73.24%. With setting 1 to 4,
the accuracies increase from 73.24% to 73.32%,
73.67%, 73.88% and 73.96%, respectively. Fi-
nally, the best results are obtained with 74.17%.
We thus use the settings layer4 for final tests, for
a nice balance of efficiency and accuracy.

3.5 Results

We conduct final tests on the test set of Z-Set
and T-Set, respectively investigating two ques-
tions. First, we verify whether this kind implicit
features enhance the accuracy of twitter target-
dependent sentiment analysis. Second, we mea-
sure how syntax affect target-dependent sentiment
analysis results.

First, we compare the effects of different fea-
tures on target target-dependent sentiment analy-
sis. We take the top model with only word em-
bedding inputs as our baseline system. The results
are listed in Table 7. We can see that the syntac-
tic features contribute to enhancing the accuracy
of target-dependent sentiment analysis. Compared
with our baseline on both test-set, we obtain an in-
crease of Acc. by 1.3 points (p < 0.01) on Z-Set
and 1 point (p < 0.05) on T-Set. For the POS-
tagging model, the lmpos feature provides more
information than the ltpos feature, and the ltpos has

Pos Neg Neu

Z-Set
Baseline 61.64 69.83 78.67
POS[c] 61.43 70.17 78.97
DEP[f ] 61.14 71.14 79.63

T-Set
Baseline 62.57 69.36 75.70
POS[c] 61.84 69.41 77.62
DEP[f ] 62.74 70.31 78.42

Table 8: F1 values(%) of each polarity on test set
of Z-Set, T-Set, the POS[c] and DEP[f ] indicate
the features listed in Table 7

10 20 30 40

71

72

a
b
c
d
e
f

Figure 7: Test-set Accuracy against sentence
length (Z-Set), a,b,c,d,e,f indicate the features
listed in Table 7, respectively

little impact in their combination case.

The dependency model features work better
than the POS-tag features. lmdep is weaker than
the mlpdep feature, since mlpdep feature contains
more learned and special features, which provide
the model with sentence level dependency struc-
ture.

Second, we separately test the effect of features
made with respect to different sentence lengths
and sentiment polorities. As two datasets have dif-
ferent max sentence lengths (Z-set 84 words, T-set
44 words), we focus on the length range [10,40]
and treat the sentence with length 10- and 40+
as 10 and 40, respectively. The results are listed
in Table 8, Figure 7 (Here we use the test set of
Zhang et al. (2016)). The POS-tags features (a,b,c
in Table 7) have advantages in short sentence (10-
15 words), it gains a significant higher than the
dependency features. In contrast, the dependency
features (d,e,f in Table 7) show larger contribution
on longer sentence (30-40 words).

Finally, our model gives a F1 score of 71.8%
and 71.4% on both test sets, respectively, which
are the best reported results so far.
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3.6 Analysis

The results show that features have different con-
tributions to enhance the accuracy of targeted sen-
timent classification. The bottom syntax model
output contains different syntactic information.
Using them as features do contribution to the top
model gain the information about sentence struc-
ture or word interrelation.

The POS-tagging model features perform well
on short sentences. We believe that a POS-tagging
model feature vector contains relation between a
present word and its POS context words. This
matches its adjacent words, helping model gain lo-
cal phrase-level structure information. For exam-
ple, if a word has a VB tag and its adjacent words
are RB and NN, a tighter relation will be generated
between VB and NN.

Phrase-level structure contributes to short sen-
tences, but can be ambiguous for long sentence.
Even though a RNN can learn some sentence-
level information, with the increasing of the sen-
tence length, this local benefit can decrease gradu-
ally. This can be the reason of the result in Figure
7 where the F1 value of the POS-tagging model
drops as the sentence length increase.

The stable performance of the dependency
model in Figure 7 suggests that the overall sen-
tence structure and local phrase-level structure can
be both provided by the dependency model fea-
tures. The more nonlocal sentence structure can
help the model grasp the sentence sentiment eas-
ier. It has a slightly weakened in the overall struc-
tures of longer sentence.

The benefits from semantic features is structural
and non-sentiment related. Though POS-tag infor-
mation can generate dependency relations, we use
the PTB3 data to pre-train the bottom level mod-
els, where noise may weaken the advantages. In
contrast, the dependency model contains more de-
tailed information, and is useful for PTB-like for-
mal data. The effect can be discounted on twitter
data. The results from Table 8 show that the F1
values show no significant variation on different
sentiment polarities.

3.7 Attention values

We compared both types of features with the base-
line on the attention values and structural relation
between words (Figure 8). The relation is com-
puted by the top model LSTM hidden vector un-
der feature [f ] in Table 7. The grey level cor-

[lindsay lohan] goes on yet another emo rant on her twitter .

Baseline:
+POS:
+DEP:
TEXT:

…

…

…

Choose [NBI] for insulation , air … air conditioners and en energy efficient appliances .

Baseline:
+POS:
+DEP:
TEXT:

(a) emo word attention to others

(b) efficient word attention to others

Figure 8: Word attention under implicit syntactic
features, darker grayscale means closer attention

responds to their attention values. Darker colors
mean closer attention. Here the baseline is the top
model with only word embedding inputs. Figure
8(a) is a short sentence (12 words). We can see that
the different features do not affect the sentence
structure significantly. The POS-tagging model
features focus on its adjacent and related words,
such as the word ‘emo’, which has a tight relation
with the adjacent word ‘rant’ and its adjunct word
‘another’. When the sentence length increases, the
difference between POS and DEP becomes obvi-
ous. In Figure 8(b), the DEP has more related
darker grey words attention compared to a nor-
mal word in the sentence (20+ words, we here
hide some words due to limited space). For the
phrase ‘en engery efficient appliances’, for exam-
ple, the POS features give shallow local relations,
but deep remote semantic relations are given by
the DEP features, such as the nominal modifier
word ‘Choose’ and its paralleling structure word
‘insulation’.

4 Conclusion

We investigated the use of implicit syntactic fea-
tures for improving target-dependent sentiment
analysis, by using hidden word representations of
a state-of-the-art parsing to augment the input of
a state-of-the-art target-dependent sentiment clas-
sifier. Neural stacking is used, where the parser is
first trained using news article data, and then fine-
tuned during the training of the sentiment classifi-
cation system. In this way, our method leverages
syntactic information, which is intuitively useful
for target-dependent sentiment analysis, yet does
not suffer from error propagations of using ex-
plicit syntactic parsing output features. Results
on two target-dependent sentiment datasets show
that our use of syntax can significantly enhance
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the accuracies of the baseline model, and our final
model outperforms existing methods that use ex-
plicit syntactic features and without syntactic fea-
tures, giving the best accuracies on both datasets.
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Abstract

The sentiment aggregation problem ac-
counts for analyzing the sentiment of a
user towards various aspects/features of
a product, and meaningfully assimilating
the pragmatic significance of these fea-
tures/aspects from an opinionated text.
The current paper addresses the senti-
ment aggregation problem, by assigning
weights to each aspect appearing in the
user-generated content, that are propor-
tionate to the strategic importance of the
aspect in the pragmatic domain. The nov-
elty of this paper is in computing the prag-
matic significance (weight) of each aspect,
using graph centrality measures (applied
on domain specific ontology-graphs ex-
tracted from ConceptNet), and deeply in-
graining these weights while aggregating
the sentiments from opinionated text. We
experiment over multiple real-life product
review data. Our system consistently out-
performs the state of the art - by as much
as a F-score of 20.39% in one case.

1 Introduction

User-generated content accounts for a large frac-
tion of the online content that is available today.
The advent of web-platforms such as on online so-
cial networks (e.g., Facebook, Twitter etc.), blogs,
discussion forums and product portals (e.g., Ama-
zon) has resulted in creation of a plethora of user-
generated opinionated-content. The task of senti-
ment analysis focuses on analyzing such text, and
deciphering user sentiment towards given products
or their features, often referred to as aspects.

The task of sentiment aggregation builds upon
sentiment analysis processes in general. While
sentiment analysis (SA) aims to classify an

opinion into positive or negative or neutral
categories (in case of coarse-grained SA) or
into more intricate categories (in case of fine-
grained/dimensional SA), often enough, it con-
siders the opinion in its entirety, and is agnos-
tic of the aspect-specific sentiments expressed.
However, in practical settings, opinions expressed
by users (such as product reviews) often tend to
focus on multiple aspects, not just one. The
diversity of the aspects, does not allow the
aspect-specific sentiment-polarity values to be just
naively summed up for the purpose of obtaining
an overall aggregated sentiment of a given user to-
wards a given product.

As an example, let us consider the following
text regarding a software application: This app has
a beautiful interface. It is not bug free though. The
first sentence here is a positive feel to it from the
interface feature (aspect). The second sentence
has a negative feel to it from the accuracy (bug)
feature (aspect). Thus, a simple linear aggregation
(sum of the individual polarities) of the features,
will yield a overall neutral review polarity score.
This is not necessarily accurate. While an inter-
face is a necessary enabler for users to use a soft-
ware, it is of imperative necessity that the software
runs accurately, without posing problems of bugs.
Perhaps, a reasonable interface with an error-free
running platform, is more necessary for an appli-
cation software, than to just have a beautiful inter-
face and erroneous execution. So the overall po-
larity of this review should be negative.

Let us flip the above example to the follow-
ing: This app has a bad and unfriendly interface.
The software is, however, stellar in terms of execu-
tion. This time, the first sentence shows a negative
intent, while the second shows positive. Again,
clearly, the overall sentiment can be deemed posi-
tive, although a simple-minded sum of the individ-
ual aspects would yield a neutral value.
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While in the previous examples the words such
as however and though could potentially appear to
act as discourse markers, such discourse markers
will not appear in most of the cases. For instance,
consider the following review example: I hated
the little hints they gave us hardcore NDers on the
Dare to Play message board. I had extremely high
hopes for this game–I adored Last Train to Blue
Moon Canyon and waited AGES for this game.
Now, besides the absurd level of difficulty in this
game [it was seemingly VERY hard in my eyes–I
could not make it the first time through without the
assistance of a walkthrough], I LOVED it. Clearly,
while there are both positive and negative aspects
in the review, the aggregate sentiment of the re-
view is overall positive. And there is no discourse
marker to simplify detecting the aggregated senti-
ment.

Assigning an overall review polarity requires
a deeper aggregation of the sentiment polarity of
each aspect. This involves not only understand-
ing the sentiment purely from a natural language
processing (NLP) standpoint, but also needs to ac-
count for the domain, and the pragmatic signifi-
cance of the feature in the given domain.

Multiple works in the literature, such as (Hatzi-
vassiloglou and Wiebe, 2000), (Turney, 2002),
(Wu et al., 2009) and (Chen and Yao, 2010) have
attempted to perform sentiment aggregation. One
promising line of work explores usage of domain
ontologies in order to factor for the pragmatic
value of each aspect of the product. A recent work
by (Mukherjee and Joshi, 2013) attempted to use
ConceptNet (Liu and Singh, 2004), to learn the
product attribute-hierarchy over attributes, syn-
onyms, essential components and functionalities,
and create a domain-specific ontology tree, using
ConceptNet relationships across concepts. They
subsequently map the sentiments associated with
each feature of each given product to this ontology
tree, and determine the overall aggregated senti-
ment as a weighted sum of these features, where
the weights are computed as a function of proxim-
ity of the concept to the root node of the ontology.

Our work also uses domain ontologies for senti-
ment aggregation; however, we do not use the con-
cept of ontology trees that has been used in the lit-
erature (Mukherjee and Joshi, 2013). We propose
a novel approach, that extracts ontology-graphs
from ConceptNet, around given themes, e.g., soft-
ware. The extracted concepts are assigned weights

using a measure of their centrality to the theme un-
der consideration (e.g., the centrality of bug given
the theme software). Akin to Mukherjee and Joshi
(2013), these weights are combined with the asso-
ciated feature sentiments, and a weighted aggre-
gation is carried out to obtain the final sentiment
aggregation scores for each user review.

For experiments, we use the same datasets as
used by (Mukherjee and Joshi, 2013). Our sys-
tem is more effective compared to the rest of the
literature: it outperforms the state of the art for
all the domains, including a large F-score mar-
gin of 20.39% in one case. Amongst the four
datasets we experiment with, closeness centrality
often outperforms the other graph centrality mea-
sures we use, namely betweenness centrality and
PageRank; however, betweenness centrality out-
performs the rest in a few cases. These centrality
measures are explained in Section 3.1.

Overall, we provide a novel graph-driven base-
line over domain ontologies, for deeply ingraining
pragmatic information of various aspects of prod-
uct reviews. Experiments indicate that the perfor-
mance of our system is consistent across datasets,
and also it consistently outperforms the state of
the art. The system is expected to provide in-
sights to organizations in understanding overall
user sentiments towards products, by analyzing
user-generated natural language text content.

2 Related Work

Sentiment analysis (SA) has been an area of long-
standing area of research. A seminal work was
carried out by Hatzivassiloglou and McKeown
(1997), attempting to identify the sentiment po-
larity orientation of adjectives, using conjunction
constraints, using a four-step supervised learning
algorithm. One school of research has conducted
significant exploration towards SA from user gen-
erated content, and a large fraction of these works
look at the social media such as Twitter. This in-
cludes works by Agarwal et al. (2011), Barbosa
and Feng (2010) and Kouloumpis et al. (2011),
and Opinion Finder at University of Pittsburgh
(Wilson et al., 2005). Many recent works, such
as Khan et al. (2015), Kolchyna et al. (2015),
Le and Nguyen (2015), Severyn and Moschitti
(2015), and Zimbra et al. (2016), have also investi-
gated the sentiment analysis problem on user gen-
erated content. Recent systems are based on vari-
ants of deep neural network built on top of embed-
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dings. A few representative works in this direc-
tion for sentiment analysis are based on Convolu-
tional Neural Networks (CNNs) (dos Santos and
Gatti, 2014; Kim, 2014; Tang et al., 2014), Recur-
rent Neural Networks (RNNs) (Dong et al., 2014;
Liu et al., 2015) and combined architecture (Wang
et al., 2016). A few works exist on using deep
neural networks for sarcasm detection, such as by
Ghosh and Veale (2016) that uses a combination
of RNNs and CNNs.

Sentiment analysis for product reviews has been
investigated since a long time, in the literature. An
early work attempting to classify reviews into pos-
itive vs. negative was conducted by Tong (2001),
generating sentiment timelines. This was followed
by several works, that attempted to replace the
bag-of-words based early models by more sophis-
ticated feature driven models (such as lexical, syn-
tactic and semantic features). Some noteworthy
works in this space include Hatzivassiloglou and
Wiebe (2000), Kamps et al. (2001), Turney (2002)
and Turney and Littman (2003). However, neither
did these works consider domain-specific informa-
tion, nor did they account for users’ views on the
different aspects (features) of a given product - all
of which are central to comprehend the overall ag-
gregate sentiment of a user towards a product.

Subsequent works attempted to incorporate user
sentiments towards specific product aspects (prod-
uct features); few of these incorporated deeper
NLP techniques, such as dependency parsing (Wu
et al., 2009; Chen and Yao, 2010; Mukherjee and
Bhattacharyya, 2012) and joint sentiment topic
models using LDA (Lin and He, 2009). These
works, however, do not provide methodical or ro-
bust approaches to combine the feature-specific
sentiments, to form the aggregate review polarity
of a given user towards a given product.

Mukherjee and Joshi (2013), which happens to
be the work closest to ours, attempt to overcome
this shortcoming, extending over Wei and Gulla
(2010) and Sureka et al. (2010). Wei and Gulla
(2010) propose a hierarchical learning method for
labeling product attributes and the associated sen-
timents in product reviews, using a Sentiment On-
tology Tree (HL SOT) with a supervised learning
technique. However, the work requires feature-
specific labeling, which is not practicable in real-
life applications, as well as, falls short of propos-
ing any elegant aggregation mechanism for inte-
grating feature-specific sentiments. Sureka et al.

(2010) were among the first ones to use Concept-
Net (Liu and Singh, 2004) in sentiment analysis.
Mukherjee and Joshi (2013) borrow from the con-
cept of sentiment ontology tree, extract feature-
specific ontology using ConceptNet, and finally
present an Expected Sentiment Weight based com-
bination of the feature-specific polarities, relying
upon (a) the feature-specific sentiment polarity
and strength, and (b) the weight of the sentiment
derived as a function of the distance of the concept
phrase (feature) from the root of the ontology tree.
Their system also accounts for noisy and one-to-
many relations in ConceptNet, and topic drift.

We notice that, there is scope in research,
to fully exploit the intricate inter-relationship of
the non-independent concepts that are practically
bound to arise in a real-life setting. For exam-
ple, in a world of camera, the concepts of lens and
flash cannot be completely independent. And yet,
in the ontology-tree based approach, such inter-
dependencies go uncaptured. Such examples are
clearly seen in Figure 1 in Mukherjee and Joshi
(2013). This motivates the need to better capture
the intricate interdependencies of such concepts,
in terms of interdependencies as well as the signif-
icance of such dependencies. We hence propose a
graph-based approach, where graph vertex proper-
ties, including weights, derived from the connec-
tivity structures, can accommodate for such fac-
tors. Our approach is weakly supervised, unlike
most of the recent SA systems mentioned above,
including the conceptually similar but supervised
approach of Socher et al. (2013) who model RNN
on sentiment treebank for sentiment aggregation.
The system is easy to implement and deploy, and
consistently outperforms the literature for all the
sentiment aggregation benchmark datasets.

3 Why Graph based Solutions?

As discussed earlier, a sentiment aggregator
should leverage an ontology structure to allevi-
ate the lack of awareness of the inter-relationships
between aspects. It is, however, essential for
ontology-driven sentiment aggregators to be aware
of all possible inter-relationships between the as-
pects appearing in the opinionated text. The prob-
lem with the existing method of transforming the
ontology into a tree structure and aggregation of
sentiment in a bottom-up manner (Mukherjee and
Joshi, 2013) is that it assumes the relationships
between aspects (which are essentially mapped

527



to concepts present in the ontology) to be hier-
archical, thereby straight-away eliminating non-
hierarchical relationships (like metonymy). As dis-
cussed earlier, concepts like “lens” and “flash” in
camera domain do not share a parent-child rela-
tionship; it is thus impossible to find a connec-
tion between these two nodes in the ontology-tree.
Moreover, as per Mukherjee and Joshi (2013), the
intensity of sentiment expressed are aggregated
from the leaf node towards the root. This does
not allow sharing of sentiment related informa-
tion between nodes at same levels (like “lens” and
“flash”). Our proposed systems overcomes this
problem by using the ontology-graph structure as
it is, without performing any lossy transforma-
tion, unlike Mukherjee and Joshi (2013). We mea-
sure the pragmatic importance of the nodes of the
ontology-graph through various centrality mea-
sures (discussed in Section 3.1), which helps our
system decide how much sentiment-information
can be shared across nodes during sentiment ag-
gregation. We believe, a graph-based sentiment
aggregation technique like ours offers a more nat-
ural way of sentiment aggregation that preserves
all possible interrelationships amongst aspects.

3.1 Graph Centrality: Definitions
The centrality measures, the key constituents our
approach, are explained below. The definitions are
borrowed from the domain of graph theory.

Closeness Centrality: The closeness centrality
(Bavelas, 1950) of a vertex in a connected graph
indicates how central the vertex is to the over-
all graph structure. This is defined as the aver-
age length of the shortest paths between the given
vertex and all other vertices in the given graph.
If a given connected graph G comprises n ver-
tices, then, the closeness centrality C(v) of a ver-
tex v ∈ G is computed as

C(v) =
n− 1∑

u
d(u, v)

≈ n∑
u
d(u, v)

, if (n� 1)

where d(u, v) represents the shortest path distance
between the vertices u and v.

Betweenness Centrality: For each pair of ver-
tices in any connected graph, there exists at least
one shortest path between the pair of vertices, such
that, the number of edges constructing the path
is minimized (in case of unweighted graphs), or,
the total weight of the edges constructed is min-
imized (weighted graphs). The betweenness cen-

trality (Freeman, 1977) of a given vertex of a graph
is defined as the number of such shortest paths
passing through the vertex. For a given vertex v,
this is computed as

g(v) =
∑
s 6=v 6=t

σst(v)
σst

where σst is the total number of shortest paths
from vertex s to vertex t and σst(v) of these pass
through vertex v.

PageRank: The PageRank (Brin and Page,
1998) of a given vertex in a graph denotes the sta-
tionary probability of a random walk with restarts
to arrive on the given vertex. For a given vertex vi
on a given graph G constituting of n vertices, the
PageRank of the vertex P (vi) is computed as

P (vi) = α
∑
j

uji
vj
Lj

+
1− α
n

where Lj =
∑
i
uji is the number of neighbors of

vertex j, and α, the damping factor, represents the
probability of the random walk to continue.

4 Our Approach: Sentiment Aggregation
using Graph Centrality

Our approach consists of two steps for assigning
an overall polarity to a review for a product, based
on the polarities expressed for individual aspects.

• The first step computes the pragmatic sig-
nificance score for each aspect of a prod-
uct, based on the graph centrality metrics ob-
tained from domain specific ontology-graphs
constructed from ConceptNet.

• The second step aggregates the polarities of
different aspects to get one overall polarity
for a review text, based on the scores from
the earlier step and the polarities expressed
for each aspect.

We provide the details of our approach below.

4.1 Ontology Graph Construction
We first construct the ontology graph, for each
given concept/domain. Domain ontology captures
intricate relationships and dependencies among
different aspects of a product. We exploit the
domain ontology in constructing a rich graph
where nodes represent aspects and edges connect-
ing them represent relationships among them. The
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graph representation rightly captures all the de-
pendencies among the aspects as well as the com-
plicated relationships among them.

The graph is constructed as follows. The con-
cept/domain is identified by a seed word such as,
camera, automobile, etc.. A vertex is constructed
for the seed word, and is marked as unexplored in
the set of graph vertices. This is added to V , the
set of vertices in the ontology graph G = (V, E).
For each unexplored vertex v in the graph, each
concept in ConceptNet that has at least one rela-
tionship with v, a vertex u is added to the vertex
set V and is marked as unexplored, as well as, an
edge (u, v) is added to E . At this stage, the ver-
tex v is marked as explored. The ontology graph
creation algorithm completes, when all vertices in
V are marked as explored. We provide a maxi-
mum graph distance cut-off of n (a given num-
ber), where n is number of edges on the minimum-
length path to reach from the concept to the seed
word in the graph. Algorithm 1 provides the de-
tails of the ontology graph creation algorithm.

Hierarchical LocatedNear, HasA, PartOf,
MadeOf, IsA, InheritsFrom

Synonymous Synonym, ConceptuallyRe-
latedTo

Functional UsedFor, CapableOf, De-
finedAs, HasProperty

Table 1: Categorization of ConceptNet Relation-
ship Types

Three types of ConceptNet relationships are
used to form the edges, shown in Table 1. Hier-
archical relationships represent parent-child rela-
tionships of concepts. Synonymous relationships
are used to identify related concepts. Functional
relationships are used to identify the purpose or
property of interest of the given concept.

4.2 Graph Centrality Computation

This step computes the centrality of each con-
cept appearing in the domain ontology graph con-
structed in the earlier step. For computing prag-
matic significance score for each aspect, we em-
ploy graph centrality measures. Specifically, we
propose to use centrality metrics such as close-
ness centrality, betweenness centrality and page
rank, since these centrality measures captures sig-
nificance of a node from different perspectives. In

Algorithm 1 ONTOLOGY GRAPH CREATION

1: function OntologyGraphCreate():
2: V ← domain seed word as vertex s
3: REM E.g.: kitchen, automobile, software,

camera etc.
4: mark s as unexplored
5: E ← φ
6: while there exists at least one unexplored ver-

tex v ∈ V do
7: for u ∈ neighbors(v) do
8: (REM neighbors(e) includes all

vertices that have Hierarchical, Syn-
onymous and Functional relation-
ships with vertex e)

9: if graph distance(s,u) ≤ n then
10: V ← V ∪ u
11: mark u as unexplored if not al-

ready explored previously
12: E ← E ∪ (u, v)
13: end if
14: mark v as explored
15: end for
16: end while
17: Output: G ← (V,E)

computation of the different centrality metrics we
do not consider the type of relationship on an edge.
An example of a closeness centrality graph, has
been provided in Figure 1, for the domain camera.

4.3 Feature/Aspect-Specific Sentiment
Computation

A user’s opinion (review) could constitute of mul-
tiple aspects (features) of a given product, and dif-
ferent sentiment (opinion) polarities with respect
to each aspect. The process of overall user senti-
ment analysis, mandates understanding the user’s
sentiment towards each of these aspects. To de-
termine the sentiment polarity expressed by a user
towards each aspect (feature), we perform depen-
dency parsing of each review, to associate a given
aspect of the review, with the opinion of the user
towards the given feature, expressed in the text.

Let R be a user review towards a product. Let
W be the words constituting the review R. Fol-
lowing the approach of (Mukherjee and Bhat-
tacharyya, 2012), we perform dependency pars-
ing, and obtain D, the set of significant de-
pendency relations in the corpus (e.g., nsubj,
amod, dobj, etc). For each dependency Dl where
Dl(di, dj) ∈ D, a graph G(W,E) is constructed
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Figure 1: Depiction of closeness centrality measure for Camera Ontology

s.t. all (wi, wj) ∈ W are connected by edge
ek ∈ E.

A PoS tagger is used to extract the entities
(nouns). These entities are used as the initial fea-
ture (aspect) set fi ∈ F . For each feature fi, a
cluster Ci is initiated, where fi acts as the cluster
head of Ci. Each word w ∈ W occurring in re-
view R, is assigned to the cluster having closest
cluster head. The “closest” distance is measured,
using the number of edges in the shortest path, that
connects the word to the closest cluster head. Two
clusters are merged, if the distance between the
two cluster heads are less than a given threshold.

The set of words Wi belonging to each cluster
Ci, are used to determine the user’s opinion about
feature fi. This is attained by conducting a sim-
ple majority voting of the sentiment values of the
individual words wi ∈ Wi, using sentiment lex-
icons. A final aspect-specific sentiment score is
produced, as−1 for negative, 0 for neutral and +1

for positive.
Also note that, we use the simple negation

handling framework that was also adopted by
(Mukherjee and Joshi, 2013). We reverse the sen-
timent polarities of all the words appearing within
a window of size 5 (Hu and Liu, 2004), starting
from any of the negation operators not, nor, nei-
ther and no.

4.4 Sentiment Polarity Aggregation

In this step, we aggregate polarities across all
the aspects, to assign overall polarity to a review
text. We define the overall polarity of a text as
a weighted sum of (a) the sentiment polarity ex-
pressed by the user towards each aspect (feature)
of the product the review text, and (b) the prag-
matic significance of the aspect in the given do-
main, reflected in the graph centrality measures.
These two factors ensure that the final polarity
value for a given review text aggregates polar-
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ity values across different aspects, with adequate
weightage that the aspect requires.

Let R be a review text, for a product P which
has M aspects. Let mi and mi

p represent ith as-
pect, and it’s sentiment polarity as computed as
described earlier. Let cmi represent the centrality
score for an aspect mi computed using the ontol-
ogy graph for the domain which P belongs to. The
polarity value p(sum) for a review textR is found
by computing the polarity value, as the following:

p(sum) =
M∑
i=1

mi
p × cmi

Finally, the aggregated sentiment polarity S is
assigned as:

S = Positve if p(sum) > 0
S = Negative if p(sum) < 0
S = Neutral if p(sum) = 0

To find the aggregate sentiment of all users for a
given product, we again opt for a majority-voting
strategy. The overall methodology is presented in
Algorithm 2.

5 Datasets and Ontologies

Dataset from four different domains correspond-
ing to automobile, camera, kitchen and software
are used for experiments. The camera reviews
are collected from Mukherjee and Joshi (2013).
The automobile, kitchen and software reviews are
taken from Blitzer et al. (2007). Table 2 shows the
dataset statistics.

Positive Negative Total

Domain Reviews Reviews Reviews
Automobile 584 152 736

Camera 986 210 1196
Kitchen 1001 1000 2001
Software 1000 915 1915

Table 2: Dataset Statistics

Note that, akin to Mukherjee and Joshi (2013),
all the words have been lemmatized in the reviews,
which ensures that all the terms such as camera
and cameras are treated as the root word cam-
era. Further, words such as hvnt, dnt have been
replaced to their original forms.

In the ontology graph construction process, we
keep adding unexplored vertices to the vertex set,

Corpus
Frequent Ontology Ontology

Domain Features Nodes Edges

Automobile 132 114 778
Camera 986 979 1280
Kitchen 767 670 10629
Software 150 135 842

Table 3: Ontology-graph Statistics

as long as, there is at least one edge between the
corresponding concept to an existing vertex in the
vertex-set, of one of the types functional, hierar-
chical or synonymous. However, we restrict to
adding vertices such that the maximum distance
between the seed word and the newly added con-
cept remains less than a given threshold n. We
empirically fix n = 4, which practically provides
a sufficiently large number of concepts that are re-
alistically related to the concept of the seed word.
Higher values of n lead to domain concept delu-
sion and topic drift. Table 3 presents statistics of
the ontology graphs extracted for four domains.

6 Experiments

6.1 Tools and Resources

We use several well-known tools and resources.

• For PoS tagging, we use Stanford NLP
Toolkit1. PoS tagging is carried out to tag the
user reviews, which in turn is used to identify
the entities (noun concepts) in the reviews.

• For ontology construction for the domains,
we use ConceptNet 52.

• To compute centrality measures of the ontol-
ogy graphs, we use the graph tool R3.

• For dependency parsing of the user reviews,
we use Stanford Dependency Parser4.

• For sentiment lexicons, we experiment with
SentiWordNet (Baccianella et al., 2010) and
Bing Liu sentiment dictionary (Hu and Liu,
2004). Although we report our results only
for the Bing Liu sentiment dictionary for the

1http://nlp.stanford.edu/software/tagger.shtml
2http://conceptnet5.media.mit.edu
3https://www.r-project.org
4http://nlp.stanford.edu/software/lex-parser.shtml
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Algorithm 2 THE OVERALL APPROACH

1: G(V, E)← OntologyGraphCreate()

2: for each vertex v ∈ G do
3: centrality(v)← centrality measure value of vertex v in graph G
4: end for

5: total senti← 0
6: for each user reviewR do
7: extract entities T fromR
8: perform dependency parsing ofR
9: user senti← 0

10: for each dependency D where f = headword(D) ∈ the full feature/aspect set F do
11: (REM Each headword represents an aspect of the review)
12: dep senti(f)← 0
13: for each word-concept w ∈ D do
14: dep senti(f)← dep senti(f) + Sentiment(w)
15: end for
16: if f ∈ V then
17: user senti← user senti+ dep senti(f)× centrality(f)
18: end if
19: end for
20: user senti set← user senti set ∪ < R, user senti >
21: total senti← total senti+ user senti
22: end for
23: Output: total senti, user senti set

24: function Sentiment(Word Concept w):
25: return Sentiment Dictionary Lookup(w) (REM SentiWordNet, Bing Liu etc.)

sake of brevity, we observe similar perfor-
mances using SentiWordNet also.

6.2 Results

We establish the first baseline of our work, us-
ing the lexical classification based approach of
(Taboada et al., 2011). In this approach, a senti-
ment lexicon is used as a reference, that consists
of words having positive and negative sentiment
polarities. In a given review, if the total number
of positive terms is higher compared to the total
number of negative terms, the review is considered
positive, and is considered negative if the oppo-
site holds true. The baseline does not incorporate
the feature (aspect) specific approach. We mod-
ify the approach to associate the lexical terms with
the aspects (features), and thus obtain a feature-
specific lexical sentiment. We subsequently aggre-
gate these sentiments, to obtain improved baseline
results. For sentiment lexicon, we empirically ex-

plore with SentiWordNet and Bing Liu sentiment
dictionary.

We further compare our work against the re-
ported approach for the same task by (Mukher-
jee and Joshi, 2013) which also uses ConceptNet,
and has an approach similar to ours. However,
as mentioned earlier, they consider ontology as a
tree while we construct a graph. Also, they assign
pragmatic weights to each aspect present in the re-
view, using the height (distance) of the aspect from
the root (seed word) of the ontology tree they con-
struct, while we use graph centrality measures.

Table 4 illustrates the results we obtain with dif-
ferent approaches. The performance of the sys-
tems are reported in terms of accuracy (to en-
sure direct comparison with previous work) and
weighted F1-score (to tackle class-imbalances).
We report the results of the lexical baseline by
(Taboada et al., 2011) using Bing Liu sentiment
dictionary baseline, the results of Mukherjee and
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Models Automobile Camera Kitchen Software

F1 Acc. F1 Acc. F1 Acc. F1 Acc.

Lexical Baseline (Bing Liu) 73.45 64.43 79.74 63.65 66.77 67.11 66.04 69.38
Hierarchical Aggr. (Mukherjee et al., 2013) 71.48 70.23 81.22 70.38 67.28 67.62 70.19 70.28

Aggr. Closeness (Our approach) 75.93 73.85 84.68 74.00 85.66 72.96 70.87 70.52
Aggr. Betweenness (Our approach) 76.47 72.91 82.68 73.16 87.67 71.61 68.79 69.10

Aggr. PageRank (Our approach) 75.96 73.68 82.99 71.56 85.2 71.31 68.87 69.60

McNemar Significance Test (p) < 0.0001 < 0.0001 < 0.0001 < 0.0001

Table 4: Overall F1 score and accuracy (in %) of all models across all domains. For all domains, the per-
formance improvements obtained using Closeness centrality measure over that reported in the literature
(Mukherjee et al., 2013) are statistically significant (with p << 0.05), as confirmed by McNemar test.

Joshi (2013), and our results, using the three dif-
ferent graph centrality measures. As observed, all
our proposed centrality based approaches outper-
form the baseline. The closeness centrality mea-
sure performs the best, with statistically signifi-
cant improvement (p << 0.05) observed over the
system reported by Mukherjee and Joshi (2013).
Other graph based approaches also show improve-
ment, except for the software domain.

7 Conclusion and Future Work

In this paper, we performed sentiment aggrega-
tion as a combination of user sentiments, ana-
lyzed towards multiple aspects/features of a prod-
uct, from user-generated content. The novelty of
this work was in deeply ingraining the sentiment
weight of each entity derived from the user gen-
erated content, and pragmatic significance of the
entity in the domains that was obtained by using
a graph-structured ontology. We observe a consis-
tently high performance of our system across all
the keywords that we experiment with. We out-
perform the state of the art by a F-score of 3.02%,
3.46%, 20.39% and 0.68%, for automobile, cam-
era, kitchen and software respectively. Further,
the effectiveness of our system often increases by
using closeness centrality over the other graph
centrality measures such as betweenness central-
ity and PageRank, although betweenness centrality
does outperform the rest of the methods in some
cases. In future, we would like to improve the cur-
rent technique to include the intensity of sentiment
bearing words appearing in the reviews. Integrat-
ing lexico-semantic knowledge acquired through
concept-embeddings learned from ontology struc-
tures in the aggregation step is also a future work.
Our system will have significant real-life impact
in helping organizations understand overall user
sentiment towards products, on e-commerce sites

(e.g., Amazon) as well as online social networks,
discussion forums and blogs.
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Abstract

Tweet-level sentiment classification in
Twitter social networking has many chal-
lenges: exploiting syntax, semantic, sen-
timent and context in tweets. To ad-
dress these problems, we propose a
novel approach to sentiment analysis that
uses lexicon features for building lex-
icon embeddings (LexW2Vs) and gen-
erates character attention vectors (Char-
AVs) by using a Deep Convolutional Neu-
ral Network (DeepCNN). Our approach
integrates LexW2Vs and CharAVs with
continuous word embeddings (Continu-
ousW2Vs) and dependency-based word
embeddings (DependencyW2Vs) simulta-
neously in order to increase information
for each word into a Bidirectional Contex-
tual Gated Recurrent Neural Network (Bi-
CGRNN). We evaluate our model on two
Twitter sentiment classification datasets.
Experimental results show that our model
can improve the classification accuracy of
sentence-level sentiment analysis in Twit-
ter social networking.

1 Introduction

Tweet-level sentiment classification is a funda-
mental task of sentiment analysis in Twitter so-
cial networking and is essential to understand user
generated contents in social networking. Twit-
ter sentiment classification have intensively re-
searched in recent years (Go et al., 2009) (Nakov
et al., 2016). There are many works related to deep
learning methods involved learning word repre-
sentation (Socher et al., 2011). Word represen-
tation is central to deep learning and essential
feature extractor that encode different features of
words in their dimensions. The combination of

word representation and deep learning achieved
impressive results because word embeddings en-
able efficient computation of word similarities
through low-dimensional matrix operations (Kim,
2014). In addition, deep learning models achieved
remarkable performance. Some researchers use
Convolution Neural Network (CNN) for sentiment
classification. CNN utilizes convolution filters ap-
plied to local features. CNN models has been
shown to be effective for NLP. For example, the
model of (Dos Santos and Gatti, 2014) used CNN
to form a sentence-level representation for sen-
timent classification. In addition, Bidirectional
Gated Recurrent Neural Network (Bi-GRNN) is
another deep learning model that has achieved an
excellent result for sentiment analysis and other
traditional tasks (Chung et al., 2014).

Inspired by the models above, the goal of this
research is to build a model for exploiting syn-
tax, semantic, sentiment and context of tweets
by constructing four kinds of embeddings: Char-
AVs, LexW2Vs, ContinuousW2Vs and Depen-
dencyW2Vs. On the other hand, we modify Bi-
GRNN of (Chung et al., 2014) into Bi-CGRNN
to take word embeddings in order to produce a
sentence-wide representation from sentence com-
positions. Our paper makes the following contri-
butions:

• We construct a tweet processor which stan-
dardizes tweets by using pre-processing steps
and a semantic rule-based approach. We con-
struct four kinds of embeddings: CharAvs,
LexW2Vs, ContinuousW2Vs and Dependen-
cyW2Vs. A DeepCNN is used for training
CharAVs by producing fixed-size feature vec-
tors and attending on the best feature vec-
tors. CharAVs can capture the morphology
and shape of a word. The morphological and
shape information illustrate how words are
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formed, and their relationship to other words.

• We create an integration of CharAVs and
LexW2Vs with ContinuousW2Vs and De-
pendencyW2Vs. Such embeddings are ad-
vanced continuous word embeddings and ad-
vanced dependency-based word embeddings.

• We modify a standard Bi-GRNN to be a Bi-
CGRNN by incorporating contextual features
(e.g., Syntactic contexts) in order to take both
advanced word embeddings. The output of
Bi-CGRNN is sentence compositions that are
formed into a sentence-wide representation.
The purpose of Bi-CGRNN is to connect the
information of words in a sequence and main-
tain the order of words for a sentence-level
representation.

The organization of the paper is as follows: Sec-
tion 2 describes the model architecture which in-
troduces the structure of the model. We explain
the basic idea of the model and the way of con-
structing the model. Section 3 shows results and
analysis and Section 4 summarizes this paper.

2 Model architecture

2.1 Basic Idea
Our proposed model consists of a tweet processor
and a deep learning module that are treated as two
distinct components. The tweet processor stan-
dardizes tweets, applies semantic rules and then
generates embeddings. The deep learning mod-
ule is a combination of Bi-CGRNN and Deep-
CNN. To formulate our challenges in increasing
the classification accuracy, we illustrate the basic
idea of our model in Figure 1 as follows: Tweets
are firstly considered by the tweet processor based
on pre-processing steps of (Go et al., 2009) and the
semantic rule-based approach from (Appel et al.,
2016). Then, we construct four kinds of em-
beddings in the representation-level step: Con-
tinuousW2Vs, CharAVs, LexW2Vs and Depen-
dencyW2Vs, where CharAVs are generated from
a DeepCNN. The DeepCNN is constructed from
two wide convolutions which can learn to recog-
nize specific n-grams at every position in a word
and allow features to be extracted independently
of these positions in the word. These features
maintain the order and relative positions of char-
acters and are formed at a higher abstract level. In
those embeddings, ContinuousW2Vs take the syn-
tax and semantic of words (Mikolov et al., 2013)

while the LexW2Vs can capture the sentiment of
words (Shin et al., 2016). DependencyW2Vs de-
rive the syntactic relations of words and exhibit
more functional similarity than the original skip-
gram embeddings led to form global syntactic con-
texts of words (Levy and Goldberg, 2014). Twitter
sentiment label belongs to global sentence level
while traditional word embeddings capture local
contexts only. Therefore, DependencyW2Vs are
useful in capturing global context of tweets. On
the other hand, we create two advanced embed-
dings by integrating LexW2Vs and CharAVs with
ContinuousW2Vs and DependencyW2Vs for Bi-
CGRNN. A Bi-CGRNN is enhanced from a stan-
dard Bi-GRNN of (Chung et al., 2014) by incorpo-
rating contextual features (e.g., dependency-based
contexts) into the model. The Bi-CGRNN pro-
duces a sentence-level representation from sen-
tence compositions in order to maintain the order
of word and capture syntax, semantic, sentiment
and context of a sentence based on these embed-
dings.

2.2 Data Preparation

• Stanford - Twitter Sentiment Corpus (STS
Corpus): STS Corpus contains 1,600K train-
ing tweets collected by a crawler from (Go
et al., 2009). (Go et al., 2009) constructed a
test set manually with 177 negative and 182
positive tweets. The Stanford test set is small.
However, it has been widely used in different
evaluation tasks (Go et al., 2009) (Dos Santos
and Gatti, 2014).

• Health Care Reform (HCR): This dataset
was constructed by crawling tweets contain-
ing the hashtag #hcr (Speriosu et al., 2011).
The task of this paper is to predict posi-
tive/negative tweets.

2.3 Tweet Processor

We first take the unique properties of Twitter to re-
duce the feature space such as Username, Usage of
links, None, URLs and Repeated Letters. We then
process retweets, stop words, links, URLs, men-
tions, punctuation and accentuation. For emoti-
cons in the dataset, we consider them as words in
order that deep learning classifiers can capture in-
formation from emoticons. Because the test set
contains emoticons, they do not influence classi-
fiers if emoticons do not contain in its training
data. Therefore, the emoticons would be useful
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Figure 1: The overview of a deep learning system.

when classifying test data by using deep learn-
ing model. However, our preprocessing steps are
different from (Go et al., 2009), they remove the
emoticons out from their training datasets because
they revealed that the training process makes the
usage of emoticons as noisy labels and if they
consider the emoticons, there is a negative impact
on classification accuracy. In addition, traditional
classifiers can not focus on non-emoticons (e.g.,
unigrams and bi-grams) to predict exactly the sen-
timent of tweets. After the pre-processing steps,
we apply the semantic rules based on the idea of
(Appel et al., 2016) and use a tweet processor from
our previous work (Nguyen and Nguyen, 2017) to
remove unnecessary sub-sentences from tweets in
order that the deep learning model learns essential
features from tweets. The semantic rule-based ap-
proach can handles negation and shows advances
led to effectively affect the output of classifiers.

2.4 Representation Level
In this section, we describe how the kinds of
embeddings are constructed by the representa-
tion module. To construct embedding inputs for
our model, we use a fixed-sized word vocabu-
lary V word and a fixed-sized character vocabulary
V char. Given a word wi is composed from char-
acters {c1, c2, ..., cM}, the character-level embed-
dings are encoded by column vectors ui in the em-
bedding matrix W char ∈ Rd

char×|V char|, where
V char is the size of the character vocabulary. For

continuous word-level embedding rword, we use a
pre-trained word-level. We build every word wi
into two advanced word embeddings:

• Advanced continuous word embeddings vi =
[ri; ei; li] is constructed by three sub-vectors:
the pre-trained word-level embedding ri ∈
Rd

word
, the character attention vector ei ∈

Rl of wi where l is the length of the filter
of wide convolutions, the lexicon embedding
li ∈Rdscore

where dscore is list of sentiment
scores for that word in lexicon datasets.

• Advanced dependency-based word embed-
dings di = [dei, ei; li] is also built by three
sub-vectors: the dependency-based word em-
bedding dei ∈ Rd

word
, the character atten-

tion vector ei and the lexicon embedding li.
The advanced dependency-based word em-
beddings contain syntactic contexts and is
increased information from LexW2Vs and
CharAVs.

This deals with three main problems: (i) Sentences
have any different size; (ii) Important information
of characters that can appear at any position in
a word are extracted; (iii) The syntax, semantic,
sentiment, context and the morphology of words
in a sentence are captured by concatenating two
advanced embeddings via Bi-CGRNN in order to
produce sentence representation.
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We have N fixed-size CharAVs corresponding
to word-level embeddings in a sentence. In sub-
section 2.5, 2.6 and 2.7, we illustrate the methods
of constructing LexW2Vs, CharAVs using Deep-
CNN and DependencyW2Vs.

2.5 Lexicon Embeddings (LexW2Vs)
The LexW2Vs are constructed by taking scores
from various lexicon datasets. In lexicon datasets,
each word contains key-value pairs in which the
key is a word and the value is a list of sentiment
scores for that word. These scores range from -1 to
1, where -1 is most negative and 1 is most positive,
respectively.

For each word wi ∈ V word, where V word is a
fixed-sized word vocabulary, a lexicon embedding
is constructed by concatenating all of the scores
among lexicon datasets with respect to wi. If wi
does not exist in a certain dataset, 0 value is sub-
stituted. The lexicon embedding is a form of a
vector li ∈ Rdscore

, where dscore is the total num-
ber of scores across all lexicon datasets. We use
seven lexicon datasets for building LexW2Vs:

• Bing Liu Opinion Lexicon (Hu and Liu,
2004).

• NRC Hashtag Sentiment Lexicon (Moham-
mad et al., 2013).

• Sentiment140 Lexicon (Mohammad et al.,
2013).

• NRC Sentiment140 Lexicon (Kiritchenko
et al., 2014).

• MaxDiff Twitter Sentiment Lexicon (Kir-
itchenko et al., 2014).

• National Research Council Canada (NRC)
Hashtag Affirmative and Negated Context
Sentiment Lexicon (Kiritchenko et al., 2014).

• Large-Scale Twitter-Specific Sentiment Lex-
icon (Tang et al., 2014).

The purpose of building LexW2Vs is to take the
different kinds of words for capturing the differ-
ent sentiments of words. Table 1 illustrates the
type of words for each dataset. We share idea
with (Shin et al., 2016). However, our LexW2Vs
are distinguished their approaches in the aspect:
We cover the colloquial expressions and colloquial
emoticons in tweets by using Large-scale Twitter-
Specific Sentiment Lexicon.

Lexicon dataset The type of words
Bing Liu Opinion Lexicon Sentiment adjective

words
NRC Hashtag Sentiment Lexi-
con

Hashtag emotion words
& Hashtag topic words

Sentiment140 Lexicon Emoticons & Senti-
ment words

NRC Sentiment140 Lexicon Affirmative context
words & Sentiment140
Negated Context words

MaxDiff Twitter Sentiment
Lexicon

Twitter sentiment
words

Hashtag Affirmative and
Negated Context Sentiment
Lexicon

Hashtag affirmative
words & Negated
contextual words

Large-Scale Twitter-Specific
Sentiment Lexicon

Colloquial words &
Emoticons

Table 1: The types of words in lexicon dataset.

We call such lexicon-based features as lexicon
embeddings because embeddings are a feature in-
put of deep learning model and describe the prop-
erties of a word or a phrase. Each word in each
lexicon datasets actually has many values that can
be built by training a neural network. The deep
learning model uses this input for calculating a
computational graph (weight matrix) that describe
relatedness among words (n-gram order).

2.6 Character Attention Vectors (CharAVs)

Figure 2 describes the way of forming a charac-
ter attention vector. We use a DeepCNN with two
wide convolutions. The first convolution produces
a fixed-size character feature vector named m-
gram features by extracting local features around
each character window of the given word and us-
ing a max pooling over vertical character win-
dows. The second convolution retrieves the fixed-
size character feature and transforms the represen-
tation to yield a character attention vector by per-
forming max pooling on each row of matrix in-
stead of each column. The purpose of this method
is to attend on the highest n-gram feature in or-
der to transform these m-gram features at previ-
ous level into a representation at a more focused
abstract level and produces an attention over only
the best feature vector. Character attention vec-
tors has two advantages: One is that this model
could adaptively assign an importance score to
each piece of word embedding according to its se-
mantic relatedness with characters of each word.
Another advantage is that this attention model is
differentiable, so that it could be easily trained
together with other components in an end-to-end
fashion. In the next sub-section, we introduce the
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structure of CNN with wide convolution.

Figure 2: DeepCNN for the sequence of character
embeddings of a word. For example with 1 region
size is 2 and 4 feature maps in the first convolu-
tion and 1 region size is 3 with 3 feature maps in
the second convolution. The CharAVs is then cre-
ated by performing max pooling on each row of
the attention matrix.

Convolutional Neural Network: The convolu-
tion has a filter vector m and take the dot product
of filter m with each m-grams in the sequence of
characters si ∈ R of a word in order to obtain a
sequence c:

cj = mT sj−m+1:j (1)

Based on Equation 1, we have two types of convo-
lutions that depend on the range of the index j.
The narrow type requires that s ≥ m and pro-
duce a sequence c ∈ Rs−m+1. The wide type
does not require on s orm and produce a sequence
c ∈Rs+m−1. Out-of-range input values si where
i < 1 or i > s are taken to be zero.
Wide Convolution: Given a word wi composed
of M characters {c1, c2, ..., cM}, we take a char-
acter embedding ui ∈ Rd

char
for each charac-

ter ci and construct a character matrix W char ∈
Rd

char×|V char|. The values of the embeddings ui
are parameters that are optimized during training.
The trained weights in the filter m correspond to
a feature detector which learns to recognize a spe-
cific class of n-grams. The use of a wide convolu-
tion has some advantages more than a narrow con-
volution because a wide convolution ensures that
all weights of filter reach the whole characters of

a word at the margins. The resulting matrix has
dimension d× (s+m− 1).

2.7 Dependency-based Word Vectors
(DependencyW2Vs)

To construct context embeddings, we use the idea
of (Levy and Goldberg, 2014) to derive syntactic
contexts based on the syntactic relations of a word.
Most previous works on neural word embeddings
take the contexts of a word by computing linear-
context words that precede and follow the target
word. However, these contexts can be exploited
similar by generalizing the SKIP-GRAM model.
The model for learning Dependency-based Word
Vectors is improved from SKIP-GRAM model in
which the linear bag of words contexts are re-
placed with arbitrary word contexts from depen-
dency tree. Syntactic contexts are derived from
produced dependency parse-trees. Specifically,
the bag-of-words in the SKIP-GRAM model yield
broad topical similarities, while the dependency-
based contexts yield more functional similarities
of a cohyponym nature. In the SKIP-GRAM
model, the contexts of a word are the words sur-
rounding it in the text. However, there is a lim-
itation of SKIP-GRAM word embeddings: Con-
texts need not correspond to all of the words and
the number of context-types maybe larger than the
number of word-types. Therefore, dependency-
based contexts capture more information than bag-
of-words contexts. In Figure 3, the contexts are
extracted for each word in the sentence and the
contexts of a word are derived from syntactic rela-
tions of a word in the sentence. For parsing syntac-
tic dependencies, we use a parser from (Goldberg
and Nivre, 2013) for Stanford dependencies and
the corpus are tagged with parts-of-speech using
Stanford parser 1.

After parsing each sentence, we consider word
context as Figure 3: For a target word w with mod-
ifiers m1,m2, ...,mn and a head h, we form the
contexts as (m1, lbl1), ..., (mn, lbln), (h, lbl−1

h ),
where lbl is the type of the dependency relation
between the head and the modifier, lbl−1 is used
to mark the inverse-relation. The advantages of
syntactic dependencies are inclusive and more fo-
cused than bag-of-words. In addition, they can
capture relations that out-of-reach with small win-
dows and filter out contexts that are not directly re-
lated to the target word. For example, Australian

1https://nlp.stanford.edu/software/lex-parser.shtml
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is not used as the context for discovers. There-
fore, we have more focused embeddings that cap-
ture more functional and less topical similarity.

Figure 3: Dependency-based context extraction
example (Levy and Goldberg, 2014)

2.8 Contextual Gated Recurrent Neural
Network (CGRNN)

Gated Recurrent Neural Network: The Bi-
GRNN is a version of (Chung et al., 2014) in
which a Gated Recurrent Unit (GRU) has two
gates, a reset gate rt and a update gate zt. In-
tuitively, the reset gate determines how to com-
bine the new input with the previous memory, and
the update gate defines how much of the previ-
ous memory to keep around. We use GRUs for
our model because GRUs are quite new and their
tradeoffs have not been fully explored yet. On the
other hand, GRUs have fewer parameters (U and
W are smaller) and thus may train a bit faster or
need less data to generalize. The equation 2 illus-
trates the construction of a GRU cell:

rt = σ(Wxrxt +Whrht−1 + br)
zt = σ(Wxzxt +Whzht−1 + bz)

ĥt = g(xtWxh + (rt � ht−1)Whh + bh)

ht = (1− zt)� ht−1 + zt � ĥt.

(2)

Contextual Gated Recurrent Neural Network:
Based on the idea of GRNN model, we build a
power of syntactic contexts into a standard Bi-
GRNN model which adapt GRNN cell to take both
words and syntactic contexts by modifying the
equations representing operations of the GRNN
cell. A GRNN cell is added dependency-based
word vector T to reset gate, update gate and hid-
den state. In the Equation 3, the term in bold is the
modification made to the original GRNN equation.

Based on these equations, adding dependency-
based word vector T is corresponding to consider-
ing a composite input [xi, T ] to the GRNN cell that
concatenates the advanced continuous word em-
beddings and advanced dependency-based word
embeddings.

rt = σ(Wxrxt +Whrht−1 + WTiT + br)
zt = σ(Wxzxt +Whzht−1 + WTiT + bz)

ĥt = g(xtWxh + (rt � ht−1)Whh + WTiT + bh)

ht = (1− zt)� ht−1 + zt � ĥt.
(3)

This approach of concatenating syntactic con-
texts and word embeddings works better in prac-
tice and deal with the context challenge in senti-
ment analysis.

3 Results and Analysis

3.1 Experimental setups
For the Stanford Twitter Sentiment Corpus (STS
Corpus), we use the number of samples as
(Dos Santos and Gatti, 2014). The training data
is selected 80K tweets for a training data and 16K
tweets for the development set randomly from the
training data of (Go et al., 2009). We conduct a
binary prediction for STS Corpus.

In Health Care Reform Corpus (HCR Corpus),
we also select 10% randomly for the development
set in a training set and construct as (Da Silva
et al., 2014) for comparison. We describe the sum-
mary of datasets in Table 2.

Data Set N c lw lc |Vw| |Vc|

STS
Train 80K

2
33 110

67083 134Dev 16K 28 48
Test 359 21 16

HCR
Train 621

2
25 70

3100 60Dev 636 26 16
Test 665 20 16

Table 2: Summary statistics for the datasets after
using semantic rules. c: the number of classes.
N : The number of tweets. lw: Maximum sen-
tence length. lc: Maximum character length. |Vw|:
Word alphabet size. |Vc|: Character alphabet size.

Hyperparameters: For all datasets, the filter win-
dow size (h) is 7 with 6 feature maps each for the
first wide convolution layer, the second wide con-
volution layer has a filter window size of 1 with 14
feature maps each. Dropout rate (p) is 0.5, l2 con-
straint, learning rate is 0.1 and momentum of 0.9.
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Mini-batch size for STS Corpus is 100 and HCR
corpus is 4. Training is done through stochastic
gradient descent over shuffled mini-batches with
Adadelta update rule (Zeiler, 2012).
Pre-trained Word Vectors: We use the pub-
licly available Word2Vec 2 trained from 100 billion
words from Google and TwitterGlove 3 of Stanford
is performed on aggregated global word-word co-
occurrence statistics from a corpus. Word2Vec has
dimensionality of 300 and Twitter Glove have di-
mensionality of 200. Words that do not present in
the set of pre-train words are initialized randomly.

3.2 Experimental results

Table 3 shows the results of our model for senti-
ment analysis against other models. The differ-
ent kinds of models are constructed to evaluate
the impacts of embeddings on classification accu-
racy. We build the Bi-CGRNN enhanced Char-
AVs and LexW2Vs. In addition, we evaluate sepa-
rately the effectiveness of CharAVs and LexW2Vs
on Twitter datasets by incorporating with standard
Bi-GRNN.

We compare our model performance with the
approaches of (Go et al., 2009) and (Dos San-
tos and Gatti, 2014). The model of (Go et al.,
2009) displays the good results in the previous
time and the model of (Dos Santos and Gatti,
2014) reported the state-of-the-art so far by using
a charSCNN. Our model shows the result of 88.57
is the best prediction accuracy for STS Corpus.

For HCR Corpus, we compare the performance
with the results of (Da Silva et al., 2014) that used
an ensemble of multiple base classifiers (ENS)
such as Naive Bayes (NB), Random Forest (RF),
SVM and Logistic Regression (LR). The ENS
model is combined with bag-of-words (BoW), fea-
ture hashing (FH) and lexicons (lex). Our model
outperforms the model of (Da Silva et al., 2014)
with result of 80 so far.

3.3 Analysis

The model with CharAVs and LexW2Vs built
on top of GoogleW2V vectors and Dependen-
cyW2Vs is effective in order to increase classi-
fication accuracy. These experiments show that
CharAVs and LexW2Vs achieve good perfor-
mances and contribute in enhancing information
for words. However, the experiments indicate that

2code.google.com/p/word2vec/
3https://nlp.stanford.edu/projects/glove/

Model STS HCR
CharSCNN/Pre-trained (Dos Santos
and Gatti, 2014)

86.4 -

CharSCNN/Random (Dos Santos and
Gatti, 2014)

81.9 -

SCNN/Pre-trained (Dos Santos and
Gatti, 2014)

85.2 -

SCNN/Random (Dos Santos and Gatti,
2014)

82.2 -

MaxEnt (Go et al., 2009) 83.0 -
NB (Go et al., 2009) 82.7 -
SVM (Go et al., 2009) 82.2 -
SVM-BoW - 73.99
SVM-BoW + lex - 75.94
RF-BoW - 70.83
RF-BoW + lex - 72.93
LR-BoW - 73.83
LR-BoW + lex - 74.73
MNB-BoW - 72.48
MNB-BoW + lex - 75.33
ENS (RF + MNB + LR) - BoW - 75.19
ENS (SVM + RF + MNB + LR) - BoW
+ lex

- 76.99

Bi-CGRNN + CharAVs + LexW2Vs +
GoogleW2Vs

88.5 78.47

Bi-CGRNN + CharAVs + LexW2Vs +
GloveW2Vs

86.9 80.0

Bi-CGRNN + GoogleW2Vs 85.7 77.74
Bi-GRNN + CharAVs + GoogleW2Vs 86.0 79.09
Bi-GRNN + LexW2Vs + GoogleW2Vs 88.0 78.79

Table 3: Accuracy of different models for binary
classification.

CharAVs are more effective in small dataset than
LexW2Vs. In addition, the Bi-CGRNN enhanced
CharAVs and LexW2Vs have a great impact on
Twitter datasets. Table 4 displays the effective-
ness of our model in predicting the tweets. In
the table 4, the Bi-GRNN using LexW2Vs cap-
tures the positive words (green words) and nega-
tive words (red words) for computing scores and
predicts wrong labels because of the contexts of
tweets while the Bi-CGRNN enhanced CharAVs
and LexW2Vs recognizes contexts for true predic-
tion. For example, the model using LexW2Vs pre-
dicts the last tweet to be positive because ’strong’
word has sentiment stronger than ’no’ word, how-
ever, the context of this tweet is negative. The
pre-train word vectors are good, universal feature
extractors. The syntactic contexts support in deal-
ing context problems in tweets and the lexicons
support word embeddings in dealing the sentiment
of tweets. The difference between our model and
other approaches is the ability of our model to cap-
ture enough features and combine these features at
high level. In addition, the usage of DeepCNN for
characters can learns a structure of words in higher
abstract level. LexW2Vs and syntactic contexts
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Model Input from HCR Corpus Gold Label Prediction
Bi-CGRNN + CharAVs +
LexW2Vs

@seanbaran74 well that’s what’s next. after #hcr
they’ll save the environment, give us CFLs and take
away our TVs.

Negative True

Bi-GRNN + LexW2Vs False
Bi-CGRNN + CharAVs +
LexW2Vs

All of us fighting for #HCR ask ourselves who
#imherefor. Who are you fighting for? http://bit.ly/9-st Positive True

Bi-GRNN + LexW2Vs False
Bi-CGRNN + CharAVs +
LexW2Vs

Stephen Lynch strong ’no’ on health bill despite talk
with President obama http://bit.ly/cQIujP #hcr #tcot
#tlot

Negative True

Bi-GRNN + LexW2Vs False

Table 4: The label prediction between the Bi-GRNN model using LexW2Vs and the Bi-CGRNN model
using CharAVs and LexW2Vs (The red words are negative and the green words are positive).

contribute in supporting information for word em-
beddings. This helps the model not only learns
to recognize single n-grams of a word, negation,
but also patterns in n-grams led to form a structure
significance of a sentence.

4 Conclusions

In the present work, we build a model that solves
four challenges in Twitter: syntax, semantic, sen-
timent and context. Our results show the well-
establish evidence that CharAVs, LexW2Vs and
DependencyW2Vs are important ingredients for
ContinuousW2Vs in increasing classification ac-
curacy for sentiment analysis. Our source and pro-
cessed data are available at Github4.
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Abstract

In this paper we propose a lightly-
supervised framework to rapidly build
text classifiers for contextual advertising.
In contextual advertising, advertisers of-
ten want to target to a specific class of
webpages most relevant to their product,
which may not be covered by a pre-trained
classifier. Moreover, the advertisers are
only interested in the target class. There-
fore, it is more suitable to model as a one-
class classification problem, in contrast to
traditional classification problems where
disjoint classes are defined a priori.

We first apply two state-of-the-art lightly-
supervised classification models, gener-
alized expectation (GE) criteria (Druck
et al., 2008) and multinomial naı̈ve Bayes
(MNB) with priors (Settles, 2011) to one-
class classification where the user only
provides a small list of labeled words for
the target class. We fuse the two mod-
els together by using MNB to automati-
cally enrich the constraints for GE train-
ing. We also explore ensemble method
to further improve the accuracy. On a
corpus of real-time bidding requests, the
proposed model achieves the highest aver-
age F1 of 0.69 and closes half of the gap
between previous state-of-the-art lightly-
supervised models to a fully-supervised
MaxEnt model.

1 Introduction

Contextual advertising (or contextual targeting) is
a technique to maximize the relevance of online
advertisements by performing page analysis of the
webpages. Contextual advertising is closely re-
lated to text classification problem, which is well-

known to the NLP community. Underlying, the
system classifies webpages into predefined Ads
verticals (categories). Based on the classification
result, the real-time bidding (RTB) system will de-
cide whether to bid for a particular page to dis-
play their Ads. Successful contextual advertising
leads to lower advertising cost and higher click-
through and conversion rate (Chatterjee et al.,
2003; Broder et al., 2007).

Contextual targeting differs from traditional text
classification in three ways. Firstly, with thou-
sands of vastly different products coming to mar-
ket every day, there are large number of categories
(usually thousands of categories). Secondly, the
advertisers often want to customize an existing
category or create new categories to target a set
of more relevant webpages. I.e. the classes are
not static but evolving. It is therefore unrealistic
to ask the advertisers to provide labeled webpages
for each new or modified category they want to tar-
get. Lastly, while the advertisers can provide prior
knowledge for the class they want to target, they
cannot accurately specify the irrelevant (or nega-
tive) category because it likely covers broad topics
in the wild. However, to train a classifier, usu-
ally labeled instances for each class are required.
Because of these constraints, prominent service
providers such as Peer39 1 and Grapeshot 2 build
their contextual targeting systems mainly using
hand-crafted keywords instead of learning based
approaches.

In this work, we model contextual targeting
as lightly-supervised one-class classification prob-
lem. The algorithm takes unlabelled documents 3

DOCU and the user provided keywords Sc for the

1 https://www.sizmek.com/peer39/
2https://www.grapeshot.com/
3We classify only based on the text in the webpages.

Henceforth we use “document” to refer to “webpage”, con-
forming to the terminology commonly used in NLP.
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target class c as input and returns a classifier Mc

that can classify documents belonging to class c.
It is lightly-supervised because we do not use any
document labels , but labeled keywords instead. It
is one-class classification because the users need
to provide labeled keywords only for the class they
want to target, not the negative class.

We apply two state-of-the-art lightly-supervised
classification models, generalized expectation
(GE) criteria (Druck et al., 2008) and multinomial
naı̈ve Bayes (MNB) with priors (Settles, 2011) in
the one-class classification setting. Inspired by the
relative strength and weakness of the two mod-
els, we propose a novel approach to fuse them
together where MNB is trained first. The salient
words are read off from the posterior class-word
distributions and automatically added to form ad-
ditional constraints for GE. We also employ en-
semble method to produce a final classifier that
closed more than half of the gap between previ-
ous state-of-the-art lightly-supervised models to a
fully-supervised MaxEnt model.

The contributions of this paper are:

1. Extended state-of-the-art semi-supervised
classifiers for one-class classification prob-
lem.

2. Enriched expectation constraints for GE us-
ing a MNB model trained using EM algo-
rithm.

3. Successfully employed ensemble method to
produce a final classifier that closed more
than half of the gap between previous state-
of-the-art semi-supervised models to a fully-
supervised MaxEnt model.

The paper is organized as follows: Section 2
presents previous works in two related fields:
semi-supervised classification and one-class clas-
sification. We review the two previous state-of-
the-art models we depend heavily on, generalized
expectation (GE) criteria and multinomial naı̈ve
Bayes (MNB) with priors in Section 3 and 4, fol-
lowed by applying them to one-class classification
problem (Section 5). Section 6 describes two dis-
tinct approaches to combine these two models to-
gether. In section 7, we present our experimental
results. Lastly, we present conclusions and sug-
gest future directions.

2 Related Work

2.1 Semi-Supervised Text Classification
Supervised text classification methods were suc-
cessfully applied to various tasks, such as senti-
ment analysis (Pang et al., 2002; Wang and Man-
ning, 2012), information extraction (Jin et al.,
2013) and stance recognition (Hasan and Ng,
2014). The main problem of supervised classi-
fication technique is that it requires sizeable set
of labeled training documents for each predefined
class.

Various semi-supervised classification methods
have been proposed to address the lack of train-
ing documents. We are particularly interested
in lightly-supervised methods that exploit prior
knowledge (usually in the form of labeled words
for each class) and eliminate the need of any la-
beled documents. Two main categories of ap-
proaches are often employed to exploit the word
labels. The first one is to build an initial weak
classifier to obtain soft labels of the documents
and then apply expectation maximization (EM) al-
gorithm (Liu et al., 2004; Schapire et al., 2002).
More recently, there is growing interest in meth-
ods that incorporate labeled word features directly
into the classification model, either as constraints
in an objective function (Druck et al., 2008; Zhao
et al., 2016) or as priors on model parameters (Set-
tles, 2011; Lucas and Downey, 2013).

Liu at al. (2004) proposed to label a set of repre-
sentative words for each class, which is used to ex-
tract a set of documents as the initial training set.
EM algorithm was then applied to iteratively re-
fine the labels of the documents and to improve the
accuracy of the classifier. Schapire et al. (2002)
used hand-crafted rules based on keywords to la-
bel documents, and modified AdaBoost to fit both
the labeled training data and the soft-labeled data.

The methods above convert domain knowledge
into labeled documents. An alternative approach
is to use the domain knowledge to provide model
constraints. Druck at al. (2008; 2011) proposed
generalized expectation (GE) criteria, which use
labeled words to constrain the model’s predictions
on unlabeled data. GE has been successfully ap-
plied on different tasks, such as text categoriza-
tion (Druck et al., 2008), semantic tagging (Druck
et al., 2009), information structure analysis of sci-
entific documents (Guo et al., 2015) and language
identification in mixed-language documents (King
and Abney, 2013). Similarly, Zhao et al. (2016)
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made use of word-level statistical constraints to
preserve the class distribution on words, so that
the classifier will not drift due to the extra (noisy)
labels introduced by EM algorithm.

Labeled words can also provide priors for gen-
erative models. Settles (2011) extended multino-
mial naı̈ve Bayes model to allow labels for words
by increasing their Dirichlet prior. His method
consists of three steps: firstly to estimate the initial
parameters using only the priors; secondly to ap-
ply the induced classifier on unlabeled documents;
lastly to re-estimate the model parameters using
both labeled and probabilistically-labeled docu-
ments. Using an interactive approach to query
document and word labels from the user, the sys-
tem can achieve 90% of state-of-the-art perfor-
mance after a few minutes of annotation.

Dermouche et al. (2013) also exploited prior
knowledge in a multinomial naı̈ve Bayes model.
Instead of modifying the priors, their method ar-
tificially modifies the occurrences of the terms in
the right and wrong class. This method uses the
full set of document labels and a large sentiment
lexicon consisting of around eight thousand terms,
making it less suitable for the lightly-supervised
setting for contextual targeting.

2.2 One-Class Classification

Another area related to our work is one-class clas-
sification problem (Moya and Hush, 1996), where
no labeled negative instance is available. One-
class SVM (Schölkopf et al., 2001) learns only
from positive examples. The model classifies new
instances as similar or different to the training set.
Lee at al. (2003) observed that this approach is
highly sensitive to the input representation and it
did not perform well for text classification.

We highlight that one-class classification prob-
lem is not restricted to using only positive labeled
instances. When positive and unlabelled data are
available, a popular approach is to randomly as-
sign the negative class to unlabelled instances in
the beginning and iteratively refine the labels us-
ing EM-like algorithms (Yu et al., 2002; Liu et al.,
2003; Li et al., 2009).

Our task lies in the intersection of semi-
supervised classification and one-class classifica-
tion, yet it differs from both tasks in principled
ways. Aforementioned semi-supervised classifi-
cation algorithms were applied on corpora with
predefined (two or more) classes. When the ir-

relevant (or negative) class refers to “everything
else”, we cannot accurately provide prior knowl-
edge for the irrelevant class using expert domain
knowledge. On the other hand, previous one-
class classification problems assumed the presence
of labeled instances of the positive class, without
which neither the similarity-based nor the EM-like
algorithms can be applied directly.

3 Generalized Expectation (GE) Criteria

Generalized expectation (GE) criteria (Mann and
McCallum, 2008) are constraint terms used to
train discriminative linear models. GE provides
a flexible framework for encoding prior knowl-
edge to provide training signals for parameter es-
timation. When applied to text classification, con-
straint functions Gk are expressed as the reference
distribution of the feature labels. 4 For example
puck → {baseball : 0.1, hockey : 0.9} means
90% of documents containing the word “puck”
should be labeled the class “hockey”. Each con-
straint is translated into a term to add to the ob-
jective function to encourage parameters that yield
predictions conforming to the reference distribu-
tion on unlabeled documents. Formally, the com-
bined objective function can be written as:

C = −
∑
k∈K

D(p̂(y|xk > 0)||p̃(y|xk > 0))−∆

where p̂(y|xk > 0) is the reference distribution,
p̃(y|xk > 0) is the empirical distribution and D
is a distance function. ∆ is shorthand for a zero-
mean σ2 -variance Gaussian prior on parameters.

GE does not require one-to-one correspondence
between constraint functions Gk and model fea-
ture functions. The optimization problem for GE
is always under-constrained, meaning the number
of parameters to be estimated far exceeds the num-
ber of constraints the user provides. To make the
optimization tractable, the model updates the gra-
dient for an unlabeled feature j based on how of-
ten j co-occurs with a labeled feature k. 5 Hence
Druck et al. (2009) commented that GE can also
be interpreted as a bootstrapping method that esti-
mates parameters using limited training signals.

4The features consist of word unigrams in both Druck et
al. (2008) and in this paper.

5Please refer to Druck et al. (2008) for the derivation.
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4 Multinomial Naı̈ve Bayes (MNB) with
Priors

Multinomial Naı̈ve Bayes is a generative classifi-
cation algorithm making a strong assumption that
each word wk occurs independent of each other
when conditioned on the class label cj . Hence,

ŷ = argmax
j ∈ {1,...,J}

P (cj)
nd∏
k=1

P (wk|cj)

where P (cj) is the probability of class cj and
P (wk|cj) is the probability of generating word wk
given class cj . P (wk|cj) is estimated using:

P (wk|cj) =
mjk +

∑
i P (cj |x(i))fk(x(i))
Z(fk)

where fk(x(i)) is the count of wordwk in the ith
document in the training set and Z(fk) is a nor-
malization constant summing over all words in the
vocabulary. Typically, a uniform Laplacian prior
is used (all mjk have the same value 1). To in-
corporate the word labels, Settles (2011) increased
the prior mjk by α if word wk is labeled with
class cj . To exploit unlabeled documents, Set-
tles (2011) used an initial model estimated with
only the priors to probabilistically label the un-
labeled documents. The probabilistically labeled
documents are combined with the labeled words
and documents to estimate the parameters for the
final model using a single-iteration EM algorithm.

5 Applying GE and MNB to One-Class
Classification

In Druck et al. (2009) and Settles (2011), the au-
thors ran their models using human labeled key-
words for each predefined class. Analogous to
one-class classification, where the system takes
only positive (and unlabelled) documents as input,
We now try to train GE and MNB with priors us-
ing only user-provided positive keywords and un-
labelled documents as input. 6

GE cannot cope with one-class classification by
nature. If we only provide labeled words for the
“+” class, the “+” label will be “propagated” to
all the word features co-occurring with a labeled
word. The trained classifier will predict “+” for

6We use positive/+ to denote the target class and
negative/- to denote the irrelevant class.

all the unseen documents. In contrary, MNB with
priors can be trained using only the “+” keywords.
When we increase the prior for labeled words in
class c+, it decreases P (w′k|c+) with respect to
P (w′k|c−) for an unlabeled feature w′k (the nor-
malization constant Z+ is greater that Z− due to
the increased priors in the “+” class). This is desir-
able because if a document only contains random
unlabeled words, the model will predict “-”.

5.1 Labeling Words for the Target Class

Liu et al. (2004) observed that it is difficult for the
user to come up with a set of representative words
for each class independently because they usually
can only provide a few words, which are insuffi-
cient to train an accurate classifier. Therefore, it is
critical that the system can assist the user by sug-
gesting a good set of candidate words to label in-
stead of asking them to come up with all the words
by themselves. We use a hybrid candidate word
suggestion method that asks the user to input a
seed keyword (in most cases, it is merely the class
name they want to target) and the system will sug-
gest other words that are closely related to it. We
make use of word vectors (Mikolov et al., 2013),
pointwise mutual information (PMI) (Church and
Hanks, 1990) and Wikipedia.

Word vectors have been widely used to measure
word similarities (Tang et al., 2014; Levy et al.,
2015). We calculate cosine similarity using pre-
trained GloVe word vectors 7 (Pennington et al.,
2014) to find similar words to the seed word. Word
vectors can identify linguistically or semantically
related words. E.g. “luxurious” and “lavish” are
the nearest neighbours of “luxury”.

We use PMI to mine the words that tend to co-
occur with the seed word. For example, “resort”,
“BMW”, “Gucci” all receive high PMI scores with
“luxury” while none of them are near the word
“luxury” in the word vector space.

Lastly, we automatically extract the keywords
and keyphrases from the Wikipedia page of the
seed word (if the page exists). This method is
aimed to cover the technical terms that are con-
fident indicators but are rarely observed in the cor-
pus. E.g. “Somniloquy” is a synonym of “sleep-
talking” but it is thirty time less frequent than the
latter.

We show the top 50 candidate words suggested
by each of the three methods to the user, who will

7 http://nlp.stanford.edu/projects/glove/
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select relevant words to add to the keyword list.
Based on user study reported in Settles (2011), la-
beling words takes on average 3.2 seconds. This
suggests the total time for the user to complete la-
beling is within 10 minutes.

5.2 Special Treatment for GE

As mentioned above, GE also requires labeled
words for the “-” class to train. However, it is im-
practical and time-consuming to ask the users to
label a list of words irrelevant to the target class.
We form the keyword list for the “-” class by sim-
ply performing a multinomial sampling from the
vocabulary, where each word is weighted by its
log count in the unlabeled corpus. This assumes
that a randomly sampled word is unlikely to be
a keyword for the target class. Additionally, we
use L2-based penalty instead of the default KL di-
vergence because previous work showed that it is
more robust to label noises (Druck, 2011).

The labeled words are translated into GE
constraints using Schapire-distributions (Schapire
et al., 2002). For the user labeled “+” keywords,
We assign P+ = 0.9 and P− = 0.1. I.e. if “puck”
is a labeled word for the class “hockey”, the cor-
responding constraint will be puck → {hockey :
0.9, others : 0.1}. For the “-” class, we randomly
sample 20 times more keywords than the “+” class
but use a more even distribution, where we set
P+ = 0.25 and P− = 0.75. This is in the same
spirit with biased sparsity in Wang et al. (2016),
which says the word distribution of the targeted
topic only focuses on a small number of repre-
sentative words and the word distribution of non-
targeted topics contain almost all possible words.
We do not use too many negative keywords (con-
straints) because it significantly increases the com-
putational cost to train GE.

We refer to this system as GE/Random be-
cause it uses randomly sampled “-” keywords.

6 Combining GE and MNB

6.1 Using MNB to Enrich GE Constraints

Settles (2011) observed that MNB outperformed
GE when the number of labeled words were be-
tween five to 20. When the number of labeled key-
words increased (with more prior knowledge), GE
usually performed better. This inspired us to fuse
the two models together, in which MNB’s role is
to bootstrap more labeled words to train a more
accurate GE classifier.

We first use the user labeled “+” words and un-
labeled documents to train an MNB model. Then
we obtain a list of salient words for the “+” class
which are not already covered in the user labeled
words. We use a simple rule that word wk will
be added to the set SMNB if P (wk|c+)

P (wk|c−)> 10 (wk
appears 10 times more likely given the “+” class
than given the “-” class) . 8 In this way, we ex-
ploit the strength of a generative model (MNB)
to discover latent structure and topics from un-
labeled data to augment a discriminative model
(GE), which usually achieves higher accuracy for
classification tasks.

Algorithm 1 summarizes the training procedure
for the combined model GE/MNB. Line 2-4 are
the procedure to train a MNB with priors model
with EM algorithm. We obtain the list of salient
words for the target class in line 5. All the words
in Suser, SMNB and Srand are translated into GE
constraints to train the final GE/MNB model.

Algorithm 1: Train GE/MNB Classifier
1 train classifier (Suser ,DOCU );

Input : User labeled features Suser and unlabeled
corpus DOCU

Output: Trained GE/MNB classifier
2 MMNB/Priors = train(Suser);
3 DOCprob = MMNB/Priors.classify(DOCU );
4 MMNB/Priors+EM1 = train(Suser , DOCprob);
5 SMNB = MMNB/Priors+EM1 .getSalientWords();
6 Srand = randomlySampleWords();
7 MGE/MNB = train([Suser , SMNB , Srand], DOCU );
8 return MGE/MNB ;

6.2 Using Ensemble Approach
Another intuitive way to combine GE and MNB is
to train the two classifiers independently and use
ensemble approach (Dietterich, 2000) to combine
the prediction results of the two classifiers. GE
and MNB behave quite differently although they
make use of the same labeled keywords. The va-
riety they introduce is a critical condition for the
success of ensemble approach (Dietterich, 2000).

We first group the aforementioned classifiers
into two families based on the algorithm to train
their final classifier. The GE family includes
GE/Random and GE/MNB. The MNB family in-
cludes MNB/Priors and MNB/Priors+EM1. We
used a simple ensemble rule: the classifier ensem-
ble outputs “+” if and only if at least one GE and

8We also tried to replace the randomly sampled “-” key-
words with words that have high P (wk|c−)

P (wk|c+)
. However, the

result was worse in general.
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one MNB classifier output “+”. We denote this
classifier ensemble as GE1∧MNB1. We used this
heuristic rule instead of stacking or other more so-
phisticated techniques because it does not require
any labeled documents to train the ensemble.

7 Evaluation

7.1 Baselines and Datasets

We compared the proposed GE/MNB and
GE1∧ MNB1 with various baselines. For GE,
we experimented with GE/Random, which uses
user provided keywords for the target class and
randomly sampled negative keywords to train.
For MNB with priors, we ran two configurations
following Settles (2011), MNB/Priors+EM1, the
full model using EM algorithm and MNB/Priors,
the initial model using only user labeled priors.
We also compared with a keyword voting baseline
and a fully-supervised MaxEnt model trained
using labeled documents. The results of the
MaxEnt model is for reference purpose, as our
goal is not to beat a supervised model, but to
improve from previous lightly-supervised models.

We use the GE implementation in the MALLET
toolkit 9 and the implementation of MNB with pri-
ors provided by Settles (2011) 10, which also ex-
tends from MALLET. All the classifiers share the
same standard preprocessing pipeline.

We made use of two datasets for evaluation. The
first dataset is sampled from the actual real-time
bidding (RTB) requests. The second one is the
well-known 20 Newsgroups corpus (Lang, 1995).
The results on the first corpus is more relevant and
indicative while the results on the 20 Newsgroups
allows to benchmark the models beyond the appli-
cation of RTB.

7.2 Evaluations on RTB Dataset

We created the real-time bidding (RTB) dataset
from a database of 30 million historical re-
quests. We used open-source Boilerpipe li-
brary (Kohlschütter et al., 2010) to extract the tex-
tual content from the webpages and we obtained
the category labels for the webpages from a lead-
ing Ad Exchange platform (in total 2,200 cate-
gories). 11

9http://mallet.cs.umass.edu
10https://github.com/burrsettles/dualist
11The dataset is available at

https://sites.google.com/site/jinyipingnus/research for
future works to reproduce our results.

Class Docs +/- Ratio
Cold & Flu 1,363 1:50

Cancer 3,234 1:20
Diabetes 1,394 1:50

Sleep Disorder 2,592 1:25
Nutrition 22,176 1:3

Sampled “-” docs 68,626

Table 1: Number of documents for each class and
relevant/irrelevant class ratio.

We randomly selected five categories in the
“Health” domain to carry out evaluation. For each
experiment, the documents labeled with one of the
selected categories were assigned to be the “+”
class. We uniformly sampled from all other cat-
egories to use as the “-” class. We hide the docu-
ment labels during training for all models except
for MaxEnt.

Table 1 shows the number of documents for
each class and the rounded +/- ratio. We can see
that the +/- classes are very imbalanced, which
is to be expected in real-world RTB requests. In
practice, we cannot simply perform up- or down-
sampling without the labels of the documents.
Therefore, we did not try to modify the class ratio
to make it more balanced. For each set of exper-
iment, we used the same 9:1 split of training and
testing set.

One author of this paper composed the labeled
keywords with the assistance of the hybrid key-
word suggestion method described in Section 5.1.
The keywords for each class were composed in-
dependently. He was not allowed to add words
not suggested by the system so that we can vali-
date the utility of the keyword suggestion method.
Table 2 shows the keywords for each category he
composed. The labeling stopped when either he
finished reviewing all the suggested words or the
time reached 10 minutes.

Table 3 shows the P/R/F1 scores of each clas-
sifier for each class. We did not use the accuracy
measure because the ratio of +/- classes is strongly
imbalanced. We used the same set of user labeled
keywords for system 0-5. For GE and MNB with
priors, we used the parameter setting proposed in
the original papers (GE: Gaussian Prior=1; MNB:
α=50).

We can make some interesting observations
from the result. Firstly, the keyword voting ap-
proach lagged behind all of the lightly-supervised
models. This shows that learning based ap-
proaches improved from a simple rule-based sys-
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Cold &
Flu

cough, flu, throat, nasal, sinus, conges-
tion, respiratory, sneezing, influenza, mu-
cus, runny, stuffy, decongestant, phlegm, pan-
demic, epidemic, measles, typhoid, diphthe-
ria, antihistamines

Cancer cancer, tumor, chemotherapy, radiation,
melanoma, leukemia, lymph, malignant, on-
cology, chemo, biopsy, oncologist, carci-
noma, neoplasm, benign, colonoscopy, fi-
broid, invasive,lumpectomy, nonmelanoma,
metastasis, palliative, adjuvant, neoadjuvant,
polyp, smear, pathologist, prognosis, col-
poscopy

Diab. diabetes, insulin, glucose, mellitus, diabetic,
ketoacidosis, ketosis, dka, hyperosmolar, hy-
perglycemic, nonketotic, niddm, polydipsia,
polyphagia, polyuria, glucagon, metformin

Sleep
Dis.

sleep, asleep, awake, bedtime, sleepy, dream,
snoring, snooze, nap, pillow, melatonin, cir-
cadian, apnoea, somnipathy, polysomnogra-
phy, actigraphy, dyssomnias, parasomnias,
apnea, sleepwalking, catathrenia, hypopnea,
hypersomnia, narcolepsy, cataplexy, noc-
turia, enuresis, somniphobia

Nutri. nutrition, protein, nutrients, livestrong, vi-
tamin, intake, carbohydrates, fiber, myplate,
minerals, carb, grain, metabolism, dietary,
antioxidants, calcium, nutritional, nutritious,
nutritionist

Table 2: Labeled words for each class

tem using the same prior knowledge.
Secondly, GE/Random and MNB/Priors+EM1

performed comparably, with GE/Random per-
forming slightly better.

The combined GE/MNB classifier improved re-
call by 4% from GE/Random. This is mainly due
to the additional keywords we obtained from the
MNB model. On average, 53 new keywords were
added for each classifier, doubling the number of
the original user labeled words.

The average precision dropped slightly due to
the decreased precision of “ColdFlu” and “Can-
cer” class. After error analysis, we identified that
for these two classes, some common words fre-
quently co-occurring with user labeled keywords
were introduced by MNB as new constraints. E.g.
for “ColdFlu”: cold, congestion, swine; for “can-
cer”: breast, prostate. Such words are not real
indicators of the target class and likely cause the
precision to drop. Table 4 shows the top 10 auto-
matically added keywords for each class.

The performance of the classifier ensemble
GE1∧MNB1 was impressive, improving a further
4% from GE/MNB and reaching macro average
F1 score of 0.69. The system achieved the high-
est or close to the highest F1 for all the classes
among the lightly-supervised models. Its F1 score

is only 3% lower than the fully-supervised Max-
Ent model. This is particularly encouraging be-
cause the MaxEnt model was trained using many
thousands of labeled training documents.

7.3 Evaluations on 20 Newsgroups Corpus

We also applied the systems on the well-known
20 Newsgroups corpus (Lang, 1995) to facilitate
future comparisons. The corpus contains 20 dif-
ferent newsgroups having 1,000 documents each.
We used the documents with file name ending with
“0” for testing (roughly 10% of the corpus) and the
rest for training.

Following Druck at al. (2008), we used mutual
information of the candidate words with the or-
acle document labels to mine the keywords for
each class. This simulates the scenario where a
domain expert can suggest and label relevant key-
words. We further removed the keywords that ap-
pear in more than two classes. While keywords
that appear in many classes can be “balanced out”
in multi-class classification setting. We find that
including them will usually harm the performance
for one-class classification. We used in total 262
keywords (on average 13.1 per class).

We ran 20 experiments using each newsgroup
as the target class at a time. We differentiate from
Druck at al. (2008) and Settles (2011) mainly in
that for each experiment, we only take the key-
words for the target class as input, but not the key-
words for other classes. We made this decision in
order to be consistent with the one-class classifica-
tion problem. We can think of this experiment as
more lightly-supervised than Druck at al. (2008)
and Settles (2011). Table 5 shows the performance
of various systems.

We were not surprised that GE performed worse
that the MNB counterpart given the small list of la-
beled words. By bootstrapping labeled words us-
ing MNB, the GE/MNB model improved recall by
3% at the sacrifice of 2% precision, which is sim-
ilar to the result on the RTB dataset.

The classifier ensemble GE1∧MNB1 still man-
aged to achieve the highest precision and F1 score
(tie with MNB/Priors+EM1), showing its robust-
ness despite the lackluster performance of individ-
ual classifiers.

We also experimented with MaxEnt varying the
amount of the training data. MaxEnt (γ=0.1) used
10% of the corpus (2,000 labelled documents) for
training. Its average F1 score is similar to the
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System Cold Flu Cancer Diabetes Sleep Dis. Nutrition Macro Avg.
0: keyword voting .44/.63/.52 .60/.59/.60 .65/.61/.63 .53/.65/.58 .64/.44/.52 .57/.59/.58
1: GE/Random .56/.63/.59 .78/.56/.65 .77/.56/.65 .72/.65/.68 .78/.45/.57 .72/.57/.64

2:
MNB/Priors

+EM1 .59/.56/.57 .66/.53/.59 .62/.56/.59 .72/.60/.66 .58/.86/.67 .63/.62/.63
3: MNB/Priors .37/.81/.50 .51/.76/.61 .56/.84/.67 .33/.79/.47 .62/.70/.66 .48/.78/.59
4: GE/MNB .50/.65/.57 .67/.67/.67 .80/.59/.68 .73/.62/.67 .80/.53/.63 .70/.61/.65
5: GE1∧MNB1 .54/.72/.62 .71/.66/.68 .73/.77/.75 .74/.64/.69 .84/.55/.66 .71/.67/.69
MaxEnt .75/.65/.70 .71/.66/.68 .70/.70/.70 .76/.71/.73 .83/.76/.79 .75/.69/.72

Table 3: Precision/Recall/F1 scores on RTB dataset. The best score for each measure is bolded. The last
line shows the performance of a fully-supervised MaxEnt model for reference purpose.

Cold &
Flu

lisinopril, colds, congestion, neti, vaporub,
sinusitis, swine, nostril, throat, runny

Cancer lymphoma, metastatic, colorectal, humira,
cancerous, ovarian, prostate, hpv, metas-
tases, xeloda

Diab. hypoglycemia, diabetics, prediabetes, lisino-
pril, glycemic, hyperglycemia, ckd, pancreas,
catspyjamas, retinopathy

Sleep
Dis.

zaps, ryu, insomnia, cpap, urara, rem, naps,
toranosuke, rls, lucid

Nutri. carbs, ldl, whey, folate, amino, creatine,
niacin, potassium, fats, antioxidant

Table 4: Top 10 automatically added constraints in
GE/MNB for each class

System Macro Avg.
0: keyword voting .62/.43/.50
1: GE/Random .62/.50/.55
2: MNB/Priors+EM1 .63/.64/.63
3: MNB/Priors .39/.69/.50
4: GE/MNB .60/.53/.56
5: GE1∧MNB1 .67/.60/.63
MaxEnt (γ = 0.1) .86/.42/.57
MaxEnt .88/.72/.79

Table 5: Macro average Precision/Recall/F1

scores for each classifier on 20 Newsgroups cor-
pus.

lightly-supervised models. Based on the user ex-
periments in Settles (2011), annotating documents
takes 10.8s on average. Therefore the estimated
time to annotate the training data for this model is
6 hours, roughly 25 times the time needed to label
262 keywords. The last line shows the result of the
MaxEnt model using the full training set. Its aver-
age F1 score is 16% higher than GE1∧MNB1.

The larger gap is likely because the keywords
used on the 20 Newsgroups Corpus are automat-
ically extracted from the corpus, while the key-
words used on the RTB dataset exploited ex-
ternal resources (pre-trained word vectors and
Wikipedia) and they are curated by a human an-
notator. In the real-world scenario, the keywords
will be composed by non-technical users, instead
of researchers in NLP who are familiar with the al-
gorithm. Therefore, we cannot make assumptions
of the quality of the keywords the user composes.
However, this further confirms the importance of a
good keyword suggestion method to assist the user
to compose high-quality keywords.

8 Conclusions and Future Works

This paper proposed a framework to build lightly-
supervised one-class text classifiers by applying
generalized expectation (GE) criteria (Druck et al.,
2008) and multinomial naı̈ve Bayes (MNB) with
priors (Settles, 2011). The classification meth-
ods make use of user-labeled words for the target
class as the form of supervision and do not require
any labeled documents. Motivated by the relative
strengths of the two models, we merged them by
using MNB to enrich the set of GE constraints.

We further improved the classification accu-
racy by combining the output of two families of
classifiers through ensemble method. This re-
sulted in a classifier ensemble which achieved an
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average of 0.69 F1 score on a dataset of web-
pages from real-time bidding requests. It is 5%
or 6% higher than previous state-of-the-art lightly-
supervised models and 3% lower than a supervised
MaxEnt model.

The framework has been deployed into an on-
line advertising platform where advertisers can
build customized classifiers to target their Ads to
the most relevant webpages.

A direction for future work is to further improve
the classification accuracy and to match the per-
formance of not just a MaxEnt model, but a more
recent fully-supervised deep neural network mod-
els such as Lai et al. (2015). This would likely
require a more complex non-linear model and a
novel method to train such model in a lightly-
supervised manner.

In ongoing research, we are exploring to build
multi-modal classifiers by exploiting information
in the webpages beyond the textual content, such
as URLs and images. We are also exploring trans-
fer learning methods which can use the predictions
for existing classes to improve the accuracy for
new classes.
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Abstract

Despite successful applications across a
broad range of NLP tasks, conditional ran-
dom fields (“CRFs”), in particular the
linear-chain variant, are only able to model
local features. While this has important
benefits in terms of inference tractabil-
ity, it limits the ability of the model to
capture long-range dependencies between
items. Attempts to extend CRFs to cap-
ture long-range dependencies have largely
come at the cost of computational com-
plexity and approximate inference. In this
work, we propose an extension to CRFs
by integrating external memory, taking in-
spiration from memory networks, thereby
allowing CRFs to incorporate informa-
tion far beyond neighbouring steps. Ex-
periments across two tasks show substan-
tial improvements over strong CRF and
LSTM baselines.

1 Introduction

While long-range contextual dependencies are
prevalent in natural language, for tractability rea-
sons, most statistical models capture only local
features (Finkel et al., 2005). Take the sentence
in Figure 1, for example. Here, while it is easy to
determine that Interfax in the second sentence is a
named entity, it is hard to determine its semantic
class, as there is little context information. The us-
age in the first sentence, on the other hand, can be
reliably disambiguated due to the post-modifying
phase news agency. Ideally we would like to be
able to share such contexts across all usages (and
variants) of a given named entity for reliable and
consistent identification and disambiguation.

A related example is forum thread discourse
analysis. Previous work has largely focused on

linear-chain Conditional Random Fields (CRFs)
(Wang et al., 2011; Zhang et al., 2017), framing
the task as one of sequence tagging. Although
CRFs are adept at capturing local structure, the
problem does not naturally suit a linear sequen-
tial structure, i.e. , a post may be a reply to ei-
ther a neighbouring post or one posted far earlier
within the same thread. In both cases, contextual
dependencies can be long-range, necessitating the
ability to capture dependencies between arbitrarily
distant items. Identifying this key limitation, Sut-
ton and McCallum (2004) and Finkel et al. (2005)
proposed the use of CRFs with skip connections
to incorporate long-range dependencies. In both
cases the graph structure must be supplied a pri-
ori, rather than learned, and both techniques incur
the need for costly approximate inference.

Recurrent neural networks (RNNs) have been
proposed as an alternative technique for encoding
sequential inputs, however plain RNNs are unable
to capture long-range dependencies (Bengio et al.,
1994; Hochreiter et al., 2001) and variants such
as LSTMs (Hochreiter and Schmidhuber, 1997),
although more capabable of capturing non-local
patterns, still exhibit a significant locality bias in
practice (Lai et al., 2015; Linzen et al., 2016).

In this paper, taking inspiration from the work
of Weston et al. (2015) on memory networks
(MEMNETs), we propose to extend CRFs by in-
tegrating external memory mechanisms, thereby
enabling the model to look beyond localised fea-
tures and have access to the entire sequence.
This is achieved with attention over every en-
try in the memory. Experiments on named en-
tity recognition and forum thread parsing, both
of which involve long-range contextual dependen-
cies, demonstrate the effectiveness of the proposed
model, achieving state-of-the-art performance on
the former, and outperforming a number of strong
baselines in the case of the latter. A full imple-
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Interfax
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O · · ·

Figure 1: A NER example with long-range contextual dependencies. The vertical dash line indicates a
sentence boundary.

mentation of the model is available at: https:
//github.com/liufly/mecrf.

The paper is organised as follows: after review-
ing previous studies on capturing long range con-
textual dependencies and related models in Sec-
tion 2, we detail the elements of the proposed
model in Section 3. Section 4 and 5 present the
experimental results on two different datasets: one
for thread discourse structure prediction and the
other named entity recognition (NER), with anal-
yses and visualisation in their respective sections.
Lastly, Section 6 concludes the paper.

2 Related Work

In this section, we review the different families of
models that are relevant to this work, in captur-
ing long-range contextual dependencies in differ-
ent ways.

Conditional Random Fields (CRFs). CRFs
(Lafferty et al., 2001), in particular linear-chain
CRFs, have been widely adopted and applied to
sequence labelling tasks in NLP, but have the crit-
ical limitation that they only capture local struc-
ture (Sutton and McCallum, 2004; Finkel et al.,
2005), despite non-local structure being common
in structured language classification tasks. In the
context of named entity recognition (“NER”), Sut-
ton and McCallum (2004) proposed skip-chain
CRFs as a means of alleviating this shortcom-
ing, wherein distant items are connected in a se-
quence based on a heuristic such as string identity
(to achieve label consistency across all instances
of the same string). The idea of label consistency
and exploiting non-local features has also been ex-
plored in the work of Finkel et al. (2005), who take
long-range structure into account while maintain-
ing tractable inference with Gibbs sampling (Ge-
man and Geman, 1984), by performing approxi-
mate inference over factored probabilistic models.
While both of these lines of work report impres-
sive results on information extraction tasks, they
come at the price of high computational cost and

incompatibility with exact inference.
Similar ideas have also been explored by Kr-

ishnan and Manning (2006) for NER, where they
apply two CRFs, the first of which makes pre-
dictions based on local information, and the sec-
ond combines named entities identified by the first
CRF in a single cluster, thereby enforcing label
consistency and enabling the use of a richer set of
features to capture non-local dependencies. Liao
and Grishman (2010) make a strong case for go-
ing beyond sentence boundaries and leveraging
document-level information for event extraction.

While we take inspiration from these earlier
studies, we do not enforce label consistency as a
hard constraint, and additionally do not sacrifice
inference tractability: our model is capable of in-
corporating non-local features, and is compatible
with exact inference methods.

Recurrent Neural Networks (RNNs). Re-
cently, the broad adoption of deep learning meth-
ods in NLP has given rise to the prevalent use of
RNNs. Long short-term memories (“LSTMs”:
Hochreiter and Schmidhuber (1997)), a particular
variant of RNN, have become particularly popu-
lar, and been successfully applied to a large num-
ber of tasks: speech recognition (Graves et al.,
2013), sequence tagging (Huang et al., 2015),
document categorisation (Yang et al., 2016), and
machine translation (Cho et al., 2014; Bahdanau
et al., 2014). However, as pointed out by Lai
et al. (2015) and Linzen et al. (2016), RNNs —
including LSTMs — are biased towards immedi-
ately preceding (or neighbouring, in the case of bi-
directional RNNs) items, and perform poorly in
contexts which involve long-range contextual de-
pendencies, despite the inclusion of memory cells.
This is further evidenced by the work of Cho et al.
(2014), who show that the performance of a basic
encoder–decoder deteriorates as the length of the
input sentence increases.

Memory networks (MEMNETs). More re-
cently, Weston et al. (2015) proposed memory
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networks and showed that the augmentation of
memory is crucial to performing inference re-
quiring long-range dependencies, especially when
document-level reasoning between multiple sup-
porting facts is required. Of particular interest to
our work are so-called “memory hops” in memory
networks, which are guided by an attention mech-
anism based on the relevance between a question
and each supporting context sentence in the mem-
ory hop. Governed by the attention mechanism,
the ability to access the entire sequence is similar
to the soft alignment idea proposed by Bahdanau
et al. (2014) for neural machine translation. In this
work, we borrow the concept of memory hops and
integrate it into CRFs, thereby enabling the model
to look beyond localised features and have access
to the whole sequence via an attention mechanism.

3 Methodology

In the context of sequential tagging, we assume
the input is in the form of sequence pairs: D =
{x(n),y(n)}Nn=1 where x(n) is the input of the
n-th example in dataset D and consists of a se-
quence: {x(n)

1 , x
(n)
2 , . . . , x

(n)
T }. Similarly, y(n) is

of the same length as x(n) and consists of the cor-
responding labels {y(n)

1 , y
(n)
2 , . . . , y

(n)
T }. For nota-

tional convenience, hereinafter we omit the super-
script denoting the n-th example.

In the case of NER, each xt is a word in a sen-
tence with yt being the corresponding NER label.
For forum thread discourse analysis, xt represents
the text of an entire post whereas yt is the dialogue
act label for the t-th post.

The proposed model extends CRFs by integrat-
ing external memory and is therefore named a
Memory-Enhanced Conditional Random Field
(“ME-CRF”). We take inspiration from Memory
Networks (“MEMNETs”: Weston et al. (2015))
and incorporate so-called memory hops into
CRFs, thereby allowing the model to have unre-
stricted access to the whole sequence rather than
localised features as in RNNs (Lai et al., 2015;
Linzen et al., 2016).

As illustrated in Figure 2, ME-CRF can be di-
vided into two major parts: (1) the memory layer;
and (2) the CRF layer. The memory layer can be
further broken down into three main components:
(a) the input memory m1:t; (b) the output mem-
ory c1:t; and (c) the current input ut, which rep-
resents the current step (also known as the “ques-
tion” in the context of MEMNET). The input and

output memory representations are connected via
an attention mechanism whose weights are deter-
mined by measuring the similarity between the in-
put memory and the current input. The CRF layer,
on the other hand, takes the output of the memory
layer as input. In the remainder of this section, we
detail the elements of ME-CRF.

3.1 Memory Layer

3.1.1 Input memory

Every element (word/post) in a sequence x is en-
coded with xt = Φ(xt), where Φ(·) can be any
encoding function mapping the input xt into a
vector xt ∈ Rd. This results in the sequence
{x1, . . . ,xT }. While this new sequence can be
seen as the memory in the context of MEMNETs,
one major drawback of this approach, as pointed
out by Seo et al. (2017), is the insensitivity to
temporal information between memory cells. We
therefore follow Xiong et al. (2016) in inject-
ing temporal signal into the memory using a bi-
directional GRU encoding (Cho et al., 2014):

−→mt =
−−→
GRU(xt,

−→mt−1) (1)
←−mt =

←−−
GRU(xt,

←−mt+1) (2)

mt = tanh(
−→
Wm
−→mt +

←−
Wm
←−mt + bm) (3)

where
−→
Wm,

←−
Wm and bm are learnable parame-

ters.

3.1.2 Current input

This is used to represent the current step xt, be it
a word or a post. As in MEMNETs, we want to
enforce the current input to be in the same space
as the input memory so that we can determine the
attention weight of each element in the memory
by measuring the relevance between the two. We
denote the current input by ut = mt.

3.1.3 Attention

To determine the attention value of each element
in the memory, we measure the relevance between
the current step ut and mi for i ∈ [1, t] with a
softmax function:

pt,i = softmax(u>t mi) (4)

where softmax(ai) =
eai∑
j e

aj
.
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Figure 2: Illustration of ME-CRFs with a single memory hop, showing the network architecture at time
step t and t+ 1.

3.1.4 Output memory
Similar to mt, ct is the output memory, and is
calculated analogously but with a different set of
parameters in the GRUs and tanh layers of Equa-
tions (1), (2) and (3). The output memory is used
to generate the final output of the memory layer
and fed as input to the CRF layer.

3.1.5 Memory layer output
Once the attention weights have been computed,
the memory access controller receives the re-
sponse o in the form of a weighted sum over the
output memory representations:

ot =
∑
i

pt,ici (5)

This allows the model to have unrestricted access
to elements in previous steps as opposed to a sin-
gle vector ht in RNNs, thereby enabling ME-
CRFs to detect and effectively incorporate long-
range dependencies.

3.1.6 Extension
For more challenging tasks requiring complex rea-
soning capabilities with multiple supporting facts
from the memory, the model can be further ex-
tended by stacking multiple memory hops, in

which case the output of the k-th hop is taken as
input to the (k + 1)-th hop:

uk+1
t = okt + ukt (6)

where uk+1
t encodes not only information at the

current step (ukt ) but also relevant knowledge from
the memory (okt ). In the scope of this work, we
limit the number of hops to 1.

3.2 CRF Layer

Once the representation of the current step uK+1
t

is computed — incorporating relevant information
from the memory (assuming the total number of
memory hops is K) — it is then fed into a CRF
layer:

s(x,y) =
T∑
t=0

Ayt,yt+1 +
T∑
t=1

Pt,yt (7)

where A ∈ R|Y|×|Y| is the CRF transition matrix,
|Y| is the size of the label set, and P ∈ RT×|Y| is a
linearly transformed matrix from uK+1

t such that
P
>
t,: = Wsu

K+1
t where Ws ∈ R|Y|×h with h be-

ing the size of mt. Here, Ai,j represents the score
of the transition from the i-th tag to the j-th tag
whereas Pi,j is the score of the j-th tag at time i.
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Using the scoring function in Equation (7), we cal-
culate the score of the sequence y normalised by
the sum of scores of all possible sequences ỹ, and
this becomes the probability of the true sequence:

p(y|x) =
exp(s(x,y))∑

ỹ∈YX
exp(s(x, ỹ))

(8)

We train the model to maximise the probability
of the gold label sequence with the following loss
function:

L =
N∑
n=1

log p(y(n)|x(n)) (9)

where p(y(n)|x(n)) is calculated using the
forward–backward algorithm. Note that the model
is fully end-to-end differentiable.

At test time, the model predicts the output se-
quence with maximum a posteriori probability:

y∗ = arg max
ỹ∈Yx

p(ỹ|x) (10)

Since we are only modelling bigram interactions,
we adopt the Viterbi algorithm for decoding.

4 Thread Discourse Structure Prediction

In this section, we describe how ME-CRFs can
be applied to the task of thread discourse structure
prediction, wherein we attempt to predict which
post(s) a given post directly responds to, and in
what way(s) (as captured by dialogue acts). This
is a novel approach to this problem and capable of
natively handling both tasks within the same net-
work architecture.

4.1 Dataset and Task
In this work, we adopt the dataset of Kim
et al. (2010),1 which consists of 315 threads and
1,332 posts, collected from the Operating System,
Software, Hardware and Web Development sub-
forums of CNET.2 Every post has been manually
linked to preceding post(s) in the thread that it is a
direct response to (in the form of “links”), and the
nature of the response for each link (in the form
of “dialogue acts”, or “DAs”). In this dataset, it is
not uncommon to see messages respond to posts
which occur much earlier in the thread (based on
the chronological ordering of posts). In fact, 18%

1http://people.eng.unimelb.edu.au/
tbaldwin/resources/conll2010-thread/

2http://forums.cnet.com/

of the posts link to posts other than their immedi-
ately preceding post.

The task is defined as follows: given a list of
preceding posts x1, . . . , xt−1 and the current post
xt, to classify which posts it links to (lt) and the
dialogue act (yt) of each such link. In the scope
of this work, ME-CRFs are capable of modelling
both tasks natively, and therefore a natural fit for
this problem.

4.2 Experimental Setup
In this dataset, in addition to the body of text,
each post is also associated with a title. We
therefore use two encoders, Φtitle(·) and Φtext(·),
to process them separately and then concatenate
xt = [Φtitle(xt); Φtext(xt)]>. Here, Φtitle(·) and
Φtext(·) take word embeddings as input, process-
ing each post at the word level, as opposed to the
post-level bi-directional GRU in Equations (1) and
(2), and the representation of a post xt (either title
or text) is obtained by transforming the last and
first hidden states of the forward and backward
word-level GRU, similar to Equation (3). Note
that Φtitle(·) and Φtext(·) do not share parame-
ters. As in Tang et al. (2016), we further restrict
mk

i = cki to curb overfitting.
In keeping with Wang (2014), we comple-

ment the textual representations with hand-crafted
structural features Φs(xt) ∈ R2:
• initiator: a binary feature indicating whether

the author of the current post is the same as
the initiator of the thread,
• position: the relative position of the current

post, as a ratio over the total number of posts
in the thread;

Also drawing on Wang (2014), we incorporate
punctuation-based features Φp(xt) ∈ R3: the
number of question marks, exclamation marks and
URLs in the current post. The resultant feature
vectors are projected into an embedding space by
Ws and Wp and concatenated with xi, resulting
in the new x′i. Subsequently, x′i is fed into the bi-
directional GRUs to obtain mi.

For link prediction, we generate a supervision
signal from the annotated links, guiding the atten-
tion to focus on the correct memory position:

LLNK =
N∑
n=1

T∑
t=1

CrossEntropy(l(n)
t ,p

(n)
t ) (11)

where l
(n)
t is a one-hot vector indicating where the

link points to for the t-th post in the n-th thread,
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and p
(n)
t = {pt,1, . . . , pt,t} is the predicted distri-

bution of attention over the t posts in the memory.
To accommodate the first post in a thread, as it
points to a virtual “head” post, we set a dummy
post, m0 = 0, of the same size as mi. While
the dataset contains multi-headed posts (posts with
more than one outgoing link), following Wang
(2014), we only include the most recent linked
post during training, but evaluate over the full set
of labelled links.

For this task, ME-CRF is jointly trained to pre-
dict both the link and dialogue act with the follow-
ing loss function:

L′ = αLDA + (1− α)LLNK (12)

where LDA is the CRF likelihood defined in Equa-
tion (9), and α is a hyper-parameter for balancing
the emphasis between the two tasks.

Training is carried out with Adam (Kingma and
Ba, 2015) over 50 epochs with a batch size of
32. We use the following hyper-parameter set-
tings: word embedding size of 20, Wp ∈ R100×3,
Ws ∈ R50×2, α = 0.5, hidden size of Φtitle and
Φtext is 20, hidden size of

−−→
GRU and

←−−
GRU is 50.

Dropout is applied to all GRU recurrent units on
the input and output connections with a keep rate
of 0.7.

Lastly, we also explore the idea of curriculum
learning (Bengio et al., 2009), by fixing the CRF
transition matrix A = 0 for the first e = 20
epochs, after which we train the parameters for the
remainder of the run. This allows the ME-CRF to
learn a good strategy for DA and link prediction,
as independent “maxent” type classifier, before at-
tempting to learn sequence dynamics. We refer to
this variant as “ME-CRF+”.

4.3 Evaluation

Following Wang (2014), we evaluate based on
post-level micro-averaged F-score. All experi-
ments were carried out with 10-fold cross valida-
tion, stratifying at the thread level.

We benchmark against the following previous
work: the feature-rich CRF-based approach of
Kim et al. (2010), where the authors trained inde-
pendent models for each of link and DA classifica-
tion (“CRFKIM”); the feature-rich CRF-based ap-
proach of Wang (2014), where the author further
extended the feature set of Kim et al. (2010) and
jointly trained a CRF over the link and DA pre-
diction tasks (“CRFWANG”); and the dependency

Model Link DA Joint

CRFKIM 86.3 75.1 —
CRFWANG 82.3 73.4 66.5
DEPPARSER 85.0 75.7 70.6

MEMNET 85.8 76.0 69.5

ME-CRF 86.4 77.5 70.9
ME-CRF+ 86.3 77.4 71.2

Table 1: Post-level Link and DA F-scores. Per-
formance for ME-CRF and ME-CRF+ is marco-
averaged over 5 runs.

parser-based approach of Wang (2014), where the
author treated the discourse structure prediction
task as a constrained dependency parsing problem,
with posts as nodes in the dependency graph, and
the constraint that links must connect to preced-
ing posts in the thread (“DEPPARSER”).3 In ad-
dition to the CRF/parser-based systems, we also
build a MEMNET-based baseline (named MEM-
NET) where MEMNET shares the architecture of
the memory layer in ME-CRF but excludes the
use of the CRF layer. Instead, MEMNET, follow-
ing the work of Sukhbaatar et al. (2015), predicts
the final answer by:

ŷ = softmax(WDA(uK+1)) (13)

where ŷ is the predicted DA distribution, WDA ∈
R|Y|×d is a parameter matrix for the model to
learn, andK = 1 is the total number of hops. This
is equivalent to classifying link and DA indepen-
dently at each time step t without taking transi-
tions between DA labels into account.

4.4 Results

The experimental results are presented in Table 1,
wherein the first three rows are the three baseline
systems.

State-of-the-art post-level results. ME-CRFs
achieve state of the art results in terms of joint
post-level F-score, substantially better than the
baselines. While ME-CRF slightly outperforms
the current state-of-the-art (DEPPARSER), ME-
CRF+ improves the performance and achieves a
further 0.3% absolute gain.

3Note that a mistake was found in the results in the origi-
nal paper (Wang et al., 2011), and we use the corrected results
from Wang (2014).
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Figure 3: Breakdown of post-level Joint F-scores
by post depth, where e.g. “[1, 2]” is the joint F-
score over posts of depth 1–2, i.e. the first or
second post in the thread. Note that we take
the reported performance of CRFWANG and DEP-
PARSER from Wang (2014).

Curriculum learning improves joint prediction.
Despite the slight performance drop on the DA and
link prediction tasks, ME-CRF+, with the CRF
transition matrix frozen for the first 20 epochs,
achieves a ∼0.3% absolute gain in joint F-score
over ME-CRF. This suggests that the sequence
dynamics between posts, while difficult to capture,
are beneficial to the overall task (resulting in more
coherent DA and link predictions) if trained with
proper initialisation.

MEMNET vs. ME-CRFs. We see consistent
gains across all three tasks when the CRF layer is
added. Although not presented in Table 1, the dif-
ference is most notable at the thread-level (i.e. a
thread is correct iff all posts are tagged correctly),
highlighting the importance of sequential transi-
tional information between posts.

CRF vs. ME-CRFs. Note that CRFKIM is not
trained jointly on the two component tasks, but in-
dividually on each task. Without additional data,
jointly training on the two tasks generates results
that are comparable or substantially better over the
individual tasks. This highlights the effectiveness
of ME-CRF, especially with the link prediction
performance comparable to that of a single-task
model CRF, and surpassing it in the case of DA.
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Figure 4: Breakdown of post-level Link and DA
F-scores by post depth.

4.5 Analysis

We break the performance down by the depth of
each post in a given thread, and present the re-
sults in Figure 3. Although below the baselines
for the interval [1, 2], ME-CRF+ consistently out-
performs CRFWANG from depth 3 onwards, and is
superior to DEPPARSER for depths [7, ). Break-
ing down the performance further to the individual
tasks of Link and DA prediction, as displayed in
Figure 4, we observe a similar trend. In line with
the findings in the work of Wang (2014), this con-
firms that prediction becomes progressively more
difficult as threads grow longer, which is largely
due to the increased variability in discourse struc-
ture. Despite the escalated difficulty, ME-CRF+
is substantially superior to the baselines when
classifying deeper posts.

Between the CRF-based models, it is worth
noting that despite the lower performance for
[1, 2], ME-CRF+ benefits from having global ac-
cess to the entire sequence, and consistently out-
performs CRFWANG for depths [3, ), highlight-
ing the effectiveness of the memory mechanism.
Overall, these results validate our hypothesis that
having unrestricted access to the whole sequence
is beneficial, especially for long-range dependen-
cies, offering further evidence of the power of
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ME-CRFs.

5 Named Entity Recognition

In this section, we present experiments in a sec-
ond setting: named entity recognition, over the
CoNLL 2003 English NER shared task dataset
(Tjong Kim Sang and De Meulder, 2003). Our in-
terest here is in evaluating the ability of ME-CRF
to capture document context, to aid in the identifi-
cation and disambiguation of NEs.

5.1 Dataset and Task

The CoNLL 2003 NER shared task dataset
consists of 14, 041/3, 250/3, 453 sentences in
the training/development/test set, resp., extracted
from 946/216/231 Reuters news articles from the
period 1996–97. The goal is to identify individ-
ual token occurrences of NEs, and tag each with
its class (e.g. LOCATION or ORGANISATION).
Here, we use the IOB tagging scheme. In terms
of tagging schemes, while some have shown
improvements with a more expressive IOBES
marginally (Ratinov and Roth, 2009; Dai et al.,
2015), we stick to the BIO scheme for simplicity
and the observation of little improvement between
these schemes by Lample et al. (2016).

5.2 Experimental Setup

We choose Φ(xt) to be a lookup function, return-
ing the corresponding embedding xt of the word
xt. In addition to the word features, we employ a
subset of the lexical features described in Huang
et al. (2015), based on whether the word:
• starts with a capital letter;
• is composed of all capital letters;
• is composed of all lower case letters;
• contains non initial capital letters;
• contains both letters and digits;
• contains punctuation.

These features are all binary and refered to as
Φl(xt). Similar to the thread structure predic-
tion experiments, we concatenate Φl(xt) with xt
to generate the new input x′ to the bi-directional
GRUs in Equations (1) and (2).

In order to incorporate information in the docu-
ment beyond sentence boundaries, we encode ev-
ery word sequentially in a document with Φ and−−→
GRU and

←−−
GRU, and store them in the memory mi

and ci for i ∈ [1, t′], where t′ is the index of the
current word t in the document.

Training is carried out with Adam, over 100
epochs with a batch size of 32. We use the fol-
lowing hyper-parameter settings: word embed-
ding size = 50; hidden size of

−−→
GRU and

←−−
GRU = 50;−→

Wm and
←−
Wm ∈ R50×50; and bm ∈ R50. Dropout

is applied to all GRU recurrent units on the in-
put and output connections, with a keep rate of
0.8. We initialise ME-CRF with pre-trained word
embeddings and keep them fixed during training.
While we report results only on the test set, we use
early stopping based on the development set.

5.3 Evaluation

Evaluation is based on span-level NE F-score,
based on the official CoNLL evaluation script.4

We compare against the following baselines:
1. a CRF over hand-tuned lexical features

(“CRF”: Huang et al. (2015))
2. an LSTM and bi-directional LSTM

(“LSTM” and “BI-LSTM”, resp.: Huang
et al. (2015))

3. a CRF taking features from a convolutional
neural network as input (“CONV-CRF”: Col-
lobert et al. (2011))

4. a CRF over the output of either a sim-
ple LSTM or bidirectional LSTM (“LSTM-
CRF” and “BI-LSTM-CRF”, resp.: Huang
et al. (2015))

Note that for our word embeddings, while we ob-
serve better performance with GLOVE (Penning-
ton et al., 2014), for fair comparison purposes,
we adopt the same SENNA embeddings (Collobert
et al., 2011) as are used in the baseline methods.5

5.4 Results

The experimental results are presented in Table 2.
Results for the baseline methods are based on the
published results of Huang et al. (2015) and Col-
lobert et al. (2011). Note that none of the sys-
tems in Table 2 use external gazetteers, to make
the comparison fair. As can be observed, ME-
CRF achieves the best performance, beating all
the baselines.

To gain a better understanding of what the
model has learned, Table 3 presents two examples

4http://www.cnts.ua.ac.be/conll2000/
chunking/conlleval.txt

5Lample et al. (2016) report a higher result of 90.9 using
a BI-LSTM-CRF architecture, but augmented with skip n-
grams (Ling et al., 2015) and character embeddings. Due to
the differing underlying representation, we exclude it from
the comparison.
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Model F-score

CRF 86.1
LSTM 83.7
BI-LSTM 85.2
CONV-CRF 88.7

LSTM-CRF 88.4
BI-LSTM-CRF 88.8

ME-CRF 89.5

Table 2: NER performance on the CoNLL 2003
English NER shared task dataset.

where ME-CRF focuses on words beyond the cur-
rent sentence boundaries. In the example on the
left, where the target word is Juventus (an Ital-
ian soccer team), ME-CRF directs the attention
mainly to the occurrence of the same word in a
previous sentence and a small fraction to Manch-
ester (a UK soccer team, in this context). Note
that it does not attend to the other NE (Europe)
in that sentence, which is of a different NE class.
In the example on the right, on the other hand,
ME-CRF allocates attention to the same words
as the target word in the current sentence. Note
that the second occurrence of Interfax in the mem-
ory is the same occurrence as the first word in the
current sentence. While more weight is placed
on the second Interfax, close to one third of the
attention is also asigned to the first occurrence.
Given that the memory, mi and ci, is encoded
with bi-directional GRUs, the first Interfax should,
to some degree, capture the succeeding neighbour-
ing elements: news agency.

This is reminiscent of label consistency in the
works of Sutton and McCallum (2004) and Finkel
et al. (2005), but differs in that the consistency
constraint is soft as opposed to hard in previous
studies, and automatically learned without the use
of heuristics.

6 Conclusion

In this paper, we have presented ME-CRF, a
model extending linear-chain CRFs by including
external memory. This allows the model to look
beyond neighbouring items and access long-range
context. Experimental results demonstrate the ef-
fectiveness of the proposed method over two tasks:
forum thread discourse analysis, and named entity
recognition.

Memory pt,i

. . .
Manchester 0.23
United 0.00
face 0.00
Juventus 0.65
in 0.00
Europe 0.00
. . .

European champions
Juventus . . .

Memory pt,i

. . .
, 0.00
Interfax 0.32
news 0.00
agency 0.00
said 0.00
. 0.00
Interfax 0.68

Interfax quoted
Russian . . .

Table 3: An NER example showing learned atten-
tion to long-range contextual dependencies. The
last row is the current sentence. The underlined
words indicate the target word xt, and the dashed
line indicates a sentence boundary.
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Abstract

Recurrent Neural Network models are the
state-of-the-art for Named Entity Recog-
nition (NER). We present two innovations
to improve the performance of these mod-
els. The first innovation is the intro-
duction of residual connections between
the Stacked Recurrent Neural Network
model to address the degradation prob-
lem of deep neural networks. The sec-
ond innovation is a bias decoding mech-
anism that allows the trained system to
adapt to non-differentiable and externally
computed objectives, such as the entity-
based F-measure. Our work improves
the state-of-the-art results for both Span-
ish and English languages on the standard
train/development/test split of the CoNLL
2003 Shared Task NER dataset.

1 Introduction

In Natural Language Processing, the term “Named
Entity” refers to special information units such as
people, organizations, location names, numerical
expression (Nadeau and Sekine, 2007). Identify-
ing the references to these special entities in text
is a crucial step toward Language Understanding.
Thus, there have been many works on these areas.

Some of the early systems employed hand-
crafted rules (Rau, 1991; Sekine and Nobata,
2004), however, the vast majority of current sys-
tems rely on machine learning models (Nadeau
and Sekine, 2007) such as Conditional Random
Field (CRF) (McCallum and Li, 2003), Hidden
Markov Model (HMM) (Bikel et al., 1997) and
Support Vector Machine (SVM) (Asahara and
Matsumoto, 2003). Although the traditional ma-
chine learning models do not rely on manual rules,
they require a manual feature engineering process,

which is rather expensive and dependent on the
domain and language.

In recent years, Recurrent Neural Network
(RNN) models such as Long-Short-Term-Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) and
Gated Recurrent Unit (GRU) (Chung et al., 2014)
have been very successful in sequence modeling
tasks, for example, Language Modeling (Mikolov
et al., 2010; Sundermeyer et al., 2012), Machine
Translation (Bahdanau et al., 2014) and Dialog
Act Classification (Kalchbrenner and Blunsom,
2013; Tran et al., 2017). RNN models can learn
from basic components of text (i.e. words and
characters). This generalization capability facil-
itates the construction of Language Independent
NER models (Ma and Hovy, 2016; Lample et al.,
2016) that rely on unsupervised feature learning
and a small annotated corpus.

One simple way of adding representational
power to a neural network is layer stacking. A tra-
ditional feed forward neural network usually has
three fully connected layers: an input layer, a hid-
den layer, and an output layer. For a Convolutional
Neural Network (CNN) or Recurrent Neural Net-
work, the number of stacked layers might be much
larger (Amodei et al., 2016). One problem with
this stacking scenario is the degraded representa-
tion problem (He et al., 2016). The proposed solu-
tion for this problem is the residual-identity con-
nection (He et al., 2016). With the information
from the lower-level inputs, the upper neural net-
work layers can learn to compensate for the rep-
resentation errors of lower layers. We adopt this
idea for Stacking RNN, however, with a different
implementation.

Most of the RNN-based models for NER
and machine translation are trained with some
form of maximum log-likelihood loss. How-
ever, it is often desirable to optimize task-specific
metrics (Xu et al., 2016), for example, F-measure
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in NER, but optimizing the F-measure directly is
not trivial (Busa-Fekete et al., 2015), especially in
the case of complex Deep Neural Network models.
It is even more difficult considering the way the
F-measure is calculated in Named Entity Recog-
nition in the CoNLL-2003 shared task1 , where
it depends on the actual/predicted entities and not
on each token-prediction for which the system is
trained for. Inspired by the idea of trainable decod-
ing recently proposed in machine translation (Gu
et al., 2017), we introduce a trainable percentage
bias decoding system that manipulates the outputs
of a base system trained with normal loss to adapt
to a new objective. Our trainable bias decoding
system also bears similarity to the thresholding
technique (Lipton et al., 2014), traditionally used
to maximize F-measures given a classifier. The
proposed decoding system is trained directly on
the externally computed F-measures (which relies
on the the CoNLL evaluation script) using finite
different gradient.

In the next sections, we describe the proposed
innovations with detailed motivations and discus-
sions. Results show that our proposed innovations
improve the NER state-of-the-art for the English
and Spanish languages in the CoNLL-2003 shared
task data set.

2 Models

We describe first our RNN-CRF base architecture
and then we describe our two modelling innova-
tions: the Stack Residual RNN and the bias de-
coding.

2.1 The base RNN-CRF architecture

Our system is built upon the RNN-CRF architec-
ture for Named Entity Recognition. Let us denote
the input sequence of words as w0, ..., wn. In gen-
eral, the RNN component encodes the words into
a sequence of hidden vectors h0, ..., hn. This se-
quence of hidden vectors is then treated as features
for a linear-chain CRF layer. The training objec-
tive will then be the log-likelihood of the correct
sequence.

Following Lample et al. (2016); Ma and Hovy
(2016); Yang et al. (2016), we employ the charac-
ter level information and word-embeddings as fea-
tures in NER. Similar to Lample et al. (2016), in
our system, character information is encoded us-

1https://www.aclweb.org/aclwiki/index.
php?title=CONLL-2003_(State_of_the_art)

ing a bi-directional RNN (biRNN) over characters.
Given a word wk ∈ w0, ..., wn with m characters,
let us denote the character-embedding sequence of
this word as c0, ..., cm, the biRNN function as ρ
and the concat function as ψ. The character em-
bedding representation hck of word wk is calcu-
lated using a biRNN as in Equation 1, in which
f0, ..., fm and b0, ...,bm denote the hidden units in
the forward and backward RNNs respectively.

f0, ..., fm = ρ(c0, ..., cm)
b0, ...,bm = ρ(cm, ..., c0)

hck = ψ([fm,bm])
(1)

The feature vector xk of word wk is then the
concatenation of hck and the traditional word-
embedding ek as shown in Equation 2. Figure 1
shows the feature extraction procedures. All the
parameters of the biRNN as well as the embedding
tables are jointly trained with other component of
the model. The word embedding table is initial-
ized with a pre-trained embedding table.

xk = ψ([hck, ek]) (2)

The most simple architecture would be a
one-directional RNN over the word features:
h0, ..., hn = RNN(x0, ..., xn). However, it has
been shown to be beneficial to have a bidirectional
RNN over the input layer, as a bidirectional RNN
captures both the left and the right context of a
word: h0, ..., hn = ρ(x0, ..., xn).

The final sequence of hidden vectors h0, ...,hn
is treated as the features for a linear-chained CRF
layer. Similar to Lample et al. (2016), the observa-
tion scores λ are calculated with a linear transfor-
mation from the hidden vectors, as show in Equa-
tion 3, where λi is the vector observation scores
for all the labels in ith time-step, Wp is an l × d
weight matrix, and bp is a bias vector of size l
(with d is the size of vector hi), and l is the size
of the label set Y (including the special sequence
begin and end labels).

λi = Wphi + bp (3)

Given a sequence of input words S =
w0, ..., wn, the score of a particular sequence of
labels Y = Y [0], ..., Y [n] is calculated using the
observation scores λ and the transition scores δ as
in Equation 4, where δ is a square matrix of dimen-
sion l× l, δ(Y [j], Y [j + 1]) denotes the transition
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Figure 1: Extracting word features with word embeddings and character level biRNN

score between the label in position j and the label
in position j + 1 in sequence Y , and λi(Y [i]) is
the observation score of i-th label Y [i].

ζ(Y, S) =
∑
i:[0..n]

λi(Y [i])

+
∑

j:[0..n−1]

δ(Y [j], Y [j + 1])
(4)

The probability of a sequence Y is calculated
using a softmax over all the possible sequences Y
(Equation 5).

Pr(Y |S) =
eζ(Y,S)∑
Ȳ ∈Y e

ζ(Ȳ ,S)
(5)

During training, we maximize the log-
likelihood of the correct sequence Yc. The
loss function L is defined in Equation 6. Be-
cause we employ a linear-chain CRF, the term
log(

∑
Ȳ ∈Y e

ζ(Ȳ ,S)) in Equation 6 can be effi-
ciently calculated with dynamic programming.

L(Yc) = ζ(Yc, S)− log(
∑
Ȳ ∈Y

eζ(Ȳ ,S)) (6)

During decoding, the best sequence can be
found using the Viterbi algorithm. The original
Viterbi decoding algorithm builds an l × n score

table ξ in which l is the size of the label set (in-
cluding the beginning and end labels) and n is the
length of the sequence. ξj(yi) denotes the score
of the most probable partial path (up to position j)
with position j having the label yi. ξj(yi) is calcu-
lated using dynamic programming as in Equation
7.

ξj(yi) =
∑
yk∈Y

(ξj−1(yk) + δ(yk, yi)) + λj(yi)

(7)

At the end of the decoding process, sequence Ŷ
is predicted by selecting the best score at the end
of the sequence j = n and then completing the
sequence with a backward pointer (Equation 8).
Figure 3 depicts the whole RNN-CRF architecture

Ŷ [n] = arg max
yi

ξn(yi)

Ŷ [n− 1] = arg max
yk

(ξj−1(yk) + δ(yk, Ŷ [n]))

(8)

2.2 Stacked Residual RNN

A traditional way of adding more representational
power to a neural network is layer stacking. RNN
stacking has been successfully used in a lot of
works (Amodei et al., 2016). However, stacking
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Figure 2: The application of percentage bias to Viterbi decoding

Figure 3: The RNN-CRF architecture

layers of neural networks suffers from the degra-
dation problem (He et al., 2016). This is due to
the difficulty in training a lot of stacked layers and
fit these layers to desired underlying mappings,
which leads to representational degradation.

The solution proposed to this problem, the
residual connection (He et al., 2016; Prakash
et al., 2016) tries to create shortcuts between non-
consecutive layers. However, the original addi-
tional residual connection (adding the input vec-
tor to the hidden representation) adds several con-
straints on the dimensionality of the hidden and
input layers, which might require vector clip-
ping (Prakash et al., 2016), and it might lead to
a loss of information.

In the original residual connection proposed
for image recognition, the residual information is
summed to the output of the upper layers (F(x) +
x). In our proposal, we want the upper layer of a
neural network to have direct access to the origi-
nal input, thus, the original input is now appended
to the output of the lower layers instead of being

summed. With this formulation, there is no di-
mensionality restriction, and furthermore, we ar-
gue that our proposed residual connection can be
used to mix feature learners of different complex-
ity (Figure 4). For example, when equipped with
our proposed residual connection, the top neural
network layer can act like a shallow one-layer fea-
ture learner. The two top layers can act like a
deeper two-layer feature learner. Equation set 9
shows the exact formulation of our proposed resid-
ual connection within the Stack RNN. Similar to
the Equation 1, we denote the biRNN function as
ρ and the concat function as ψ. This modelling
procedure is depicted in Figure 4.

h0
0, ...,h

0
n = ρ(x0, ..., xn)

ĥ0
0, ..., ĥ

0
n = ψ([x0,h0

0]), ..., ψ([h0
n, xn])

h1
0, ...,h

1
n = ρ(ĥ0

0, ..., ĥ
0
n)

hM0 , ...,hMn = ρ(ĥM−1
0 , ..., ĥM−1

n )

(9)

2.3 The bias decoding

Usually NER systems are evaluated with some
form of F-measure. For example, for the CoNLL
2013 Shared Task NER dataset, the evaluation
is performed by an external script using entity-
based F1-measure. Although it has been noted
that training on the evaluation metric is benefi-
cial (Xu et al., 2016), most of the deep models for
NER are trained with log-likelihood. The main
reason for this discrepancy is the difficulty in train-
ing with F-measures. Instead of trying to train on
F-measure directly, we look into a hybrid solution
where we train a model on log-likelihood first, and
then use a simpler “adaptation model” to manipu-
late the output of the base model to fit it to the
F-measure.

Inspired by Machine Translation research on
decoding with trainable noise (Gu et al., 2017), we
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Figure 4: Feature learner mixture with residual connection

explore the possibility of adding trainable noise to
the Viterbi decoding process. Analogously to the
traditional threshold technique for maximizing the
F1 score in binary classification, we introduce a
simple percentage noise to the decoding process.
That is, during the construction of the score table
ξ (Equation 7), a label-specific percentage bias is
added to the calculation as in Equation 10. Figure
2 shows the application of this bias to the Viterbi
decoding.

ξj(yi) =
∑
yk∈Y

(ξj−1(yk) + δ(yk, yi)) + byλj(yi)

(10)

To test this new percentage bias idea, we per-
form a quick experiment, where we limit the use
of bias to the most numerous class in the CoNLL
tag set, class O (words that do not belong to any
entity). We search for the best bias bO from the
range of [0.5, 1.5] using a value loop with step of
0.1. For each value of bO, we calculate the F1-
measure on the validation set, and choose the value
with the highest F1. We use our trained model
based on the Stack Residual architecture above as
the base probabilistic model. We find that the best
bO value is 1.1 (a value of 1.0 means without any
bias). Using this bO bias for the test data yields

the F1-measures of 91.22 compared to the original
score of 91.07 in the test set. This experiment sup-
ports our claim that the base model trained with
log-likelihood might not optimize well on a differ-
ent performance measure, and adding this percent-
age bias noise is really beneficial.

We extended this idea treating the biases as pa-
rameters. Thus the trainable bias decoding system
has the number of parameters equal to the num-
ber of classes. Training with gradient descent with
CoNLL’s entity-based F1 loss is rather difficult, as
it is hard to calculate the exact gradient. This is
solved using the numerical gradient methods as an
approximation, which is shown in Equation 11.

f ′b ∼
f(b+ ε)− f(b− ε)

2ε
(11)

The training procedure is then very similar to
stochastic gradient descent. Details on the choice
of hyper parameters and other experimental set-
tings are presented in the Experiment section.

3 Experiments

3.1 Dataset and Experimental settings
We have prepared and evaluated the pro-
posed methods on the English and Span-
ish sets of the CoNLL 2003 NER data
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set2 (Tjong Kim Sang and De Meulder, 2003).
We have reused the training, development and test
set configuration of the CoNLL-2003 Shared Task
in our study.

The training set has been used to train the
system using several hyperparameter configura-
tions, the development set has been used to se-
lect the best configuration and the reported per-
formance of the final system is based on the test
set. The Spanish dataset has 8323/1915/1517
sentences in train/dev/test sets respectively. The
English dataset is almost twice as large with
14041/3250/3453 sentences in train/dev/test set.
For all of our models, the word-embedding size is
set to 100 for English and 64 for Spanish. The hid-
den vector size is 100 for both English and Span-
ish sets without the LM embeddings. With the
LM embeddings, the hidden vector size is changed
to 300 for English. We trained the model with
Stochastic Gradient Descent (SGD) with momen-
tum, using the learning rate of 0.005. For the bias
decoding, the ε hyperparameter for each update
is randomly chosen from a range of [0.01, ..., 0.1]
with step-size of 0.01. Because the base model
trained with sequence level log-likelihood fits very
well on the training set, the gradient calculated
with Equation 11 might be every small, thus we
opt to calculate the finite difference with respect
to the loss: log2(1−F1/100) instead of the F1 to
boost the gradient information in the points where
F1 is very close to 100 (perfect classification). The
learning rate for bias training is also set to 0.005.
Statistical significance has been determined using
a randomization version of the paired sample t-
test (Cohen, 1996).

We first conduct several series of experiments
to confirm the effectiveness of our two proposed
ideas: the Stack Residual RNN and the bias de-
coding, and the new Language Model embedding
in sub-section 3.2. The second sub-section: 3.4
compares our method with state-of-the-art results.

3.2 Component Analysis

Adding stack Residual RNN
Due to computational complexity, there is a prac-
tical limit on how many RNN layers we can stack.
In this series of experiment, we tested our model
without Stacked Residual RNN, and with 2, 3
and 4 Stacked layers. The word embeddings are
initialized using the pre-trained word vectors de-

2http://www.cnts.ua.ac.be/conll2003/ner

scribed below. The result of this series of ex-
periements is presented in Table 1.

From the result, we can see that the performance
seems to increase as we add more stacked layers,
and peak at three before dropping. We continue to
analyze other components using 3 Stacked Resid-
ual Layers of CRF-RNN as the base model, we
call this model 3 Res-RNN for short.

For English, the 3 and 4 stacked layer improve-
ments are significant (p < 0.025) compared to
the baseline model and between the stacked layer
models, the improvement between 2 and 3 layers
is significant (p < 0.035).

For Spanish, the 3 stacked layer improvement is
significant (p < 0.03), with respect to the baseline
model. Improvement between the 3 stacked layer
and the 4 stacked layer models is significant (p <
0.03).

Adding Language Model Embedding
Pre-trained word embeddings have shown useful
in Natural Language Processing tasks, but provide
information about the word but not about its con-
text. Previous work has explored using language
models in addition to word embeddings (Peters
et al., 2017) with positive results. We have eval-
uated our system using pre-trained language mod-
els using the 3 Stacked Residual Layer configura-
tion. First, we test the models with forward-only
LM embeddings (foreLM), then we test the model
with both forward and backLM (backLM). The re-
sult of this series of experiments is presented in
Table 2.

The gain from the LM embedding is not con-
sistent. It seems to work very well with English,
where it improves performance substantially even
though this improvement is not specially signifi-
cant. However, the LM does not improve the per-
formance at all in Spanish. Adding the foreLM
and backLM significantly decreases performance.

Adding Bias Decoding
We test the bias decoding on models with and
without LM embeddings, with results shown in
Table 3. The bias-decoding increases the perfor-
mance across the board, however the performance
increases are not consistent. The increases are no-
table on some cases (3 Res-RNN + bias on both
English and Spanish, 3 Res-RNN + foreLM +
backLM + bias for Spanish), while in some cases
the increases are minimal (3 Res-RNN + foreLM
+ bias on both English and Spanish, 3 Res-RNN +
foreLM + backLM + bias on English).
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System F1 English F1 Spanish
CRF-RNN no Stack Residual 90.43 85.41
CRF-RNN 2 Stack Residual 90.72 85.88
CRF-RNN 3 Stack Residual 91.07 ? 86.24 ?
CRF-RNN 4 Stack Residual 91.02 ? 85.51

Table 1: Analysis of the Stack Residual Component. ? indicates significance (p < 0.05) versus CRF-
RNN no Stack Residual.

System F1 English F1 Spanish
3 Res-RNN 91.07 ? 86.24 ?
3 Res-RNN+foreLM 91.43 ? 86.13 ?
3 Res-RNN+foreLM +backLM 91.66 ? 85.83

Table 2: Analysis of the Language Model Embedding. ? indicates significance (p < 0.05) versus CRF-
RNN no Stack Residual in Table 1.

For English, adding bias to the 3 Res-RNN
without LM yields a significant improvement (p <
0.013), while for Spanish, the boost from adding
bias to the 3 Res-RNN + foreLM + backLM model
is significant (p < 0.011).

3.3 External Knowledge Learning
3.3.1 Word embedding
English word embedding was obtained from
Word2vec-api3. The embedding dimension is 100
and it was trained using GloVe with AdaGrad. For
the generation of Spanish word embeddings we
followed Lample et al. (2016), using Spanish Gi-
gaword Third Edition4 as corpus with an embed-
ding dimension of 64, a minimum word frequency
cutoff of 4 and a window size of 8.

3.3.2 Language Modeling
In some experiments, we used both forward and
backward language models. The English forward
language model was obtained from TensorFlow5

using the One Billion Word Benchmark6 (Chelba
et al., 2013) and has a perplexity of 30. As
the code generating this pre-trained model is not
available, we made use of a substitute which pro-
duces a higher perplexity language model. For the
backward English language model and the Span-
ish forward and backward ones, they were gener-
ated using an LSTM based baseline7 (Jozefowicz

3https://github.com/3Top/word2vec-
api/blob/master/README.md

4https://catalog.ldc.upenn.edu/ldc2011t12
5https://github.com/tensorflow/models/tree/master/lm 1b
6https://github.com/ciprian-chelba/1-billion-word-

language-modeling-benchmark
7https://github.com/rafaljozefowicz/lm

et al., 2016). This code estimates a forward lan-
guage model and was adapted to estimate a back-
ward language model. Language models were es-
timated using the One Billion Word benchmark.
The vocabulary for the backward English model is
the same as the pre-generated forward model. The
perplexity for estimated backward English lan-
guage model is 46; despite the discrepancy in per-
plexity with the forward language model the per-
formance using this language model still improves
the named entity recognition task. The vocabulary
for the Spanish language models was generated
using tokens with frequency > 2. The perplexity
for the forward and backward Spanish language
models are 56 and 57 respectively.

3.4 Comparative performance

Table 4 shows the performance of our best sys-
tems compared to the state-of-the-art results on
ConLL dataset. We focus our comparison to the
systems with the same experimental setups (stan-
dard train/val/test split, without the use of external
label data). The best previous systems (Ma and
Hovy, 2016; Lample et al., 2016) are based upon a
similar architecture (CRF-RNN) to ours. Lample
et al. (2016) employed LSTM for character-based
embedding, while Ma and Hovy (2016) employed
CNN for character-based embedding8. Overall,
we achieve state-of-the-art results on both English
and Spanish.

8There are several other works reporting very strong re-
sult on English NER: Chiu et al. (91.62) (2015), Yang et
al. (91.20) (2016) and Peter et al.(91.93) (2017), however,
these results are not comparable to ours due to the difference
in experimental setup (Ma and Hovy, 2016).
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System F1 on English F1 on Spanish
3 Res-RNN 91.07 ? 86.24?
3 Res-RNN + foreLM 91.43 ? 86.13?
3 Res-RNN + foreLM + backLM 91.66 ? 85.83
3 Res-RNN + bias 91.23 ?† 86.31 ?
3 Res-RNN + foreLM + bias 91.45 ? 86.14 ?
3 Res-RNN + foreLM + backLM + bias 91.69 ? 86.00 ?†

Table 3: Analysis of the bias decoding. ? indicates significance (p < 0.05) versus CRF-RNN no Stack
Residual in Table 1. † indicates significance versus the configuration with no bias.

System F1 on English F1 on Spanish
CRF-RNN no Stack Residual 90.43 85.41
(Passos et al., 2014) 90.05 –
(dos Santos and Guimarães, 2015) – 82.21
(Gillick et al., 2016) 84.57 81.83
(Lample et al., 2016) 90.94 85.75
(Ma and Hovy, 2016) 91.21 –
3 Res-RNN + bias 91.23 86.31
3 Res-RNN + foreLM + bias 91.45 86.14
3 Res-RNN + foreLM + backLM + bias 91.69 86.00

Table 4: Compare our model with systems with comparable experimental settings

4 Discussion

Overall, our model achieves the state-of-the-
arts for both English and Spanish Named Entity
Recognition. For Spanish, our base model with
three layers of Stacked Residual RNN already out-
performs the current state-of-the-art.

From the results above, we can see that our in-
novations, the Stacked Residual connection and
bias decoding consistently improve the perfor-
mance across both data sets. However, the im-
provements from bias decoding is somewhat small
in some models. The numerical gradient for train-
ing is noisy, and sometimes the SGD process
might take several epochs to find an improvement
on the development set. This happens especially
on the English dataset because the base model
trained with sequence level log-likelihood fits very
well on the training set. Even with the boost-
ing trick presented during the Experiments sec-
tion, the training is still very slow. At first, we
expected that the biases might give us some ideas
about the trade-off between precision and recall
similar to the thresholding technique for binary
classification, i.e. the based log-likelihood model
might favors precision or recall. However, from
the analysis of the biases, we found no obvious
trends favoring precision or recall.

Interestingly, the Language Model embeddings
seem to have opposite effects on Spanish and En-
glish. While it is very helpful in English, it only
degrades the performance for Spanish. The En-
glish LMs also improve convergence rate, while
it is the opposite for Spanish. We attribute this
difference in the quality of the Language Model
involved. For English, the LMs are arguably bet-
ter, with much lower perplexities than the LMs for
Spanish. The Spanish models also have less data
to train with, and it might affect the performance.

5 Conclusions and Future Work

We have explored two innovations over the base-
line CRF-RNN model for sequence classification:
the Stacked Residual Connection, and bias decod-
ing. With these two improvements, it is possible
to achieve state-of-the-art performance in Named
Entity Recognition for both English and Spanish.

As future work, we will further investigate
trainable bias decoding, and try to solve the prob-
lems presented. As the methods presented are gen-
eral and language/domain independent, we plan to
apply it to other domains such as health-care and
expand the applications beyond NER.
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Abstract

The problem of blend formation in genera-
tive linguistics is interesting in the context
of neologism, their quick adoption in mod-
ern life and the creative generative pro-
cess guiding their formation. Blend qual-
ity depends on multitude of factors with
high degrees of uncertainty. In this work,
we investigate if the modern neural net-
work models can sufficiently capture and
recognize the creative blend composition
process. We propose recurrent neural net-
work sequence-to-sequence models, that
are evaluated on multiple blend datasets
available in the literature. We propose
an ensemble neural and hybrid model that
outperforms most of the baselines and
heuristic models upon evaluation on test
data.

1 Introduction

Blending is the formation and intentional coinage
of new words from existing two or more
words (Gries, 2004). These are called neolo-
gisms. Neologisms effectively trace changing cul-
tures and addition of new technologies. Blend-
ing is one way to create a neologism. A lexi-
cal blend is formed by combining parts of two
or more words. Predicting a high quality lexi-
cal blend is often unpredictable due to the un-
certainty in the formal structure of blends (Beli-
aeva, 2014). Merging source words digital and
camera, the common expectation is the blend
digamera, although, in practice, digicam is
more common (Beliaeva, 2014). There are mul-
tiple unknown factors such as phonology, seman-
tics, familiarity, recognizability and lexical cre-
ativity that contribute to blend formation. Some
downstream applications that can leverage such

Word1 Word2 Blend Structure Category Coverage
aviation electronics avionics avi-onics Prefix + Suffix 16.74%

communicate fake communifake communi-fake Prefix + Word 10.78%

speak typo speako speak-o Word + Letter 0.14%

west indiea windies w-indies Letter + Word 0.89%

point broadcast pointcast point-cast Word + Suffix 22.56%

scientific fiction scientifiction scienti-fic-tion Word + Word overlap 22.56%

affluence influenza affluenza af-fluen-za Prefix + Suffix overlap 13.98%

brad angelina brangelina br-a-ngelina Prefix + Word overlap 11.39%

subvert advertising subvertising sub-vert-ising Word + Suffix overlap 16.31%

Table 1: Sample blends in our dataset along with the type
and coverage. There are other types of rare blends that is
beyond the scope of this work.

blending systems include generating names of
products, brands, businesses and advertisements to
name a few especially if coupled with contextual
information about the business or sector.

1.1 Related Work

Blends are compositional words consisting of
whole word and a splinter (part of morpheme) or
two splinters (Lehrer, 2007). The creative neoglo-
gism of blend formation has been studied by lin-
guists in an attempt to recognize patterns in the
process that model human lexical creativity or to
identify source words and blend meaning, context
and influence. With the popularity of deep neu-
ral networks (DNN)s (LeCun et al., 2015), we are
interested in the question if neural network mod-
els of learning can be leveraged in a generative
capacity, that can sufficiently explore or formal-
ize the process of blend formation. Blends can
be formed in several closely related morphologi-
cally productive ways as shown in Table 1. Our
work targets blends that are ordered combinations
of prefixes of first word and suffixes of the sec-
ond word. Examples include, avionics (prefix
+ suffix), vaporware (word + suffix), robocop
(prefix + word), carmageddon (overlap). Sev-
eral theories have been forwarded as to the struc-
ture and mechanism of blending (Gries, 2012),
without much consensus (Shaw et al., 2014). Most
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Figure 1: Architectural diagram of the bidirectional hybrid encoder decoder model.

implementation work in blenders and generators is
quite sparse in the literature and mainly concern
explicit blending of vector embeddings.

Naive implementations of generators exist on
the internet 123, that are simply lists of all possi-
ble blend combinations. Some other work is based
on greedy heuristics for better results 45. Andrew
et. Al (2014) built a statistical word blender as a
part of a password generator. Ozbal (2012) uses a
combination of edit distances and phonetic met-
rics and Pilichowski (2013) also uses a similar
technique. Our work empirically captures some
of these mechanisms from blend datasets used in
the literature using neural networks. Numerous
studies on deterministic rules for blend forma-
tion (Kelly, 1998; Gries, 2004, 2006, 2012; Bauer,
2012) do not find consensus on the blending pro-
cess mainly due to the ’human factor’ involved in

1http://www.dcode.fr/
word-contraction-generator

2http://werdmerge.com/
3http://www.portmanteaur.com/
4https://www.namerobot.com/namerobot/

name-generators/name-factory/merger.html
5http://www.namemesh.com/

company-name-generator

designing rules.
The closest work of using novel multitape Fi-

nite State Transducers (FST) for blend creation is
in work by Deri et. al. (2015). Our model is a neu-
ral model, different from the multitape FST model.
The multitape FST model is similar to our base-
line heuristic model with which we compare our
neural model proposed in this paper. The primary
benefit of our model is that it attempts to arrive at
a consensus among various neural experts in the
generative process of new blend creation.

1.2 Contributions
We summarize the main contributions of our work
as follows:

1. We propose an ensemble neural network
model to learn the compositional lexical
blends from two given source words.

2. We generalize the problem of lexical blend-
ing by leveraging the character based
sequence-to-sequence hybrid bidirectional
models in order to predict the blends.

3. We release a blending dataset and demo of
our neural blend generator along with open
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source software

2 Neural Lexical Blending Model

2.1 Sequence-to-sequence Models

Sequence-to-Sequence (Seq2Seq) neural network
models (Sutskever et al., 2014), are a general-
ization of the recurrent neural network (RNN)
sequence learning (Cho et al., 2014) paradigm,
where a source sequence x1, . . . , xn is mapped
to a fixed sized vector using a RNN often serv-
ing as the encoder, and another RNN is used to
map the vector to the target sequence y1, . . . , yn,
functioning as the decoder. However, RNNs strug-
gle to train on long term dependencies sufficiently;
and therefore, Long Short Term Memory Models
(LSTM) and Gated Recurrent Units (GRUs)(Cho
et al., 2014) are more common for such sequence
to sequence learning.

2.2 Bidirectional Seq2Seq Model

We propose a bidirectional forward and re-
verse GRU encoder-decoder model for our lex-
ical blends. To this end, both the encoder and
the decoder are bidirectional, i.e. they see the
ordered input source words both in the forward
direction and the backward direction. The mo-
tivation here is that in order to sufficiently cap-
ture the splinter point, there should be depen-
dency on the neighbouring characters in both
directions. Figure 1 shows the bidirectional
Seq2Seq model that we propose. Since we
have two source words for every blend, that
is a sequence of characters, the input to our
model has the source words concatenated with a
space and padding to align to the longest con-
catenated example. For example in Figure 1,
the source words work and alcoholic are
concatenated as cilohocla krow and work
alcoholic for the encoder and decoder respec-
tively, which subsequently gets reversed to work
alcoholic and cilohocla krow for the re-
verse encoder and decoder units. The represen-
tation of a sequence of characters in the input
pair of source words is the concatenation of the
fixed dimensional character to vector representa-
tions. The model’s prediction corresponding to
the two source words in the input, is the order
preserving binary output {ŷt = {0, 1}|xt ∈ yt}
for model prediction ŷ, ground truth target y and
concatenated source input pair x = (x1, ..., xT ).
For example, if x is work alcoholic with-

out padding, the prediction on the blended word
is 11110000111111 for the target workoholic.
The order is enforced implicitly in the concate-
nated inputs. The indices that are predicted 1 are
for the characters in the concatenated input that are
included in the blend.

The forward and reverse hidden states hft and
hrt of the encoder at time t is given by:

hft = GRUfenc

(
hft−1, xtr

)
(1)

hrt = GRU renc
(
hrt+1, xtr

)
(2)

where GRUfenc and GRU renc stand for forward
and reverse GRU encoder units described by (Cho
et al., 2014) and tr = T − t + 1. Similarly, the
forward yf and reverse yr intermediate outputs of
the decoder are given by:

yft = GRUfdec

(
yft−1, xt

)
(3)

yrt = GRU rdec
(
yrt+1, xt

)
(4)

where yf0 = hfT and yrT+1 = hr1. The final decoder
output is the result of applying smooth non-linear
sigmoid transformation to the GRU outputs

zjt = σ
(
Wfy

f
t + Ury

r
t

)
(5)

z is character wise probability of inclusion in the
blend. We apply sigmoid loss on z for training.

2.3 Ensemble Hybrid Bidirectional Seq2Seq
Model

We propose an ensemble model of our vanilla bidi-
rectional encoder decoder model discussed in Sec-
tion 2.2 in order to capture different representa-
tions of the source word, hidden state and a vari-
ety of blends. Blends can be inherently varying in
structure of the blend formation resulting in multi-
ple possible blend candidates. Each member or an
expert in our ensemble model has the same under-
lying architecture as described in Section 2.2 and
in Figure 1. However, the experts in the ensem-
ble do not share the model parameters, the motiva-
tion being able to capture a wider range of param-
eter values thus tackling the variations and mul-
tiplicity in the blending process adequately. Fur-
ther, there is a subjective and qualitative nature of
the blend formation process that leads to naturally
consider ensemble predictions with the notion that
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Dataset No. of Examples No. of Overlaps
Wiktionary 2854 1379
Train 2140 (75%)
Validation 428 (15%)
Test 286 (10%)
Test + Validation with overlaps 319 319
Test + Validation no overlaps 395 0
Cook 230 90
Thurner 482 320
Believa 335 168

Table 2: Datasets for experiments. Blends need not be over-
lapping even if the source words share common substrings.
E.g. puny + unicode = punycode.

Figure 2: Attention Mask while predicting in attention
baseline model.

the collective consensus should be more smooth
than capturing individual preferences or special-
ization in the experts where each expert predicts
differently. Each expert is independently initial-
ized and parameterized by a GRU based encoder
decoder neural network and trained end-to-end si-
multaneously.

The model makes the final prediction by us-
ing a method of combining the expert predictions
known as confidence measure. Each expert pre-
dicts the blended target zit = [0, 1] using Equa-
tion 5, for the ith expert such that i ∈ K, where
there are K experts. Confidence of each expert i
with respect to a pre-defined threshold γ is given
by:

Cf i =
∑n

t=1

∣∣zit − γ∣∣
n

(6)

For the purposes of evaluating the quality of the
ensemble model prediction, we perform a confi-
dence weighted voting on the blended words (at
a word level instead of character level) predicted
by the individual expert and report the top voted
blend predictions by the ensemble by selecting
the prediction of the expert(s) that has the highest
weighted confidence. The accuracy with respect
to the ground truth is then evaluated on the test set
and reported in the Section on experiments.

We would like to introduce the two baseline
models here, as they naturally lead to the hy-

Model Character Accuracy Word Accuracy

Test
With
Over-
laps

No
Over-
laps

Test
With
Over-
laps

No
Over-
laps

Baselines
Conditional - - - 0.192 0.185 0.203
Heuristic Conditional - - - 0.420 0.806 0.063
char-to-char
Vanilla 0.865 0.882 0.850 0.110 0.123 0.077
Split Encoder 0.856 0.871 0.832 0.085 0.120 0.053
Attention 0.912 0.925 0.886 0.280 0.367 0.133
Index based
Pointer feedforward - - - 0.185 0.197 0.195
Pointer decoder - - - 0.245 0.220 0.250
char-to-binary
Binary decoder 0.951 0.951 0.949 0.320 0.367 0.330
Bidirectional binary decoder 0.951 0.949 0.948 0.360 0.350 0.353
Hybrid binary decoder 0.954 0.964 0.940 0.430 0.520 0.313

Table 3: Single instance model results on the Wiktionary
Test set. Accuracies are reported at the character and word
level. To show fine grained performances the models are
additionally tested on two mutually exclusive datasets, one
with overlapping blends and the other without. We have run
paired t-tests with the baseline heuristic model with p-value
of 0.012.

brid aspect of our model which we discuss later.
The conditional baseline model builds a condi-
tional probability distribution of the splice points
from source word lengths, i.e. P (i1|l1) and
P (i2|l2), where i1, i2 are the splice indices and
l1, l2 are the lengths of source word 1 and 2 re-
spectively. The model predicts using argmax from
the distributions and combines the prefix and suf-
fix. The heuristic model greedily looks for com-
mon substrings in the two source words and joins
them with the overlap e.g. group + coupon =
groupon and group + coupon = gron. Then
from the set of combinations, it picks the one that
has the longest overlap. If no common substring is
found, it reverts to plain conditional model.

The bidirectional binary encoder-decoder that
we discussed before does poorly on overlapping
blends because it struggles to determine the blends
with overlaps. We propose a further enhancement
to the ensemble model whereby we introduce extra
information about the overlap and common sub-
strings between the source words. This is a hy-
brid between the heuristic and neural model. Con-
sider the overlap type blend group + coupon =
groupon. A mapping is induced from the source
words that indicates to the neural network that
oup is the overlapping segment. This mapping is
provided to the hybrid model as additional infor-
mation in the form of a binary sequence indicating
overlaps between the 2 source words so group +
coupon gets mapped to 001110011100 and is fed
into the encoder just after the embedding layer as
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shown in Figure 1. The motivation is that the extra
information should take the burden off the model
in finding common overlaps.

Effect of dominance To study the effect of
dominance of either of the source words we add
binary tags to the characters of each source word
proportional to the portion of source word in the
blend. If the proportion is greater than or equal
to 50 percent, then the dominance is set to 1 else
0. Note that both words can have dominance set
to 1. Additionally, we set dominance of both the
words to 1 if the proportions differ by less than 0.1
percent.

3 Experiments

3.1 Dataset Details
We use modern collection of english blend words
curated by Wiktionary6 with a total of 3250
blends. Each example consists of two source
words and a target blend word. We restrict the
dataset to only prefixes of first source word and
suffixes of second source word leading to a total
of 2854 blends. As held out datasets we use the
dataset created by Cook et al. (Cook and Steven-
son, 2010) from wordspy.com, and collected in
2008. It has 179 samples distinct from our train-
ing set and 230 unique blends in total with a good
balance among different types of blends.

7 The Thurner dataset that we use has 482
unique blends which are a subset of the full
Thurner dictionary (1993) of around 2300 words
collected from 85 sources. The structure of the
blends is skewed towards overlapping blends con-
stituting roughly about 66 percentage of all the
blends. The Believa dataset (2014) has 235 unique
blends collected from multiple sources from year
2000 until recent. The dataset has upto 4 source
words but we pick only ones with 2. The blends
are well balanced with distributions very similar to
Cook (2010).

3.2 Network and Training Details
In this section, we discuss the network structure
and training details. All the code is written using
Tensorflow (Abadi et al., 2016).

Network Layout: As discussed before we
use GRU RNN network as our encoder decoder

6https://en.wiktionary.org/wiki/
Category:English_blends Note: Last accessed
14thMarch, 2017

7We are grateful to the authors for sharing with us their
dataset.

Model Top-1 Word Accuracy
Test OL No OL Cook Thurner Believa

Bidirectional
Binary (K=60)

0.470 0.495 0.435 0.487 0.320 0.373

Hybrid Bidi-
rectional
Binary (K=30)

0.540 0.677 0.400 0.578 0.465 0.430

Heuristic Con-
ditional

0.420 0.806 0.063 0.375 0.571 0.409

Mixture of Ex-
perts (K=6)

0.365 0.347 0.363 0.370 0.228 0.277

Table 4: Results of the ensemble models (top-1 accuracy)
on various datasets along with the heuristic model. The accu-
racies reported are based on weighted voting of the experts.
K indicates number of experts. OL indicates overlap.

Model Top-2 Words Accuracy
Test OL No OL Cook Thurner Believa

Bidirectional
Binary (K=60)

0.635 0.677 0.570 0.613 0.504 0.575

Hybrid Bidi-
rectional
Binary (K=30)

0.677 0.784 0.527 0.674 0.612 0.597

Heuristic Con-
ditional

0.434 0.909 0.068 0.401 0.641 0.481

Table 5: Results of the ensemble models (top-2 accuracy)
on various datasets along with the heuristic model.

Seq2Seq model. Our proposed model has single
layer GRU units with 128 neurons. The character
vocabulary has a size of 40. Our dataset contains
blends with numbers, hyphens and also capitals.
Larger, multiple layers or more number of experts
in the ensemble networks did not improve perfor-
mance drastically.

Training The ensemble model of experts is
trained end-to-end on mini-batches using Adam
Optimization (Kinga and Adam, 2015) over the
Wiktionary dataset. The mini batch size is 100
and maximum length of the concatenated source
word pair is 29. The learning rate is initialized to
0.006. The fixed sized vector embedding repre-
sentation of the inputs to our model is set at 128 as
well. We allow a dropout rate of 0.25 to prevent
over-fitting. The parameters of the model are ran-
domly initialized from a normal disribution with
zero mean and standard deviation of 0.1. Training
is run for 16 epochs. We tuned hyper-parameters
based on our models performance over a range on
the validation sets.

3.3 Baseline Heuristic, Neural and Hybrid
Models

We compare the performance of our proposed
model with other models. The baselines are the
conditional probability distribution based model
and the heuristic model described previously.
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We also compared our model with several types
of Seq2Seq models. These include the vanilla
char-to-char where the encoder takes source words
concatenated and the decoder outputs target blend
as characters, Attention char-to-char with added
attention mechanism (Bahdanau et al., 2014) to
the vanilla char-to-char and Split encoder where
two encoders each takes one source word and the
decoder takes concatenated encoder states as in-
put. Index based target prediction models that
we compared against are the Pointer feedforward
model that has an encoder like the vanilla Seq2Seq
but the decoder is replaced with feed forward net-
work that outputs a distribution over two indices
or pointers that indicate splice points. Pointer
decoder is another variant where the decoder is
unrolled for two time steps always, each provid-
ing a distribution over indices of the concatenated
source words. Binary target prediction models
including our proposed ensemble model outputs
a probability of including the character from the
source concatenation at each time step. Attention
mechanisms were attempted for the other models
but showed no meaningful improvement in perfor-
mance; the attention mask results were blurred in
most cases. We suspect this is due to the mismatch
in the encoder and decoder representations (char-
acters versus binary or indices).

3.4 Results and Analysis
The demo of our model is available online8.
Dataset and source code9 is also provided. In
all the results reported, character level accuracy
indicates the generalized accuracy over number
of characters that were predicted correctly in the
blend word. Word level accuracy indicates the
generalized accuracy over the number of correct
blend word predictions over all the source word
pair instances.

Table 3 shows the results of all our single in-
stance models as discussed in the previous section.
The heuristic conditional model achieves high ac-
curacy in correctly predicting overlapping blends.
Its outperforms all the other models in the over-
lapping blends subset dataset. Overlapping blends
account to about fifty percent of the total blends in
general. The heuristic conditional model however
does poorly in the non overlapping blends as it de-
faults to a greedy search in order to find the sin-

8https://neuroblender.herokuapp.com
9https://github.com/FreeEnergy/

neuramanteau

gle character overlaps, such that its performance
is worse than the plain conditional model in this
subset.

In the char-to-char models, the attention based
model performs best as it is able to observe the
input words in their entirety at every time step.
Figure 2 shows the attention mask for this model
while predicting the blend infotopia. We can
clearly see where it jumps to the second word. The
two other char-to-char models perform poorly as
they have to additionally track the current char-
acter to output. The index based models perform
slightly better as the problem is now about predict-
ing the correct splice points. Their performance is
relatively unaffected by the blend types - overlap-
ping or non-overlapping. The char-to-binary mod-
els outperforms the rest as the solution space is re-
stricted to predicting the binary vector indicating
the characters that are present in the blend. The
bidirectional model is further able to improve its
performance due to its ability to scan the character
sequence in both directions for exploiting neigh-
bourhood structure. It can make a better decision
on the splinters with this extra information. The
vanilla binary model is able to perform better on
the overlapping blends data than the bidirectional
model but loses out on the non-overlapping case.
The bidirectional model essentially is able to gen-
eralize to both overlapping and non-overlapping
subsets. Finally the hybrid model between heuris-
tic and neural performs the best by including extra
information on the overlaps when available. Al-
though it is unable to beat the heuristic model in
the overlapping blends subset, it does better over-
all.

In Tables 4 and 5, we report the performance of
our proposed bidirectional ensemble model. The
ensemble models are able to bring in significant
gains as compared to the single instance mod-
els. The hybrid model is able to get the best of
both world: heuristic and neural models to get
the best overall accuracy. However, its perfor-
mance is skewed towards the overlapping blends
resulting in lower performance on the no over-
lap data subset in comparison to the plain bidirec-
tional model. The heuristic model performs well
on the Thurner (1993) dataset due to the major-
ity of the words in the Thurner data comprising
overlapping blends. The Cook (2010) and Be-
lieva datasets (2014) are more balanced in which
the hybrid model outperforms the rest. The Mix-
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Figure 3: Performance Plot of the Bidirectional Encoder
Decoder SeqToSeq model.

Word1 Word2 Hybrid Prediction Heuristic Prediction Ground
Truth

work alcoholic workoholic, workholic woholic, wolic workoholic

snow apocalypse snowocalpyse, snowpocalypse snocalypse snowpocalypse

book bootlegger booklegger boootlegger, bookbootlegger booklegger

family honeymoon famimoon, familmoon famoon, familymoon familymoon

edge pixel edgixel, edxel edgel edgel

Table 6: Comparison of predictions from heuristic and en-
semble hybrid models on sample inputs.

ture of Experts (MoE) ensemble causes experts
to specialize individually to the examples early
on, most often converging to a subset of experts.
This led to reduced accuracies for MoE through-
out. It was difficult to train the model as it pre-
ferred to converge (specialize) to a few experts
even when enforcing a variance loss to encourage
diversity. In contrast, the bidirectional ensemble
model did not specialize as each expert is trained
separately. That independence helps the ensemble
to generalize in capturing the wider variations in
the blends. In Table 6, we compare the predictions
from the hybrid ensemble model and the heuristic
single instance models. On observing the failure
modes, due to the qualitative and subjective na-
ture of blends, we find that some of the predicted
blends are still quite plausible. We would hazard
to say that some of these predictions actually look
more natural than the dataset values.

Figure 3 shows the performance plot of the

Model Top-1 Word Accuracy
Test OL No OL Cook Thurner Believa

Bidirectional
Binary
with Dom-
inance(K=15)

0.491 0.505 0.491 0.517 0.378 0.415

Hybrid Bidi-
rectional
Binary with
Dominance
(K=15)

0.572 0.721 0.453 0.643 0.525 0.487

Table 7: Results of dominance based models. K indicates
number of experts. OL indicates overlaps.

Word1 Word2
Blend Predictions

Word1 Dominant Word2 Dominant Equal
Dominannce

breakfast lunch breaklunch brunch breaklunch

phone tablet phonelet phablet phonlet

aviation electronics aviationics avionics aviatonics

bombay hollywood bombaywood bollywood bombwood

republican democrat republicrat repumocrat repubocrat

Table 8: Sample predictions from hybrid ensemble with
variation in dominance.

validation accuracy of any expert predicting cor-
rectly in comparison to the weighted voting pre-
diction. The weaker metric of evaluating the
accuracy based on any expert, outperforms the
weighted voting prediction over the training du-
ration. Tables 8 and 7 shows some sample
predictions and accuracy by the dominance en-
hanced hybrid model on sample inputs. With
the famous brunch blend, our model predicts
that the blend would have been breaklunch if
breakfast had been given more importance by
the coiner. Similarly our model predicts phone
and tablet gives phonlet when dominance of
the source words are same. But when the word
tablet is set to be dominant the model predicts
phablet, the form of the blend which is in pop-
ular use now. We can hypothesize that the cre-
ator of this blend perhaps wanted more emphasis
on tablets when marketing phablet form factor
mobile devices.

Comparison with Deri et al. (2015) The
main working example in their published pa-
per: stay + vacation predicted stacation on
their demo website, instead of staycation
as claimed, whereas our model demo predicted
staycation. Further, on their dataset (with
common words with the Wiktionary dataset that
we used removed), our baseline heuristic beat
their model with accuracy of 47.7% in compar-
ison to their models 45.3%, while our primary
model achieved 48.3%. Their dataset consists of
400 examples in contrast to our dataset of 2854
examples. Their system is unable to general-
ize to non-overlapping blends like staycation,
workholic correctly which our system can.

4 Future Work and Conclusions

In this work, we show that neural networks are
well suited to modelling uncertainties in the blend-
ing process. The ensemble RNN neural and en-
semble RNN neural-hybrid encoder-decoder sys-
tems that we propose generalized very well to
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overlapping and non-overlapping blended English
words from two source words. They outperform
statistical, heuristic, neural single instance and
mixture of experts ensemble models over multiple
datasets. However, these ensemble models are un-
able to capture the stringent rules and restrictions
that disallow certain character combinations like
bxy, ii, gls. An attempt to tag inputs with pho-
netic or articulatory information failed to correct
these mistakes. One possibility is to use reinforce-
ment learning (Sutton and Barto, 1998) to apply
specific rules of word formation. Other types of er-
rors are recognizability errors which causes loss of
recognition of one or both source words and over-
representation errors which adds extra (and unnec-
essary) characters from the source words. Some of
these examples are provided in the Appendix. We
believe these errors occur due to the sparsity in the
training data.
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Abstract

We explore techniques to maximize the ef-
fectiveness of discourse information in the
task of authorship attribution. We present
a novel method to embed discourse fea-
tures in a Convolutional Neural Network
text classifier, which achieves a state-of-
the-art result by a significant margin. We
empirically investigate several featuriza-
tion methods to understand the conditions
under which discourse features contribute
non-trivial performance gains, and analyze
discourse embeddings.1

1 Introduction

Authorship attribution (AA) is the task of identi-
fying the author of a text, given a set of author-
labeled training texts. This task typically makes
use of stylometric cues at the surface lexical and
syntactic level (Stamatatos et al., 2015), although
Feng and Hirst (2014) and Feng (2015) go be-
yond the sentence level, showing that discourse
information can help. However, they achieve lim-
ited performance gains and lack an in-depth anal-
ysis of discourse featurization techniques. More
recently, convolutional neural networks (CNNs)
have demonstrated considerable success on AA
relying only on character-level n-grams (Ruder
et al., 2016; Shrestha et al., 2017). The strength
of these models is evidenced by findings that tra-
ditional stylometric features such as word n-grams
and POS-tags do not improve, and can sometimes
even hurt performance (Ruder et al., 2016; Sari
et al., 2017). However, none of these CNN models
make use of discourse.

∗The first two authors contributed equally to this work.
1https://github.com/elisaF/authorship-

attribution-discourse

Our work builds upon these prior studies by
exploring an effective method to (i) featurize the
discourse information, and (ii) integrate discourse
features into the best text classifier (i.e., CNN-
based models), in the expectation of achieving
state-of-the-art results in AA.

Feng and Hirst (2014) (henceforth F&H14)
made the first comprehensive attempt at using
discourse information for AA. They employ an
entity-grid model, an approach introduced by
Barzilay and Lapata (2008) for the task of ordering
sentences. This model tracks how the grammati-
cal relations of salient entities (e.g., subj, obj,
etc.) change between pairs of sentences in a doc-
ument, thus capturing a form of discourse coher-
ence. The grid is summarized into a vector of tran-
sition probabilities. However, because the model
only records the transition between two consec-
utive sentences at a time, the coherence is lo-
cal. Feng (2015) (henceforth F15) further extends
the entity-grid model by replacing grammatical
relations with discourse relations from Rhetori-
cal Structure Theory (Mann and Thompson, 1988,
RST). Their study uses a linear-kernel SVM to
perform pairwise author classifications, where a
non-discourse model captures lexical and syntac-
tic features. They find that adding the entity-
grid with grammatical relations enhances the non-
discourse model by almost 1% in accuracy, and
using RST relations provides an improvement of
3%. The study, however, works with only one
small dataset and their models produce overall un-
remarkable performance (∼85%). Ji and Smith
(2017) propose an advanced Recursive Neural
Network (RecNN) architecture to work with RST
in the more general area of text categorization and
present impressive results. However, we suspect
that the massive number of parameters of RecNNs
would likely cause overfitting when working with
smaller datasets, as is often the case in AA tasks.
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(1) [My father]S was a clergyman of the north of England, [who]O was deservedly respected by all
who knew [him]O; and, in his younger days, lived pretty comfortably on the joint income of a small
incumbency and a snug little property of his own.
(2) [My mother]S , who married [him]O against the wishes of her friends, was a squire’s daughter, and
a woman of spirit.
(3) In vain it was represented to [her]X , that if [she]S became [the poor parson’s]X wife, [she]S must
relinquish her carriage and her lady’s-maid, and all the luxuries and elegancies of affluence; which to
[her]X were little less than the necessaries of life.

Table 1: Excerpt of 19th-century novel where sentences are labeled with the salient entities and their grammatical relations
(subject s, object o, other relation x). A salient entity is a noun phrase coreferred to at least two times in a document.

ss so sx s- os oo ox o- xs xo xx x- -s -o -x –
d1 0.25 0.25 0 0 0 0 0.25 0 0 0 0 0 0.25 0 0 0

Table 2: The probability vector for the excerpt in Table 1 capturing transition probabilities of length 2.

In our paper, we opt for a state-of-the-art
character-bigram CNN classifier (Shrestha et al.,
2017). We choose to use the entity-grid model be-
cause we find it helps avoid overfitting2 (adding
typical stylometric features such as word n-grams
and POS tags results in overfitting) and further
captures coreference chains, which we show are
critical to improving performance on this task (see
Section 5). We investigate various ways in which
the discourse information can be featurized and in-
tegrated into the CNN. Specifically,

• Featurization. We attempt to capture a more
global discourse coherence by modeling the
entire sequence of relations in a document for
every salient entity, instead of only the rela-
tions between pairs of sentences.

• Feature integration. Using a neural network
architecture allows us to explore embedding
the relations from the entity-grid model,3

rather than only exploiting a vector of rela-
tion probabilities.

We explore these questions using two ap-
proaches to represent salient entities: grammatical
relations, and RST discourse relations. We apply
these models to datasets of varying sizes and gen-
res, and find that adding any discourse information
improves AA consistently on longer documents,

2Primarily compared to previous work where discourse
trees are modeled with Recursive Neural Nets (Ji and Smith,
2017).

3Tien Nguyen and Joty (2017) are the first to propose
applying embeddings in modeling local coherence (for the
coherence judgment task). Our methods roughly subsume
theirs, which correspond to our GR CNN2-DE (global) model
(Section 3). This scheme did not come out on top in our AA
tasks.

but has mixed results on shorter documents. Fur-
ther, embedding the discourse features in a parallel
CNN at the input end yields better performance
than concatenating them to the output layer as a
feature vector (Section 3). The global featuriza-
tion is more effective than the local one. We also
show that SVMs, which can only use discourse
probability vectors, neither produce a competitive
performance (even with fine-tuning), nor general-
ize in using the discourse information effectively.

2 Background

Entity-grid model. Typical lexical features for
AA are relatively superficial and restricted to
within the same sentence. F&H14 hypothesize
that discourse features beyond the sentence level
also help authorship attribution. In particular, they
propose an author has a particular style for rep-
resenting entities across a discourse. Their work
is based on the entity-grid model of Barzilay and
Lapata (2008) (henceforth B&L).

The entity-grid model tracks the grammatical
relation (subj, obj, etc.) that salient entities take
on throughout a document as a way to capture lo-
cal coherence . A salient entity is defined as a noun
phrase that co-occurs at least twice in a document.
Extensive literature has shown that subject and ob-
ject relations are a strong signal for salience and
it follows from Centering Theory that you want
to avoid rough shifts in the center (Grosz et al.,
1995; Strube and Hahn, 1999). B&L thus focus
on whether a salient entity is a subject (s), object
(o), other (x), or is not present (-) in a given sen-
tence, as illustrated in Table 1. Every sentence in
a document is encoded with the grammatical re-
lation of all the salient entities, resulting in a grid
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similar to Table 3.

fat
he

r
moth

er

(1) s -
(2) o s
(3) x s

Table 3: The entity grid for the excerpt in Table 1, where
columns are salient entities and rows are sentences. Each cell
contains the grammatical relation of the given entity for the
given sentence (subject s, object o, another grammatical rela-
tion x, or not present -). If an entity occurs multiple times in
a sentence, only the highest-ranking relation is recorded.

The local coherence of a document is then de-
fined on the basis of local entity transitions. A lo-
cal entity transition is the sequence of grammatical
relations that an entity can assume across n con-
secutive sentences, resulting in {s,o,x,-}n possible
transitions. Following B&L, F&H14 consider se-
quences of length n=2, that is, transitions between
two consecutive sentences, resulting in 42=16 pos-
sible transitions. The probability for each transi-
tion is then calculated as the frequency of the tran-
sition divided by the total number of transitions.
This step results in a single probability vector for
every document, as illustrated in Table 2.

B&L apply this model to a sentence order-
ing task, where the more coherent option, as ev-
idenced by its transition probabilities, was cho-
sen. In authorship attribution, texts are however
assumed to already be coherent. F&H14 instead
hypothesize that an author unconsciously employs
the same methods for describing entities as the dis-
course unfolds, resulting in discernible transition
probability patterns across multiple of their texts.
Indeed, F&H14 find that adding the B&L vectors
increases the accuracy of AA by almost 1% over a
baseline lexico-syntactic model.

RST discourse relations. F15 extends the no-
tion of tracking salient entities to RST. Instead of
using grammatical relations in the grid, RST dis-
course relations are specified. An RST discourse
relation defines the relationship between two or
more elementary discourse units (EDUs), which
are spans of text that typically correspond to syn-
tactic clauses. In a relation, an EDU can function
as a nucleus (e.g., result.N) or as a satellite
(e.g., summary.S). All the relations in a docu-
ment then form a tree as in Figure 1.4

4For reasons of space, only the first sentence of the ex-
cerpt is illustrated.

Figure 1: RST tree for the first sentence of the excerpt in
Table 1.

F15 finds that RST relations are more effective
for AA than grammatical relations. In our paper,
we populate the entity-grid in the same way as
F15’s “Shallow RST-style” encoding, but use fine-
grained instead of coarse-grained RST relations,
and do not distinguish between intra-sentential
and multi-sentential RST relations, or salient and
non-salient entities. We explore various featuriza-
tion techniques using the coding scheme.

CNN model. Shrestha et al. (2017) propose a
convolutional neural network formulation for AA
tasks (detailed in Section 3). They report state-
of-the-art performance on a corpus of Twitter data
(Schwartz et al., 2013), and compare their mod-
els with alternative architectures proposed in the
literature: (i) SCH: an SVM that also uses char-
acter n-grams, among other stylometric features
(Schwartz et al., 2013); (ii) LSTM-2: an LSTM
trained on bigrams (Tai et al., 2015); (iii) CHAR:
a Logistic Regression model that takes character
n-grams (Stamatatos, 2009); (iv) CNN-W: a CNN
trained on word embeddings (Kalchbrenner et al.,
2014). The authors show that the model CNN25

produces the best performance overall. Ruder
et al. (2016) apply character n-gram CNNs to a
wide range of datasets, providing strong empiri-
cal evidence that the architecture generalizes well.
Further, they find that including word n-grams
in addition to character n-grams reduces perfor-
mance, which is in agreement with Sari et al.
(2017)’s findings.

5Shrestha et al. (2017) test two variants of CNN models:
CNN1/CNN2 for unigram/bigram character CNNs respec-
tively.
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Figure 2: The bigram character CNN models

3 Models

Building on Shrestha et al. (2017)’s work, we em-
ploy their character-bigram CNN (CNN2)6, and
propose two extensions which utilize discourse in-
formation: (i) CNN2 enhanced with relation prob-
ability vectors (CNN2-PV), and (ii) CNN2 en-
hanced with discourse embeddings (CNN2-DE).
The CNN2-PV allows us to conduct a compari-
son with F&H14 and F15, which also use relation
probability vectors.

CNN2. CNN2 is the baseline model with no dis-
course features. Illustrated in Figure 2 (center), it
consists of (i) an embedding layer, (ii) a convo-
lution layer, (iii) a max-pooling layer, and (iv) a
softmax layer. We briefly sketch the processing
procedure and refer the reader to (Shrestha et al.,
2017, Section 2) for mathematical details.

The network takes a sequence of character bi-
grams x = 〈x1, . . . , xl〉 as input, and outputs
a multinomial φ over class labels as the predic-
tion. The model first looks up the embedding ma-
trix to produce a sequence of embeddings for x
(i.e., the matrix C), then pushes the embedding
sequence through convolutional filters of three
bigram-window sizes w = 3, 4, 5, each yielding
m feature maps. We then apply the max-over-time
pooling (Collobert et al., 2011) to the feature maps
from each filter, and concatenate the resulting vec-
tors to obtain a single vector y, which then goes
through the softmax layer to produce predictions.

CNN2-PV. This model (Figure 2, left+center) fea-
6Our preliminary experiments found that using character

n-gram orders higher than 2 performed worse, likely due to
the increased number of features and overfitting.

turizes discourse information into a probability
vector (PV). The discourse features come in two
flavors: (i) grammatical relations (GR), and (ii)
RST discourse relations (RST)7. For both types
of discourse features, an entity grid is first con-
structed to identify salient entities8. Recall each
row in the grid is a sentence, and each column
is a salient entity. The values of each cell in the
grid are then populated differently, depending on
which flavor of discourse feature is used.

For GR features, the entity grid is popu-
lated with the grammatical relation of each en-
tity in each sentence. The entity grid is then
collapsed into a single probability vector as
shown in Table 2. The GR feature vector thus
consists of a sequence of grammatical relation
transitions derived from the entity grid, e.g.,
〈sx,xs,ss,...〉. The vector is a distribu-
tion over all the grammatical role transitions, i.e.,
〈p(sx), p(xs), p(ss), . . .〉.

For RST features, the entity grid is populated
with the RST relation and nulcearity of the entity,
and additionally the relations and nuclearity
of the main EDUs in the current and previous
sentence (as in Feng (2015)). We do not en-
code the entire RST tree since prior work has
shown better performance with underspecified
trees (Ji and Smith, 2017; Hogenboom et al.,
2015). The RST features are represented as RST
discourse relations with their nuclearity, e.g.,
〈definition.N,attribution.S,...〉.
The probability vector is a distribution

7Using RST Parser from Ji and Eisenstein (2014).
8Using neural coreference resolver, dependency parser in

Stanford Core NLP (Clark and Manning, 2016).
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Dataset # authors mean
words/auth

range
words/auth

NOVEL-9 9 376,242 124K-1M
NOVEL-50 50 709,880 184K-2.1M
IMDB62 62 349,004 9.8K-75K

Table 4: Statistics for datasets.

over all the RST discourse relations, i.e.,
〈p(definition.N), p(attribution.S), . . .〉

Denoting the discourse feature vector with y′′,
we construct the pooling vector y for the char-
bigrams, and concatenate y′′ to y before feeding
the resulting vector to the softmax layer.

CNN2-DE. In this model (Figure 2, center+right),
we embed discourse features in high-dimensional
space (similar to char-bigram embeddings). Let
z = 〈z1, . . . , zl′〉 be a sequence of discourse fea-
tures9, we treat it in a similar fashion to the char-
bigram sequence x, i.e. feeding it through a “par-
allel” convolutional net (Figure 2 right). We set
the embedding size to the average number of re-
lations, then either pad or truncate. The operation
results in a pooling vector y′. We concatenate y′

to the pooling vector y (which is constructed from
x) then feed [y; y′] to the softmax layer for the
final prediction.

4 Experiments and Results

We begin by introducing the datasets (Section
4.1), followed by detailing the featurization meth-
ods (Section 4.2), the experiments (Section 4.3),
and finally reporting results (Section 4.4).

4.1 Datasets

The statistics for the three datasets used in the ex-
periments are summarized in Table 4.

novel-9. This dataset was compiled by F&H14:
a collection of 19 novels by 9 nineteenth century
British and American authors in the Project Guten-
berg. To compare to F&H14, we apply the same
resampling method (F&H14, Section 4.2) to cor-
rect the imbalance in authors by oversampling the
texts of less-represented authors.

novel-50. This dataset extends novel-9, compiling
the works of 50 randomly selected authors of the

9The sequence comes in two variants, depending on the
featurization technique, see Section 4.2.

(a) local (b) global
Figure 3: Two variants for creating sequences of grammatical
relation transitions in an entity grid.

same period. For each author, we randomly select
5 novels for a total 250 novels.

IMDB62. IMDB62 consists of 62K movie re-
views from 62 users (1,000 each) from the Internet
Movie dataset, compiled by Seroussi et al. (2011).
Unlike the novel datasets, the reviews are consid-
erably shorter, with a mean of 349 words per text.

4.2 Featurization
As described in Section 2, in both the GR and RST
variants, from each input entry we start by obtain-
ing an entity grid.

CNN2-PV. We collect the probabilities of entity
role transitions (in GR) or discourse relations (in
RST) for the entries. Each entry corresponds to a
probability distribution vector.

CNN2-DE. We employ two schemes for creating
discourse feature sequences from an entity grid.
While we always read the grid by column (by a
salient entity), we vary whether we track the entity
across a number of sentences (n rows at a time)
or across the entire document (one entire column
at a time), denoted as local and global readings
respectively.

For the GR discourse features, in the case of lo-
cal reading, we process the entity roles one sen-
tence pair at a time (Figure 3, left). For exam-
ple, in processing the pair (s1, s2), we find the first
non-empty role r11 for entity E1 in s1. If E1 also
has a non-empty role r21 in the s2, we collect the
entity role transition r11r21. We then proceed to
the following entity E2, until we process all the
entities in the grid and move to the next sentence
pair. For the global reading, we instead read the
entity roles by traversing one column of the entire
document at a time (Figure 3, right). The entity
roles in all the sentences are read for one entity:
we collect transitions for all the non-empty roles
(e.g., so, but not s-).

For the RST discourse features, we process non-
empty discourse relations also through either local
or global reading. In the local reading, we read all
the discourse relations in a sentence (a row) then
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move on to the next sentence.10 In the global read-
ing, we read in discourse relations for one entity at
a time. This results in sequences of discourse re-
lations for the input entries.

4.3 Experiments

Baseline-dataset experiments. All the baseline-
dataset experiments are evaluated on novel-9. As
a comparison to previous work (F15), we evalu-
ate our models using a pairwise classification task
with GR discourse features. In her model, each
novel is partitioned into 1000-word chunks, and
the model is evaluated with accuracy.11 Surpass-
ing F15’s SVM model by a large margin, we then
further evaluate the more difficult multi-class task,
i.e., all-class prediction simultaneously, with both
GR and RST discourse features and the more ro-
bust F1 evaluation. In this multi-class task, we im-
plement two SVMs to extend F15’s SVM models:
(i) SVM2: a linear-kernel SVM which takes char-
bigrams as input, as our CNNs, and (ii) SVM2-
PV: an updated SVM2 which takes also probabil-
ity vector features.

Further, we are interested in finding a perfor-
mance threshold on the minimally-required input
text length for discourse information to “kick in”.
To this end, we chunk each novel into different
sizes: 200-2000 words, at 200-word intervals, and
evaluate our CNNs in the multi-class condition.

Generalization-dataset experiments. To con-
firm that our models generalize, we pick the best
models from the baseline-dataset experiments and
evaluate on the novel-50 and IMDB62 datasets.
For novel-50, the chunking size applied is 2000-
word as per the baseline-dataset experiment re-
sults, and for IMDB62, texts are not chunked (i.e.,
we feed the models with the original reviews di-
rectly). For model comparison, we also run the
SVMs (i.e., SVM2 and SVM2-PV) used in the
baseline-dataset experiment. All the experiments
conducted here are multi-class classification with
macro-averaged F1 evaluation.

Model configurations. Following F15, we per-
form 5-fold cross-validation. The embedding sizes
are tuned on novel-9 (multi-class condition): 50
for char-bigrams; 20 for discourse features. The
learning rate is 0.001 using the Adam Optimizer

10We do not check the next sentences as in GR, because
the discourse relations in one cell of the entity grid typically
already capture relations beyond the sentence level.

11Averaged over all the author-author pair experiments.

MODEL AVG.ACCURACY

Baseline 49.8

SVM (LexSyn) 85.5
SVM (LexSyn-PV) 86.4

CNN2 99.5
CNN2-PV 99.8

Table 5: Accuracy for pairwise author classification on the
novel-9 dataset, using either a dumb baseline, an SVM with
and without discourse to replicate F15, or a bigram-character
CNN (CNN2) with and without discourse.

DISC.TYPE MODEL F1

None
SVM2 84.9
CNN2 95.9

GR

SVM2-PV 85.7
CNN2-PV 96.1
CNN2-DE (local) 97.0
CNN2-DE (global) 96.9

RST

SVM2-PV 85.9
CNN2-PV 96.3
CNN2-DE (local) 97.4
CNN2-DE (global) 98.5

Table 6: Macro-averaged F1 score for multi-class author clas-
sification on the novel-9 dataset, using either no discourse
(None), grammatical relations (GR), or RST relations (RST).
These experiments additionally include the Discourse Em-
bedding (DE) models for GR and RST.

(Kingma and Ba, 2014). For all models, we apply
dropout regularization of 0.75 (Srivastava et al.,
2014), and run 50 epochs (batch size 32). The
SVMs in the baseline-dataset experiments use de-
fault settings, following F15. For the SVMs in
the generalization-dataset experiments, we tuned
the hyperparameters on novel-9 with a grid search,
and found the optimal setting as: stopping condi-
tion tol is 1e-5, at a max-iteration of 1,500.

4.4 Results

Baseline-dataset experiments. The results of the
baseline-dataset experiments are reported in Table
5, 6 and Figure 4. In Table 5, Baseline denotes the
dumb baseline model which always predicts the
more-represented author of the pair. Both SVMs
are from F15, and we report her results. SVM
(LexSyn) takes character and word bi/trigrams and
POS tags. SVM (LexSyn-PV) additionally in-
cludes probability vectors, similar to our CNN2-
PV. In this part of the experiment, while the CNNs
clear a large margin over SVMs (all differences
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Figure 4: Macro-averaged F1 score for multi-class author
classification on the novel-9 dataset in varied chunk sizes.

are statistically significant at p<0.005), adding dis-
course in CNN2-PV brings only a small perfor-
mance gain.

Table 6 reports the results from the multi-class
classification task, the more difficult task. Here,
probability vector features (i.e., PV) again fail to
contribute much. The discourse embedding fea-
tures, on the other hand, manage to increase the
F1 score by a noticeable amount, with the maxi-
mal improvement seen in the CNN2-DE (global)
model with RST features (by 2.6 points). In con-
trast, the discourse-enhanced SVM2-PVs increase
F1 by about 1 point, with overall much lower
scores in comparison to the CNNs. In general,
RST features work better than GR features.

The results of the varying-sizes experiments are
plotted in Figure 4. Again, we observe the over-
all pattern that discourse features improve the F1
score, and RST features procure superior perfor-
mance. Crucially, however, we note there is no
performance boost below the chunk size of 1000
for GR features, and below 600 for RST features.
Where discourse features do help, the GR-based
models achieve, on average, 1 extra point on F1,
and the RST-based models around 2.

Generalization-dataset experiments. Table 7
summarizes the results of the generalization-
dataset experiments. All reported statistical tests
are t-test with a significance level of 0.05. First,
we note that CNNs show a clear advantage over
SVMs for all model variants on both datasets (con-
firmed significant for SVM2 vs. CNN2 with no
discourse, SVM2-PV vs. CNN2-DE with GR
and RST). On novel-50, most discourse-enhanced
models significantly improve the performance of
the baseline non-discourse CNN2 to varying de-

DISC. TYPE MODEL NOVEL-50 IMDB62

None
SVM2 92.9 90.4
CNN2 95.3 91.5

GR

SVM2-PV 93.3 90.4
CNN2-PV 95.1 90.5
CNN2-DE (local) 96.9 90.8
CNN2-DE (global) 97.5 90.9

RST

SVM2-PV 93.8 90.9
CNN2-PV 95.5 90.7
CNN2-DE (local) 97.7 91.4
CNN2-DE (global) 98.8 92.0

Table 7: Macro-averaged F1 score for multi-class author
classification on the large datasets, using either no discourse
(None), grammatical relations (GR), or RST relations (RST).

grees (significant for CNN2 with no discourse
vs. CNN2-DE with GR and RST). The clear pat-
tern again emerges that RST features work better,
with the best F1 score evidenced in the CNN2-DE
(global) model (3.5 improvement in F1) (signifi-
cant for CNN2-DE with GR vs. CNN2-DE with
RST). On IMDB62, as expected with short text
inputs (mean=349 words/review), the discourse
features in general do not add further contribu-
tion. Even the best model, CNN2-DE, brings
only marginal improvement (not statistically sig-
nificant), confirming our findings from varying the
chunk size on novel-9, where discourse features
did not help at this input size. However, the dif-
ference between the GR and RST variants for the
IMDB CNN models are statistically significant.
For the SVM models on both datasets, we note dis-
course features do not make noticeable improve-
ments. On novel-50, SVM2-PV performs slightly
better than the no-discourse SVM2 (by 0.4 with
GR, 0.9 with RST features). On IMDB62, the
same pattern persists with no gains for GR and 0.5
for RST features.

5 Analysis

General analysis. Overall, we have shown that
discourse information can improve authorship at-
tribution, but only when properly encoded. This
result is critical in demonstrating the particular
value of discourse information, because typical
stylometric features such as word n-grams and
POS tags do not add additional performance im-
provements (Ruder et al., 2016; Sari et al., 2017).

In addition, the type of discourse information
and the way in which it is featurized are crucial to
this performance improvement: RST features pro-
vide overall stronger improvement, and the global
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TARGET EMBEDDING TOP NEIGHBORS

explanation.N interpretation.N, explanation.S, example.N,
purpose.S, reason.N

background.N circumstances.S, contrast.N, comparison.N,
antithesis.S, elaboration.N

consequence.N result.N, list.N, result.S,
comment.N, summary.N

Table 8: Nearest neighbors of example embeddings with t-SNE clustering (top 5)

reading scheme for discourse embedding works
better than the local one. The discourse embed-
ding proves to be a superior featurization tech-
nique, as evidenced by the generally higher perfor-
mance of CNN2-DE models over CNN2-PV mod-
els. With an SVM, where the option is not avail-
able, we are only able to use relation probability
vectors to obtain a very modest performance im-
provement.

Further, we found an input-length threshold
for utilizing discourse features is helpful (Section
4.4). Not surprisingly, discourse does not con-
tribute on shorter texts. Many of the feature grids
are empty for these shorter texts– either there are
no coreference chains or they are not correctly re-
solved. Currently we only have empirical results
on short novel chunks and movie reviews, but be-
lieve the finding would generalize to Twitter or
blog posts.

Discourse embeddings. It does not come as a sur-
prise that discourse-embedding-based models per-
form better than their relation-probability-based
peers. The former (i) leverages the weight learn-
ing of the entire computational graph of the CNN
rather than only the softmax layer, as the PV mod-
els do, and (ii) provides a more fine-grained fea-
turization of the discourse information. Rather
than merely taking a probability over grammatical
relation transitions (in GR) or discourse relation
types (in RST), in DE-based models we learn the
dependency between grammatical relation transi-
tions/discourse relations through the w-sized filter
sweeps.

To further study the information encoded in
the discourse embeddings, we performed t-SNE
clustering (van der Maaten and Hinton, 2008) on
them, using the best performing model CNN2-
DE (global). We examined the closest neigh-
bors of each embedding, and observed that
similar discourse relations tend to go together
(e.g., explanation and interpretation;

consequence and result). Some examples
are given in Table 8. However, it is unclear how
this pattern helps improve classification perfor-
mance. We intend to investigate this question in
future work.

Global vs. Local featurization. As described in
Section 4.2, the global reading processes all the
discourse features for one entity at a time, while
the local approach reads one sentence (or one sen-
tence pair) at a time. In all the relevant exper-
iments, global featurization showed a clear per-
formance advantage (on average 1 point gain in
F1). Recall that the creation of the grids (both GR
and RST) depend on coreference chains of entities
(Section 2), and only the global reading scheme
takes advantage of the coreference pattern whereas
the local reading breaks the chains. To find out
whether coreference pattern is the key to the per-
formance difference, we further ran a probe exper-
iment where we read RST discourse relations in
the order in which EDUs are arranged in the RST
tree (i.e., left-to-right), and evaluated this model
on novel-50 and IMDB62 with the same hyper-
parameter setting. The F1 scores turned out to
be very close to the CNN2-DE (local) model, at
97.5 and 90.9. Based on this finding, we tenta-
tively confirm the importance of the coreference
pattern, and intend to further investigate how ex-
actly it matters for the classification performance.

GR vs. RST. RST features in general give higher
performance gains than GR features (Table 7).
The RST parser produces a tree of discourse rela-
tions for the input text, thus introducing a “global
view.” The GR features, on the other hand, are
more restricted to a “local view” on entities be-
tween consecutive sentences. While a deeper em-
pirical investigation is needed, one can intuitively
imagine that identifying authorship by focusing
on the local transitions between grammatical re-
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lations (as in GR) is more difficult than observing
how the entire text is organized (as in RST).12

Error analysis. We conducted a brief error analy-
sis in an effort to understand why discourse helps.
Comparing performance by author, we found the
least-represented author (Ambrose Bierce) obtains
the biggest improvement from discourse. We
speculate that although the document must be a
certain length for discourse to ”kick in”, these fea-
tures are effective even with few training exam-
ples. On the other hand, inspecting the gradients
of the character bigrams for these cases reveals a
higher incidence of 0s, suggesting the bigram fea-
ture is not as robust in the smaller sample space.
We further note that two other authors who gained
large improvements from the discourse features
wrote a variety of genres (e.g., both supernatu-
ral/horror fiction and love stories), which we spec-
ulate manifests itself in different vocabularies that
don’t generalize well in character bigrams, but do
have similar rhetorical styles which the discourse
features can exploit.

6 Conclusion

We have conducted an in-depth investigation of
techniques that (i) featurize discourse information,
and (ii) effectively integrate discourse features into
the state-of-the-art character-bigram CNN classi-
fier for AA. Beyond confirming the overall supe-
riority of RST features over GR features in larger
and more difficult datasets, we present a discourse
embedding technique that is unavailable for previ-
ously proposed discourse-enhanced models. The
new technique enabled us to push the envelope of
the current performance ceiling by a large margin.

Admittedly, in using the RST features with
entity-grids, we lose the valuable RST tree struc-
ture. In future work, we intend to adopt more so-
phisticated methods such as RecNN, as per Ji and
Smith (2017), to retain more information from the
RST trees while reducing the parameter size. Fur-
ther, we aim to understand how discourse embed-
dings contribute to AA tasks, and find alternatives
to coreference chains for shorter texts.

12Note that, however, it is simpler to extract GR features,
as we rely solely on a high-performance dependency parser,
which is widely available, whereas for RST features, we need
gold RST-labeled training data, which incurs higher cost and
potentially relatively limited generalizability.
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Abstract

We propose the first lightly-supervised ap-
proach to scoring an argument’s persua-
siveness. Key to our approach is the novel
hypothesis that lightly-supervised persua-
siveness scoring is possible by explicitly
modeling the major errors that negatively
impact persuasiveness. In an evaluation on
a new annotated corpus of online debate
arguments, our approach rivals its fully-
supervised counterparts in performance by
four scoring metrics when using only 10%
of the available training instances.

1 Introduction

Argumentation mining is a relatively new and ac-
tive area of research in the natural language pro-
cessing (NLP) community, focusing on extract-
ing argument components (e.g., claims, premises)
and determining the relationships (e.g., support,
attack) between them. Recently, researchers have
begun work on modeling an intriguing linguistic
phenomenon, the persuasiveness of arguments.

In this paper, we examine argument persuasive-
ness in the context of an under-investigated task in
argument mining, argument persuasiveness scor-
ing. Given a text consisting of an argument writ-
ten for a particular topic, the goal of argument
persuasiveness scoring is to assign a score to the
text that indicates how persuasive the argument is.
An argument persuasiveness scoring system can
be used in a variety of situations. In an online de-
bate, for instance, an author’s primary goal is to
convince others of the argument expressed in her
comment(s). Similarly, in persuasive essay writ-
ing, an author should establish convincing argu-
ments. In both situations, a persuasiveness scor-
ing system could provide useful feedback to these
authors on how persuasive their arguments are.

Being a discourse-level task, argument persua-
siveness scoring is potentially more challenging
than many NLP tasks. Oftentimes, argument per-
suasiveness can only be determined by under-
standing the discourse, not by the presence or ab-
sence of lexical cues. As an example, consider the
debate argument shown in Table 1, which is com-
posed of the author’s assertion and her justifica-
tion of the assertion written in response to a debate
motion. It is fairly easy for a human to determine
that this argument should be assigned a low per-
suasiveness score because the argument could be
more clear. However, the same is not true for a ma-
chine, primarily because it is not possible to deter-
mine the persuasiveness of this argument merely
by considering the words or phrases appearing in
it.

Given the difficulty of the task, it is conceiv-
able that unsupervised argument persuasiveness
scoring is very challenging. Nevertheless, a so-
lution to unsupervised argument persuasiveness
scoring is of practical significance. This is be-
cause of the high cost associated with manually
creating persuasiveness-annotated data needed to
train classifiers in a supervised manner. This con-
trasts with tasks such as polarity classification and
stance classification. In these tasks, large amounts
of annotated data can be harvested from the Web,
as it is typical for a user to explicitly indicate her
polarity/stance while writing her comments in a
discussion/debate forum.

We propose a lightly-supervised approach to ar-
gument persuasiveness scoring. To our knowl-
edge, this is the first lightly-supervised approach
to the task: virtually all previous work involving
argument persuasiveness has adopted supervised
approaches, training models with a large number
of surface features that encode lexico-syntactic in-
formation. Note that learning from a large number
of lexico-syntactic features is difficult, if not im-
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Motion This House would ban teachers from interacting with students via social networking websites.
Assertion Acting as a warning signal for children at risk.
Justification It is very difficult for a child to realize that he is being groomed; they are unlikely to know the risk. After

all, a teacher is regarded as a trusted adult. But, if the child is aware that private electronic contact between
teachers and students is prohibited by law, the child will immediately know the teacher is doing something
he is not supposed to if he initiates private electronic contact. This will therefore act as an effective warning
sign to the child and might prompt the child to tell a parent or another adult about what is going on.

Table 1: The motion, assertion, and justification text of a debate argument.

possible, when annotated data is scarce. Hence,
we explore a different idea, addressing lightly-
supervised argument persuasiveness scoring via an
error-modeling approach. Specifically, guided by
theoretical work on persuasiveness, we begin by
defining a set of errors that could negatively im-
pact an argument’s persuasiveness. The key step,
then, is to model an argument’s errors: given an
argument, we predict the presence and severity of
the errors it possesses in an unsupervised manner
by bootstrapping from a set of heuristically labeled
seeds. Finally, we learn a persuasiveness predic-
tor for each error-labeled argument from a small
amount of persuasiveness-annotated data.

Our contributions are two-fold. First, we pro-
pose the first lightly-supervised approach to per-
suasiveness scoring that rivals its supervised coun-
terparts in performance on a new dataset consist-
ing of 1,208 online debate arguments. Second,
we make our annotated dataset publicly available.1

Given the difficulty of obtaining annotated data for
this task, we believe that our dataset will be a valu-
able resource to the NLP community.

2 Related Work

There have been several recent attempts to address
tasks related to argument persuasiveness. Haber-
nal and Gurevych (2016a,b) rank a pair of argu-
ments w.r.t. persuasiveness, but ranking alone can-
not tell us how persuasive an argument is. Pers-
ing and Ng (2015) score a student essay based on
whether it makes a (un)convincing argument for
its thesis. Using the conversations in the Change-
MyView subreddit, Tan et al. (2016) study fac-
tors affecting whether a challenger can success-
fully persuade a commenter to change the view she
expressed in her original post.

While Wei et al. (2016) also predict the persua-
siveness of debate posts, their work differs from
ours in several aspects. First, many of their de-

1See http://www.hlt.utdallas.edu/
˜persingq/Debate/ for a complete list of our an-
notations.

bate posts are written in response to a preceding
comment in the conversation. Hence, it is not un-
common to see emotional rather than logical argu-
ments or even insults and personal attacks. In ad-
dition, it may not always be possible to understand
what the argument is and why the author made
a particular argument without understanding the
(preceding) context. In contrast, the debate com-
ments in our corpus are written in response to a
given debate topic. In other words, each comment
is written independently of the other comments
and therefore can be understood without them.

In a broader sense, our error-modeling approach
is related to work on holistically scoring an essay
via detecting and totaling up specific errors in it.
For details, we refer the reader to Shermis et al.
(2010) and Leacock et al. (2014).

3 Corpus and Annotation

We use as our corpus a randomly selected sub-
set of 165 debates obtained from the International
Debate Education Association (IDEA) website2.
These debates cover a wide range of topics in-
cluding politics, economics, religion, and science.
Each debate consists of a Motion, which expresses
a stance on the debate’s topic, and an average
of 7.3 arguments, each of which either agrees or
disagrees with the motion’s stance. Each of the
1,208 arguments consists of an Assertion, which
expresses in one sentence why the author agrees
or disagrees with the motion, and a Justification,
which explains in an average of 6.9 sentences why
the author believes her assertion.

We ask two native speakers of English to anno-
tate each of the 1,208 arguments with a persuasive-
ness score after familiarizing them with the (topic-
and domain-independent) scoring rubric (see Ta-
ble 2). Specifically, we ask our annotators to score
each argument’s persuasiveness on a scale of 1−6.
The example argument in Table 1 gets a persua-
siveness score of 2 because it could be expressed
more clearly.

2http://idebate.org/
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Score Description of Argument Persuasiveness
6 A very persuasive, clear argument. It would persuade most previously uncommitted readers and is devoid of

problems that might detract from its persuasiveness or make it difficult to understand.
5 A persuasive, or only pretty clear argument. It would persuade most previously uncommitted readers, but may

contain some minor problems that detract from its persuasiveness or understandability.
4 A decent, or only fairly clear argument. It could persuade some previously uncommitted readers, but problems

detract from its persuasiveness or understandability.
3 A poor, or only mostly understandable argument. It might persuade readers who are already inclined to agree

with it, but contains severe problems that detract from its persuasiveness or understandability.
2 A very unpersuasive or very unclear argument. It is unclear what the author is trying to argue or the argument

is just so riddled with problems as to be completely unpersuasive.
1 The author does not make an argument or it is unclear what the argument is. It could not persuade any

readers because there is nothing to be persuaded of.

Table 2: Descriptions of argument persuasiveness scores.

1 2 3 4 5 6
AP 3 12 20 21 20 24

Table 3: Distribution of error/argument persua-
siveness scores as percentages.

Table 3 shows the distribution of scores for
argument persuasiveness. To measure inter-
annotator agreement, we select a subset of 69 ar-
guments and ask both annotators to score them
w.r.t. argument persuasiveness. The average dif-
ference between the annotator-assigned scores is
0.899. For the sake of our experiments, when
annotators disagree on a score, we average their
annotations together, rounding up to the nearest
whole number to obtain the gold score.

4 Error Types

Key to our approach to persuasiveness scoring is
the unsupervised modeling of the errors that could
negatively impact persuasiveness. In this section,
we define five such error classes, which are moti-
vated by theoretical work on persuasiveness.3

Grammar Error (GE) Connor and Lauer
(1985) note that grammar and/or mechanical er-
rors can interrupt the flow of discourse in persua-
sive essays, so we give arguments a GE score of 1
if they contain GEs severe enough to make the ar-
gument hard to understand, and 0 otherwise. The
argument in Table 1 gets a GE score of 0 because
it contains no severe GEs.

Lack of Objectivity (LO) Oktavia et al. (2014)
consider the use of personal opinions as evidence
in argumentative writing a fallacy, so we give ar-
guments a LO score of 1 if they display an in-

3We also annotated the 1,208 arguments in our corpus
with these five errors even though they were not used in the
experiments in this paper. See Persing and Ng (2017) for de-
tails on the error annotations.

appropriate lack of objectivity, and 0 otherwise.4

The argument in Table 1 receives a LO score of
1 because the author weaves a scenario in which
she repeatedly speculates on what a child thinks
or will do.

Inadequate Support (IS) Petty and Cacioppo
(1984) find that arguments with more support are
more persuasive, so we give arguments an IS score
of 0 if they offer adequate support to justify their
assertion, 1 if they do not offer enough support, or
2 if they offer almost no support. The example ar-
gument gets an IS score of 2 because the author’s
scenario is completely unsupported.

Unclear Assertion (UA) In Connor’s (1990) cri-
teria for judging assertions in persuasive writing,
the lowest score is assigned to essays which did
not clearly assert the problem they address. So we
give an argument an UA score of 1 if it is not clear
how the assertion is related to the motion without
reading the justification, or 2 if the assertion is in-
comprehensible without reading the justification.
It receives a score of 0 otherwise. The example ar-
gument gets a UA score of 1 because it is not clear
how the assertion is related to the motion.

Unclear Justification (UJ) Because a smooth
flow of ideas throughout an argument is important
to its persuasiveness, Connor (1990) also evalu-
ates persuasive essays’ coherence. Since it is not
clear what an incoherent argument is arguing for,
we give an argument an UJ score of 2 if the jus-
tification appears unrelated to the assertion, 1 if it
does not concisely justify the assertion, or 0 if the
justification is clear. The example argument gets

4Note, however, that other forums may try to craft emo-
tional debates on purpose for their effectiveness. For in-
stance, Lukin et al. (2017) show that emotional arguments can
indeed be very persuasive and that they resonate with differ-
ent audiences due to audience/reader preset biases and their
own personality traits.
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an UJ score of 0 as it is easy to understand the au-
thor’s point in the justification.

5 Approach

In this section, we present our approach to per-
suasiveness scoring. Broadly, it first predicts the
presence and severity of the aforementioned errors
(Section 5.1), then uses these predictions to assign
persuasiveness scores (Section 5.2).

5.1 Prediction of Error Types

Our process for predicting error types consists of
two steps. First, for each error type, we heuristi-
cally apply error severity values to a set of training
arguments that can be confidently error-labeled
(Section 5.1.1). Using these error-labeled argu-
ments as seeds, we then apply the expectation
maximization (EM) algorithm (Dempster et al.,
1977) to predict the error severity values of the re-
maining training arguments (Section 5.1.2).

5.1.1 Heuristics
In this subsection, we describe our heuristics.
Grammar Error (GE) To detect GEs, we use
the LanguageTool proofreading program5 to de-
tect all GEs (e.g., redundant phrases and typos)
in all training set justifications. We then calculate
the frequency with which GEs occur per sentence
in each justification, clustering these values using
k-means clustering6. Finally, we label the train-
ing set arguments in the highest cluster with a GEs
value of 1, and training set arguments in the low-
est cluster with a GEs value of 0. This makes intu-
itive sense because GEs can hinder persuasiveness
if they occur very frequently, and cannot hinder
persuasiveness if they never occur.
Lack of Objectivity (LO) We count how fre-
quently the word “morally” appears in justifica-
tions per token. We employ k-means clustering
on these frequencies to help us identify which jus-
tifications use it most. The justifications falling in
the highest cluster’s arguments are heuristically la-
beled with a LO severity of 1. We do the same with
the word “certain”. Finally, if an author uses less
than five definite articles in her justification, we
heuristically label her argument with a severity of
1. These rules make sense because arguments that
are too concerned with the author’s morality or in
which the author seems too certain, or in which

5https://languagetool.org/
6Unless otherwise noted, k = 4 in k-means clustering.

the author is rarely specific are likely to display a
LO.7

To find arguments not displaying a LO (severity
= 0), we count and k-means cluster the frequency
of first person plural pronouns in the justifications.
Arguments whose justifications are in the lowest
cluster are labeled with a LO severity of 0. This
makes sense because justifications that lack objec-
tivity often rely on stories about the writer’s per-
sonal experiences. We use plural pronouns to cap-
ture this rather than singular ones because thesis
statements (which are not inherently subjective)
often begin with “I believe” or “I think”.8

Inadequate Support (IS) To assign IS severi-
ties, we first need to know how many sources an
argument cites.9 An argument that cites no refer-
ences is assigned an IS severity of 2. If the argu-
ment cites only one reference, it gets a score of
1. Finally, we cluster arguments by the number of
sources they cite. Arguments in the highest cluster
are assigned an IS severity of 0. These rules make
sense because arguments that cite a lot of sources
are probably adequately supported.

Unclear Assertion (UA) UAs typically consist
of very short sentence fragments (e.g. “Europe”).
For this reason, we heuristically assign an argu-
ment an unclear assertion severity of 2 if they are
less than four words long.

To identify arguments with an UA severity of 1,
we first identify all content lemmas (nouns, pro-
nouns, verbs, adjectives, adverbs) in the assertion.
If none of these lemmas are mentioned in the jus-
tification, the argument gets a severity of 1. Since
this heuristic necessarily conflicts with the previ-
ous one, when applying UA heuristics, rules with
greater severity take precedence.

Finally, we k-means cluster the counts of asser-
tion content lemmas appearing in the justification
and assertion lengths.10 If an argument is not in
the lowest cluster in either of these, it gets labeled

7We note that these lexical features are potentially spe-
cific to this particular domain. There have been a number
of works examining objectivity and subjectivity that go be-
yond lexical features and use syntactic structures (Riloff and
Wiebe, 2003; Wilson et al., 2005) and emotional and factual
arguments (Oraby et al., 2015).

8Since more than one heuristic might apply to a given ar-
gument, we leave an argument unlabeled if the heuristics tell
us to apply inconsistent labels to it. This is also how we han-
dle contradictory heuristics for the remaining errors.

9We develop heuristics for extracting references from the
justification. See the Appendix for these heuristics.

10We use k = 6 for assertion length clustering because
assertions vary greatly in length.
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1 # of grammar errors per sentence in justification
(GE)

2 # of times the word “morally” appears in justification
(LO)

3 # of times the word “certain” appears in justification
(LO)

4 # of definite articles in justification (LO)
5 # of first person plural pronouns in justification (LO)
6 # of references cited in justification (IS)
7 # of words in assertion (UA)
8 # of content lemmas in assertion that also appear in

justification (UA)
9 # of sentences in justification (UJ)

10 # of times words that lemmatically match the as-
sertion’s subject appear in the first argument of a
contingency-cause discourse relation in justification
(UJ)

Table 4: Features used by the generative model.
The error type for which each feature is originally
developed is shown in parentheses.

with an UA severity of 0.
Unclear Justification (UJ) As with UAs, UJs
are often very short. For this reason, we k-means
cluster the sentence counts in our training set justi-
fications, and label arguments whose justifications
fall into the lowest cluster with an UJ severity of 2.
As in the previous error, this rule takes precedence
over other rules.

To identify arguments with UJ severities of 1
or 0, we first dependency and discourse parse
our assertions and justifications using Stanford
CoreNLP (Manning et al., 2014) and Lin et
al.’s (2014) PDTB-style discourse parser, respec-
tively. Using the dependency parse, we identify
the assertion’s main subject, which we assume is
the first word that is a child in an nsubj or nsub-
jpass relationship. Next, we count the number
of times words that lemmatically match the sub-
ject appear in the first argument of a contingency-
cause discourse relation in the justification. Fi-
nally, we k-means cluster these counts, assigning
arguments with justifications in the highest cluster
an UJ severity of 0, and those in the lowest cluster
a severity of 1. These rules make sense because
a justification that discusses its assertion’s topic’s
effects frequently is likely to be very topically co-
herent, thus having a clear justification.

5.1.2 Bootstrapping using EM
Recall that for each error type t, our heuristics only
label a subset of the training arguments with er-
ror severity values for t.11 To label the remain-

11The heuristics for GE, LO, IS, UA, and UJ can label
39%, 66.%, 86%, 50%, and 87% of the training arguments,

ing training arguments, we apply EM to bootstrap
from the heuristically labeled seeds for t.

Specifically, we initialize the model parameters
using only the seeds for t. After that, we iterate the
E-step and the M-step until convergence. In the E-
step, we probabilistically (re)label each unlabeled
training argument with its error severity value for
t using the current model parameter values. Then,
in the M-step, we re-estimate the model param-
eters using both the seeds and the training argu-
ments probabilistically (re)labeled in the E-step.

To understand what the model parameters are,
we need to specify the generative model. In our
experiments, we employ Naive Bayes as the un-
derlying generative model, effectively assuming
that each feature value is conditionally indepen-
dent of other feature values given the class value
(which in this case is the severity value for t).

To fully specify the model parameters, we need
to specify the features used to represent each argu-
ment. Specifically, we employ the 10 features used
in the heuristics described in the previous subsec-
tion. For the sake of clarity, we list them again
in Table 4. Note that all of them have numerical
values. Hence, to reduce data sparseness, we k-
means cluster the values, and use the 10 k-valued
features in the EM-based bootstrapping process.

Regardless of which error type we train the
model for, the same set of 10 k-valued features
will be used. In other words, the generative mod-
els for the five error classes differ only w.r.t. the set
of seeds used to initialize the model parameters.
After learning, we employ the model learned for
each error type to error-label the test arguments.

5.2 Persuasiveness Prediction
Like many other unsupervised and weakly-
supervised models, we make a modeling assump-
tion in our approach in order to facilitate learning
in an environment where annotated data is scarce.
Specifically, we assume that the persuasiveness
score of an argument inversely correlates with the
sum of its severity scores over all errors.12 This
assumption intuitively makes sense: as the num-
ber and severity of the errors increase, the corre-
sponding argument becomes less persuasive.

Given this assumption, we train a lightly super-
vised persuasiveness predictor as follows. First,
we cluster the training arguments by the sum of

respectively.
12For instance, if an argument has an IS severity of 2 and a

LO severity of 1, the sum of its severity scores will be 3.
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severity scores over all errors.13 Then, we ran-
domly select n arguments from each cluster c
(where 1 ≤ n ≤ 12 in most of our experiments),
and manually label them with their persuasiveness
scores. Finally, we assign to each c a persuasive-
ness score that is the average of the persuasiveness
scores of the n manually labeled arguments in c.

During testing, we compute the sum of severity
scores over all errors for each test argument, as-
sign it to the corresponding cluster, and predict its
persuasiveness score as the score of the cluster it
is assigned to. Since our system assigns the Av-
erage persuasiveness of training arguments having
the same Error Severity count, we call it ASE.

6 Evaluation

In this section, we evaluate our approach to per-
suasiveness prediction. Since there is an element
of randomness in our algorithm and the baselines
(in which arguments get labeled), we report results
using 5 repetitions of 5-fold cross validation.

6.1 Scoring Metrics

We employ four evaluation metrics for persuasive-
ness scoring, namely E, ME, MSE, and PC.

The simplest metric, E, measures the frequency
at which a system predicts the wrong score. ME
and MSE measure the mean error and mean
squared error of our persuasiveness predictions,
respectively. The formulas below illustrate how
we calculate E, ME, and MSE, respectively:

1
N

∑
Aj 6=E′j

1,
1
N

N∑
j=1

|Aj − Ej |, 1
N

N∑
j=1

(Aj − Ej)2

where Aj , Ej , and E′j are the annotator assigned,
system predicted, and rounded system predicted
persuasiveness scores14 respectively for argument
j, and N is the number of arguments.

The last metric, PC, computes Pearson’s cor-
relation coefficient between a system’s predicted

13While the highest possible error severity count is 8, there
is no argument in our corpus for which we predict that count.
Hence, we only end up with 8 clusters, one for each error
severity count (0−7).

14Since a regressor assigns each argument a real value
rather than an actual valid score, it would be difficult to obtain
a reasonable E score without rounding the system estimated
score to one of the possible values. For that reason, we round
the estimated score to the nearest valid persuasiveness score
(1−6 at one-point increments) when calculating E. For other
scoring metrics, we round the predictions to 1.0 or 6.0 if they
fall outside the 1.0−6.0 range.

scores and the annotator-assigned scores. A posi-
tive (negative) PC implies that the two sets of pre-
dictions are positively (negatively) correlated.

Note that E, ME, and MSE are error metrics,
so lower scores on them imply better performance.
In contrast, PC is a correlation metric, so higher
correlation implies better performance.

6.2 Baseline Systems

We employ six baseline systems. All baselines
are support vector regressors (Drucker et al., 1997)
trained using LibSVM (Chang and Lin, 2001) with
default parameters, differing only in terms of the
features used by the learner.
Bag of words (BOW) In the first baseline, we
use as features the bag of words extracted from
the argument’s assertion and justification.
Word n-grams (WNG) The second baseline
uses word n-grams (n=1,2,3) extracted from the
argument’s assertion and justification as features.
Bag of part-of-speech tags (BOPOS) Our third
baseline employs as features the bag of POS tags
in the argument’s assertion and justification.
Style Our fourth baseline captures aspects of an
argument’s style. Specifically, it employs four
types of features that are motivated by Tan et
al.’s (2016) Style baseline, namely:

Length-based features: As longer arguments
can be more detailed, we encode as a feature the
length in tokens and sentences of an argument’s
assertion and justification.

Word category-based features: For each of the
following categories of words/tokens, we employ
as features the absolute count and frequency per
token in an argument’s justification: (1) definite
and indefinite articles and first and second per-
son pronouns, both of which we learned in Sec-
tion 5.1 can be useful for detecting lack of objec-
tivity; (2) question marks and quotations, which
indicate how an argument is structured; (3) posi-
tive and negative sentiment words as determined
by Mohammad and Yang (2011) since excessive
emotion can also signal a lack of objectivity; (4)
URLs, since these may be another way of citing
evidence; (5) hedge words15, which can be used to
express argument uncertainty; and (6) phrases that
indicate the author is giving an example (“e.g.”,
“for instance”, “for example”).

15The hedge words are taken from http:
//english-language-skills.com/item/
177writing-skills-hedge-words.html.
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Word complexity features: These features cap-
ture the justification’s complexity of word choice,
namely the justification’s word entropy, type-
token ratio, and grade level (Kincaid et al., 1975).

Word score-based features: Warriner et al.
(2013) and Brysbaert et al. (2014) associate each
word in a lexicon with four real-valued num-
bers describing how abstract, intensely emotional,
pleasant, and vulnerability-evoking the word is.
We extract as features the average value of the
words in an argument for each of these qualities.

Duplicated Tan et al. (Tan) As our fifth base-
line, we employ our re-implementation of Tan et
al.’s (2016) system. Their feature set comprises
all the features described in the Style, BOW, and
BOPOS baselines, as well as a set of word score-
based features exactly like those described above,
except that they involve first quartering the justifi-
cation, then calculating the word scores on each
quarter of the text. These are useful because,
for example, successful arguments begin by using
calmer words.

Persing and Ng (P&N) The sixth baseline is the
system we previously designed and implemented
for scoring argument persuasiveness in student es-
says (Persing and Ng, 2015). This system em-
ploys five types of features: (1) POS unigrams,
bigrams and trigrams, which capture the syntac-
tic generalizations of an argument’s justification;
(2) frame-semantic features, which capture the se-
mantic generalizations of the justification; (3) fea-
tures computed based on the frequency of occur-
rence of transitional phrases in the justification,
which encode its degree of coherence; (4) topic
relevance features, which capture the relevance of
the justification to its motion based on the num-
ber of overlapping entities; and (5) argument la-
bel features, which are n-grams of sentence-based
argument labels (e.g., CLAIM, SUPPORT) derived
from the justification.

6.3 Results and Discussion

Five-fold cross-validation results of the six base-
lines when trained on 100% of the training data
(966 arguments) are shown in the first six rows of
Table 5. While BOW and WNG serve as strong
baselines for many NLP tasks, the same is not
true for persuasiveness scoring: they are among
the worst baselines. This is perhaps not surpris-
ing given the discussion in the introduction: since
persuasiveness scoring is a discourse-level task, in

System E ME MSE PC

BOW 0.786 1.218 2.087 0.073
WNG 0.786 1.218 2.088 0.063
BOPOS 0.786 1.217 2.084 0.089
Style 0.748 1.102 1.776 0.408
Tan 0.744 1.109 1.799 0.398
P&N 0.785 1.198 2.045 0.252
ASE 0.744 1.097 1.753 0.422

Table 5: Five-fold cross-validation results for per-
suasiveness scoring. Each baseline is trained on
100% of the training data (966 arguments), while
ASE is trained on 96 arguments (10% of the avail-
able training data).

many cases an argument’s persuasiveness cannot
be determined solely from its words and phrases.
The best baselines are Style and Tan, a system that
builds upon Style. These systems offer consider-
ably better performance than BOW, WNG, BO-
POS, and P&N w.r.t. all four scoring metrics.

Results of our system, ASE, are shown in the
last row of Table 5. These results are obtained
when n is set to 12. Recall that n is a parameter of
ASE that specifies the number of persuasiveness-
labeled training arguments used to compute each
cluster’s persuasiveness score. Since we have
eight clusters, these results are obtained when
ASE is trained on 96 persuasiveness-labeled argu-
ments (10% of the training data). Although ASE
is lightly-supervised, it outperforms all the base-
line systems by all four metrics. The improve-
ments it yields are highly significant w.r.t. three of
the four scoring metrics.16 These results provide
suggestive evidence for the efficacy of our error-
modeling approach to persuasiveness scoring.

6.4 Additional Experiments

To gain additional insights into ASE, we perform
additional experiments.

Lightly-supervised baselines. To be fair in our
comparison with the baselines, we retrain them
on 10% of the arguments randomly sampled from
the training data and compare their performances
against ASE. Results are shown in Table 6. In
comparison to the results in Table 5, almost all
baselines suffer from performance deterioration,
particularly w.r.t. ME, MSE, and PC. ASE
continues to significantly outperform all baselines

16Unless otherwise stated, boldfaced results are highly sig-
nificant compared to the best baseline (p < .01, paired t-test).

600



System E ME MSE PC

BOW 0.788 1.245 2.216 0.011
WNG 0.789 1.245 2.217 0.013
BOPOS 0.789 1.245 2.213 0.044
Style 0.755 1.239 2.343 0.261
Tan 0.755 1.238 2.340 0.267
P&N 0.791 1.291 2.432 0.147
ASE 0.744 1.097 1.753 0.422

Table 6: Results for persuasiveness scoring when
all systems are trained on 10% of the training in-
stances.

F # E ME MSE PC

1 0.749 1.112 1.795 0.415
2 0.751 1.112 1.803 0.405†
3 0.745 1.096 1.764 0.415
4 0.752 1.104 1.759 0.416
5 0.752† 1.114 1.802† 0.401†
6 0.748 1.109 1.798 0.407
7 0.744 1.11 1.811 0.413
8 0.753 1.105† 1.772 0.412
9 0.753 1.113 1.817† 0.400†
10 0.755 1.118 1.811 0.398

Table 7: Results for persuasiveness scoring when
one feature is removed from ASE’s generative
model. F # indicates which feature is being re-
ferred to (as indexed in Table 4).

w.r.t. these three scoring metrics.
Feature ablation. In order to determine each
feature’s contribution to ASE’s generative model,
we perform ablation experiments wherein we re-
train the model using all but one of the features.
Table 7 shows how ASE performs after each fea-
ture is removed.17

From these results, we gather that no feature
makes a negative contribution to the model, as no
feature’s removal significantly improves perfor-
mance on any metric. Occurrences of “morally”,
first person plural pronouns, the number of con-
tent lemmas appearing in both the assertion and
the justification, and justification length (features
2, 5, 8 and 9) make significant contributions to per-
formance according to at least one metric.
Error ablation. Recall that ASE predicts per-
suasiveness based on a summation of the predicted
severity scores over all errors. To determine the

17Unless otherwise stated, results that are significantly
worse than that of the original model (p < .01, paired t-test)
are marked with a dagger.

Error E ME MSE PC

GE 0.745 1.082 1.71 0.443
LO 0.746 1.098 1.758 0.416
IS 0.766 1.171† 1.954† 0.317†

UA 0.743 1.106† 1.789† 0.409†
UJ 0.763† 1.132† 1.862† 0.367†

Table 8: Results for persuasiveness scoring when
ASE predicts persuasiveness based on a summa-
tion of severity scores over all but one error. The
error shown in each row is the ablated error.

n E ME MSE PC

1 0.771 1.430 3.393 0.240
2 0.750 1.304 2.688 0.299
3 0.758 1.221 2.302 0.320
4 0.746 1.177 2.113 0.348
5 0.747 1.153 1.980 0.361
6 0.749 1.151 1.969 0.374
7 0.752 1.143 1.918 0.379
8 0.747 1.119 1.842 0.386
9 0.754 1.104 1.790 0.407
10 0.754 1.112 1.808 0.413

Table 9: Learning curve results.

importance of each error’s contribution, we per-
form five ablation experiments wherein we ex-
clude each one of the errors from this summation.

Table 8 shows that the IS, UA, and UJ errors
make the most important contributions to persua-
siveness scoring since removing them from con-
sideration significantly harms performance com-
pared to ASE. Removing GE and LO, by contrast,
harms performance the least since these are likely
the two least frequent errors and therefore have
less impact on performance.
Learning curve. Table 9 shows how our ASE
system performs when n increases from 1 to 10.
As we can see, the scores for all metrics with the
exception of E follow the expected trajectory of a
learning curve, with worse scores for n = 1 pro-
gressively becoming better as n approaches 10.
Fully-supervised results. Can ASE perform
better given more training data? Table 10 shows
the results of ASE when it is trained on 10%
(ASE(10)) and 100% (ASE(100)) of the training
data. As we can see, the answer is yes: ASE(100)
significantly outperforms ASE(10) w.r.t. all but the
E metric. While it is not surprising to see dimin-
ishing returns, what is perhaps surprising is the
relative small performance gap between ASE(10)
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System E ME MSE PC

ASE(10) 0.744 1.097 1.753 0.422
ASE(100) 0.745 1.078 1.678 0.441

Table 10: Results for persuasiveness scoring
when ASE is trained on 10% (row 1) and 100%
(row 2) of the training data.

Train data E ME MSE PC

10% 0.739 1.110 1.901 0.408
100% 0.731 1.053 1.724 0.454

Table 11: Results for persuasiveness scoring
when ASE predicts persuasiveness by means of
a support vector regressor that is trained on 10%
(row 1) and 100% (row 2) of the training data us-
ing only the error severity values as features.

and ASE(100): it suggests that ASE learns very
fast from a small amount of labeled data.
Training a persuasiveness predictor with errors
as features. Recall that ASE predicts persua-
siveness based on the sum of severity scores. Can
we instead predict persuasiveness by training a re-
gressor using only the errors as features? To an-
swer this question, we train a support vector re-
gressor using the 13 binary features that corre-
spond to the 13 severity values of the five errors.
The value of a feature is 1 if and only if the argu-
ment is assigned the corresponding severity value.

Results of the regressor are shown in Table 11.
When the regressor is trained on 10% of the train-
ing data, its results are worse than the ASE(10)
results in Table 10 w.r.t. all but theE metric. How-
ever, when it is trained on 100% of the train-
ing data, its results are slightly better than the
ASE(100) results in Table 10 w.r.t. all but the
MSE metric. We speculate that being discrim-
inatively trained, the support vector regressor can
yield better results than the simplistic modeling as-
sumption made by ASE only when training data
is plentiful. Additional experiments are needed to
determine the reason, however.
Correlation. Recall that ASE assumes that the
persuasiveness score of an argument correlates
with the sum of its severity scores over all errors.
To better understand the extent to which this as-
sumption is true, we cluster all 1,208 arguments
by the sum of severity scores. For each of the eight
resulting clusters, we average the gold persuasive-
ness scores of the arguments in the cluster.

Results are shown in Table 12. As we can see,

SS Average SD SS Average SD
0 5.138 1.050 4 3.111 1.331
1 4.886 1.190 5 3.245 1.392
2 4.194 1.338 6 2.909 1.446
3 3.763 1.306 7 3.000 0.000

Table 12: Average persuasiveness score and its
standard deviation (SD) against the sum of sever-
ity score (SS).

the data satisfies our assumption: average persua-
siveness decreases as the sum of severity scores
increases. The only exception occurs when SS=7,
presumably due to the small sample size.

6.5 Error Analysis

Next, we conduct a qualitative error analysis.
While there is a definite correlation between er-

ror severity count and persuasiveness, error sever-
ity count is likely not the only factor that impacts
persuasiveness. An examination of some essays
whose persuasiveness scores are far from their
ASE predicted scores shows that factors that are
harder to analyze such as logical soundness and
the presence of claims that seem to contradict the
assertion also play a role in persuasiveness.

In other arguments, persuasiveness prediction
error can be attributed to our system’s mispre-
diction of the presence/absence/severity of an er-
ror. Error annotated data might help address this
problem by allowing us to tune our error severity
heuristics.

Finally, our error severity scales are pretty
coarse-grained. It is reasonable to expect, for ex-
ample, that a real argument could have an unclear
justification error whose severity is halfway be-
tween 2 and 1, but our EM algorithm for predict-
ing error severities does not allow this. The intro-
duction of a regression system into our algorithm
might address this problem.

7 Conclusion

We proposed a lightly-supervised approach to the
under-studied problem of predicting argument per-
suasiveness scores on debate arguments. Exper-
imental results on 1,208 arguments demonstrated
that our approach significantly outperformed six
fully-supervised baselines by three out of four
scoring metrics when using only 10% of the train-
ing data. To stimulate research on this task, we
make our annotated data publicly available.

602



Acknowledgments

We thank the three anonymous reviewers for their
detailed comments. We also thank our annotators,
Dino Occhialini and Christopher Knoll. This work
was supported in part by NSF Grants IIS-1219142
and IIS-1528037. Any opinions, findings, conclu-
sions or recommendations expressed in this paper
are those of the authors and do not necessarily re-
flect the views or official policies, either expressed
or implied, of NSF.

References
Marc Brysbaert, Amy Beth Warriner, and Victor Ku-

perman. 2014. Concreteness ratings for 40 thousand
generally known English word lemmas. Behavior
Research Methods 46(3):904–911.

Chih-Chung Chang and Chih-Jen Lin. 2001. LIB-
SVM: A library for Support Vector Machines.
Software available at http://www.csie.ntu.
edu.tw/˜cjlin/libsvm.

Ulla Connor. 1990. Linguistic/rhetorical measures for
international persuasive student writing. Research
in the Teaching of English pages 67–87.

Ulla Connor and Janice Lauer. 1985. Understanding
persuasive essay writing: Linguistic/Rhetorical ap-
proach. Text-Interdisciplinary Journal for the Study
of Discourse 5(4):309–326.

Arthur P. Dempster, Nan M. Laird, and Donald B. Ru-
bin. 1977. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Sta-
tistical Society. Series B (Methodological) 39:1–38.

Harris Drucker, Christopher J. C. Burges, Linda Kauf-
man, Alex Smola, and Vladimir Vapnik. 1997. Sup-
port vector regression machines. In Advances in
Neural Information Processing Systems 9, pages
155–161.

Ivan Habernal and Iryna Gurevych. 2016a. What
makes a convincing argument? Empirical analysis
and detecting attributes of convincingness in Web
argumentation. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1214–1223.

Ivan Habernal and Iryna Gurevych. 2016b. Which ar-
gument is more convincing? Analyzing and predict-
ing convincingness of Web arguments using bidi-
rectional LSTM. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1589–
1599.

J. Peter Kincaid, Robert P. Fishburne Jr., Richard L.
Rogers, and Brad S. Chissom. 1975. Derivation of
new readability formulas (automated readability in-
dex, fog count and flesch reading ease formula) for

Navy enlisted personnel. Technical report, DTIC
Document.

Claudia Leacock, Martin Chodorow, Michael Gamon,
and Joel R. Tetreault. 2014. Automated Grammat-
ical Error Detection for Language Learners. Syn-
thesis Lectures on Human Language Technologies.
Morgan & Claypool Publishers, second edition.

Ziheng Lin, Hwee Tou Ng, and Min-Yen Kan. 2014. A
PDTB-styled end-to-end discourse parser. Natural
Language Engineering, 20(2):151–184, 2014.

Stephanie Lukin, Pranav Anand, Marilyn Walker, and
Steve Whittaker. 2017. Argument strength is in the
eye of the beholder: Audience effects in persuasion.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers. pages 742–753.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Proceedings of 52nd
Annual Meeting of the Association for Computa-
tional Linguistics: System Demonstrations. pages
55–60.

Saif Mohammad and Tony Yang. 2011. Tracking sen-
timent in mail: How genders differ on emotional
axes. In Proceedings of the 2nd Workshop on Com-
putational Approaches to Subjectivity and Sentiment
Analysis, pages 70–79.

Witri Oktavia, Anas Yasin, et al. 2014. An analy-
sis of students’ argumentative elements and fallacies
in students’ discussion essays. English Language
Teaching 2(3).

Shereen Oraby, Lena Reed, Ryan Compton, Ellen
Riloff, Marilyn Walker, and Steve Whittaker. 2015.
And that’s a fact: Distinguishing factual and emo-
tional argumentation in online dialogue. In Proceed-
ings of the 2nd Workshop on Argumentation Mining.
pages 116–126.

Isaac Persing and Vincent Ng. 2015. Modeling ar-
gument strength in student essays. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 543–552.

Isaac Persing and Vincent Ng. 2017. Why can’t you
convince me? Modeling weaknesses in unpersua-
sive arguments. In Proceedings of the 26th Inter-
national Joint Conference on Artificial Intelligence.
pages 4082–4088.

Richard E. Petty and John T. Cacioppo. 1984. The ef-
fects of involvement on responses to argument quan-
tity and quality: Central and peripheral routes to per-
suasion. Journal of Personality and Social Psychol-
ogy 46(1):69.

603



Ellen Riloff and Janyce Wiebe. 2003. Learning extrac-
tion patterns for subjective expressions. In Proceed-
ings of the 2003 Conference on Empirical Methods
in Natural Language Processing. pages 105–112.

Mark D. Shermis, Jill Burstein, Derrick Higgins, and
Klaus Zechner. 2010. Automated essay scoring:
Writing assessment and instruction. In International
Encyclopedia of Education (3rd edition), Elsevier,
Oxford, UK.

Chenhao Tan, Vlad Niculae, Cristian Danescu-
Niculescu-Mizil, and Lillian Lee. 2016. Winning
arguments: Interaction dynamics and persuasion
strategies in good-faith online discussions. In Pro-
ceedings of the 25th International World Wide Web
Conference, pages 613–624.

Amy Beth Warriner, Victor Kuperman, and Marc Brys-
baert. 2013. Norms of valence, arousal, and dom-
inance for 13,915 English lemmas. Behavior Re-
search Methods 45(4):1191–1207.

Zhongyu Wei, Yang Liu, and Yi Li. 2016. Is this post
persuasive? Ranking argumentative comments in
online forum. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 195–200.

Theresa Wilson, Paul Hoffmann, Swapna Somasun-
daran, Jason Kessler, Janyce Wiebe, Yejin Choi,
Claire Cardie, Ellen Riloff, and Siddharth Patward-
han. 2005. Opinionfinder: A system for subjectivity
analysis. In Proceedings of HLT/EMNLP 2005 In-
teractive Demonstrations. pages 34–35.

Appendix: Reference Extraction and
Internal Citation Cleanup

Given an argument, we employ the following steps
to extract references and clean up internal cita-
tions.

1. We identify digits and locations in the jus-
tification that appear to refer to references.
Particularly, we identify each digit in the text
that satisfies all the following conditions: (a)
it appears next to a punctuation (because the
digits usually occur right before or after a
sentence’s end punctuation); (b) it does not
appear next to another digit (because these
are short arguments, a digit next to another
digit is probably not a citation); (c) if we take
the string consisting of the digit, the punc-
tuation, the character next to the digit other
than the punctuation, and the character on the
other side of the punctuation, this string is not
parsable as a floating point number (if it is
part of a floating point number, it is probably
not a citation); (d) a ‘$’ does not appear be-
fore it; (e) a ‘%’ does not appear after it; (f)

a ‘/’ does not appear before it; and (g) a ‘/’
does not appear after it.

2. We make a list of all digits identified in step
1 that occur at least twice in the text. (A digit
needs to occur twice in order to be a citation
because the first time it occurs in the justi-
fication text and the last time it occurs right
before the reference.)

3. We sort the digits from step 2 in numerical or-
der. We remove 0 from the list if it is present.
If there are any gaps in the list (e.g., if ‘1’, ‘2’,
and ‘4’ appear in the list), we discard any dig-
its after the gap. (People do not use 0 to make
references. And if there are gaps, it usually
means that whatever number appears after the
gap was erroneously identified as a citation
because people do not skip digits when num-
bering their references.)

4. We sequentially scan the list from step 3. If,
at any point in the list, the last location (in
the justification) of the digit we are exam-
ining occurs before the last location (in the
justification) of the previous digit in the list,
we discard the digit and all the digits after
it in the list. (We expect references to begin
with the last occurrences of their correspond-
ing numbers. If one of the digits’ last occur-
rences seems out of order, that means there is
a problem with the list so we cannot rely on
it beyond this point.)

5. We split the text according to the locations
in the justification of the digits that remain in
the list from step 4. The first text segment is
the justification’s text, and all the remaining
segments are individual references.

6. Finally, we do some cleanup of the text.
We remove all the digits identified in step
1 occurring in the justification’s text. (This
should help with parsing because the dig-
its make sentences grammatically incorrect.)
We also remove all occurrences of ‘[’ or ‘]’ in
the text (because some people surround their
citation digits with them). Finally we replace
any urls (starting with “http:”) with “url”.
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Abstract

Building a persona-based conversation
agent is challenging owing to the lack of
large amounts of speaker-specific conver-
sation data for model training. This pa-
per addresses the problem by proposing
a multi-task learning approach to train-
ing neural conversation models that lever-
ages both conversation data across speak-
ers and other types of data pertaining to the
speaker and speaker roles to be modeled.
Experiments show that our approach leads
to significant improvements over baseline
model quality, generating responses that
capture more precisely speakers’ traits and
speaking styles. The model offers the ben-
efits of being algorithmically simple and
easy to implement, and not relying on
large quantities of data representing spe-
cific individual speakers.

1 Introduction

Conversational engines are key components of
intelligent “personal assistants” such as Apple’s
Siri and Amazon’s Alexa. These assistants can
perform simple tasks, answer questions, pro-
vide recommendations, and even engage in chit-
chats (De Mori et al., 2008; Chen et al., 2015,
2016). The emergence of these agents has
been paralleled by burgeoning interest in train-
ing natural-sounding dialog systems from conver-
sational exchanges between humans (Ritter et al.,
2011; Sordoni et al., 2015; Luan et al., 2014, 2015;
Vinyals and Le, 2015). A major challenge for
data-driven systems is how to generate output that
corresponds to specific traits that the agent needs
to adopt, as they tend to generate “consensus” re-

* This work was performed at Microsoft.

User input: I am getting a loop back to login page.
Baseline model: Ah, ok. Thanks for the info.
Our model: I’m sorry to hear that. Have you tried
clearing your cache and cookies?

Figure 1: Existing neural conversational models
(baseline) tend to produce generic responses. The
system presented in this paper better represents the
speaker role (support person), domain of expertise
(technical), and speaking style (courteous).

sponses that are often commonplace and uninter-
esting (Li et al., 2016a; Shao et al., 2017).

This is illustrated in Fig. 1, where the output
of a standard Sequence-to-Sequence conversation
model is contrasted with that of the best system
presented in this work. The baseline system gen-
erates a desultory answer that offers no useful in-
formation and is unlikely to inspire user confi-
dence. The output of the second system, how-
ever, strongly reflects the agent’s role in providing
technical support. It not only evidences domain
knowledge, but also manifests the professional po-
liteness associated with a speaker in that role.

The challenge for neural conversation systems,
then, is that an agent needs to exhibit identifi-
able role-specific characteristics (a ‘persona’). In
practice, however, the conversational data needed
to train such systems may be scarce or unavail-
able in many domains. This may make it diffi-
cult to train a system represent a doctor or nurse,
or a travel agent. Meanwhile, appropriate non-
conversational data (e.g., blog and micro-blog
posts, diaries, and email) are often abundant and
may contain much richer information about the
characteristics of a speaker, including expressive
style and the role they play. Yet such data is dif-
ficult to exploit directly, since, not being in con-
versational format, it does not mesh easily with
existing source-target conversational models.
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In this paper we address the joint problems of
blandness and data scarcity with multi-task learn-
ing (Caruana, 1998; Liu et al., 2015; Luan et al.,
2016a). This is a technique that has seen success in
machine translation, where large monolingual data
sets have been used to improve translation models
(Sennrich et al., 2016). The intuition is that if two
tasks are related, then joint training and parameter
sharing can enable one task to benefit the other. In
our case, this sharing is between two models: On
one hand, a standard Sequence-to-Sequence con-
versational models is trained to predict the cur-
rent response given the previous context. On the
other hand, using the non-conversational data, we
introduce an autoencoder multi-task learning strat-
egy that predicts the response given the same se-
quence, but with the target parameters tied with
the general conversational model.

Our experiments with 4M conversation triples
show that multi-task adaptation is effective in that
the generated responses capture speaker-role char-
acteristics more precisely than the baseline. Ex-
periments on a corpus of Twitter conversations
demonstrate that multi-task learning can boost per-
formance up to 46.2% in BLEU score and 23.0%
in perplexity, with a commensurate consistency
gains in human evaluation.

2 Related Work

2.1 Conversational Models

In contrast with much earlier work in dialog, our
approach to conversation is wholly data-driven
and end-to-end. In this respect, it follows a line
of investigation begun by (Ritter et al., 2011),
who present a statistical machine translation based
conversation system. End-to-end conversation
models have been explored within the frame-
work of neural networks (Sordoni et al., 2015;
Vinyals and Le, 2015; Li et al., 2016a,b; Luan
et al., 2017). The flexibility of these Sequence-
to-Sequence (SEQ2SEQ) encoder-decoder neural
models opens the possibility of integrating differ-
ent kinds of information beyond the single previ-
ous turn of the conversation. For example, (Sor-
doni et al., 2015) integrate additional contextual
information via feed-forward neural networks. (Li
et al., 2016a) use Maximum Mutual Information
(MMI) as the objective function in order to pro-
duce more diverse and interesting responses. (Mei
et al., 2017) introduce an attention mechanism
into an encoder-decoder network for a conversa-

tion model.
(Wen et al., 2015) introduced a Dialog-Act

component into the LSTM cell to guide generated
content. (Luan et al., 2016b) use a multiplicative
matrix on word embeddings to bias the word dis-
tribution of different speaker roles. That work,
however, assumes only two roles (questioner and
answerer) and is less generalizable than the model
proposed here.

Most relevant to the present work, (Li et al.,
2016b) propose employing speaker embeddings to
encode persona information and allow conversa-
tion data of similar users on social media to be
shared for model training. That work focused on
individuals, rather than classes of people. The
approach, moreover, is crucially dependent on
the availability of large-scale conversational cor-
pora that closely match the persona being mod-
eled—data that, as we have already observed, may
not be readily available in many domains. In this
work, we circumvent these limitations by bringing
non-conversation corpora (analogous to the use of
monolingual data in machine translation) to bear
on a general model of conversation. Doing so al-
lows us to benefit in terms of representing both the
role of the agent and domain content.

2.2 Multi-Task Learning

Multi-task learning has been successfully used to
improve performance in various tasks, including
machine translation (Sennrich et al., 2016) and im-
age captioning (Luong et al., 2016). (Sennrich
et al., 2016) report methods of exploiting mono-
lingual data—usually available in much larger
quantities—to improve the performance of ma-
chine translation, including multi-task learning of
a language model for the decoder. Autoencoders
are widely used to initialize neural networks (Dai
and Le, 2015). (Luong et al., 2016) show that an
autoencoder of monolingual data can help improve
the performance of bilingual machine translation
in the form of multi-task learning. In our models,
we share the decoder parameters of a SEQ2SEQ

model and autoencoder to incorporate textual in-
formation through multi-task learning.

3 Background

3.1 Task definition

The task of response generation is to generate a
response given a context. In this paper, follow-
ing (Sordoni et al., 2015), each data sample is
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represented as a (context,message,response) triple,
where context is the response of the previous turn,
and the message is the input string of the cur-
rent turn. The response, then, is the sequence to
be predicted given these two strings of informa-
tion. In addition to the triple, large-scale non-
conversational data from the responder is provided
as side information.

3.2 Sequence-to-Sequence Conversational
Models

Given a sequence of inputs X =
{x1, x2, . . . , xnX} and the corresponding output
Y = {y1, y2, . . . , ynY }, Sequence-to-Sequence
(SEQ2SEQ) models use a Long Short-Term
Memories (LSTM) (Hochreiter and Schmidhuber,
1997) to encode the input sequence, taking the last
hidden state of encoder hnX to represent output
sequence. The decoder is initialized by hnX , and
predict output yt given hnX and yt−1.

Our input is context followed by message, de-
limited by an EOS token. The LSTM cell includes
an input gate, a memory gate and an output gate,
respectively denoted as it, ft and ot.

3.3 Persona-based conversational model

The persona-based conversational model is a vari-
ant of standard SEQ2SEQ models, with user in-
formation encoded at decoder. As in standard
SEQ2SEQ models, the persona-based conversa-
tional model presented in (Li et al., 2016b) first
encodes the source message into a vector represen-
tation using the source LSTM. Then, for each el-
ement in the target side, hidden units are obtained
by combining the representation produced by the
target LSTM at the previous time step ht−1, the
word representations et at the current time step,
and the embedding si for user i.

it
ft
ot
lt

 =


σ
σ
σ

tanh

W ·
ht−1

et
si

 (1)

ct = ft · ct−1 + it · lt (2)

ht = ot · tanh(ct) (3)

where W ∈ R4K×3K . This model assigns one K
dimensional vector representation to each of the
speakers in the corpus. It thus relies on the avail-
ability of sufficient conversational training data

of each speaker to learn meaningful speaker em-
beddings. Since this type of data is usually hard
to obtain in real application scenarios, we need
a method that can leverage easier-to-obtain non-
conversational personal data in order to incor-
porate richer personal information into conversa-
tional models.

4 A Multi-task Learning Approach

Given the limitations of previous methods, we pro-
pose the following multi-task learning approach
in order to simultaneously leverage conversational
data across many users on the one hand, and per-
sonal but non-conversation data (written text) of a
specific user on the other. We define the following
two tasks:

• A SEQ2SEQ task that learns conversational
models described in Section 3 using conver-
sation data of a large general population of
speakers.
• An AUTOENCODER task that utilizes large

volumes of non-conversational personal data
from target speakers.

AUTOENCODER: An AUTOENCODER is an un-
supervised method of obtaining sequence embed-
dings based on the SEQ2SEQ framework. Like a
SEQ2SEQ model, it comprises encoding and de-
coding components built by an LSTM sequen-
tial model as in Section 3.2. Instead of mapping
source to target as in a SEQ2SEQ model, the AU-
TOENCODER predicts the input sequence itself.

Parameter sharing: Given the same context,
we want to generate a response that can mimic
a particular target speaker. Therefore, we share
only the decoder parameters of SEQ2SEQ and AU-
TOENCODER while performing multi-task learn-
ing, so that the language model for generation can
be adapted to the target-speaker . Since the context
is not constrained and can be from any speaker,
the encoder parameters are not tied and are learned
separately by each task. (See Fig. 2.)

Training Procedure The training procedure is
shown in Fig. 3. In each iteration, the gradi-
ent of each task is calculated according to the
task-specific objective. The training process fin-
ishes when perplexity performance converges in
dev set and the best model is selected according to
SEQ2SEQ perplexity performance.
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Figure 2: Framework of Multi-task learning. The parameters of decoder are shared across the two tasks.

Training procedure of Multi-task learning:
1. Randomly initialize SEQ2SEQ and AUTOEN-

CODER encoder parameters.
2. Train SEQ2SEQ model until dev set performance

converges in perplexity.
3. While not dev set performance converged in per-

plexity do:
(a) Randomly pick a batch of samples from gen-

eral conversational data.
(b) Compute loss and gradient for SEQ2SEQ

task and update parameters.
(c) Randomly pick a batch of samples from non-

conversational data of the target user.
(d) Compute loss and gradient for AUTOEN-

CODER task and update parameters.
4. Choose the best model based on SEQ2SEQ per-

plexity performance on dev set.

Figure 3: Training Procedure

5 Single v.s. Multiple speaker Settings

Two variants of SEQ2SEQ task are explored:

• MTASK-S Personalized response generation
for a single user, which uses the basic
SEQ2SEQ conversational model as described
in Section 3.2.
• MTASK-M Response generation for mul-

tiple users, which uses the persona-based
SEQ2SEQ model described in Section 3.3.

MTASK-S: We train a personalized conversa-
tional model for one speaker at a time. For each
target user, we need to perform separate multi-task
training which results in N models for N users.
This is inefficient in both memory and computa-
tional cost.

MTASK-M: In order to address the memory
and computation issue of MTASK-S, we intro-
duce user embeddings to SEQ2SEQ model as in
Eq. 1. We first train a persona-based conversa-

tional model using conversational data for a gen-
eral population of speakers. This model differs
MTASK-S in that it introduces two parameter ma-
trices into the decoder: a speaker embedding si
and its corresponding weight matrix that can de-
couple speaker dependent information from gen-
eral language information. In the multi-task stage,
since the target users have never appeared in the
training data, we randomly initialize the user em-
beddings for those users and follow the training
procedure as in Figure 3.1 The embedding of the
unseen user is updated by AUTOENCODER train-
ing together with the decoder LSTM parameters.

6 Experimental Setup

6.1 Datasets

As training data, we use a collection of 3-turn
conversations extracted from the Twitter FireHose.
The dataset covers the six-month period beginning
January 1, 2012, and was limited to conversations
where the responders had engaged in at least 60 3-
turn conversational Twitter interactions during the
period. In other words, these are people who rea-
sonably frequently engaged in conversation, and
might be experienced “conversationalists.”

We selected the top 7k Twitter users who had
most conversational data from that period (at least
480 turns, average: 571). This yielded a total of
approximately 4M conversational interactions. In
addition to these 7k general Twitter users, we also
selected the 20 most frequent users, employing
all of their conversation data for development and
test. Twitter users typically have many more sin-
gle posts than posts that interact with other people.

1The model can also be learned without pre-training
(omitting step 2), but we found that pre-training usually
helps.
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We therefore treat single posts as non-conversation
data. All single posts of the 20 top users (at least
9k per user, average 10.3k) were extracted for
multi-task learning. The 20 users were of diverse
backgrounds, including technical support person-
nel, novelists, and sports fans.

6.2 Evaluation
As in previous work (Sordoni et al., 2015), we
use BLEU and human evaluation for evaluation.
BLEU (Papineni et al., 2002) has been shown to
correlate fairly well with human judgment at a
document- and corpus-level, including on the re-
sponse generation task.2 We also report perplexity
as an indicator of model capability.

We additionally report degree of diversity by
calculating the number of distinct unigrams and
bigrams in generated responses. The value is
scaled by total number of generated tokens to
avoid favoring long sentences (shown as distinct-1
and distinct-2). Finally, we present a human eval-
uation that validates our main findings.

6.3 Baseline
Our baseline is our implementation of the LSTM-
MMI of (Li et al., 2016a). The MMI algorithm
reduced the blandness of SEQ2SEQ models by
scoring the generated N-best list with a function
that linearly combines a length penalty and the log
likelihood of source given target:

log p(R|M, v) + λ log p(M |R) + γ|R| (4)

where p(R|M,v) is the probability of the gener-
ated response given message M and the respon-
dents user ID. |R| is the length of the target and γ
is the associated penalty weight. We use MERT
(Och, 2003) to optimize γ and λ on BLEU us-
ing N-best lists of response candidates generated
from the development set. To compute p(M |R),
we train an inverse SEQ2SEQ model by swapping
messages and responses. The reverse SEQ2SEQ

models p(M |R) is trained with no user informa-
tion considered.

6.4 Training and Decoding
We trained two-layer SEQ2SEQ models on the
Twitter corpus, using the following settings:

2(Liu et al., 2016) suggest that BLEU doesn’t correlate
well with human judgment at the sentence level. Other work,
however, has shown that correlation increases substantially
with larger units of analysis (e.g., document or corpus) (Gal-
ley et al., 2015; Przybocki et al., 2009).

Baseline MTASK-S MTASK-M

Perplexity 56.33 32.27 44.96
(dev) (-42.7%) (-20.2%)

Perplexity 61.17 39.83 43.21
(test) (-34.9%) (-29.4%)

Table 1: Perplexity for standard SEQ2SEQ and the
user model on the Twitter Persona dev set.

Baseline MTASK-S MTASK-M

BLEU 1.32 1.76 2.52
(dev) (+33.3%) (+90.1%)

BLEU 1.31 1.69 2.25
(test) (+29.0%) (+71.7%)

distinct-1 1.69% 2.43% 2.44%
distinct-2 6.53% 10.2% 9.79%

Table 2: Performance on the Twitter dataset
of 2-layer SEQ2SEQ models and MMI models.
Distinct-1 and distinct-2 are respectively the num-
ber of distinct unigrams and bigrams divided by
total number of generated words.

• 2 layer LSTM models with 500 hidden cells
for each layer.
• Batch size is set to 128.
• Optimization method is Adam (Kingma and

Ba, 2015).
• Parameters for SEQ2SEQ models are initial-

ized by sampling from uniform distribution
[−0.1, 0.1].
• Vocabulary size is limited to 50k.
• Parameters are tuned based on perplexity.

For decoding, the N-best lists are generated
with beam size B = 50. The maximum length
of the generated candidates was set at 20 tokens.
At each time step, we first examine all B×B pos-
sible next-word candidates, and add all hypothe-
ses ending with an EOS token to the N-best list.
We then preserve the top-B unfinished hypotheses
and move to the next word position. We then use
LSTM-MMI to rerank the N-best list and use the
1-best result of the re-ranked list in all evaluation.

7 Experimental Results

The perplexity and BLEU score results for three
models are shown in Tables 1 and 2. Compared
with the baseline model LSTM-MMI, we obtain
a 34.9% decrease in perplexity for the MTASK-
S model and a 29.4% decrease in perplexity for
the MTASK-M model. Significant gains are ob-
tained in BLEU score as well: MTASK-S gains
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Figure 4: Perplexity scores for the top 10 users with most (non-conversational) training data. Users
with obvious speaking styles or stronger user role characteristics (e.g., 1, 2, and 6) show much greater
perplexity reduction than the other ones.

29.0% relative increase compared with the base-
line and MTASK-M gains 71.7%. MTASK-S per-
formance is better than MTASK-M in perplexity,
but worse on BLEU score. Apart from the fact that
BLEU does not necessarily correlate with perplex-
ity, this result also indicates that MTASK-S has
more parameters (each user has a unique model for
MTASK-S) but tends to overfit on development set
perplexity. Another possible reason that MTASK-
M performs better than MTASK-S is the intro-
duction of user embeddings. The persona-based
conversational model can decouple the personal-
ized information from general language patterns
and can therefore encode user characteristic bet-
ter. We further report degree of diversity by calcu-
lating the number of distinct unigrams (distinct-1)
and bigrams (distinct-2) in generated responses as
in Table 2. To avoid biasing toward longer sen-
tences, this value is scaled by the total number of
tokens generated. Both MTASK-S and MTASK-
M models perform better than baseline in terms
of distinct-1 and distinct-2, which we interpret to
mean that our approach can help the system gen-
erate responses that are more diverse yet better ap-
proximate the targeted speaker or speaker type.

Fig. 4 shows the perplexities for the 10 in-
dividual users most represented in the non-
conversational training data. Our multi-task ap-
proaches consistently outperform baseline on per-
plexity. However, the performance between indi-
vidual target users can vary substantially.3

After inspecting dev set outputs, we observe
that users with obvious speaking styles or stronger
user role characteristics show much greater gain
than the others. For example, User 1 is a tech-

3We do not report BLEU scores for individual users, as
the dev and test set for each specific user tends to be small
(less than 500 samples) and BLEU is known to be unreliable
when evaluated on small datasets (Graham et al., 2015; Liu
et al., 2016).

nical support worker who answers web questions
for Twitter users, while User 2 always expresses
strong feelings and uses exclamation marks fre-
quently. Conversely, tweets from users that did
not show significant gain appear to be more about
daily life and chitchat, with no strong role charac-
teristics (e.g., Users 3 and 4). We present example
outputs for User 1 and 2 in Section 8.

7.1 Human Evaluation

Human evaluation of the outputs was performed
using crowdsourcing.4 Evaluation took the form
of a preference test in which judges were pre-
sented with a random sample of 5 tweets writ-
ten by the targeted user as example texts, and
asked which system output appeared most likely
to have been produced by the same person. A 5-
point scale that permitted ties was used, and sys-
tem pairs were presented in random order. A short
input message (the input that was used to gener-
ate the outputs) was also provided. We used 7
judges for each comparison; those judges whose
variances differed by more than two standard de-
viations from the mean variance were discarded.
Table 3 shows the results of pairwise evaluation,
along with 95% confidence intervals of the means.
MTASK-S and MTASK-M both perform better
on average than LSTM-MMI, consistent with the
BLEU results. MTASK-M’s gain over the LSTM-
MMI baseline is significant at the level of α =
0.05 (p = 0.026), indicating that judges were bet-
ter able to associate the output of that model with
the target author.

In Table 3 the strength of the trends is obscured
by averaging. We therefore converted the scores
for each output into the ratio of judges who se-
lected that system for each output (Figs. 5 and
6). To read the charts, bin 7 on the left represents

4Two outputs were removed from the datasets owing to
offensive content in the examples.
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Baseline System

MTASK-S 0.491 ±0.011 0.504 ±0.011
MTASK-M 0.486 ±0.012 0.514 ±0.012

Table 3: Results of human evaluation, showing
relative gain of MTASK-S and MTASK-M sys-
tems over the LSTM-MMI baseline in pairwise
comparison, together with 95% confidence inter-
vals of the means.

the case where all 7 judges “voted” for the system,
bin 6 the case where 6 out of 7 judges “voted” for
the system, and so forth.5 Bins 3 through 0 are
not shown since these are a mirror image of bins
7 through 4. It can be seen that judge support for
MTASK-M (Figure 6) tends to be stronger than for
MTASK-S (Figure 5).

These differences are statistically significant,
but they also suggest that this was a challenging
task for crowd workers. In many cases, the 5 ran-
dom examples may not have been sufficed to dis-
tinguish individual styles,6, and even when dis-
tinctive, similar outputs from arbitrary inputs may
not be undesirable—indeed, different individuals
may legitimately respond similarly to the same in-
put, particularly when the input itself is bland or
commonplace.

8 Discussion

Fig. 7 presents responses generated by baseline
and multi-task (MTASK-M) response generation
systems. Both systems are presented with a con-
versation history of up to two dialog turns (con-
text and input message), and this larger context
helps produce responses that are more in line with
the conversation flow (Sordoni et al., 2015). The
first six response examples are generated for the
same underlying speaker (a technical support per-
son, User 1 in Fig. 4). The two last multi-task re-
sponses are generated for User 2.

We notice striking differences between the
baseline and the multi-task model. The six first
responses of Multitask in Fig. 7 represent a very
consistent register in three different aspects. First,
it is relatively clear from these responses that the
underlying speaker represented by the model is

5Partial scores were rounded up. This affects both sys-
tems equally.

6We limited the number to 5 with the intention of not
overwhelming judges with too much information, which may
have exacerbated the difficulty.
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Figure 5: Judge agreement counts for MTASK-S
versus Baseline. The difference between the two
systems is statistically significant.
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Figure 6: Judge agreement counts for MTASK-M
versus Baseline. The difference between the two
systems is statistically significant, and the prefer-
ence for MTASK-M is more evident.

a tech support employee. Interestingly, this em-
ployee appears to give help with fitness-related
software, and responds that the customer will be
“able to run a marathon”. On the other hand, the
output of the baseline system is relatively bland
and deflective. More crucially the baseline does
a relatively poor job producing content words that
are relevant to the speaker’s domain of expertise.
Finally, the tone of the baseline system is often in-
congruous, e.g., when it responds “I don’t know
what to do with it”, which is unlikely to be a
desirable response to offer a customer. In an-
other case, the baseline responds “thanks for the
info”. While this kind of response is appropriate
for many speaker roles, it is less appropriate here,
as the support employee is the one to give infor-
mation and helpful advice.

The figure also illustrates current limitations of
our speaker role model. For example, our response
in the fourth example shows that such systems can
be deflective (e.g., not giving any suggestion in
response to “any idea”), but at least the system
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Context: have you tried uninstalling nike+ connec? how about docking it to a different computer?
Input: Tried both of those techniques. But nothing works. I can try the other computer again.
Baseline: Let me know if there’s anything else I can help you with. Thanks for the help.
Multitask: Have you tried using a different browser? Let us know if you have any other questions.

Context: What do you see when you have a failed login attempt? Never ending spinner? Loop you back to login page?
Input: I am getting a loop back to login page, windows.
Baseline: Ah, ok. Thanks for the info. I’ll check it out. Thanks for the feedback.
Multitask: I’m sorry to hear that. Have you tried clearing your cache and cookies?

Context: To clarify: your first run after resetting your connection will not post to Facebook. Does this help? Let us know.
Input: That’s correct. I reset it twice! It still doesn’t work.
Baseline: Let me know if there’s anything else I can help you with. Thanks for the update.
Multitask: I’m sorry to hear that. Are you receiving any error messages? Let us know.

Context: To link your sensor to your iPod, from home screen go to settings>Nike+ iPod>sensor>link new. Any luck?
Input: not work.. Any idea?
Baseline: I’m not sure, I’ll check it out when i get home. Thanks for the update
Multitask: Let me know if you have any other questions. Let us know if the issue persists.

Context: You’re welcome. What generation of the iPod Nano are you using?
Input: 5 years old and bought the kit then but my new Nano touch also not detecting sensor maybe receiver broken
Baseline: Ah , I see. I’ll have to check it out. Thanks for the update.
Multitask: Ah, I see. I see. Have you been able to try a different network?

Context: Unfortunately you can’t transfer your Nike+ training program to your iPod at this time. Let us know if this helps!
Input: Oh! That’s a pity I bet I’d be able to run a couple more if this nice voice, told me to speed up in-between
Baseline: That’s what I’m hoping for, but I don’t know what to do with it.
Multitask: I’m sure you will be able to run a marathon at least once a week or so.

Context: So when are you going to post more n/d stuff?
Input: Soon I guess I have a chapter written, but it’s way too short and not good enough to post just yet.
Baseline: Let me know how you get on with it. I don’t know what to write.
Multitask: Ah, I see. Well, I’m sure it’ll be interesting to see what happens!

Context: Ah, no. Had kind of a crazy day, and I’ve been writing a lot tonight. I have a new one-shot almost finished!
Input: Alright. I’m sure you’ll read it eventually
Baseline: I don’t think I’ll be able to sleep tonight, but I’m going to sleep.
Multitask: I hope so! I can’t wait to read it, hehe.

Figure 7: Responses produced by our baseline and multi-task neural response generation system (Multi-
S), given a conversation history (context and input message.) The first 6 examples and last 2 examples
correspond respectively to Users 1 (tech support) and 2.

does respond in a customer-support register. In
the fifth example, response of the system seems
relatively irrelevant, but this kind of natural lan-
guage comprehension problem seems almost un-
avoidable. Semantic congruity aside, the response
strikes the right tone—it is pragmatically and so-
cially appropriate, which is the primary purpose of
this investigation. The final two examples of Fig. 7
show that the model is also able to learn a voice or
register for a completely different kind of charac-
ter. The underlying person is highly assertive—
reflected in their use of exclamation marks—and
speaks informally (e.g., “hehe”), in a way the tech
support person would typically not.

9 Conclusion

This paper introduces a multi-task learning ap-
proach to incorporate speaker role character-

istics into conversational models using non-
conversational data. Both models presented here
are relatively simple to implement, and show sig-
nificant improvement in perplexity and BLEU
score over a baseline system. Overall, MTASK-
M is more computationally efficient, and effective
in generating speaker-role-specific information, as
reflected in human evaluation. Responses gener-
ated by these models exhibit a marked ability to
capture speaker roles, expressive styles and do-
main expertise characteristic of the targeted user,
without heavy recourse to an individual speaker’s
conversational data.

Acknowledgements

We thank Marjan Ghazvininejad, John Wieting,
Vighnesh Shiv, Mari Ostendorf and Hannaneh Ha-
jishirzi for helpful suggestions and discussions.

612



References
Rich Caruana. 1998. Multitask learning. In Learning

to learn, Springer, pages 95–133.

Yun-Nung Chen, Dilek Hakkani-Tür, Gokhan Tur,
Jianfeng Gao, and Li Deng. 2016. End-to-end mem-
ory networks with knowledge carryover for multi-
turn spoken language understanding. In Proc. Inter-
speech.

Yun-Nung Chen, Ming Sun, Alexander I Rudnicky, and
Anatole Gershman. 2015. Leveraging behavioral
patterns of mobile applications for personalized spo-
ken language understanding. In Proceedings of the
2015 ACM on International Conference on Multi-
modal Interaction. ACM, pages 83–86.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In NIPS.

Renato De Mori, Frédéric Bechet, Dilek Hakkani-Tur,
Michael McTear, Giuseppe Riccardi, and Gokhan
Tur. 2008. Spoken language understanding. IEEE
Signal Processing Magazine 25(3).

Michel Galley, Chris Brockett, Alessandro Sordoni,
Yangfeng Ji, Michael Auli, Chris Quirk, Mar-
garet Mitchell, Jianfeng Gao, and Bill Dolan. 2015.
deltaBLEU: A discriminative metric for generation
tasks with intrinsically diverse targets. In Proc.
ACL-IJCNLP.

Yvette Graham, Timothy Baldwin, and Nitika Mathur.
2015. Accurate evaluation of segment-level ma-
chine translation metrics. In Proc. NAACL-HLT .

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proc. ICLR.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016a. A diversity-promoting ob-
jective function for neural conversation models. In
Proc. NAACL-HLT .

Jiwei Li, Michel Galley, Chris Brockett, Georgios Sp-
ithourakis, Jianfeng Gao, and Bill Dolan. 2016b. A
persona-based neural conversation model. In Proc.
ACL.

Chia-Wei Liu, Ryan Lowe, Iulian Serban, Mike Nose-
worthy, Laurent Charlin, and Joelle Pineau. 2016.
How NOT to evaluate your dialogue system: An em-
pirical study of unsupervised evaluation metrics for
dialogue response generation. In Proc. EMNLP.

Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng,
Kevin Duh, and Ye-Yi Wang. 2015. Representation
learning using multi-task deep neural networks for
semantic classification and information retrieval. In
Proc. HLT-NAACL.

Yi Luan, Yangfeng Ji, Hannaneh Hajishirzi, and
Boyang Li. 2016a. Multiplicative representations
for unsupervised semantic role induction. In Proc.
ACL.

Yi Luan, Yangfeng Ji, and Mari Ostendorf. 2016b.
LSTM based conversation models. arXiv preprint
arXiv:1603.09457 .

Yi Luan, Mari Ostendorf, and Hannaneh Hajishirzi.
2017. Scientific information extraction with
semi-supervised neural tagging. arXiv preprint
arXiv:1708.06075 .

Yi Luan, Shinji Watanabe, and Bret Harsham. 2015.
Efficient learning for spoken language understand-
ing tasks with word embedding based pre-training.
In Proc. Interspeech.

Yi Luan, Richard Wright, Mari Ostendorf, and Gina-
Anne Levow. 2014. Relating automatic vowel space
estimates to talker intelligibility. In Proc. Inter-
speech.

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2016. Multi-task se-
quence to sequence learning. In ICLR.

Hongyuan Mei, Mohit Bansal, and Matthew R Walter.
2017. Coherent dialogue with attention-based lan-
guage models. In Proc. AAAI.

Franz Josef Och. 2003. Minimum error rate training in
statistical machine translation. In Proc. ACL.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In Proc. ACL.

Mark Przybocki, Kay Peterson, Sébastien Bronsart,
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Abstract

Thread disentanglement is a precursor to
any high-level analysis of multipartici-
pant chats. Existing research approaches
the problem by calculating the likelihood
of two messages belonging in the same
thread. Our approach leverages a newly
annotated dataset to identify reply rela-
tionships. Furthermore, we explore the us-
age of an RNN, along with large quanti-
ties of unlabeled data, to learn semantic
relationships between messages. Our pro-
posed pipeline, which utilizes a reply clas-
sifier and an RNN to generate a set of dis-
entangled threads, is novel and performs
well against previous work.

1 Introduction

The problem of thread disentanglement is a pre-
cursor to high-level analysis of multiparticipant
chats (Carenini et al., 2011). A typical chat con-
sists of multiple simultaneous and distinct con-
versations, with Elsner and Charniak (2010) ob-
serving an average of 2.75 simultaneous threads
of dialogue. Since a conversation does not neces-
sarily entail a contiguous sequence of messages,
the interwoven threads must be identified and seg-
mented prior to any high-level analysis of the chat.

To further illustrate the need for thread disen-
tanglement, consider the chat log in Figure 1. It
should be clear to a reader that there are two in-
dependent threads of dialogue occurring within
this sequence of messages, the first between John,
Jack and Brian and the second between Jenny and
Katie. Humans are adept at mentally disentan-
gling conversations and even go as far as to ad-
just their behavior in order to ease the process of
disentanglement which O’Neill and Martin (2003)
observed in the form of name mentioning.

John: i need a new tv show to watch
Jack: psych/house of cards/breaking bad

sound like things you might enjoy
Brian: oh I should probably renew my

Netflix
Katie: I forgot my laprop at home D:
Jenny: Katie, that sucks...
Jenny: Are you going to go back home to

get it?
Katie: laptop*
Brian: try Black Mirror

Figure 1. An example of a multiparticipant chat
with two threads of dialogue.

Our work is novel because it approaches the
problem of thread disentanglement by attempt-
ing to predict immediate reply relationships be-
tween messages. The potential benefits of this idea
were discussed by Elsner and Charniak (2010) and
Uthus and Aha (2013), but the idea has not yet
been explored. Furthermore, Elsner and Charniak
(2010) suggest that this approach ”might yield
more reliable annotations”.

Additionally, we explore the usage of unlabeled
data for the purpose of identifying semantic rela-
tionships between messages. Previous attempts at
semantic modeling by Elsner and Charniak (2010)
and Adams and Martel (2010) have not been very
effective, however recent accomplishments in next
utterance prediction (Lowe et al., 2015) can be
leveraged for the purpose of thread disentangle-
ment.

The main contributions of this paper are as fol-
lows.

1. We create an annotated dataset1 which la-
bels direct reply relationships between pairs

1 The dataset is publicly available and can be found at
http://shikib.com/td annotations.
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of messages in a transcript.

2. We create and open-source a tool2 for the ef-
ficient reply annotation of a dataset.

3. We propose a pipeline for the task of thread
disentanglement, consisting of:

(a) A classifier, trained on the aforemen-
tioned dataset, that predicts reply rela-
tionships,

(b) A recurrent neural network that mod-
els semantic relationships between mes-
sages,

(c) A thread partitioning algorithm that uti-
lizes a variety of features, including the
previous stages of the pipeline, to ulti-
mately partition a transcript into threads.

4. We evaluate our algorithm against all compa-
rable previous approaches and explore poten-
tial improvements to the pipeline.

As a preview of the paper, Section 2 further de-
scribes related work. Section 3 introduces the pro-
posed pipeline, with the subsections detailing the
distinct stages of the pipeline. Section 4 presents
the metrics used for evaluating the agreement be-
tween a pair of disentanglements. Section 5 dis-
cusses the datasets used by the pipeline, with spe-
cific attention to our newly annotated dataset. Sec-
tion 6 describes our experiments and presents the
results. Finally, Section 7 discusses our results and
suggests potential future improvements upon our
work.

2 Related Work

There have been a number of approaches to thread
disentanglement, the majority of which contain a
clustering/partitioning algorithm using a measure
of message relatedness to segment a chat transcript
into distinct threads.

Shen et al. (2006) introduce the problem of
thread disentanglement, and approach it by using
the cosine-similarity of messages to compute the
distance between a message and a thread.

Elsner and Charniak (2010) present comprehen-
sive metrics for evaluation along with a corpus to
aid with disentanglement. They train a classifier
on their corpus, to predict whether two messages
belong in the same thread.

2 The open-sourced annotation interface can be found at
https://github.com/Shikib/react-chat-reply-annotation.

Wang and Oard (2003) construct expanded mes-
sages using temporal, author and conversational
context. By expanding messages using this con-
textual information, they have more signal to use
when assigning a message to a thread.

We build on this work by using our newly anno-
tated dataset to train a classifier which predicts im-
mediate reply relationships. This is a supervised
alternative to heuristics used by previous research.
Additionally, it is an improvement over the clas-
sifier trained by Elsner and Charniak (2010) since
the nature of the annotation leads to stronger re-
lationships between message pairs in the training
data.

Previous work has explored modeling seman-
tic relationships between messages using a pre-
defined list of technical words (Elsner and Char-
niak, 2010) and applying Latent Dirichlet Alloca-
tion (Adams and Martel, 2010). In contrast, we
apply the research done by Lowe et al. (2015)
by utilizing a Recurrent Neural Network to predict
the probability of a message occurring in a given
thread.

3 Proposed Pipeline

We propose a novel pipeline to approach the prob-
lem of thread disentanglement. This pipeline con-
sists of four stages, as visualized in Figure 2.

The first stage, as described in Section 3.1, is
a classifier to detect reply relationships between
pairs of messages.

The second stage is a classifier that predicts
whether two messages belong in the same thread.
This classifier, described in Section 3.2, is similar
to the one trained by Elsner and Charniak (2010).

The third stage, described in Section 3.3, is a re-
current neural network that uses the content of the
messages to predict the probability of a message
following a sequence of messages.

The fourth and final stage is a thread partition-
ing algorithm that uses the information outputted
from the previous stages to generate threads. This
stage is described in Section 3.4.

3.1 Reply Classifier

Given two input messages, the reply classifier out-
puts the likelihood of the first message being a re-
ply to the second. Given a child and a parent mes-
sage, a feature vector is generated in order to de-
scribe the relationship between the two messages.
The features utilizes are described in Table 1.
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Table 1: Description of features utilized for the
reply classifier.

Time
The time difference in
seconds.

Mention Parent
Whether the child message
mentions the author of the
parent message.

Mention Child
Whether the parent message
mentions the author of the
child message.

Same author
Whether the author of the two
messages is the same.

Distance
The number of messages
separating the two messages.

RNN Output
The probability outputted
by the RNN.

These feature vectors are then used to train a
random forest (Breiman, 2001) classifier with 250
trees. We performed comparisons to other classi-
fiers, namely a logistic regression classifier, a sup-
port vector classifier and a multilayer perceptron
classifier, however cross-validation proved ran-
dom forests to have the highest accuracy. The
models were trained and evaluated using scikit-
learn (Pedregosa et al., 2011).

The pairs of input messages in the training data
were specifically annotated as consisting of a re-
ply relationship. This suggests that each pair of
messages is directly related, leading to the clas-
sifier learning to identify strong, immediate rela-
tionships between messages.

3.2 Same-Thread Classification

Elsner and Charniak (2010) trained a classifier that
predicted whether two input messages belonged to
the same thread. We implemented a similar classi-
fier through utilization of the features described in
Section 3.1 and a dataset that they provided.

Given a pair of messages, the same-thread clas-
sifier outputs the probability of the messages be-
longing to the same thread. The classifier trained
was a random forest (Breiman, 2001) with 250
trees, using scikit-learn (Pedregosa et al., 2011).

Unlike the reply classifier, the same-thread clas-
sifier was trained on data with weak relationships.
Instead of specifically annotated relationships, the
pairs of messages used to train the same-thread
classifier were labeled as belonging to the same
thread. Because the same-thread pairs are a super-

set of the reply pairs, this leads to the classifier
learning to identify broader relationships between
messages, rather than strictly immediate reply re-
lationships.

As a result of the same-thread classifier being
trained on a different set of data than the reply
classifier, the learned relationships are different in
nature, which suggests that the two classifiers can
strongly complement each other.

3.3 RNN for Next Utterance Classification

The third stage of the pipeline attempts to leverage
large amounts of unlabeled data for the purpose
of modeling semantic relationships between mes-
sages. We train a recurrent neural network with
LSTM (Hochreiter and Schmidhuber, 1997) hid-
den units to predict the probability of a message
following a sequence of messages (Lowe et al.,
2015).

The reasoning behind utilizing an LSTM is for
the purposes of identifying dependencies between
non-adjacent messages. LSTM units are best able
to capture long-term dependencies through the use
of a series of gates which control whether an input
is remembered, forgotten or used as output. For-
mally, at every time step an LSTM unit updates the
internal state Ct as a function of the observed vari-
able xt and the previous internal state Ct−1 and
ht−1.

Both the context (the previous sequence of mes-
sages) and the message are passed through the
LSTM units one word at a time, in the form of
learned word embeddings. Let us use c and r to
denote the final hidden state representations of the
context and reply respectively. We can use these
hidden states, along with a learned matrix M , to
compute the probability of a reply, as:

P (reply | context) = σ(cTMr) (1)

The model, implemented in PyTorch
(A. Paszke, 2017), was trained using hyper-
parameters recommended by Lowe et al. (2015).

This RNN-based next utterance classification is
useful as it supplements the aforementioned clas-
sifiers by leveraging unlabeled data to semanti-
cally model message relationships.

Additionally, the output of this classifier is
added as a feature to the previous two classifiers
as well. This allows the reply classifier and the
same-thread classifier to use the semantic related-
ness of the input messages during classification.
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Table 2: Description of the features utilized by the
in-thread classifier.

Same-Thread Mean
Mean output of the same-
thread classifier.

Same-Thread STD
Standard deviation of the
output of the same-thread
classifier.

Reply Mean
Mean output of the reply
classifier.

Reply STD
Standard deviation of the
output of the reply
classifier.

Thread Length
Current length of the
thread.

Author count
Number of author’s
messages already in the
thread.

Author total
Number of author’s
messages in the chat.

In-thread
proportion

Author count divided by
Author total.

Author proportion
Author count divided by
Thread Length.

Author mentions
Number of times the
author’s name was
mentioned in the thread.

Time

The time difference
between the message and
the last message in the
thread.

RNN Prediction
The prediction outputted
by the RNN.

3.4 Thread Partitioning

Our ultimate goal is to generate a set of disen-
tangled threads, suggesting the usage of a thread
partitioning algorithm as the next stage in the
pipeline. Using the previously described classi-
fiers, we must identify an optimal segmentation of
an input transcript.

3.4.1 In-Thread Classifier
We construct a classifier, referred to as the in-
thread classifier, which leverages the output of all
previous stages of the pipeline to predict the prob-
ability of a message belonging to a thread.

Given a message and a thread, we generate a
feature vector using the features described in Table
2.

The model used for classification, built in scikit-

learn (Pedregosa et al., 2011), is a random forest
classifier with 300 trees.

3.4.2 Thread Partitioning
Given the in-thread classifier, we can compute
the probability that a message belongs in a given
thread of conversation. This is used by our thread
partitioning algorithm to generate threads.

This algorithm processes the messages in
chronological order. For every message, mi, the
algorithm considers every existing thread, tj , and
passed mi and tj into the in-thread classifier.

Ultimately mi is assigned to the thread which
maximizes the probability outputted by the clas-
sifier, provided that the best probability output is
above a threshold. If the best probability is be-
low the threshold, a new thread is created for the
message. This threshold was fine-tuned on the val-
idation dataset.

After sequentially iterating over all of the mes-
sages in the transcript, the thread partitioning al-
gorithm will output the disentangled threads.

3.5 Pipeline Overview

Figure 2 provides an overview of the proposed
pipeline. The thread partitioning algorithm gen-
erates a feature vector to represent the relationship
between a thread and a message. The features, as
listed in Table 2, include the values outputted by
the previous stages of the pipeline.

The in-thread classifier, trained on the pilot
dataset provided by Elsner and Charniak (2010),
uses this generated feature vector to predict the
probability of the message belonging to the given
thread. Using the outputted probabilities, the
thread partitioning algorithm either assigns the
message to the most probable existing thread or
generates a new thread.

4 Metrics

A number of metrics are used throughout this pa-
per to evaluate the agreement of two disentangle-
ments. It is a non-trivial task to compare two dis-
entanglements which have a different number of
threads.

To measure the global similarity between an-
notations, we utilize one-to-one accuracy. This
is computed by using optimal bipartite matching
to pair up threads between the two annotations
and computing the overlap between every pair of
matched threads. This metric measures ”how well
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Figure 2. The proposed pipeline for disentangling a chat transcript into threads. Throughout the diagram,
t represents a thread and m denotes a message.

we extract whole conversations intact” (Wang and
Oard, 2009).

We also use the lock score to measure local
agreement. For a particular message, the previous
k messages are either in the same or a different
thread. The lock score is computed by consider-
ing, for each message, the previous k messages
and counting the matches in the same/different
thread assignments across annotations.

The third and final metric used to score annota-
tion agreement is the Shen-F score, as defined by
Shen et al. (2006) which measures how well re-
lated messages are grouped. The Shen-F score is
defined as:

F =
∑
i

ni
n
maxj(F (i, j)) (2)

where i is a ground truth thread with a length
of ni, n is the total length of the transcript and
F (i, j) is the harmonic mean of the precision and
the recall. If the thread overlap is nij , the length
of the gold-standard thread is ni and the length of
the proposed thread is nj , then F (i, j) is defined
as follows:

P =
nij
nj

R =
nij
ni

F (i, j) =
2PR
P +R

(3)

The maxj operation is taken over all detected
threads. Since the matching is multiway (i.e., the
same j can be chosen for different values of i), the
score is not symmetric. When comparing human
annotations, this lack of symmetry is addressed by

treating the annotation with higher entropy as the
gold standard.

Given a transcript of length n, with thread i hav-
ing a size of ni, the entropy of the annotation can
be computed as:

H(c) =
∑
i

ni
n
log2

n

ni
(4)

These metrics are utilized by both Elsner and
Charniak (2010) and Wang and Oard (2009).

To account for differences in annotation speci-
ficity, Elsner and Charniak (2010) introduce
many-to-one accuracy. This metric maps each of
the threads of the source annotation to the single
thread in the target with which it has the greatest
overlap and counts the total percentage of overlap.
Similarly to Shen-F, the higher entropy annotation
is mapped to the lower one.

5 Datasets

We utilize a number of datasets to train various al-
gorithms in our thread disentanglement pipeline.
Two of these datasets are external datasets pro-
vided by previous research. The reply dataset1 was
annotated as part of this study as described in Sec-
tion 5.1.

Since our classifier aims to learn immediate re-
ply relationships between pairs of messages, there
is a need for a newly annotated dataset. This sec-
tion details the process of data acquisition and pro-
vides some preliminary analysis of the data.
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Table 3: Single annotation statistics describing
three annotations of a 524 message transcript.
All of these metrics describe a single annota-
tion. Thread density refers to the number of active
threads at any given time.

Mean Max Min
Threads 55.33 62 49
Avg. Thread Length 9.6 10.7 8.5
Avg. Thread Density 1.79 1.82 1.73
Entropy 3.99 4.42 3.64

5.1 Data Acquisition

For the acquisition of our annotated reply dataset
a subset of the #linux IRC log data provided by
Elsner and Charniak (2010) was used.

An interface was built and open-sourced to al-
low volunteers to manually annotate the data for
the purpose of identifying direct reply relation-
ships between messages. Users were instructed to
proceed through the messages in the chat and se-
lect the immediate parents for every message.

Three volunteers, familiar with Linux terminol-
ogy, independently annotated a set of 524 mes-
sages from the development dataset provided by
Elsner and Charniak (2010). For every message in
the dataset, annotators identified the potential im-
mediate parents of the message, where parent(m)
is identified as the messages to whichm is a direct
reply. It is possible for a message to have no par-
ents (e.g., starting a new thread of conversation)
and multiple parents (e.g., following up on a multi-
participant conversation).

5.2 Data Analysis

On average, we find that a message has 1.22 di-
rect parents and 1.70 direct children. The rela-
tively high number of children suggests that typ-
ically a message receives more than one reply. On
the other hand, the lower number of direct parents
suggests that a message is typically replying to a
single parent message.

We can use the reply annotations to retrieve a
thread annotation which resembles the structure of
the annotated data by Elsner and Charniak (2010).
This is done by identifying a disjoint set of mes-
sages such that no two messages in different sets
share a reply relationship. This allows us to ap-
ply the read-based metrics described in Section 4
to evaluate the annotation quality.

As is demonstrated in Table 4, our annotations

Table 4: Pair annotation statistics describing three
annotations of a 524 message transcript. These
metrics are all computed on a pair of threads and
therefore describe inter-annotator agreement.

Mean Max Min
one-to-one 81.49 87.79 74.81
loc3 90.36 91.81 88.61
many-to-one 97.39 98.28 95.80
Shen F 87.70 100.0 75.00

have high inter-annotator agreement. While our
agreement is not directly comparable to that of El-
sner and Charniak (2010) due to our annotations
being done on a subset of the data, our agreement
is evidently much greater. This suggests that a
reply-based annotation approach removes ambigu-
ity and by extension removes noise from the data.

5.3 External Datasets

In addition to the aforementioned annotated
dataset, we utilized the corpus provided by Elsner
and Charniak (2010) to train the same-thread clas-
sifier described in Section 3.2. This corpus con-
sists of a pilot set, a development set and a testing
set.

We also utilize the Ubuntu Dialogue Corpus
(Lowe et al., 2015) to train a recurrent neural net-
work to output the probability of a message occur-
ring after a sequence of messages, as described in
Section 3.3.

It is reasonable to utilize both of these datasets,
as both are IRC chat logs from channels con-
cerned with Linux related content. The corpora
provided by Elsner and Charniak (2010) is from
the ##LINUX channel, whereas the Ubuntu Dia-
logue Corpus (Lowe et al., 2015) consists of data
from the ##UBUNTU channel.

6 Experiments and Evaluation Results

6.1 Reply Classifier

We use our annotated data, described in Section
5.1, to generate a set of positive examples (i.e., la-
beled replies) and a set of negative examples (i.e.,
the complement of the annotated replies). This
data is used to train and validate the reply classifier
described in Section 3.1.

The data is very imbalanced, with most pairs
being non-replies which naturally leads to a large
number of false positives (i.e., non-replies classi-
fied as replies). This issue was addressed by ad-
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justing the class weights in order to stronger penal-
ize false positives when training the random forest
model. Specifically, the class weight of the nega-
tive class was set to be num non replies

num replies while the
class of the positive class was 1.

To further address the problem of imbalanced
data, we employ a strategy used by Elsner and
Charniak (2010) by only having our classifier con-
sider messages within 129 seconds of each other.
This brings the ratio of the two classes much closer
and is useful for speeding up inference as well.

Using 10-fold cross-validation, we obtain an av-
erage precision of 0.91 and average recall of 0.92.
Most message pairs are non-replies and as such
these scores are non-representative. For the reply
class, we have a precision of 0.83 and a recall of
0.49.

Using Gini feature importance (Breiman, 2001),
we find the most important feature to be the proba-
bility outputted by the RNN, followed by the time
difference and the message distance. This con-
firms that semantic relatedness is vital for detect-
ing reply relationships. The time difference and
message distance are both temporal measurements
which represent the fact that new messages are
typically a reply to recently sent messages.

6.2 Same-Thread Classifier
The same-thread classifier, described in Section
3.2, was trained on the development set provided
by Elsner and Charniak (2010) which was de-
scribed in Section 5.3. This classifier obtains a
precision and recall of 0.7, which is similar to the
result obtained by Elsner and Charniak (2010).

The Gini feature importances (Breiman, 2001)
indicate that for the same-thread classifier, the
most important features are the output of the RNN,
the time difference and the ’same author’ feature.
The relatively high importance of the ’same au-
thor’ feature can be explained by the fact that an
author typically responds numerous times within
a conversation. This reaffirms the idea that the
two classifiers learn to identify different relation-
ships between messages, and therefore comple-
ment each other.

6.3 RNN
The recurrent neural network was trained with the
hyperparameters described by Lowe et al. (2015)
on the Ubuntu Dialogue corpus, described in Sec-
tion 5.3. The final model performs within a few
percentage points of the result they reported.

6.4 In-Thread Classifier

This classifier was trained and tuned on the pilot
dataset provided by Elsner and Charniak (2010)
as described in Section 5.3.

To handle the imbalance of the data, we adjust
the class weight when training and only consider
thread-message pairs within 129 seconds of each
other.

With 10-fold cross-validation, we obtain an av-
erage precision of 0.91 and an average recall of
0.92. For the positive class, we have a precision of
0.89 and a recall of 0.69.

Using the Gini feature importances (Breiman,
2001), we find that the most important features
for the in-thread classifier are the time difference,
the proportion of the author’s previous messages
which belong to the thread, the mean output of the
reply classifier and the mean output of the same-
thread classifier.

The in-thread proportion of the author’s mes-
sages is likely a strong feature because high ac-
tivity within a particular conversation indicates a
high likelihood of continued activity.

It is plausible that the output of the RNN is not a
strongly used feature because it is already present
in the output of the reply and same-thread classi-
fiers.

6.5 Disentanglement Evaluation

We compare the performance of our thread parti-
tioning pipeline to the results reported by Elsner
and Charniak (2010) and Wang and Oard (2009).
Both of these papers evaluated their disentangle-
ment models on the same dataset, consisting of six
annotations of the same transcript of 1000 mes-
sages, provided by Elsner and Charniak (2010).
The comparison is shown in Table 5, where our
approach is shown to outperform the other meth-
ods with respect to loc3 and outperforms Elsner
and Charniak (2010) in all metrics.

However, we suspect that the results reported
by Wang and Oard (2009) were boosted by the
inclusion of system messages when computing all
of their metrics. In contrast, Elsner and Charniak
(2010) only include them for the computation of
loc3.

System messages are classified into thread −1
by all of the annotators and are extremely easy
to classify as they always appear in the form ”X
joined the room” or ”X left the room”. We com-
pare the performance of our pipeline, provided
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Table 5: The results obtained by our pipeline compared to annotators, Elsner and Charniak (2010) and
Wang and Oard (2009).

Annotators Elsner & Charniak Wang & Oard Proposed Pipeline
Mean one-to-one 52.98 41.23 47.00 44.02
Max one-to-one 63.50 52.12 - 52.75
Min one-to-one 35.63 31.62 - 36.75

Mean loc3 81.09 72.94 75.13 78.64
Max loc3 86.53 74.70 - 80.27
Min loc3 74.75 70.77 - 77.23

Mean Shen F 53.87 43.47 52.79 45.86
Max Shen F 66.08 57.57 - 52.22
Min Shen F 33.43 32.97 - 36.75

Table 6: Our results compared to Wang and Oard
(2009), provided we include the system messages
when computing the metrics.

Wang & Oard Pipeline
Mean one-to-one 47.00 55.22
Mean loc3 75.13 78.64
Mean Shen F 52.79 56.62

that we include all system messages, to the re-
sults obtained by Wang and Oard (2009) in Table
6 where our approach outperforms in all metrics.

6.6 Pipeline Discussion
Our pipeline strongly outperforms previous re-
search, likely due to the fact that we leverage dif-
ferent models and data sources to capture a variety
of relationships between messages.

The reply classifier is trained on specifically an-
notated reply relationships, leading it to excel at
identifying strong, local agreements between mes-
sages.

The same-thread classifier is trained on pairs of
messages that belong to the same thread, result-
ing in a model which captures broad relationships
between messages in the same thread. This is ob-
served in the relatively high importance the model
places on the ’same author’ feature.

The RNN, trained on a large corpus of unla-
beled data, is adept at identifying the strength of
semantic relationships between messages. As a re-
sult, it is utilized as a feature in every classifier of
the pipeline.

Removing the RNN entirely from the pipeline
results in a significant quality drop, as shown in
Table 7. This drop reaffirms that the pipeline’s

Table 7: Demonstration of the significant quality
drop observed when removing the RNN.

Pipeline Without RNN
Mean one-to-one 44.02 41.06
Mean loc3 78.64 76.52
Mean Shen F 45.86 43.01

quality stems from its ability to model semantic
relationships between messages.

The in-thread classifier is the final model that
trains and evaluates on top of the output of the pre-
vious models. This model decides how to best uti-
lize the previous models and combines their out-
puts to ultimately decide whether a message be-
longs to a thread.

7 Conclusions and Future Work

This work approaches the problem of thread dis-
entanglement from the perspective of identifying
reply relationships between messages. A corpus
of annotated data for this task is provided, which
should allow future research to expand on the
work presented in this paper. From our high inter-
annotator agreement, it is evident that detecting
reply relationships has relatively little noise. We
incorporate a combination of features in our dis-
entanglement pipeline, using both meta-data and
semantic relationships between messages. We fur-
ther show that unlabeled data in combination with
neural based approaches are effective in aiding
with thread disentanglement. The model that we
present outperforms all previous work when sys-
tem messages are included.

In the near future, we plan to expand our reply
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annotated corpus, using our open-sourced annota-
tion software, particularly for the purpose of eval-
uation. We have shown that our reply-based an-
notation has higher inter-annotator agreement rel-
ative to the annotations provided by Elsner and
Charniak (2010), therefore supplementing the re-
ply corpus and using it for evaluation may lead to
less noisy evaluations.

While we have shown that using an RNN is ef-
fective for detecting replies, it may prove useful to
perform further experiments to determine if it can
be applied more effectively. For example, adding
an attention mechanism could be beneficial for the
purposes of disentanglement. Additionally, in or-
der to reduce noise in the data and therefore lead
the model to converge faster, it is worth experi-
menting with training the RNN on a disentangled
corpus. Other directions for future research could
involve exploring these ideas.
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Abstract

We present a major step towards the cre-
ation of the first high-coverage lexicon of
polarity shifters. In this work, we boot-
strap a lexicon of verbs by exploiting var-
ious linguistic features. Polarity shifters,
such as abandon, are similar to negations
(e.g. not) in that they move the polarity of
a phrase towards its inverse, as in abandon
all hope. While there exist lists of nega-
tion words, creating comprehensive lists
of polarity shifters is far more challeng-
ing due to their sheer number. On a sam-
ple of manually annotated verbs we exam-
ine a variety of linguistic features for this
task. Then we build a supervised classifier
to increase coverage. We show that this
approach drastically reduces the annota-
tion effort while ensuring a high-precision
lexicon. We also show that our acquired
knowledge of verbal polarity shifters im-
proves phrase-level sentiment analysis.

1 Introduction

We present an approach towards bootstrapping a
lexicon of polarity shifters. Polarity shifters are
content words that have semantic properties sim-
ilar to negation. For example, the negated state-
ment in (1) involving the negation word not can
also be expressed by the verbal shifter fail in (2).

(1) Peter did not pass the exam.
(2) Peter failedshifter to pass the exam.

Similarly, shifting is also caused by nouns (e.g.
downfall) and adjectives (e.g. devoid).

Polarity shifters are important for various tasks
in NLP, such as relation extraction (Sanchez-
Graillet and Poesio, 2007), recognition of textual
entailment (Harabagiu et al., 2006) and particu-
larly sentiment analysis (Wiegand et al., 2010).

Similarly to negation words, they may cause the
polarity of a statement to shift. Even though (3)
contains the positive polar expression scholarship,
the overall polarity of the sentence is negative. (4)
conveys positive polarity despite the presence of
the negative polar expression pain.

(3) She was [deniedshifter the [scholarship]+]−.
(4) The new treatment has [alleviatedshifter her [pain]−]+.

Although there has been significant research on
polarity shifting in sentiment analysis (Wiegand
et al., 2010), this work has focused on the pres-
ence of negation words. Negation words (no, not,
never, etc.) are typically function words, so only
a few exist. Polarity shifters are content words, of
which there are a lot more. For instance, WordNet
(Miller et al., 1990) contains over 10k verbal, 20K
adjectival and 110K nominal lemmas. An exhaus-
tive manual annotation would be far too costly.

To reduce cost, we introduce a bootstrapping
approach for the acquisition of polarity shifters.
In this work we focus exclusively on verbs. As
the main predicates of phrases they tend to have
larger scopes than nouns and adjectives, increas-
ing the impact of their polarity shifting. Their vo-
cabulary size is also smaller, allowing us to cover
a reasonable share of it in our evaluation.

Existing resources barely cover any verbal
shifters at all. Even the most complex negation
lexicon for sentiment analysis (Wilson et al., 2005)
includes a mere 12 verbal shifters. In contrast, our
initial random sample of 2000 verb lemmas con-
tained 300 shifters. The corpora on which nega-
tion can be learned, such as the Sentiment Tree-
bank (Socher et al., 2013) or the BioScope corpus
(Szarvas et al., 2008), only comprise contiguous
sentences of fairly small datasets, so only the most
frequently occurring negation words are consid-
ered. For example, only 6 verbal shifters are ob-
served on the BioScope corpus (Morante, 2010).
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In this work, we address this knowledge gap by
bootstrapping a lexicon of polarity shifters. On
a sample of manually annotated verbs extracted
from WordNet, we first examine a variety of lin-
guistic features for this task. Then we build a su-
pervised classifier to classify the remaining Word-
Net verbs. Thus we can drastically cut down on
the number of verbs to be annotated manually.

Our contributions are as follows:

(i) we present the first high-coverage lexicon of
verbal polarity shifters, going substantially
beyond what can be extracted from existing
phrase-level corpus annotations;

(ii) we develop methods for high-precision
recognition of polarity shifters;

(iii) in addition to using resource-based generic
features, we show that we can boost per-
formance with novel task-specific features,
many of which are derived from corpora; and

(iv) we show that compositional classification
based on recognition of polarity shifters sig-
nificantly outperforms polarity classifiers that
lack explicit knowledge of verbal shifters.

The main focus of this paper is to find ways to
automatically extract verbal shifters. The question
of their respective scope is part of future research.1

While our work focuses on English, the concepts
applied are not language-specific. We have made
all data that were manually labeled as part of this
research publicly available.2

2 Data

To obtain a gold standard for verbal shifters, an
expert annotator labeled a random sample of 2000
verbs taken from WordNet 3.1 (see footnote 2).
To measure interannotator agreement, 200 of these
were annotated again by one of the authors. The
achieved κ = 0.66 indicates substantial agreement
(Landis and Koch, 1977).

Due to the lack of robust word-sense disam-
biguation, our annotation is on the lemma level.
We follow a simple binary classification: each
verb either can cause polarities to shift or not. In
order to qualify as a shifter, the verb must allow
polar expressions as dependents and the polarity
of the proposition that embeds both the verb and

1We assume that the scope of a verbal shifter is the set of
its dependents (typically its subject or objects).

2https://github.com/marcschulder/
ijcnlp2017

Freq Perc
shifter 304 15.20
no shifter 1696 84.80

Table 1: Distribution of verbal shifters in anno-
tated sample of WordNet 3.1.

Polar Verbs Positive V. Negative V.
Freq Perc Freq Perc Freq Perc

shifter 53 18.8 4 5.5 49 25.9
no shifter 229 81.2 69 94.5 140 74.1

Table 2: Distribution of verbal shifters in the Sub-
jectivity Lexicon (Wilson et al., 2005).

polar expression must move towards a polarity that
is opposite of the polar expression.

Table 1 shows the distribution of shifters among
the set of verbs. At approximately 15%, shifters
represent a large enough proportion of verbs to
be considered for automatic extraction. Table 2
shows the distribution of shifters among polar
verbs. (Polar expressions are identified with the
help of the Subjectivity Lexicon (Wilson et al.,
2005).) While a large number of shifters are them-
selves negative polar expressions, not all are.

3 Task-Specific Features

In the following we present task-specific features
for both verbal shifters (§3.1) and their counter-
part, anti-shifters (§3.2). Each feature creates a
verb ranking, indicating how likely each verb is to
be considered a verbal (anti-)shifter.

Most of our features are corpus-based. As a cor-
pus we use Amazon Product Review Data (Jindal
and Liu, 2008), comprising over 5.8 million re-
views. We chose this dataset for its size and its
sentiment-related content. Some features also re-
quire knowledge of opinion words and their re-
spective polarity. Such knowledge is obtained
from the Subjectivity Lexicon. Whenever we use
syntactic information (e.g. dependency relations),
we obtain it from the Stanford Parser (Chen and
Manning, 2014).

3.1 Features for Shifter Detection

As baseline features, we consider all verbs ranked
by their frequency in our text corpus (FREQ), as
well as all negative polar expressions3 ranked by
frequency (NEGATIVE).

3We consider negative polar expressions since the propor-
tion of shifters is greatest among these expressions (Table 2).
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EffectWordNet (EFFECT): This feature uses
the idea that events may have beneficial or harm-
ful effects on their objects. Wiebe and colleagues
(Deng et al., 2013; Choi et al., 2014; Choi and
Wiebe, 2014) introduced this idea in the context of
annotation and lexical acquisition work for opin-
ion inference.4 For example, in (5) the combined
facts that fall has a negative effect (henceforth
referred to as –effect) on its theme (i.e. Chavez)
and that people are happy about Chavez’ fall sug-
gest that people have a negative attitude towards
Chavez. As (5) shows, verbs with a –effect, such
as fall, often coincide with verbal shifters. How-
ever, –effect words do not necessarily shift polar-
ity. For instance, while abuse has a –effect, it does
not shift, as shown by the fact that the verb phrase
remains negative in (6).

(5) I think people are happy because [[Chavez]− has
fallen−effect]

+.
(6) We don’t want the public getting the idea that we

[abuse−effect our [prisoners]−]−.

While –effect and shifting are not equivalent,
their large overlap warrants investigating. We
use the related EffectWordNet resource (Choi and
Wiebe, 2014), which provides effect labels for
synsets. To generalize to lemmas, we label a word
as –effect if at least one of its synsets has a –effect
and none have a +effect. Analogous to negative
polar expressions, we take all –effect words and
sort them by word frequency (−EFFECT).

Distributional Similarity (SIM): As our aim is
to identify verbs whose semantics resembles that
of negation words, a straightforward method is
to extract verbs that are distributionally similar to
negation words. Using Word2Vec (Mikolov et al.,
2013), we compute word embeddings for our text
corpus.5 All verbs are ranked by their cosine sim-
ilarity to a given negation word. The highest rank-
ing verbs are considered verbal shifters. As nega-
tion words we consider the intersection of two
negation word lists: the negation category in the
valence shifter lexicon by Wilson et al. (2005) and
the negation signals from Morante and Daelemans
(2009). The negation words are neither, never, no,
none, nor, not and without.

4Initially, events with positive/negative effects were re-
ferred to as good-for/bad-for events. We use the terminology
Choi and Wiebe (2014) introduced for EffectWordNet.

5Following the work of Wiegand and Ruppenhofer (2015)
in verb category induction for sentiment roles, a task similar
to ours, we use continuous bag-of-words with 500 dimen-
sions.

Polarity Clash (CLASH): Some of our pre-
vious examples (e.g. (3)) suggest that shifting
is mainly caused by a polar verb (e.g. lose−,
alleviate+, deny−) modifying a polar expression
with the opposite polarity (e.g. [[loseshifter]−

[hope]+]−, [[alleviateshifter]+ [pain]−]+, or
[[denyshifter]− [scholarship]+]−). We expect that
the more often a verb occurs within such construc-
tions, the more likely it is to be a shifter. As we
saw in the Subjectivity Lexicon that the majority
of verbal shifters have negative polarity (Table 2),
we look exclusively for negative polar verbs that
have a positive polar noun as a direct object. We
rank those verbs by the frequency of occurring
with positive nouns (CLASH), normalized by the
overall frequency of the verb (CLASHnorm).

Particle Verbs (PRT): With many particle
verbs, the particles signal a particular aspectual
property, typically the occurrence of a complete
transition to an end state (Brinton, 1985). For in-
stance, dry (something) out means dry (something)
completely. Since shifting normally involves pro-
ducing a new (negative) end state of some entity,
we assume a significant number of shifters among
particle verbs ((7) and (8)).

(7) This [tore downshifter our great [dream]+]−.
(8) Please [lay asideshifter all your [worries]−]+.

We only consider particles which typically indi-
cate a complete transition to a negative end state:
aside, away, back, down, off and out. To produce
rankings, we sort the particle verbs by their abso-
lute frequency in our text corpus.

Heuristic using ‘any’ (ANY): Our final shifter
feature rests on the linguistic insight that negative
polarity items (NPIs) (Giannakidou, 2008), such
as English any, typically appear in the context
of a negation, as in (9). Our assumption is that
NPIs may similarly occur in the context of a ver-
bal shifter, as in (10), since it similarly conveys a
negation. The concept of NPIs is not specific to
the English language and can be found in many
other languages (Krifka, 1991).

(9) They did [not give us any [helpdobj]
+]−.

(10) They [deniedshifter us any [helpdobj]
+]−.

The feature we design collects all verbs that
take a direct object that is modified by the NPI
any, as in (10). We sort the verbs by their fre-
quency of co-occurrence with this particular tex-
tual pattern (ANY). We normalize that pattern fre-
quency by the frequency of the respective verb
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(ANYnorm). As a further constraint we demand
that the direct object represents a polar expression
(ANYnorm+polar). This constraint is fulfilled in (10)
since help is a positive polar expression.

3.2 Anti-Shifter Feature (ANTI)

We also introduce a feature for automatically re-
trieving verbs that – semantically speaking – are
the exact opposite of what shifters convey. This is,
therefore, a negative feature indicating the absence
of a shifter. Our anti-shifter feature determines
verbs co-occurring with a very small set of specific
adverbials. Using the log-likelihood collocation
measure of Sketch Engine6 we select adverbials
that showed attraction to verbs of creation on the
one hand, and being repelled by verbs of destruc-
tion on the other. Verbs of creation are expected to
be anti-shifters, since they typically entail a pos-
itive end state (i.e. something is created), while
verbs of destruction typically entail a negative end
state (i.e. something is destroyed) We identified
four different adverbials: exclusively, first, newly
and specially. Some typical examples are given
in (11)–(14). In order to produce a ranking for this
feature, we sort the anti-shifter candidate verbs ac-
cording to their frequency of co-occurrence with
either of the respective adverbs, normalized by the
respective verb frequency (ANTI).

(11) In winter, black bears exclusively liveantiShifter on fish.
(12) Full keyboards on cellphones were first

introducedantiShifter in 1997.
(13) These buildings have been newly constructedantiShifter.
(14) They specially preparedantiShifter vegan dishes for me.

4 Generic Features

In addition to the task-specific features presented
in §3 we examine some generic features derived
from common lexical resources. Unlike the fea-
tures in §3, the generic features do not produce a
ranking. Therefore, we will only be able to evalu-
ate them in the context of a supervised classifier.

WordNet (WN): WordNet is the largest En-
glish ontology. It is organized in synsets. How-
ever, we want to assign categories to words, rather
than senses. Due to the lack of robust word-sense
disambiguation, we represent a word as the union
of synsets containing it.

A common way to harness WordNet for lexicon
induction tasks in sentiment analysis is by using its
glosses (Esuli and Sebastiani, 2005; Gyamfi et al.,

6http://www.sketchengine.co.uk/

2009; Choi and Wiebe, 2014; Kang et al., 2014).
We assume that the explanatory texts of glosses
are similar among shifters. We treat glosses as a
bag-of-words feature.

We also use WordNet to assign semantic types.
Our intuition is that verbal shifters share the same
semantic types. We consider two types of infor-
mation that have been previously found effective
for sentiment analysis in general, namely the hy-
pernyms of verbs (Breck et al., 2007) and their
supersenses (Flekova and Gurevych, 2016).

FrameNet (FN): FrameNet (Baker et al., 1998)
is a semantic resource used for various sentiment
related tasks, such as opinion holder and target
extraction (Kim and Hovy, 2006), stance classi-
fication (Hasan and Ng, 2013) or opinion spam
analysis (Kim et al., 2015). It provides over
1200 semantic frames that comprise words with
similar semantic behavior. We use the frame-
memberships of a verb as its features, expect-
ing that verbal shifters are grouped in the same
frames. For instance, the frame AVOIDING exclu-
sively comprises verbal shifters (e.g. desist, dodge,
evade, shun, shirk etc.).

The latest version of FrameNet (v1.6) covers
only 31.4% of verbs from our gold standard. To
extend coverage, we use the semantic-parser Se-
maFor (Das et al., 2010), which can infer frames
for verbs missing from FrameNet (Das and Smith,
2011). For each missing verb, we have Se-
maFor label 100 sentences from our corpus and
use the frame most frequently assigned. In our ex-
ploratory experiments with supervised classifica-
tion, this expansion caused a significant increase
of 6% in F-score (paired t-test, p < 0.05).

5 Experiments

We will now experimentally evaluate the features
introduced in §3 and §4. In §5.1 we analyse the
high-precision potential of individual task-specific
features (§3). In §5.2 we run a recall-oriented
evaluation of our entire gold standard with clas-
sifiers using both task-specific and generic fea-
tures. Using the best classifier from this evalua-
tion, we bootstrap the remaining WordNet verbs
into a larger list of shifters in §5.3. Finally, we
evaluate the impact of verbal shifter knowledge on
phrase-level sentiment analysis in §5.4.
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Prec@n
Feature Retr. 20 50 100 250
FREQ 2000 10.0 18.0 22.0 22.0
NEGATIVE 189 30.0 30.0 29.0 N/A
−EFFECT 175 45.0 44.0 46.0 N/A
SIMnor 1901 15.0 24.0 16.0 18.4
SIMneither 1901 20.0 18.0 18.0 21.6
SIMnone 1901 25.0 24.0 22.0 21.6
SIMnot 1901 25.0 24.0 23.0 23.2
SIMnever 1901 20.0 30.0 30.0 32.8
SIMno 1901 35.0 28.0 36.0 28.8
SIMwithout 1901 40.0 36.0 34.0 27.6
SIMcentroid 1901 45.0 30.0 29.0 27.6
CLASH 107 40.0 52.0 39.0 N/A
CLASHnorm 107 45.0 46.0 37.0 N/A
PRT 165 60.0 64.0 58.0 N/A
ANY 539 30.0 28.0 29.0 34.0
ANYnorm 539 65.0 60.0 53.0 38.8
ANYnorm+polar 272 75.0 66.0 62.0 41.2
ANYnorm+polar+pageR 1901 80.0 70.0 63.0 45.2

Table 3: Analysis of shifter features (§3.1).

Prec@n
Feature Retrieved 20 50 100 250
FREQ 2000 90.0 82.0 78.0 78.0
POSITIVE 73 90.0 94.0 N/A N/A
+EFFECT 95 90.0 92.0 N/A N/A
ANTI 725 95.0 96.0 93.0 87.4

Table 4: Analysis of anti-shifter feature (§3.2).

5.1 Analysis of Task-Specific Features

In Table 3 we analyze how useful the task-specific
shifter features from §3.1 are as high-precision
candidate lists. Each feature produces a ranking,
which we evaluate in terms of precision at a cer-
tain rank (Prec@n). We also state the number of
retrieved verbs. Embedding-based methods (e.g.
SIM) could theoretically rank all verbs. How-
ever, the default configuration of Word2Vec dis-
cards every word which occurs less than 5 times,
which is why only 1901 verbs are retrieved.

Table 3 shows that filtering verbs by effect
(−EFFECT) brings improvements over the FREQ
and NEGATIVE baselines. Regarding distribu-
tional similarity to negation words (SIM), most
negation words perform no better than the base-
lines. The only notable exception is without,
which provides gains at high ranks. We also ex-
amined a combination of all negation words by
merging them in a centroid vector (SIMcentroid) but
got mixed results. Polarity clashes (CLASH) show
good performance. Particles (PRT) are the second
best feature while ANY is the best feature. Nor-
malization and polarity restriction are effective.

We try to further improve the best ranking

Classifier Acc Prec Rec F1
Baselinemajority 84.8 42.4 50.0 45.9
kNNnoAntiShifter 67.6∗ 54.9 56.4 55.6∗

kNN 71.5∗ 58.3 59.6 58.9∗

LPnoAntiShifter 79.1∗ 63.0 56.6 59.6∗

LP 80.7∗ 68.6 56.7 62.0∗

SVMtask-spec. features (§3) 79.9∗ 65.5 69.7 67.5∗

SVMgeneric features (§4) 89.0∗ 79.6 74.4 76.9∗

SVMall features 89.7∗ 80.7 77.6 79.1∗
∗: better than previous feature (paired t-test with p < 0.05)

Table 5: Evaluation of classification (§5.2) on the
2000 verbs from gold standard (Table 1).

(i.e. ANYnorm+polar) by applying personalized
PageRank (Haveliwala, 2002; Agirre and Soroa,
2009). In traditional PageRank a ranking of nodes
in a graph is produced where the highest ranked
nodes are the ones most highly connected. In per-
sonalized PageRank prior information is added. A
biased graph is constructed in which attention is
drawn towards particular regions of interest (i.e.
sets of nodes). This is achieved by assigning spe-
cific re-entrance weights to the individual nodes.7

In our case, we build a word-similarity graph
where our verbs are nodes and edges encode sim-
ilarities between them. The similarities are com-
puted in the same fashion as our distributional sim-
ilarity features (SIM) (§3). As prior information,
we set the nodes representing the verbs returned by
ANYnorm+polar with a uniform re-entrance weight
probability while all other nodes receive a weight
of 0. We consider a standard setting of α = 0.1
(Manning et al., 2008, ch. 21.2). The resulting
ranking indeed improves performance.

In Table 4 we analyze our anti-shifter feature
(§3.2). As baseline we again consider all verbs
ranked by frequency (FREQ). Complementary to
NEGATIVE and −EFFECT from Table 3, we
consider positive polar expressions (POSITIVE)
and +effects (+EFFECT). Our anti-shifter feature
(ANTI) clearly outperforms the other approaches.

5.2 Classifier Evaluation

In preparation to our bootstrapping task, we per-
form a recall-oriented evaluation to consider the
classification of all verbs from our gold standard
as opposed to the n-best rankings used in §5.1. We
consider two types of classifiers (as well as a sim-
ple majority-class baseline): graph-based classi-
fiers and supervised classifiers. As graph-based

7A non-uniform distribution causes some preferred nodes
of interest to be visited more often during the random walk.
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Conf. Rank 1-250 251-500 501-750 751-1043†

Precision 92.8 73.2 62.4 33.2
†: final interval covers all remaining predicted shifters

Table 6: Classification of WordNet verbs that were
not part of gold standard (§2); verbs are ranked
by confidence-score of classifier and evaluated at
intervals by precision of shifter label.

classifiers, we use one based on label propaga-
tion (LP), as well as a k-nearest neighbor clas-
sifier (kNN). LP and kNN do not employ any
manually labeled training data. We use seeds
produced by our best task-specific features (§3.1
and §3.2). Then labels are propagated with the
help of a word-similarity graph. We use the graph
we already employed for our PageRank experi-
ments in §5.1. As shifter seeds we use the top
250 items from ANYnorm+polar+pageR. We use twice
as many seeds for anti-shifters8 (using ANTI from
§3.2) to reflect the general bias towards non-shifter
verbs (Table 1). In order to examine whether
anti-shifters are actually necessary to get negative
seeds of sufficient quality, we also run an alter-
native setting (noAntiShifter) in which the same
number of negative seeds is simply extracted from
the ranking of frequent verbs. The reasoning be-
hind this is that the proportion of frequent verbs
not being shifters is already fairly high, as shown
by FREQ in Table 4. For LP, we considered the
Adsorption label propagation algorithm as imple-
mented in junto (Talukdar et al., 2008). For
kNN, we set k = 10.

Apart from the graph-based classifiers, we also
consider a supervised classifier, namely Sup-
port Vector Machines (SVM) as implemented in
SVMlight (Joachims, 1999). This classifier uses
manually labeled training data, but, unlike LP and
kNN, we may combine arbitrary feature sets. We
perform 10-fold cross validation and report on ac-
curacy and macro-average precision, recall and F-
score. For the task-specific features (§3) we use
their most complex configurations from Table 3
(e.g. SIMcentroid rather than SIMnor or SIMwithout).

Table 5 shows that among the graph-based clas-
sifiers, LP is notably better than kNN. Both clas-
sifiers benefit from anti-shifter seeds. Supervised
classification outperforms graph-based classifica-
tion, so using labeled training data is beneficial.

8This value is a first estimate and could be improved by
fine tuning on a development set.
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Figure 1: Learning curve on gold standard.

It also means that the full set of task-specific
shifter features (§3.1) is more effective than just
the strongest feature (which is used as seeds for
graph-based classification). While the generic fea-
tures outperform the task-specific features (in su-
pervised classification), combining them results
in another significant improvement, demonstrating
the importance of the task-specific features.

Figure 1 displays the learning curve of the
major feature sets using SVM. While the task-
specific features on their own are always worse
than the generic features, a classifier combining
those feature groups always outperforms the clas-
sifier solely trained on the generic features. This
improvement is particularly large when few la-
beled training data are available, which is a typical
setting for lexicon bootstrapping tasks. Figure 1
also shows that the SVM classifier has reached
roughly the point of saturation when using all fea-
tures and the maximal amount of labeled training
data. This amount should be sufficient for boot-
strapping our gold standard lexicon on further un-
labeled verbs (as will be shown in §5.3).

5.3 Bootstrapping the Lexicon

We now bootstrap a larger list of shifters from the
remaining unlabeled 8581 WordNet verbs not in-
cluded in our gold standard (§2). On this verb
set we run an SVM trained on the gold standard
(2000 verbs) with the best performing feature set
(Table 5). The classifier predicts 1043 verbs as
shifters. The remaining 7538 instances predicted
as non-shifters will not be considered further. As
our classifier reached a precision of 93.1% on non-
shifters on our gold standard data, we are confident
that the predicted non-shifters include few actual
shifters. As our precision for shifters is lower, i.e.
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Information Example Label

Sentence Norah Jones’ smooth voice
could soothe any savage beast.

Verb soothe
Polar Noun beast negative
Verb Phrase soothe any savage beast positive

Table 7: Annotation example for the contextual
sentiment analysis task. The polarities of the polar
noun and the verb phrase are annotated based on
context given by the sentence.

68.3%, we manually check the predicted shifter
instances. Using our classifier to pre-filter the data
(Choi and Wiebe, 2014) reduced the amount to
be annotated by 87.8% from 8581 to just 1043
instances. This is an enormous reduction in an-
notation effort. Table 6 shows the precision on
different intervals ranked by confidence score of
the SVM on the predicted 1043 shifters. Since the
top 250 instances reach a very high precision, with
hindsight, a manual annotation of at least these in-
stances would not even have been necessary either.

Among the 1043 predicted shifters, manual an-
notation confirmed 676 actual shifters. In total
we produced a novel list of 980 shifters (304 gold
standard + 676 bootstrapping) in this paper (all in-
cluded in our public dataset (see footnote 2)).

5.4 Impact on Sentiment Analysis

We now investigate whether knowledge of verbal
shifters can be useful for the identification of con-
textual phrase-level sentiment. Apart from being
an intermediate step in compositional sentence-
level classification, phrase-level classification is
also independently needed for applications such
as knowledge base population (Mitchell, 2013),
question answering (Dang, 2009) and summariza-
tion (Stoyanov and Cardie, 2011). For that reason
and because we specifically study compositional-
ity between verbs and their object, we exclusively
consider polarity classification for verb phrases.

The experiment is treated as a binary classifica-
tion task, where the polarity of a noun has either
shifted in the context of a verb phrase (VP) or not.
For example in (15), the VP lack her usual passion
contains the positive polarity noun passion which
is shifted by lack.

(15) The book seemed to [lackV [her usual passion+
N ]NP]

−
VP.

We compiled sentences from our text corpus
(Amazon Product Review Data, §2) that contain

Shifting Label Noun Polarity⇒ VP Polarity

shifted +⇒− −⇒ + ∼⇒ +
+⇒∼ −⇒∼ ∼⇒−

not shifted +⇒ + −⇒− ∼⇒∼

Table 8: How the shifting label is derived from the
polarities of the polar noun and the verb phrase
(positive (+); negative (−); neutral (∼)).

Classifier Acc Prec Rec F1

Baseline Majority 79.9 39.9 50.0 44.4
RNTN 59.0 50.8 51.2 51.0

Proposed
LEXLP 84.3 77.7 67.4 72.2
LEXSVM 87.1 80.0 79.4 79.7
LEXgold 90.8 88.9 81.2 84.8

Table 9: Evaluation of polarity classification.

a VP headed by a verb that has a polar noun9 as a
dependent. We annotated 400 randomly sampled
sentences in which the verb is a verbal shifter. We
then annotated 2231 sentences with non-shifters to
match the ratio of shifters and non-shifters in the
gold standard (Table 1) (see footnote 2).

To cover a variety of different verbs, rather than
just the most frequent ones, each verbal shifter oc-
curs only once. For each sentence, an annotator la-
beled the polarity of the polar noun and the polar-
ity of the VP as either positive, negative or neutral.
The annotator was also given the full sentence to
establish context and the verb that is the head of
the VP to avoid misunderstandings. Table 7 shows
an example of the information provided, as well as
the annotator’s decision to label beast as negative
and soothe any savage beast as positive.

Depending on whether the VP and its dependent
noun have the same polarity or not, the polarity is
considered to have shifted or not shifted, as de-
tailed in Table 8. These are the class labels onto
which the output of the systems (and the annota-
tion) will be mapped. The quantitative evaluation
happens on these labels. There is currently no con-
sensus as to how shifting is to be modeled in terms
of resulting polarities. For example, the shifting of
excellent in (16) could either be interpreted as the
resulting phrase wasn’t excellent carrying negative
or neutral polarity. The first interpretation simply
flips the polarity (Choi and Cardie, 2008), while
the second interpretation is driven by the fact that
the negation of excellent is not synonymous with
its antonym atrocious (Taboada et al., 2011; Kir-
itchenko and Mohammad, 2016). The polar in-

9Noun polarity is provided by the Subjectivity Lexicon.
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tensity of wasn’t excellent is certainly weaker than
that of atrocious but it is a matter of interpreta-
tion whether to classify it as negative or neutral.
To accommodate both legitimate interpretations,
we count either of these behaviors as shifting (Ta-
ble 8). We do this since our evaluation is con-
cerned with whether shifting occurs, not with the
exact polarities (or polar intensities) involved. Our
own approach does not profit from this, as it is
based on the knowledge of shifters, not polarities.

(16) Let’s say, the movie [wasn’t [excellent]+]−/∼.

As baselines, we consider a majority class clas-
sifier (Majority) and the Recursive Neural Tensor
Network tagger (RNTN) by Socher et al. (2013),
which is considered the state-of-the-art for han-
dling negation on the phrase level. RNTN is
a compositional sentence-level polarity classifier
providing polarity values for each tree node in the
constituency parse of a sentence. This output al-
lows us to extract polarity predictions for VPs and
polar nouns in our data. Apart from achieving best
performance on polarity classification datasets, a
major highlight of RNTN is its capability of learn-
ing shifting directly from labeled training data
without explicit knowledge of shifters and shift-
ing rules. However, RNTN depends on manually
labeled training data, i.e. sentences in which each
node of the parse tree is labeled with polarity in-
formation. Such fine-grained manual annotation
is currently only provided by the Stanford Senti-
ment Treebank (SST) (Socher et al., 2013). Re-
sources like SST are not suitable for either training
or testing a polarity classifier with respect to verbal
shifters, since they do not contain each shifter with
sufficient frequency. For example, SST contains
instances for 16.9% of our verbal shifters, with
less than half of these occurring more than once.
We expect that RNTN, which has been trained on
SST, may only be able to model shifting caused by
frequently occurring negation words, but, unlike
our own approach, will fail to account for shifting
involving any but the most frequent verbal shifters.

Our own approach (LEX) is based on inferring
the polarity of each VP from the polarity of the
noun and whether the verb is a shifter. A VP with
a shifter has a polarity moving to the opposite of
the noun, a VP without shifter has the same polar-
ity. We evaluate the shifter lexicons generated by
our best graph-based classifier (LEXLP) and best
supervised classifier (LEXSVM) from §5.2. Our

human annotated list of 980 shifters (§5.3) estab-
lishes an upper bound (LEXgold).

Results in Table 9 show that all lexicons exceed
the baselines. Even automatically induced shifter
lexicons clearly outperform the prediction of exist-
ing sentiment analysis systems. Errors in LEXgold
are mostly due to verbs that exhibit shifter behav-
ior in some of their word senses, but not the one
present in the phrase. In (17) bring down means
remove and causes shifting, but in (18) its meaning
of inflict does not cause shifting. The high scores
produced by LEXgold also suggest that working
on the lemma level instead of the sense level only
means a moderate loss in performance.

(17) The revolution [[brought down]V the tyrant−N ]+VP.
(18) She [[brought down]V a curse−N ]−VP on the village.

6 Related Work

Negation modeling is a central research issue in
sentiment analysis, but only few works consider
more than typical negation words. We refer the
reader to the survey of Wiegand et al. (2010) for
more information on negation modeling.

Approaches to learning negation from labeled
corpora have been examined in the review domain
(Ikeda et al., 2008; Kessler and Schütze, 2012;
Socher et al., 2013; Yu et al., 2016), the biomedi-
cal domain (Huang and Lowe, 2007; Morante and
Daelemans, 2009; Zou et al., 2013) and across
domains (Fancellu et al., 2016). However, as
outlined in §1, due to their small size the la-
beled datasets include few different verbal shifters.
Moreover, these works mostly focus on scope de-
tection rather than the identification of shifters.

The work most closely related to ours is
Danescu-Niculescu-Mizil et al. (2009) who pro-
pose using NPIs for shifter extraction.10 How-
ever, our work substantially extends that previous
work. We show how the usage of NPIs can be fur-
ther refined to improve the recognition of shifters
(i.e. require the direct object to be a polar noun
and subsequently apply PageRank). Moreover, we
successfully combine this information with other
features. Unlike Danescu-Niculescu-Mizil et al.
(2009), we also carry out a recall-oriented evalua-
tion and examine the impact of explicit knowledge
of verbal shifters on contextual sentiment analysis.

10Shifters are referred to as downward entailing operators.
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7 Conclusion

We took a major step toward producing a compre-
hensive lexicon of polarity shifters by bootstrap-
ping a large list of verbal polarity shifters. Us-
ing a sample of 2000 manually annotated verbs
extracted from WordNet, we built a supervised
classifier to classify the remaining WordNet verbs.
This reduced the number of verbs to be annotated
manually by a large amount. We examined a vari-
ety of linguistic features and found that in addition
to features derived from WordNet and FrameNet,
the co-occurrence of the negative polarity item any
with verbal shifters is particularly effective. We
also showed that automatically learned knowledge
of shifters improves the prediction of phrase-level
sentiment.

Our approach should be largely transferable to
other languages. This also applies to the fea-
tures based on particular constructions such as the
NPI any. The German NPI jeglich, Catalan cap,
Japanese dono mo etc. can be expected to exhibit
a very similar behavior (cf. Haspelmath (1997)).

Our goal is to build a complete lexicon of po-
larity shifters; to this end, future work will aim to
add nouns and adjectives to our shifter lexicon.
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Abstract

Document-level sentiment classification
aims to assign the user reviews a sentiment
polarity. Previous methods either just uti-
lized the document content without con-
sideration of user and product information,
or did not comprehensively consider what
roles the three kinds of information play in
text modeling. In this paper, to reasonably
use all the information, we present the idea
that user, product and their combination
can all influence the generation of atten-
tion to words and sentences, when judg-
ing the sentiment of a document. With this
idea, we propose a cascading multiway
attention (CMA) model, where multiple
ways of using user and product informa-
tion are cascaded to influence the genera-
tion of attention on the word and sentence
layers. Then, sentences and documents
are well modeled by multiple representa-
tion vectors, which provide rich informa-
tion for sentiment classification. Experi-
ments on IMDB and Yelp datasets demon-
strate the effectiveness of our model.

1 Introduction

Document-level sentiment classification aims to
predict an overall sentiment polarity (e.g., 1-5 stars
or 1-10 stars) for a user review document. This
task recently draws increasing research concerns
and is helpful to many downstream applications,
such as user and product recommendation.

Early work focuses on traditional machine
learning associated with handcraft text features for
sentiment classification (Pang et al., 2002; Ding
et al., 2008; Taboada et al., 2011). With the
development of deep learning techniques, some
researchers design neural networks to automati-

cally learn features from document content and
achieve comparable performance (Glorot et al.,
2011; Kalchbrenner et al., 2014; Yang et al.,
2016), though they ignore the use of user and
product information. Almost at the same time,
deep learning techniques exhibit another advan-
tage that product and user information can be flex-
ibly modeled with document content for senti-
ment classification (Tang et al., 2015a; Chen et al.,
2016). Tang et al. (2015a) design user and prod-
uct preference matrices to tune word representa-
tions, based on which convolutional neural net-
works (CNNs) are used to model the whole doc-
ument. To avoid the high-cost preference ma-
trix, Chen et al. (2016) develop the two-layer (i.e.,
word and sentence layers) model, where the com-
bination of user and product information is used to
generate attention to words and sentences respec-
tively on each layer.

Though previous studies achieve improvements
in synthesizing text, user and product for senti-
ment classification, they are somewhat limited to
either of the following two aspects. First, when
considering user and product information, previ-
ous work mostly models their combination which
may cause adverse effects on sentiment classifi-
cation. As we can see, user and product infor-
mation also have their own influence on sentence
and document representations. For example, a
lenient user tends to focus on the good aspects,
while a picky user is always concerned about un-
satisfactory clues, no matter which product is re-
viewed. In another view, different products have
their own concerns. For example, a car is closely
related with fuel consumption while a hotel with
bed or food, which are relatively independent of
users. Second, in previous hierarchical modeling
method, different layers are usually treated with
similar means. In our opinion, different linguistic
units (e.g., words and sentences) should be given
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different treatment to achieve good performance.
As we can see, words are closely related with each
other and sentences are relatively independent in
reflecting their sentimental polarity. Take a restau-
rant review for example, the review “Its dinner
environment is good. But the pizza is not worth
the money!” is comprised of two sentences. For
this review, a user who values environment may
mark 5 stars, while a user who thinks highly of
food may mark 1 star. Thus, we can not simply
combine the two sentences together in judging its
sentiment polarity. It is better to model each sen-
tence independently before knowing the users’ or
products’ attention.

To address the two issues above, we propose to
comprehensively make use of the information of
user, product, and their combination to generate
attention on the word and sentence layers, and fur-
ther cascade the multiple ways of attention on the
generation of sentence and document representa-
tions. Here, we name our proposed model the cas-
cading multiway attention (CMA) model. Specif-
ically, each sentence is first represented with mul-
tiple representation vectors through using differ-
ent ways of attention to focus on the important
part. Next, the similar multiple ways of generat-
ing attention are applied on the sentence level and
used to tune the generation of document represen-
tations. In such a case, document representation
is not simply treated as a sequence of sentences,
but considers more about the influence of user and
product information. Finally, we can get a well
modeled document representation for sentiment
classification. Experiments on three real-world
datasets demonstrate that CMA achieves state-of-
the-art performance and fully considers the contri-
butions from user and product information.

2 Cascading Multiway Attention Model
for Sentiment Classification

In this section, we first give an overview of the cas-
cading multiway attention (CMA) model for sen-
timent classification. Then, we focus on introduc-
ing how to design multiway attention for modeling
sentences and documents through using user and
product information. Next, we show the training
details of CMA.

2.1 Model Overview

Figure 1(a) shows the overall architecture of our
CMA model, which is mainly composed of four

levels including word level, sentence level, docu-
ment level, classification level. With word embed-
dings as input, we can employ convolutional neu-
ral networks or recurrent neural networks to obtain
deeper semantic of words on the word level. On
the sentence level, we design the multiway atten-
tion networks to generate attention to words from
three different views and get three representation
vectors to represent a sentence. On the document
level, we keep generating multiple kinds of atten-
tion to sentences and get the document representa-
tion, which is fed into a softmax function for clas-
sification.

Specifically, let us first formalize the nota-
tion. We suppose that a document contains m
sentences {S1, S2, ..., Sm} whose lengths are set
n1, n2, ..., nm respectively. For Sentence St(1 ≤
t ≤ m), it is composed of a sequence of
words w1

t , w
2
t , · · · , wnt

t where wjt denotes a spe-
cific word. To represent a word, we embed each
word into a low dimensional real-value vector,
called word embedding (Bengio et al., 2003).

Then, we can get wjt ∈ Rd from Mv×d, where
t is the sentence index in a document, j denotes
the word index in sentence t, d means the em-
bedding dimension and v gives the vocabulary
size. Word embeddings can be regarded as pa-
rameters of neural networks or pre-trained from
proper corpus via language model (Collobert and
Weston, 2008; Mnih and Hinton, 2007; Mikolov
et al., 2010; Huang et al., 2012). In our model, we
choose the second strategy.

Next, deeper word semantics representations
can be learned by using the neural network mod-
els, such as convolutional neural networks (CNN)
or recurrent neural networks (RNN). In this paper,
the LSTM model is employed to obtain the word
representation, since it has the good performance
of learning the long-term dependencies and can
well model the dependence between words. For-
mally, for sentence St, we input its word embed-
dings w1

t , w
2
t , ..., w

nt
t to the LSTM networks and

get the final word representations r1
t , r

2
t , ..., r

nt
t .

With deeper word representations as input, we
adopt the attention mechanism to model sentences.
As Section 1 stated, we consider the influence
from three views: user (δu), product (δp), and
combination of user and product (δup), which can
generate three kinds of attention to words. Then,
we impose the three attention vectors on word rep-
resentations respectively and get three represen-
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tation vectors for each sentence. Formally, sen-
tence St is represented by the concatenation of
three vectors sut , s

p
t , s

up
t . On the document level,

we still use δu, δp and δup respectively to generate
attention to sentences and get three vectors du, dp,
dup for representing the document. The concrete
design is introduced in the next subsection.

Finally, the three vectors du, dp, dup are con-
catenated to a vector d for a classifier. Here, we
use a non-linear layer to project d into the space
of the targeted C classes. That is,

x = tanh(Wl · d + bl) (1)

where Wl and bl are the weight matrix and bias
respectively. The probability of labeling document
with sentiment polarity i(i ∈ [1, C]) is computed
by:

yi =
exp(xi)∑C
i=1 exp(xi)

(2)

The label with highest probability is set as the final
result.

2.2 Cascading Multiway Attention

Now, we detail how to model user and product
information and cascade their influence on repre-
senting sentences and documents.

As stated in Section 1, the meaning of a sen-
tence has different interpretations from different
views including user, product and their combina-
tion, under which words may be paid different at-
tention on. With consideration of each view, only
some specific parts are focused on. And differ-
ent views have their own focuses which contribute

to sentiment classification. Thus, we propose the
multiway attention mechanism to capture sentence
focuses with repsect to different views.

Specifically, in our model, we represent each
user and each product with a representation vec-
tor which is learned from the model, notated with
u and p here. To consider the influence from user
and product, we formalize user view, product view
and their combination view respectively as:

δu = Wu · u (3)

δp = Wp · p (4)

δup = Wu
′ · u +Wp

′ · p (5)

where Wu, Wp, Wu
′, and Wp

′ are weight matrices
for tuning the influence of u and p.

We take sentence St for example to describe
the sentence modeling process, as shown in Fig-
ure 1(b). With word representations r1

t , r
2
t , ..., r

nt
t ,

we can generate three attention vectors using δu,
δp and δup respectively. For convenience we use
δ∗ to denote δu, δp or δup. Then, the attention
mechanism generates the attention vector α∗t with
respect to δ∗. The jth dimension [α∗t ]j denotes the
attention weight of the jth word rjt .

[α∗t ]
j =

exp(γ(rjt , δ
∗))∑nt

j=1 exp(γ(rjt , δ∗))
(6)

where γ is a score function that measures the im-
portance of rjt in the sentence. The score function
γ is defined as:

γ(rjt , δ
∗) = tanh(WH · rjt + δ∗ + bs) · vT (7)
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where WH and bs are weight matrix and bias re-
spectively, and vT is the transpose of the weight
vector v.

After computing the word attention weights, we
can get sentence representations s∗t using different
attention weights:

s∗t =
nt∑
j=1

[α∗t ]
jrjt . (8)

Then, we get a multi-vector sentence representa-
tion: [sut , s

p
t , s

up
t ] for sentence St from three views.

On the sentence level, we apply the similar mul-
tiway attention strategy to get the document repre-
sentation. Unlike the word level, each sentence
is relatively independent of other sentences and
takes its own part in determining the document
sentiment. Thus, we ignore modeling the depen-
dence between sentences and directly use the sen-
tence representations derived from the word level.
As we see, from different views each sentence
plays a different role, and from a specific view
all the sentences should be paid different attention,
in document-level sentiment classification. Here,
we still consider the influence from user, prod-
uct and their combination, and get the correspond-
ing document representation du,dp,dup, where d∗
(∗ ∈ {u, p, up}) is computed as follows:

d∗ =
m∑
t=1

β∗t s∗t (9)

β∗t =
exp(γ(s∗t , δ∗))∑m
t=1 exp(γ(s∗t , δ∗))

(10)

where s∗t is the sentence representation of sentence
St with respect to δ∗. β∗t denotes the correspond-
ing attention weight of St on the view of δ∗, and
the γ function is the same as in Eq. (7).

2.3 Model Training
In CMA, we need to optimize all the parameters
notated as Θ which are from all the user and prod-
uct embedding vectors, LSTM networks, two mul-
tiway attention layers and the softmax layer.

We use cross entropy with L2 regularization as
the loss function, which is defined as:

J = −
C∑
i=1

gi log(yi) + λr(
∑
θ∈Θ

θ2) (11)

where gi ∈ RC denotes the ground truth, repre-
sented by one-hot vector. yi ∈ RC is the estimated

probability for each class, computed as in Eq. (2).
λr is the coefficient for L2 regularization.

After learning Θ, we test the instances by feed-
ing their text with user and product information
into CMA, and the label with the highest proba-
bility stands for the predicted sentiment polarity.

3 Experiments

In this section, we first introduce the datasets and
metrics used in our experiments. Then, we show
the hyperparameter setting of our model. Next, we
present the results of our model and compare our
model with other state-of-the-art methods. Finally,
we use a case study to examine the experimental
results of CMA.

Datasets
To validate the effectiveness of our model, we use
three real-world datasets: IMDB, Yelp 2013 and
Yelp 2014 collected by Tang et al. (2015b). For
these data, we preprocess the text including us-
ing Stanford CoreNLP (Manning et al., 2014) to
split the review documents into sentences and to-
kenizing all words. Table 1 shows the details of
the three datasets including number of documents
(#docs), average number of documents per user
posts(#docs/user) etc. It is also noted that IMDB
is rated with 10 sentiment labels (i.e., 1-10 stars)
while Yelp has 5 labels (i.e., 1-5 stars). We also
adopt the same data partition used in (Tang et al.,
2015b) and (Chen et al., 2016) for training, devel-
oping and test.

Evaluation Metrics
To evaluate the performance of sentiment classi-
fication, we adopt the metrics of Accuracy and
RMSE. Accuracy measures the overall perfor-
mance. Given the number of correctly predicted
samples T and the total number of samples N ,
Accuracy is defined as:

Acc = T
N . (12)

RMSE evaluates the divergence between pre-
dicted labels and ground truth labels and is defined
as:

RMSE =
√∑N

k=1(lk−l′k)2

N (13)

where lk and l′k denote the ground truth and pre-
dicted label of sample k respectively. Generally, a
good system has a high accuracy and a low RMSE.
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Dataset #docs #users #products #docs/user #docs/product #sents/doc #words/doc #labels
IMDB 84919 1310 1635 64.82 51.94 16.08 24.54 10

Yelp2013 78966 1631 1633 48.42 48.36 10.89 17.38 5
Yelp2014 231163 4818 4194 47.97 55.11 11.41 17.26 5

Table 1: Data Statistics of IMDB, Yelp2013 and Yelp 2014.

Hyperparameter Setting
Following (Chen et al., 2016) and (Tang et al.,
2015b), we set the dimensions of word, user and
product embeddings as 200 in our experiments.
We train the word embeddings through using the
training and developing sets of each dataset with
word2vec tool (Mikolov et al., 2013). The user
and product embeddings are initialized randomly.
All the weight matrices are initialized by uniform
distribution, and all biases are assigned as zero.
We also set the dimensions of the LSTM hidden
states and attention vectors as 200.

To train our model, we utilize AdaDelta (Zeiler,
2012), which adopts a self-adaptive learning rate,
to optimize the parameters. The coefficient of
penalty in the objective function is set to 10−5.

3.1 Method Comparison

To comprehensively evaluate the performance of
CMA, we list some baseline methods for compari-
son. The baselines are introduced as follows.
•Majority assigns the largest sentiment polar-

ity occurred in the training set to each sample in
the test set.
• Trigram uses the unigrams, bigrams and tri-

grams features to train a SVM classifier for senti-
ment classification.
• TextFeature extracts word/character ngrams,

sentiment lexicon features, negation features, etc.
for a SVM classifier.
• UPF extracts user-leniency features and prod-

uct features from training data (Gao et al., 2013).
There features can be concatenated with the fea-
tures of Trigram and TextFeature.
• AvgWordvec averages the word embeddings

in a document to generate the document represen-
tation as features for a SVM classifier.
• SSWE first learns the sentiment-specific

word embeddings and then utilizes three kinds of
pooling (i.e., max, min and average) to generate
the document representation for a SVM classi-
fier (Tang et al., 2014).
• PV(Paragraph Vector) is an unsupervised

framework to learn distributed representations for
text of any length (Le and Mikolov, 2014). (Tang

et al., 2015a) implements the distributed memory
model of paragraph vectors (PV-DM) to get docu-
ment representations for sentiment classification.
• RNTN+RNN models sentences using recur-

sive neural tensor networks (RNTN) (Socher et al.,
2013). Then sentence representations are fed into
the recurrent neural networks (RNN) and their hid-
den states are averaged to get the document repre-
sentation.
• UPNN designs preference matrices for each

user and product to modify word representations
(Tang et al., 2015b). Word representations are then
fed into the convolution neural networks (CNNs)
and concatenated with the user/product represen-
tation to generate document representation before
a softmax layer. Without considering user and
product information, the UPNN(noUP) method
just uses CNN to model the documents.
• NSC+UPA proposes the hierarchical neu-

ral networks which are composed of two LSTM
models to generate word and sentence representa-
tions (Chen et al., 2016). The combination of user
and product information is used to generate atten-
tion to words and sentences on the sentence and
document levels. The document representation is
fed into a softmax layer. The NSC model is similar
to NSC+UPA, but ignores user and product infor-
mation and directly applies two layers of LSTM
and attention mechanism to model sentences and
documents using only document content.

When comparing with our model, we directly
use the results of the above baselines reported in
(Chen et al., 2016), as we conduct the experiments
on the same datasets.
• CA-null is a simplified version of our CMA

model without consideration of user and product
information. We use one LSTM with attention to
model sentences. Based on the sentence represen-
tations, we directly use the attention mechanism to
model documents for sentiment classification.

The performance comparison of CMA and all
baselines are shown in Table 2. All the baseline
methods are divided into two categories: the first
category only uses document content and the sec-
ond comprehensive considers document, user and
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Model IMDB Yelp 2013 Yelp 2014
Acc. RMSE Acc. RMSE Acc. RMSE

Majority 0.196 2.495 0.411 1.060 0.392 1.907
Trigram 0.399 1.783 0.569 0.841 0.577 0.804
TextFeature 0.402 1.793 0.556 0.814 0.572 0.800
AvgWordvec 0.304 1.985 0.526 0.898 0.530 0.893
SSWE 0.312 1.973 0.549 0.849 0.557 0.851
PV 0.341 1.814 0.554 0.832 0.564 0.802
RNTN+RNN 0.400 1.764 0.574 0.804 0.582 0.821
UPNN(noUP) 0.405 1.629 0.577 0.812 0.585 0.808
NSC+LA 0.487 1.381 0.631 0.706 0.630 0.715
CA-null 0.491 1.408 0.635 0.689 0.640 0.690
Trigram+UPF 0.404 1.764 0.570 0.803 0.579 0.789
TextFeature

+UPF 0.402 1.774 0.561 0.822 0.579 0.791

UPNN 0.435 1.602 0.596 0.748 0.608 0.764
NSC+UPA 0.533 1.281 0.650 0.692 0.667 0.654
CMA 0.540 1.191 0.664 0.677 0.676 0.637

Table 2: Methods Comparison on IMDB, Yelp
2013 and Yelp 2014 Datasets.

product information.
In the first category of methods, the Majority

method is the worst, meaning the majority senti-
ment polarity occupies 19.2%, 42.1% and 39.2%
of all samples. All the other methods are bet-
ter than the Majority method, showing that man-
ual or automatic features can both bring perfor-
mance improvement for sentiment classification.
Though techniques of deep neural networks are
widely used and have made a success in docu-
ment modeling, its simple application (e.g., Ave-
Wordvec, PV ) does not achieve better results than
using manually selected features (e.g., Trigram,
TextFeature) with respect to the accuracy metric.
As for the three kinds of carefully designed neural
networks, the CA-null and NSC+LA methods ex-
hibit obvious advantages with high accuracy and
low RMSR, compared to the RNTN+RNN and
UPNN(noUP) methods. The main reason may
be that CA-null and NSC+LA can learn the long-
distance dependencies with LSTM networks and
make full use of the important words and sen-
tences with attention. We can also see that CA-
null outperforms NSC+LA regarding the accuracy
on the three datasets. This verifies that we may
not consider sentence dependence when model-
ing documents for sentiment classification, as the
main difference between CA-null and NSC+LA is
that CA-null does not apply LSTM to model sen-
tences.

From Table 2, we observe that user and prod-
uct information can promote the performance
of sentiment classification. Even the worst
method (TextFeature+UPF) in the second cate-

Model IMDB Yelp 2013 Yelp 2014
Acc. RMSE Acc. RMSE Acc. RMSE

CA-null 0.491 1.408 0.635 0.689 0.640 0.690
CA-δu 0.513 1.397 0.641 0.688 0.653 0.687
CA-δp 0.508 1.423 0.640 0.694 0.652 0.685
CA-δup 0.520 1.281 0.645 0.684 0.658 0.670
MA-max 0.528 1.314 0.654 0.680 0.663 0.667
MA-avg 0.521 1.341 0.651 0.678 0.662 0.672
CMA 0.540 1.191 0.664 0.677 0.676 0.637

Table 3: Analysis of Cascading and Multiway At-
tention.

gory is comparable to the state-of-the-art system
(RNTN+RNN) in the first category. For the meth-
ods with manually designed features, their perfor-
mance improvement is smaller than those methods
with deep learning methods. Both Trigram-UPF
and TextFeature-UPF concatenate more user and
product features, but have little improvement com-
pared with Trigram and TextFeature. The reason
may be that the text features are huge (1M trigram)
enough and the newly added user and product fea-
tures can not work well. Adding user and product
information, CMA outperforms CA-null by about
5 percent with respect to the accuracy metric on
IMDB dataset. At the same time, CMA performs
stably better than NSC+UPA with higher accuracy
and lower RMSE on three datasets, with cascad-
ing multiway attention on word and sentence lev-
els and keeping independency between the sen-
tences. This validates that only a combination of
user and product information can not boost perfor-
mance much and more ways of attention should
be explored in text modeling. It is also noted that
words need to be modeled with consideration of
their dependence while sentences should be inde-
pendently modeled.

3.2 Model Analysis

In this section, we design a series of models to
verify the effectiveness of our model CMA. On
one hand, we design three simplified models, i.e.,
CA-δu, CA-δp and CA-δup, which only consider
one-way attention from user, product, combina-
tion of user and product respectively when model-
ing sentences and documents. On the other hand,
we just keep the multiway attention on modeling
sentences and directly adopt the maximization or
average operation on sentence representations to
model a document, which are named MA-max and
MA-avg respectively. Table 3 shows the results of
all the models.

From Table 3, we can see that CA-null gets the
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worst result compared with other models utilizing
user and product information, which indicates that
both information is useful for document sentiment.
The performance of CA-δu and CA-δp are worse
than CA-δup, this is because CA-δu and CA-δp

just uses one kind of information (user or product),
but CA-δup uses both information. CMA achieves
a much better result than the ‘CA’ models, which
can verify the effectiveness of introducing mul-
tiway attention. We also observe that CA-δu is
slightly better than CA-δp, verifying user infor-
mation plays a more important role than product
information as in (Chen et al., 2016).

As for MA-max and MA-avg, multiway atten-
tion on modeling sentences bring much perfor-
mance improvement compared to CA-null, though
the cascading structure is not adopted. MA-avg
seems to treat each sentence equally while MA-
max tries to seek the most represented sentences
contributing to sentiment classification. We can
see that MA-max performs better than MA-avg,
verifying that sentences should not be treated
equally and multiway attention are a good mecha-
nism for computing the contributions of each sen-
tence to representing a document.

We can also see that CMA achieves the best
performance among all the models, since CMA
fully considers the word importance to a sen-
tence and sentence importance to a document via
sentence-level and document-level multiway at-
tention. Next, we give an example to illustrate the
cascading multiway attention captured by CMA.

Case Study
Here, we use a five-star review document from
Yelp as a case study, and the document is “Bis-
cuits made from scratch, not frozen. Homemade
pancakes with real buttermilk, not from a mix or
box. Homemade blueberry jam, no jam or can.
True dinner coffee. A group of friendly, engag-
ing staff. Five stars... need I say more.”. We ap-
ply CMA on the document and achieve the correct
sentiment polarity. Figure 2 visualizes the mul-
tiway attention weights on the sentence and docu-
ment levels computed by CMA. We represent three
ways of attention, i.e., user(δu), product(δp), and
combination of user and product (δup), with blue,
red and green color series respectively. The deeper
color means higher weight.

Figure 2(a)∼(f) display the three ways of atten-
tion to words for sentence1 ∼ sentence6 respec-
tively. We can see that different words are as-

signed high weight values when using different
ways of attention. For example, for sentence1,
the word “biscuits” is paid more attention from
the user view while “frozen” is focused on from
the product view and “made” is emphasized con-
sidering the combination of user and product. At
the same time, an interesting phenomenon is that
all the three views pay little attention to some
common words like “,” and function words “a”
“of”. This conforms to our intuition: some func-
tion words and punctuation marks contribute little
to sentiment classification, but different words are
focused on from different views. Thus, multiple
ways of using user and product information can
well gather information which is helpful to repre-
senting a sentence.

Figure 2(g) shows the three ways of attention to
sentences for the example document. We can see
that the three ways are consistent with focusing
on the sixth sentence, which gives high attention
weights to the words “five” and “stars” reflecting
the sentiment polarity. From the user view, high
attention is also paid to sentence5, which includes
the obvious sentiment word “friendly”. Hence, we
infer that the user may like to express his/her senti-
ment to a product with sentiment word. From the
product view, we can see that the document rep-
resentation is also closely related to many other
sentences such as sentence2 (w.r.t food) and sen-
tence5 (w.r.t. staff), which can show different at-
tributes of a product.

This case study shows that cascading two layers
of multiway attention are necessary to modeling a
document in the sentiment classification task.

4 Related work

Document-level sentiment classification methods
can be divided into two kinds of research lines,
i.e., traditional machine learning methods and
neural networks methods.

For the first kind of research line, Pang et al.
(2002) validate the effectiveness of various ma-
chine learning methods with bag-of-words fea-
tures on sentiment classification. Goldberg and
Zhu (2006) use a graph-based semi-supervised
learning algorithm with unlabeled data to predict
the sentiment of reviews. There are also some
work which focus on extracting effective features.
Ganu et al. (2009) identify user experience in-
formation from free text. Qu et al. (2010) in-
troduce a kind of bag-of-opinion representation.
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Figure 2: Case Study: Illustration of Attention Weights.

Kiritchenko et al. (2014) extract surface, seman-
tic, and sentiment features from text. User infor-
mation is also used in traditional methods. Tan
et al. (2011) employ social relationships to im-
prove user-level Twitter sentiment analysis. Gao
et al. (2013) estimate the sentiment polarity by re-
ferring to the user leniency and product popularity
computed during testing. Li et al. (2014) incorpo-
rate the user and product information into a topic
model for sentiment analysis.

Recently, neural network approaches have
achieved a comparable performance on document-
level sentiment classification. Glorot et al. (2011)
first propose a deep learning approach which
learns to extract a meaningful representation for
each review in an unsupervised fashion. Then,
Socher et al. (2011, 2012, 2013) introduce re-
cursive neural networks to document-level senti-
ment classification. Kim (2014) employ convo-
lutional neural networks to model sentences with
two kinds of embeddings for sentiment classifi-
cation. Le and Mikolov (2014) introduce an un-
supervised algorithm that learns fixed-length fea-
ture representations from variable-length pieces of
texts. Tai et al. (2015) utilize tree-structured long-
short memory networks to learn semantic repre-
sentation for sentiment classification. In addition,
user and product information are flexibly modeled
for sentiment classification in the neural network
methods (Tang et al., 2015b; Chen et al., 2016).
Tang et al. (2015a) design preference matrices for
each user and each product to tune word represen-
tations, based on which convolutional neural net-
works (CNNs) are used to model the whole doc-

ument. Chen et al. (2016) employ two layers of
long-short term memory (LSTM) with attention to
model sentences and documents.

5 Conclusion

In this paper, we propose the cascading multi-
way attention networks for document-level sen-
timent classification. The main idea of CMA is
to use multiway attention rather than one-way at-
tention to learn representations for sentences and
documents, as user, product and their combination
can provide different views for modeling text and
weaken the dependencies between sentences for
better depicting the influence from user preference
for document sentiment. On the sentence level,
CMA uses three ways of exploiting user and prod-
uct information to generate attention to words and
get sentence representations. On the document
level, CMA keeps using the multiway attention
mechanism to generate attention to sentences. Ex-
perimental results on IMDB, Yelp 2013 and Yelp
2014 verify that CMA can learn efficient represen-
tations for sentences and documents and provide
rich information for judging the document-level
sentiment polarity.
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Abstract

Deep learning models have recently been
applied successfully in natural language
processing, especially sentiment analysis.
Each deep learning model has a particu-
lar advantage, but it is difficult to com-
bine these advantages into one model, es-
pecially in the area of sentiment analy-
sis. In our approach, Convolutional Neu-
ral Network (CNN) and Long Short Term
Memory (LSTM) were utilized to learn
sentiment-specific features in a freezing
scheme. This scenario provides a novel
and efficient way for integrating advan-
tages of deep learning models. In addi-
tion, we also grouped documents into clus-
ters by their similarity and applied the pre-
diction score of Naive Bayes SVM (NB-
SVM) method to boost the classification
accuracy of each group. The experiments
show that our method achieves the state-
of-the-art performance on two well-known
datasets: IMDB large movie reviews for
document level and Pang & Lee movie re-
views for sentence level.

1 Introduction

The emergence of web 2.0, which allows users to
generate content, is causing the rapid increase in
the amount of data. This platform, which enables
millions of users to share information and com-
ments, has a high demand for extracting knowl-
edge from user-generated content. An important
information to be analyzed from those comments
is opinions/sentiments, which express subjective
opinions of particular users. Sentiment analysis
is a fundamental task and has attracted a huge
amount of research in recent years (Pang and Lee,
2008; Liu, 2012). The task calls for identifying the

sentiment polarity (positive, negative) of a com-
ment or review.

Wang (2012) used a Support Vector Machine
variant with Naive Bayes feature (NBSVM). Pre-
senting a document or a sentence with Bag of
bi-gram features, NBSVM consistently performs
well across datasets of long and short reviews.
Recently, the success of deep learning in natu-
ral language processing has led to many efficient
methods for sentiment analysis such as Paragraph
Vector (Le and Mikolov, 2014), CNN (Kalch-
brenner et al., 2014; Kim, 2014; Zhang and Wal-
lace, 2015), LSTM (Wang et al., 2015; Liu et al.,
2015). In Paragraph Vector, Le and Mikolov em-
ployed the technique of Word embedding repre-
sentation using neural networks (Bengio et al.,
2003; Collobert and Weston, 2008; Mnih and Hin-
ton, 2009; Turian et al., 2010; Mikolov et al.,
2013) to represent a document or paragraph as a
vector. This document modeling outperformed the
Bag of Words model in sentiment analysis and in-
formation retrieval. Li (2015) has enhanced the
architecture of Paragraph Vector by allowing the
model to predict not only words but also n-gram
features (DVngram). CNN is capable of capturing
local relationships between neighbor words in a
sentence but fails for long-distance dependencies.
LSTM can handle CNN’s limitation because it is
able to memorize information for a long period of
time. Our motivation is to build a combination ap-
proach taking the advantages of these methods.

In this paper, we separately designed CNN
and LSTM models to encode sentiment informa-
tion into feature vectors. To apply for senti-
ment classification, these sentiment-specific vec-
tors and the semantic-specific DVngram vector
were passed into the 3-layer neural network. In
sentiment analysis, two sentences with a slight dif-
ference could provide opposite sentiments. Gener-
ative models, however, have a tendency to encode

644



Figure 1: The proposed framework for sentiment analysis

similar sentences/documents into similar vectors.
For that reason, we designed an autoencoder
model to learn representation vectors for sen-
tences/documents and used these vectors for clus-
tering. The prediction score of NBSVM method
is provided to enhance the sentiment prediction of
each cluster. Figure 1 shows the architecture of
our framework.

We compared our method with NBSVM, CNN,
LSTM, Paragraph Vector, LinearEnsemble (Mes-
nil et al., 2014), DSCNN (Zhang et al., 2016)
on three well-known datasets: IMDB large movie
reviews (Maas et al., 2011) for document level,
Pang & Lee (2005) movie reviews and Stanford
Sentiment Treebank (Socher et al., 2013) for sen-
tence level. The experimental results show that our
method consistently performs well on both docu-
ment and sentence level data. The main contribu-
tions of this work are as follows:

• We applied a freezing scheme to CNN and
LSTM models for encoding sentiment infor-
mation into vectors. These vectors provide
a simple and efficient way to integrate the
strong abilities of deep learning models.

• We proposed a scenario to divide data
into groups of similar sentences/documents.

Then, each sentence/document in each group
is represented by the prediction score of NB-
SVM method and the prediction score of the
proposed 3-layer neural network. We pro-
posed an ensemble method to employ these
scores.

2 Sentiment representation learning

In this section, we describe the freezing scheme to
generate sentiment vectors from two models: (i)
CNN, (ii) LSTM; and a method to employ these
vectors. To feed into LSTM/CNN model, each
word of a sentence/document is transformed into
a word embedding vector using Word2Vec1.

Le and Mikolov (2014) extended the word em-
bedding learning model by incorporating para-
graph information. Given a paragraph, Le’s
method captures and encodes semantics into a rep-
resentation vector or a semantic feature.

This work inspired us to develop a document
representation learning model to capture senti-
ment information. In our work, we proposed an
approach to generating sentiment representation
from CNN and LSTM models. Our idea is to train
CNN and LSTM models under the sentiment clas-
sification task. In a deep learning network, we

1https://code.google.com/p/word2vec/
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Figure 2: Illustration of our CNN framework to generate sentiment features. Given a sequence of d-
dimension word embeddings (d = 4), the model applies 4 filters: 2 filters for region size h = 2 and 2
filters for region size h = 3 to generate 4 feature maps. During the training process, the parameters of
the last neural network layer (blue one) are frozen (untrained)

could separate the model into two parts: (i) Build-
ing target feature - from input samples, the first
part encodes target information into vectors, (ii)
Classifying layer - the second part tries to learn
a layer (or a boundary) for classifying these vec-
tors into target labels. Sentiment vectors gener-
ated by a model, however, are much fitting to the
classifying layer of this model. It is not efficient
to combine two sentiment vectors generated from
two models because each sentiment vector is fit-
ting to its particular classifying layer. To address
this problem, we proposed a freezing scheme. Ac-
cording to this scheme, the parameters of the clas-
sifying layer are initialized from the uniform dis-
tribution and in the training phase, these param-
eters are kept unchanged. This technique makes
sentiment vectors not too fit to a particular classi-
fying layer.

2.1 LSTM for sentiment feature engineering
- LSTM feature

The LSTM architecture was introduced by
Hochreiter (1997). By designing a memory cell
preserving its state over a long period of time
and non-linear gating units regulating information
flow into and out of the cell, Hochreiter made
LSTM able to capture efficiently long distance de-

Figure 3: Illustration of our LSTM model to gen-
erate sentiment vectors. During the training pro-
cess, the parameters of the neural network layer
(blue one) are frozen (untrained)

pendencies of sequential data without suffering the
exploding or vanishing gradient problem of Recur-
rent neural network (Goller and Kuchler, 1996).

Figure 3 explains how to employ the LSTM ar-
chitecture for memorizing sentiment information
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over sequential data. The model contains two
parts: (i) Building sentiment feature - the LSTM
layer encodes sentiment information of input into
a fixed-length vector; (ii) Classifying layer - this
sentiment-specific representation vector will be
classified by the last neural network (NN) layer
(the blue layer in Figure 3). As applying the freez-
ing scheme, this NN layer’s parameters are un-
changed during the training process.

2.2 CNN for sentiment feature engineering -
CNN feature

We present a sentence of length s as a matrix d×s,
where each row is a d-dimension word embedding
vector of each word. Given a sentence matrix S,
CNN performs convolution on this input via lin-
ear filters. A filter is denoted as a weight ma-
trix W of length d and region size h. W will
have d × h parameters to be estimated. For an
input matrix S ∈ Rd×s, a feature map vector
O = [oo, o1, ..., os−h] ∈ Rs−h+1 of the convo-
lution operator with a filter W is obtained by ap-
plying repeatedly W to sub-matrices of S:

oi = W · Si:i+h−1 (1)

where i = 0, 1, 2, ..., s − h, (·) is dot product and
Si:j is the sub-matrix of S from row i to j.

Each feature map O is fed to a pooling layer to
generate potential features. The common strategy
is 1-max pooling (Boureau et al., 2010). The idea
of 1-max pooling is to capture the most important
feature v corresponding to the particular feature
map by selecting the highest value of that feature
map:

v = max
0≤i≤s−h

{oi} (2)

We have described in detail the process of one
filter. Figure 2 shows an illustration of apply-
ing multiple filters with variant region sizes to ob-
tain multiple 1-max pooling values. After pooling,
these 1-max pooling values from feature maps are
concatenated into a CNN feature carrying senti-
ment information. Intuitively, the CNN feature is
a collection of maximum values from the feature
maps. To make a connection to these values, we
provide an NN layer to synthesize a high-level fea-
ture from the CNN feature. Finally, this high-level
feature is passed to an NN layer with sigmoid acti-
vation to generate the probability distribution over
sentiment labels.

In the training phase, similar to the strategy in
our LSTM model, the last NN layer’s parameters

are kept untrained to make the sentiment vectors
not too fit to a particular classifying layer.

2.3 Classifying with sentiment vectors

Figure 4 visualizes the results of encoding senti-
ments into vectors using our CNN model. As we
can see in the development set, there are some un-
ambiguous cases. Therefore, we add more infor-
mation to CNN sentiment vectors by concatenat-
ing them with LSTM sentiment vectors or DVn-
gram semantic vectors.

As CNN and LSTM sentiment vectors are, how-
ever, generated from models of sentiment clas-
sification, these vectors are easily separated in
terms of sentimental categories by machine learn-
ing methods. In other words, a multi-layer NN
sentiment classifier using both of these vectors as
input reaches the state of perfect classification on
the training set after a few epochs. In this case,
the classifier’s parameters are not efficiently opti-
mized and the classifier’s performance has no im-
provement on the testing set, compared with using
LSTM or CNN for classification (or we call the
model overfitting).

To address this problem, we employ a 3-layer
NN with Dropout regularization (Hinton et al.,
2012) on the first and second layers. By randomly
dropping out each hidden unit with a probabil-
ity p on each presentation of each training case,
Dropout prevents overfitting and provides a way
to combine many variant NN architectures effi-
ciently. By applying Dropout, our model has an
ability to examine efficiently variant combination
ways from feature vectors.

3 Ensemble with clustering support

As we discussed in Section 1, a slight dif-
ference between two sentences could lead to
two opposite sentiments. However, similar sen-
tences/documents have a tendency to be encoded
into similar vectors by generative models. There-
fore, it causes some difficulties in sentiment clas-
sification. To address this problem, we divided
data into groups of similar sentences/documents
and then provided an additional feature to boost
the performance of classification in each group.
For dividing data, we applied autoencoder mod-
els to encode word embedding representations
of sentences/documents into fix-length vectors.
These vectors then were used for clustering sen-
tences/documents. For each sentence/document in
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(a) Sentiment vectors in the train set

(b) Sentiment vectors in the development set

Figure 4: The t-SNE projection for IMDB
dataset’s sentiment vectors (positive and negative)
generated from our CNN model.

each cluster, the prediction score of the method in
section 2 are combined with the prediction score
of NBSVM. The reason for choosing NBSVM
is that NBSVM is an efficient method not based
on neutral network architectures, and using Bag
of Word model to represent sentences/documents,
which is different from the word embedding repre-
sentation. We consider NBSVM’s score as an ad-
ditional channel and expect it to support well for
each group of similarity sentences/documents in
terms of word embedding representation.

Given a sentence/document, we will have two
prediction scores: one from the proposed method
in section 2 and one from NBSVM. To employ
these scores, we used a voting method. This
scheme allows each classifier fi to give a vote with
a confident ratio ri to the final probability score
over classes distribution as follows:

p(ci|x) =
1
N

N∑
k=1

pk(ci|x)rk (3)

where ci is the ith sentiment class, N is the num-
ber of classifiers, pk(ci|x) is the prediction score
of the classifier k on the ith class for a sen-
tence/document x.

(a) BiLSTM model

(b) CNN model. In MR-L dataset, each region size has
300 filters. In MR-S and SST dataset, each region size
has 100 filters

Figure 5: Autoencoder models

The objective of this ensemble method is to se-
lect a suitable confident ratio for each classifier
to optimize the performance of classification. In
our approach, a 2-layer NN is employed to define
a voting architecture. We consider a feedforward
process in NN as a scheme of voting and the NN’s
weights as confident ratios. Adamax algorithm
(Kingma and Ba, 2014) is applied to optimize the
weights of the model.

Dataset l train test |V |
MR-L 300 25000 25000 169940
MR-S 20 10662 cv 18765
SST 19 9613 1821 16185

Table 1: Summary statistic of datasets. l denotes
the average length of reviews, train and test are
sizes of the training set and the test set respec-
tively, cv is 10-fold cross validation, and |V | is
vocabulary size.

4 Dataset and Experiment setup

4.1 Dataset

We evaluated our models on three well-known
datasets. Table 1 shows the statistic summary of
datasets.

• For document level, IMDB large movie re-
view dataset MR-L is used. Each review con-
tains numerous sentences (Maas et al., 2011).

• For sentence level, Pang & Lee (2005) pro-
vided MR-S dataset having one sentence per
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movie review. In addition, we also did exper-
iment on Stanford Sentiment Treebank SST
(Socher et al., 2013) - an extension of MR-
S with two labels (positive and negative). In
SST, all sentences and phrases of the training
set are used for training.

4.2 Experimental setup

To tune hyper-parameters of our models, we do a
grid search on 30% of each dataset.

• For MR-L:

– LSTM model has dimension d = 32.
– CNN model: using 3 region sizes of

3, 4, 5; the number of each region size
is 300 and the dimension of penultimate
NN layer is 100.

– 3-layer NN model for classification with
sentiment vectors: the first NN layer has
the same dimension as the input feature,
and the dropout ratio p = 0.9; the sec-
ond NN layer has the dimension of 64
and the dropout ratio p = 0.5.

– Autoencoder models: we examined two
autoencoder models - CNN and BiL-
STM. The details are in Figure 5.

– Clustering: k-mean is applied. The
number of clusters is k = 2.

– Ensemble model: the first NN layer has
the dimension of 3 × the input’s dimen-
sion or the number of classifiers.

• For MR-S and SST: the same configuration
as MR-L, except the number of each region
size is 100.

For word vectors, we obtained pre-trained word
vectors Word2Vec. Its vectors have the dimension
of 300. In our LSTM and CNN models, these
pre-trained word vectors are optimized during the
training process.

5 Results and Discussion

We compared our models against the other meth-
ods showed in table 2 on the binary sentiment clas-
sification task. In SST dataset, we could not re-
produce the result 88.1% of CNN (Kim, 2014).
According to the empirical results, our method
of combining feature vectors 3-layer NN outper-
forms the individual methods: LSTM, CNN, and

DVngram. That proves the efficiency of the fea-
ture combination strategy. In addition, our en-
semble method with clustering support outper-
forms the current state of the art method on MR-
L and MR-S datasets. As we mentioned in Sec-
tion 3, NBSVM uses a different way to present
sentences/documents and a different approach to
learning (a discriminative model), so it gives a
significant support in our ensemble method. On
document level, LSTM method produced a much
lower performance than DVngram method. As a
result, the feature vectors generated from LSTM
model does not support as well as DVngram’s vec-
tors when combining with CNN feature vectors.

5.1 Freezing vs Unfreezing in the last NN
layer of feature engineering phase

In the engineering phase, we freeze (untrain) the
last NN layer’s parameters to create efficient sen-
timent vectors. To evaluate the efficiency of
this technique, we compared our vector’s perfor-
mance against the sentiment-specific vector from
the unfreezing scheme. We passed these vec-
tors to our 3-layer NN model to achieve the re-
sults (details in table 3). One interesting obser-
vation is that the performance of a feature vec-
tor in freezing mode is better than one in un-
freezing mode for most of the cases. In addition,
we combined a sentiment-specific vector with the
semantic-specific vector - DVngram for evaluating
the performance. In general, our freezing scheme
provided a higher performance than the unfreez-
ing scheme. The experimental results show that
our freezing scheme works more efficiently on
CNN model than LSTM model, especially in a
case of combining a sentiment-specific vector and
a semantic-specific vector.

5.2 Evaluation on combining features
In this section, we compared in performance our
approach to combining features from variant mod-
els against Merging scheme which horizontally
merges variant models (details in figure 6).

From the result showed in table 4, we found
that our approach for feature vectors combination
is applied more efficiently to CNN model than
LSTM model. In the scheme of combining fea-
ture vectors, CNN feature vector provides a ro-
bust performance, while LSTM feature vector pro-
vides inconsistent results: better when combining
with CNN feature vector, worse when combin-
ing with DVngram vector (compared with Merg-
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Method MR-S MR-L SST
LSTM 80.17 86.23 87.81
CNN (Kim, 2014) 81.31 91.18 86.33
DVngram (2015) 73.51 92.14 74.2
NBSVM (2012) 79.26 91.87 80.39
DV-Ensemble (2015) - 93.05 -
DAN (2015) 80.3 89.4 86.3
SA-LSTM (2015) 80.7 92.8 -
DSCNN-Pretrain (2016) 82.2 90.7 88.7

Proposed methods
3-layer NN (CNN-f+LSTM-f) (1) 81.59 91.16 88.41
3-layer NN (CNN-f+DVngram) (2) 81.11 92.98 86.66

Without clustering
Ensemble ((1) + NBSVM) 82.18 92.50 88.36
Ensemble ((2) + NBSVM) 81.1 93.25 87.31

CNN autoencoder
Ensemble ((1) + NBSVM) 82.2 92.55 88.46
Ensemble ((2) + NBSVM) 81.74 93.29 86.87

BiLSTM autoencoder
Ensemble ((1) + NBSVM) 82.22 92.54 88.58
Ensemble ((2) + NBSVM) 81.8 93.32 87.09

Table 2: Accuracy results on the binary sentiment classification task. 3-layer NN(F1 + F2) denotes
using feature vector F1 and F2 as input; CNN-f, LSTM-f denote sentiment-specific feature vectors gen-
erated from the proposed CNN, LSTM respectively; Ensemble(p1 + p2) denotes applying the proposed
Ensemble for the prediction scores of p1 and p2.

Feature MR-S MR-L SST
CNNorg 80.61 91.22 86.05
CNN-f 80.89 91.38 86.27
LSTMorg 78.97 85.5 86.99
LSTM-f 79.11 85.14 87.64
CNNorg + LSTMorg 80.95 90.34 87.31
CNN-f + LSTM-f 81.59 91.16 88.41
CNNorg + DVngram 80.6 92.66 85.34
CNN-f + DVngram 81.11 92.98 86.66
LSTMorg + DVngram 79.38 90.41 87.2
LSTM-f + DVngram 79.59 88.04 88.14

Table 3: Accuracy results of 3-layer NN method
on different features. CNNorg, LSTMorg denote
sentiment-specific features engineering from the
proposed CNN, LSTM without freezing the last
NN layer respectively

Method MR-S MR-L SST
3-layer NN (CNN-f + LSTM-f) 81.59 91.16 88.41
CNN-LSTM 81.07 91.07 86.49
3-layer NN (CNN-f + DVngram) 81.11 92.98 86.66
CNN-DVngram 80.79 92.12 85.39
3-layer NN (LSTM-f + DVngram) 79.59 88.04 88.14
LSTM-DVngram 80.61 92.08 86.49

Table 4: Accuracy results of features combining
scheme and Merging scheme.

ing scheme). In most of the cases in Merging
scheme, a composition model (i.e. CNN-LSTM)
try to reproduce the result of its child models (e.g.
CNN, LSTM) and does not provide a significant
improvement.

Figure 6: The architecture of merging models.

5.3 Error analysis
To get a better sense of the limitation of the pro-
posed model, we manually inspect some cases of
the wrong prediction, which are showed in table
5. These sentences are good examples of the pro-
posed model’s weakness.

The first source of false hits is the lack of syn-
tactic information. The model tried to identify
sentiment words in a sentence (i.g. not, bad, at
all) but it failed to interpret the whole sentence.
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The second reason of the wrong prediction comes
from missing context information. A word (i.g.
foul, freaky) carries a positive or negative senti-
ment depend on context or domains. We believe
that the promising direction in future work will be
to improve the model for capturing syntactic and
context information.

id Sentence L

1 Not a bad journey at all. 1
2 The best way to hope for any chance of

enjoying this film is by lowering your
expectations.

0

3 You’ve seen them a million times. 0
4 A whole lot foul, freaky and funny. 1

Table 5: Examples of the wrong prediction. L de-
notes the true label with 0,1 for negative, positive
sentiment labels respectively)

6 Related work

Sentiment analysis is a study of determining
people’s opinions, emotions toward to entities.
Taboada (2011) assigned sentiment labels to text
by extracting sentiment words. Liu (2012) formu-
lated the sentiment analysis as a classification task
and applied machine learning techniques for this
problem. In this approach, dominant research con-
centrated on designing effective features such as
word ngram (Wang and Manning, 2012), emoticon
(Zhao et al., 2012), sentiment words (Kiritchenko
et al., 2014). However, designing handcraft fea-
tures requires an intensive effort.

Recently, the emergence of deep learning mod-
els has provided an efficient way to learn contin-
uous representation vectors for sentiment classi-
fication. Bengio (2003) and Mikolov (2013) in-
troduced learning techniques for semantic word
representation. By using a neural network in the
context of a word prediction task, the authors gen-
erated word embedding vectors carrying seman-
tic meanings. Embedding vectors of words which
share similar meanings are close to each other. Se-
mantic information maybe provides opposite opin-
ions in different contexts. Therefore, some re-
search (Socher et al., 2011; Tang et al., 2014)
worked on learning sentiment-specific word rep-
resentation by employing sentiment text. For sen-
tence and document level, composition approach
attracted many studies. Yessenalina and Cardie
(2011) modeled each word as a matrix and used

iterated matrix multiplication to present a phrase.
Deep recursive neural networks (DRNN) over tree
structures were employed to learn sentence rep-
resentation for sentiment classification such as
DRNN with binary parse trees (Irsoy and Cardie,
2014), Recursive tensor neural network with sen-
timent treebank (Socher et al., 2013). CNN has re-
cently been applied efficiently for semantic com-
position (Kim, 2014; Zhang and Wallace, 2015).
This technique uses convolutional filters to capture
local dependencies in term of context windows
and applies a pooling layer to extract global fea-
tures. Le and Mikolov (2014) applied paragraph
information into the word embedding technique to
learn semantic representation. Tang et al. (2015)
used CNN or LSTM to learn sentence representa-
tion and encoded these semantic vectors in docu-
ment representation by Gated recurrent neural net-
work. Zhang (2016) proposed Dependency Sen-
sitive CNN to build hierarchically textual repre-
sentations by processing pretrained word embed-
dings. Wang (2016) used a regional CNN-LSTM
to predict the valence arousal ratings of texts.

In our work, we designed a freezing approach
for learning efficiently sentiment document rep-
resentation from two variant deep-learning mod-
els: CNN and LSTM. Afterward, these sentiment-
specific vectors and the semantic DVngram vector
were employed for sentiment classification. This
strategy captures the advantages of variant models
by using vectors, which each model generated. We
also used NBSVM in clustering mode to boost the
performance of classification.

7 Conclusion

In this work, we introduced a novel approach to
synthesize feature vectors for sentiment analysis
from CNN, LSTM. These vectors provide a sim-
ple and efficient way to integrate the strong abili-
ties of these models. For sentiment classification
with CNN, LSTM vectors, we proposed a 3-layer
neural network which efficiently takes advantages
of these vectors. In addition, we proposed a strat-
egy to cluster documents/sentences by their sim-
ilarity. In each cluster, we applied an ensemble
method of the 3-layer neural network and NB-
SVM. It achieves the state of the art results in the
datasets: MR-S and MR-L. In the current work,
we just focused on individual models. Research
on applying combination models for feature engi-
neering maybe provides interesting results.
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Abstract

In this paper, we study domain adap-
tation with a state-of-the-art hierarchical
neural network for document-level senti-
ment classification. We first design a new
auxiliary task based on sentiment scores
of domain-independent words. We then
propose two neural network architectures
to respectively induce document embed-
dings and sentence embeddings that work
well for different domains. When these
document and sentence embeddings are
used for sentiment classification, we find
that with both pseudo and external senti-
ment lexicons, our proposed methods can
perform similarly to or better than sev-
eral highly competitive domain adaptation
methods on a benchmark dataset of prod-
uct reviews.

1 Introduction

Sentiment classification is a fundamental task in
opinion mining (Pang et al., 2002; Hu and Liu,
2004; Choi and Cardie, 2008; Nakagawa et al.,
2010). Recently, with the advances of deep learn-
ing techniques for many NLP applications, various
kinds of neural network (NN)-based models have
been proposed for this task (Socher et al., 2013;
Lei et al., 2015; Yang et al., 2016).

As with any supervised learning method, the
NN-based models also suffer from the domain
adaptation problem, where training data and test
data come from different domains. The reason
for this is that sentiments are often expressed with
domain-specific words and expressions. For ex-
ample, in the Book domain, expressions like an
insider’s look and a must read are usually posi-
tive, but they may not be useful for the Kitchen
domain. Similarly, words such as sharp and clean,

which are positive in the Kitchen domain, can
rarely be seen in the Book domain. Due to the
high cost of obtaining labeled data, it would be
very attractive if we can adapt a model trained on
a source domain to a target domain.

A number of different models have been pro-
posed for cross-domain sentiment classification,
and the core idea of them is to learn a shared la-
tent representation that is general across domains.
Most of these studies can be categorized into two
lines. The first line of work focuses on carefully
designing some auxiliary prediction tasks to in-
duce a robust cross-domain representation (Blitzer
et al., 2007; Pan et al., 2010; Bollegala et al., 2015,
2016). With the trend of deep learning, another
line of work centers on employing denoising auto-
encoders to learn hidden representations across
domains in a purely unsupervised learning man-
ner (Glorot et al., 2011; Chen et al., 2012; Zhou
et al., 2016).

However, most of the two lines of research are
based on traditional discrete feature representa-
tions, and the induced shared representations are
not necessarily specific to sentiment classification.
In our recent work, we designed two simple aux-
iliary tasks, which are closely related to the ac-
tual end task, for sentence-level cross-domain sen-
timent classification (Yu and Jiang, 2016). Fur-
thermore, we proposed to jointly learn domain-
independent sentence embeddings based on the
two auxiliary tasks together with the classifier for
the end task in a unified NN framework. Al-
though our joint learning model has been shown
to outperform previous domain adaptation meth-
ods in sentence-level sentiment classification, it is
unclear how to extend this to document-level sen-
timent classification since the two auxiliary tasks
will become much less useful for documents.

In this paper, we aim to propose a domain adap-
tation method for document-level sentiment clas-
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sification based on our earlier joint model (Yu
and Jiang, 2016). Specifically, instead of predict-
ing the occurrence of pivot words as in previous
work (Blitzer et al., 2007; Yu and Jiang, 2016),
we introduce a new auxiliary task based on senti-
ment scores of pivot words. Moreover, we propose
two different architectures to incorporate the aux-
iliary task into a state-of-the-art hierarchical NN
model for document-level sentiment classification,
in which we respectively induce a shared docu-
ment embedding for each document in both do-
mains and a shared sentence embedding for each
sentence in all documents. Evaluation on a widely
used dataset about product reviews from four dif-
ferent domains shows that our methods can signif-
icantly outperform a number of baselines and are
able to achieve comparable or even better results
compared with a strong baseline proposed by us.

2 Related Work

Domain Adaptation: Domain adaptation has
been extensively studied in recent years (Pan and
Yang, 2010). In NLP, it has also attracted much
attention, where most domain adaptation methods
can be categorized into two groups: instance re-
weighting (Jiang and Zhai, 2007; Xia et al., 2014)
and shared representation learning (Blitzer et al.,
2006; Daumé III, 2007; Titov, 2011). In this work,
we follow the latter line of work, and focus on in-
ducing a domain-independent feature space based
on a recently proposed NN architecture.
Neural Networks for Sentiment Classification:
With the recent trend of deep learning, a large
amount of NN models, including Convolutional
Neural Network (Kim, 2014), Recursive Neural
Network (Irsoy and Cardie, 2014) and Recurrent
Neural Network (Tai et al., 2015), have been pro-
posed for sentiment classification. Although these
models have achieved highly competitive results
on different benchmarks, most of them are tar-
geted at sentence-level sentiment classification.
Considering that the relations between sentences
are important for predicting the sentiment polar-
ity of any document, Tang et al. (2015) proposed
a hieararchical NN model to encode the relations
between sentences for document-level sentiment
classification. Since it has been shown to signifi-
cantly outperform standard non-hierarchical mod-
els on several benchmarks, we try to apply this
model to domain adaptation settings in this work.
Cross-Domain Sentiment Classification: For

sentiment classification, most existing domain
adaptation methods focus on inducing shared rep-
resentations across domains. One line of work
tries to leverage the co-occurrences of domain-
specific and domain-independent features to learn
a general low-dimensional cross-domain represen-
tation (Blitzer et al., 2007; Pan et al., 2010; He
et al., 2011; Bollegala et al., 2015; Bhatt et al.,
2015). Another line of work is based on a purely
unsupervised learning method, denoising auto-
encoders, where the hidden layers in multi-layer
neural networks are believed to be robust against
domain shift (Glorot et al., 2011; Chen et al., 2012;
Zhou et al., 2016). However, all these methods are
still based on traditional discrete representations,
and the shared representations are learned sepa-
rately from the final classifier and therefore not
directly related to sentiment classification. More
recently, we proposed a unified neural model to
jointly learn the shared sentence embeddings and
the final classifier together for sentence-level sen-
timent domain adaptation (Yu and Jiang, 2016).
But the auxiliary task in this earlier work is only
designed for sentences; it will be less useful for
documents. Moreover, the neural model is based
on CNNs, which fail to achieve satisfactory results
in document-level sentiment classification. Hence
in this work, we focus on proposing a new auxil-
iary task for documents, followed by incorporating
it into a state-of-the-art hierarchical NN model for
document-level sentiment domain adaptation.

3 Methodology

In this section we present our domain adaptation
method for document-level sentiment classifica-
tion.

3.1 Problem Definition and Notation

Our task is sentiment classification at the docu-
ment level. We assume that each input d is a
document containing n sentences, and the ith sen-
tence contains a sequence of mi words. Let us use
wi,j ∈ V to denote the jth word of the ith sentence,
where V is the vocabulary. Let y ∈ {+,−} de-
note the sentiment label of input d, where + and
− denote the positive sentiment and the negative
sentiment, respectively.

We consider a cross-domain setting, in which
we assume that we have a set of labeled training
documents from a source domain, denoted by Ds.
In addition, we have a set of unlabeled documents
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from a target domain, denoted byDt,u. Our goal is
to train a good document-level sentiment classifier
using Ds and Dt,u so that the classifier can gener-
ally work well in the target domain. To evaluate
the trained classifier, we test its performance on a
set of labeled documents from the target domain,
denoted by Dt,l.

3.2 Method Overview
The core of our domain adaptation method is to
use a domain-independent auxiliary task to help
induce a cross-domain hidden representation that
is useful for both source and target domains. The
idea of learning cross-domain hidden represen-
tations by leveraging auxiliary tasks for domain
adaptation is not new (Blitzer et al., 2006, 2007;
Yu and Jiang, 2016; Ding et al., 2017). These
previous studies essentially follow the multi-task
learning framework (Ando and Zhang, 2005). The
rationale behind them is that if there are some aux-
iliary tasks related to the actual prediction task
and the labels of the auxiliary tasks can be easily
obtained for both source and target domains, the
induced low-dimensional feature space is a good
representation for domain adaptation.

Our work follows this line of research and aims
to extend our recently proposed domain adapta-
tion method for sentence-level sentiment classi-
fication (Yu and Jiang, 2016). Our method is
based on an existing hierarchical neural network
(HNN) model for document-level sentiment clas-
sification proposed by Tang et al. (2015), which
encodes each sentence in the input document into
a sentence embedding vector through a CNN, fol-
lowed by combining all sentence embeddings into
a document embedding vector with a gated RNN.
Different from Tang et al. (2015), however, we
use the sentence embeddings or document embed-
dings for predicting not only the actual sentiment
labels but also the labels of a carefully designed
auxiliary task. Since the auxiliary task is domain-
independent, we expect the sentence embeddings
and document embeddings learned by our method
to work well in both domains.

3.3 A Hierarchical Neural Network for
Document-level Sentiment Classification

We first describe our baseline method for
document-level sentiment classification. This is a
HNN model proposed by Tang et al. (2015) that
has been shown to significantly outperform sim-
pler, non-hierarchical models. We re-implement

this model with some minor modifications.
Recall that an input document d is represented

by a sequence of sentences, each containing a se-
quence of words, and wi,j ∈ V is the jth word
of the ith sentence in d. We use xi,j ∈ Rl to
denote an l-dimensional dense embedding vector
for word wi,j , which is retrieved from a lookup
table X ∈ Rl×|V| for all words. We first ap-
ply a one-layer CNN (Kim, 2014) to obtain an
embedding vector zi ∈ Rp for the ith sentence:
zi = CNNΘ1(xi), where Θ1 denotes all the pa-
rameters in this CNN.

After obtaining the sentence embeddings for all
the n sentences in d, we then apply an LSTM to
sequentially combine all sentences together: hi =
LSTMΘ2(hi−1, zi), where hi ∈ Rq is the ith hid-
den state, and Θ2 denotes all the parameters in
the LSTM1. Note that Tang et al. (2015) used bi-
directional gated RNN to chain the sentences into
a document embedding, but we did not observe
any significant gain over LSTM based on our pre-
liminary experiments.

Finally, a softmax classifier is learned to map
the document representation hn to a label y:

p(y | hn) = softmax(Whn + b),

where W ∈ R2×q is a weight matrix and b ∈ R2

is a bias vector.
In the following sections, we will present two

NN architectures built on top of the baseline
method that leverages an auxiliary task for domain
adaptation of document-level sentiment classifica-
tion. The first architecture uses a document-level
auxiliary task to help induce a document-level hid-
den representation, while the second architecture
uses a sentence-level auxiliary task to help induce
a sentence-level hidden representation.

3.4 Document-level Shared Representation
Learning for Domain Adaptation

Document-level Auxiliary Task
We first introduce an auxiliary task that is closely
related to the original task of document-level sen-
timent classification. Our auxiliary task is in-
spired by our recent work for sentence-level cross-
domain sentiment classification (Yu and Jiang,
2016). In this recently proposed method, we
used two auxiliary tasks to induce shared sen-
tence embeddings across domains. Considering

1To simplify the discussion, we will not give the details
of CNN and LSTM here. Interested readers can refer to Kim
(2014) and Hochreiter and Schmidhuber (1997).
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that an input sentence containing a positive (or
negative) domain-independent sentiment word is
more likely to express an overall positive (or neg-
ative) sentiment, the two auxiliary tasks are about
whether an input sentence contains at least one
positive or one negative domain-independent sen-
timent word, respectively.

Although the two auxiliary tasks have been
shown to benefit sentence-level cross-domain sen-
timent classification, they may not work well in
document-level sentiment classification. The rea-
son is the following. In sentence-level sentiment
classification, since sentences are short, a sen-
tence is more likely about only one aspect of the
topic being discussed, and it tends to express a
consistent sentiment polarity towards that aspect.
However, in document-level sentiment classifica-
tion, a document may contain mixed opinions to-
wards different aspects of the topic, and the sen-
timent polarities towards different aspects may
differ. Moreover, at document level, there may
also be comparison and contrast among different
topics, and the sentiment polarities towards them
could be different. In summary, it is highly pos-
sible for a document to contain both positive and
negative domain-independent sentiment words. In
this case, the two auxiliary tasks would not be of
much use because most documents would have the
same labels for both these two tasks2.

To address this limitation, we propose an alter-
native auxiliary task based on sentiment scores of
the domain-independent sentiment words. The in-
tuition is as follows. Assume that we have an ex-
ternal sentiment lexicon, where each word is as-
signed a general sentiment score. For an input
document, if it contains more domain-independent
words with high positive sentiment scores, the
document is more likely to express an overall pos-
itive sentiment, regardless of the domain the docu-
ment is from. More importantly, the remainder of
the document without domain-independent words
may also contain domain-specific positive words
or expressions.

Take the following review as an example.

One of the best! You will go wrong if you read this
as an intro to deep learning. Truly an insider’s look.
A must read for everyone who loves neural networks.

2Based on our observation on a benchmark dataset
collected by Blitzer et al. (2007), for almost all the 12
source/target pairs, over 90% of the reviews contained both
positive and negative domain-independent sentiment words.

We can see that the document contains three
words with high positive sentiment scores (shown
in italic), and one word with a high negative sen-
timent score (shown in bold). But overall, its sen-
timent polarity is positive, which correlates with
the sum of all the domain-independent words’ sen-
timent scores. Then, if we hide all the domain-
independent sentiment words and use the remain-
ing domain-specific words to predict the overall
sentiment score of the domain-independent senti-
ment words, it should be helpful for identifying
some important domain-specific sentiment expres-
sions such as an insiders’ look and a must read in
the example above.

Hence, we propose a new auxiliary task by
predicting whether the sum of all the domain-
independent sentiment words’ sentiment scores is
larger than, equal to or less than 0. It is worth
noting that (1) given any sentiment lexicon, we
can automatically derive the label of the auxiliary
task3, and (2) the auxiliary task is closely related
to the main binary sentiment classification task.

Formally, let us assume that we have a senti-
ment lexicon, which can be either directly taken
from an external resource or derived from the la-
beled source domain data. Details of how the sen-
timent lexicon is obtained will be given in Sec-
tion 3.7.1. Following SCL (Blitzer et al., 2007),
we choose the words which frequently occur in
both domains and have a high (positive or nega-
tive) sentiment score as the domain-independent
sentiment words, and refer to them as pivot words.
For each input document d, we use a special to-
ken UNK to substitute these pivot words, which
follows the practice in our earlier work (Yu and
Jiang, 2016). To be consistent with the notation
before, let us use d′ to denote the new document
with UNK tokens and w′i,j the jth token in the ith

sentence in d′. Let x′i,j ∈ Rl denote the embed-
ding vector of w′i,j . x′i,j is the same as xi,j when
w′i,j is not UNK. When w′i,j is UNK, x′i,j is set to
be a special embedding vector for UNK. We then
introduce an auxiliary label y′ for d′, which indi-
cates whether the sum of the sentiment scores of
the pivot words in the original document d is larger
than, equal to or less than 0. We further useDa,d to
denote documents with the document-level auxil-
iary labels derived from both Ds and Dt,u.

3For any sentiment lexicon, we can rescale its original
sentiment scores to [-K, K], where K can be any positive inte-
ger, and -K and K respectively denote the most negative and
the most positive sentiments. In this paper, we set K to 2.
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Figure 1: Overview of our proposed methods.

Document-level Shared Representation (DSR)
Now that we have defined the auxiliary task, we
can present the NN architecture. Figure 1(a) gives
the outline of this method, which essentially tries
to directly learn an auxiliary hidden layer for each
input document. For the ith sentence in d′, we first
use a CNN to obtain its auxiliary embedding vec-
tor z′i = CNNΘ′1(x′i). These sentence embeddings
are further combined together with an LSTM pa-
rameterized by Θ′2, and the final hidden state h′n is
fed to predict the auxiliary label y′:

p(y′ | h′n) = softmax(W′h′n + b′).

Besides, we also apply another CNN and LSTM
to obtain the standard document representation
hn, and concatenate it with the auxiliary hidden
vector h′n to predict the sentiment label y:

p(y | hn,h′n) = softmax
(
W(hn ⊕ h′n) + b

)
.

3.5 Sentence-level Shared Representation
Learning for Domain Adaptation

Unlike the first architecture, our second proposal
focuses on learning an auxiliary hidden layer for
each sentence in a given document. As illustrated
in Figure 1(b), instead of using an overall auxil-
iary label for the whole document, we will have an
auxiliary label for each sentence in the document.

Sentence-level Auxiliary Task
Although the auxiliary task in Section 3.4 is de-
signed for documents, it is also suitable for sen-
tences since if a sentence contains more domain-
independent words with high positive sentiment
scores, the rest of the sentence excluding these
words may still express a positive sentiment.

To facilitate the discussion, let us use si to de-
note the ith sentence in the original document d

and s′i the ith sentence in the modified document
d′. We then introduce an auxiliary label u′i for s′i,
which indicates whether the sum of the sentiment
scores of the pivot words in si is larger than, equal
to or less than 0. We further use u′ ∈ Rn to denote
the auxiliary labels for all the n sentences in d′.
LetDa,s denote documents with the sentence-level
auxiliary labels derived from both Ds and Dt,u.

Sentence-level Shared Representation (SSR)
Based on the sentence-level auxiliary task, we use
two CNNs to obtain sentence embeddings zi and
z′i, respectively for si and s′i. Next, the auxiliary
hidden layer z′i will be used for predicting the aux-
iliary label u′i:

p(u′i | z′i) = softmax(W′z′i + b′).

Besides, we also concatenate zi and z′i together as
a combined sentence embedding for the i-th sen-
tence. Then, all the n combined sentence embed-
dings are further combined together via an LSTM:

hi = LSTMΘ2

(
hi−1, (zi ⊕ z′i)

)
.

Finally, we feed the last hidden representation
hn to predict the label of our main task:

p(y | hn) = softmax(Whn + b).

3.6 Parameter Learning

Since our two NN architectures consist of the main
task and the auxiliary task, we jointly optimize
them in a single loss function. For space limita-
tion, here we only show the objective function for
the first model, and the objective function for the
latter one can be derived similarly. Using cross-
entropy loss, we can learn Θ1, Θ2, Θ′1, Θ′2, W, b,
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W′ and b′ by minimizing the following function:

J(Θ1,Θ2,Θ′1,Θ
′
2,W,b,W′,b′)

= −
( ∑

(d,y)∈Ds

log p(y | d)

+
∑

(d′,y′)∈Da,d

log p(y′ | d′)
)
.

3.7 Implementation Details

3.7.1 Sentiment Lexicons
We use two kinds of sentiment lexicons, which we
refer to as WN and MI.

WN is extracted from a well-known sentiment
lexicon called SentiWordNet (Baccianella et al.,
2010). Since the original sentiment scores in Sen-
tiWordNet are probabilities for each word being
positive or negative, we rescale them to [−2, 2].
Also, for the same words with different part-of-
speech tags, we only keep the sentiment score with
the highest absolute value.

To reduce the reliance on external resources,
we also experiment with another method based
on mutual information (MI) on the source labeled
dataDs to automatically derive a pseudo sentiment
lexicon. Specifically, we first extract only adjec-
tives, adverbs and verbs from the documents inDs,
and measure each remaining word’s MI with the
positive and the negative classes:

r(wi, y) = log
p̃(wi, y)
p̃(wi)p̃(y)

,

where wi denotes the ith word in V , y ∈ {+,−}
is a sentiment label, and p̃(wi, y) is the empirical
probability of observing wi and y together. Then,
we only keep those words with positive MI, i.e.,
r(wi, y) > 0, and obtain two lists R+ and R−.
Moreover, for each word w ∈ R+, we use its MI
score as its sentiment score, while for each word
w ∈ R−, we reverse its MI score as its sentiment
score. Finally, we merge the two word lists to form
the pseudo sentiment lexicon, and rescale the sen-
timent scores into [−2, 2].

3.7.2 Pivot Words Selection
Recall that pivot words should frequently occur in
both domains and be sentiment sensitive. Hence,
we first choose those words occurring at least 10
times in Ds and at least 30 times in Dt,u as pivot
candidates4, and remove negation and stop words.

4The ratio between |Ds| and |Dt,u| is 1:3 in our dataset.

Then, we only keep those candidates with high
sentiment scores ([−2,−1] and [1, 2] for WN or
[−2,−0.9] and [0.9, 2] for MI) as the pivot words.

3.7.3 Training Details
In our domain adaptation setting, for the labeled
data Ds from the source domain, we have la-
bels for both the main task and the auxiliary task,
while for the unlabeled data Dt,u from the tar-
get domain, we only have labels for the auxiliary
task. Hence, we adopted an alternating training
approach, where in each epoch we first optimize
all the model parameters givenDs, and then switch
to only optimizing the parameters corresponding
to the auxiliary task (including Θ′1, Θ′2, W′ and
b′) given Dt,u. During the training stage, we share
the word embeddings of the actual task and our
auxiliary task, and never update the word embed-
ding of UNK by setting it as a zero vector.

4 Experiments

4.1 Experiment Settings

Datasets: To evaluate our proposed method, we
conduct experiments on a benchmark dataset re-
leased by Blitzer et al. (2007). This dataset con-
sists of Amazon product reviews from four dif-
ferent domains: Book, DVD, Electronics and
Kitchen. Each domain has 1000 positive and 1000
negative reviews as well as 17547 unlabeled re-
views on average. Since the number of unlabeled
reviews in each domain is different, we randomly
choose 6000 unlabeled reviews for each domain.

Following previous studies (Pan et al., 2010;
Zhou et al., 2016), we consider 12 pairs of source-
target domain pairs. For each pair, all the 2000 la-
beled reviews from the source domain are treated
as training data. We randomly choose 200 posi-
tive and 200 negative reviews from the target do-
main as development data, and the remainder (i.e.,
800 + 800 reviews) from the target domain as test
data. Moreover, for domain adaptation methods,
we also use the 6000 unlabeled reviews from the
target domain during the training stage.
Methods for comparison:

• Naive is a non-domain-adaptive baseline
based on traditional discrete representations.
• SCL is the Structural Correspondence Learn-

ing method, which uses all the non-pivot fea-
tures to predict the occurrence of each pivot
feature, and employs SVD on the learned
weight vectors.
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• mDA is one of the state-of-the-art methods,
marginalized denoising auto-encoders (Chen
et al., 2012), which learns a shared hidden
representation by reconstructing pivot fea-
tures.
• HNN is another non-domain-adaptive NN-

based baseline as detailed in Section 3.3.
• H-WN simply combines HNN with our aux-

iliary task, which represents each label de-
rived from our auxiliary task using WN as
a three-dimensional one-hot vector and ap-
pends it to the document embedding hn in
HNN, followed by a softmax classifier.
• H-SCL is a naive combination of SCL with

HNN, which appends the induced represen-
tation from SCL to the document embedding
in HNN, followed by a softmax classifier.
• H-mDA is similar to H-SCL but uses the hid-

den representation from mDA, and this can
be considered as a strong baseline.

Meanwhile, to show the effectiveness of the
proposed auxiliary tasks, we also use the two aux-
iliary tasks in our earlier work as the auxiliary task
of our two architectures for comparison, respec-
tively denoted by DSRE and SSRE (Yu and Jiang,
2016).

Besides, we consider four variants of our pro-
posed methods, where the auxiliary tasks in DSR
and SSR are derived from the pseudo sentiment
lexicon, while the auxiliary tasks in DSRW and
SSRW are based on SentiWordNet.

• DSRE, DSR and DSRW are based on our
first NN architecture to learn document-level
shared representations, as introduced in 3.4.
• SSRE, SSR and SSRW are based on our sec-

ond NN architecture to induce sentence-level
shared representations, as introduced in 3.5.

Hyperparameters: For Naive, we train linear
classifiers with LibLinear5 by using unigrams and
bigrams with a frequency of at least 5 as features.
For SCL and mDA, we use mutual information
to select pivot features, and the number of chosen
pivots is tuned from {500, 1000, 1500, 2000} on
the development set. In SCL, we tune the num-
ber of induced features K in {25, 50, 100}, and
also use normalization and rescaling. In mDA, we
employ the dropout noise strategy used by Yang
and Eisenstein (2014) without any parameter. In

5http://www.csie.ntu.edu.tw/cjlin/liblinear/

all the neural network models, we set the dimen-
sion of word embeddings l to 300, and initialize
the lookup table X with word2vec6. We set the
non-linear activation function in CNN as ReLU,
and set the sizes of hidden layers in both CNN and
LSTM as 150, i.e., p = q = 150. All the models
were trained using AdaGrad with a learning rate of
0.05 and a minibatch size of 5. Also, the dropout
rate α equals 0.5, and all the model parameters
are regularized with a L2 regularization strength
of 10−4.

4.2 Results

In Table 1, we report the results of all the meth-
ods. It is easy to see that the performance of Naive
is very limited. SCL and mDA can outperform
the baseline model respectively by 2.7 and 3.7
percentage points on average, which shows that
these two methods are useful for domain adapta-
tion based on discrete representations. However,
we can also see that the performance of these do-
main adaptation methods is much lower than the
hierarchical neural network model (HNN) based
on continuous representations. This demonstrates
that HNN is more robust against domain shift. But
comparing the performance of HNN in standard
in-domain and our cross-domain settings, we find
that the in-domain performance still outperforms
the cross-domain performance by 6.2 percentage
points on average. This indicates that it will be
more challenging and useful to develop domain
adaptation methods based on such a competitive
baseline.

Moreover, we can easily see that the perfor-
mance of simply appending three-dimensional
one-hot vector from the auxiliary task to HNN
(i.e., H-WN) is close to the performance of HNN
in most cases. In addition, although SCL can out-
perform Naive with a large margin on almost all
the data set pairs, the performance of H-SCL is
not satisfactory, which can only improve the base-
line by 0.5 percentage point on average. But for H-
mDA, although the shared hidden representations
are also derived from discrete representations, it
can improve the performance of HNN on all data
set pairs except one. This implies that the derived
shared hidden representations by mDA can gen-
eralize better across domains, and are generally
useful for domain adaptation. Furthermore, it is
easy to observe that by simply incorporating the

6https://code.google.com/p/word2vec/
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Task In-D Compared Methods (Cross-Domain) Proposed Methods (Cross-Domain)

HNN Naive SCL mDA HNN H-WN H-SCL H-mDA DSRE SSRE DSR SSR DSRW SSRW

E2D 0.680 0.700 0.727 0.805 0.806 0.820 0.811 0.798 0.814 0.810 0.823† 0.821 0.816
B2D 0.845 0.773 0.771 0.806 0.814 0.832 0.813 0.829 0.823 0.832 0.832 0.822 0.840† 0.837†
K2D 0.698 0.721 0.741 0.791 0.796 0.799 0.796 0.788 0.803 0.798 0.808† 0.805† 0.801
E2B 0.693 0.704 0.728 0.786 0.790 0.780 0.789 0.789 0.781 0.790 0.792 0.790 0.794†
D2B 0.843 0.751 0.780 0.802 0.805 0.810 0.796 0.818 0.809 0.826 0.835† 0.822 0.825† 0.822
K2B 0.690 0.740 0.725 0.766 0.773 0.772 0.774 0.781 0.773 0.774 0.784† 0.781 0.776†
B2E 0.701 0.746 0.753 0.755 0.751 0.751 0.786 0.758 0.758 0.760 0.773 0.771 0.786
D2E 0.858 0.706 0.743 0.746 0.772 0.768 0.771 0.786 0.774 0.782 0.787 0.790† 0.810† 0.799†
K2E 0.799 0.818 0.830 0.836 0.837 0.847 0.839 0.837 0.843 0.830 0.835 0.850† 0.846
E2K 0.828 0.829 0.833 0.852 0.848 0.865 0.859 0.864 0.862 0.859 0.874† 0.867 0.858
B2K 0.883 0.724 0.763 0.754 0.780 0.788 0.785 0.798 0.784 0.791 0.785 0.783 0.796 0.794
D2K 0.716 0.758 0.742 0.778 0.774 0.786 0.773 0.793 0.809 0.809† 0.806 0.800† 0.803

AVG 0.857 0.729 0.756 0.766 0.795 0.798 0.799 0.805 0.800 0.806 0.806 0.809 0.813 0.811

Table 1: Comparison of classification accuracies of different methods. † indicates that DSR and DSRW (or SSR and SSRW)
are significantly better than HNN, H-WN, H-SCL and H-mDA, DSRE (or SSRE) with p < 0.05 based on McNemar’s paired
significance test. In-D denotes the in-domain setting by splitting each target domain’s labeled reviews into 1400/200/400 as
training, development and test sets.

two auxiliary tasks in our earlier work into our
two architectures, the performance of DSRE is
not satisfactory, but SSRE can perform the best
on average among all the compared systems. This
demonstrates that the two auxiliary tasks are more
suitable in sentence level, but become less useful
in document level, which agrees with the intuition
behind our auxiliary task.

Finally, we observe that (1) all of our proposed
methods can significantly outperform the baseline
HNN in almost all the data set pairs, and per-
form better than H-WN and H-SCL in most cases,
which shows that the idea of learning a hidden
representation using our proposed auxiliary tasks
is generally effective; (2) even compared with H-
mDA, DSR can achieve comparable results while
SSR, DSRW and SSRW can still achieve signifi-
cantly better performance in most cases. We con-
jecture that the gains of our methods may come
from the sharing between two word embedding
lookup tables and joint learning of our auxiliary
task and the actual task; (3) in comparison with
DSRE and SSRE, DSR and SSR can bring im-
provements in both sentence level and document
level on average, which shows the effectiveness of
the proposed auxiliary task; (4) among our pro-
posed models, we find that the performance of
DSR and SSR is not stable: sometimes they can
achieve the best result, but sometimes they per-
form even worse than or similar to the baseline
HNN. In contrast, DSRW and SSRW can always
outperform HNN, and perform better than DSR
and SSR on average. This is intuitive since the
sentiment scores in MI, derived from source la-

beled data, are specific to the source domain, while
the sentiment scores in SentiWordNet are general
across domains. Besides, we can also see that
the gap between SSR and SSRW is much smaller
than the gap between DSR and DSRW. This sug-
gests that our document-level shared representa-
tion learning method is more sensitive to the qual-
ity of sentiment lexicons, and with a high quality
sentiment lexicon, it can perform best on average.

4.3 Case Study

Finally, to explore how our proposed models help
to improve the performance of HNN in the test
data set, we conduct a case study on B2D to get
a deeper insight of our model DSR.

Specifically, we sample several samples from
the test data set, i.e., DVD. As shown in Table 2,
HNN only correctly predicts the sentiment of the
first document but gives wrong predictions on an-
other two documents, since worth watching only
occurs once in the source Book domain. However,
our model DSR can make correct predictions for
all of them. The reason is as follows. In Table
2, we can observe that in the unlabeled data from
the the DVD domain, worth watching often co-
occur with some general positive sentiment words
like good, great, wonderful and fantastic. Based
on these unlabeled documents, DSR can implic-
itly learn that worth watching are highly corre-
lated with the positive sentiment via our auxil-
iary task, and ultimately make correct predictions
for the two test samples. This further indicates
that compared with HNN, our models can identify
more domain-specific sentiment words, and there-
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B2D Review HNN DSR

Definitely a great movie, rules ...... It is a movie definitely worth watching ...... Strongly
recommended along with black hawk down, a few good men, and courage under fire . 1 1

Test If your not already hooked on the story of these interns you have some catching up to do.
Its not your typical medical drama and certainly worth watching. 0 1

This film gets 4 stars because the child actors shine so much in it. The plot is not very
intriguing, and ...... So no wonder you can not compete with him. Anyway, this film
is certainly worth watching as a family entertainment! 0 1

Very good film with a great cast. Reese and wahlberg are wonderful in their roles and
play them to perfection, walhberg especially. Very much worth watching / owning. - -

Unlabel A great movie! What an all star cast! This movie is worth watching over and over again. - -

I found this dvd to be well produced and engaging to go along with the powerful content.
Fantastic. Loads of deleted scenes that are very worth watching. - -

Table 2: Examples drawn from B2D whose sentiment labels are incorrectly predicted by the baseline model (HNN) but
correctly inferred by our model (DSR). The sentiment words specific to the target domain are in bold and italic, and the pivot
sentiment words are only in bold. 0 and 1 denote the negative and positive sentiments respectively.

fore improve the performance.

5 Conclusions

We presented a domain adaptation method for
document-level sentiment classification. We first
devised a new auxiliary task based on sentiment
scores of pivot words. Then, we proposed two
neural network architectures to respectively in-
duce shared document embeddings and sentence
embeddings across domains. Experiment results
show that with a pseudo sentiment lexicon, our
methods can achieve comparable results compared
with several highly competitive domain adaptation
methods; and with an external sentiment lexicon,
we can further boost the performance of both ar-
chitectures to achieve the state-of-the-art result.
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Abstract

The things people do in their daily lives
can provide valuable insights into their
personality, values, and interests. Unstruc-
tured text data on social media platforms
are rich in behavioral content, and auto-
mated systems can be deployed to learn
about human activity on a broad scale if
these systems are able to reason about the
content of interest. In order to aid in the
evaluation of such systems, we introduce
a new phrase-level semantic textual sim-
ilarity dataset comprised of human activ-
ity phrases, providing a testbed for auto-
mated systems that analyze relationships
between phrasal descriptions of people’s
actions. Our set of 1,000 pairs of activi-
ties is annotated by human judges across
four relational dimensions including simi-
larity, relatedness, motivational alignment,
and perceived actor congruence. We eval-
uate a set of strong baselines for the task
of generating scores that correlate highly
with human ratings, and we introduce sev-
eral new approaches to the phrase-level
similarity task in the domain of human ac-
tivities.

1 Introduction

Our everyday behaviors say a lot about who we
are. The things we do are related to our personality
(Ajzen, 1987), values (Rokeach, 1973), interests
(Goecks and Shavlik, 2000), and what we are go-
ing to do next (Ouellette and Wood, 1998). While
we cannot always directly observe what people are
doing on a day-to-day basis, we have access to
a large number of unstructured text sources that
describe real-world human activity, such as news
outlets and social media sites. Fiction and non-
fiction writings often revolve around the things
that people do, and even encyclopedic texts can

be rich in descriptions of human activities. Al-
though many common sources of text contain hu-
man activities, reasoning about these activities and
their relationships to one another is not a trivial
task. Descriptions of human actions are fraught
with ambiguity, subjectivity, and there are multi-
tudinous lexically distinct ways to express highly
similar events. If we want to gain useful insights
from these data, it should be beneficial to develop
effective systems that can successfully represent,
compare, and ultimately understand human activ-
ity phrases.

In this paper, we consider the task of automati-
cally determining the strength of a relationship be-
tween two human activities,1 which can be helpful
in reasoning about texts rich with activity-based
content. The relationship between activities might
be similarity in a strict sense, such as watching a
film and seeing a movie, or a more general related-
ness, such as the relationship between turn on an
oven and bake a pie. Another way to categorize a
pair of activities is by the degree to which they are
typically done with a similar motivation, like eat-
ing dinner with family and visiting relatives. Or,
in order to uncover which other behaviors a per-
son is likely to exhibit, it might be useful to deter-
mine how likely a person might be to do an activity
given some information about previous real-world
actions that they have taken.

Success on our proposed task will be a valu-
able step forward for multiple lines of research, es-
pecially within the computational social sciences
where human behavior and its relation to other
variables (e.g., personality traits, personal values,
or political orientation) is a key focus. Since the
language human activities is so varied, it is not
enough to store exact representations of activity

1Throughout this paper, we use the word “activity” to re-
fer to what a person does or has done. Unlike the typical use
of this term in the computer vision community, in this pa-
per we use it in a broad sense, to also encompass non-visual
activities such as “make vacation plans” or “have a dream”.
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phrases that are unlikely to appear many times.
It would be useful to instead have methods that
can automatically find related phrases and group
them based on one (or more) of several dimen-
sions of interest. Moreover, the ability to auto-
matically group related activities will also bene-
fit research in video-based and multimodal human
activity recognition where there is need for infer-
ence about activities based on their relationships
to one another.

Reasoning about the relationships between ac-
tivity phrases brings with it many of the difficulties
often associated with phrase-level semantic simi-
larity tasks. It is not enough to know that the two
phrases share a root verb, as the semantic weight
of verbs can vary, such as the word “go” in the
phrases go to a bar and go to a church. While
these phrases have high lexical overlap and are
similar in that they both describe a traveling type
of activity, they are usually done for different mo-
tivations and are associated with different sets of
other activities. In this case, we could only con-
sider the main nouns (i.e., “bar” and “church”),
but that approach would cause difficulties when
dealing with other phrases such as sell a car and
drive a car, which both involve an automobile but
describe dissimilar actions. Therefore, successful
systems should be able to properly focus on the
most semantically relevant tokens with a phrase.
A final challenge when dealing with human activ-
ity phrase relations is evaluation. There should be
a good way to determine the effectiveness of a sys-
tem’s ability to measure relations between these
types of phrases, yet other commonly used se-
mantic similarity testbeds (e.g., those presented in
various Semeval tasks (Agirre et al., 2012, 2013;
Marelli et al., 2014)) are not specifically focused
on the domain of human activities. Currently, it is
unclear whether or not the top-performing systems
on general phrase similarity tasks will necessarily
lead to the best results when looking specifically
at human activity phrases.

To address these challenges, we introduce a new
task in automatically identifying the strength of
human activity phrase relations. We construct
a dataset consisting of pairs of activities report-
edly performed by actual people. The pairs that
we have collected aim specifically to showcase
diverse phenomena such as pairs containing the
same verb, a range of degrees of similarity and re-
latedness, pairs unlikely to be done by the same
type of person, and so forth. These pairs are each
annotated by multiple human judges across the

following four dimensions:

• Similarity: The degree to which the two ac-
tivity phrases describe the same thing. Here
we are seeking semantic similarity in a strict
sense. Example of high similarity phrases: to
watch a film and to see a movie.

• Relatedness: The degree to which the activ-
ities are related to one another. This relation-
ship describes a general semantic association
between two phrases. Example of strongly
related phrases: to give a gift and to receive a
present.

• Motivational Alignment: The degree to
which the activities are (typically) done with
similar motivations. Example of phrases with
potentially similar motivations: to eat dinner
with family members and to visit relatives.

• Perceived Actor Congruence: The degree
to which the activities are often done by
the same type of person. Put another way,
does knowing that a person often performs an
activity increase human judges’ expectation
that this person will also often do a second
activity? Example of activities that might be
expected to be done by the same person: to
pack a suitcase and to travel to another state.

These relational dimensions were selected to
cover a variety of types of relationships that may
hold between two activity phrases. This way, au-
tomated methods that capture slightly different no-
tions of similarity between phrases will potentially
be able to perform well when evaluated on dif-
ferent scales. While the dimensions are corre-
lated with one another, we show that they do in
fact measure different things. We provide a set of
benchmarks to show how well previously success-
ful phrase-level similarity systems perform on this
new task. Furthermore, we introduce several mod-
ifications and novel methods that lead to increased
performance on the task.

2 Related Work

Semantic similarity tasks have been recently dom-
inated by various methods that seek to embed
segments of text as vectors into some high-
dimensional space so that comparisons can be
made between them using cosine similarity or
other vector based metrics. While word embed-
dings have existed in various forms in the past
(Church and Hanks, 1990; Bengio et al., 2003),

665



many approaches used today draw inspiration di-
rectly from shallow neural network based models
such as those described in (Mikolov et al., 2013).2

In the common skip-gram variant of these neu-
ral embedding models, a neural network is trained
to predict a word given its context within some
fixed window size. (Levy and Goldberg, 2014a)
and (Bansal et al., 2014) extended the idea of con-
text to incorporate dependency structures into the
training process, leading to vectors that were able
to better capture certain types of long-distance
syntactic relationships. One of the major strengths
of neural word embedding methods is that they
are able to learn useful representations from ex-
tremely large corpora that can then be leveraged as
a source of semantic knowledge on other tasks of
interest, such as predicting word analogies (Pen-
nington et al., 2014) or the semantic similarity and
relatedness of word pairs (Huang et al., 2012).

Researchers have taken the powerful semi-
supervised ability of these word embedding meth-
ods to aid in tasks at the phrase-level, as well.
The most straightforward way to accomplish a
phrase-level representation is to use some binary
vector-level operation to compose pre-trained vec-
tor representations of individual words that belong
to a phrase (Mitchell and Lapata, 2010). Other
methods have sought to directly find embeddings
for larger sequences of words, such as (Le and
Mikolov, 2014) and (Kiros et al., 2015).

Semantic textual similarity tasks are often eval-
uated by computing the correlation between hu-
man judgements of similarity and machine out-
put. The wordsim353 (Finkelstein et al., 2001)
and simlex999 (Hill et al., 2016) resources provide
a set of human annotated pairs of words, labeled
for similarity and/or general association. Simverb-
3500 (Gerz et al., 2016) was introduced to pro-
vide researchers with a testbed for verb relations,
a specific yet important class of words that was
less common in earlier word-level similarity data
sets. SemEval has released a series of semantic
text similarity tasks at varying levels of granular-
ity, ranging from words to entire documents, such
as the SICK (Sentences Involving Compositional
Knowledge) dataset (Marelli et al., 2014) which is
specifically crafted to evaluate the ability of sys-
tems to effectively compose individual word se-
mantics in order to achieve the overall meaning of

2It is worth noting that (Levy and Goldberg, 2014b) show
that these embeddings are actually implicitly factorizing a
shifted version of a more traditional PMI word-context ma-
trix, which is similar to the word co-occurrence matrix fac-
torization approach used in (Pennington et al., 2014)).

a sentence. While many of these evaluation sets
contain human activities to some degree, they also
have contain other types of words or phrases due
to the way in which they were created. For exam-
ple, SICK contains actions done by animals such
as follow a fish. Similarly, Simverb-3500 contains
verbs that don’t necessarily describe human activ-
ities, like chirp and glow, and does not contain
phrase-level activities.

Several recent works have raised concerns over
the standard evaluation approaches used in seman-
tic textual similarity tasks. One potential issue is
the use of inadequate metrics depending on the
task that a practitioner is interested in tackling.
While the Pearson correlation between human-
judged similarity scores and predicted outputs is
often used, this type of correlation can be mis-
leading in the presence of outliers or nonlinear
relationships (Reimers et al., 2016). Remiers et
al. propose a framework for selecting a met-
ric for semantic text similarity tasks, which we
take into consideration when selecting our eval-
uation metric. Additionally, correlation with hu-
man judgments does not always give a good in-
dication of success on some downstream applica-
tions, the human ratings themselves are somewhat
subjective, and statistical significance is rarely re-
ported in comparisons of word embedding meth-
ods (Faruqui et al., 2016). However, our goal
in this work is not to evaluate the overall qual-
ity of distributional semantic models, but to find
a method that has high utility in the domain of hu-
man activity relations, and so we do rely on com-
parisons with human judges as a means of assess-
ment.

3 Data Collection and Annotation

One potential source of data containing people’s
self-reported descriptions of their activities is so-
cial media platforms, but these data are noisy and
require preprocessing steps that, being imperfect,
may propagate their own errors into the resulting
data. In order to get a set of cleaner activities
that people might actually talk about doing, we
directly asked Amazon Mechanical Turk (AMT)
workers to write short phrases describing five ac-
tivities that they had done in the past week. We
collected data from 1,000 people located in the
United States for a total of 5,000 activities. The ac-
tivity phrases were then normalized by converting
them to their infinitive form (without a preceding
”to”), correcting spelling errors, removing punc-
tuation, and converting all characters to lowercase.
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Activity Prompt User Selection
pay the phone bill an activity that is EXTREMELY SIMILAR pay one’s student loan bill
play softball an activity that is SOMEWHAT SIMILAR go bowling
take a bath an activity that uses the SAME VERB take care of one’s ill spouse
smoke an activity that is RELATED, but not necessarily SIMILAR get sick and go to the doctor
go out for ice cream an activity that is NOT AT ALL SIMILAR cash a check

Table 1: Examples of activity/prompt pairs and the corresponding activities that were selected by the
annotators given the pair.

After removing duplicate entries (about 2,000) and
any phrases referring specifically to doing work on
AMT (e.g., those containing the tokens mTurk or
Turking, about 150 cases), we were left with a set
of 2,909 unique activity phrases.

We acknowledge that this methodology intro-
duces some bias since the workers all come from
the United States, and it is therefore likely that our
set of activity phrases describe things that are more
commonly done by Americans than people from
other regions. Furthermore, primacy and recency
effects (Murdock Jr, 1962) may bias the types of
items listed toward things done in the morning or
just before logging onto the AMT platform. Based
on this, we expect that our set of activities is not
necessarily a representative sample of everything
that people might do, but they are still descriptions
of actual activities that real humans have done and
are useful for our task.

3.1 Forming Pairs of Activities

Next, we sought to create pairs of activities that
showcase a variety of relationship types, includ-
ing varying degrees of similarity and relatedness.
To achieve this, we turned to another group to hu-
man annotators. After reading through a document
which oriented them to the task, the annotators
were given the full list of activities in addition to a
subset of randomly selected activity phrases. Each
of these phrases was randomly paired with one
of several possible prompts (see Table 1 for ex-
amples) which instructed the annotators how they
should select a second activity phrase from the
complete list in order to form a pair. Each prompt
was sampled an equal number of times in order to
make sure that the final set of pairs exhibited vari-
ous types of relationships to the same degree. All
annotators had access to a searchable copy of the
full list, but the order of the activities was shuffled
each time in order to avoid potential bias from the
annotators selecting phrases near the top of the list,
and a new shuffled version of the list was given
after every 25 pairs created. While a suitable sec-
ond activity phrase was not always present (e.g.,

no phrase in our dataset matches “an activity that
uses the SAME VERB” as choreograph a dance),
it is not crucial that all of these pairs fit the prompts
exactly since these are only intended to approxi-
mate various phenomena, and the final annotations
will be done without the knowledge of the prompts
used to generate the pairs. In total, 12 unique an-
notators created 1,000 pairs of phrases.

3.2 Annotating Activity Pairs

All of the activity phrase pairs were uploaded to
AMT in order to be labeled. For each pair, ten
workers were asked to rate the similarity, related-
ness, motivational alignment, and perceived actor
congruence on a 5-point Likert-type scales (a to-
tal of 40,000 annotated data points). The workers
were given a set of instructions that included de-
scriptions of the four types of relationships with
examples, including cases in which a pair might
be related but not similar, motivationally aligned
but not similar, etc. By asking the same set of
people to label all four relational dimensions for
a given pair, we hoped to make them cognizant of
the differences between the scales.

The first three relationships were prompted for
using the form: “To what degree are the two activ-
ities similar/related/of the same motivation?” and
were coded as 0 (e.g., for responses of “not at all
similar”) and the integers 1-4 with 4 representing
the strongest relationship. Perceived actor congru-
ence was solicited for using the form: “Person A
often does activity 1, while person B rarely does
activity 1. Who would you expect to do activity
2 more often?” with choices ranging from “Most
likely Person B” to “Most likely Person A.” Per-
ceived actor congruence ranges from -2 to 2 and
has the lowest score when Person B is chosen and
the highest when Person A is chosen. A score of
0 on this scale means that judges were unable to
determine whether Person A or Person B would
be more likely to perform the action being asked
about (i.e., activity 2). Each individual Human In-
telligence Task (HIT) posted to AMT required an
annotator to label 25 pairs so that we could reliably
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Activity 1 Activity 2 SIM REL MA PAC
go jogging lift weights 1.67 2.22 2.89 1.11
read to one’s kids go to a bar 0 0 0 -1.29
take transit to work commute to work 3.38 3.5 3.38 0.5
make one’s bed organize one’s desk 0.58 1.29 1.57 0.71

Table 2: Sample activity phrase pairs and average human annotation scores given for the four dimensions:
Similarity (SIM), Relatedness (REL), Motivational Alignment (MA) and Perceived Actor Congruence
(PAC). SIM, REL, and MA are on a 0-4 scale, while PAC scores can range from -2 to 2.

SIM REL MA PAC
SIM 1.000 .962 .928 .735
REL 1.000 .932 .776
MA 1.000 .738
PAC 1.000

Table 3: Spearman correlations between the four
relational dimensions: Similarity (SIM), Related-
ness (REL), Motivational Alignment (MA) and
Perceived Actor Congruence (PAC).

compute agreement, and a worker could complete
as many HITs as they desired.

To remove potential spammers (annotators
seeking quick payment who do not follow the task
instructions), we first eliminated all annotations
by any AMT workers who left items blank or se-
lected the same score for every item for any of the
four relationships in any of their completed HITs.
Then, inter-annotator agreement was computed by
calculating the Spearman correlation coefficient ρ
between each annotator’s scores and the average
scores of all other AMT workers who completed
the HIT, excluding those already thrown out dur-
ing spammer removal. We then removed any an-
notations from workers whose agreement scores
were more than three standard deviations below
the mean agreement score for the HIT under the
assumption that these workers were not paying at-
tention to the pairs when selecting scores.

The final scores for each pair were assigned by
taking the average AMT worker score for each re-
lationship type. Some sample activities and their
ratings are shown in Table 2. Averaged across
all four relationship types, there is a good level
of inter-annotator agreement at ρ = .720 (recom-
puted after spammer removal). The highest levels
of agreement were found for similarity and relat-
edness (ρ = .768 for both), which is to be ex-
pected as these are somewhat less subjective than
motivational alignment (ρ = .745) and perceived
actor congruence (ρ = .620). These agreement
scores can be treated as an upper bound for perfor-
mance on this task; achieving a score higher than

SIM REL Activity 1 Activity 2
↑ ↑ call one’s mom call dad
↑ ↓ - -
↓ ↑ rake leaves mow the lawn
↓ ↓ go for a run shop at a thrift store

SIM MA Activity 1 Activity 2
↑ ↑ check facebook check twitter
↑ ↓ drive to missouri go on a road trip
↓ ↑ write a romantic letter kiss one’s spouse
↓ ↓ cut firewood trim one’s beard

SIM PAC Activity 1 Activity 2
↑ ↑ make a cherry pie bake a birthday cake
↑ ↓ have dinner with friends eat by oneself
↓ ↑ go to the gym take a shower
↓ ↓ read a novel go to a party

REL MA Activity 1 Activity 2
↑ ↑ gamble go to the casino
↑ ↓ go swimming clean the pool
↓ ↑ clean out old email vacuum the house
↓ ↓ study abstract algebra go to the state fair

REL PAC Activity 1 Activity 2
↑ ↑ eat cereal eat a lot of food
↑ ↓ homeschool one’s child drive one’s child to school
↓ ↑ cut the grass talk to neighbors
↓ ↓ eat at a restaurant cook beans from scratch

MA PAC Activity 1 Activity 2
↑ ↑ go to the dentist brush one’s teeth
↑ ↓ take the train to work drive to work
↓ ↑ walk one’s dog walk to the store
↓ ↓ read watch football all day

Table 4: Activity pairs from our dataset high-
lighting stark differences between the four rela-
tional dimensions. For each dimension, ↑ refers
to phrases rated at least one full point above the
middle value along the Likert scale, while ↓ indi-
cates a score at least one full point below the mid-
dle value. No pairs with high similarity and low
relatedness exist in the data.

these would mean that an automated system is as
good at ranking activity phrases as the average hu-
man annotator.

3.3 Relationships Between Dimensions
While the four relationship types being measured
are correlated with one another (Table 3.2), there
were certainly cases in which humans gave differ-
ent scores for each relationship type to the same
pair which shed light on the nuanced differences
between the dimensions. (Table 4). Therefore, it
is not necessarily the case that the best method for
capturing one dimension is also the most corre-
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lated with human judgements across all four di-
mensions. However, it appears that similarity, re-
latedness, and motivational alignment are more
highly correlated with one another than perceived
actor congruence.

4 Methods

To determine how well automated systems are able
to model humans’ judgements of similarity, re-
latedness, motivational alignment, and perceived
actor congruence, we evaluate a group of seman-
tic textual similarity systems that are either com-
monly used or have shown state-of-the-art results.
Each method takes two texts of arbitrary length as
input and produces a continuous valued score as
output. All of the methods are trained on outside
data sources and many have been proposed as gen-
eralized embeddings that can be successful across
many tasks. The methods we assess fall into three
different categories: Composed Word-level Em-
beddings, Graph-based Embeddings, and Phrase-
level Embeddings.

Activity Phrase Pre-processing. For the first two
classes of methods, we experiment with several
variations in the set of words being passed to the
model as input in order remove the influence of
potentially less semantically important words. We
do not apply these pre-processing approaches to
the phrase-level embedding methods since those
methods are designed specifically to operate on
entire phrases (as opposed to the bag-of-words
view that the other methods take). The five varia-
tions of each phrase we consider are:
Full: The original phrase in its entirety.
Simplified: Starting with the Full phrase, we
remove several less semantically relevant edges
from a dependency parse3 of the phrase, includ-
ing the removal of determiners, coordinating con-
junctions, adjectival modifiers, adverbs, and par-
ticles. This step is somewhat similar to perform-
ing stopword removal. For example, this filtering
step would result in the bag of words containing
“clean”, “living” and “room” for full phrase: clean
up the living room.
Simplified - Light Verbs: Starting with the Sim-
plified set of words, we remove the root verb of
the activity if it is not the only word in the Sim-
plified phrase and if it belongs to the following list
of semantically light verbs (Kearns, 1988): “go”,
“make”, “do”, “have”, “get”, “give”, “take”, “let”,
“come”, and “put”. This means that we would

3We use the dependency parser from Stanford CoreNLP
(http://stanfordnlp.github.io/CoreNLP/).

convert the phrase go get a tattoo to just get a tat-
too, but read a novel would retain its verb and be-
come read novel (i.e., it will remain equivalent to
the Simplified variation).
Simplified - All Verbs: To compare against the
effect of removing light verbs, this approach takes
the Simplified phrase and removes the root verb
unless the Simplified phrase only contains that one
word. Performing this filtering step would convert
the phrase cook a sausage to simply sausage.
Core: This method seeks to reduce the phrase to
a single core concept. In many cases, this means
simply using the root verb from the dependency
parse. So, we might represent the phrase “clean
up the living room” using only the word embed-
ding for “clean”. However, we acknowledge that
semantically light verbs such as “go”, “have”, and
“do” would not adequately represent an entire ac-
tivity, and so in the case of light verbs we instead
select either the direct object or a nominal modi-
fier that is connected to the root verb. If the noun
selected as the core concept has another noun at-
tached by a compound relationship, we also in-
clude that noun. This means, for example, that we
would represent the phrase “go to an amusement
park” as just “amusement park” when we are con-
sidering just the core concept.

4.1 Composed Word-level Embeddings
The methods in this section are based on word-
level embeddings trained on some outside data.
Since they operate at a word level, we apply
a composition function to the words in a given
phrase in order to achieve an embedding for the
phrase. We tested both the arithmetic mean and
element-wise multiplication for composition func-
tions, but the former gave better performance and
thus we do not report results found when using the
element-wise product. Given an aggregate embed-
ding for a phrase, we generate a score for each pair
of activity phrases by computing the cosine simi-
larity between the embeddings for the two phrases.
We consider the following word-level methods:
Wiki-BOW: Skip Gram with Negative Sampling
Word Embeddings trained on Wikipedia data us-
ing a context window of size 2 (Wiki-BOW2) and
size 5 (Wiki-BOW5). These vectors are the same
ones used in (Levy and Goldberg, 2014a).
Wiki-DEP: Skip Gram with Negative Sam-
pling Word Embeddings trained on Wikipedia
data with dependency-based contexts (Wiki-DEP)
from (Levy and Goldberg, 2014a).
GoogleNews: Skip Gram with Negative Sampling
Word Embeddings trained on the Google News
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corpus from (Mikolov et al., 2013).
Paragram: Embeddings trained on the Para-
phrase Database (Ganitkevitch et al., 2013) by fit-
ting the embeddings so that the difference between
the cosine similarity of actual paraphrases and that
of negative examples is maximized(Wieting et al.,
2015). We use the Paragram-Phrase XXL em-
beddings combined with the Paragram-SL999 em-
beddings, the latter of which has been tuned on
SimLex999 (Hill et al., 2016). We also use a
variation of Paragram Embeddings that employs
counter fitting (Paragram-CF). This method fur-
ther tunes the Paragram embeddings to capture a
more strict sense of similarity rather than general
association between words. This is accomplished
via optimization with the goal of increasing the
vectorspace differences between known antonyms
and altering synonym embeddings to make them
more similar to one another (Mrkšić et al., 2016).
Nondistributional vectors: Highly sparse vec-
tors that encode a huge number of binary variables
that capture interesting features about the words
such as part of speech, sentiment, and supersenses
(Faruqui and Dyer, 2015).

4.1.1 Graph-Based Embeddings
We also experiment with approaches that seek to
incorporate higher order relationships between ac-
tivity phrases by building semantic graphs that can
be exploited to discover relations that hold be-
tween the phrases. Each graph G is of the form
G = (V,E) where V is a set of human activity
phrases and E is some measure of semantic sim-
ilarity, which is computed differently depending
on the graph type. We run Node2vec (Grover and
Leskovec, 2016) using the default settings to gen-
erate an embedding for each node in the graph and
then measure the cosine similarity between nodes
(phrases) to get the final system output. The types
of graphs that we use are:
Similarity Graph: We first generate a fully con-
nected graph of all activities in our dataset us-
ing a high performing semantic similarity method
(Paragram in this case) as a way to generate edge
weights. Next, we prune all edges with a weight
less than some threshold. The results reported here
use a threshold of .5 (on a 0-1 continuous scale).
We also tried threshold values of .3, .4, and .6.,
but found them to produce inferior results for all
dimensions.
People Graph: For each activity, we know at least
four other activities that were done by the same
person because each person submitted five activ-
ities. We add an unweighted edge to the graph

for each pair of activities that were done by the
same person. On its own, this graph does not have
enough information to be competitive, so we only
report results for the combined graph.
Combined Graph: Here, we combine informa-
tion from both the Similarity Graph and the People
Graph. Since the People Graph is unweighted, we
follow the approach used in (Tripodi and Pelillo,
2016) and compute the average weight of all edges
in the Similarity Graph and assign this weight to
all edges in the People Graph. We then add the
edge weights of the two graphs, treating nonexis-
tant edges as edges with weight 0.

4.1.2 Phrase-level Embeddings
The methods in this section are designed to create
an embedding directly from phrases of arbitrary
length. Since these approaches are tailored toward
phrases in their entirety, we do not evaluate them
on the pre-processed variations of the phrases in
our dataset. The phrase-level approaches we con-
sider are:
Skip-thoughts vectors: This encoder-decoder
model induces sentence level vectors by learning
to predict surrounding sentences of each sentence
in a large corpus of books (Kiros et al., 2015).
The encoder is a recurrent neural network (RNN)
which creates a vector from the words in the in-
put sentence, and the RNN decoder generates the
neighboring sentences. The model also learns a
linear mapping from word-level embeddings into
the encoder space to handle rare words that may
not appear in the training corpus.
Charagram embeddings: Embeddings that rep-
resent character sequences (i.e., words or phrases)
based on an elementwise nonlinear transformation
of embeddings of the character n-grams that com-
prise the sequence (Wieting et al., 2016). Here we
use the pre-trained charagram-phrase model.

5 Results

Because human annotations should fall on an or-
dinal scale rather than a ratio scale, it would not be
fair to directly compare the average values human
judges gave to the systems’ output. Rather, the
systems should be evaluated based on their abil-
ity to rank the set of phrases in the same order as
the ranking given by the average human annota-
tions scores for each dimension. Therefore, we
calculate the Spearman Rank correlation between
scores given by the automated systems and the hu-
man judges our final score for each system. In a
previous study of evaluation metrics for intrinsic
semantic textual similarity tasks, this metric was
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Method SIM REL MA PAC
Fu

ll
ph

ra
se

Wiki-BOW-2 .434 .395 .383 .230
Wiki-BOW-5 .480 .446 .431 .268
Wiki-DEP .388 ,346 ,339 .191
GoogleNews .550 .528 .514 .343
Paragram .578 .554 .530 .363
Paragram-CF .487 .455 .434 .276
Sim Graph .508 .489 .460 .330
+ People Graph .520 .502 .467 .340
Skip-thoughts .435 .408 .411 .276
Charagram .566 .550 .520 .381*

Si
m

pl
ifi

ed

Wiki-BOW-2 .532 .501 .475 .316
Wiki-BOW-5 .563 .537 .507 .342
Wiki-DEP .499 .463 .443 .284
GoogleNews .606* .582* .552* .383*
Paragram .616* .594* .560* .397*
Paragram-CF .617* .592* .556* .394*
Sim Graph .533 .520 .478 .340
+ People Graph .543 .533 .492 .350

-L
ig

ht
V

er
bs

Wiki-BOW-2 .523 .500 .481 .315
Wiki-BOW-5 .565 .545 .522 .350
Wiki-DEP .484 .457 .443 .280
GoogleNews .618* .599* .577* .394*
Paragram .639* .623* .595* .418*
Paragram-CF .637* .618* .587* .416*
Sim Graph .577 .572 .534 .360
+ People Graph .584 .576 .535 .375

-A
ll

V
er

bs

Wiki-BOW-2 .434 .436 .419 .334
Wiki-BOW-5 .482 .492 .469 .381*
Wiki-DEP .395 .392 .379 .290
GoogleNews .529 .542 .515 .425*
Paragram .547 .566 .541 .445*
Paragram-CF .522 .538 .510 .435*
Sim Graph .417 .452 .417 .363
+ People Graph .433 .468 .432 .379

C
or

e
O

nl
y

Wiki-BOW-2 .360 .321 .316 .153
Wiki-BOW-5 .402 .364 .363 .184
Wiki-DEP .319 .276 .274 .108
GoogleNews .436 .394 .393 .209
Paragram .444 .401 .402 .223
Paragram-CF .438 .397 .397 .225
Sim Graph .330 .281 .291 .146
+ People Graph .334 .283 .293 .134
Human Agree. .768 .768 .745 .620

Table 5: Spearman correlation between phrase
similarity methods and human annotations across
four annotated relations: Similarity (SIM), Relat-
edness (REL), Motivational Alignment (MA) and
Perceived Actor Congruence (PAC). Top perform-
ing methods for each dimension are in bold font. *
indicates correlation coefficient is not statistically
significantly lower than the best method for that
relational dimension (α = .05).

recommended for tasks in which the ranking of
all items is important (Reimers et al., 2016). Re-
sults for all methods using all phrase variations are
shown in Table (Table 5).

For our dataset, Paragram in the Simplified -
Light Verbs setting gives the best results for sim-
ilarity, relatedness, and motivational alignment.
It is somewhat expected that the same method
has the best performance for these three dimen-

sions as they are strongly correlated with one an-
other. Paragram in the Simplified - All Verbs set-
ting gives the best result on perceived actor con-
gruence. We can see that removing light verbs
is a helpful step for most methods when trying
to predict similarity, relatedness, and motivational
alignment indicating that light verbs mostly add
noise to the overall meaning of the phrases. In-
terestingly, the best results for pereceived actor
congruence come when ignoring all root verbs in
longer phrases. This was a filtering step that led
to decreased performance when ranking across the
other three dimensions. This suggests that for de-
termining perceived actor congruence, the context
of the action found within a phrase is more im-
portant than the action itself. Based on statis-
tical significance testing (Z-test using Fisher r-z
transformation, single-tailed), however, we cannot
be confident that all of these results will hold for
larger sets of human activity phrase pairs, as sev-
eral other methods had scores that were not found
to be significantly lower than the best methods.

6 Conclusion

In this paper, we addressed the task of measur-
ing semantic relations between human activity
phrases. We introduced a new dataset consisting
of human activity pairs that have been annotated
based on their similarity, relatedness, motivational
alignment, and perceived actor congruence. Using
this dataset, we evaluated a number of semantic
textual similarity methods to automatically deter-
mine scores for each of the four dimensions, and
found that similarity between averaged paragram
embeddings of the simplified phrases with light
verbs removed was most highly correlated with
human judgements of similarity, relatedness, and
motivational alignment. The method that yielded
the best result for the perceived actor congruence
dimension also used the paragram embeddings,
but when averaged across the simplified phrases
with all verbs removed.

We believe there is still plenty of room for im-
provement on this task, and we hope that the re-
lease of our data will encourage greater partici-
pation on this task. Future work should explore
methods to handle more subtle semantic differ-
ences between activities that we noticed are often
missed by the automated methods including the ef-
fects of function words and polysemy. It should
also be helpful to learn better weight-based com-
position methods (e.g., those proposed in (Yu and
Dredze, 2015)) rather than filtering out words in a
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rule-based fashion.
We make our dataset, including all activ-

ity pairs and averaged human ratings, pub-
licly available at http://lit.eecs.umich.
edu/downloads.html.
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son, Milica Gašić, Lina Rojas-Barahona, Pei-
Hao Su, David Vandyke, Tsung-Hsien Wen, and
Steve Young. 2016. Counter-fitting word vec-
tors to linguistic constraints. arXiv preprint
arXiv:1603.00892.

Bennet B Murdock Jr. 1962. The serial position effect
of free recall. Journal of experimental psychology,
64(5):482.

Judith A Ouellette and Wendy Wood. 1998. Habit and
intention in everyday life: The multiple processes by
which past behavior predicts future behavior. Psy-
chological bulletin, 124(1):54.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–
1543.

Nils Reimers, Philip Beyer, and Iryna Gurevych. 2016.
Task-oriented intrinsic evaluation of semantic tex-
tual similarity. In COLING, pages 87–96.

Milton Rokeach. 1973. The nature of human values.
Free press.

Rocco Tripodi and Marcello Pelillo. 2016. A game-
theoretic approach to word sense disambiguation.
Computational Linguistics.

John Wieting, Mohit Bansal, Kevin Gimpel, and
Karen Livescu. 2015. Towards universal para-
phrastic sentence embeddings. arXiv preprint
arXiv:1511.08198.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016. Charagram: Embedding words and
sentences via character n-grams. arXiv preprint
arXiv:1607.02789.

Mo Yu and Mark Dredze. 2015. Learning composition
models for phrase embeddings. Transactions of the
Association for Computational Linguistics, 3:227–
242.

673



Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 674–684,
Taipei, Taiwan, November 27 – December 1, 2017 c©2017 AFNLP

Learning Transferable Representation for Bilingual Relation Extraction
via Convolutional Neural Networks

Bonan Min∗, Zhuolin Jiang∗
Raytheon BBN Technologies

10 Moulton St
Cambridge, MA 02138

{bonan.min,zhuolin.jiang}@raytheon.com

Marjorie Freedman†, Ralph Weischedel†
USC/Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90292
{mrf,weisched}@isi.edu

Abstract

Typically, relation extraction models are
trained to extract instances of a relation
ontology using only training data from a
single language. However, the concepts
represented by the relation ontology (e.g.
ResidesIn, EmployeeOf) are language in-
dependent. The numbers of annotated ex-
amples available for a given ontology vary
between languages. For example, there are
far fewer annotated examples in Spanish
and Japanese than English and Chinese.
Furthermore, using only language-specific
training data results in the need to man-
ually annotate equivalently large amounts
of training for each new language a sys-
tem encounters. We propose a deep neu-
ral network to learn transferable, discrim-
inative bilingual representation. Experi-
ments on the ACE 2005 multilingual train-
ing corpus demonstrate that the joint train-
ing process results in significant improve-
ment in relation classification performance
over the monolingual counterparts. The
learnt representation is discriminative and
transferable between languages. When us-
ing 10% (25K English words, or 30K Chi-
nese characters) of the training data, our
approach results in doubling F1 compared
to a monolingual baseline. We achieve
comparable performance to the monolin-
gual system trained with 250K English
words (or 300K Chinese characters) With
50% of training data.

∗indicates co-first authors. These two authors made equal
contribution.

†This work was done while the author was at Raytheon
BBN Technologies.

1 Introduction

Semantic relation extraction is critical to many
applications including knowledge base popula-
tion and question answering. The problem is
well-studied when relation-specific annotations
are available in a single target language. How-
ever, the same relations can be represented us-
ing a variety of languages. While the evidence
of the relation in context is language specific
(e.g. John spent several years living in Beijing
vs约翰在北京生活了几年), the definition of re-
lation itself is often language independent (e.g.
ResidesIn) and the meaning should be preserved
across languages.

We hypothesize that common, shared represen-
tation can be learnt when annotations are avail-
able in multiple languages and propose a bilin-
gual relation extraction algorithm for this purpose.
Our basic building blocks are Convolutional Neu-
ral Networks (CNN) with cross-lingual word em-
beddings (Ammar et al., 2016). This allows the
system to capture lexical similarities across lan-
guages as well as phrase-level semantics. Build-
ing on CNNs with cross-lingual embeddings, the
algorithm is a joint training algorithm which trains
a model from annotated datasets in a pair of lan-
guages. We require that the annotated classes be
consistent across languages, but do not require an-
notations over parallel (or comparable) text. The
base system combines two objectives: an objec-
tive that predicts the correct relation labels in each
dataset in one of the languages, and another ob-
jective to separately learn a shared representation
across languages as well as language-specific rep-
resentations. To further force the learnt represen-
tation to be discriminative among classes regard-
less of language, a discriminative objective for
learning the ideal representation (Section 3.3) is
added onto the shared, bilingual representation.

674



The final combined algorithm essentially learns
two types of useful representations: a language-
independent relation-specific representation with
the shared neurons, and a language-dependent
relation-specific representation with the language-
specific neurons.

Our contributions are the following:
• Developing a bilingual transfer learning algo-

rithm for relation extraction that can use inde-
pendent multilingual corpora annotated with
the same set of relations. Analysis shows that
the representation is discriminative.
• Demonstrating that jointly training from two

languages outperforms its monolingual coun-
terparts significantly.
• Showing that knowledge can be transferred

from resource-rich language to resource-poor
languages: On the ACE multilingual training
corpus, we achieve comparable performance
with 50% of the target-language training data
using our approach and are able to double
performance with only 10% (250K words) of
target language data. This provides a very
cost effective way to develop relation extrac-
tors in new languages.

2 Related Work
Relation extraction is typically cast as a multi-
class classification problem in which a super-
vised machine learning model is trained with la-
beled datasets for classifying relations. Tradi-
tional methods (Kambhatla, 2004; Zhou et al.,
2005; Zhao and Grishman, 2005; Jiang and Zhai,
2007) either reply on a set of linguistic or seman-
tic features, or use convolution tree kernels (Mos-
chitti, 2006) with syntactic (Zhang et al., 2006),
sub-sequence (Bunescu and Mooney, 2005b), or
dependency trees (Bunescu and Mooney, 2005a)
as means to represent input sentences. Recently,
deep neural networks start to show promising re-
sults in relation extraction. In particular, Convo-
lutional Neural Networks (Zeng et al., 2014a; dos
Santos et al., 2015; Nguyen and Grishman, 2015),
Reccurrent/Recursive Neural Networks such as
bidirectional LSTMs (Zhang et al., 2015), LSTM
along shortest dependency paths (Xu et al., 2015),
bidirectional tree-structured LSTM-RNNs (Miwa
and Bansal, 2016) are shown to be effective. At-
tention mechanism (Wang et al., 2016) is also ef-
fective in further improving performance. Our
baseline monolingual model is similar to (Nguyen
and Grishman, 2015) and we does not require

parsing or composing multiple models.
There is very little work on multilingual relation

extraction. (Qian et al., 2014) proposed an active
learning approach for bilingual relation extraction
with pseudo parallel corpora. (Kim et al., 2010)
and (Kim et al., 2014) proposed cross-lingual an-
notation projection approach for relation detection
with parallel corpora. In contrast, our work don’t
require parallel corpora nor Machine Translation.
More recently, (Faruqui and Kumar, 2015) ap-
plied cross-lingual projection for open-domain re-
lation extraction in languages other than English.
(Blessing and Schütze, 2012) and Compositional
Universal Schema (Verga et al., 2016) performs
cross-lingual relation extraction with distant su-
pervision (Mintz et al., 2009; Riedel et al., 2010;
Surdeanu et al., 2012; Hoffmann et al., 2011; Rit-
ter et al., 2013). These works are significantly dif-
ferent from ours in that they either operates in the
open-domain(Faruqui and Kumar, 2015) without
a pre-defined relation schema, or in a distant su-
pervision setting with a KB as source of supervi-
sion. POLY (Nakashole et al., 2012) mines re-
lational paraphrases from multilingual sentences
which can be useful for relation extraction.

Besides relation extraction, (Huang et al.,
2013) performs cross-language knowledge trans-
fer with deep neural networks for speech recog-
nition. (Guo et al., 2016) proposed a distributed
representation-based framework for cross-lingual
transfer learning for dependency parsers.

3 Bilingual Relation Extraction
Given a pair of monolingual corpora in two differ-
ent languages and each corpus having been anno-
tated with sentence-level relations 1 of pre-defined
types, the goal of bilingual relation extraction is
to learn discriminative representations to identify
the relation between a pair of mentions, regardless
of which language the mention pair comes from
(transferable across languages). We achieve the
goal of learning discriminative representation by
joint supervision of classification (softmax) loss
and ideal representation loss. We achieve the ad-
ditional cross-lingual transferring goal by learning
shared representation across languages.

As shown in Figure 1, our CNN-based bilin-
gual relation extraction model consists of 4 main
parts: (1) an embedding layer to encode words (in
bilingual space), word positions, entity types and

1A sentence with a pair of mentions will be annotated with
a relation, if the relation holds between the pair of mentions.
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Figure 1: Bilingual relation extraction model trained with both softmax classification loss (SL) and ideal
representation loss (IRL). IRLa and IRLb are language-specific ideal representation losses for language
a and b respectively. IRLs is the shared representation loss across 2 languages. FC1,a and FC1,b are
2 sets of language-specific neurons for language a and b, respectively. FC1,s is a set of shared neurons.
SLa and SLb are the softmax classification losses for language a and b respectively.

mention levels by real-valued vectors; (2) a convo-
lution and max pooling layer to generate a fixed-
size feature vector for an input sentence; (3) 3 lo-
cally connected (LC) layers for learning language-
specific and shared representations. These layers
are learned to predict discriminative representa-
tion using proposed ideal representation loss (IRL)
during training; (4) 2 LC layers for learning 2 re-
lation classifiers with the softmax loss (SL). The 5
LC layers and the 5 prediction losses (3 IRLs and
2 SLs) are illustrated in Figure 1.

3.1 Embedding Layer
Word embeddings (WE) The inputs are sen-
tences marked with pairs of mentions of interest.
Given an input sentence x of length t, we firstly
transform each word into a real-valued vector of
dimension d1 by looking up a word embedding
matrix W 1 ∈ Rd1×|V |, where V is a fixed-sized
vocabulary. To project similar words in a pair
of languages into close proximity, we use cross-
lingual embedding trained with multiCCA (Am-
mar et al., 2016) to initialize W 1. W 1 will also be
finetuned during training.

MultiCCA only requires two monolingual cor-
pora and a bilingual parallel dictionary. It first
trains monolingual embeddings for each language
independently from each monolingual corpus,
capturing semantic similarity within each lan-
guage. Then given the dictionary, it applies canon-
ical correlation analysis (CCA) to estimate linear
projections from the monolingual embeddings to
bilingual embeddings. This makes translationally
equivalent words in different languages to be em-
bedded nearby each other.

Position embeddings (PE) The words close to
the argument mentions are more informative to de-
termine the relationship. Similar to (Santos et al.,
2015), for each word, we map its relative distances
to two argument mentions to two real-valued vec-
tors of dimension d2 by a embedding matrixW 2 ∈
Rd2×|D|, where D is the set of relative distances
in a dataset. We obtain two vectors for each word
with respect to the first and the second argument
of the relation mention.

Entity type embeddings (EE) and mention
level embeddings (ME) For each word, we map
its entity type and mention level into real-valued
vectors using embedding matrix W 3 ∈ Rd3×|E|

and W 4 ∈ Rd4×|M | respectively. E is the set of
entity types while M is the set of mention levels.

The final embedding dimension for each to-
ken is n1 = (d1 + 2d2 + d3 + d4). This layer
will produce an embedding representation x(1) ∈
Rn1×t when fed with an input sentence x(0) = x.
W 1,W 2,W 3,W 4 are parameters to be learnt via
the end-to-end model.

3.2 Convolution and Max Pooling Layer
Relations can be expressed by words or their com-
binations. The model should utilize all local fea-
tures extracted around each word in the sentence
and predict the relation globally. Convolution
operation is a natural approach to achieve this
goal (Zeng et al., 2014b; Santos et al., 2015).
Given a convolution filter i of window size k,
the convolution operation on an input sentence x
will produce a score vector z = (z1, ..., z(t−k+1)),
where zj = g1(wixj + bi). wi ∈ Rkn1 are the lin-
ear transform parameters for filter i, xj denotes the
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j-th context window in x, bi is a bias scalar and g1
is a non-linear function such as the rectified linear
unit (ReLU). Then the max operation is applied to
identify the most informative n-gram feature from
this score vector: mi = max(z). We replicate this
process for a set of filters with different window
sizes to capture important n-gram features from an
input sentence. The matrix W (2) = [w1, ...,wn2 ],
where n2 is the total number of filters, and vector
b(2) = [b1, ..., bn2 ] are parameters to be learnt in
this convolution layer. Finally we obtain a fixed-
sized feature vector x(2) = m = [m1, ...,mn2 ] ∈
Rn2 . The representation x(2) is generated by tak-
ing max pooling over entire sentence with filters of
multiple window sizes. To prevent these neurons
that generate m from co-adapting and force them
to learn individual useful features, a dropout layer
is added after the pooling layer for regularization.

We added a fully connected layer to combine
information captured by these filters: x(3) =
g2(W (3)x(2)+b(3)) ∈ Rn3 . W (3) and b(3) are pa-
rameters learnt in this layer, and g2 is a non-linear
function.

3.3 Learning Transferable, Discriminative
Bilingual Representation

Given two sets of training examples Xa and Xb

in two languages a and b, we aim at learning
transferable, discriminative bilingual representa-
tions. We achieve this by weight sharing at a high-
level layer. We further improve the discriminative
power of learnt representations using ideal repre-
sentation loss. The bilingual representation learn-
ing model is shown in Figure 1.

Shared and Language-specific Neurons We
aim at not only learning representation shared by
both languages, but also learning representation
specific to each language. We partition the neu-
rons in the FC1 layer into three disjoint sets: two
language-specific sets (FC1,a and FC1,b) and a
shared bilingual set FC1,s to represent shared fea-
tures across languages. We expect that FC1,a and
FC1,b can model language-specific features, while
the common set FC1,s can model the share fea-
tures.

Discriminative Representation Learning As
described in (Zeiler and Fergus, 2014; Krizhevsky
et al., 2012), the neurons from high-level layers
of a CNN tend to extract more abstract and class-
specific features. If each neuron in a high-level
layer of our CNN activates only when a specific
relation is presented, this will lead to a discrimi-

native representation for relations. Such represen-
tation, when learnt across language, would be ex-
tremely useful for transferring useful information
across languages for relation extraction.

To achieve this, we partition the neurons in each
high-level layer into subsets, and encourage each
subset to only represent sentences of one of the
relation types. This results in an explicit corre-
spondence between blocks of neurons and relation
types. Specifically, we partition the neurons in
each sub-layer (i.e., LCa, LCb and LCs) into dis-
joint subsets and associate each subset with one
specific relation label. For sentences of different
relation types, we represent them using disjoint
subsets of neurons. To do so, we integrate the
ideal representation loss introduced in (Jiang et al.,
2011) into our objective function during training.
Let (xi; yi) denote training example xi. The ideal
representation loss can be defined as:

Lr = ‖qi − ci‖ (1)

where ci = W (ld)x(ld−1)
i + b(ld) is the pre-

dicted representation for example xi from lo-
cally connected layer ld = {LCa, LCb, LCs}.
x(ld−1)
i is the representation of example xi from
FC1,a, FC1,b or FC1,s. W (ld) and b(ld) are
linear transform parameters and bias parameters
learnt from these locally connected layers. We
define qi as the ideal representation correspond-
ing to training sample xi from locally connect
layer ld. The non-zero values of qi occur at the
indices where the training example xi and neu-
rons from layer ld shared the same relation la-
bel. For example, suppose we have six train-
ing samples {x1, . . . ,x6} and their relation labels
y = [y1, . . . , y6] = [1, 1, 2, 2, 3, 3]. Further as-
sume layer ld has six neurons {p1, . . . , p6} with
{p1, p2} associated with label 1, {p3, p4} label 2,
and {p6, p7} label 3. Then the ideal representa-
tions for these six samples are given by:

[q1, . . . ,q6] =



1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1

 , (2)

where each column is an ideal discriminative rep-
resentation corresponding to a training sample.
Minimizing the ideal representation loss term en-
sure that the input sentence from the same type
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have similar representations while those from dif-
ferent types have dissimilar representations.

Relation Classification We trained a pair of
softmax classifiers for relation classification for
language a and b. The softmax classification loss
L∗s, ∗ = {a, b} can be defined as:

L∗s = − log(
eoyi∑
j e

oj
) (3)

where oj is the j-th element of the predicted re-
lation scoring vector from LC1 or LC2 layer in
Figure 1. Let ls denote these two locally con-
nected layers, i.e., ls = {LC1, LC2}. We have
o = W (ls)x(ls−1)

i + b(ls), where W (ls) and b(ls)

are learnt parameters from layer ls. x(ls−1)
i is the

representation of example xi by concatenating the
activations from FC1,a and FC1,s, or FC1,b and
FC1,s.

We combine the ideal representation loss and
softmax classification loss to obtain the final loss
function for a training sample (xi; yi):

L(xi, yi) =
{
Las + λ(Lar + Lsr) if xi in lang. a
Lbs + λ(Lbr + Lsr) if xi in lang. b

(4)
where Las and Lbs are the softmax loss for sam-
ples in language a and b, respectively. They are
computed via equation 3. The terms Lar , Lbr are
the ideal representation losses for language a and
b respectively, while Lsr is shared by both lan-
guages. The term L∗r , ∗ = {a, b, s} can be com-
puted by equation 1. We minimized equation 4
using stochastic gradient descent.

4 Experiments

Parameter setting In the embedding layer, we
used the pretrained 100-dimension bilingual word
embeddings in (Ammar et al., 2016) to initialize
W 1. We set the dimension of the other three em-
bedding matrices W 2, W 3 and W 4 to 50 and ini-
tialize them randomly. In the convolution layer,
we set the filter widths to [2, 3, 4, 5], and use 150
filters per width. The number of neurons in the
FC1 layer (FC1,a ∪ FC1,s ∪ FC1,b) is 300. We
use tanh for g1, g2. All parameters are tuned with
the ACE development set (described in next sub-
section). In bilingual experiments, we assigned 56
neurons 2 for each of FC1,a and FC1,b to learn

2We choose 56 to leave sufficient number of neurons for
sharing across languages. We try 56, 63, 70 and no significant
difference was observed.

language-specific features and the remaining neu-
rons for language-shared features. λ is fixed to
be 0.5. Training is done via stochastic gradient
descent with Adam (Kingma and Ba, 2014) opti-
mizer with a learning rate of 0.001.

Benchmarking baseline monolingual models
As we are not aware of prior work on bilingual re-
lation extraction in similar settings, we first bench-
mark our baseline monolingual model on two pop-
ular monolingual datasets. We also use the ACE
development dataset (described below) for tuning
the parameters mentioned previously. The base-
line monolingual model is similar to (Nguyen and
Grishman, 2015) and only takes a English dataset
as input. It is simplified from the model in Figure
1 by replacing the FC and LC layers with a fully-
connected layer followed by a softmax loss. We
evaluate it on two English datasets: the SemEval-
2010 Task 8 dataset (Hendrickx et al., 2010) and
the ACE 2005 dataset. The SemEval dataset con-
tains 10,717 annotated examples (8,000 for train-
ing and 2,717 for testing). For ACE, to be com-
parable to state-of-the-art Neural Network mod-
els, we use the split in (Gormley et al., 2015;
Nguyen and Grishman, 2015): find the ACE ar-
ticles from news domains: broadcast conversa-
tion (bc), broadcast news (bn), newswire (nw), and
uses news (bn & nw) as the training set, half of bc
as the development set, the other half of bc as the
test set. Table 1 and Table 2 3 show that the per-
formance of our monolingual baseline and various
other systems. The monolingual model 4 achieves
higher performance than state-the-art CNN meth-
ods with similar structure and no additional se-
mantic features.

For the rest of the experiments, we focus on
bilingual experiments. We evaluated our model
on the ACE 2005 multilingual training corpus 5

which contains 596 English and 633 Chinese doc-
uments 6 . The ACE corpus consist of articles from
weblogs, broadcast news, newsgroups, broadcast
conversation, and is annotated exhaustively with

3The results reported in (Nguyen and Grishman, 2016)
used a rich feature set (e.g., dependency parses). For fair
comparison, we reported their results by running their code
without those features.

4For fair comparison, we use the pre-trained word2vec
word embeddings (Mikolov et al., 2013) with 300 dimensions
for the monolingual experiments. For all other experiments,
we use cross-lingual embeddings (Ammar et al., 2016).

5https://catalog.ldc.upenn.edu/LDC2006T06
6The English and Chinese documents are not translation

of each other.
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Classifier F1
SVM (Rink and Harabagiu, 2010) 77.6 (82.2)

CNN (Zeng et al., 2014a) 78.9 (82.7)
CNN (Nguyen and Grishman, 2015) 82.8

RNN (Socher et al., 2012) 74.8 (77.6)
MVRNN (Socher et al., 2012) 79.1 (82.4)

FCM (Yu et al., 2014) 80.6 (83.0)
Our English baseline 83.23

Table 1: Performance on SemEval-2010 Task
8 dataset (Hendrickx et al., 2010). The num-
bers inside parentheses are the systems using fea-
tures such as WordNet (all systems), dependency
parses (Yu et al., 2014) and Google n-grams (Rink
and Harabagiu, 2010). Our approach does not use
these features but still achieves the best result.

Classifier P R F1
CNN (Nguyen and Grishman, 2016) 63.3 58.2 60.6

Our English baseline 62.1 60.1 61.1

Table 2: Performance on English ACE 2005 with
the data split setting in (Gormley et al., 2015).

relations. For documents in English or Chinese,
we collected all annotated relation mentions, and
generated relation mentions for the Other class
by sampling pairs of entity mentions within a
sentence but is not annotated as having a rela-
tion. We refer to the resulted English dataset as
ACE05.ENG, and refer to the Chinese ACE dataset
as ACE05.CHN in the rest of this section. We di-
vided relation mentions into 5 folds, performed
cross-validation and averaged the results. As is
standard (e.g. (Grishman et al., 2005)), we use the
mention boundaries and types provided by the an-
notated data as input.

4.1 Comparing Bilingual Models to
Alternative Approaches

To verify the effectiveness of our bilingual model,
we compare four approaches:
• Baseline: We train two monolingual mod-

els on ACE05.ENG and ACE05.CHN respec-
tively. These two models used bilingual word
embedding and only used the softmax classi-
fication loss during training.
• Bilingual-FT: To see if having access to ad-

ditional training data from another language
helps, we pre-train each monolingual model
with the other language(source)’s training
dataset and then finetune it using the target
language’s training dataset 7

7For example, we pre-train the Chinese model with
ACE05.ENG, fine-tune with ACE05.CHN, then test with
Chinese.

• Bilingual-Joint We train a bilingual model
on the Chinese and English datasets jointly
with the softmax loss. The model is similar to
the bilingual model in Figure 1, but without
the ideal representation losses 8.
• Bilingual-Joint-IRL We train the bilingual

model on ACE05.ENG and ACE05.CHN
jointly using the softmax and ideal represen-
tation loss (the complete model in Figure 1).

The results are summarized in Table 3. The
pre-training approach (bilingual-FT), which pre-
trains a model on the additional language’s dataset
and then finetune on the target language dataset,
achieves better results than training the monolin-
gual baseline. The bilingual-Joint approach can
simultaneously learn language-specific and shared
bilingual representations, therefore it is able to
generalize across languages while still making use
of language-specific information. Its performance
exceeds that of baseline and bilingual-FT. The
bilingual-Joint-IRL method achieves the best re-
sult: it encourages the learnt representation to be
discriminative among relation types. In particular,
the learnt cross-lingual representation is encour-
aged to differentiate relation types regardless of
language. It captures both language-specific and
cross-lingual relation semantics, and thus has the
best of both worlds.

4.2 Transfer representations to
lower-resource languages

For just a handful of languages, (e.g. English,
Chinese) corpora of relation annotation are read-
ily available. However, for most languages few
(if any) such resources exist. We show that our
approach yields large gains in F1 when a small
amount of target training is combined with large
amounts of existing source annotation.

We demonstrate our model’s ability to use large
amounts of source language data to supplement
limited in-domain target language data with either
Chinese and English as target. In each setting, we
down-sample the target language dataset to 10%,
20%, 30%, 40% and 50% of its full training size
and we report F1 in the test dataset in the tar-
get language. Figure 2 compares performance of
bilingual-Joint-IRL with the performance of base-
line. With access to existing, additional resources
in the source through the bilingual model, perfor-
mance on target doubles its F1 scores when only

8This performs bilingual representation learning by only
sharing a subset of neurons in FC1
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Approach
ACE05.ENG ACE05.CHN

Precision Recall F1 Precision Recall F1
baseline 72.5 68.3 70.4 75.6 75 75.3

bilingual-FT 70.8 72.1 71.4 78.4 75.6 77.0
bilingual-Joint 72.6 73.3 72.9 77.7 76.4 77.1

bilingual-Joint-IRL 74.3 75.6 74.9 80.9 77.1 78.9

Table 3: Performances of the bilingual models on the ACE 2005 multilingual training corpus.

Figure 2: Performance of Chinese and English re-
lation extraction by varying the size of in-domain
training data. For the model with access to another
language (source), we use the full dataset from the
source but only a fraction of in-domain data in
the target language. We sample each dataset from
10% to 50% with 10% as the incremental step size.
x-axis is the percentage of training data in target is
used, and y-axis shows F1 scores.

10% training data is available, and gains 30% to
66% relative improvement in F1 with 20% train-
ing data. The bilingual extractor trained with only
50% of the target training data achieves perfor-
mance nearing (< 5% difference) that of the base-
line approach using all of the target resources.
This results provides a new and cost-effective way
to perform relation extraction when resources are
limited for a new language.

4.3 Analysis on learnt representation
Learning discriminative representations We use
LCa and LCs to represent a sentence from lan-
guage a, and use LCb and LCs to represent a sen-
tence from language b. We visualize the predicted
representations for testing examples in both En-
glish and Chinese in Figure 3. X-axis shows the
244 neurons 9 from locally connect layers LCa-
LCs, and LCb-LCs. Y-axis shows all testing ex-
amples (each row represents an example). Each

9The number of neurons in layers LCa and LCb are both
56, while layer LCs contains 188 neurons.

0 50 100 150 200 250

(a) ACE05.ENG set

0 50 100 150 200 250

(b) ACE05.CHN set

Figure 3: Visualization of predicted presentation
for test examples in both languages. X-axis indi-
cates the 244 neurons from layers LCa-LCs (or
LCb-LCs). Y-axis corresponds to the indices of
test examples. The color shows strength of pair-
wise association between examples and neurons
(the brighter the color, the stronger association).
Each color in the color bar located at the right most
of each subfigure represents one relation type for
a subset of testing examples.

graph shows strong associations between testing
examples from 7 types and 7 blocks of neurons
in the hidden layer in 1) language-specific repre-
sentations (the first 56 neurons as shows in x-axis
[0, 55] in Figure 3 (a) and (b)) as well as 2) bilin-
gual representation (the remaining 188 neurons as
shown in x-axis [56,243] in each figure). The vi-
sualization is strongly block-diagonal. This shows
that the learnt representation is discriminative in
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Relation English Chinese
ORG-AFF ... while japanese officials ... ...应新加坡总理吴作栋的邀请...
PHYS ...which is ... outside the center of baghdad... ...前日在广州被公安寻回...
PART-WHOLE ...this is that city hall in orlando... ...亚齐省首府班达亚齐
PER-SOC ...you go to your grandma ’s house 该名家长起初以为孩子撒谎...
GEN-AFF joseph britt of kennesaw , ga , recently... 日本历史上有过女天皇

ART i ’ve decided i ’ll take the train home later 我们的军舰在厂里...

Table 4: Examples of relation mentions that are found to be similar to its cross-lingual counterparts
using our model. The two examples in each row is similar to each other.

predicting relation types.
Confusion matrix on bilingual relation ex-

traction To further understand the discrimina-
tive power of the bilingual model with regard
to predicting relation types, we plot the confu-
sion matrix using the bilingual model over all
examples in the ACE datasets. Figure 4 shows
that our model performs well on differentiating
the classes. It also shows that our algorithm
performs slightly worse in differentiating PHYS,
PART-WHOLE and GEN-AFF relations, in both
English and Chinese. This is caused by the trump-
ing rules in ACE relation definition. ACE anno-
tation guideline defines a relation Org-Location-
Origin (a subtype of GEN-AFF) for locations of
ORG’s, and defines another relation Geographi-
cal (a subtype of PART-WHOLE) for locations of
facilities/locations/GPEs, and further defines a re-
lation Located (as a subtype of PHY) to capture
the physical location of a person. These relations
share the same high-level semantics but are de-
fined as different ACE types.

Examples of similar relation instances across
languages We took the last-layer activations as a
“relation embeddings” representation for each re-
lation instance. To see how well the cross-lingual
representation learning did, we calculated pair-
wise similarities 10 between all relation instances
in Chinese and English. Table 4 shows examples
in which each pair of instances in the same row in
the two languages are very similar 11 to each other.

The model learns lexical similarity such as
japanese officials and 新加坡 总理 (Singapore
prime minister). It also knows city hall in orlando
is similar to 亚齐省首府班达亚齐 (Aceh capital
of Banda Aceh). It further learns complicated cor-
respondence such as you go to your grandma ’s
house and 该名家长 起初以为孩子 撒谎(The

10We use cosine distance as the similarity metric. The
smaller cosine distance is, the more similar the pair.

11Here we define very similar as ranked within top-50 most
similar instances in the entire dataset, with regard to the query
instance from the other language.
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Figure 4: Confusion matrices of bilingual-Joint-
IRL on the ACE datasets.
parent previously thought the child was lying) The
diverse range of examples in Table 4 shows that
the model not only captures lexical similarity, but
also syntactic and long-range semantic similarities
across the pair of languages.

5 Conclusion

We present a bilingual relation extraction algo-
rithm to learn discriminative and transferable rep-
resentation across languages via a Convolutional
Neural Network. Experiments show that it out-
performs monolingual algorithms and the baseline
algorithms significantly both when large amounts
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of data are available in both languages and when
only limited training data is available in the target
language.
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Abstract

Bilingual lexicon extraction from compa-
rable corpora is constrained by the small
amount of available data when dealing
with specialized domains. This aspect pe-
nalizes the performance of distributional-
based approaches, which is closely re-
lated to the reliability of word’s cooccur-
rence counts extracted from comparable
corpora. A solution to avoid this limitation
is to associate external resources with the
comparable corpus. Since bilingual word
embeddings have recently shown efficient
models for learning bilingual distributed
representation of words, we explore dif-
ferent word embedding models and show
how a general-domain comparable corpus
can enrich a specialized comparable cor-
pus via neural networks.

1 Introduction

Bilingual lexicon extraction from comparable cor-
pora has shown substantial growth since the sem-
inal work of Fung (1995) and Rapp (1995). Com-
parable corpora, which are comprised of texts
sharing common features such as domain, genre,
sampling period, etc. and without having a source
text/target text relationship (McEnery and Xiao,
2007), are more abundant and reliable resources
than parallel corpora. On the one hand, parallel
corpora are difficult to obtain for language pairs
not involving English. On the other hand, as par-
allel corpora are comprised of a pair of trans-
lated texts, the vocabulary appearing in the trans-
lated texts is highly influenced by the source texts.
These problems are aggravated in specialized and
technical domains.

Although it is easier to build large general-
domain comparable corpora, specialized compa-

rable corpora are often of modest size (around
1 million words) due to the difficulty to obtain
many specialized documents in a language other
than English. Consequently, word co-occurrence
counts of the historical context-based projection
approach, known as the standard approach (Fung,
1995; Rapp, 1995), dedicated to bilingual lexi-
con extraction from comparable corpora are un-
reliable in specialized domain. This problem per-
sists with other paradigms such as Canonical Cor-
relation Analysis (CCA) (Gaussier et al., 2004),
Independent Component Analysis (ICA) (Hazem
and Morin, 2012) and Bilingual Latent Dirichlet
Allocation (BiLDA) (Vulić et al., 2011).

A solution to avoid this limitation and to in-
crease the representativity of distributional repre-
sentations is to associate external resources with
the specialized comparable corpus. These re-
sources can be lexical databases such as Word-
Net which allows the disambiguation of trans-
lations of polysemous words (Bouamor et al.,
2013) or general-domain data to improve word co-
occurrence counts of specialized comparable cor-
pora (Hazem and Morin, 2016).

Our work is in this line and attempts to find out
how a general-domain data can enrich a special-
ized comparable corpora to improve bilingual ter-
minology extraction from specialized comparable
corpora. Since bilingual word embeddings have
recently provided efficient models for learning
bilingual distributed representation of words from
large general-domain data (Mikolov et al., 2013),
we contrast different popular word embedding
models for this task. In addition, we explore com-
binations of word embedding models as suggested
by Garten et al. (2015) to improve distributed rep-
resentations. We compare the results obtained
with the state-of-the-art context-based projection
approach. Our results show under which condi-
tions the proposed model can compete with state-
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of-the art approaches. To the best of our knowl-
edge, this is the first time that word embedding
models have been used to extract bilingual lexi-
cons from specialized comparable corpora.

The remainder of this paper is organized as fol-
lows. Section 2 presents the two state-of-the-
art approaches used to extract bilingual lexicons
from comparable corpora. Section 3 describes
the two data combination approaches adapted to
Skip-gram and CBOW models (Mikolov et al.,
2013). Section 4 describes the different linguis-
tic resources used in our experiments. Section 5
is then devoted to a large-scale evaluation of the
different proposed methods. Finally, Section 6
presents our conclusion.

2 State-of-the-Art Approaches

In this section, we describe the two state-of-the-art
approaches used to extract bilingual lexicons from
comparable corpora.

These approaches are both based on monolin-
gual lexical context analysis and relies on the dis-
tributional hypothesis (Harris, 1968) which postu-
lates that a word and its translation tend to appear
in the same lexical contexts. This is the hypothesis
that tends to be reduced to the famous sentence of
the British linguist J. R. Firth (1957, p. 11) who
said: “You shall know a word by the company it
keeps.” even if the context was related to collo-
cates.

The two approaches are known as distributional
and distributed semantics (according to Hermann
and Blunsom (2014)). The first one is based on
vector space models while the second one is based
on neural language models.

2.1 Context-Based Projection Approach

The historical context-based projection approach,
known as the standard approach, has been studied
by a number of researchers (Fung, 1998; Rapp,
1999; Chiao and Zweigenbaum, 2002; Morin
et al., 2007; Prochasson and Fung, 2011; Bouamor
et al., 2013; Morin and Hazem, 2016, among oth-
ers). Its implementation can be carried out by ap-
plying the following steps:

1. For each word w of the source and the target
languages, we build a context vector (resp. s
and t for source and target languages) con-
sisting in the measure of association of each
word that appears in a short window of words

around w. The association measures tradi-
tionally studied are Mutual Information, Log-
likelihood, and the Discounted Odds-Ratio.

2. For a word i to be translated, its context vec-
tor i is projected from the source to the tar-
get language by translating each element of
its context vector thanks to a bilingual seed
lexicon.

3. The translated context vector i is compared to
each context vector t of the target language
using a similarity measure such as Cosine or
weighted Jaccard. The candidate translations
are then ranked according to the scores of a
given similarity measure.

This approach is very sensitive to the choice of
parameters. We invite readers to consult the study
of Laroche and Langlais (2010) in which the influ-
ence of parameters such as the size of the context,
the choice of the association and similarity mea-
sures have been examined.

In order to improve the quality of bilingual ter-
minology extraction from specialized compara-
ble corpora, Hazem and Morin (2016) have pro-
posed two ways to combine specialized compara-
ble corpora with external resources. The hypoth-
esis is that word co-occurrences learned from a
large general-domain corpus for general words im-
prove the characterisation of the specific vocabu-
lary of the specialized corpus. The first adapta-
tion called Global Standard Approach (GSA) is
basic and consists in building the context vec-
tors from a comparable corpus composed of the
specialized and the general comparable corpora.
The second adaptation called Selective Standard
Approach (SSA) is more sophisticated and com-
prises: i) independently building context vectors
of the specialized and general comparable corpus
and then ii) merging under certain conditions, spe-
cialized and general context vectors of the words
belonging to the specialized corpus when they ap-
pear in the general corpus.

2.2 Word Embedding Based Approach
Bilingual word embeddings has become a source
of great interest in recent times (Mikolov et al.,
2013; Vulić and Moens, 2013; Zou et al., 2013;
Chandar et al., 2014; Gouws et al., 2014; Artetxe
et al., 2016, among others). Mikolov et al. (2013)
was the first to propose a method to learn a lin-
ear transformation from the source language to the
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target language to improve the task of lexicon ex-
traction from bilingual corpora.

During the training time of Mikolov’s method,
for all {xi, zi}ni=1 bilingual word pairs of the seed
lexicon, the word embedding xi ∈ Rd1 of word
i in the source language and the word embedding
zi ∈ Rd2 of its translation in the target language
are computed. A transformation matrixW such as
Wxi approximates zi is then learned by the objec-
tive function as follows:

min
W

n∑
i=1

‖Wxi − zi‖2 (1)

At prediction time, we can transfer the word
embedding x for a word to be translated in the tar-
get language using the translation matrix such as
z = Wx. The candidate translations are obtained
by ranking the closest target words to z according
to a similarity measure such as the Cosine mea-
sure.

Recently, Artetxe et al. (2016) presented an
approach for learning bilingual mappings of
word embeddings that preserves monolingual in-
variance using several meaningful and intuitive
constraints related to other proposed methods
(Faruqui and Dyer, 2014; Xing et al., 2015). These
constraints are orthogonality, vectors length nor-
malization for maximum cosine and mean center-
ing for maximum covariance. Monolingual in-
variance tends to preserve the dot products af-
ter mapping, in order to avoid performance drop
in monolingual tasks, while dimension-wise mean
centering tends to insure that two randomly taken
words would not be semantically related. This ap-
proach has shown meaningful improvements for
both monolingual and bilingual tasks.

Other work has focused on learning bilingual
word representations without word-to-word align-
ments of comparable corpora. Chandar et al.
(2014) and Gouws et al. (2014) use multilingual
word embeddings based on sentence-aligned par-
allel data whereas Vulić and Moens (2015, 2016)
propose a model to induce bilingual word embed-
dings directly from document-aligned non-parallel
data. Theses works are based on sentence- or
document-aligned of general-domain comparable
corpora and are outside the scope of this study. It
is unlikely, not to say impossible, to find this type
of alignment in a specialized comparable corpus.

3 Data Combination Using Neural
Networks

Recently, Hazem and Morin (2016) have shown
that using external data drastically improves the
performance of the traditional distributional-based
approach for the task of bilingual lexicon ex-
traction from specialized comparable corpora.
Mikolov et al. (2013) have also shown that dis-
tributed vector representations over large corpora
in a continuous space model capture many linguis-
tic regularities and key aspects of words. Based
on these findings, we pursue the preceding works
and propose different ways to combine special-
ized and general domain data using neural network
models. We adapt the two data combination ap-
proaches proposed in Hazem and Morin (2016)
(see Section 2.1) using Skip-gram and CBOW
models (Mikolov et al., 2013). Inspired by the
work of Garten et al. (2015) which studied dif-
ferent combinations of distributed vector represen-
tations for word analogy task, we also propose
different Skip-gram and CBOW models combina-
tions over specialized and general domain data.

3.1 Global Data Combination Using Neural
Network Models

This approach can be seen as similar to the GSA
approach (Hazem and Morin, 2016), the differ-
ence is that instead of using the context-based pro-
jection approach to build context vectors, we use
the distributed Skip-gram or Continuous Bag-of-
Words (CBOW) models proposed in Mikolov et al.
(2013). Given a specialized and a general domain
corpus, we create a new corpus which is the com-
bination of both. We then learn a Skip-gram model
(respectively a CBOW model) using this new gen-
erated corpus. We denote this approach by GSG
for the global1 Skip-gram model and GCBOW for
the global CBOW model.

After combining the two corpora, the steps for
extracting bilingual lexicons are as follows:

1. We first build a CBOW (respectively a Skip-
gram) model for source and target languages.

2. Then, we apply bilingual mapping (Artetxe
et al., 2016) between the source and the target
CBOW models (respectively the Skip-gram
models). The mapping step needs a bilin-
gual dictionary to compute the mapping ma-

1The term global refers to a global combination of data
without any specific criterion.
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trix. We used a dictionary subset of the 5,000
more frequent translation pairs. Different
sizes of the seed dictionary have been stud-
ied and discussed in Jakubina and Langlais
(2016). It should be noted that in our ex-
periments, no great impact has been observed
when varying the size of the dictionary sub-
set.

3. For each word to be translated, we compute
a Cosine similarity between its mapped em-
bedding vector and the embedding vectors of
all the target words.

4. Finally, we rank the candidates according to
their similarity score.

3.2 Specific Data Combination Using Neural
Network Models

This approach is in the line of the SSA (Hazem and
Morin, 2016) approach but the idea is not exactly
the same. Similarly to them we build two sepa-
rate representations. One learned from a special-
ized domain corpus and the second learned from
a general-domain corpus, but unlike them we con-
catenate the distributed models while they merge 2

distributional context vectors.
Our goal is to capture the two word characteri-

sations thanks to CBOW/Skipgram models. One
is issued from the specialized domain and the
other one from the general domain, to finally com-
bine both representations in the perspective of ob-
taining a better word representation. Our approach
is as follows:

1. We first build a CBOW (respectively a Skip-
gram) model for both specialized and general
domain source and target languages.

2. Then, we concatenate source CBOW vectors
(respectively Skip-gram vectors) of the spe-
cialized and the general domain data. We
apply the same process for specialized and
general-domain target data.

3. We apply bilingual mapping (Artetxe et al.,
2016) between the source and target concate-
nated vectors.

4. For each word to be translated, we compute
a Cosine similarity between its mapped em-
bedding vector and the embedding vectors of
all the target words.

2The merging process can be seen as a simple vector ad-
dition.

5. Finally, we rank the candidates according to
their similarity score.

3.3 Combining Distributed Representations

We follow the findings of Garten et al. (2015)
where they have shown substantial improvements
on a standard word analogy task, combining dis-
tributed vector representations (more specifically,
vectors concatenation). They compared their hy-
brid methods and have shown their advantages es-
pecially when training data is limited, which is the
main problem in the task of extracting bilingual
terminology from specialized comparable corpora.

In our case, word embedding models lead to
three different ways of concatenation. The first
one is a CBOW model concatenation between the
specialized and the general domain data. The sec-
ond one is a Skip-gram model concatenation and
the third one is a concatenation of both CBOW and
Skip-gram models.

If for instance we have a 100 dimension spe-
cialized CBOW model and a 200 dimension gen-
eral domain CBOW model. The concatenation
will lead to a resulting 300 dimension CBOW
model. If we also have a 100 dimension spe-
cialized Skip-gram model and a 200 dimension
general domain Skip-gram model. The concate-
nation will lead to a resulting 300 dimension
Skip-gram model. Finally, if we concatenate the
CBOW and Skip-gram models, this will result
in a 600 dimension combined model. This fi-
nal concatenation process allows to take advan-
tage of both CBOW and Skip-gram models and to
learn a mapping matrix of the combined models.
To our knowledge this is the first attempt to first
encode CBOW_CBOW3, Skip-gram_Skip-gram
and CBOW_Skip-gram models before learning a
bilingual mapping matrix.

4 Data and Resources

In this section, we briefly outline the different tex-
tual resources used for our experiments: the com-
parable corpora, the bilingual dictionary and the
terminology reference list. These textual resources
are a subset of the data used in Hazem and Morin
(2016).

3CBOW_CBOW stands for the concatenation of two
CBOW vectors issued from two different training datasets.
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4.1 Comparable corpora
The specialized comparable corpus consists of sci-
entific papers collected from the Elsevier website4.
The scientific papers were taken from the medi-
cal domain within the sub-domain of “breast can-
cer”. The breast cancer comparable corpus (BC)
is composed of 103 English documents and 130
French documents.

The four general-domain comparable corpora
are of different types and sizes often used in mul-
tiple evaluation campaigns such as WMT. News
commentary corpus consists of political and eco-
nomic commentary crawled from the web (NC),
Europarl corpus is a parallel corpus extracted
from the proceedings of the European Parliament
(EP7), JRC acquis corpus is a collection of leg-
islative European Union documents (JRC) and
Common Crawl corpus (CC) which encompasses
over petabytes of web crawled data collected over
seven years. It should be noted that we do not take
advantage of the parallel information encoded in
the parallel corpora.

Table 1 shows the number of content words (#
content words) for each corpus.

Comparable corpus # content words
FR EN

BC 8,221 79.07
NC 5.7M 4.7M
EP7 61.8M 55.7M
JRC 70.3M 64.2M
CC 91.3M 81.1M

Table 1: Characteristics of the specialized compa-
rable corpus and the external data.

The documents were pre-processed through ba-
sic linguistic steps such as tokenization, part-of-
speech tagging and lemmatization using the TTC
TermSuite5 tool that applies the same method to
several languages including English and French.
Finally, the function words were removed thanks
to a stopword list and the hapax 6 were discarded.

4.2 Bilingual Dictionary
The bilingual dictionary is the French/English dic-
tionary ELRA-M00337 (243,539 entries). This re-

4www.elsevier.com
5code.google.com/p/ttc-project
6Tokens that appear only once in the corpus.
7catalog.elra.info/product_info.php?

products_id=666

source is a general language dictionary which con-
tains only a few terms related to the medical do-
main.

4.3 Gold Standard

The bilingual terminology reference list required
to evaluate the quality of bilingual terminology
extraction from comparable corpora has been de-
rived from the UMLS8 meta-thesaurus. The ter-
minology reference list is composed of 248 sin-
gle word pairs for which each word appears at
least 5 times in the comparable corpus. This list
is of a standard size compared to other works
such as Chiao and Zweigenbaum (2002): 95 single
words, Morin et al. (2007): 100 single words and
Bouamor et al. (2013): 125 and 79 single words.

5 Experiments and Results

The first piece of work comparing methods for
identifying translation pairs in comparable cor-
pora was presented in Jakubina and Langlais
(2016). However the evaluation was conducted
on Wikipedia, which is a general domain corpus.
In our case, we are interested in specialized do-
mains where there is a lack of specialized data.
Our experiments aim at exploring word embed-
dings performance in specialized comparable cor-
pora, which is to our knowledge, the first attempt
at tackling this problem. Moreover, and as it has
been pointed out in Mikolov et al. (2013), applica-
tions to low resource domains is a very interesting
topic where there is still much to be explored.

In this section, we compare different word em-
bedding representations for the extraction of bilin-
gual terms from specialized comparable corpora.
We contrast Skip-gram and CBOW models as well
as different ways of combining them over special-
ized and general domain corpora.

5.1 Word2vec

For word2vec, we used as settings a window size
of 10, negative sampling of 5, sampling of 1e-3
and training over 15 iterations. We applied both
Skip-gram and CBOW models9 to create vectors
of 100 dimensions. We used hierarchical softmax
for training the Skip-gram model. Other settings
were assessed but on average the chosen ones tend
to give the best results on our data.

8www.nlm.nih.gov/research/umls
9To train word embedding models we used the gensim

toolkit (Rehurek and Sojka, 2010)

689



Corpus CBOW SG Concat

BC 17.1 12.8 20.8
NC 33.9 31.2 33.6
EP7 42.3 40.8 43.1
JRC 40.3 40.5 43.4
CC 60.9 56.0 61.0
BC ∪ NC 42.9 37.7 46.3
BC ∪ EP7 47.2 49.0 53.3
BC ∪ JRC 49.9 46.5 53.0
BC ∪ CC 67.7 63.2 68.4
BC_(BC ∪ NC) 45.5 30.7 48.1
BC_(BC ∪ EP7) 51.6 35.7 53.8
BC_(BC ∪ JRC) 53.7 36.3 56.1
BC_(BC ∪ CC) 70.7 40.2 70.9

Table 2: Results (MAP %) of word2vec using the Skip-gram model (noted SG), the Continuous Bag of
Words model (noted CBOW) and the concatenation of both models (noted Concat). The window size
was set to 10 and the vector size to 100.

5.2 Bilingual Mappings of Word Embeddings

For mapping words of the source language to the
target language we follow the method presented
in Artetxe et al. (2016) where they presented an
efficient exact method to learn the optimal lin-
ear transformation that gives the best results in
translation induction. While we contrasted dif-
ferent configurations of there framework, we only
present the best results. We used the orthogonal
mapping with length normalization and mean cen-
tering of vectors10.

5.3 Results

Table 2 shows the results of word2vec according
to different configurations. The first column rep-
resents the corpora that have been used to train
word2vec models. The first bloc lines compares
the performance of word2vec models on the spe-
cialized breast cancer corpus (BC) and the four
external data that are: news commentary (NC),
EuroParl (EP7), JRC acquis (JRC) and common
crawl (CC). The second bloc lines compares the
models trained on the combination of BC with
each external corpus. For instance BC ∪ EP7
consists of training word2vec on the combination
of BC and EP7. Finally, the third bloc lines
shows the concatenation of two models, the first
one trained on the specialized corpus (BC) and the
second one trained on the combination of BC with
a given external corpus (BC ∪ EP7 for instance).

10These parameters have also shown the best results in
Artetxe et al. (2016).

This is noted by BC_(BC∪EP7) for the concate-
nation (represented by _) of vectors of BC with
vectors of BC ∪ EP7. The first column of the sec-
ond and third blocs shows CBOW concatenation
while the second shows Skip-gram concatenation.
The third column shows CBOW and Skip-gram
concatenation. Concatenate BC with BC ∪ EP7
instead of BC with EP7 (noted BC_EP7) for in-
stance, insures the presence of all specialized do-
main words in both models.

The first observation that can be seen from Ta-
ble 2 is that the results are very low when us-
ing the specialized BC corpus only (the maximum
obtained MAP is 20.8% for the Concat model).
The second observation is that using external data
only gives better results. The best obtained MAP
score is 61.0% when using CC corpus. This is
certainly due to the presence of medical terms
in the general domain corpora which have been
crawled from the web and can contain scientific
pages. Over the first bloc lines results, we can see
that CBOW model outperforms Skip-gram model
in most cases which is not surprising in the sense
that CBOW aims at characterising a word accord-
ing to its context while Skip-gram characterises a
context according to a given word. From this point
CBOW is more appropriate for our task. However,
combining both CBOW and Skip-gram as shown
by the Concat model, always improves the MAP
scores. This is an important finding that shows that
both models are complementary.

According to the second bloc lines results, we
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Word2vec + Mapping BCconcat CCconcat
Unconstrained+Original 11.4 48.0
Orthogonal +Original 19.5 69.9
Unconstrained+ Unit 11.8 50.4
Orthogonal + Unit 19.0 70.1
Unconstrained+ Unit+ Center 12.3 54.0
Orthogonal + Unit+ Center 20.8 70.9

Table 3: Results (MAP %) of word2vec using different mapping techniques.

BC NC EP7 JRC CC

SA 27.0 45.3 48.5 52.0 75.5
GSA - 58.9 58.3 61.7 80.2
SSA - 58.9 60.8 66.6 82.3

GCBOW 17.1 42.9 47.2 49.9 67.7
GSG 12.8 37.7 49.2 46.5 63.2
GCBOW +GSG 20.8 46.3 53.3 53.0 68.4

SCBOW - 45.5 51.6 53.7 70.7
SSG - 30.7 35.7 36.3 40.2
SCBOW + SSG - 48.1 53.8 56.1 70.9

Table 4: Results (MAP %) of the Standard Approach (SA), the Global Standard Approach (GSA) and
the Selective Standard Approach (SSA) for the breast cancer corpus (BC) using the different external
data (the improvements indicate a significance at the 0.001 level using the Student t-test).

observe that combining the specialized bilingual
corpus (BC) with external data always improves
the results. This can be noticed for the BC ∪ CC
corpus where we increase the MAP score for
CBOW from 60.9% to 67.7%, the MAP score
for Skip-gram from 56% to 63.2% and the MAP
score for the Concat approach from 61% to 68.4%.
These are also interesting results which coincide
with the observations of Hazem and Morin (2016).
Hence, combining specific and general domain
corpora before applying any model always bene-
fits the task of bilingual terminology extraction.

Finally, for the third bloc lines where we
combine the model issued from the first bloc
(the BC model) and models issued from the sec-
ond bloc lines (BC∪EP7 for instance), two obser-
vations need to be pointed out. The first one is that
for CBOW model concatenation we still get im-
provements as we can see for CC where we gain
3 points (from 67.7% to 70.7% of MAP score).
The second surprising observation is that Skip-
gram concatenation decreases the results. This
drop may suggest that Skip-gram concatenation
is not appropriate for this configuration. How-
ever the concatenation of CBOW and Skip-gram

models (the Concat approach) still improves the
results as we can see for BC_(BC ∪ JRC) where
we move from 53% to 56.1% of MAP score and
for BC_(BC ∪ CC) where we increase the MAP
score from 68.4% to 70.9%. For this last result
the gain is not that important compared to the
CBOW_CBOW model that obtains a MAP score
of 70.7%.

In Table 3 we report a comparison of differ-
ent mappings as studied in Artetxe et al. (2016).
We contrast unconstrained and orthogonal map-
pings using original as well as length normal-
ization (noted unit) and mean centering (noted
Center). As we can see, the best results are those
obtained using orthogonal mapping with length
normalization and mean centering. We reach the
same conclusions as Artetxe et al. (2016).

In Table 4 we present the results from Hazem
and Morin (2016) of the standard approach (noted
SA) using only specialized comparable corpora
(BC) or using only external data (NC, EP7, JRC
and CC), in addition to the two adapted standard
approaches (notedGSA and SSA) using the com-
bination of each specialized comparable corpus
with each corpus of the external data. We also
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report the best results of each of the three word
embedding methods that we introduced earlier in
Table 2.

Even if we obtained improvements over our dif-
ferent embedding models, we are still below the
standard approach as seen in Table 4. The lack of
specialized data may partially explain these lower
results as well as the multiple tuning parameters of
CBOW and Skip-gram models.

6 Conclusion

In this paper, we have proposed and contrasted
different data combinations using neural networks
for bilingual terminology extraction from special-
ized comparable corpora. We have shown un-
der which conditions external resources as well as
Skip-gram and CBOW models can be jointly used
to improve the performance of bilingual terms ex-
traction. If the results are encouraging, we were
unable to compete with the results of the histori-
cal context-based projection approach. However,
our findings may suggest a starting point of apply-
ing word embeddings and the multiple proposed
variants to specialized domains as well as to other
tasks. We hope this work will help to lead the way
in exploring low resource domains such as special-
ized comparable corpora.
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Emmanuel Morin, Béatrice Daille, Koichi Takeuchi,
and Kyo Kageura. 2007. Bilingual Terminology
Mining – Using Brain, not brawn comparable cor-
pora. In Proceedings of the 45th Annual Meet-
ing of the Association for Computational Linguistics
(ACL’07), pages 664–671, Prague, Czech Republic.

Emmanuel Morin and Amir Hazem. 2016. Exploit-
ing unbalanced specialized comparable corpora for
bilingual lexicon extraction. Natural Language En-
gineering, 22(4):575–601.

Emmanuel Prochasson and Pascale Fung. 2011. Rare
Word Translation Extraction from Aligned Compa-
rable Documents. In Proceedings of the 49th Annual
Meeting of the Association for Computational Lin-
guistics (ACL’11), pages 1327–1335, Portland, OR,
USA.

Reinhard Rapp. 1995. Identify Word Translations in
Non-Parallel Texts. In Proceedings of the 35th An-
nual Meeting of the Association for Computational
Linguistics (ACL’95), pages 320–322, Boston, MA,
USA.

Reinhard Rapp. 1999. Automatic Identification of
Word Translations from Unrelated English and Ger-
man Corpora. In Proceedings of the 37th Annual
Meeting of the Association for Computational Lin-
guistics (ACL’99), pages 519–526, College Park,
MD, USA.

Radim Rehurek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA.
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Abstract

In many languages such as Bambara or
Arabic, tone markers (diacritics) may be
written but are actually often omitted.
NLP applications are confronted to am-
biguities and subsequent difficulties when
processing texts. To circumvent this prob-
lem, tonalization may be used, as a word
sense disambiguation task, relying on con-
text to add diacritics that partially disam-
biguate words as well as senses. In this pa-
per, we describe our implementation of a
Bambara tonalizer that adds tone markers
using machine learning (CRFs). To make
our tool efficient, we used differential cod-
ing, word segmentation and edit opera-
tion filtering. We describe our approach
that allows tractable machine learning and
improves accuracy: our model may be
learned within minutes on a 358K-word
corpus and reaches 92.3% accuracy.

1 Introduction

Bambara (Bamana, Bamanankan, ISO-369 Bam)
is the most widely spoken language of the Mand-
ing language group. It is spoken mainly in Mali
(and among the considerable Malian diaspora) by
12 to 15 million people. It is not an official lan-
guage; however it is the major language (besides
French) on Malian radio and TV broadcasts, there
are newspapers in Bambara, it is broadly used
in humanities and in primary schools, and it is
taught at several universities around the world. In
the Mande language family, Bambara is among
the best described: there are numerous works on
Bambara language, such as dictionaries (Bailleul,
2007; Dumestre, 2011), description of its grammar
(Dumestre, 2003; Vydrin, 1999b,a).

Bambara is a tonal language, with the impor-
tant drawback that its official orthography does
not represent tones. Because several tonalized
forms can correspond to some unaccented tokens,
it makes word sense more ambiguous in corpus
and imposes important challenges to NLP appli-
cations. Our goal is to remedy this issue by im-
plementing an automatic tonalizer for Bambara, to
improve subsequent NLP processings and facili-
tate linguistic analysis for Bambara.

2 Bambara Reference Corpus

Our work relies on an annotated corpus, the Bam-
bara Reference Corpus (BRC, in French Corpus
Bambara de Référence), a linguistically annotated
corpus suitable both for linguistic research and for
NLP tools development. Building BRC started in
2010 as a project conducted by a small group of
specialists in Manding linguistics and computer
sciences in Russia. Later on, colleagues from
other countries (France, Germany) joined the team
to provide more texts, clean the corpus, and au-
tomatically preprocess it. The corpus is available
online since April 2012, most relevant information
about the project may be found online1 or in pub-
lications (Vydrin, 2013, 2014).

Part
Type Words (dist.) Punct.

Non-disamb. 2,160,155 (58,277) 358,659
Disamb. 358,794 (23,875) 61,847

Table 1: Corpus statistics

Table 1 and Figure 1 present overall corpus
statistics and characteristics 2. The corpus consists

1http://cormand.huma-num.fr/index.html
2Corpus is continuously growing and contains, as of June

2017, 4,113,006 raw words and 903,585 in the disambiguated
part.
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Written
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Internet
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Manuscript
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Magazines

19.5%

Academic

17.1%
Undet.

7.2%

Figure 1: Corpus composition (medium, source)

of two parts: an automatically annotated subcor-
pus which contains ambiguous interpretations for
each token (non-disambiguated), and a manually
disambiguated subcorpus which serves as a gold-
standard annotated dataset.

2.1 BRC Tools and Resources

The available data within the BRC project includes
source text files and an electronic Bambara dic-
tionary. Dedicated tools have been implemented
to annotate the corpus. The collection of soft-
ware tools developed for the BRC (parser, dis-
ambiguation interface, various auxiliary scripts) is
called Daba (Maslinsky, 2014) and is available on-
line3. Among them, a rule-based parser was built
to bootstrap the annotation of the corpus.

Thanks to this data and these tools, a gold stan-
dard has been created by human annotators pro-
ficient in Bambara. This process is described in
Figure 2: The parser’s output is reviewed, and an-
notation is done by selecting or editing required
information for each wordform.

Daba
Text
Files

Dictionary
(Bamadaba)

HTML
Files

Annotators

NoSketch
Engine

Linguists

Figure 2: BRC data workflow

2.2 Main Goals for BRC

The project’s goal is to disambiguate the whole
corpus. Wordform annotation is done for each
wordform and for three main features:

• POS Tagging

• Tone Marker Restoration

• Gloss Assignment

3https://github.com/maslinych/daba

We are currently working on these tasks by us-
ing sequential modeling with various additional
techniques. For POS tagging, we use state of
the art, Conditional random fields (CRFs; Laf-
ferty et al. 2001) over 23 morpho-syntactic pos-
sible tags, our implementation reaches 94% accu-
racy, which is quite satisfying for such an under-
resourced language.

For the tone marker restoration task, we consid-
ered using similar methods, but the tag set is much
larger: 20,870 distinctive tonal forms are found,
which prevents an efficient learning. We have to
reduce training complexity by finding an adequate
representation that will allow to model tone addi-
tion without listing every possible form.

2.3 Tone Markers in Bambara

The word-level tonal information is provided by
tonal form or so-called diacritized form in the lit-
erature. The tone markers inserted in tonal form
are mainly acute accent ( ´ ) for low tone, grave
accent ( ` ) for high tone, háček ( ˇ ) for phonet-
ically rising tone and circumflex accent ( ˆ ) for
lexical rising tone. For instance, a non-tonalized
token tugu can be tonalized as a noun tùgu (arms)
or a verb túgu (to close) that we can find in its
quasi-homonym list.

Ideally, the only difference between a tonalized
token compared to its non-tonalized form is the
presence of tone accents. In reality, annotators
also often introduce other modifications, mainly
typographic and orthographic correction. As we
will see later, this fact makes it necessary to oper-
ate filtering on edit operations, in order to properly
focus on tonalization operations.

To give an idea of tonal form variety, we pro-
pose to compare annotated tokens to their original
forms. Related statistics are summarized in Ta-
ble 2, showing that the probability for modifica-
tions other than tonalization during annotation is
not negligible : 8.90% modification are related to
other modification such as typographic or ortho-
graphic correction. We will have to take this into
account for our system to focus on tonalization op-
erations.

3 Problem Formulation

Our objective is to design a word sense disam-
biguation system for Bambara helping to choose
the most correct interpretation from the quasi-
homonym list provided for each token in the sub-
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Operation Ratio
Tonalization 38.73%

Other 8.90%
None 52.35%

Table 2: Distribution of edit operation to anno-
tated forms receiving: only tone markers, other
characters, or nothing (i.e., tonalized token is iden-
tical to its non-tonalized form)

corpus processed by Daba.
The drawback of modeling sequences of large-

scale label set is the expensive computational
cost needed to estimate CRF parameters. Indeed,
the quasi-Newton method that CRF training em-
ploys for solving parameter estimation of CRF
model has a computational cost proportional to
M2 where M is the size of label set (Sutton and
McCallum, 2010). This makes CRF learning com-
putationally expensive when labels are the set of
possible tonalized words.

4 Related Works

4.1 Automatic Diacritization and Sub-word
Level Modeling

Simard (1998) presented a method for accent
insertion in French using a two-layers Hidden
Markov Model (HMM) trained over a POS-tagged
corpus while Tufiş and Chiţu (1999) adapted a tri-
gram tagger to this task for Romanian. Focused on
word-level modeling, their method requires lexical
resources.

Elshafei et al. (2006) use a single-layer HHM
for diacritization of Arabic text. Scannell
(2011) extended diacritization to uni-codification
in African languages by solving it using a Naive
Bayes classifier. Their models, trained with tri-
gram features on word and character levels, do not
need other resources than an accented corpus, so it
is compatible with resource-scarce languages.

Nguyen et al. (2012) implemented a system for
accent restoration in Vietnamese based on two dif-
ferent models including the CRFs. The training
corpus is preprocessed and annotated to indicate,
both at syllable and character levels, the accents to
insert to recover diacritic forms. Learning how to
infer diacritic forms is indirectly reached by learn-
ing their differential representation.

Some hybrid approaches were also proposed for
Arabic Diacritization : Said et al. (2013) com-

bined a CRF and a morphological analyzer to
improve diacritization accuracy, while Metwally
et al. (2016) proposed a three-layer processing
composed of a CRF, a HMM and a morphologi-
cal analyzer.

4.2 Category Decomposition
In the domain of CRF-based tagging, the idea to
decompose label set in small pieces to train in or-
der to gain learning performance can be found in
(Tellier et al., 2010). They proposed to map to-
tal label set to a category tree and experiment to
train on labels in a cascade manner or to train
independently on each label components which
correspond to a sub-category and then recombine
them to obtain the total label. They concluded that
their method, coined “category decomposition”,
improves greatly the time-wise efficiency of learn-
ing process.

5 Methodology

5.1 Fundamental Definitions
In the following, we will introduce essential ele-
ments to our methodology .

LetX , Y , ∆ be three discrete random variables:
non-tonalized token, tonalized token and code. X
and Y take value from Ω (character set with or
without diacritics) and ∆ is either ∅ (no modi-
fication) or a concatenation of codewords, where
a codeword is a triplet containing operation type
(insertion or deletion), position for operation and
character (if insertion) from Σ:

Σ ≡ {+1,−1} × N>0 × Ω (1)

We define E and D, respectively encoder and
decoder functions, inverses of each other, such as:

∆ = E(Y ;X)
Y = D(∆;X)

(2)

5.1.1 Entropy Reduction Ratio
rE is called entropy reduction ratio of E as de-
fined:

rE(∆, Y ) ≡ H(Y )
H(∆)

or
H(Y )

H(E(Y ;X))
(3)

for any ∆ satisfyingH(∆) 6= 0.
We need to predict tonalization for every non-

tonalized token value X = x. Instead of predict-
ing on Y , we can predict first on ∆ and decode
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∆ to obtain Y indirectly by using the second re-
lation in (2). This will allow to greatly reduce the
number of possible values of our model: we pre-
dict differential codes instead of tonalized words
themselves.

In the next subsections, we try to design an ef-
ficient encoder E which maximizes rE so that the
resulting code ∆ has a reduced set of possible val-
ues, it is more easy for a CRF-based modeler to
learn on ∆ than on Y as explained in the last para-
graph of section 3.

5.2 Tonalization as Edit Operations
To maximize rE (i.e. reduce ∆), we use an algo-
rithm to represent the difference between Y and
X by a minimal sequence of basic operations re-
quired for recovering Y from X . These basic op-
erations are known as edit operations that we will
present in the following.

By edit operation s, we mean a mapping from
string a to string b, where a, b are sets of
string drawn from the alphabet Ω such that if
a is expressed as concatenation of characters as
a1 a2 ... aN−1 aN , then the mapping can be writ-
ten as

b = s(a;σ) (4)

where σ = (m, p, c) ∈ Σ is a parameter tuple, m
is an operation type indicator, p is a position pa-
rameter, c is a character involved by the operation.

And the mapping output b will be

b=

{
a1a2...ap−1 c ap...aN , m=+1
a1a2...ap−1 ap+1...aN , m=−1

(5)

We can see in (5), that when m = +1, s rep-
resents an insertion operation which consists in
adding c just before the p-th character4in a, while
in the case of m = −1, s denotes a deletion oper-
ation which removes the p-th character from a.

5.2.1 Use of Wagner-Fischer Algorithm
For any pair of strings (x, y), the Wagner-
Fischer algorithm5 in (Wagner and Fischer, 1974)
allows to obtain a minimal sequence S =
(σ1, σ2, ..., σM−1) such that:

Ai+1 = s(Ai;σi + (0, li,∅))
li+1 = li +m(σi)

A0 = x,AM = y, l0 = 0
(6)

4Or just after the (p− 1)-th character, when p = N
5In this article, we apply Wagner-Fischer algorithm in its

special case where there are only 2 available edit operations
against 3 edit operations including the substitution as in its
general case.

Where 0 ≤M , 1 ≤ i ≤M−1, position param-
eters p of σi denoted by p(σi) form an increasing
series with respect to index i:

p(σi) ≤ p(σi+1) (7)

For the edit operations acting on the same po-
sition p, insertions must precede6 deletion as de-
scribed below:

m(σi) ≥ m(σi+1), if p(σi) = p(σi+1) (8)

Because it does not make sense to delete a char-
acter of a string twice, we assume that, for a given
character position, only one deletion may occur:

Thus, h(σi) below forms an increasing series

h(σi) ≡ 2 · p(σi) + 0.5× [1−m(σi)] (9)

5.2.2 Encoder
If we set encoder E(y;x) as an application of
Wagner-Fischer algorithm on (x, y), and δ as the
concatenation of elements of S like

δ = σ1σ2...σM−1 (10)

Then E(y;x) is specified so that the first relation
in (2) is satisfied.

5.2.3 Decoder
Moreover, if we choose D(δ;x) as an implemen-
tation of (6) applied on x with δ as parameter, this
specifies a way to use x and the code δ to recovery
y, and define a decoder.

To show that the entropy is effectively reduced,
we will present experiments in section 8 for eval-
uation of entropy reduction ratio of rE .

5.3 Segmentation
Segment decomposition of a string x is a map-
ping from a string x to strings called segments
x(1)x(2)x(3)...x(L) so that the concatenation of the
latter is equal to the original string x.

We can then divide the resulting code δ in L
code segments δ(1)δ(2) ... δ(L) described as:

δ = δ(1)δ(2) ... δ(L) (11)

δ(i) is the code segment (i.e. a sub-sequence of
code δ) associated with x(i):

δ(i) = σmin(Si)...σmax(Si) (12)

6Or we can also state that deletions precede insertions. In
this case, the second relation of (6) will be different for that
decoder to work properly. So this was our design choice.
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where Si is the set which contains the indices of
all edit operations acting on segment x(i).

Furthermore, we define shifted version of δ(i) as
below

δ′(i) = σ′min(Si)
...σ′max(Si)

(13)

where σ′min(Si)
= σmin(Si) + (0,−ei,∅), ei =∑i−1

k=1 |xk| position offset. It can be shown that
y can be obtained by concatenation 7 of decoding
results of D on shifted code segment δ′(i) as below

y=D(δ′(1);x(1))D(δ′(2);x(2))...D(δ′(L);x(L)) (14)

Using the proposed segmentation allows to get
the shifted code segment δ′(i) associated with seg-
ment x(i). For obtaining y, it suffices to individ-
ually decode code segments δ′(i) using the same
decoder defined in (2). Hence, an encoder - de-
coder pair is indirectly specified as:

δ′(i) = E′(y, x(i))

y(i) = D(δ′(i), x(i))
(15)

The segmentation technique allows a CRF-
based system to learn δ′(i) individually instead of
a total code δ at once. The relation in (14) can then
be used to recover y from predicted code segments
δ′(i) produced by CRF taggers.

To show the effect of segmentation on entropy
reduction ratio rE′ , we will evaluate experiments
in section 8 with different segmentation settings
such as syllabification and fixed-width segmenta-
tion.

5.4 Edit Operation Filtering

As previously explained, segmentation on x leads
to splitting code δ in several code segments δ(i)

(or its shifted version δ′(i)) because it regroups edit
operations σj = (mj , pj , cj) inside δ by position
parameter pj .

Edit operation filtering allows to split each code
segment δ(i) in some subgroups by operation type
mi and character involved by operation ci. But
as opposed to segmentation, in the filtering pro-
cess, some edit operations are dropped because
of their irrelevance regarding our tonalization goal
for Bambara.

7Alternatively, it is also possible to obtain the integral
code δ from δ′(i) using relations (11), (12), (13) and to get
the underlying tonalized token y by direct decoding on the
integral code δ.

First, we recall that the order of edit operations
called σ′k inside the sequence δ′(i) is partially de-
termined by their elements. It can be shown, more
generally that the order restriction in (7), (8) leads
directly to

p′k < p′l =⇒ k < l (16)

m′k > m′l ∧ p′k = p′l =⇒ k < l (17)

where m′k ≡ m(σ′k), p′k ≡ p(σ′k), k 6= l.
Thus, the order between any two edit operations

in δ′(i), called σ′k, σ
′
l is free only in the case of

multiple insertion acting on the same position of
a string, i.e. m′k = m′l = +1, p′k = p′l.

5.4.1 Tone Marker Filtering
The aim of tone marker filtering is to remove edit
operations irrelevant to tonalization. It consists
in removing all insertions of characters which are
not considered as tone markers, and keeping only
the first of all insertions (also only the first one of
all tone deletions) operating on the same position
(because neither multiple insertions nor multiple
deletions are supposed to be present in pure tonal-
ization).

In addition, the filter contributes to reduce the
code so that the order of edit operations in fil-
ter output becomes totally determined by edit op-
eration arguments (i.e. p and m) via relations
(16)(17). Therefore, the indexing function h de-
fined in 9 forms a strictly increasing series.

5.4.2 Edit Operation Decomposition
We define an edit operation dispatcher Fm as a
mapping from input code δin to its sub-sequence
described as:

Fm(δin; k) = σmin(Vk(δin))...σmax(Vk(δin)) (18)

where Vk(δ) is the set which contains the indices
of all edit operations in δ of type k, k ∈ {−1,+1}

For recall, the tone marker filter produces a
code result in which h(σi), i > 0 forms a
strictly increasing sequence. This property im-
plies that there exists an inverse mapping from
{Fm(δin; k)}k∈{−1,+1} to δin if δin is a filtered
result. We call this underlying mapping edit op-
eration assembler.
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6 System Architecture

In this section, we present the architecture of our
system for automatic tone marker insertion for
Bambara text by detailing its functional blocks and
internal data flow.

6.1 Training Stage

At training stage, as shown in Figure 3, the tonal-
ization system uses an encoder to represent the dif-
ference of the tonalized token value y relative to its
original non-tonalized token value x by the code
δ. The code δ as well as the non-tonalized token x
are then fed into the code segmenter which breaks
down δ in small shifted code segments δ′(i). The
tone marker filter takes the shifted code segments,
selects tone markers and sends its output to a dis-
patcher which distinguishes insertion and deletion
operations.

In the following, two CRF models are trained
individually on relation (x, δ′(i)+ ) and on relation
(x, δ′(i)− ) in the reference corpus.

6.2 Tonalization Stage

In tone recovery stage, the two trained CRF mod-
els are used to predict the two parts of shifted code
segment δ′(i)+ , δ′(i)− from tonalized token x. Then
they are fed to, as shown in Figure 4, an edit oper-
ation assembler to get predicted shifted code seg-
ment δ′(i) ; at the same time, the non-tonalized
token x is re-segmented to get x(i). Then, the
non-tonalized segment x(i) as well as the shifted
code segment δ′(i) are sent to be decoded to obtain
tonalized segment y(i) in decoder output. In the
end, the decoded tonalized segments y(i) are re-
united in the code assembler to give the estimated
integral tonalized token value y.

7 Running examples

To illustrate more concretely how our system
works at training stage, we propose in the follow-
ing, two running examples: the first one shows
how our system models a pure tonalization; the
second one shows how the tone marker filter could
be helpful when some typographic modifications
are introduced in the tonalized form.

7.1 Example 1 (pure tonalization)

In this example, the system models the tonaliza-
tion from lakali to lákàlı́. Hence, x, y are set as

below:

x = lakali

y = lákàlı́

The tone encoder compares x and y, then outputs
the differential representation as tonal code δ be-
low:

δ = [(+1, 2, )́, (+1, 4, )̀, (+1, 6, )́]

In the above, the 3 codewords that δ contains rep-
resent the 3 tone markers inserted into x to model
for this tonalization.

δ(1) = [(+1, 2, )́]

δ(2) = [(+1, 4, )̀]

δ(3) = [(+1, 6, )́]

The syllabification is examplified below on non-
tonalized and tonalized form:

x(1) = la, y(1) = lá

x(2) = ka, y(2) = kà

x(3) = li, y(3) = ĺi

We observe that the 3 tone markers are all inserted
after the second character for each of 3 syllables.
Therefore, we got 3 shifted versions of code seg-
ments operating at position 2 as below.

δ
′(1)
+ = δ′(1) = [(+1, 2, )́]

δ
′(2)
+ = δ′(2) = [(+1, 2, )̀]

δ
′(3)
+ = δ′(3) = [(+1, 2, )́]

As in this example, only the tone marker insertions
are to be modeled, the tone marker filter, edit oper-
ation decomposition unit do not affect system re-
sult at training stage.

7.2 Example 2 (noisy tonalization)

The system models the tonalization from
taanikasegin to táa-ká-ségin. Hence, x, y are set
as below:

x = taanikasegin

y = táa− ká− ségin

In the following, we show the syllabification re-
sult of y presented with its related to non-tonalized
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Figure 4: Block diagram for the proposed Bambara tonalization system at tonalization stage

form.

x(1) = taani, y(1) = táa−
x(2) = ka, y(2) = ká−
x(3) = se, y(3) = sé

x(4) = y(4) = gin

Subsequently, 7 codewords are obtained from dif-
ferential tone encoding, then departed in 4 code
segments corresponding to 4 syllables:

δ(1) =[(+1, 2, )́,
(+1, 3,−), (−1, 4, n), (−1, 5, i)]

δ(2) =[(+1, 7, )́, (+1, 7,−)]

δ(3) =[(+1, 9, )́]

δ(4) =∅

As a remark, the first syllable in the above is the
most concerned by noise : one dash symbol inser-
tion and 2 character removals are observed. The
tone marker filter removes all character deletions
and insertions in code segments. Therefore, tonal-
ization is modeled by only tone marker insertions
as below:

δ
′(1)
+ = δ′(1) = [(+1, 2,́ )]

δ
′(2)
+ = δ′(2) = [(+1, 2,́ )]

δ
′(3)
+ = δ′(3) = [(+1, 2,́ )]

δ
′(4)
+ = δ′(4) = ∅

Here, we found a tonalization representation sim-
ilar to the one from the preceding example: inser-
tion of a tone marker at position 2 for some sylla-
bles.

8 Experiment

8.1 Experiment Setup

The disambiguated corpus of BRC which contains
tonalized tokens is chosen as training data. The
train data then is split into training and evaluation
data sets with ratio p : (1− p). By default, p is set
to 50% for efficiency reason.

For CRF implementation, we use CRFSuite as
open-source library with l-BFGS algorithm speci-
fied as training method, Viterbi algorithm as infer-
ence method (Okazaki, 2007) .

The segmentation mode is specified by the in-
teger w described in the following : w = −1 in-
dicates a syllabification (as obtained by BRC mor-
phological parser), w = 0 for no segmentation and
w > 0 signals a w-width regular segmentation8.

We denote different configurations of our sys-
tem by their functional layout at training stage.
For specifying the functional layout, the follow-
ing symbols D, F , S, E are used to indicate re-
spectively four constituent blocks of the system :
D for edit operation decomposition block, F for
tone marker filter block, S for segmentation block,
E for encoder block, and ◦ denotes an inter-block
connection. For example, S ◦ E represents an en-
coder followed by a segmenter as system.

8A regular segmenter forms a segment of every w succes-
sive characters, from left to right (i.e. in direction of writing
of Bambara), in its input string. By exception, the last seg-
ment at output contains the rest of the string which has not
yet been segmented so that we allow it to be equal or shorter
than a segment of w characters.
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8.2 Feature Engineering
The feature patterns we created are the same for all
CRF models. The features are generated for each
segment9 for tokens in the training data x(i).

For each segment, features indicate:

• At segment (sub-word) level

– Previous, current and next segment
– Substring containing all vowels for cur-

rent segment
– Position of current segment (integer)

relative to beginning or ending of word
– Typography of segment: all capital let-

ters, presence of numbers or punctuation
marks

• At word level

– Previous, current and next words
– Prefix and suffix for previous, current

and next words
– Position of current word (integer) rela-

tive to beginning or ending of sentence

8.3 Evaluation Measure
As shown by the example of the section 7.2, the
tonalized token y can itself be noisy. On the other
hand, we are particularly interested in errors intro-
duced by CRF-based in predicting δ′(i)+ ,δ′(i)− from
x. Consequently, our accuracy evaluation is based
on the comparison of two tokens described as be-
low:

• A gold standard according to tonalization fil-
tering (i.e. typographic modification are not
expected)

• The token tonalized by our system, result-
ing from applying δ′(i)+ ,δ′(i)− (predicted by the
CRFs) to the segments x(i)

8.4 Experiment Results
8.4.1 Coding and Segmentation
The entropy for the tonalized token Y that we cal-
culated on the disambiguated part of BRC is 8.73
bits of entropy for 20,870 distinctive tonal forms.
As shown in Table 3, the tonalization representa-
tion produced by tone encoder ∆ has only 3.38
bits of entropy (1,273 distinctive codes). In other

9If the edit operation decomposition is used, as we use two
CRF models, features are generated on segment components
(for insertion and for deletion) individually

word, the entropy is reduced by a factor of 2.58
by only using the differential tone encoder. If
segmentation is also used, shorter segments lead
to greater entropy reduction. The extreme case
is to segment by character (w = 1), leading to
an entropy reduction ratio of 4.82, and implies
character-level processing.

8.4.2 Segmentation and Operation Filtering
Table 4 presents an experiment on the impact
of system configuration (related to Figure 4) and
segmentation mode on tonalization accuracy and
training time of our system. For comparison, the
accuracy of a baseline based on majority voting
method is also provided in the last row.

We note first that segmentation improves accu-
racy. Syllabification as well as regular segmen-
tation with a fixed width close to averaged sylla-
ble length (3.24 characters) gives the best result in
accuracy (0.92). Regarding system configuration,
accuracy is generally preserved over the four dif-
ferent configurations except of when applying op-
eration decomposition without filtering. This can
be explained by the fact that decomposition is not
totally recoverable as mentioned in section 5.4.2
for data which is not processed by tone marker fil-
ter, it can introduce some errors within assembler
at tonalization phase and degrades its accuracy.

Training time is dramatically reduced by seg-
mentation and by edit operation decomposition.
This may sometimes be at the cost of accuracy, but
syllabification or fixed segmentation with width
w = 2 is a nice trade-off, preserving accuracy and
keeping training time acceptable.

Those experiments allow to state that segmenta-
tion is gainful both for accuracy and training time
(see last column). Decomposition and filtering do
not have a tremendous impact on accuracy, but
are unavoidable to be able to train models on the
whole dataset in reasonable time.

8.4.3 Effect of Train Size and Error Analysis
Figure 5 shows how the training set size influences
the tonalization accuracy and training time. We
can see the progress in accuracy with respect to
training set size is less considerable when p ≥
50% than when p < 50%. The training time in-
creases dramatically with respect to training set
size.

Table 5 shows distribution of errors which oc-
cur in automatic tone insertion (not in tone dele-
tion). The error occurs due to a bad prediction in
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Entropy
Width w

-1 (Syllabe) 1 2 3 4 5 6 0

H(δ′(i)) 2.67 1.81 2.56 2.86 3.11 3.23 3.29 3.38
rE(δ′(i), y(i)) 3.27 4.82 3.41 3.05 2.80 2.70 2.65 2.58

Table 3: Encoder entropy H(∆) and reduction ratio rE(δ′(i), y(i))

Systems
Width w

-1 (Syll.) 1 2 3 4 5 6 0

D ◦ F ◦ S ◦ E 0.923 0.912 0.923 0.923 0.918 0.911 0.904 0.893
time 19.88 17.62 13.17 15.67 19.62 32.40 44.25 261.83

F ◦ S ◦ E 0.924 0.916 0.923 0.923 0.918 0.911 0.905 0.894
time 57.68 19.42 20.72 35.70 62.85 121.08 168.27 2455.80

D ◦ S ◦ E 0.921 0.911 0.921 0.922 0.916 0.910 0.903 0.892
time 28.28 21.27 19.72 29.17 39.90 57.35 70.15 793.85

S ◦ E 0.923 0.915 0.922 0.922 0.917 0.910 0.904 0.893
time 101.63 25.52 42.03 235.35 378.37 169.55 318.23 2683.72

Majority vote 0.843

Table 4: Accuracy for our system trained with four different system configurations and eight segmenta-
tion modes (p = 50%)
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Figure 5: Accuracy and time of training (config-
ured as D ◦ F ◦ S ◦ E using syllabification) with
respect to different training size 90%-10%

Error Type Ratio
Tone Only 58.52%

Position Only 1.17%
Tone and Position 0.023%

Silence 40.08%

Table 5: Error distribution by type for insertion
operations with p = 50%, system = D ◦ F ◦ S ◦E

character to insert but correct prediction in charac-
ter position is prevalent (58.52%) and the silence
(40.08%) which is a false negative case is also very
frequent. Prediction error only in character po-
sition is as weak (1.17%) as error rate (0.023%)
for both character position and symbol error. This
shows that our system correctly predicts positions
(mainly at beginning of words) and that most of
the errors are due to the difficulty to predict if a
tone has to be added, and which one.

Predicted
´ ` ˆ ˇ

A
ct

ua
l ´ 0.9541 0.0438 0.0021 0.0000

` 0.0841 0.9141 0.0015 0.0003
ˆ 0.0035 0.0322 0.9643 0.0000
ˇ 0.0000 0.0952 0.0000 0.9048

Table 6: Confusion matrix on prediction of tone
markers

Table 6 presents the confusion matrix of the er-
ror occurring due to bad prediction in character
mentioned previously in Table 5. It shows that
these errors are mainly due to the confusion be-
tween low tone ( ´ ) and high tone ( ` ), which are
the two most frequent markers in BRC.
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9 Conclusion

In this paper, we presented our Bambara tonaliza-
tion system for automatic detection of tone mark-
ers in Bambara. Our experiments show that using
segmentation both increases tonalization accuracy
and greatly reduces training time. Our differential
encoder reduces entropy of labels to be predicted,
making CRF learning efficient and allowing to im-
plement a tone marker filter and edit operation de-
composition unit within the tonalization process.
The tone marker filter plays the role of normaliza-
tor of tonalized token to learn in training phase and
in normalizing the token, it leads to reduce train-
ing time. The edit operation decomposition unit
which follows the filter split the tokens in insertion
and deletion of tone markers, allows to accelerate
furthermore the training time reduction without al-
tering tonalization accuracy.
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Abstract

Dialog act segmentation and recognition
are basic natural language understanding
tasks in spoken dialog systems. This pa-
per investigates a unified architecture for
these two tasks, which aims to improve the
model’s performance on both of the tasks.
Compared with past joint models, the pro-
posed architecture can (1) incorporate con-
textual information in dialog act recogni-
tion, and (2) integrate models for tasks of
different levels as a whole, i.e. dialog act
segmentation on the word level and dialog
act recognition on the segment level. Ex-
perimental results show that the joint train-
ing system outperforms the simple cascad-
ing system and the joint coding system on
both dialog act segmentation and recogni-
tion tasks.

1 Introduction

Recently the burst of interactive assistants and
chatbots leads to an increasing interest of dialog
systems. Natural language understanding (NLU),
as an important component of dialog system, is
usually responsible for dialog act (DA) or dialog
intent tagging, where text classification techniques
are necessary. Dialog act (also speech act) is a
representation of the meaning of a sentence at the
level of illocutionary force (Stolcke et al., 2000).
For instance, a sentence “How is the weather?”
belongs to the dialog act class Question. For an-
other sentence, “The weather is quite good to-
day.”, if it follows a previous Question sentence,
it should be an Answer to the question. Otherwise
it is likely to be a Statement. Therefore, DA recog-
nition requires us to understand the sentence from
semantic, pragmatic and syntactic aspects, and its
context plays an important role as well.

Words hi my name is Erica
Segment E I I I E
DA Greeting Statement

Table 1: DA segmentation and recognition.

The prerequisite for DA recognition is to split a
sequence of words into segments, each of which
corresponds to one DA unit. Especially for spo-
ken dialog systems, NLU is based on Automatic
Speech Recognition (ASR) hypotheses or tran-
scripts, in which we cannot make any assump-
tion of punctuation such as periods, commas and
question marks for segmentation. Therefore DA
segmentation becomes essential for spoken dialog
systems. As the example given in Table 1 shows,
a long utterance is firstly split into two segments
“hi” and “my name is Erica”, to which DA tags
“Greeting” and “Statement” are assigned after-
wards. DA segmentation is a sequence labeling
task and an “IE” tag coding scheme is adopted to
describe segment boundaries, where “I” denotes
“inside” of a segment and “E” denotes the “end”.
While the DA segmentation is a pre-process of DA
recognition, recognition of DA in the sequence
helps segmentation. Thus, DA segmentation and
recognition are two highly related tasks. We can
expect that joint learning of these two tasks can
improve the performance of models. In this pa-
per we investigate architectures of joint learning
of DA segmentation and recognition, and analyze
their performances. DA segmentation is a se-
quence labeling task on the word level and DA
recognition is a classification task on the DA seg-
ment level. Our model is flexible and can be ap-
plied to tasks of different levels.

The rest of this paper is structured as follows.
Section 2 gives a literature review. Section 3 de-
scribes a hierarchical neural network model for
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DA recognition and explains its ability to model
sequential short texts. Section 4 focuses on joint
learning of DA segmentation and recognition, and
explores three models for joint tasks. Section 5
shows experimental results on three tasks using
the proposed models. Lastly in Section 6 and 7
we discuss the results and give a conclusion.

2 Related Works

In the task of DA recognition, Shriberg et al.
(1998) applied decision tree using rich features
and emphasized the importance of prosodic fea-
tures. Stolcke et al. (2000) used HMM to cap-
ture the intrinsic patterns of DA sequence. Vari-
ants of neural network have been recently used in
this task. In (Lai et al., 2015), a recurrent convo-
lutional neural network is applied to text classifi-
cation, which consists of a RNN layer and a max-
pooling layer over it. Ji et al. (2016) proposed a
latent variable RNN for modeling discourse rela-
tions between sentences. Khanpour et al. (2016)
investigated RNNs with different settings of hy-
perparameters. A hierarchical neural network was
introduced by Lee and Dernoncourt (2016). It
firstly uses a RNN layer or a CNN layer to gen-
erate vector representations of short texts. Then a
two-layer feedforward ANN takes a sequence of
these vector representations to predict the prob-
ability distribution of output labels. Li and Wu
(2016) used gated RNN for both vector represen-
tation generation and classification in their hierar-
chical model. We base our work on hierarchical
neural network for DA recognition and propose a
unified architecture for joint DA segmentation and
recognition, which is discussed in Section 4.

3 Hierarchical Neural Network

When we regard DA recognition as a text clas-
sification task, there are two difficulties in accu-
rately recognizing a DA. In the first place, texts in
DA recognition are often limited to a small num-
ber of words while tasks such as sentiment anal-
ysis and news topic categorization aim to classify
fairly long documents and can exploit mainly n-
gram models. Compared with long documents, di-
alog utterances have much fewer words and it is
difficult to extract enough information from sim-
ple word co-occurrence features. Secondly, it is
of great importance to consider contexts in DA
recognition. For instance, a sentence “the weather
is quite good today” is regarded as an Answer if
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Figure 1: Hierarchical neural network: an exam-
ple of input and output is given in the figure.

it appears after another speaker questioning the
weather. Otherwise, it is a Statement.

In order to address aforementioned problems,
we use a hierarchical neural network for DA
recognition. The hierarchical model firstly takes
distributed word representation as input, which
contains richer semantic information than n-gram
features do. Secondly, it exploits history informa-
tion to recognize DA tags of ambiguous utterances
such as “the weather is quite good today”. The
general architecture of the hierarchical neural net-
work consists of a sentence encoder and a classi-
fier. A sentence encoder neural network encodes
a sequence of words into a vector (sentence repre-
sentation vector) of a fixed length, which will be
explained in Section 3.1. A classifier neural net-
work predicts the label given representation vec-
tors of the corresponding sentence and its preced-
ing sentences, which will be explained in Sec-
tion 3.2. The architecture of hierarchical neural
network used in our work is shown in Figure 1.

3.1 Sentence Representation

A sentence encoder encodes a sequence of words
into a fixed-length vector. By training the encoder,
it obtains the ability to mine useful task-related in-
formation from a word sequence. We choose Bidi-
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rectional Long Short-Term Memory (BiLSTM) - a
variant of RNN. LSTM (Hochreiter and Schmid-
huber, 1997) can better avoid the vanishing gra-
dient problem compared with normal RNNs, thus
it is suitable for processing information through
many time steps.

Input words wt
1:L are firstly converted to word

embeddings through a lookup table in word em-
bedding layer. Given word embeddings xt1:L, BiL-
STM outputs hidden states ht1:L, where an output
hidden state hi is the concatenation of forward
hidden state

−→
h i and backward hidden state

←−
h i.

We use a max pooling layer to extract the most in-
formative features over time, and produce a single
vector st as the encoding of word sequence wt

1:L.

3.2 Sequence Classification

Given sentence encoding vectors st−k:t, we use the
second neural network to predict the label of the t-
th sentence. We use a history of length k instead
of the whole history since dialog act usually de-
pends on the very late history and it also acceler-
ates training. Again we use BiLSTM and it works
in a similar manner as the BiLSTM sentence en-
coder does but without max pooling layer, since
the latest sentence provides the most information
for DA recognition. Given the final hidden state, a
fully-connected layer with a softmax function out-
puts the predicted label yt.

4 Joint Learning

Joint learning (multi-task learning) is an approach
to learn from several related tasks in parallel so
that it improves the model’s ability to general-
ize features, and promotes its performance on the
different tasks. In natural language processing
(NLP), many higher-level tasks usually depend on
outputs from lower-level tasks, for example named
entity recognition (NER) relies on part-of-speech
(POS) tagging. Hence there are many cases where
models can benefit from joint learning.

Collobert and Weston (2008) introduced a neu-
ral network-based joint architecture making min-
imal assumption of feature engineering, and also
concluded three kinds of joint model, i.e. cascad-
ing features, shallow joint training, and deep joint
training. A cascading model, however, does not
include any joint learning procedure, and shallow
joint training is actually to convert tags of differ-
ent tasks into one tag. In the rest of this paper,
we will name them cascading model, joint cod-

ing model, and joint training model for accuracy.
Zheng et al. (2013) applied a joint coding method
to Chinese word segmentation and POS tagging by
changing POS labels using a “BIES” tag coding
scheme. Peng and Dredze (2016) improved NER
by word representation learnt in word segmenta-
tion task using a LSTM-CRF model. Yang et al.
(2016) proposed a multi-task cross-lingual model
for sequence labeling tasks using RNN-CRF struc-
tures. These approaches to joint learning mostly
attempt to learn shared representation of words
and characters from different tasks.

Unlike aforementioned NLP tasks, DA segmen-
tation and recognition deal with units of differ-
ent levels, i.e. word level and DA segment level.
Joint learning of these two tasks does not nat-
urally fit in the architectures above. Previous
works usually use joint coding methods. Zim-
mermann 2006 (2006) used a hidden-event lan-
guage model for sequence labeling of DA type
and its boundary on word level. It also exploits
prosodic features in classification. Zimmermann
(2009) and Quarterono et al. (2011) applied condi-
tional random field (CRF) and the former also in-
vestigated how different tag coding schemes affect
the model’s performance. Granell et al. (2009)
incorporated syntactic features and used a combi-
nation of a HMM at the lexical level and a Lan-
guage Model (LM) at the DA level. Hakkani-
Tür et al. (2016) used a single sequence label-
ing LSTM model for joint semantic frame pars-
ing, where sentence-level intent and domain tags
are predicted at the last token of the sentence. An
encoder-decoder-pointer framework was used for
chunking in (Zhai et al., 2017), where segmenta-
tion was done by a pointer network and labeling
was done by a decoder LSTM.

To our knowledge, there is no previous work on
neural network based joint model applied to joint
learning of DA segmentation and recognition. In
this section, we investigate cascading model, joint
coding model, and joint training model using neu-
ral networks. In the joint coding model, joint
tag coding is used to combine segmentation and
recognition tags and leads to a word-level se-
quence labeling task. For cascading and joint
training models, the proposed architectures can
deal with tasks of different unit levels and the hi-
erarchical model introduced in Section 3 is inte-
grated to make use of contextual information.
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Figure 2: Joint coding model: an example of input
and output is given in the figure.

4.1 Joint Coding Model
4.1.1 Joint Coding
In the joint coding method, one single model pre-
dicts labels of DA segmentation and recognition at
the same time, so that the units of these two tasks
should keep consistency. We use a joint tag cod-
ing scheme to combine labels of segmentation and
recognition and make them a word-level sequen-
tial labeling problem as shown in Table 2. This al-
lows us to use one single sequential labeling model
to solve two tasks simultaneously. The proposed
joint coding model is given in Figure 2.

4.1.2 Tag Score
A sequence of words w1:L is firstly mapped to
word embeddings x1:L, then we feed them to
the following RNN layer which produces hidden
states h1:L. In order to provide contextual infor-
mation explicitly, when we predict a label for the
i-th step, we also make use of hidden states of
preceding steps (hi−1, hi−2, etc.) and succeeding
steps (hi+1, hi+2, etc.). The concatenated vector
[hi−2,hi−1,hi,hi+1,hi+2] is then fed to a neural
network layer that computes a tag score si, where
si ∈ R|C|, the t-th element in si indicates the score
of choosing the t-th tag at the i-th step, and |C| is
the number of tag classes.

4.1.3 Tag Inference
Since there often exists invalid tag sequences such
as an “E S” following an “I Q” and we would like
to penalize such invalid tag transitions, we apply a
post process to compute the optimal tag sequence
considering the transition probabilities by using a
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Figure 3: Cascading model and joint training
model: in cascading model, part (a) on the left
is a component for segmentation and part (b) on
the right is for DA recognition. In joint training
model, word embedding layers in dashed line rect-
angle are shared by both segmentation and recog-
nition models. An example of input and output is
given in the figure.

transition score matrix Amn, which indicates the
score of jumping from m-th tag to the n-th tag.
Let sti denotes the t-th element of si, the score of
a tag sequence t1:L is defined as:

score(t1:L) =
L∑
i=1

(Ati−1ti + sti), (1)

and we use the Viterbi algorithm to find the op-
timal tag sequence t∗1:L that maximizes the se-
quence score:

t∗1:L = arg max
∀t1:L

score(t1:L). (2)

4.2 Cascading Model and Joint Training
Model

DA segmentation splits a sequence of words into
segments, and DA recognition assigns a dialog act
type to them. Thus, these two tasks are naturally
conducted in a cascading manner. The proposed
cascading model is shown in Figure 3.

The left part is a sequential labeling model for
segmentation. Similar to the joint coding model,
a word embedding layer and a layer of RNN are
used to produce a sequence of hidden states h1:L.
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Words hi my name is Erica nice to meet you
Segmentation E I I I E I I I E
DA Greeting Statement Greeting
Joint tag coding E G I S I S I S E S I G I G I G E G

Table 2: Joint “IE” tag coding scheme, where “I” and “E” refer to “inside” and “end” respectively. We
concatenate segmentation tag with DA tag to produce coded tags. For example, “E S” denotes the end
of a Statement segment.

Then the top layer outputs predicted labels y1:L.
The right part of Figure 3 uses the hierarchical
neural network model introduced in Section 3. In
order to provide contextual information, we also
maintain a history of sentence representation vec-
tors of previous sentences using the same hierar-
chical neural network.

Joint training model can be seen as a cascad-
ing model with shared components. As shown in
Figure 3, the proposed model uses only one set
of word embeddings compared with the cascading
one, while other task-specific parts are still sep-
arated. By updating the shared word embeddings
using errors from both tasks, the model is expected
to learn features from DA segmentation and recog-
nition and improve its ability of generalization.

5 Experimental Evaluations

In order to evaluate our models, we conducted
three sets of experiments:

• Segmentation task: evaluate models’ DA
segmentation performance only.

• Recognition task: evaluate models’ DA
recognition performance given correct seg-
ments.

• Joint segmentation and recognition task:
evaluate models’ DA segmentation and
recognition jointly, where predicted segments
are given for DA recognition.

For each set of experiments, we also vary the
length of history k for the cascading model and
the joint training model.

5.1 Data Set
We use a one-to-one Japanese chatting corpus
collected using a conversational android ER-
ICA (Glas et al., 2016; Inoue et al., 2016). It is an-
notated with 4 DA tags (i.e. Question, Statement,
Response and Other) following standards in (Bunt
et al., 2010). Table 3 presents related statistics.

Corpus Statistics
# of classes 4
avg. # of segments per session 165
avg. # of segments per turn 1.76
# of training sessions 30
# of test sessions 8

Table 3: Corpus statistics.

5.2 Implementation

We implemented the proposed models with Ten-
sorFlow1. Neural networks are trained using the
Adam optimizer (Kingma and Ba, 2014). We use
an initial learning rate of 0.0001 which decays in
half when the objective loss does not decrease.
A dropout layer of 0.25 dropout probability is
added before every RNN layer for regularization.
We choose 128 as the word embedding dimension
since it works well in most NLP tasks. To find out
how history length k affects the models, we exper-
imented on k of 1, 3, 5, 10, 20. We also test CRFs
implemented by CRF++2 for comparison in our
experiments.

5.3 Evaluation Metrics

For the segmentation task, we use the DA Segmen-
tation Error Rate (DSER) in (Zimmermann et al.,
2005). The DSER is the percentage of segments
that are incorrectly segmented, i.e. its left or right
boundary differs from the reference boundaries.
Accuracy, Macro F1 measure, and Weighted F1
measure are used for evaluation of the recognition
task since it is a text classification problem. For
the joint task, we use the DA Error Rate (DER)
which is the same as the DSER but also considers
the DA type for correctness. Table 4 demonstrates
the calculation of DSER and DER.

1https://www.tensorflow.org/
2https://taku910.github.io/crfpp/
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Reference E G I S I S E S I Q I Q E Q I S E S
Prediction E G I S I S I S E S I Q E Q I R E R
DSER

√ × × √
DER

√ × × ×
Table 4: An example of DSER and DER metrics. The DSER equals 0.5 (2/4) and the DER equals 0.75
(3/4).
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Figure 4: Results of the segmentation task.

5.4 Segmentation Result

In this task, a set of experiments are conducted to
evaluate the model performances on DA segmen-
tation specifically. We apply our models to seg-
ment every turn in dialogs, where one turn refers
to a sequence of consecutive words uttered by
one speaker without being interrupted by another
speaker. We compare the cascading model, the
joint coding model and the joint training model.
Two CRFs are used for comparison. A simple
CRF uses unigrams and bigrams of wt−2, wt−1,
wt, wt+1, wt+2 as features, wherewt is the current
word. Another CRF additionally uses the last tag
as a feature and is named CRF-Bi in the following
experiments.

Figure 4 shows the results of the segmenta-
tion task. The joint training model achieves 9.7%
DSER at a history length of 20, which is compa-
rable to CRF’s 9.0% (without a significant differ-
ence), and it outperforms the cascading model’s
10.5% at a history length of 3. The joint cod-
ing model lags behind slightly with the DSER of
10.7% and CRF-Bi gets a DSER of 11.1%.

5.5 Dialog Act Recognition Result

In the task of DA recognition, we evaluate the
model performances of DA recognition. There-
fore, we directly use ground-truth segments as in-
puts and predict a DA label for these segments. We
only compare the cascading model and the joint
training model in the recognition task because the
joint coding model and CRFs are sequence label-
ing models and they do not naturally fit the text
classification task.

As shown in Figure 5, the joint training model
gets better results than the cascading model ac-
cording to all three metrics. The joint training
model achieves the best results of 78.0% accuracy,
77.4% Macro F1 measure and 78.1% Weighted F1
measure at the history length of 10, while the cas-
cading model reaches 77.2%, 76.5% and 77.4%
respectively. A significant improvement is ob-
tained when we increase the history length from
1 to 3.

5.6 Joint Segmentation and Recognition
Result

In the joint task, segmentation and recognition per-
formances are evaluated jointly. We firstly seg-
ment each turn in dialogs into segments, then use
the predicted segments as inputs of DA recogni-
tion. As in the segmentation task, we compare our
proposed models and two CRFs.

Figure 6 shows the results of the joint task. The
joint training model has the lowest error rate of
27.3% at the history length of 10, gaining an abso-
lute improvement of 1.6% compared with the cas-
cading model’s 28.9%. CRF-Bi, CRF and the joint
coding model got the DSER of 33.5%, 36.8% and
37.1% respectively.

6 Discussion

In the segmentation task, CRF using only n-gram
features obtains a result of 9.0%, though there is
not a statistically significant difference in perfor-
mance between CRF and the joint training model,
whose DSER is 9.7%. We conjecture that the re-
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Figure 6: Results of the joint task.

sult is due to that the boundaries of DA segments
in Japanese are usually marked with words such
as “masu”, “desu”, “kedo”, and considering sim-
ple n-gram features can cover most of the cases in
DA segmentation. CRF-Bi, which uses a previous
tag as additional feature, has a higher error rate
of 11.1% compared with CRF using n-grams. It
implies that extra information (previous segmen-
tation tag and dialog act tag) may hurt the model’s
performance in the sense of segmentation. How-
ever, by comparing the results of the cascading
joint model and the joint training model (10.5%
DSER of the cascading model and 9.7% DSER of

the joint training model), we can see that our joint
training method is able to extract useful informa-
tion from DA recognition task for segmentation
and improve our models’ ability of segmentation.

In the DA recognition task, we compare the
best results of the cascading model and the joint
training model at a history length of 10. Similar
to aforementioned conclusion, joint training helps
the joint training model outperform the cascading
model by 0.8% in accuracy, 0.9% in Macro F1
measure and 0.7% in Weighted F1 measure. Thus
we can conclude that joint training can also learn
features from segmentation task to help recognize
DA tags.

In the joint evaluation, we observe that even
though CRFs obtain fairly good results in the seg-
mentation task, they significantly lag behind the
proposed cascading model and the joint training
model. The hierarchical neural network intro-
duced in Section 3 makes use of contexts and con-
tributes to the improvement. Similarly, CRF-Bi
gets a better result of 33.5% DER than CRF’s
36.8%, which implies that contextual informa-
tion (previous tag) plays an important role in DA
recognition.

Finally the joint coding model has an accept-
able result of segmentation but a very low perfor-
mance in the joint task. There are three possible
reasons: (1) The joint coding model only uses sur-
rounding words as context instead of previous sen-
tences, thus it fails to capture DA relations while
the proposed hierarchical neural network is able
to. (2) Failure in learning from the recognition
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task can degrade the model’s performance on the
segmentation task. (3) Lastly but the most impor-
tant, DA recognition requires understanding of the
whole segment. In the architecture of joint coding
model, however, it has to predict the type of DA
tag at the very beginning of a segment. Although
a short context (i.e. 5 words in our experiments) is
available, the model still cannot make use of com-
plete information of the corresponding segment.

7 Conclusion

In this work, we explored joint learning of dialog
act (DA) segmentation and recognition. To exploit
contextual information in DA recognition, we in-
troduced a hierarchical neural network architec-
ture that incorporates history utterances. Based on
the hierarchical neural network, we investigated
three models for joint DA segmentation and recog-
nition, i.e. cascading model, joint coding model,
and joint training model. Our proposed models
can (1) integrate the hierarchical neural network
and (2) combine tasks of different levels (word
level and DA segment level) in a unified architec-
ture.

Three sets of experiments were carried out to
evaluate the proposed models’ performances on
the segmentation task, the DA recognition task
and the joint task. Experimental results showed
that (1) contextual information plays an important
role in DA recognition; (2) the cascading model
and the joint training model outperform CRF base-
lines significantly (4.6% and 6.2% in DER re-
spectively) in the joint task while having compa-
rable performances in the segmentation task; (3)
the joint training model outperforms the cascading
model in all three tasks. The result demonstrates
that joint training can learn useful generalized fea-
tures.
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Abstract

User experience is essential for human-
computer dialogue systems. However, it is
impractical to ask users to provide explicit
feedbacks when the agents’ responses dis-
please them. Therefore, in this paper, we
explore to predict users’ imminent dissat-
isfactions caused by intelligent agents by
analysing the existing utterances in the di-
alogue sessions. To our knowledge, this is
the first work focusing on this task. Sev-
eral possible factors that trigger negative
emotions are modelled. A relation se-
quence model (RSM) is proposed to en-
code the sequence of appropriateness of
current response with respect to the ear-
lier utterances. The experimental results
show that the proposed structure is effec-
tive in modelling emotional risk (possi-
bility of negative feedback) than existing
conversation modelling approaches. Be-
sides, strategies of obtaining distance su-
pervision data for pre-training are also dis-
cussed in this work. Balanced sampling
with respect to the last response in the dis-
tance supervision data are shown to be re-
liable for data augmentation.

1 Introduction

As an ideal interaction mode, the human-computer
conversation technology has gradually been con-
ducted into the practical systems, among which
the automatic agents adopting the task-oriented
conversation and open-domain chatting abilities
have developed rapidly and even come to commer-
cial application stage (see Duer1 and XiaoIce2).

∗The work was done when the first author was an intern
at Tricorn (Beijing) Technology Co., Ltd.

1http://duer.baidu.com/
2http://www.msxiaoice.com/

Figure 1: A example of multi-turn human-
computer dialogue. The responses are readable
and relevant to the corresponding queries, but the
user in bad mood probably feel antipathy towards
the computer’s cheer.

Basically, the essence of such commercial dia-
logue agents is keeping user active, and for this
purpose, it is critical to improve users’ satisfaction
in non-task oriented chatting services.

The reasons of users’ displeasure lies in the
sessions. As shown in Figure 1, the emotional
conflict between the last agent’s response and the
user’s mood leads to the dissatisfaction. There-
fore, the negative feedback from user could be pre-
dicted according to the context utterances. Indeed,
such prediction is of great necessity for improv-
ing users’ satisfaction, since it is possible to ad-
dress problems within systems only if there exist
methodologies to locate problems and summarize
reasons behind. Ideally, if a dialogue agent antic-
ipates the occurrence of the user’s negative feed-
back, it is able to avoid such situations by tak-
ing any possible actions, e.g., switching to an-

713



other topic actively. Moreover, user satisfaction
can be taken as a metric for evaluating the qual-
ity of a given dialogue session and the overall per-
formance of a dialogue agent. In practice, user
satisfaction could also be considered as the addi-
tional criterion for response selection or genera-
tion, which tend to intuitively take semantic rel-
evance oriented features for model training. The
adoption of user satisfaction is possible to provide
a different view to optimize the models, so as to
further improve user experience along the road be-
yond relevance, e.g., avoiding the responses that
are relevant but lack of sociality (Higashinaka
et al., 2015).

It is not a trivial task to predict negative feed-
backs in the conversation flows between human
being and dialogue agents. Generally, people tend
to not express their dissatisfaction explicitly, thus,
there are generally no clear signals before users
turn angry and terminate dialogues, or people con-
tinue the conversations although they are not satis-
fied already. Apparently, it is unwise to introduce
rating or other explicit feedback mechanisms into
the dialogue flows considering the user experience
issues. Meanwhile, this problem cannot be cov-
ered by classical sentiment analysis task because
users’ sentiment intention tends to be not obvious,
and more importantly, the facts causing negative
feedbacks are much more complicated than sen-
timent polarities as shown by Figure 1, in which
the appropriateness of a certain response might be
decided not only by itself, but also by the context.

In order to estimate the risk of dissatisfaction
occurring in the human-computer dialogue ses-
sions, in this work, we explore the feasibility
of predicting users’ emotional negative feedback
caused by the dialogue agents’ replies based on
the dialogue contexts. To our knowledge, this is
the first work attempting to discover the implicit
factors causing users’ dissatisfaction in dialogue
agents’ logs with deep learning models. Noticing
that the occurrence of negative feedbacks depends
on a complicated semantic mechanism and conver-
sational contexts play an important role in this is-
sue, this paper proposes to address the problem by
learning to represent the possible determinant with
different models. Especially, the proposed archi-
tecture based on Gated Convolutional Recurrent
Neural Networks (GCRNN) is used to represent
sequence of relations between the last response
and the earlier utterances. Experimentally, it out-

performs existing conversational models, which
indicates that the sequence of relation between ut-
terances encodes the possibility of user’s dissatis-
faction. Besides, data augmentation with distance
supervision method is also discussed in this work.

2 Related Work

2.1 Emotion prediction

Predicting sentiment category of text has been
extensively studied. Most works focus on the
sentiment orientations expressed by the writers
in movie/product reviews or tweets (Pang et al.,
2002; Hu and Liu, 2004; Go et al., 2009). How-
ever, the reader’s emotion is not always consistent
with that of the writer’s (Yang et al., 2007). Thus,
Lin et al. (2007) explore to predict the feelings
that readers may have after reading particular ar-
ticles. However, in this dissatisfaction prediction
task, the user is not only the reader of the session
text, but also the writer of some utterances. There-
fore, some clues of the particular user’s emotion
may be contained in the context.

Modelling emotion in human-human conver-
sation has been explored (Herzig et al., 2016;
Tokuhisa and Terashima, 2006). However, trig-
gers for negative emotion in human-computer di-
alogue might be different (e.g., low readability or
relevance). The works of Tokuhisa et al. (2009)
and Yu et al. (2016)’s analysed the emotion of a
particular utterance in human-computer dialogue
based on the textual features containing in the very
sentence. Different from their studies analysing
the explicit textual feedback, this work predicts the
impending emotion based on the context because
the cause of emotion of readers contains in the ex-
isting text (Li and Xu, 2014).

2.2 Conversation Modelling

Traditional conversation modelling mainly
focuses on the one-turn conversations (aka.
message-response pairs) (Banchs and Li, 2012;
Ameixa et al., 2014; Ritter et al., 2011; Ji et al.,
2014), while recent works show more interest in
multi-turn dialogues.

The generation-based approaches model the
context and generate the responses at the same
time (Vinyals and Le, 2015), while the retrieval
based studies model the sessions after knowing all
utterances, which is more relevant to this work.
Xu et al. (2016) represent sequence of utterances
with recurrent neural networks (RNNs). The topic
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or intention in a dialogue session is relatively con-
stant. In this perspective, all the utterances in the
same session is homogenous and could be com-
posed within RNNs. However, the influences of
user’s queries and the agent’s responses are dif-
ferent in predicting user’s emotion. Therefore, a
targeted structure considering such heterogenicity
is proposed in this work.

Wu et al. (2016) represent the relevance be-
tween utterances with CRNN architecture. Differ-
ent from their work focusing on word-level match-
ing with attention pooling on the convolutional re-
sult, we leverage a gate operation to simulate the
sentence-level interaction.

3 Predicting Methodology

The task of predicting impending dissatisfaction
could be formulated as: given the existing utter-
ances (EU ) that contain no agent-cause dissatis-
faction, predicting the agent-cause dissatisfaction
D1 ∈ {0, 1} of user at impending turn (r = 1),
given the existing utterances (EU ) that contain no
agent-cause dissatisfaction.

EU = {Q−n+1, R−n+1, ..., Q−1, R−1, Q0, R0}
(1)

where Q−n and R−n respectively represent the
user’s query and computer response n round be-
fore current turn. For this work focusing on the
agent-caused dissatisfaction, those queries Q−n
with negative emotion not related to the robot are
not considered as negative feedback.

There are several possible factors influencing
the emotion of the users, such as (1) the last re-
sponse of the robot R0, (2) the relation of Q0 and
R0, (3) the sequence of context in the conversa-
tional sessions EU and (4) the sequence of rela-
tions between R0 and the other utterances UE −
{R0}. In this session, we will discuss the factors
above and learn the representation of them with
deep neural network.

3.1 Utterance Modelling
The last response of the robot R0 is the most
straightforward factor that may cause the antipathy
towards the agent. Predicting the negative emo-
tions according to the latest response can be con-
sidered as reader-side emotion classification. In
this work, such single sentence is modelled with
convolutional neural network (CNN) with max
pooling, and then classified in the full-connected

softmax layer (Kim, 2014). The illustration of the
utterance model for R0 is shown in Figure 2(b).

In this paper, all representations of utterances
are attracted with CNN structure described in Fig-
ure 2(a). An n-word utterance can be represented
as:

e1:n = e1 ⊕ e2 ⊕ ...⊕ en (2)

where en is the embedding of nth word in the ut-
terance and ⊕ refers to concatenation operator. In
the convolutional process, the word window start-
ing with the ith word and scanned by a s-width fil-
ter j can be represented ei:i+s−1. And the activa-
tions corresponding with filter j in convolutional
layer can be computed as:

cji = f
(
wj · ei:i+s−1 + bj

)
(3)

where f is the non-linear activation function
(ReLU is utilized in this work). And wj and bj

represent the weight matrix and bias respectively.
Finally, max-over-time pooling is leveraged. The
activations corresponding with filter j in the pool-
ing layer can be computed as:

ĉj = max
{
cj1, c

j
1, ..., c

j
n−s+1

}
(4)

3.2 Utterance Pair Modelling
Recent works improve response ranking by
model the semantic matching of query-response
pairs (Qiu and Huang, 2015; Yin et al., 2015). The
assumption implied in these works is that user ex-
perience is influenced by the relation of Q0 and
R0. We model such relation with Architecture-I in
Hu et al.’s (2014) work, where the representations
of the query and the response are learned with two
CNNs respectively and the concatenation of the
representations is used as input of a multi-layer
perceptron (MLP) classifier that measures the ap-
propriateness.

3.3 Utterance Sequence Modelling
As shown in example in Figure 1, the latest re-
sponse is active and related to the query, but may
not appropriate in the context. Recent works en-
code the sequence of utterances with recurrent
neural network based encoder-decoder to generate
responses (Serban et al., 2016; Shang et al., 2015).
However, in this work, the prediction is made with
all existing utterances being known. The convolu-
tional recurrent neural network has been proven to
be effective in encoding the sequence of represen-
tations of text (Kalchbrenner and Blunsom, 2013;
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Figure 2: Structures for modelling different influential factors of negative feedbacks.

Li et al., 2016; Zhou et al., 2015). Thus, in this
work, the sequence of existing utterances EU is
modelled with CRNN, and the output of last time
step R0 is considered as the final representation of
the sequence to be input to softmax classifier. The
structure is shown in Figure 2(d), and Gated Re-
current Units (GRUs) are used in the structure.

A GRU stores context information in the in-
ternal memory structure. It performs compara-
bly with long short-term memory (LSTM) and has
lower complexity (Chung et al., 2014). There are
two gates in the jth GRU structure, the update gate
zjt and reset gate rjt , both gates are decided by
the current input xt and previous hidden activation
ht−1:

zjt = σ (Wzxt + Uzht−1)
j (5)

rjt = σ (Wrxt + Urht−1)
j (6)

where W and U is the weight matrices, while σ
refers to the sigmoid function. The hidden acti-
vation hjt of the GRU at time t can be computed
as:

hjt =
(
1− zjt

)
hjt−1 + zjt h̃

j
t (7)

where hjt−1 refers to the hidden activation of pre-
vious time step and h̃jt is the current candidate ac-
tivation:

h̃jt = tanh (Wxt + U (rt � ht−1))
j (8)

GRUs compose the current and previous informa-
tion with the gated units, and store the sequence
representation in the memory.

3.4 Relation Sequence Modelling

Different from the intentions or topics of ut-
terances being relatively constant in dialogue
sessions, emotional influence of each utterance
varies. For instance, the queries and responses
are heterogeneous in a session. Queries are ex-
pressions of dissatisfaction, while responses are
the reason of displeasure. The relations between
particular response and context queries (or other
responses) influence the user’s emotion.

As shown in the example in Figure 1, the last
response R0 conveys conflicting emotion with the
earlier utterances Q−2, R−2 and Q−1. The human
user is probably unprepared for such rapid change
in emotion and exhibits dissatisfaction. The con-
sistency of mood is a kind of relation between sen-
tences and the sequence of such consistency be-
tween sentence pairs can be treated as the emo-
tional consistency of the whole conversation.

However, traditional RNNs are not adequate to
represent such consistency. Therefore, we attempt
to model the sequence of relation between utter-
ances. As mentioned in the beginning of Section
3, the existing utterances EU contain no agent-
cause dissatisfaction, which means Q0 and the ut-
terances before Q0 are not the direct causes neg-
ative feedback. Thus, we only focus on the rela-
tion between the last response and the earlier ut-
terances. The architecture is shown in Figure 2(e),
the representation of earlier utterances xt (t 6= 0)
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are gated by representation of R0:

xt = ct �mt (9)

where ct is the output of convolutional neural net-
work sentence model. And the matching gate mt

is influenced by the particular utterance ct and the
latest response c0.

mt = σ (Wmct + Umc0) (10)

While the input of the last time step is the rep-
resentation of R0 itself (x0 = c0). Gating op-
eration has been shown effective in further map-
ping abstract feature of convolutional result by in-
volving additional information (Wang et al., 2015;
Dauphin et al., 2016). With such structure, the
emotional consistency of utterances could be ex-
tracted and the influence of latest response on neg-
ative feedback could be encoded.

4 Experiments

4.1 Dataset
The anonymized multi-turn dialogue session data
is provided by a Chinese commercial intelligent
agent service. There are 2 million sessions in the
dataset, most of which contain task-oriented dia-
logues. However, we focus on those only includ-
ing chat, and the amount of such pure chat sessions
is 260,867.

As described in the introduction, the task is to
predict the impending dissatisfaction given n + 1
round context. Thus, a sample in the dataset
should contains utterances and label of following
emotional polarity. In fact, the lengths of human-
computer dialogue sessions vary within relatively
wide range. To eliminate the influences from ses-
sion length, n is set to 2 in this work. The appear-
ance of dissatisfaction will be predicted based on
3 turns (0, 1 and 2) of dialogue (as shown in Fig-
ure 1). 40,000 of the non-task-oriented sessions
are manual annotation to construct the data set.
If a session has a negative feedback, the 3 turns
of utterances before this feedback will be treated
as positive (with dissatisfaction) sample. Other-
wise, if there’s no negative feedback, we randomly
select continuous 3-turn utterances as a negative
(without dissatisfaction) sample.

Two experienced annotators (long term em-
ployed for text annotation) are scheduled to la-
bel the sessions independently. If disagreement
appears, a third senior annotator is invited to de-
cide the final tag. Finally, 30,034 sessions meeting

Category Amount
total sessions 2,000,000
pure char sessions 260,867
sessions for manually labelling 40,000
two annotators agreement 28,651
the third annotator decision 11,349
gold standard 30,039
negative in gold standard 17,618
positive in gold standard 12,421

Table 1: Statistical information of the dataset.

the requirements (non-negative sessions or nega-
tive sessions with 3 three turns or more utterances
before the negative expressions) are used as gold-
standard dataset. Some statistical information of
the dataset is shown in Table 1.

4.2 Pre-training
4.2.1 Fragment Extraction
The manually labelled gold standard dataset might
be insufficient for learning deep neural models.
Thus, a distance supervision strategy is designed
to obtain augmented data. We summarize 56 pat-
terns of highly probable negative expressions as
strict patterns (SP) and 86 patterns of possible or
ambiguous negative feedbacks as uncertain pat-
terns (UP). It is noted that the SP is a subset of
UP. The sessions containing no utterances match-
ing UP are considered as non-negative. While the
utterances (1)containing any SP and (2)with no ut-
terances in the above 3 turns match any UP are
treated as negative feedbacks and the fragments
are tagged as dissatisfaction ones. In this way,
both positive and negative samples of dissatisfac-
tion are automatically detected.

Besides the pure chat sessions, those task-
oriented ones also contain multi-turn chat frag-
ment. Therefore, the augmentation strategy is
carried out on all available sessions and obtains
1,612,426 distance supervised labelled fragments.
It is worthy to note that there may be multiple
available fragments in a single session, those frag-
ments (without overlap) are all extracted in the
augmentation process.

4.2.2 Balanced Dataset Construction
In fact, the extraction strategy above may lead to
a different distribution with the real-world data.
Taking the cheerful response R0 in Figure 1 as an
example, most users in bad mood would be upset
after the agents reply with such cheer. These users
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tend to express dissatisfaction towards the agents
and the dissatisfactions are detected with designed
patterns. While in the situations where the users
are happy, the cheerful response result in a virtu-
ous cycle and may not be selected as R0 (may be
selected asR−1 orR−2). Therefore, such cheerful
response is likely to closely related to the dissatis-
faction.

To avoid such false association rules, we select
the same number of positive and negative samples
if R0 is the same and obtain 335,314 fragments as
balanced distance supervised labelled data.

4.3 Experimental Settings

All the neural network models are implemented
with TensorFlow toolkit3. The max length of the
input sentence is set to 10 and all sentences are
padded to the max length with zero vectors. 32 fil-
ters are used for each filter size, while the sizes of
word embeddings, hidden layer in RNN and full-
connected layer are all set to 64.

The weights between full-connected layers are
initialized with Xavier initializer (Glorot and Ben-
gio, 2010), while the weights and biases in the
convolutional layer are initialized with random
numbers on uniform distribution U {−0.2, 0.2}.
Word embeddings are randomly initialized with
uniform distribution U {−0.1, 0.1} and fine-tuned
during training.

Batch learning is conducted with a batch size
of 500. The learning rate of the training pro-
cess is 0.001 while that of pre-training process is
0.005. 10-fold cross validation are implemented
with 80% data as training set, and validation and
test set divide equally the rest 20% samples. Early
stopping is carried out on validation set during
training. Training process stops when there’s no
better validation result within 5 epochs.

4.4 Competitor Models

SVM-R0: Support vector machine (SVM) are
wildly used as classifiers for sentiment analysis
tasks (Pang et al., 2002). In this work, TF-IDF
features based on uni-grams in R0 are involved to
build baseline model.
SVM-Q0R0 and SVM-EU : To make use of more
context information, we involve Q0-R0 pair by
connecting them into a whole and uni-gram TF-
IDF features of the connection result are used as

3www.tensorflow.org/

input of a SVM classifier. In the same way, the all
sentences in EU are also used in the SVM model.
UM-Q0R0 and UM-EU : Similar to SVM, utter-
ance model (UM) shown in Figure 2(b) is also de-
signed to analyse a single sentence (or document).
Thus, we leverage connection results of Q0-R0

pair and EU to introduce context utterance.
UPM-EU : BesidesQ0-R0 pair, the utterance pair
model (UPM) could also be used to encode all sen-
tences in EU . Each sentence is modelled by CNN
respectively and the representations are concate-
nated in the hidden layer.

4.5 Experimental Results

4.5.1 Comparison with Baselines
We compare the models corresponding to the fac-
tor assumptions describe in section 3, including ut-
terance model (UM), utterance pair model (UPM),
utterance sequence model (USM) and relation se-
quence model (RSM) with the competitor sys-
tems. The numbers in Table 2 show the proportion
of the particular model accurately predicting the
emotional polarities. The neural models are pre-
trained with balanced distance supervised labelled
data, and tuned with the manually annotated sam-
ples.

Model Accuracy
SVM-R0 0.5486
SVM-Q0R0 0.5603
SVM-EU 0.5616
UM-R0 0.5495
UM-Q0R0 0.5579
UM-EU 0.5638
UPM-Q0R0 0.5723
UPM-EU 0.5781
USM-EU 0.6022
RSM-EU 0.6106

Table 2: Accuracies of different models.

Firstly, the last computer’s response R0 is the
basic feature that makes the prediction effective.
Comparing the models involving Q0-R0 pair and
EU with those only use R0, we can easily find
that the context provides more information about
the trend of emotion.

SVM achieves comparable results with CNN
based utterance model. We see that the convolu-
tional process with a fixed-size filter encodes the
similar information with n-gram features in SVM.

UPM outperforms UM with both Q0-R0 pair
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and EU . UPM connects the abstract represen-
tation in the hidden layer, while UM connects
the sentences into a whole as input. Although
their structures are similar as shown in Figure
2, the logic depths of the two models are differ-
ent. UM composes word embedding of all sen-
tences in the convolutional process to learn an
emotional representation, while UPM gets emo-
tion features in two steps (composing word rep-
resentation in convolutional layer and then adding
mapped the sentence embedding after pooling). In
practice, UPM works as a hierarchical composi-
tional model. Such strategy makes the internal
compositional process more flexible and expres-
sive. In this way, the hidden layer simulates the
relation between sentences in a more appropriate
manner.

The CRNN based models (USM-EU and RSM-
EU ) achieve a significant improvement over other
approaches including UPM (according to the two-
sided paired t-test with a confidence level of α =
0.05). UPM maps the representation of sentences
to the same space and adds up the mapping result
as the conversation representation. However, such
process is less expressive than CRNN. In the test
process, the weight matrix that mapping sentence
representations in UPM is constant after training
and the contribution of each sentence to the con-
versation is relatively fixed. While the GRUs in
the CRNN could select the information resource
flexibly through the reset gate r and update gate z,
controlling the influence of particular sentence ac-
cording to the context (Chung et al., 2014). More-
over, the gating process is a kind of multiplicative
operation between sentence embeddings. Such
multiplicative compositional functions are more
expressive in simulating interaction between ab-
stract features than additive ones (Socher et al.,
2013; İrsoy and Cardie, 2015). Thus, CRNN
based models handle the interaction between ut-
terances in a more flexible way than UPM.

RSM is more effective than USM according to
the results in Table 2. This is due to the fact
that the gated operation makes it possible to adjust
sentence representation according to R0. There-
fore, besides the interaction between adjacent ut-
terances handled by the recurrent structure, the in-
fluence of interaction between R0 and other utter-
ances can be involved into the final representation
and distance relation and consistency could be en-
coded.

4.5.2 Case Study
In order to illustrate the difference between USM
and RSM in an intuitive way, we calculate the risk
of negative feedback for each time step in these
two recurrent models with the input of the ses-
sion shown in Figure 1. The outputs of recurrent
layer of each time step are used as inputs of the
full-connection layer and the softmax regression
results are considered as the probabilities of user’s
dissatisfaction.

Figure 3: The probabilities of negative feedback
for each utterance in sessions in Figure 1.

The line chart of the sequence of probabilities
of the two models are shown in Figure 3. The ten-
dencies of these two line are similar. It is due to
the fact that the gates controlled by R0 shrink the
activations of recurrent layer and adjust the scales
of values without changing the quadrant or feature
space.

For the same utteranceQ−2, there’s a difference
between the probabilities of these two models, and
the gap between the two line get more obvious
after Q−1 is input. Both Q−2 and Q−1 contains
negative emotions and possibly lead to dissatisfac-
tion. Thus, the probabilities of negative feedback
increase at the corresponding time step. However,
the gated activations in RSM change more sharply.
It indicates that the emotional inconsistency be-
tween R0 and these two user messages lead to a
further increasing of risk through the gated adjust-
ment.

Finally, the RSM predicts that the negative feed-
back will occur in the next time step (with the
probabilities larger than 0.5), which is true accord-
ing to the corpus. However, the USM fails to make
the correct prediction.

4.5.3 Comparison of Pre-training Strategies
As discussed in Subsection 4.2, different pre-
training strategies are implemented during the
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Models NPT UPT BPT
UM-R0 0.5365 0.5232 0.5495
UPM-Q0R0 0.5619 0.5547 0.5623
USM-EU 0.5865 0.5808 0.6022
RSM-EU 0.5939 0.5782 0.6106

Table 3: Comparison of accuracies with no pre-
training (NPT), unbalanced pre-training (UPT)
and balanced pre-training (BPT)

training process. The comparison of accuracy of
these strategies are shown in Table 3.

Unbalanced pre-training strategy leads to a
worse performance than only using manually la-
belled data. As discussed in 4.2.2, when a false
rule is learned, a particular R0 is associated with
a wrong label, which hurts the performance obvi-
ously. Moreover, during the experimental process
of unbalanced pre-training, it is observed that the
models involving more context achieve better re-
sult than those only using R0 as input. It is due
to that the existence of the strong correlation be-
tween R0 and the label itself is an inaccurate pat-
tern, no matter whether the label is correct. The
pre-training data encoding such strong correlation
will makes the models ignore the context utterance
and convergence to the local optimum only related
to R0.

However, the balanced pre-training dataset is
effective in initializing the networks. The experi-
mental results show that the balanced pre-training
improves the performance of the networks. The
underlying reason is that the pre-training process
provides a better initialization for the networks,
and the converging process of tuning continues
based on an initial optimization.

4.5.4 Other Discussions
Directionality: Bi-directional and backward-
directional recurrent networks are tested. Both
structures lead to drop in accuracy (about 1%).
We see that the last response R0 is the essential
determinant of emotion, the basic forward RNN
structure has a bias on the last time steps for be-
ing free from the influence of small recurrent con-
nection weight matrix. While adding backward-
directional processing involving more parameters
and weaken the influence of R0 and Q0-R0 pair.

Filter Size: Inspired by the SVM baseline mod-
els performing not worse than the utterance model,
we introduce 1 × 1 filters, working together with
2× 1 ones, and such setting achieves an improve-

ment by about 1% than only using 2 × 1 ones
(from 0.6019 to 0.6106 with RSM). In practice,
the larger filter size (e.g. 3, 4 or 5) leads to insta-
bility in the prediction. It is due to the fact that the
utterances conversations are relatively short. Fea-
tures within a uni-gram or bi-gram window is el-
igible for representing the emotional information.
Although covering some sparse features, involving
more larger filters results in risk of over-fitting.

5 Conclusion and Future Work

In this paper, we propose the problem of predict-
ing users impending negative feedbacks by mod-
elling the context queries and replies in human-
agent conversation. Four kinds of influencing fac-
tors, (1) the computer’s last response R0, (2) the
relation of last turn dialogue pair Q0-R0, (3) the
sequence of all utterance and (4) the sequence
of relation between utterances, are modelled with
deep neural networks. The experimental results
show that these factors indeed influence the emo-
tional trend. We have encoded the possibility of
dissatisfaction by representing the sequence of re-
lation between utterances with a gated convolu-
tional recurrent neural network. Tested on the real-
world human-agent dialogue dataset, the proposed
architecture outperforms the existing conversation
models. Besides, balanced sampling on distance
supervision labelled data are shown to be reliable
in network pre-training.

The accuracies of prediction is only about 60%,
we see that different users show different emo-
tional feedbacks towards the same context. Thus,
there are a few potential explorations: (1) build
corpus on fine-grained emotional categories and
(2) predict the emotional distribution on these cat-
egories instead of classifying into a certain one.
Moreover, we would like to apply the emotional
risk to the response ranking to improve the user
experience of dialogue system.
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Abstract

There are several dialog frameworks
which allow manual specification of in-
tents and rule based dialog flow. The rule
based framework provides good control
to dialog designers at the expense of be-
ing more time consuming and laborious.
The job of a dialog designer can be re-
duced if we could identify pairs of user
intents and corresponding responses au-
tomatically from prior conversations be-
tween users and agents. In this paper we
propose an approach to find these frequent
user utterances (which serve as examples
for intents) and corresponding agent re-
sponses. We propose a novel SimCluster
algorithm that extends standard K-means
algorithm to simultaneously cluster user
utterances and agent utterances by tak-
ing their adjacency information into ac-
count. The method also aligns these clus-
ters to provide pairs of intents and re-
sponse groups. We compare our results
with those produced by using simple K-
means clustering on a real dataset and ob-
serve upto 10% absolute improvement in
F1-scores. Through our experiments on
synthetic dataset, we show that our algo-
rithm gains more advantage over K-means
algorithm when the data has large vari-
ance.

1 Introduction

There are several existing works that focus on
modelling conversation using prior human to hu-
man conversational data (Gašić et al., 2013; Young
et al., 2013; Henderson et al., 2014). (Higashinaka
et al., 2011) models the conversation from pairs
of consecutive tweets. Deep learning based ap-

proaches have also been used to model the di-
alog in an end to end manner (Vinyals and Le,
2015; Serban et al., 2015). Memory networks have
been used by Bordes et al (2016) to model goal
based dialog conversations. More recently, deep
reinforcement learning models have been used for
generating interactive and coherent dialogs (Li
et al., 2016) and negotiation dialogs (Lewis et al.,
2017).

Industry on the other hand has focused on build-
ing frameworks that allow manual specification of
dialog models such as api.ai1, Watson Conversa-
tional Services2, and Microsoft Bot framework3.
These frameworks provide ways to specify intents,
and a dialog flow. The user utterances are mapped
to intents that are passed to a dialog flow manager.
The dialog manager generates a response and up-
dates the dialog state. See Figure 1 for an exam-
ple of some intents and a dialog flow in a techni-
cal support domain. The dialog flow shows that
when a user expresses an intent of # laptop heat,
then the system should respond with an utterance
“Could you let me know the serial number of your
machine ”. The designer needs to specify intents
(for example # laptop heat, # email not opening)
and also provide corresponding system responses
in the dialog flow. This way of specifying a dialog
model using intents and corresponding system re-
sponses manually is more popular in industry than
a data driven approach as it makes dialog model
easy to interpret and debug as well as provides a
better control to a dialog designer. However, this
is very time consuming and laborious and thus in-
volves huge costs.

One approach to reduce the task of a dialog de-
signer is to provide her with frequent user intents
and possible corresponding system responses in

1https://api.ai/
2https://www.ibm.com/watson/developercloud/conversation.html
3https://dev.botframework.com
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Figure 1: Some intents and dialog flow

a given domain. This can be done by analysing
prior human to human conversations in the do-
main. Figure 2(a) provides some example conver-
sations in the technical support domain between
users and agents.

In order to identify frequent user intents, one
can use existing clustering algorithms to group to-
gether all the utterances from the users. Here each
cluster would correspond to a new intent and each
utterance in the cluster would correspond to an
example for the intent. Similarly the agents ut-
terances can be clustered to identify system re-
sponses. However, we argue that rather than treat-
ing user utterances and agents responses in an iso-
lated manner, there is merit in jointly clustering
them. There is adjacency information of these ut-
terances that can be utilized to identify better user
intents and system responses. As an example, con-
sider agent utterances A.2 in box A and A.2 in box
C in Figure 2(a). The utterances “Which oper-
ating system do you use?” and “What OS is in-
stalled in your machine” have no syntactic simi-
larity and therefore may not be grouped together.
However the fact that these utterances are adjacent
to the similar user utterances “I am unable to start
notes email client” and “Unable to start my email
client” provides some evidence that the agent ut-
terances might be similar. Similarly the user ut-
terances “My system keeps getting rebooted” and
“Machine is booting time and again” ( box B and
D in Figure 2(a))- that are syntactically not simi-

lar - could be grouped together since the adjacent
agent utterances, “Is your machine heating up?”
and “Is the machine heating?” are similar.

Joint clustering of user utterances and agent ut-
terances allow us to align the user utterance clus-
ters with agent utterance clusters. Figure 2(b)
shows some examples of user utterance clusters
and agent utterance clusters along with their align-
ments. Note that the user utterance clusters can be
used by a dialog designer to specify intents, the
agent utterance clusters can be used to create sys-
tem responses and their alignment can be used to
create part of the dialog flow.

We propose two ways to take adjacency in-
formation into account. Firstly we propose a
method called SimCluster for jointly or simulta-
neously clustering user utterances and agent utter-
ances. SimCluster extends the K-means clustering
method by incorporating additional penalty terms
in the objective function that try to align the clus-
ters together (described in Section 3). The algo-
rithm creates initial user utterance clusters as well
as agent utterance clusters and then use bi-partite
matching to get the best alignment across these
clusters. Minimizing the objective function pushes
the cluster centroids to move towards the centroids
of the aligned clusters. The process implicitly en-
sures that the similarity of adjacent agent utter-
ances affect the grouping of user utterances and
conversely similarity of adjacent user utterances
affect the grouping of agent utterances. In our sec-
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Figure 2: Some sample conversations and the obtained clusters

ond approach we use the information about neigh-
bouring utterances for creating the vector repre-
sentation of an utterance. For this we train a se-
quence to sequence model (Sutskever et al., 2014)
to create the vectors (described in Section 5).

Our experiments described in section 5 show
that we achieve upto 10% absolute improve-
ment in F1 scores over standard K-means us-
ing SimCluster. Also we observe that clustering
of customer utterances gains significantly by us-
ing the adjacency information of agent utterances
whereas the gain in clustering quality of agent ut-
terances is moderate. This is because the agent
utterances typically follow similar syntactic con-
structs whereas customer utterances are more var-
ied. Considering the agent utterances into account
while clustering users utterances is thus helpful.
The organization of the rest of the paper is as fol-
lows. In Section 2 we describe the related work. In
Section 3 we describe our problem formulation for
clustering and the associated algorithm. Finally in
sections 4 and 5 we discuss our experiments on
synthetic and real datasets respectively.

2 Related Work

The notion of adjacency pairs was introduced by
Sacks et al (1974) to formalize the structure of a
dialog. Adjacency pairs have been used to ana-
lyze the semantics of the dialog in computational

linguistics community (Palomar and Martı́nez-
Barco, 2000). Clustering has been used for dif-
ferent tasks related to conversation. (Ritter et al.,
2010) considers the task of discovering dialog acts
by clustering the raw utterances. We aim to obtain
the frequent adjacency pairs through clustering.
There have been several works regarding exten-
sions of clustering to different scenarios such as:-

1. Co-clustering : Co-clustering considers the
setting where data and features are clustered
simultaneously. Dhillon (2001) considers
a spectral graph theoretic approach to co-
cluster documents and words simultaneously.
Dhillon, Mallela and Modha (2003) consider
an information theoretic formulation of co-
clustering.

2. Multi task learning: Multi task learning con-
siders task of learning from multiple domains
simultaneously (Caruana, 1998). Gu and
Zhou (2009) consider the problem of multi
task clustering wherein they cluster multi-
ple domains simultaneously and utilize the
relation of the domains to enhance cluster-
ing performance. Their model consists a re-
duced subspace in which the projection of
vectors from the two domains have simi-
lar distribution. They then try to learn this
common subspace and the clusters simulta-
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neously. Our scenario differs from multi task
learning since here the distributions across
the domains tend to be different. (The do-
mains being the possible utterances of user
and agent).

3. Transfer learning considers the task of trans-
fering the knowledge across similar tasks
(Danyluk et al., 2009). Bhattacharya et al
(2012) consider the task of clustering in the
target domain using the given clusters in a
source domain. They formulate the problem
of minimizing a weighted sum of the energy
function in the clustering, along with the en-
ergy of aligning the clusters of the two do-
mains. This setting differs from ours since
again the utterances in the two domains can
be very different. Moreover unlike the task
of transfer learning we do not have clusters
in any of the domains. However we do have
information regarding the adjacency of utter-
ances between the two domains.

3 The Proposed Approach

In this section we describe our approach SimClus-
ter that performs clustering in the two domains si-
multaneously and ensures that the generated clus-
ters can be aligned with each other. We will de-
scribe the model in section 3.1 and the algorithm
in Section 3.2.

3.1 Model

We consider a problem setting where we are given
a collection of pairs of consecutive utterances,
with vector representations {x(i), y(i)}mi=1 where
x(i)s are in speaker 1’s domain and y(i)s are in
speaker 2’s domain. We need to simultaneously
cluster the utterances in their respective domains
to minimize the variations within each domain and
also ensure that the clusters for both domains are
close together.
We denote the clusters for speaker 1’s domain by
{Cxj }kj=1 with their respective means {µxj }kj=1.
We denote the clusters assignments for x(i) by
cax(i) ∈ {1, 2, ..., k}.
We denote the clusters for second speaker by
{Cyj }kj=1 with their respective means {µyj}kj=1.
We denote the clusters assignments for y(i) by
Cay(i) ∈ {1, 2, ...k}. The usual energy function
has the terms for distance of points from their cor-
responding cluster centroids. To be able to ensure

that the clusters in each domain are similar, we
also consider an alignment between the centroids
of the two domains. Since the semantic represen-
tations in the two domains are not comparable we
consider a notion of induced centroids.
We define the induced centroids {̃µxj }

k

j=1
as the

arithmetic means of the points {x(i)}s such that
y(i)’s have the same cluster assigned to them. Sim-

ilarly, we define {̃µyj}
k

j=1
as the arithmetic means

of {y(i)}s such that x(i)s have the same cluster as-
signed to them. More formally, we define these
induced centroids as:-

{̃µxj } =

∑
i:Cay(i)=j x

(i)

|{i : Cay(i) = j}|
and

{̃µyj} =

∑
i:Cax(i)=j y

(i)

|{i : Cax(i) = j}|
The alignment between these clusters given by the
function ma : [k] 7→ [k], which is a bijective map-
ping from the cluster indices in speaker 1’s domain
to those in speaker 2’s domain. Though there can
be several choices for this alignment function, we
consider this alignment to be a matching which
maximizes the sum of number of common in-
dices in the aligned clusters. More formally we
define

N(j1, j2) = |{i : x(i) ∈ Cxj1 and y(i) ∈ Cyj2}|

Then the matching ma is defined to be
the bijective function which maximizes∑k

j=1N(j,ma(j)). We consider a term in
the cost function corresponding to the sum of
distances between the original centroids and the
matched induced centroids. Our overall cost
function is now given by:-

J = α(
m∑
i=1

‖x(i) − µxCax(i)‖2

+
m∑
i=1

‖y(i) − µyCay(i)‖2)

+ (1− α)(
k∑
j=1

‖µxj − µ̃xma(j)‖2.|Cxj |

+
k∑
j=1

‖µyj − ˜µy
ma−1(j)

‖2|Cyj |)
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We explain the above definition via an example.
Consider the clusters shown in Figure 3. Here the
ma would match Cx1 to Cy1 , Cx2 to Cy3 and Cx3 to
Cy2 , giving a match score of 6. Since y(1), y(2) and
y(4) are present in the cluster Cy1 , µ̃x1 is given by
x(1)+x(2)+x(4)

3 . Similarly

µ̃x2 =
x(3) + x(8) + x(9)

3

µ̃x3 =
x(5) + x(6) + x(7)

3

In a similar manner, µ̃ys can also be defined. Now
the alignment terms are given by:-

‖µx
1 − µ̃x

1‖2|Cx
1 |+ ‖µx

2 − µ̃x
3‖2|Cx

2 ‖+ ‖µx
3 − µ̃x

2‖2|Cx
3 |+

‖µy
1 − µ̃y

1‖2|Cy
1 |+ ‖µy

2 − µ̃y
3‖2|Cy

2 ‖+ ‖µy
3 − µ̃y

2‖2|Cy
3 |

Figure 3: Sample clusters with matching

3.2 SimCluster Algorithm
To minimize the above energy term we adopt an
approach similar to Lloyd’s clustering algorithm
(1982) . We assume that we are given a set
of initial seeds for the cluster centroids {µxj }kj=1

and {µyj}kj=1. We repeat the following steps
iteratively:-

1. Minimize the energy with respect to clus-
ter assignment keeping centroids unchanged.
As in standard K-means algorithm, this is
achieved by updating the cluster assignment,
Cax for each index i to be the cluster index j
which minimizes ‖x(i) − µxj ‖2. Correspond-
ingly for Cay, we pick the cluster index j’
which minimizes ‖y(i) − µyj′‖2.

2. Minimize the energy with respect to the cen-
troids keeping cluster assignment unchanged.
To achieve this step we need to minimize
the energy function with respect to the cen-
troids µxj and µyj . This is achieved by setting

∇µx
j
J = 0 for each j and ∇µy

j
J = 0 for each

j.
Setting∇µx

j
J = 0, we obtain

µx
j = α

(∑
i:Cax(i)=j x(i)

|Cx
j |

)
+ (1− α)µ̃x

ma(j)

or equivalently

µxj = α

(∑
i:Cax(i)=j x(i)

|Cxj |

)

+ (1− α)

(∑
i:Cay(i)=ma(j) x(i)

|Cyj |

)
Similarly, setting∇µy

j
J = 0, we obtain

µyj = α

(∑
i:Cay(i)=j y(i)

|Cyj |

)

+ (1− α)

(∑
i:Cax(i)=ma−1(j) y(i)

|Cxj |

)

3. Finally we update the matching between the
clusters. To do so, we need to find a bipartite
matching match on the cluster indices so as to
maximize

∑k
j=1N(j,ma(j)). We use Hun-

garian algorithm (Kuhn, 1955) to perform the
same i.e. we define a bipartite graph with ver-
tices consisting of cluster indices in the two
domains. There is an edge from vertex rep-
resenting cluster indices j (in domain 1) and
j’ in domain 2, with weight N(j,j’). We find
a maximum weight bipartite matching in this
graph.

Similar to Lloyd’s algorithm, each step of the
above algorithm decreases the cost function. This
ensures that the algorithm achieves a local minima
of the cost function if it converges. See Algorithm
2 for a formal description of the approach. The
centroid update step of the above algorithm also
has an intuitive explanation i.e. we are slightly
moving away the centroid towards the matched in-
duced centroid. This is consistent with our goal of
aligning the clusters together in the two domains.

3.3 Alignment
The algorithm above maintains a mapping be-
tween the clusters in each speaker’s domain. This
mapping serves to give us the alignment between
the clusters required to provide a corresponding
response for a given user intent.
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Algorithm 1 SimCluster

1: procedure SIMCLUSTER(Input: {(x(i), y(i))}mi=1,k (No. of cluster))
2: Output: A cluster assignment Cax for x(i)s and a cluster assignment Cay for y(i)s
3: Initialize a set of centroids {µx

j }kj=1 , and {µy
j }kj=1

4: Perform simple clustering for a few iterations
5: repeat
6: For each i, compute Cax(i) as the index j among 1 to k which minimizes ‖x(i) − µx

j ‖2.
7: Similarly , compute Cay(i) as the index j’ among 1 to k which minimizes ‖y(i) − µy

j′‖2.
8: Update the centroids, µx

j and µy
j as:-

µx
j = α

(∑
i:Cax(i)=j x(i)

|Cx
j |

)
+ (1− α)

(∑
i:Cay(i)=ma(j) x(i)

|Cy
j |

)

and

µy
j = α

(∑
i:Cay(i)=j y(i)

|Cy
j |

)
+ (1− α)

(∑
i:Cax(i)=ma−1(j) y(i)

|Cx
j |

)
9: Perform a Hungarian matching between the cluster indices in the two domains with weights

10: N(j,j’) on edges from index j to index j’.
11: until convergence

Domain 1 Domain 2
F1-score ARI F1-score ARI

K-means 0.412 0.176 0.417 0.180
SimCluster 0.442 0.203 0.441 0.204

Table 1: Performance of SimCluster versus K-means clustering on synthetic dataset

4 Experiments on Synthetic Dataset

We performed experiments on synthetically gener-
ated dataset since it gives us a better control over
the distribution of the data. Specifically we com-
pared the gains obtained using our approach ver-
sus the variance of the distribution. We created
dataset from the following generative process.

Algorithm 2 Generative Process
1: procedure GENERATE DATA

2: Pick k points {µ(i)
x }ki=1 as domain -1

means and a corresponding set of k points
{µ(i)

y }ki=1 as domain-2 means, and covariance
matrices ΣxandΣy

3: for iter← 1 upto num samples do
4: Sample class ∼ U{1, 2...k}
5: Sample q ∼ N (µclassx ,Σx)
6: Sample a ∼ N (µclassy ,Σy)
7: Add q and a so sampled to the list of

q,a pairs

We generated the dataset from the above sam-
pling process with means selected on a 2 dimen-
sional grid of size 3 × 3 with variance set as 1

2 in
each dimension.10000 sample points were gener-

ated. The parameter α of the above algorithm was
set to 0.5 and k was set to 9 (since the points could
be generated from one of the 9 gaussians with cen-
troids on a 3× 3 grid).
We compared the results with simple K-means
clustering with k set to 9. For each of these, the
initialization of means was done using D2 sam-
pling approach (Arthur and Vassilvitskii, 2007).

4.1 Evaluation and Results
To evaluate the clusters we computed the follow-
ing metrics

1. ARI (Adjusted Rand Index): Standard Rand
Index is a metric used to check the clustering
quality against a given standard set of clus-
ters by comparing the pairwise clustering de-
cisions. It is defined as a+b

a+b+c+d , where a
is the number of true positive pairs, b is the
number of true negative pairs, c is the number
of false positive pairs and d is the number of
false negative pairs. Adjusted rand index cor-
rects the standard rand index for chance and
is defined as Index − Expected index

Max Index − Expected index (Rand,
1971).
We compute ARI score for both the source
clusters as well as the target clusters.

728



2. F1 scores: We also report F1 scores for the
pairwise clustering decisions. In the above
notation we considered the pair-precision as
a
a+c and recall as a

a+d . The F1 measure is the
Harmonic mean given as 2PR

P+R .

We used the gaussian index from which an ut-
terance pair was generated as the ground truth la-
bel, which served to provide ground truth clus-
ters for computation of the above evaluation met-
rics. Table 1 shows a comparison of the results
on SimCluster versus K-means algorithm. Here
our SimCluster algorithm improves the F1-scores
from 0.412 and 0.417 in the two domains to 0.442
and 0.441. The ARI scores also improve from
0.176 and 0.180 to 0.203 and 0.204.

4.1.1 Variation with variance
We also performed experiments to see how the
performance of SimCluster is affected by the vari-
ance in the cluster (controlled by the generative
process in Algorithm 2). Intuitively we expect
SimCluster to obtain an advantage over simple K-
means when variance is larger. This is because at
larger variance, the data points are more likely to
be generated away from the centroid due to which
they might be clustered incorrectly with the points
from neighbouring cluster. However if the corre-
sponding point from the other domain is gener-
ated closer to the centroid, it might help in cluster-
ing the given data point correctly. We performed
these experiments with points generated from Al-
gorithm 2 at differet values of variance. We gener-
ated the points with centroids located on a grid of
size 3×3 in each domain. The value of k was set to
9. The experiment was repeated for each value of
variance between 0.1 to 1.0 in the intervals of 0.1.
Figures 4 and 5 show the percentage improvement
on ARI score and F1 score respectively achieved
by SimCluster (over K-means) versus variance.

5 Experiments on Real Dataset

5.1 Description and preprocessing of dataset
We have experimented on a dataset contain-
ing Twitter conversations between customers and
Amazon help. The dataset consisted of 92130 con-
versations between customers and amazon help.
We considered the conversations with exactly two
speakers Amazon Help and a customer. Consecu-
tive utterances by the same speaker were concate-
nated and considered as a single utterance. From
these we extracted adjacency pairs of the form of a

Figure 4: Improvement in ARI figures achieved by
SimCluster versus variance

Figure 5: Variation of Improvement in F1 score
figures achieved by SimCluster versus variance

customer utterance followed by an agent (Amazon
Help) utterance. We then selected the utterance
pairs from 8 different categories, like late delivery
of item, refund, unable to sign into the account,
replacement of item, claim of warranty, tracking
delivery information etc. A total of 1944 utterance
pairs were selected.
To create the vector representation we had used
two distinct approaches:-

1. Paragraph to vector approach (Doc2Vec) by
Le and Mikolov (2014). Here we trained the
vectors using distributed memory algorithm
and trained for 40 iterations. A window size
of 4 was used.

2. We also trained the vectors using sequence to
sequence approach (Sutskever et al., 2014),
on the Twitter dataset where we considered
the task of predicting the reply of Amazon
Help for customer’s query and vice versa.
The encoded vector from the input sequence
forms the corresponding vector representa-
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Customer Agent
F1-score ARI F1-score ARI

K-means (Doc2Vec) 0.787 0.150 0.783 0.136
SimCluster (Doc2Vec) 0.88 0.19 0.887 0.192
K-means (Seq2Seq) 0.830 0.159 0.900 0.218
SimCluster (Seq2Seq) 0.860 0.181 0.916 0.218

Table 2: Performance of SimCluster versus K-means clustering on both Doc2Vec as well as seq2seq
based vectors

Clusters in user domain Clusters in agent domain
no refund got for the refund request made on 12 ...
11 days & counting on a refund . was promised 3-5 days ...
yes i contacted my bank 2 days ... there is no sign of an amazon refund processing .
@amazon refer screen shot ..When will i get my refund ?...
... I have to wait 3-5 business days for Amazon to refund me money ...

... You can view your order refund status here ...
It can take up to 10 business days ... the refund has been processed
... if you have received the refund reference number then ... contact support team ...
Refunds typically take 5-7 days to show on your account ...
... As soon as the product reaches the shipper the refund will be initiated ...

...my package is late so why did I get prime ?
Paid $ 20 + in shipping for next day delivery yesterday but ... even tho I have prime
my order wasnt delivered yesterday ... why am I pay for prime ?

do you bother to let anyone know ... What is the point of prime ?
I’m a Amazon prime member . You promised me 2day delivery ...

I’m sorry to see it’s late ...
I’m sorry it arrived late, but glad you did receive it .
I’m glad to hear it was delivered , but I’m sorry it was a day late ...
I’m sorry your order is late ! When you contacted us...

Table 3: Sample clusters in user and agent domains. Utterances in bold are those which were not in the
given cluster using K-means, but could be correctly classified with the cluster using SimCluster

tion. For the task of generating the agent’s
response for customer utterance the encod-
ing from the input sequence (in the trained
model) forms the vector representation for
the customer utterance. Similarly for the task
of generating the previous customer utterance
from the agent’s response, the intermediate
encoding forms the vector representation for
the agent utterance. We used an LSTM based
3-layered sequence to sequence model with
attention for this task.

We ran the K-means clustering algorithm for 5 it-
erations followed by our SimCluster algorithm for
30 iterations to form clusters in both the (customer
and agent) domains. The hyper parameter(α) is
chosen based on a validation set. We varied the
value of α from 0.5 to 1.0 at intervals of 0.025.
The initialization of centroids was performed us-
ing D2 sampling approach (Arthur and Vassilvit-
skii, 2007).

5.2 Results

For the clusters so obtained we have computed F1
and ARI measures as before and compared with
the K-means approach. We used the partitioning
formed by the 8 categories (from which the utter-
ance pairs were selected) as the ground truth clus-
tering.
Table 2 summarizes the results. We observe that
for K-means algorithm, the vectors generated from
sequence to sequence model perform better than

the vectors generated using paragraph to vector for
both the domains. This is expected as the vec-
tors generated from sequence to sequence model
encode some adjacency information as well. We
further observe that the SimCluster approach per-
forms better than the K-means approach for both
the vector representations. It improves the F1-
scores for Doc2Vec representation from 0.787 and
0.783 to 0.88 and 0.887 in the two domains. Also
the F1-scores on Seq2Seq based representation
improve from 0.83 and 0.9 to 0.86 and 0.916 us-
ing SimCluster. However the gains are much more
in case of Doc2Vec representations than Seq2Seq
representations since Doc2Vec did not have any
information from the other domain where as some
amount of this information is already captured by
Seq2Seq representation. Moreover it is the clus-
tering of customer utterances which is likely to see
an improvement. This is because agent utterances
tends to follow a generic pattern while customer
utterances tend to be more varied. Considering
agent utterances while generating clusters in the
user domain thus tends to be more helpful than the
other way round.

Table 3 shows qualitative results on the same
dataset. Column 1 and 2 consists of clusters of
utterances in customer domain and agent domain
respectively. The utterances with usual font are
representative utterances from clusters obtained
through K-means clustering. The utterances in
bold face indicate the similar utterances which
were incorrectly classified in different clusters us-
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ing K-means but were correctly classified together
with the utterances by SimCluster algorithm.

6 Conclusions

One of the first steps to automate the construction
of conversational systems could be to identify the
frequent user utterances and their corresponding
system responses. In this paper we proposed an
approach to compute these groups of utterances by
clustering the utterances in both the domains using
our novel SimCluster algorithm which seeks to si-
multaneously cluster the utterances and align the
utterances in two domains. Through our experi-
ments on synthetically generated datset we have
shown that SimCluster has more advantage over
K-means on datasets with larger variance. Our
technique improves upon the ARI and F1 scores
on a real dataset containing Twitter conversations.
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Abstract

One of the major drawbacks of modu-
larized task-completion dialogue systems
is that each module is trained individu-
ally, which presents several challenges.
For example, downstream modules are af-
fected by earlier modules, and the per-
formance of the entire system is not ro-
bust to the accumulated errors. This pa-
per presents a novel end-to-end learning
framework for task-completion dialogue
systems to tackle such issues. Our neu-
ral dialogue system can directly interact
with a structured database to assist users
in accessing information and accomplish-
ing certain tasks. The reinforcement learn-
ing based dialogue manager offers robust
capabilities to handle noises caused by
other components of the dialogue system.
Our experiments in a movie-ticket book-
ing domain show that our end-to-end sys-
tem not only outperforms modularized di-
alogue system baselines for both objective
and subjective evaluation, but also is ro-
bust to noises as demonstrated by several
systematic experiments with different er-
ror granularity and rates specific to the lan-
guage understanding module1.

1 Introduction

In the past decade, goal-oriented dialogue systems
have been the most prominent component in to-
day’s virtual personal assistants, which allow users
to speak naturally in order to accomplish tasks
more efficiently. Traditional systems have a rather
complex and modularized pipeline, consisting of a
language understanding (LU) module, a dialogue

1The source code is available at: https://github/
com/MiuLab/TC-Bot.

manager (DM), and a natural language generation
(NLG) component (Rudnicky et al., 1999; Zue
et al., 2000; Zue and Glass, 2000).

Recent advances of deep learning have inspired
many applications of neural models to dialogue
systems. Wen et al. (2017) and Bordes et al.
(2017) introduced a network-based end-to-end
trainable task-oriented dialogue system, which
treated dialogue system learning as the problem
of learning a mapping from dialogue histories to
system responses, and applied an encoder-decoder
model to train the whole system. However, the
system is trained in a supervised fashion: not only
does it require a lot of training data, but it may
also fail to find a good policy robustly due to lack
of exploration of dialogue control in the training
data. Zhao and Eskenazi (2016) first presented an
end-to-end reinforcement learning (RL) approach
to dialogue state tracking and policy learning in
the DM. This approach is shown to be promising
when applied to the task-oriented dialogue prob-
lem of guessing the famous person a user thinks
of. In the conversation, the agent asks the user a
series of Yes/No questions to find the correct an-
swer. However, this simplified task may not gen-
eralize to practical problems due to the following:

1. Inflexible question types — asking request
questions is more natural and efficient than
Yes/No questions. For example, it is more
natural and efficient for the system to ask
“Where are you located?” instead of “Are
you located in Palo Alto?”, when there are
a large number of possible values for the lo-
cation slot.

2. Poor robustness — the user answers are too
simple to be misunderstood, so the system
lacks the robustness against noise in real user
utterances.

3. User requests during dialogues — in a task-
oriented dialogue, user may ask questions for
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Figure 1: Illustration of the end-to-end neural dialogue system: given user utterances, reinforcement
learning is used to train all components in an end-to-end fashion.

selecting the preferred slot values. In a flight-
booking example, user might ask “What flight
is available tomorrow?”.

For the second issue, Su et al. (2016) briefly in-
vestigated the effect of dialogue action level se-
mantic error rates on the dialogue performance.
Lemon and Liu (2007) compared policy transfer
properties under different environments, showing
that policies trained in high-noise conditions have
better transfer properties than those trained in low-
noise conditions. Recently, Dhingra et al. (2017)
proposed an end-to-end differentiable KB-Infobot
to provide the solutions to the first two issues, but
the last one remained unsolved.

This paper addresses all three issues above
by redefining the targeted system as a task-
completion neural dialogue system. Our frame-
work is more practical in that the information can
be easily accessed by the user during the conver-
sations, while the final goal of the system is to
complete a task, such as movie-ticket booking.
This paper is the first attempt of training a real-
world task-completion dialogue system in an end-
to-end fashion by leveraging supervised learning
and reinforcement learning techniques. To fur-
ther understand the robustness of reinforcement
learning based dialogue systems, we conduct ex-
tensive experiments and quantitative analysis on a
fine-grained level of LU errors, and provide mean-
ingful insights on how the language understanding
component impacts the overall performance of the

dialogue system.

Our contributions are three-fold:

• Robustness — We propose a neural dialogue
system with greater robustness by automat-
ically selecting actions based on uncertainty
and confusion by reinforcement learning. We
also provide the first systematic analysis to
investigate the impact of different types of
natural language understanding errors on di-
alogue system performance. We show that
slot-level errors have a greater impact on the
system performance than intent-level ones,
and that slot value replacement degrades the
performance most. Our findings shed some
light on how to design multi-task natural lan-
guage understanding models (intent classifi-
cation and slot labeling) in the dialogue sys-
tems with consideration of error control.
• Flexibility — The system is the first neural

dialogue system that allows user-initiated be-
haviors during conversations, where the users
can interact with the system with higher flex-
ibility that is important in realistic scenarios.
• Reproducibility — We demonstrate how to

evaluate RL dialogue agents using crowd-
sourced task-specific datasets and simulated
users in an end-to-end fashion, guaranteeing
reproducibility and consistent comparisons
of competing methods in an identical setting.
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W find action movies this weekend
↓ ↓ ↓ ↓ ↓

S O B-genre O B-date I-date
I find movie

Figure 2: An example utterance with annotations
of semantic slots in IOB format (S) and intent (I),
B-date and I-date denote the date slot.

2 Proposed Framework

The proposed framework2 is illustrated in Fig-
ure 1. It includes a user simulator (left part) and
a neural dialogue system (right part). In the user
simulator, an agenda-based user modeling compo-
nent based at the dialogue act level is applied to
control the conversation exchange conditioned on
the generated user goal, to ensure the user behaves
in a consistent, goal-oriented manner. An NLG
module is used to generate natural language texts
corresponding to the user dialogue actions. In a
neural dialogue system, an input sentence (recog-
nized utterance or text input) passes through an LU
module and becomes a corresponding semantic
frame, and an DM, which includes a state tracker
and policy learner, is to accumulate the semantics
from each utterance, robustly track the dialogue
states during the conversation, and generate the
next system action.

2.1 Neural Dialogue System
Language Understanding (LU): A major task
of LU is to automatically classify the domain of a
user query along with domain specific intents and
fill in a set of slots to form a semantic frame. The
popular IOB (in-out-begin) format is used for rep-
resenting the slot tags, as shown in Figure 2.

~x = w1, ..., wn, <EOS>

~y = s1, ..., sn, im

where ~x is the input word sequence and ~y contains
the associated slots, sk, and the sentence-level in-
tent im. The LU component is implemented with
a single LSTM, which performs intent prediction
and slot filling simultaneously (Hakkani-Tür et al.,
2016; Chen et al., 2016):

~y = LSTM(~x) . (1)

The LU objective is to maximize the conditional
probability of the slots and the intent ~y given the

2The source code is available at: https://github.
com/MiuLab/TC-Bot

word sequence ~x:

p(~y | ~x) =

(
n∏
i

p(si | w1, . . . , wi)

)
p(im | ~y).

The weights of the LSTM model are trained us-
ing backpropagation to maximize the conditional
likelihood of the training set labels. The predicted
tag set is a concatenated set of IOB-format slot
tags and intent tags; therefore, this model can be
trained using all available dialogue actions and ut-
terance pairs in our labeled dataset in a supervised
manner.

Dialogue Management (DM): The symbolic
LU output is passed to the DM in the dialogue
act form (or semantic frame). The classic DM in-
cludes two stages, dialogue state tracking and pol-
icy learning.
• Dialogue state tracking: Given the LU sym-

bolic output, such as request(moviename;
genre=action; date=this weekend), three
major functions are performed by the state
tracker: a symbolic query is formed to inter-
act with the database to retrieve the available
results; the state tracker will be updated based
on the available results from the database and
the latest user dialogue action; and the state
tracker will prepare the state representation
st for policy learning.
• Policy learning: The state representation

for the policy learning includes the lat-
est user action (e.g., request(moviename;
genre=action; date=this weekend)), the
latest agent action (request(location)), the
available database results, turn information,
and history dialogue turns, etc. Conditioned
on the state representation st from the state
tracker, the policy π is to generate the next
available system action at according to π(st).
Either supervised learning or reinforcement
learning can be used to optimize π. Details
about RL-based policy learning can be found
in section 3.

Prior work used different implementation ap-
proaches summarized below. Dialogue state track-
ing is the process of constantly updating the state
of the dialogue, and Lee (2014) showed that there
is a positive correlation between state tracking per-
formance and dialogue performance. Most pro-
duction systems use manually designed heuris-
tics, often based on rules, to update the dialogue
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states based on the highly confident output from
LU. Williams et al. (2013) formalized the tracking
problem as a supervised sequence labeling task,
where the input is LU outputs and the output is
the true slot values, and the state tracker’s results
can be translated into a dialogue policy. Zhao and
Eskenazi (2016) proposed to jointly train the state
tracker and the policy learner in order to optimize
the system actions more robustly. Instead of ex-
plicitly incorporating the state tracking labels, this
paper learns the system actions with implicit dia-
logue states, so that the proposed DM can be more
flexible and robust to the noise propagated from
the previous components (Su et al., 2016; Liu and
Lane, 2017). A rule-based agent is employed to
warm-start the system, via supervised learning on
labels generated by the rules. The system is then
further trained end-to-end with RL, as explained
in section 3.

2.2 User Simulation
In order to perform end-to-end training for the pro-
posed neural dialogue systems, a user simulator
is required to automatically and naturally interact
with the dialogue system. In the task-completion
dialogue setting, the user simulator first generates
a user goal. The agent does not know the user goal,
but tries to help the user accomplish it in the course
of conversations. Hence, the entire conversation
exchange is around this goal implicitly. A user
goal generally consists of two parts: inform slots
for slot-value pairs that serve as constraints from
the user, and request slots for slots whose value
the user has no information about, but wants to get
the values from the agent during the conversation.
The user goals are generated using a set of labeled
conversational data.

User Agenda Modeling: During the course
of a dialogue, the user simulator maintains a
compact, stack-like representation called user
agenda (Schatzmann and Young, 2009), where the
user state su is factored into an agenda A and a
goal G. The goal consists of constraints C and
request R. At each time-step t, the user simula-
tor generates the next user action au,t based on the
current state su,t and the last agent action am,t−1,
and then updates the current status s′u,t.

Natural Language Generation (NLG): Given
the user’s dialogue actions, the NLG module gen-
erates natural language texts. To control the qual-
ity of user simulation given limited labeled data, a

hybrid approach including a template-based NLG
and a model-based NLG is employed, where the
model-based NLG is trained on the labeled dataset
with a sequence-to-sequence model. It takes dia-
logue acts as input, and generates sentence sketch
with slot placeholders via an LSTM decoder. Then
a post-processing scan is performed to replace the
slot placeholders with their actual values (Wen
et al., 2015). In the LSTM decoder, we apply beam
search, which iteratively considers the top k best
sub-sentences when generating the next token.

In the hybrid model, if the user dialogue actions
can be found in the predefined sentence templates,
the template-based NLG is applied; otherwise, the
utterance is generated by the model-based NLG.
This hybrid approach allows a dialogue system
developer to easily improve NLG by providing
templates for sentences that the machine-learned
model does not handle well.

2.3 Error Model Controller

When training or testing a policy based on seman-
tic frames of user actions, an error model (Schatz-
mann et al., 2007) is introduced to simulate noises
from the LU component, and noisy communica-
tion between the user and the agent in order to test
the model robustness. Here, we introduce differ-
ent levels of noises in the error model: one type
of errors is at the intent level, another is at the slot
level. For each level, there are more fine-grained
noises.

Intent-Level Error: At the intent level, we cat-
egorize all intents into three groups:
• Group 1: general greeting, thanks, closing,

etc.
• Group 2: users may inform, to tell the slot

values (or constraints) to the agent, for ex-
ample, inform(moviename=‘Titanic’, start-
time=‘7pm’).
• Group 3: users may request information

for specific slots. In a movie-booking sce-
nario, users might ask “request(starttime;
moviename=‘Titanic’)”.

In the specific task of movie-booking, for in-
stance, there exist multiple inform and re-
quest intents, such as request starttime, re-
quest moviename, inform starttime and in-
form moviename, etc. Based on the above intent
categories, there are three types of intent errors:
• Random error (I0): the random noisy intent

from the same category (within group error)
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or other categories (between group error).
• Within-group error (I1): the noisy intent is

from the same group of the real intent, for ex-
ample, the real intent is request theater, but
the predicted intent from LU module might
be request moviename.
• Between-group error (I2): the noisy intent is

from the different group, for example, a real
intent request moviename might be pre-
dicted as the intent inform moviename.

Slot-level Error: At the slot level, there are four
error types:
• Random error (S0): to simulate the noise that

is randomly set to the following three types.
• Slot deletion (S1): is to simulate the scenario

where the slot is not recognized by the LU
component.
• Incorrect slot value (S2): is to simulate the

scenario where the slot name is correctly rec-
ognized, but the slot value is wrong, e.g.,
wrong word segmentation.
• Incorrect slot (S3): is to simulate the scenario

where both the slot and its value are incor-
rectly recognized.

3 End-to-End Reinforcement Learning

To learn the interactive policy of our system, we
apply reinforcement learning to the DM training
in an end-to-end fashion, where each neural net-
work component can be fine tuned. The policy
is represented as a deep Q-network (DQN) (Mnih
et al., 2015), which takes the state st from the state
tracker as input, and outputs Q(st, a; θ) for all ac-
tions a. Two important DQN tricks, target network
usage and experience replay are applied, where the
experience replay strategy is changed for the dia-
logue setting.

During training, we use ε-greedy exploration
and an experience replay buffer with dynamically
changing buffer size. At each simulation epoch,
we simulateN (N = 100) dialogues and add these
state transition tuples (st, at, rt, st+1) to the expe-
rience replay buffer for training. In one simulation
epoch, the current DQN will be updated multiple
times (depending on the batch size and the current
size of experience replay buffer). At the last sim-
ulation epoch, the target network will be replaced
by the current DQN, the target DQN network is
only updated for once in one simulation epoch.

The experience replay strategy is critical for RL
training (Schaul et al., 2015). In our buffer update

strategy, we accumulate all experience tuples from
the simulation and flush the pool till the current
RL agent reaches a success rate threshold (i.e., a
threshold which is equal to the performance of a
rule-based agent), and then use the experience tu-
ples from the current RL agent to re-fill the buffer.
The intuition is that the initial performance of the
DQN is not strong enough to generate good ex-
perience replay tuples, thus we do not flush the
experience replay pool till the current RL agent
can reach a certain success rate (for example, the
success rate of a rule-based agent). In the rest
of the training process, at every simulation epoch,
we estimate the success rate of the current DQN
agent (by running it multiple dialogues on sim-
ulated users). If the current DQN agent is bet-
ter than the target network, the experience replay
buffer will be flushed.

4 Experiments

We consider a task-completion dialogue system
for helping users book movie tickets. Over the
course of conversation, the dialogue system gath-
ers information about the customer’s desires and
ultimately books the movie tickets. The environ-
ment then assesses a binary outcome (success or
failure) at the end of the conversation, based on
(1) whether a movie is booked, and (2) whether
the movie satisfies the users constraints.

Dataset: The raw conversational data were col-
lected via Amazon Mechanical Turk, with anno-
tations provided by domain experts. In total, we
have labeled 280 dialogues, and the average num-
ber of turns per dialogue is approximately 11. The
annotated data includes 11 dialogue acts and 29
slots, most of the slots are informable slots, which
users can use to constrain the search, and some
are requestable slots, of which users can ask val-
ues from the agent. For example, numberofpeo-
ple cannot be a requestable slot, since arguably
user knows how many tickets he or she wants to
buy. The detailed annotations can be found in Ap-
pendix A.

4.1 Simulated User Evaluation

Two sets of experiments are conducted in the DM
training, where two input formats are used for
training the RL agents:

1. frame-level semantics: when training or test-
ing a policy based on semantic frames of user
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(a) Frame-level semantics for training
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(b) Natural language for end-to-end training

Figure 3: Learning curves for policy training (average of 10 runs). The blue solid lines show the rule
agent performance, where we employ to initialize the experience replay buffer pool; the orange dotted
line is the optimal upper bound, which is the percentage of reachable user goals.

Setting Intent Error Slot Error
Type Rate Type Rate

B
as

ic B1
0: random

0.00
0: random

0.00
B2 0.10 0.10
B3 0.20 0.20

In
te

nt

I0 0: random 0.10

0: random 0.05

I1 1: within group 0.10
I2 2: between group 0.10
I3 0: random 0.00
I4 0: random 0.10
I5 0: random 0.20

Sl
ot

S0

0: random 0.10

0: random 0.10
S1 1: deletion 0.10
S2 2: value 0.10
S3 3: slot 0.10
S4 0: random 0.00
S5 0: random 0.10
S6 0: random 0.20

Table 1: Experimental settings with different in-
tent/slot error types described in section 2.3 and
different error rates.

actions, a noise controller described in sec-
tion 2.3 is used to simulate LU errors and
noisy communications between the user and
the agent.

2. natural language: when training or testing a
policy on natural language level, in which LU
and NLG may introduce noises. In our exper-
iments, the NLG decoder uses beam size = 3
to balance speed and performance.

Figure 3(a) shows a learning curve for the dia-
logue system performance trained with the frame-
level information (user semantic frames and sys-
tem actions), where the number is the average of
10 runs. Figure 3(b) is a learning curve for the
system trained at the natural language level. In
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Figure 4: Learning curves for different LU error
rates.

both settings, the RL agents significantly outper-
form the rule-based systems, showing the poten-
tial of a neural dialogue system that can perform
real-world tasks and be improved autonomously
through interactions with users. Also, the end-to-
end system in Figure 3(b) takes longer for the RL
agent to adapt to the noises from LU and NLG,
indicating the difficulty of maintaining the sys-
tem robustness. The consistently increasing trend
of our proposed end-to-end system also suggests
greater robustness in noisy, real-world scenarios.
To further investigate and understand the real im-
pact of the LU component to the robustness of RL
agent in the dialogue system, we conduct a series
of experiments under different error settings (in-
tent and slot errors from LU) summarized in Ta-
ble 1, where the learning curves are averaged over
10 runs.
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(c) Slot Error Type Analysis

0 100 200 300 400 500
Simulation Epoch

0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

R
at

e

S4: 0.00 slot error rate
S5: 0.10 slot error rate
S6: 0.20 slot error rate

0

10

20

30

40

50

Av
er

ag
e 

Tu
rn

s

(d) Slot Error Rate Analysis

Figure 5: Learning curves of the different intent and slot errors in terms of success rate (left axis) and
average turns (right axis).

4.2 Basic Error Analysis

The group of basic experiments (from B1 to B3)
are in the settings that combine the noise from both
intent and slot: 1) For both intent and slot, the er-
ror types are random, and the error rates are in
{0.00, 0.10, 0.20}. The rule-based agent reports
41%, 21%, and 12% success rates under 0.00,
0.10, and 0.20 error rates respectively. In contrast,
the RL-based agent achieves 90%, 79%, and 76%
success rate under the same error rates, respec-
tively. We compare the performance between two
types of agents and find that the RL-based agent
has greater robustness and is less sensitive to noisy
inputs. Therefore, the following experiments are
performed using a RL dialogue agent due to ro-
bustness consideration. From Fig. 4, the dialogue
agents degrade remarkably when the error rate in-
creases (leading to lower success rates and higher
average turns).

4.3 Intent Error Analysis

To further understand the impact of intent-level
noises to dialogue systems, two experimental
groups are performed: the first group (I0–I2) fo-
cuses on the difference among all intent error
types; the second group (I3–I5) focuses on the im-
pact of intent error rates. Other factors are identi-
cal for the two groups, with the random slot error
type and a 5% slot error rate.

4.3.1 Intent Error Type
Experiments with the settings of I0–I2 are under
the same slot errors and same intent error rate
(10%), but with different intent error types: I1 in-
cludes the noisy intents from the same categories,
I2 includes the noisy intents from different cate-
gories, and I0 includes both via random selection.
Fig. 5(a) shows the learning curves for all intent er-
ror types, where the difference among three curves
is insignificant, indicating that the incorrect intents
have similar impact no matter what categories they
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belong to.

4.3.2 Intent Error Rate
Experiments with the settings I3–I5 investigate
the difference among different intent error rates.
When the intent error rate increases, the dialogue
agent performs slightly worse, but the difference
is subtle. It suggests that the RL-based agent has
better robustness to noisy intents. As shown in
Fig. 5(a,b), all RL agents can converge to a simi-
lar success rate in both intent error type and intent
error rate settings.

4.4 Slot Error Analysis

We further conducted two groups of experiments
to investigate the impact of slot-level noises where
other factors are fixed — with the random intent
error type and a 10% intent error rate.

4.4.1 Slot Error Type
Experiments (S0 – S3) investigate the impact of
different slot error types. Corresponding learning
curves are given in Fig. 5(c). Among single error
types (S1–S3), incorrect slot value (S2) performs
worst, which means that the slot name is recog-
nized correctly, but a wrong value is extracted with
the slot (such as wrong word segmentation); in
this case, the agent receives a wrong value for the
slot, and eventually books a wrong ticket or fails to
book it. The probable reason is that the dialogue
agent has difficulty identifying the mistakes, and
using the incorrect slot values for the following di-
alogue actions could significantly degrade the per-
formance. Between slot deletion (S1) and incor-
rect slot (S3), the difference is limited, indicating
that the RL agent has similar capability of han-
dling these two kinds of slot-level noises.

4.4.2 Slot Error Rate
Experiments with the settings from S4 to S6 focus
on different slot error rates (0%, 10%, and 20%)
and report the results in Fig. 5(d). It is clear from
Fig. 5(d) that the dialogue agent performs worse
as the slot error rate increases (the curve of the
success rate drops and the curve of average turns
rises). Comparing with Fig. 5(b), the dialogue sys-
tem performance is more sensitive to the slot error
rate than the intent error rate.

4.5 Human Evaluation

We further evaluated the rule-based and DQN
agents against real human users recruited from
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Figure 6: Performance of the rule-based agent ver-
sus DQN agent tested with real users: (a) success
rate, number of tested dialogues and p-values are
indicated on each bar; (b) Distribution of user rat-
ings for two agents (difference in mean is signifi-
cant with p < 0.01).

the authors affiliation, where the DQN agent was
trained on the simulated user in the frame-level
with 5% random slot errors. In each dialogue ses-
sion, one of the agents was randomly picked to
converse with a user, and the user was presented
with a predefined user goal sampled from our cor-
pus, and was instructed to converse with the agent
to complete the presented task. At the end of each
session, the user was asked to give a rating on a
scale from 1 (worst) to 5 (best) based on both nat-
uralness and coherence of the dialogue. We col-
lected a total of 110 dialogue sessions from 8 hu-
man users. Figure 6(a) presents the performance
of these agents against real users in terms of suc-
cess rate. Figure 6(b) shows the subjective evalu-
ation in terms of user rating. For all the cases, the
RL agent significantly outperforms the rule-based
agent for both objective (success rate) and subjec-
tive evaluation (user rating).

5 Discussion and Future Work

This paper presents an end-to-end learning frame-
work for task-completion neural dialogue systems.
Our experiments, both on simulated and real users,
show that reinforcement learning systems outper-
form rule-based agents and have better robustness
to allow natural interactions with users in real-
world task-completion scenarios. Furthermore,
we conduct a series of extensive experiments to
understand the impact of natural language under-
standing errors on the performance of a reinforce-
ment learning based, task-completion neural dia-
logue system. Our empirical results suggest sev-
eral interesting findings: 1) slot-level errors have a
greater impact than intent-level errors; A possible
explanation is related to our dialogue action rep-
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resentation, intent(slot-value pairs). If an intent
is predicted wrong, for example, inform was pre-
dicted incorrectly as request ticket, the dialogue
agent can handle this unreliable situation and de-
cide to make confirmation in order to keep the cor-
rect information for the following conversation. In
contrast, if a slot moviename is predicted wrong,
or a slot value is not identified correctly, this di-
alogue turn might directly pass the wrong infor-
mation to the agent, which might lead the agent
to book a wrong ticket. Another reason is that the
dialogue agent can still maintain a correct intent
based on slot information even though the pre-
dicted intent is wrong. In order to verify the hy-
potheses, further experiments are needed, which
we leave as future work. 2) different slot error
types have different impacts on the RL agents.
3) RL agents are more robust to certain types of
slot-level errors — the agents can learn to double-
check or confirm with users, at the cost of slightly
longer conversations.

Finally, it should be noted that the experiments
in this paper focus on task-completion dialogues.
Another type of dialogues known as chit-chats has
different optimization goals (Li et al., 2016). It
would be interesting to extend our analysis from
this paper to chit-chat dialogues to gain useful in-
sights for impacts of LU errors.
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A Dataset Annotation

Table 2 lists all annotated dialogue acts and slots
in detail.

Annotations
request, inform, deny, confirm question,

Intent confirm answer, greeting, closing, not sure,
multiple choice, thanks, welcome

Slot

actor, actress, city, closing, critic rating,
date, description, distanceconstraints,
greeting, implicit value, movie series,
moviename, mpaa rating, numberofpeople,
numberofkids, taskcomplete, other, price,
seating, starttime, state, theater,
theater chain, video format, zip, result,
ticket, mc list

Table 2: The data annotation.

B Sample Dialogues

Table 3 shows one success and one failure dia-
logue examples generated by the rule-based agent
and RL agent interacting with user simulator in
the movie-booking domain. To be informative, we

also explicitly show the user goal at the head of the
dialogue, the purpose is to help the user to accom-
plish this goal and book the right movie tickets,
but the agent knows nothing about the user goal.
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New episode, user goal:
{

“request slots”: {
“ticket”: “UNK”
},
“inform slots”: {

“city”: “seattle”,
“numberofpeople”: “2”,
“theater”: “regal meridian 16”,
“starttime”: “9:25 pm”,
“date”: “tomorrow”,
“moviename”: “zoolander 2”
}

}

New episode, user goal:
{

“request slots”: {
“ticket”: “UNK”
“theater”: “UNK”
“starttime”: “UNK”
},
“inform slots”: {

“numberofpeople”: “3”,
“date”: “tomorrow”,
“moviename”: “10 cloverfield lane”
}

}

Rule-based agent Rule-based Agent
User: Can I get some tickets for zoolander 2? User: What is the start time for 10 cloverfield lane?
Agent: What movie are you interested in? Agent: What movie are you interested in?
User: I want to watch zoolander 2. User: I want to watch at 10 cloverfield lane.
Agent: What time would you like to see it? Agent: What time would you like to see it?
User: I want to watch at 9:25 pm. User: What time is it playing tomorrow? I need 3 tickets.
Agent: What city you would like? Agent: What city you would like?
User: I want to watch at seattle. User: I do not care.
Agent: What date would you like to watch it? Agent: What date would you like to watch it?
User: I want to set it up tomorrow. User: I want to set it up tomorrow.
Agent: Which theater would you like? Agent: Which theater would you like?
User: I want to watch at regal meridian 16. User: Which theater is available?
Agent: How many tickets do you need? Agent: How many tickets do you need?
User: I want 2 tickets please! User: I want 3 tickets please!
Agent: Great - I was able to purchase 2 tickets for you to
see zoolander 2 tomorrow at regal meridian 16 theater in
seattle at 9:25 pm.

Agent: Okay, I have booked 3 tickets for 10 cloverfield
lane tomorrow.

User: Thank you. User: Thank you.
Agent: Thank you. Agent: Thank you.

Success Failure: Agent does not answer all the questions
(starttime, theater) from user.

RL agent RL Agent

User: Can I get tickets for zoolander 2 tomorrow? User: Which theater can I book 3 tickets for 10
cloverfield lane?

Agent: Which city would you like? Agent: What time would you like to see it?

User: I want to watch at seattle. User: Which theater and start time are available
tomorrow?

Agent: How many tickets do you need? Agent: 11:45am is available.
User: I want 2 tickets please! User: Which theater is available?
Agent: 9:25 pm is available. Agent: regal la live stadium 14 is available.
User: I want to watch at regal meridian 16. User: Could you help me to book the tickets?
Agent: Great - I was able to purchase 2 tickets for you to
see zoolander 2 tomorrow at regal meridian 16 theater in
seattle at 9:25 pm.

Agent: Okay - I was able to book 3 tickets for you to see
10 cloverfield lane at regal la live stadium 14 at 11:45am
tomorrow.

User: Thank you. User:Thank you.
Agent: Thank you. Agent: Thank you.
Success Success

Table 3: Two sample dialogues generated by rule-based and RL agents with user simulator: Left column
shows both rule and RL agents succeed; Right column shows that rule-based agent fails, while RL agent
succeeds.
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Abstract

We propose an end-to-end neural network
to predict the geolocation of a tweet. The
network takes as input a number of raw
Twitter metadata such as the tweet mes-
sage and associated user account informa-
tion. Our model is language independent,
and despite minimal feature engineering,
it is interpretable and capable of learning
location indicative words and timing pat-
terns. Compared to state-of-the-art sys-
tems, our model outperforms them by 2%-
6%. Additionally, we propose extensions
to the model to compress representation
learnt by the network into binary codes.
Experiments show that it produces com-
pact codes compared to benchmark hash-
ing algorithms. An implementation of the
model is released publicly.1

1 Introduction

A number of applications benefit from geographi-
cal information in social data, from personalised
advertising to event detection to public health
studies. Sloan et al. (2013) estimate that less than
1% of tweets are geotagged with their locations,
motivating the development of geolocation predic-
tion systems.

Han et al. (2012) introduced the task of pre-
dicting the location based only the tweet mes-
sage. A key difference to previous work is that
the prediction is made at message or tweet level,
while predecessor methods tend to focus on user-
level prediction (Backstrom et al., 2010; Cheng
et al., 2010). Since then, various methods have
been proposed for the task (Han et al., 2014; Chi
et al., 2016; Jayasinghe et al., 2016; Miura et al.,

1https://github.com/jhlau/
twitter-deepgeo

2016), although most systems are engineered for
a particular platform and language (e.g. website-
specific parsers and language-specific tokenisers
and gazetteers). Another strand of research lever-
ages the social network structure to infer location;
Jurgens et al. (2015) provided a standardised com-
parison of these systems. Our focus in this pa-
per is on using only the tweets, although Rahimi
et al. (2015) showed that the best approach maybe
to combine both types of information.

In applications where fast retrieval of co-located
tweets is necessary (e.g. disaster detection), effi-
cient representation of large volume of tweets con-
stitute an important issue. Traditionally, hashing
techniques such as locality sensitive hashing (In-
dyk and Motwani, 1998) are used to compress data
into binary codes for fast retrieval (e.g. with multi-
index hash tables (Norouzi et al., 2012, 2014)), but
it is not immediately clear how they can interact
with raw Twitter metadata — as they often require
a vector as input — and incorporate supervision.2

To this end, we propose an end-to-end neu-
ral network for tweet-level geolocation prediction.
Our network is designed to be interpretable: we
show it has the capacity to automatically learn lo-
cation indicative words and activity patterns from
different regions.

Our contribution in this paper is two-fold. First,
our model outperforms state-of-the-art systems by
2-6%, even though it has minimal feature engi-
neering and is completely language-independent,
as it uses no gazetteers or language preprocess-
ing tools such as tokenisers or parsers. Second,
our network can further compress learnt represen-
tations into compact binary code that incorporates
information about the tweet and its geolocation.
To the best of our knowledge, this is the first end-
to-end hashing method for tweets.

2In our case, the supervised information is the geolocation
of tweets.
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2 Related Work

Early work in geolocation prediction operated at
the user-level. Backstrom et al. (2010) devel-
oped a methodology to predict the location of
a user on Facebook by measuring the relation-
ship between geography and friendship networks,
and Cheng et al. (2010) proposed a content-based
prediction system to predict a Twitter user’s lo-
cation based purely on his/her tweet messages.
Han et al. (2012) introduced tweet-level predic-
tion, where they first extract location indicative
words by leveraging the geotagged tweets and then
train a classifier for geolocation prediction using
the location indicative words as features. Extend-
ing on this, systems were developed to better rank
these location indicative or geospatial words by lo-
cality (Chang et al., 2012; Laere et al., 2014; Han
et al., 2014). More recently, Han et al. (2016) pro-
posed a shared task for Twitter geolocation predic-
tion, offering a benchmark dataset on the task.

Hashing is an effective method to compress data
for fast access and analysis. Broadly there are two
types of hashing techniques: data-independent
techniques which design arbitrary functions to
generate hashes, and data-dependent techniques
that leverage pairwise similarity in the training
data (Chi and Zhu, 2017). Locality-sensitive hash-
ing (lsh: Indyk and Motwani (1998)) is a widely-
known data-independent hashing method that uses
randomised projections to generate hashcodes.
It preserves data characteristics and guarantees
the collision probability between data points.
fasthash (Lin et al., 2014), on the other hand, is
a supervised data-dependent hashing that incorpo-
rates label information to determine pairwise sim-
ilarity. It uses decision tree based hash functions
and graph cut-based binary code inference to deal
with high dimensionality training data.

3 Geolocation Prediction

3.1 Dataset

We use the geolocation prediction shared task
dataset (Han et al., 2016) for our experiments.
There are 2 proposed tasks, predicting geolocation
given: (1) a tweet (tweet-level); and (2) a collec-
tion of tweets by a user (user-level). For each task,
there is a hard classification evaluation setting for
predicting a city class, and a soft evaluation setting
for predicting latitude and longitude coordinates.

We explore only the more challenging tweet-

Partition #Tweets #Characters
Training 8.9M 554M

Development 7.2K 439K
Test 10K 629K

Table 1: Dataset statistics.

level prediction task. In terms of evaluation set-
ting, we experiment with the hard classification
setting, where the network is required to predict
one out of 3362 cities. Note that the metadata of
a tweet includes not only the message but a vari-
ety of information such as creation time and user
account data such as location and timezone.

Training, development and test partitions are
provided by the shared task organisers.3 We pre-
process the data minimally, removing tweets that
have less than 5 characters in the training parti-
tion (development and testing data is untouched)
and keeping all character types that have occurred
5 times or more in training. Unseen character to-
kens are represented by <UNK>. Preprocessed
statistics of the dataset is given in Table 1.

3.2 Network Architecture
The overall architecture of our model (henceforth
deepgeo) is illustrated in Figure 1. deepgeo
uses 6 features from the metadata: (1) tweet mes-
sage; (2) tweet creation time; (3) user UTC offset;
(4) user timezone; (5) user location; and (6) user
account creation time.4

Each feature from the metadata is processed by
a separate network to generate a feature vector fj .
These feature vectors are then concatenated (with
dropout applied) and connected to the penultimate
layer:

f̂ = f1 ⊕ f2...⊕ fN (1)

r = tanh(Wr f̂) (2)

where N is the number of features (6 in total), r ∈
RR is the hidden representation at the penultimate
layer and Wr is model parameter. For brevity, we
omit biases in equations.

r is fully connected to the output layer and ac-
tivated by softmax to generate a probability distri-
bution over the classes. The model is trained with

3The organisers provide full metadata for the test parti-
tion but only the tweet IDs for training and development par-
titions. We collect metadata for training/development tweets
using the Twitter API.

4We also tested user description and username, but pre-
liminary experiments found these features are not very use-
ful.
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Figure 1: Overall architecture of deepgeo.

minibatches and optimised using Adam (Kingma
and Ba, 2014) with standard cross-entropy loss.

We design several networks for the raw features.
The first is a character-level recurrent convolu-
tional network with a self-attention component for
processing the tweet message (Section 3.2.1). The
second is an RBF network5 for processing num-
bers (Section 3.2.2). The third is a simple convo-
lutional network for processing user location (Sec-
tion 3.2.3), and the last is an embedding matrix for
user timezone. We treat the timezone as a categor-
ical feature, and learn embeddings for each time-
zone (309 unique timezones in total). Note that
these feature-processing networks are disjointed
and there is no parameter sharing between them.

3.2.1 Text Network

For the tweet message, we use a character-level
recurrent convolutional network (Lai et al., 2015),
followed by max-over-time pooling with a fixed
window size and an attentional component to gen-
erate the feature vector, as illustrated in Figure 2.

Let xt ∈ RE denote the character embedding of
the t-th character, we run a bi-directional LSTM
network (Hochreiter and Schmidhuber, 1997) to
generate the forward and backward hidden states
hft and hbt respectively.6 We then concatenate the
left and right context’s hidden states with xt and

5Also known as mixture density network.
6LSTM is implemented using one layer without any peep-

hole connections and forget biases are initialised with 1.0.

generate:

x̂t = hft−1 ⊕ xt ⊕ hbt+1

gt = ReLU(Wgx̂t)

where x̂t ∈ R3E , Wg ∈ RO×3E and gt ∈ RO.
We iterate for each character to generate gt for all
time steps (Wg can be interpreted as O convolu-
tional filters each with a window of 3 × E strid-
ing 3 steps at a time). Next, we apply max-over-
time (narrow) pooling with window size P over
the vectors:

ĝt = max(gt,gt+1, ...,gt+P−1)

where ĝt ∈ RO and max is a function that returns
the element-wise maxima given a number of vec-
tors of the same length. If there are T characters
in the tweet, this yields (T −P +1) ĝ vectors, one
for each span.

By setting P = T , we could generate one vector
for the whole tweet. The idea of using a smaller
window is that it enables a self-attention compo-
nent, thereby allowing the network to discover the
saliency of a character span — for our task this
means attending to location indicative words (Sec-
tion 3.4). We define the attention network as fol-
lows:

αt = vᵀtanh(Wvĝt)
a = softmax(α0, α1, ..., αT−P )

where Wv ∈ RV×O, v ∈ RV and a ∈ RT−P+1.
Given the attention, we compute a weighted mean
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Figure 2: Text Network.

to generate the final feature vector:

ftext =
T−P∑
t=0

atĝt

where at denotes the t-th element in a, and ftext ∈
RO.

3.2.2 RBF Network
There are three time features in the metadata:
tweet creation time, user account creation time and
user UTC offset. The creation times are given in
UTC time (i.e. not local time), e.g. Thu Jul 29
17:25:38 +0000 2010 and the offset is an integer.

For the creation times, we use only time of the
day information (e.g. 17:25) and normalise it from
0 to 1.7 UTC offset is converted to hours and nor-
malised to the same range.8

The aim of the network is to split time into mul-
tiple bins. We can interpret each hour as one bin
(24 bins in total) and tweets originated from a par-
ticular location (e.g. Europe) favour certain hours
or bins. This preference of bins should be dif-
ferent to tweets from a distant location (e.g. East
Asia). Assuming each bin follows a Gaussian dis-
tribution, then the goal of the network is to learn

7As an example, 17:25 is converted to 0.726.
8UTC offset minimum is assumed -12 and maximum

+14 based on: https://en.wikipedia.org/wiki/
List_of_UTC_time_offsets.

the Gaussian means and standard deviations of the
bins.

Formally, given an input value u, for bin i the
network computes:

ri = exp
(−(u− µi)2

2σ2
i

)
where ri is the output value and µi and σi are the
parameters for bin i. Let B be the total number of
bins, the feature vector generated by a RBF net-
work is given as follows:

frbf = [r0, r1, ..., rB−1]

where frbf ∈ RB .

3.2.3 Convolutional Network
Location is a user self-declared field in the meta-
data. As it is free-form text, we use a stan-
dard character-level convolution neural network
(Kim, 2014) to process it. The network architec-
ture is simpler compared to the text network (Sec-
tion 3.2.1): it has no recurrent and self-attention
layers, and max-over-time pooling is performed
over all spans.

Let xt ∈ RE denote the character embedding of
the t-th character in the tweet. A tweet of T char-
acters is represented by a concatenation of its char-
acter vectors: x0:T−1 = x0⊕x1⊕ ...⊕xT−1. We
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use convolutional filters and max-over-time (nar-
row) pooling to compute the feature vector:

gt = ReLU(Wgxt:t+Q−1)
fconv = max(g0,g1, ...,gT−Q)

whereQ is the length of the character span, Wg ∈
RO×QE (Wg can be interpreted as O convolu-
tional filters each with a window of Q × E) and
gt, fconv ∈ RO.

3.3 Experiments and Results

We explore two sets of features for predicting ge-
olocation, using: (1) only the tweet message; and
(2) both tweet and user metadata. For the latter ap-
proach, we have 6 features in total (see Figure 1).
Classification accuracy is used as the metric for
evaluation.

We tune network hyper-parameter values
based on development accuracy; optimal hyper-
parameter settings are presented in Table 2. The
column “Message-Only” uses only the text con-
tent of tweets, while “Tweet+User” incorporates
both tweet and user account metadata.

For tweet message and user location, the maxi-
mum character length is set to 300 and 20 charac-
ters respectively; strings longer than this threshold
are truncated and shorter ones are padded.9 Mod-
els are trained using 10 epochs without early stop-
ping. In each iteration, we reset the model’s pa-
rameters if its development accuracy is worse than
that of previous iteration.

We compare deepgeo to 3 benchmark sys-
tems, all of which are systems submitted to the
shared task (Han et al., 2016):

Chi et al. (2016) propose a geolocation pre-
diction approach based on a multinomial naive
Bayes classifier using a combination of automati-
cally learnt location indicative words, city/country
names, #hashtags and @mentions. A frequency-
based feature selection strategy is used to select
the optimal subset of word features.

Miura et al. (2016) experiment with a simple
feedforward neural network for geolocation clas-
sification. The network draws inspiration from
fastText (Joulin et al., 2016), where it uses
mean word vectors to represent textual features
and has only linear layers. To incorporate multiple

9Tweets can exceed the standard 140-character limit due
to the use of non-ASCII characters.

Network Hyper- Message- Tweet+
Parameter Only User

Overall

Batch Size 512
Epoch No. 10
Dropout 0.2

Learning Rate 0.001
R 400

Text
Max Length 300 300

E 200 200
P 10 10
O 600 400

Time B – 50
UTC Offset B – 50

Timezone
Embedding

– 50
Size

Location

Max Length – 20
E – 300
Q – 3
O – 300

Account
B – 10

Time

Table 2: deepgeo hyper-parameters and values.

Accuracy System Features
0.146 Chi et al. (2016) Message Only
0.212 deepgeo Message Only
0.409 Miura et al. (2016) Tweet + User Metadata
0.428 deepgeo Tweet + User Metadata

0.436 Jayasinghe et al. (2016)

Tweet + User Metadata,
Gazetteer,

URL IP Lookup,
Label Prop. Network

Table 3: Geolocation prediction test accuracy.

features — tweet message, user location, user de-
scription and user timezone — the network com-
bines them via vector concatenation.

Jayasinghe et al. (2016) develop an ensemble
of classifiers for the task. Individual classifiers are
built using a number of features indepedently from
the metadata. In addition to using information em-
bedded in the metadata, the system relies on exter-
nal knowledgebases such as gazetteer and IP look
up system to resolve URL links in the message.
They also build a label propagation network that
links connected users, as users from a sub-network
are likely to come from the same location. These
classifiers are aggregated via voting, and weights
are manually adjusted based on development per-
formance.

We present test accuracy performance for all
systems in Table 3. Using only tweet message as
feature, deepgeo outperforms Chi et al. (2016)
by a considerable margin (over 6% improvement),
even though deepgeo has minimal feature en-
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Tweet True Predicted 1st Span 2nd Span 3rd SpanLabel Label
Big thanks to @LouSnowPlow and all #CleanSidewalk
participants today. You really make Louisville shine. To
be happy, be compassionate!

louisville-
ky111-us

louisville-
ky111-us ‘Louisville’ ‘ake Louisv’ ‘ Louisvill’

McDonald’s with aldha (@ Jalan A. P. Pettarani)
http://t.co/HDVkhsKWBa makassar-38-id makassar-38-id ‘Pettarani)’ ‘ Pettarani’ ‘ettarani) ’

Let’s miss ALL the green lights on purpose! - every
driver in Moncton this morning moncton-04-ca halifax-07-ca ‘in Moncton’ ‘ncton this’ ‘Moncton th’

Harrys bar toilet selfie @sophiethielmann @ Carluc-
cio’s Newcastle https://t.co/rKT7RGe7Nd

newcastle upon
tyne-engi7-gb

newcastle upon
tyne-engi7-gb ‘s Newcastl’ ‘wcastle ht’ ‘castle htt’

Makan terossssssss wkwkwk (with Erwina and Indah at
McDonald’s Bintara) - https://t.co/lT3KERFgap bekasi-30-id bekasi-30-id ‘ Bintara) ’ ‘ntara) - h’ ‘intara) - ’

@EileenOttawa For better or worse it’s a revenue
stream for Twitter made available to businesses. We all
have to get used to it.

toronto-08-ca ottawa-08-ca ‘tawa For b’ ‘ttawa For ’ ‘nOttawa Fo’

Hunt work!! (with @hadiseptiandani and @Febrianti-
vivi at Jobforcareer Senayan) - https://t.co/u9myRDidtR jakarta-04-id jakarta-04-id ‘nayan) - h’ ‘ Senayan) ’ ‘enayan) - ’

Table 4: Examples of top character spans. Length of span is 10 characters. “1st Span” denotes the span
that has the highest attention weight, “2nd Span” and “3rd Span” the second and third highest weight
respectively.

Feature Set Accuracy
All Features 0.428
−Text 0.342 (−0.086)

−Tweet Creation Time 0.419 (−0.009)

−UTC Offset 0.431 (+0.003)

−Timezone 0.422 (−0.006)

−Location 0.228 (−0.200)

−Account Creation Time 0.424 (−0.004)

Table 5: Feature ablation results.

gineering and is trained at character level. Next,
we compare deepgeo to Miura et al. (2016).
Both systems use a similar set of features from
the tweet and user metadata. deepgeo sees an
encouraging performance, with almost 2% im-
provement. The best system in the shared task,
Jayasinghe et al. (2016), remains the top per-
former. Note, however, that their system de-
pends on language-specific processing tools (e.g.
tokenisers), website-specific parsers (e.g. for ex-
tracting location information from user profile
page on Instagram and Facebook) and external
knowledge sources (e.g. gazetteers and IP lookup)
which were inaccessible by other systems.

To better understand the impact of each fea-
ture, we present ablation results where we remove
one feature at a time in Table 5. We see that the
two most important features are the user location
and tweet message. These observations reveal that
self-declared user location appears to be a reliable
source of location, as task accuracy drops by al-
most half when this feature is excluded. For the
other features, they generally have a small or neg-

ligible impact.

3.4 Qualitative Analyses

The self-attention component in the text net-
work (Section 3.2.1) captures saliency of charac-
ter spans. To demonstrate its effectiveness, we se-
lect a number of tweets from the test partition and
present the top-3 spans that have the highest atten-
tion weights in Table 4.

Interestingly, we see that whenever a location
word is in the message, deepgeo tends to focus
around it (e.g. Louisville and Newcastle). Occa-
sionally this can induce error in prediction, e.g.
in the second last example the network focuses
on Ottawa even though the word has little signifi-
cance to the true location (Toronto). Focussing on
the right span does not necessarily result in correct
prediction as well; as we see in the third exam-
ple the network focuses on Moncton but predicts a
neighbouring city Halifax as the geolocation.

Next, we look at the Gaussian mixtures learnt
by the RBF network. Using the gold-standard city
labels, we collect bin weights (frbf) for tweet cre-
ation times (from test data) for 6 cities and plot
them in Figure 3. Each Gaussian distribution rep-
resents one bin, and its weight is computed as a
mean weight over all tweets belonging to the city
(line transparency indicates bin weight). Bins that
have a mean weight < 0.075 are excluded.

For London (Figure 3c), we see that most tweets
are created from 10:00–20:00 local time.10 For
Jakarta (Figure 3e), tweet activity mostly centers
around 11:00–23:00 local time (04:00–16:00 UTC

10London’s UTC offset is +00 so no adjustment is neces-
sary to convert to local time.
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Figure 3: Tweet creation time distribution for 6 cities. Times in all plots are in UTC time. Sub-caption
indicates a city’s UTC offset.
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Figure 4: Histogram of r element values. Fields in the subcaptions denote vector dimension (R), corrup-
tion level (σ) and l scaling factor (α). Range of y-axis for the same vector dimension is standardised.

time). Most cities share a similar activity period,
with the exception of Istanbul (Figure 3d): Turk-
ish people seems to start their day much later,
as tweets begin to appear from 15:00–01:00 local
time (12:00 to 22:00 UTC time).

Another interesting trend we find is that for two
cities (Los Angeles and Kuala Lumpur), there is
a brief period of inactivity around noon (12:00) to
evening (18:00) in local time. We hypothesise that
most people are working during these times, and
are thus too busy to use Twitter.

4 Hashing: Generating Binary Code For
Tweets

deepgeo creates a low-dimensional dense vector
representation (r) for a tweet in the penultimate

layer. This representation captures the message,
user timezone and other metadata (including the
city label) that are incorporated to the network dur-
ing training.

Storing the dense vector representation for a
large volume of tweets can be costly.11 If we
can compress the dense vectors into compact bi-
nary codes, it would save storage space, as well
as enabling more efficient retrieval of co-located
tweets, e.g. using multi-index hash tables for K-
nearest neighbour search (Norouzi et al., 2012,
2014).

Inspired by denoising autoencoders (Yu et al.,
2016; Vincent et al., 2010), we binarise the dense

11If a tweet is represented by a vector of 400 32-bit floating
point numbers, 1B tweets would take 1.6TiB of space.
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Bits deepgeo
deepgeo deepgeo lsh fasthash
+noise +loss word2vec deepgeo word2vec deepgeo

100 0.147 0.149 0.146 0.013 0.053 0.116 0.140
200 0.143 0.143 0.140 0.019 0.072 0.128 0.160
300 0.136 0.137 0.141 0.021 0.082 0.133 0.165
400 0.132 0.135 0.136 0.022 0.086 0.135 0.170

Table 6: Retrieval MAP performance.

R deepgeo
deepgeo deepgeo
+noise +loss

100 0.420 0.396 0.410
200 0.428 0.417 0.414
300 0.420 0.416 0.422
400 0.428 0.419 0.418

Table 7: Classification performance for deepgeo
with the addition of noise and loss term l.

vector generated by deepgeo by adding Gaus-
sian noise. The intuition is that the addition of
noise sharpens the activation values in order to
counteract the random noise.

Equation (1) is thus modified to: f̂ = (f1 ⊕
f2...⊕ fN ) +N (0, σ2), whereN (0, σ2) is a zero-
mean Gaussian noise with standard deviation (or
corruption level) σ.12

In the addition to the Gaussian noise, we also
experiment with an additional loss term l to pe-
nalise elements that are not in the extrema: l =
α × 1

R

∑R−1
i=0 |(ri − 1)(ri + 1)|, where ri is the

i-th element in r and α is a scaling factor. We set
σ = α = 0.1, as both values were found to pro-
vide good performance.

To better understand the effectiveness of the
noise and loss term l in binarising the vector
values, we present a histogram plot of r ele-
ment values from test data in Figure 4, for R =
100, 200, 300, 400. We see that the addition of
noise and l helps in pushing the elements to the ex-
trema. The noise term appears to work a little bet-
ter than l, as the frequency for the −1.0 and +1.0
bins is higher. We also observe that there is a small
increase in middle/zero values as R increases from
100 to 400, suggesting that there are more un-
used hidden units when number of parameters in-
creases. We present classification accuracy perfor-
mance when we add noise (deepgeo+noise)
and l (deepgeo+loss) in Table 7. The perfor-
mance drops a little, but generally stays within a
gap of 1%. This suggests that both noise and l

12Dropout is applied to f̂ , i.e. after the addition of noise.

works well in binarising r without trading off clas-
sification accuracy significantly.

Next we evaluate the retrieval performance us-
ing the binary codes. We binarise r for devel-
opment and test tweets using the sign function.
Given a test tweet, we retrieve the nearest devel-
opment tweets based on hamming distance, and
calculate average precision.13 We aggregate the
retrieval performance for all test tweets by com-
puting mean average precision (MAP).

For comparison, we experiment with two hash-
ing techniques: lsh (Indyk and Motwani, 1998)
and fasthash (Lin et al., 2014) (see Section 2
for system descriptions). The input required for
both lsh and fasthash is a vector. We test 2
types of input for these methods: (1) a word2vec
baseline, where we concatenate mean word vec-
tors of the tweet message, user account’s time-
zone and location, resulting in a 900-dimension
vector;14 and (2) deepgeo representation r. The
rationale for using deepgeo as input is to test
whether its representation can be further com-
pressed with these hashing techniques.15

We present MAP performance for all systems
in Table 6. Looking at deepgeo systems (col-
umn 2–4), we see that adding noise and l helps,
although the impact is greater when the bit size is
large (300/400 bits). For lsh, which uses no la-
bel information, word2vec input produces poor
binary code for retrieval. Changing the input to
deepgeo improves retrieval considerably, imply-
ing that the representation produced by deepgeo
captures geolocation information.
fasthash with word2vec input vector per-

forms competitively. For smaller bit sizes (100 or
200), however, the gap in performance is substan-

13We remove 1328 test tweets that do not share city labels
with any development tweets.

14300-dimension word2vec (skip-gram) vectors are
trained on English Wikipedia.

15lsh and fasthash are trained using 400K tweets due
to large memory requirement. We also tested these models
using only 150K tweets, and found marginal performance
improvement from 150K to 400K, suggesting that they are
unlikely to improve even if it is trained with the full data.
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tial. Pairing fasthash with deepgeo produces
the best retrieval performance: for 200/300/400
bits it outperforms deepgeo+noise by 2–4%.
Interestingly for 100 bits fasthash is unable to
compress deepgeo’s representation any further,
highlighting the compactness of deepgeo repre-
sentation for smaller bit sizes.

5 Conclusion

We propose an end-to-end method for tweet-level
geolocation prediction. We found strong perfor-
mance, outperforming comparable systems by 2-
6% depending on the feature setting. Our model
is generic and has minimal feature engineering,
and as such is highly portable to problems in other
domains/languages (e.g. Weibo, a Chinese social
platform, is one we intend to explore). We propose
simple extensions to the model to compress the
representation learnt by the network into binary
codes. Experiments demonstrate its compression
power compared to state-of-the-art hashing tech-
niques.
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Abstract

When reporting the news, journalists rely
on the statements of stakeholders, experts,
and officials. The attribution of such a
statement is verifiable if its fidelity to
the source can be confirmed or denied.
In this paper, we develop a new NLP
task: determining the verifiability of an
attribution based on linguistic cues. We
operationalize the notion of verifiability
as a score between 0 and 1 using hu-
man judgments in a comparison-based ap-
proach. Using crowdsourcing, we cre-
ate a dataset of verifiability-scored attri-
butions, and demonstrate a model that
achieves an RMSE1 of 0.057 and Spear-
man’s rank correlation of 0.95 to human-
generated scores. We discuss the appli-
cation of this technique to the analysis of
mass media.

1 Introduction

An attribution occurs when an author or speaker
represents the discourse, attitude, or inner state of
an external source (Piazza, 2009). Attributions are
found in virtually every genre of discourse (Fair-
clough, 1995), but are fundamental to news report-
ing, where attribution to credible sources is a basic
feature of objective, unbiased “hard news” (Esser
and Umbricht, 2014). Recently news media have
come under increasing scrutiny for spreading bi-
ased and even fabricated information2. This trend
suggests the need for scalable, computational ap-
proaches to understanding attribution.

From a natural language processing perspec-
tive, attribution is a fundamental phenomenon that

1Root mean squared error
2theguardian.com/media/2016/dec/18/what-is-fake-

news-pizzagate

touches a broad set of applications, including sum-
marization, question answering, information ex-
traction, and discourse analysis. Once content is
scoped under attribution, its contribution to the
discourse can change substantially depending on
the source of the attribution and their relationship
to the statement. For instance, in 2001 U.S. Pres-
ident George W. Bush famously warned that in
fighting terrorists, nations were either “with us or
against us”3. This statement was threatening not
only because it was made by the president, or be-
cause it was blunt, but because such blunt state-
ments are not normally made by national leaders.
If they are to reach human-level performance, sys-
tems for automated text understanding must not
only accurately segment attribution in the flow of
text, but also represent the many ways that attribu-
tions can differ rhetorically.

One important way in which attributions can
differ, particularly with respect to news reporting,
is in their verifiability, the ease with which an at-
tribution’s fidelity to the source can be checked.
Consider the following hypothetical attributions:

Lindsay Walls, CEO of Inovatron, said
in a press release yesterday that the “al-
legations of intentionally selling sub-par
product are completely unfounded.”

A source close to the issue hinted that
quality control standards had been on
the decline.

The former attribution is more verifiable inso-
far as it attributes a specific statement to a specific
person who, in theory, could be asked to corrobo-
rate it. The latter is harder to verify. The source
is not named, and even if it were known, it is not
clear how it could be confirmed that such “hints”

3edition.cnn.com/2001/US/11/06/gen.attack.on.terror
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were given. Note that verifiability does not depend
on the truth of a statement, nor its fidelity to the
source, but rather on the ability to confirm or deny
its fidelity.

The ability to confirm or deny an attribution’s
fidelity is not binary, but rather occupies a contin-
uum of difficulty, which can depend on whether
the source was precisely identified, and how defi-
nite the reported statement or content was. There-
fore, we operationalize verifiability as a continu-
ous variable between 0 and 1. Attributions are
scored by having humans compare attributions and
judge which are more verifiable.

We build a dataset4 of verifiability-scored attri-
butions on top of the Penn Attribution Relations
Corpus, version 3 (PARC3) (Pareti, 2012, 2015).
PARC3, derived from the Penn Discourse Tree-
Bank, consists of Wall Street Journal news arti-
cles in which attributions have been manually an-
notated.

Prior work investigating sourcing typically re-
lies on a binary concept of named versus anony-
mous sources (Wulfemeyer and McFadden, 1986).
It is also common to distinguish between verba-
tim quotes, mixed quotes, and paraphrases (also
known as reported speech) (Sundar, 1998). There-
fore, we create a baseline model of verifiabilty
based on these features. In reality, the sources
of attributions span the range from completely ob-
scured to named with credentials and affiliations,
along with intermediate examples such as “White-
house official” or “company spokesperson”. We
compare the baseline model to a more sophisti-
cated model that considers a large number of syn-
tactic and semantic cues based on the source and
other parts of the attribution5. Using ablation test-
ing, we assess the contribution that these various
features make to the regression of verifiability.

Before concluding the paper, we discuss the ap-
plications of automated verifiability scoring to the
study of attribution in mass media. We explore
the feasibility of an end-to-end system that ex-
tracts attributions from raw text and then scores
the attribution’s verifiability, by implementing an
existing attribution extraction pipeline from prior
work (Pareti et al., 2013). We analyze how errors
cascade through the coupled extraction-regression
pipeline, which illuminates the challenges to the

4cs.mcgill.ca/˜enewel3/publications/verifiability-
IJCNLP-2017-09

5github.com/networkdynamics/Verifiability-IJCNLP-
2017

end-to-end version of the task for future work.

2 Related work

2.1 Computational approaches to attribution

The extraction of attributions from text requires
(1) the detection of attributed content (e.g. a quo-
tation), and (2) linking of that content to a source
entity. Although detection of enquoted text is triv-
ial, a great deal of attributed content is not found
within quotes.

The earliest systems attempt to attribute quo-
tations in children’s stories to the correct speaker
(Zhang et al., 2003; Mamede and Chaleira, 2004).
These systems used rule-based approaches, and
although they achieved high accuracy on extract-
ing quotations, their accuracy in attributing them
to the correct speaker was quite low. The perfor-
mance of these systems was also highly dependant
on the genre of material.

In news text, a substantial fraction of attribu-
tions are much harder to extract, being signaled by
the discursive structure of the text instead of by
explicit quotation marks (O’Keefe et al., 2012).
Early systems for extracting and linking attribu-
tions in this domain assumed low recall to achieve
higher precision (Pouliquen et al., 2007; de Morais
et al., 2009). To perform well in such domains, a
machine learning approach was needed. Elson and
McKeown provided the first contribution in this
direction (2010). However, their approach relied
on gold-standard labels for attributions occurring
earlier in the text as features to extract later attribu-
tions. In 2012, the first practical machine learning-
based approach capable of extracting attributions
from non-annotated news text was developed us-
ing a sequence labelling approach (O’Keefe et al.,
2012).

Further efforts were spurred by the development
of corpora with annotated attributions, including
PARC3 (Pareti, 2012, 2015). In PARC3 an attri-
bution consists of: (1) a source to whom content is
being attributed, (2) the content being attributed,
and (3) the cue phrase referring to the act of attri-
bution (e.g. “said”, “according to”). PARC3 en-
abled the development of an attribution extraction
system that we replicate to investigate end-to-end
attribution extraction and verifiability regression
(Pareti et al., 2013). This multi-step extraction
pipeline first identifies candidate reporting words
(e.g. said, lamented), and uses these as features
to extract the attribution content. Using the ex-
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tracted content, candidate source entities are iden-
tified and correct links are found using a classifier.
The source entity and cue word are then expanded
deterministically into a source span and cue span,
which collects informative modifiers such as the
source’s affiliation.

2.2 Attribution and verifiability in news

Attribution plays a fundamental yet complex role
in news reporting. It is the “bread and butter” of
hard news journalism (Sundar, 1998). However,
attribution affords the author the opportunity to
frame or interpret information by proxy. Attri-
butions tend to have evaluative content, suggest-
ing that “external voices are allowed to speak their
minds much more loudly than journalists” (Jullian,
2011), yet the rhetorical use of attributions is often
subtle (Fairclough, 1995).

The credibility of attributions is fundamental to
trust in the media. As Burriss (1988) states, “one
of the basic tenets of journalism is that news re-
ports are supposed to deal with verifiable facts...
Unfortunately the public who receive the news
generally has no way to independently verify the
accuracy of a news story and must thus depend
upon (1) the reputation of the news organization,
(2) the reputation of the reporter, or (3) infor-
mation within the story itself, in order to deter-
mine the accuracy of a news report.” Journal-
ists do not always provide the information neces-
sary to verify an attribution (Adams, 1962; Wulfe-
meyer, 1985; Wulfemeyer and McFadden, 1986).
Anonymous sourcing has recently been criticized
for distorting coverage of the 2016 presidential
campaign (Silver, 2017), but the practice has been
recognized and cautiously accepted by media re-
searchers and practitioners for decades (Wulfe-
meyer, 1985; Boeyink, 1990; Duffy and Freeman,
2011). Anonymizing sources does tend to un-
dermine the credibility of a story (Sternadori and
Thorson, 2009; Pjesivac and Rui, 2014; Mackay
and Bailey, 2012), though not in all cases (Sun-
dar, 1998), and there is variation in the kinds of
unnamed sources who are found credible (Adams,
1962; Riffe, 1980). A typical set of “code-words”
are often applied to veil source identity (e.g. “of-
ficial” or “spokesman”) (Burriss, 1988), with the
choice of terms having significant impact on the
credibility of the report (Adams, 1962). Direct
quotes also appear to enhance credibility com-
pared with paraphrases (Sundar, 1998). Thus, re-

searchers have recently tracked the use of anony-
mous sources over time and across cultures (Esser
and Umbricht, 2014; Lee and Wang, 2016).

2.3 Conceptualizing verifiability

Source anonymity is just one aspect of the prob-
lem of how attributions might be used to influence
reader interpretations. Popper 2003 argued that
any knowledge claim possesses a degree of veri-
fiability 6: the extent to which it is possible to test
for evidence that could corroborate or contradict
it. Claims with higher verifiability are more credi-
ble even prior to testing because authors have less
incentive to be accurate when making unverifiable
claims (Margolin and Monge, 2013). For exam-
ple, since no one can know whether an anony-
mous source really made the statement attributed
to them in a news article, the reporter could distort
or even fabricate the attributed statement.

Source identification aside, we note that Popper
emphasized the form of the proposition, for exam-
ple, claims made with qualifiers or weak quanti-
fiers. Additionally, physical and technical barriers
also apply (Deutsch, 1997). Sources who are diffi-
cult to access or that lack a platform from which to
correct mis-attribution are less verifiable. The lan-
guage of attributed content may also matter: ver-
bal categories can be vague or sharp (Hampton,
2007), modifying the extent to which claims made
with them are verifiable.

3 Operationalizing verifiability

3.1 Task definition

As mentioned, the ability to confirm or deny the
fidelity of an attribution occupies a sliding scale
of difficulty, so we operationalize verifiability as a
quantity between 0 and 1. Similar to credibility or
relevancy, verifiability fundamentally reflects the
perceptions on the part of readers. Although it is
possible, at least in principle, to directly test the
difficulty of verifying a given attribution, the psy-
cholinguistic notion of verifiability is more rele-
vant to characterizing mass media production and
consumption.

To approximate the perceptions of the general
public, we use crowdsourced human judgments
in creating the ground truth verifiability-scored
dataset. Crowdworkers were shown pairs of at-
tributions, and asked to decide which is more ver-

6Popper technically refers to “falsifiability” which is the
inverse of verifiability.
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ifiable (we describe the details of the annotation
setup below). Various methods exist to convert
pairwise comparisons into a set of scores (e.g.
(Kiritchenko and Mohammad, 2016)). We use the
Bradley Terry model (Hunter, 2004) to assign ver-
ifiability scores, and then shift and scale the scores
to fall into the [0, 1] interval.

As discussed above, methods for extracting at-
tributions from raw text have been developed in
prior work. Therefore, this task focuses on the re-
gression of perceived verifiability from text that
has already been annotated with attributions in
PARC3 annotation style.

3.2 Dataset annotation

Annotation was carried out using the Crowd-
Flower platform7. Crowdworkers were shown
pairs of attributions, and asked to consider the ef-
fort required to confirm or deny the fidelity of
each. They were asked to select the attribution that
was easiest to verify from each pair.

In judging verifiability, it is reasonable to expect
that the precision with which a source is identi-
fied would be the major determinant in most cases.
This creates a risk that crowdworkers will begin to
rely only on source definiteness, rather than judg-
ing attribution verifiability holistically. Thus, we
took steps to ensure that crowdworkers were vigi-
lent to verifiability cues of various kinds. As part
of general quality control, crowdworkers had to
complete 7 out of 10 training / test examples cor-
rectly to ensure they understood the task, and then
maintain this proportion of correct responses on
test examples randomly dispersed throughout the
annotation tasks. To address the specific concern
that crowdworkers may become overly reliant on
source definiteness, we selected training / test ex-
amples to which the correct answers depended on
a variety of cues. Test examples were collected
by performing a pilot round of annotation with
8 expert annotators, and selecting from the high-
agreement examples.

Attributions were presented within the full sen-
tence(s) that contained them. Limiting the con-
text to the containing sentence(s) did not appear to
interfere with annotation during the pilot round.
Nevertheless, we took steps to mitigate effects
from the loss of context. In the majority of cases
where the definiteness of the source plays an im-
portant role in determining verifiability, the most

7crowdflower.com

useful context is likely to be how the source was
first introduced in the article, e.g. whether the
source’s name and affiliation were given. To
bring that context into the attribution, we used the
CoreNLP coreference resolution software (Man-
ning et al., 2014) to augment the source. When-
ever a source was mentioned using a personal pro-
noun, we interpolated the pronoun using the rep-
resentative coreferent mention, except where that
mention already occured in the sentence. Thus, for
example,

“I don’t know,” she said,

might become

“I don’t know,” Lindsay Walls, CEO of
Inovatron said.

Spot checks of 100 pronoun-containing attribu-
tions in PARC3 showed that this produced reli-
able, grammatical interpolations. However, simi-
larly interpolating non-personal pronouns and ref-
erences such as “the company” was not reliable.
We instructed workers to consider, when faced
with such references, whether it appeared that the
reference was to a specific named individual / en-
tity. Thus, the worker should treat “a company”
differently from “the company”. We included
many test examples in which workers had to act
on that instruction to get the correct answer.

Attributions were presented with the source,
cue, and content highlighted, to ensure that work-
ers knew what specific attribution they they were
annotating.

We solicited comparisons involving 2100 attri-
butions, presented as 39930 unique pairs, with
each pairing annotated by at least 3 workers (in-
creased to 5 when the first judgments were non-
unanimous), resulting in 140277 total pairwise
comparisons. The data comprise annotations from
337 workers. These figures exclude the discarded
data from 70 crowdworkers that had poor perfor-
mance on training / test examples. Every attri-
bution in the dataset was compared to at least 20
other attributions. After 20 pairings, we found that
the verifiability scores and the model regression
error (to be discussed below), had become rela-
tively stable, as can be seen in Fig. 1.

Annotation proceeded in two phases (not in-
cluding the pilot round). In the first phase, we
randomly sampled 100 attributions from PARC3
and solicited an exhaustive set of annotations on
all 4950 pairs. This gave highly accurate scores
for a small subset of annotations. In the second
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Figure 1: Estimated verifiability scores converged
as a function of the number of comparisons per
attribution increased, reducing error in the model.

Figure 2: Distribution of crowdsourced verifiabil-
ity scores for 2100 attributions (top), conditioned
on the presence of ORG and PERS named entities
(middle) and attribution directness (bottom).

phase, 2000 randomly sampled attributions were
systematically compared to the attributions scored
in phase 1. Each phase-2 attribution was paired
with two phase-1 attributions randomly drawn
from each decile of verifiability, giving twenty
pairings each.

After the pairwise comparison data were col-
lected we estimated the maximum-likelihood
latent verifiability scores in a Bradley-Terry
model using a majorization-minorization algo-
rithm (Hunter, 2004), then linearly transformed
the verifiability scores to fall in the range [0, 1].

3.3 Annotation results

The resulting scores for the 2100 attributions pro-
duced a smooth unimodal distribution across a
range of perceived verifiability (Fig. 2). In a plot
of the latent scores inferred for a Bradley-Terry
model, the distance between two scores is a direct

representation of the probability that the higher-
scoring item would “win” in a comparison with the
other8. The distribution has most of its mass near
verifiability score 0.9, showing that most attribu-
tions adhere to a high standard of verifiability. In
addition, we see heavy tail of low perceived verifi-
ability. This distribution is, prima facie, consistent
with the competing journalistic norms of transpar-
ent attribution and source protection.

It would be reasonable to have expected the
distribution to be somewhat more clustered, with
peaks in the data corresponding to discrete fea-
tures such as named vs. anonymous sources
(Wulfemeyer and McFadden, 1986) or direct vs.
indirect quotes (Sundar, 1998). These features
would have clear bearing on efforts to verify an
attribution and should be fairly universally recog-
nizable. The distribution instead suggests there is
a diversity of factors that contribute to perceived
verifiability and that focusing solely on one or two
discrete, a priori obvious indicators to analyze at-
tribution behavior conceals a great deal of varia-
tion. As shown in Fig. 2 source anonymity and
quote directness do have explanatory power, how-
ever they appear unable to explain the continuum
of perceived verifiabilities.

3.4 Inter-annotator agreement

Inter-annotator agreement serves as a standard
check to ensure that workers understood and re-
liably performed the task. In this case some care
is needed in interpreting the inter-annotator agree-
ment, however: we expect a certain amount of in-
built disagreement due to comparisons made be-
tween attributions having very close verifiability
scores. In fact, the Bradley-Terry model (and other
methods for deriving scores from pairwise com-
parisons) is predicated on the notion that two items
have similar latent score precisely when workers
are unable to reliably decide which is to be pre-
ferred (i.e. which has higher verifiability).

For this reason, the agreement level for attribu-
tions having sufficiently similar scores will nec-
essarily be low. To properly assess reliability for
this kind of annotation, it is necessary to disagre-
gate the comparisons based on how far apart the
compared attributions are in verifiability score.

To ensure that disagregated agreement scores
8The probability of a worker judging a1 to be more veri-

fiable than a2, given they have verifiability scores v1 and v2,
is modeled as Pr(a1 � a2) = (1 + e�(v2�v1))�1, where �
is the scale parameter used to transform scores to [0, 1].
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Separation 0 1 2 3 4
Agreement .174 .363 .651 .825 .904

Table 1: Krippendorff’s ↵ for comparisons be-
tween attributions from quintiles of given separa-
tion. A separation of 0 means comparisons be-
tween attributions in the same quintile.

are unbiased, we use half of the pairings in the
dataset to assign scores, and then assess agreement
on the other half. Using the scores derived from
half the data, we divide the attributions into quin-
tiles. We then assess agreement on comparisons
that are made between attributions from quintiles
having a given separation.

For example, all comparisons made between
attributions from the same quintile have separa-
tion 0, while comparisons made between attribu-
tions from adjacent quintiles have separation 1.
The agreements associated to each level of sep-
aration are shown in Table 1. As the separa-
tion between attributions is increased, the level
of agreement monotonically increases, becoming
very high (Krippendorff’s ↵ 0.904) for compar-
isons between attributions from the highest and
lowest quintiles. This indicates that once we fac-
tor out disagreement due to perceived similarity of
attributions, workers were able to understand and
perform the task with high reliability.

4 Modeling verifiability

In the PARC3 annotation style, an attribution con-
sists of a source, the attributed content, and a cue,
such as “said” or “according to”, signalling the ex-
istence of an attribution. A priori, any of the three
parts of an attribution (source, cue, content) could
contribute to the perceived verifiability of an at-
tribution. In addition to the baseline model based
on source anonymity and whether the attribution
is a direct, indirect, or mixed quote, we also test
a “feature-rich” model based on a large number of
features extracted from attributions’ source, cue,
and content, listed in Table 2 (the baseline model
is based on features S2 and C4). We test multi-
ple regression algorithms for both the baseline and
rich feature set, and we do feature ablation to op-
timize the feature-rich model. In the next subsec-
tion, we discuss the selection of features and abla-
tion results, then in the following section, we de-
scribe the learning algorithms and the best results
achieved for the baseline and feature-rich models.

Feature set RMSEi ��iRMSE ⇥103

so
ur

ce

S All source features .093 14.09
S1 Length .124 1.70
S2 Anonymity .110 1.34
S3 Each of 7 NE types .102 .79
S4 Head’s determiner .164 .52
S5 Head lemma .115 .46
S6 Head plural .152 .15
S7 Fuzzy quantifiers .159 .04
S8 Pronoun9 .163 .03
S9 Date or numeric NEs .164 -.04
S10 Head’s amod .164 -.09

cu
e

Q All cue features .134 8.11
Q1 LIWC dictionary counts .137 .88
Q2 Lemmatized BOW .136 .39
Q3 Length .161 -.02
Q4 Cue class .142 -.33

co
nt

en
t

C All content features .139 1.90
C1 Date or numeric NEs .163 .13
C2 Fract. enquoted tokens .149 .01
C3 PERS or ORG NEs .164 -.05
C4 Direct, indirect, mixed .149 -.11
C5 Each of 7 NE types .161 -.22
C6 Length .153 -.59

Table 2: Features for verifiability regres-
sion. RSME when using the feature on its own
(RMSEi), and drop in RMSE occurring when the
feature is removed from a model built from all fea-
tures (��iRMSE). Entries sorted in descending
order of ��iRMSE.

4.1 Feature design and selection
For the sake of continuity, as we describe features,
we will also discuss the results of ablating them.
Ablation results are based on the training-set per-
formance of a Support Vector Regressor (SVR),
optimizing for minimum root mean squared error
(RMSE) between predicted verifiability scores and
those derived from human annotations. The full
set of features is listed in Table 2. For ablation
testing, we assessed each feature in two contexts:
(1) as the only feature used, and (2) as the only fea-
ture left out. While the first measures the straight-
forward predictiveness of the feature, the second
measures the marginal improvement in the context
of other features and is used for final feature selec-
tion in the feature-rich model.

Source features. Based on the CoreNLP named
entity recognision (NER) software (Manning
et al., 2014), we created features indicating
whether any of the 7 types10 of named entities
(NEs) were present in the source (feature S3, Ta-

9Aside from “he”, “she”, and “they”, which are interpo-
lated.

10CoreNLP recognizes seven types of named entities:
PERS, ORG, DATE, MONEY, DURATION, PERCENT,
NUMBER.
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ble 2). This feature was beneficial both alone and
in the context of other features. We also included
a feature encoding the anonymity of the source,
based on whether either a PERS or ORG NE was
present (this was one of the baseline features, S2).
Although this may seem reduntant with S3, encod-
ing the source anonymity in this way boosted per-
formance even in the context of S3. Several of the
other NEs are number-like: we also created a fea-
ture indicating whether any number-like NE was
present (S9), but it hindered performance in the
context of other features.

When not a NE, the head of the source span is
often a title (“director”), occupation (“lawyer”),
or collective designation (“homeowners”). Intu-
itively, pluralized designations seem more neb-
ulous, so we introduced a feature indicating
whether the head of the source span is pluralized
(S6). Although less predictive on its own, this fea-
ture did provide a benefit to the model in the con-
text of other features.

Similarly, the determiner of the head of the
source can influence definiteness: consider “a
lawyer” versus “the lawyer”. We added feature
S4 indicating the kind of determiner used, if any,
which also made an important contribution to the
overall model.

Quantifiers such as “most”, “some”, “many”,
and “several”, can also render a source imprecise,
so we included a feature indicating the presence of
such quantifiers or the word “source(s)” (S7). In
ablation testing this feature marginally improved
the model’s accuracy in the context of other fea-
tures.

We included the lemma of the head (S5), which
made a notable contribution. This feature subset
likely suffered from sparsity, so its contribution
might be more important given a larger training
set.

Modifiers to the source could also influence ver-
ifiability, so we included features for the lemma of
tokens under the amod dependency tree relation
to the head (S10)11. This feature did not benefit
the model, but again may perform better in larger
datasets.

The source feature providing the greatest con-
tribution in the context of other features was the
length of the source (S1) (although on its own it
is less predictive than source anonymity, S2). In-

11Based on the CoreNLP dependency parse (Manning
et al., 2014)

tuitively, the longer the specification of the source,
the more definite it is, and the more verifiable. The
strong performance of this feature suggests ad-
ditional features might account more specifically
for language not accounted for by other features
which contribute to verifiability.

Cue features. We derived four features from the
cue, which were lemmatized bag-of-words (Q2),
length (Q3), counts of words belonging to each
of the LIWC dictionaries (Q1) (Tausczik and Pen-
nebaker, 2010), and the presence of specific sets of
reporting verbs (Q4). This last (Q4) was based on
our observation that reporting verbs either indicate
the statement neutrally (‘said’, ‘reported’), qual-
ify the statement as true (‘confirmed’, ‘showed’),
indicate an intention (‘will’, ‘plans’), or call to
question whether the statement is true (‘believes’,
‘claimed’). The liwc dictionary counts (Q1) and
lemmatized bag-of-words (Q2) both made sub-
stantial contributions to model accuracy.

Content features. A verbatim attribution seems
inherently easier to verify than a paraphrase, so
attribution directness was included (C4). Abla-
tion testing showed that attribution directness was
actually detrimental to the regression overall and
was a poor predictor alone. However, we cre-
ated a more nuanced representation of quote di-
rectness based on the fraction of enquoted words
(C2), which was marginally beneficial.

Given that verifiability depends not on the truth
of a statement, but on the ability to check the fi-
delity of the attribution to the source, one might
expect that (aside from attribution directness) the
content would have little effect on verifiability.
However, it is inherently harder to verify the attri-
bution of a vague paraphrase, which could be con-
sistent with a wider range of original statements.
Conversely, numerical quantities and the naming
of people and organizations should increase the
verifiability. As we did for the source, we included
features representing the 7 types of named enti-
ties (C5), a feature indicating either PERS or ORG
(C3), and a feature indicating numerical entities
(C1). The numeric entities feature did indeed im-
proved model accuracy although the other features
derived from NEs in the content did not.

Finally, we included the length of the content
(C6), but this feature was detrimental to the model.

Ablating feature blocks. Considering the role
that they play in attribution, one would expect
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Model RMSE ⇢

baseline 0.102 0.833
feature-rich 0.057 0.951

Table 3: Test-set RMSE and Spearman’s rank cor-
relation (⇢) for each model.

that, overall, the source would be most informa-
tive due to its importance in being able to trace
the attribution to a specific person, group, or arti-
fact, followed by the cue, due to the fact that the
cue describes the act of attribution and can indi-
cate the certainty or degree of interpretive licence
exercised by the author (e.g. if the cue is “hinted”).

To test the importance of the source, cue, and
content, we ablate each set of features as a whole,
the results of which are indicated in Table 2 by
the rows that have feature symbols containing only
an ‘S’, a ‘Q’, or a ‘C’ (with no number). These
results confirm that the source is most informative,
followed by the cue.

4.2 Models training and testing

We randomly separated the dataset of 2100 quotes
into a testing and training set of 420 and 1680 attri-
butions each. Using the training set, we used three
learners to optimize the performance on models
using the baseline set of features, and a rich set
of features (those contributing positively to model
accuracy in the context of other features, see third
column of Table 2). The learners included lin-
ear regression with lasso regularization, a support
vector classifier (SVC) that predicts the quintile
from which an attribution was drawn (and returns
the median score), and a support vector regressor
(SVR). The support-vector-based models used lin-
ear, quadratic, and radial basis function as kernels.
Using cross-validation on the training set, we op-
timized the learner selection, kernel selection, and
learner hyperparameters, and performed ablation
testing for the feature-rich model. Optimization
was based on minimizing the RMSE. SVR per-
formed best for both the baseline and ablation-
optimized feature sets.

The optimized baseline and feature-rich model
were then each run once on the test set, with the
results summarized in Table 3.

RMSE gives a measure of error between the
model’s predicted scores, and the true verifiability
scores. It’s dimensionality and scale are equiva-
lent to those of the variable predicted, so it can be

Verif.:
quintile
actual

predicted

Attribution

1
0.316
0.482

It is rumored to be bound for a new model in the
luxury Acura line in the U.S.

2
0.698
0.676

Earlier U.S. trade reports have complained of
videocassette piracy in Malaysia and disregard
for U.S. pharmaceutical patents in Turkey

3
0.802
0.766

South Korea announced $450 million in loans
to the financially strapped Warsaw government.

4
0.884
0.887

Mr. Paul has been characterised as “the
Great Gatsby or something,” complains Karen
E. Brinkman, an executive vice president of
CenTrust

5
0.960
0.959

“It has an archival, almost nostalgic quality
to it,” says Owen B. Butler, the chairman
of the applied photography department at
Rochester Institute of Technology.

Table 4: Selected attributions from each quintile
of the verifiability-scored subset of PARC3 along
with model predictions.

compared to the range of values across which ver-
ifiability varies; the feature-rich RMSE was 5.7%
of the prediction range. In many applications, the
absolute verifiability may be less important than
the relative verifiability. Both the baseline and the
feature-rich model achieve relatively high Spear-
man’s rank correlations (p⌧ 0.001). The feature-
rich model provides a substantial improvement in
performance over the baseline, both in RMSE and
rank correlation. This shows that a richer set of
features, beyond source anonymity and quote di-
rectness, is needed to explain the perception of at-
tribution verifiability.

A selection of attributions from each quin-
tile, along with their human-judged and model-
predicted verifiability scores are shown in Table
4. These examples demonstrate how the model
has learned to consider various features in regress-
ing verifiability. Aside from the first, each of the
examples in Table 4 contains a named entity, how-
ever, it would appear that the model has learned to
attribute less verifiability to location names than
names of individuals. Additionally, in the exam-
ple from quintile 2, we can see that the head of
the source is the word “reports”, which is likely
what has led to its appropriately lower predicted
score: it would be quite difficult, though possible,
to comb through a sufficient number of U.S. trade
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reports to reach a verdict about the fidelity of this
attribution.

5 Application to the analysis of mass
media

Journalists are frequently forced to decide whether
given sources are sufficiently credible and rele-
vant to cite, while balancing transparent attribu-
tion against the source’s potential interest in re-
maining anonymous. It is reasonable to wonder
what influences and biases exert themselves on
such decisions.

If there are systematic influences at play, it
should be possible to find evidence in the distri-
bution of verifiability, and its correlation with pub-
lishers, topics, positions on given issues, and polit-
ical alignments. To look for such patterns at scale,
it will be necessary to create an end-to-end system
for attribution extraction and verifiability regres-
sion.

Although prior work demonstrates good perfor-
mance on attribution extraction, and we demon-
strate accurate verifiability regression here, our
initial investigations of an end-to-end extraction
and regression system show that errors during ex-
traction lead to large negative errors in verifiabil-
ity (i.e. underestimates) during regression. This is
especially true when there are errors in extracting
the source span. Investigating verifiability at scale
will require some combination of: (a) further im-
provements to extraction accuracy, (b) discarding
poorly extracted attributions (with loss of recall),
and (c) adjustment of the extraction / regression
models to reduce error cascading, which we hope
to investigate in future work.

6 Conclusion

Attribution is a critical feature of journalism,
and a fundamental, challenging natural language
phenomenon. We have introduced a new NLP
task consisting of the prediction of attributions’
perceived verifiability according to human judg-
ments. We provide a dataset of verifiability-scored
attributions based on a subset of PARC3.

Our models show that source anonymity and
quote directness alone are insufficient to explain
the continuum of perceived verifiability, but a
richer set of linguistic features enables accurate
verifiability regression. The source appears to be
the dominant factor determining an attribution’s
verifiability, with an important contribution also

coming from the cue, and a slight contribution
from the content.

This new task, along with existing work in at-
tribution extraction, creates a new opportunity to
study attribution practices in mass media, at scale,
and shed light on the shifting landscape of journal-
istic norms.
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Abstract
Several studies have demonstrated how language
models of user attributes, such as personality, can
be built by using the Facebook language of social
media users in conjunction with their responses to
psychology questionnaires. It is challenging to ap-
ply these models to make general predictions about
attributes of communities, such as personality dis-
tributions across US counties, because it requires 1.
the potentially inavailability of the original training
data because of privacy and ethical regulations, 2.
adapting Facebook language models to Twitter lan-
guage without retraining the model, and 3. adapt-
ing from users to county-level collections of tweets.
We propose a two-step algorithm, Target Side Do-
main Adaptation (TSDA) for such domain adapta-
tion when no labeled Twitter/county data is avail-
able. TSDA corrects for the different word distri-
butions between Facebook and Twitter and for the
varying word distributions across counties by ad-
justing target side word frequencies; no changes to
the trained model are made. In the case of pre-
dicting the Big Five county-level personality traits,
TSDA outperforms a state-of-the-art domain adap-
tation method, gives county-level predictions that
have fewer extreme outliers, higher year-to-year
stability, and higher correlation with county-level
outcomes.

1 Introduction

Social media platforms offer an effective– and
widely used– platform for administering surveys
to individuals to measure their personality, socioe-
conomic status, mental and physical well-being,
and political orientation, which can then be com-
bined with user posts to build language-based pre-
dictive models of user attributes, traits and behav-
iors. As compared to surveys, language models
can be used to assess personality and well-being
across communities of the U.S, at a scale not eas-
ily achieved by surveys (Eichstaedt et al., 2015).
In comparison, Twitter is a more effective tool
to mine geographic trends from language, since
tweets are publicly accessible, and one in five

tweets can be mapped to the county from which
they were sent (Schwartz et al., 2013b). However,
to our knowledge, there are no tweet-based models
of personality which are comparable in accuracy
to the Facebook language models of personality.

Figure 1: Predictions for county-level openness to expe-
rience created by applying a user-level Facebook model for
openness on TSDA adjusted Twitter county data

Personality, as measured by the “Big Five” of
openness, conscientiousness, extraversion, agree-
ableness and neuroticism is known to vary region-
ally worldwide (Rentfrow et al., 2013) and to
cluster geographically in the United States (Rent-
frow et al., 2013; Florida, 2002). In this paper,
we wish to infer the regional variations of the Big
Five Personality traits across the United States,
through five language models trained on Facebook
posts. We formulate our problem as one of domain
adaptation - adapting Facebook models for Twit-
ter’s vocabulary, and adapting user-level models
for county-level predictions. Figure 1 provides the
county-level predictions for the psychological trait
of openness to experience. At the individual level,
openness has been found to be correlated with a
higher education level and better academic perfor-
mance (Poropat, 2009). At the regional level, we
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expect to replicate survey results from Rentfrow
et al. (Rentfrow et al., 2013), which have demon-
strated that regional variations in personality are
stable over time, and correlate with key political,
economic, social and health metrics.

We combine two forms of target side adapta-
tion in this paper: first, we adapt from Facebook
to Twitter; next, we compensate for the variation
introduced by the fact that Tweets within each
county have significant correlation, leading to spu-
riously high frequencies of various words in vari-
ous counties, significantly reducing the predictive
accuracy there of the source models. The remain-
der of the paper first motivates our domain adap-
tation problem and provides a background on the
specific problem of personality prediction. We
then situate our method within the field of do-
main adaptation. Next, we present the TSDA al-
gorithm which, like other popular domain adapta-
tion algorithms, is frustratingly easy (Daumé III,
2007). Finally, we demonstrate that TSDA im-
proves the quality of county-level predictions by
(a) removing extreme predictions, (b) improving
year-to-year stability, (c) increasing average mag-
nitude of correlations between predicted county-
level personality and measured health and well-
being metrics with which the personality con-
structs are known to correlate, and decreasing cor-
relations where correlations are not expected.

1.1 The Need for Target Side Adaptation

Applying user-level language models learned on
Facebook to make county-level predictions on
Twitter poses three main challenges. The first
challenge, typically addressed by traditional do-
main adaptation methods, is the difference in vo-
cabulary between Facebook and Twitter, which
motivates the need for domain transfer. For in-
stance, “rt” is one of the most frequent Twitter
‘words’, but rare on Facebook. Secondly, al-
though typical domain adaptation methods expect
the availability of labeled training data, in this case
there are new challenges due to the sensitivity of
data. In cases where NLP is used to address so-
cial science problems, the training data is often
unavailable when it comprises personally identi-
fiable information, or when sharing would violate
privacy and ethical regulations. Thus, an appro-
priate unsupervised domain adaptation approach
would expect only a trained model – not the origi-
nal data – to be available for predicting outcomes.

A third challenge is that there is a need to dis-
ambiguate words which have vastly different fre-
quencies and often entirely different meanings in
different counties. The implications of this ar-
tifact of the data are obvious when, on review-
ing the relative ranking of counties by personality
traits, it is observed that the most predictive fea-
tures for the most- or least-scoring counties, often
comprise words which are being used in a different
local context (see Table 2). An appropriate domain
adaptation approach should account for these local
differences, and still generate a generic set of do-
main adapted features for all counties, rather than
3142 feature sets adapted to each of the counties
individually.

We introduce Target Side Domain Adaptation
(TSDA), an unsupervised method which adapts
the target county-level data from Twitter to be
more accurately predicted from the source user-
level Facebook models using no labels on the tar-
get Tweets or counties and without altering the
source-side model. We call it “Target Side” to em-
phasize that no retraining of the model is done dur-
ing the domain adaptation. We assume no labels
on the target side, and so only make use of the
differences between the source and target distri-
butions of the features. An important assumption
in this paper is that differences in the frequencies
for the same word among counties, reflects differ-
ences in its local meaning. TSDA works particu-
larly well with words, since (a) words vary widely
in frequency across domains, and (b) words vary
widely in frequency and meaning across domains.

2 Background

2.1 Personality Traits

We take as our core case study extrapolating per-
sonality, as measured in individual level question-
naires, to the ‘average’ personality for a county.
There is a rising research area of “Geographical
Psychology” (Rentfrow and Jokela, 2016), which
looks at region variations in different psychologi-
cal traits such as personality, and their correlation
with physical and mental well-being.

As a surrogate for large scale surveying, we pro-
pose using peoples’ social media language to esti-
mate their personality. Such language-based mod-
els based on Facebook posts have been built us-
ing data from roughly 70,000 people who took
personality tests and shared their test results and
Facebook posts with researchers (Schwartz et al.,
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2013a). These models have proven to be as ac-
curate at estimating personality as estimates from
people’s friends (Park et al., 2014). However at
first blush, such use of Facebook only pushes the
problem one level back, as even 70,000 Facebook
users give poor coverage of 100 out of over 3,000
US counties. To get good coverage, we shift to a
more open social media platform, Twitter.

Twitter is readily available and allows free ac-
cess to its streaming API. Even though only a
few percent of tweets come with latitude and lon-
gitude, roughly 20% of the Tweets from the US
can still be mapped to their county of origin.
Many language-based models of user traits includ-
ing demographics (Rao et al., 2010; Burger et al.,
2011), personality (Schwartz et al., 2013a), so-
cioeconomic status (Preoţiuc-Pietro et al., 2015),
popularity (Lampos et al., 2014) and political ori-
entation (Pennacchiotti and Popescu, 2011) have
been made from social media language. A number
of these models are based on labels of individual
tweets (e.g., using Amazon’s Mechanical Turk);
collecting questionnaire data and the Tweets from
the same user is harder, in part due to restrictions
on Amazon’s terms of use for Mechanical Turk.
Facebook requires consenting users to share their
data, but while obtaining consent, it is easy to ask
users questions to assess their personality, or to ask
them to share other data such as their electronic
medical records (Smith et al., 2017).

Thus, we face the technical question: How can
we take a model trained to predict user attributes
such as personality from Facebook language at the
individual user level and use it to predict average
personality from Twitter language at the county
level? This requires a double domain adaptation:
firstly from Facebook to Twitter, and secondly
from users to counties. This domain adaptation is
complicated by the fact that we have virtually no
county-level personality measures to use to guide
the domain adaptation; it must be unsupervised.

2.2 Domain Adaptation Background

Our task can be characterized as domain adapta-
tion, or the closely related transfer learning (Pan
and Yang, 2010), where we are adapting from a
source domain: the words users use on their Face-
book posts and associated user labels to a target
domain: county-level Twitter language, where we
want, but do not have, labels on the counties. Most
prior work on domain adaptation has focused on

the case where some labels are available on both
the source and target domains, and is usually done
by combining (often in some weighted fashion)
training data sets or, less commonly, trained mod-
els from the source and target domains (Daume III
and Marcu, 2006). Both of these approaches re-
quire at least some labeled target data, which
we lack. Thus, methods such as EasyAdapt++
(Daumé III et al., 2010), which encourages source
and target models to agree on unlabeled data can-
not be used here.

In this paper, we have compared our proposed
TSDA framework against the Correlation Align-
ment (CORAL) approach, an unsupervised ap-
proach which aims to minimizes domain shift by
linearly transforming the covariance matrix of the
target distribution to be as similar as possible (un-
der the Frobenius norm) to the source distribu-
tion (Sun et al., 2015). It is similar in principle
to the study by Daumé and Marcu, which applied
Canonical Correlation Analysis (CCA) perform
unsupervised machine translation by calculating
the cosine similarity of projections in a lower
dimensional space (Daumé III and Jagarlamudi,
2011). Transfer Component Analysis (TCA) is a
more computationally expensive approach, which
exploits the Maximum Mean Discrepancy Embed-
ding (MMDE) metric for comparing the distribu-
tions between the source and target domain in the
Reproducing Kernel Hilbert Space (RKHS) repre-
sentation (Pan et al., 2011).

3 Target Side Domain Adaptation

Our Target Side Domain Adaptation (TSDA) is
a two step process. The first step attempts
to minimize the impact of spatially correlated
word tokens in the county-level Twitter data by
down-scaling the counts of words that are over-
represented in some counties. The second step
then removes words that have significantly dif-
ferent frequencies between Facebook and Twitter.
Note that TSDA does not use any target-side la-
bels. It is instead predicated on the assumption
that any large differences in word frequencies be-
tween source and target will interfere with the cor-
rect generalization; we do not need to know any-
thing about the model in order to do the domain
adaptation, instead we use the observed distribu-
tions of words on the target side.

Our domain adaptation is motivated by the ob-
servation that word frequencies in counties may
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have multiple meanings, and that some counties
will tend to use an alternative meaning more than
others. More formally, we assume that word
counts in each county are a mixture of the “true
word frequencies” generated by the latent variable
being estimated, such as personality combined
with county-specific “noise” driven by different
word meanings. For example, counties might use
the word “jazz” proportionally to how open to ex-
perience they are, but a small number of counties
(e.g. Salt Lake City) might also use it to refer to a
sports team.

Because most words in most counties are gener-
ated based on the latent variables of interest (per-
sonality), we can compute the distribution of each
word across counties (i.e. the distribution on the
target side), identify the outliers (words in coun-
ties unlikely to come from the main meaning), and
then replace them with an imputed value (e.g. the
mean frequency for that word).

3.1 Step 1: Target-Side Adjustment

As the first step, we adjust the Twitter county-level
word frequencies to help mitigate the influence
of spatial variations and confounds in word use.
This is done by identifying outlier feature values
for a given county, and replacing them with the
mean feature value across all counties. Extreme
values can come from several sources. Common
instances of such outliers are: (i) a concert or
sports game in a small city, which can lead to
disproportionately many mentions of e.g., Bieber
or Cowboys. (ii) Some communities have unusu-
ally high concentrations of different ethnic groups,
who may infuse their nominally English language
tweets with Tagalog or Indonesian words. These
words, present in small numbers on the source lan-
guage training set, can significantly skew predic-
tions.

We propose an extremely simple, robust method
to address this problem: For each word wj , for the
5% of counties with the largest word frequencies
wj,c, replace wj,c with the imputed w̄j and then
renormalize each county’s word frequencies such
that they sum to one.

We attempted using matrix imputation-based
values from Singular Value Decomposition (SVD)
as in (Troyanskaya et al., 2001) for imputation,
as an alternative to using the mean frequency of
words; however, we found that it did not make a
significant difference on this data set. Also note

that in each county, different words are replaced
with their imputed values. No single adjustment
to the source model is possible; each county effec-
tively gets its own model - because, removing the
same 5% of features from all counties would leave
in too many harmful features, while removing a
feature which is an “outlier” in any county from
all other counties would remove too many features
that are truly predictive, and also harm model ac-
curacy.

3.2 Step 2: Source to Target Adjustment
The second step is to adjust frequencies for words
that vary in usage between Facebook and Twitter.
As in Step 1, our assumption is that differences in
frequency correspond to differences in meaning.
Accordingly, for each word in a county, we com-
pute a ratio of its mean frequency for Facebook
users, to the mean frequency for Twitter counties.
Then, if the ratio for a word lies close to 1.0, word
frequencies in the target Twitter counties are re-
placed with their corresponding means from the
source data.

Specifically, we compute

|w̄Fj − w̄Tj |
w̄Fj + w̄Tj

> ε

Where w̄Fj is the mean of word frequency j for
Facebook users and w̄Tj is the mean of word j for
Twitter counties. In practice we used ε = 0.8.

Note that the two domain adaptation steps,
although superficially similar, are in fact qual-
itatively different. In the second step (Face-
book to Twitter adaptation) the feature removal is
“global”, so one could easily remove the features
that vary most between the source and target do-
mains and then retrain the source Facebook model
without those features. For the first step (cross-
county regularization), no such simple retraining
is possible.

4 Data and Model Description

Facebook user-level models were built using data
consisting of 65,896 observations of statuses and
personality questionnaire answers. Each user
posted at least 1,000 words and answered a set of
at least 20 questions to derive a score for each of
the Big Five personality traits. Statuses for each of
the Facebook users were tokenized, unigram word
counts extracted, and converted to term frequen-
cies by dividing the resulting word counts for each
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user by that user’s total word count. An elastic
net regularized linear regression model utilizing a
feature selection pipeline described in (Park et al.,
2014) was then trained on each of the personality
traits.

We used Twitter data comprising the 10% ran-
dom sample from years 2012-14. We mapped
tweets to US counties using the method of
Schwartz et al. (2013), which is based on lati-
tude/longitude coordinates, and the self-reported
location field when available . Roughly one fifth
could be successfully mapped resulting over 150
million geolocated tweets. Only those counties
with at least 40,000 words were kept, yielding
2,468 counties for 2012, 2,651 for 2013, and 2,197
for 2014.

5 Evaluation of TSDA for Known
Outcomes

We first evaluate our predictions by comparing
them to five state-level average personality scores
(Rentfrow et al., 2013), where we have enough
surveys to get a ‘ground truth’. The results sug-
gest that TSDA works well when the county-level
scores are further aggregated to the state level
(Rentfrow and Jokela, 2016). Table 1 shows Pear-
son r between average state personality predic-
tions (population weighted average of the county
predictions) and the ‘ground truth’.

The baselines were calculated using predictions
with no domain adaptation, with CORAL, and
with retrained models on the TCA-transformed
features both with and without the feature selec-
tion pipeline used in the other models. Recall
that CORAL adjusts the source features to the tar-
get features using a transformation selected using
an L2 (Frobenius norm) loss; such methods work
poorly when a small number of extreme values
need to be removed.

Additionally, we used this state-level ground
truth to test the sensitivity of our method to vari-
ation in the step 1 and step 2 parameters. Results
showed a statistically significant increase in corre-
lation using 0.8 over 0.9 in step 2 while the vari-
ation in the step 1 parameter is less clear. When
step 2 uses 0.8, we see openness, conscientious-
ness and extraversion correlations strengthening
with increasing step 1 parameter, agreeableness
decreasing, and neuroticism remaining constant.
The average increase in performance of TSDA
with the range of parameters tested was also statis-

Baselines O C E A N
No domain adaptation .47 .08 .49 .44 .53
CORAL .14 .19 .20 -.16 .26
TCA no feature selection .70 .26 -.06 .64 .47
TCA feature selection .53 .28 -.16 .63 .48

TSDA
Step 1 Step 2 O C E A N
1% 0.8 .61 .09 .50 .49 .57
2% 0.8 .63 .10 .50 .48 .57
5% 0.8 .69 .11 .52 .45 .58
10% 0.8 .71 .13 .52 .45 .57
1% 0.9 .59 .08 .49 .43 .56
2% 0.9 .61 .09 .48 .42 .56
5% 0.9 .69 .10 .49 .41 .57
10% 0.9 .71 .14 .48 .42 .56

Table 1: Pearson r between target side state-level predic-
tions and ‘ground truth’ state personalities (Rentfrow et al.,
2013). The first baseline uses the naive predictions, the sec-
ond uses the CORAL method, and the third and fourth use the
TCA method first without and then with the feature selection
pipeline used in the other models. TSDA results are shown
for a variety of parameters for steps 1 and 2, but in practice
we use 5% and 0.8.

tically significant above the no domain adaptation
baseline.

6 Unsupervised Validation Method

Validating unsupervised domain adaptation often
presents a challenge, when no ground truth is
available. We refer to the set of validity criteria
developed by social scientists, such as testing re-
liability, the degree to which an assessment tool
produces stable and consistent results e.g. over
time and external validity, the degree to which
the results generalize to other settings (ecologi-
cal validity) and other people (population valid-
ity), as well as predictive validity, the ability of
a stipulated theoretical construct (like Openness
to Experience) to predict (correlate with) behav-
ioral or other criterion, outcomes that it is theo-
rized to relate to. In this paper, we demonstrate a
three-pronged approach to validation, which relies
on the fact that the predictions on the many tar-
gets (counties) should be (a) normally distributed
as they capture natural phenomena, (b) consis-
tent from year to year, (c) correlated with other
state- and county-level outcomes such as educa-
tion, income, health, and happiness which have
been measured. Evaluating domain adaptation to
a target domain which has no labeled ground truth
presents a novel problem. We want, for example to
predict the extraversion of different counties, but
do not have sufficient data to know, for example,
what the mean extraversion scores are of even hun-
dreds of counties.

768



We propose a three-pronged approach to vali-
dating a domain adaptation method on a set of tar-
get observations (counties, here) where we have
no ground truth:

1) Are the distributions of the predicted at-
tributes reasonable? We know, for example,
that personality scores are, by construction, Gaus-
sian at the individual level, and that averaging
these Gaussians should give a distribution of mean
county-level personalities that are Gaussian. How-
ever, as shown below, we find our county-level
predictions to be far from a normal distribution,
with some predictions lying over 10 standard de-
viations from the mean. We use kurtosis as a con-
crete metric to assess the impact of domain adap-
tation on predictions.

2) Are the estimates stable? We know that
personality at the level of individuals is relatively
stable over time; average personality in a county
level should be extremely stable from year to year.
However, this wasn’t the case for our county-level
predictions. We use year to year Pearson correla-
tion between predictions as the benchmark metric
to measure stability; domain adaptation should in-
crease these correlations.

3) Do estimates correlate as expected with
other outcomes? We know that personality cor-
relates with many measurable outcomes for which
we do have county-level measurements such as
health and subjective well-being. A good domain
adaptation should produce personality predictions
which correlate more highly with such outcomes,
while reducing unexpected correlations.

7 Results

We now demonstrate the utility of TSDA by mod-
eling how personality, as estimated using language
on Facebook, can be used to predict county-level
average personality from Twitter language.

We use the widely used Five Factor Model
(or Big 5) of personality (thousands of papers
have been written using it) (McCrae and John,
1992; Digman, 1990), which classifies personality
traits into five dimensions: extraversion (outgoing,
talkative, active), agreeableness (trusting, kind,
generous), conscientiousness (self-controlled, re-
sponsible, thorough), neuroticism (anxious, de-
pressive, touchy), and openness (intellectual, artis-
tic, insightful) all measured using the revised neo
personality inventory (Costa and McCrae, 2008).

7.1 Qualitative Analysis of TSDA

Recall that the first step of TSDA removes the
most different 5% of each feature across counties,
replacing them with imputed values, while step 2
removes the words that have the most different fre-
quencies between Facebook and Twitter.

We first look at which words counts are be-
ing adjusted. Since step 1 imputes new frequen-
cies for different words for each county, too many
words are replaced to show them all. As repre-
sentative examples, we show in Table 2 the 10
words with the largest change after TSDA step
1 for San Francisco, Salt Lake, and Philadelphia
counties. These words, selected without looking
at the labels, are removed from the model (replac-
ing them with their mean values). We can also
look, after the fact, and see which of the removed
words had the most influence on the prediction.
The 10 words which most affected the predicted
openness when they were removed for each of the
same three counties are shown in Table 3.

We can also see which words most affected the
predicted openness when they were removed from
Venango County, PA, one of two counties with ex-
tremely low predicted openness: ‘yg, ini, sama,
ada, lagi, yang, aku, hari, yaa, ga’. These words,
lyrics from an Indonesian song, show what can go
wrong when models are applied to different do-
mains (counties and years here); a previously rare
meme becomes common in one county, making
predictions for it highly inaccurate.

Philadelphia Salt Lake San Francisco
ctfu utah -
philly salt )
philadelphia lake de
pa city que
ard news la
eagles followers TM

#philly #jobs ’
instagram ut el
gm #job san
phillies solutions new

Table 2: Words with the largest change after TSDA step
1 for three cities. We see locations and sports teams, non-
English terms, and abbreviations as some of the easily iden-
tifiable groups of words adjusted by step 1.

Step 2 imputes the same new word frequencies
across all counties and, as shown below in Table 4,
gives results that are intuitive. We run step 2 sepa-
rately here for each of the 3 years of Twitter data,
again giving top ranked words that differ slightly
from year to year.
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Philadelphia Salt Lake San Francisco
artist (-) lake (+) francisco (-)
corny (-) jazz (-) samsung (+)
jersey (+) slc (-) woww (+)
dickhead (+) salt (-) art (-)
sheesh (-) projection (-) itunes (+)
iggy (-) international (-) blog (-)
shore (+) canvas (-) content (-)
mic (-) faucet (-) vintage (-)
imu (+) masturbation (-) media (-)
eagles (+) robert (-) technology (-)

Table 3: Similar to Table 2, this table looks at features
which changed the most, but weights the difference by the
Openness model weight. The resulting table shows features
whose alteration in TSDA step 1 changed the county-level
openness prediction the most. The (+) and (-) indicate if the
change had a positive or negative impact on each county’s
openness prediction respectively.

Frequent on Facebook Frequent on Twitter
2012 2013 2014 2012 2013 2014
paste =[ farmville rt rt rt
ˆ paste =] tweets 2013 2014
8p farmville :[ #winning tweets http
% =] tf tf toned
repost paste tweeting tweeting waistline

ˆ ˆ tweet < 2013
=[ finaly http:// <<<<< followers sheds
maths % =( <<<< tweet tf
ng 8p =/ >>>>> >>>>> <
eid mubarak =p >>>>>> >>>>>> tweets

Table 4: Features measured most different by TSDA Step
2 on three years of Twitter data. Reported both for features
that occurred more on Facebook (the left) and those occurring
more on Twitter (the right). All comparison were made with
the same source Facebook data.

A consequence of readjusting frequencies of
words that differ widely between source and target
is that words representing years (e.g. ‘2015’) have
very different frequencies in the year that the post
or tweet was written. Certain celebrity names be-
have similarly. Since we often predict on different
years than we train, such time-correlated features
are frequently dropped out.

7.2 Unsupervised Validation

As described above, we validate our model in three
ways, measuring prediction 1) normality/kurtosis
2) year to year stability and 3) correlation to other
county- and state-level outcomes.

Measuring Normality with kurtosis in Figure
2 shows that there were clear problems with the
naive method. The personality measures were
constructed to be normally distributed, therefore
one should expect a sample of personality pre-
dictions to be approximately normally distributed
with kurtosis near 3. This is clearly not the case
with the original predictions, with a three year av-
eraged kurtosis ranging between 8 and 36. The
TCA and CORAL baseline predictions also had

Figure 2: Three year average of county prediction kurtosis

Figure 3: Pearson correlations between 2012 and 2013
predicted county-level personalities.

high kurtosis, with the TCA predictions ranging
from 10 to 24 and CORAL from 6 to 69. TSDA
however fixes this issue; all the predictions have
kurtosis values between 2 and 4 when both steps
of TSDA have been applied.

Year to Year Stability was assessed by corre-
lating county-level predictions from one year to
the following. Figure 3 shows that TSDA in-
creased correlations for predictions that already
appeared stable and those with lower correlations.
When viewed in conjunction with Figure 2, one
can see that the initially high correlations for
openness and neuroticism, and to a lesser extent
some other predictions, were due to high leverage
points.

Spurious (county-specific) words that are stable
from year to year can cause both high kurtosis and
high year to year correlations. Spurious words that
vary year to year, perhaps due to a local meme or
news story, cause low year-to-year stability.

Correlations between Predicted Personality
and County Health and Well-being were calcu-
lated. Successful domain adaptation should in-
crease these correlations – or at least drive them
towards what is expected from the previous lit-
erature. Figure 4 shows the average correlations
across three years between observed county-level
outcomes and personality predictions both origi-
nal and post-TSDA word frequencies. We focus
first on the overall results. TSDA yields an av-
erage increase in correlation magnitude of 11%
above the original unadjusted correlations, when
averaged over all the personality factors and out-
comes listed in the table, as expected. However,
some correlations increased due to domain adap-
tation, while some decreased. We asked a person-
ality psychologist to frame hypotheses for the re-
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lationship of personality traits with other county-
level outcomes, based on findings from the psy-
chology literature and her considerable experience
in the same domain. We tested our findings against
these hypotheses, provided in Figure 4 and reflect
the expected positive or negative relationship be-
tween the five personality traits and income, life
satisfaction, mental health, education and income.

Figure 4: Top: Individual-level correlation direction be-
tween personality traits and health, well-being, and socioe-
conomic status measures as predicted by a personality ex-
pert, supplemented by meta-analytic findings published in
psychology where readily available (Roberts et al., 2007).
Middle: Pearson r between original county-level personality
predictions and externally measured metrics. Bottom: Pear-
son r between county-level predictions using TSDA and the
same externally measured metrics.

We see that our predictions mostly accord with
the personality literature, and that domain adapta-
tion often strengthens the correlations that we ex-
pected and weakens the correlations that had been
predicted from language, but were not expected.
In particular, in the original data, there is a pre-
dicted strong correlation between agreeableness
and education. Given the high kurtosis in agree-
ableness, this correlation is suspicious. TSDA re-
duces this correlation from 0.22 to 0.07, much
more in line with what would be expected.

Several noteworthy correlations are found in our
data, and strengthened by TSDA.

• Openness is known to correlate positively
with higher educational attainment. This cor-
relation increases 72% from 0.32 to 0.55
when TSDA is used.

• Conscientiousness is known to correlate pos-
itively with life satisfaction, education and
income, and negatively with mentally un-
healthy days. Our results are consistent with
this.

7.3 TSDA: Contribution of the two steps

Both steps of TSDA contribute to its performance,
as shown in Figures 2 and 3.

Step 1 (Between County normalization) appears
mostly responsible for the final reduction in kur-
tosis from TSDA and on its own adds some in-
creased year to year stability. It also signifi-
cantly increased the county-level predictions’ cor-
relations with socioeconomic status, and health
and well-being measures and removed the spuri-
ous correlation between agreeableness and educa-
tion which was observed in both the naive appli-
cation of the model and in results only relying on
TSDA step 2.

Step 2 (Facebook to Twitter normalization) on
its own gave mild improvements in kurtosis (Fig-
ure 2), but inconsistent performance in year-to-
year stability and external county-level correla-
tions. It is when step 2 is applied after step 1 that
the method is truly able to find differing features
that, when replaced with the source feature means,
provide overall better predictions.

8 Conclusion

We have shown that the naive approach to ap-
plying Facebook user-level language models to
county-level Twitter language has inherent prob-
lems due to two separate domain adaptation prob-
lems: the differences in Facebook to Twitter
word token frequencies, and the spatially corre-
lated terms introduced when aggregating tweets to
counties. These problems were discovered when
we constructed a list of counties with the most ex-
treme predicted personalities (e.g., ‘the 10 most
agreeable counties in the US’) and found our esti-
mates to be many standard deviations outside what
is plausible. We introduce Target Side Domain
Adaptation (TSDA), which adjusts the observed
word counts in the target (county-level Twitter)
domain, leaving the source domain model un-
changed, and we propose a set of validation meth-
ods based on assessing normality, year-to-year
prediction stability, and the correlation of predic-
tions with other outcomes measured on the target
counties.
TSDA works particularly well with words, since
words vary widely in frequency and meaning
across domains and, critically, variations in fre-
quency tend to be associated with differences in
meaning. It has the further advantage that it does
not require retraining the model; instead, the fea-
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ture values passed to the model are readjusted.
This could be particularly important when the
original training data cannot be shared, for exam-
ple when it contains personal health data or (as is
the case here) private social media data, which are
impossible to truly anonymize for sharing.
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Abstract

In the wake of a polarizing election, social
media is laden with hateful content. To
address various limitations of supervised
hate speech classification methods includ-
ing corpus bias and huge cost of annota-
tion, we propose a weakly supervised two-
path bootstrapping approach for an online
hate speech detection model leveraging
large-scale unlabeled data. This system
significantly outperforms hate speech de-
tection systems that are trained in a super-
vised manner using manually annotated
data. Applying this model on a large quan-
tity of tweets collected before, after, and
on election day reveals motivations and
patterns of inflammatory language.

1 Introduction

Following a turbulent election season, 2016’s dig-
ital footprint is awash with hate speech. Apart
from censorship, the goals of enabling computers
to understand inflammatory language are many.
Sensing increased proliferation of hate speech can
elucidate public opinion surrounding polarizing
events. Identifying hateful declarations can bolster
security in revealing individuals harboring mali-
cious intentions towards specific groups.

Recent studies on supervised methods for on-
line hate speech detection (Waseem and Hovy,
2016; Nobata et al., 2016) have relied on manu-
ally annotated data sets, which are not only costly
to create but also likely to be insufficient to ob-
tain wide-coverage hate speech detection systems.
This is mainly because online hate speech is rela-
tively infrequent (among large amounts of online

contents) and tends to transform rapidly following
a new trigger event. Our pilot annotation experi-
ment with 5,000 randomly selected tweets shows
that around 0.6% (31 tweets) of tweets are hateful.
The mass-scale (Yahoo!Finance online comments)
hate speech annotation effort from Yahoo! (No-
bata et al., 2016) revealed that only 5.9% of on-
line comments contained hate speech. Therefore,
large amounts of online texts need to be annotated
to adequately identify hate speech. In recent stud-
ies (Waseem and Hovy, 2016; Kwok and Wang,
2013), the data selection methods and annotations
are often biased towards a specific type of hate
speech or hate speech generated in certain scenar-
ios in order to increase the ratio of hate speech
content in the annotated data sets, which how-
ever made the resulting annotations too distorted
to reflect the true distribution of hate speech. Fur-
thermore, inflammatory language changes dramat-
ically following new hate “trigger” events, which
will significantly devalue annotated data.

To address the various limitations of super-
vised hate speech detection methods, we present
a weakly supervised two-path bootstrapping ap-
proach for online hate speech detection that re-
quires minimal human supervision and can be eas-
ily retrained and adapted to capture new types of
inflammatory language. Our two-path bootstrap-
ping architecture consists of two learning compo-
nents, an explicit slur term learner and a neural net
classifier (LSTMs (Hochreiter and Schmidhuber,
1997)), that can capture both explicit and implicit
phrasings of online hate speech.

Specifically, our bootstrapping system starts
with automatically labeled online hateful content
that are identified by matching a large collection
of unlabeled online content with several hateful
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slur terms. Then two learning components will be
initiated simultaneously. A slur term learner will
learn additional hateful slur terms from the auto-
matically identified hateful content. Meanwhile, a
neural net classifier will be trained using the au-
tomatically labeled hateful content as positive in-
stances and randomly sampled online content as
negative instances. Next, both string matching
with the newly learned slur terms and the trained
neural net classifier will be used to recognize new
hateful content from the large unlabeled collec-
tion of online contents. Then the newly identi-
fied hateful content by each of the two learning
components will be used to augment the initially
identified hateful content, which will be used to
learn more slur terms and retrain the classifier. The
whole process iterates.

The design of the two-path bootstrapping sys-
tem is mainly motivated to capture both explicit
and implicit inflammatory language. Explicit
hate speech is easily identifiable by recognizing a
clearly hateful word or phrase. For example:

(1) Don’t talk to me from an anonymous account
you faggot coward, whither up and die.

(2) And that’s the kind of people who support
Trump! Subhumans!
In contrast, implicit hate speech employs circum-
locution, metaphor, or stereotypes to convey ha-
tred of a particular group, in which hatefulness can
be captured by understanding its overall composi-
tional meanings, For example:

(3) Hillary’s welfare army doesn’t really want
jobs. They want more freebies.

(4) Affirmative action means we get affirmatively
second rate doctors and other professionals.

Furthermore, our learning architecture has a fla-
vor of co-training (Blum and Mitchell, 1998) in
maintaining two learning components that concen-
trate on different properties of inflammatory lan-
guage. By modeling distinct aspects of online hate
speech, such a learning system is better equipped
to combat semantic drift, which often occurs in
self-learning where the learned model drifts away
from the esteemed track. Moreover, training two
complementary models simultaneously and utiliz-
ing both models to identify hate speech of different
properties in each iteration of the learning process
is important to maintain the learning momentum
and to generate models with wide coverage. In-
deed, our experimental results have shown that the

two-path bootstrapping system is able to jointly
identify many more hate speech texts (214,997 v.s
52,958 v.s 112,535) with a significantly higher F-
score (48.9% v.s 19.7% v.s 26.1%), when com-
pared to the bootstrapping systems with only the
slur term learner and only the neural net classi-
fier. In addition, the evaluation shows that the
two-path bootstrapping system identifies 4.4 times
more hateful texts than hate speech detection sys-
tems that are trained using manually annotated
data in a supervised manner.

2 Related Work

Previous studies on hate speech recognition
mostly used supervised approaches. Due to the
sparsity of hate speech overall in reality, the data
selection methods and annotations are often bi-
ased towards a specific type of hate speech or
hate speech generated in certain scenarios. For
instance, Razavi et al. (2010) conducted their
experiments on 1525 annotated sentences from
a company’s log file and a certain newsgroup.
Warner and Hirschberg (2012) labeled around
9000 human labeled paragraphs from Yahoo!’s
news group post and American Jewish Congress’s
website, and the labeling is restricted to anti-
Semitic hate speech. Sood et al. (2012) studied
use of profanity on a dataset of 6,500 labeled com-
ments from Yahoo! Buzz. Kwok and Wang (2013)
built a balanced corpus of 24582 tweets consist-
ing of anti-black and non-anti black tweets. The
tweets were manually selected from Twitter ac-
counts that were believed to be racist based upon
their reactions to anti-Obama articles. Burnap and
Williams (2014) collected hateful tweets related
to the murder of Drummer Lee Rigby in 2013.
Waseem and Hovy (2016) collected tweets using
hateful slurs, specific hashtags as well as suspi-
cious user IDs. Consequently, all of the 1,972
racist tweets are by 9 users, and the majority of
sexist tweets are related to an Australian TV show.

Djuric et al. (2015) is the first to study hate
speech using a large-scale annotated data set.
They have annotated 951,736 online comments
from Yahoo!Finance, with 56,280 comments la-
beled as hateful. Nobata et al. (2016) followed
Djuric et al. (2015)’s work. In addition to the Ya-
hoo!Finance annotated comments, they also an-
notated 1,390,774 comments from Yahoo!News.
Comments in both data sets were randomly sam-
pled from their corresponding websites with a fo-
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cus on comments by users who were reported to
have posted hateful comments. We instead aim to
detect hate speech w.r.t. its real distribution, using
a weakly supervised method that does not rely on
large amounts of annotations.

The commonly used classification methods in
previous studies are logistic regression and Naive
Bayes classifiers. Djuric et al. (2015) and No-
bata et al. (2016) applied neural network models
for training word embeddings, which were further
used as features in a logistic regression model for
classification. We will instead train a neural net
classifier (Kim, 2014; Lai et al., 2015; Zhou et al.,
2015) in a weakly supervised manner in order to
capture implicit and compositional hate speech ex-
pressions.

Xiang et al. (2012) is related to our research
because they also used a bootstrapping method
to discover offensive language from a large-scale
Twitter corpus. However, their bootstrapping
model is driven by mining hateful Twitter users,
instead of content analysis of tweets as in our ap-
proach. Furthermore, they recognize hateful Twit-
ter users by detecting explicit hateful indicators
(i.e., keywords) in their tweets while our boot-
strapping system aim to detect both explicit and
implicit expressions of online hate speech.

3 The Two-path Bootstrapping System
for Online Hate Speech Detection

3.1 Overview

Figure 1: Diagram of co-training model

Figure 1 illustrates that our weakly supervised
hate speech detection system starts with a few pre-
identified slur terms as seeds and a large collection
of unlabeled data instances. Specifically, we ex-
periment with identifying hate speech from tweets.
Hateful tweets will be automatically identified by
matching the large collection of unlabeled tweets

with slur term seeds. Tweets that contain one of
the seed slur terms are labeled as hateful.

The two-path bootstrapping system consists
of two learning components, an explicit slur
term learner and a neural net classifier (LSTMs
(Hochreiter and Schmidhuber, 1997)), that can
capture both explicit and implicit descriptions of
online hate speech. Using the initial seed slur term
labeled hateful tweets, the two learning compo-
nents will be initiated simultaneously. The slur
term learner will continue to learn additional hate-
ful slur terms. Meanwhile, the neural net classi-
fier will be trained using the automatically labeled
hateful tweets as positive instances and randomly
sampled tweets as negative instances. Next, both
the newly learned slur terms and the trained neu-
ral net classifier will be used to identify new hate-
ful content from the unlabeled large collection of
tweets. The newly labeled hateful tweets by each
of the two learning components will be used to
augment the initial slur term seed identified hateful
tweet collection, which will be used to learn more
slur terms and retrain the classifier in the next iter-
ation. The whole process then iterates.

After each iteration, we have to determine if
a stopping criterion is met and we should termi-
nate the bootstrapping process. In general, a tuned
threshold score is applied or a small annotated
dataset is used to evaluate the learned classifiers.
We adopt the latter method. Specifically, the boot-
strapping system stops when the precision of the
LSTM classifier is lower than 0.6 when evalu-
ated using an existing small annotated tweet set
(Waseem and Hovy, 2016).

3.2 Automatic Data Labeling of Initial Data

Seeing a hate slur term in a tweet strongly indi-
cates that the tweet is hateful. Therefore, we use
20 manually selected slur terms to match with a
large unlabeled tweet collection in order to quickly
construct the initial small set of hateful tweets. Ta-
ble 1 shows the 20 seed slurs we used.

bimbo chink commie coon cunt
fag faggot feminazi honky islamist
libtard muzzie negro nigger paki
skank subhuman tranny twat wanker

Table 1: Seed slurs

We obtained our initial list of slurs from Hate-
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base1, the Racial Slurs Database 2, and a page of
LGBT slang terms3. We ranked the slur terms by
their frequencies in tweets, eliminating ambiguous
and outdated terms. The slur ”gypsy”, for exam-
ple, refers to derogatorily to people of Roma de-
scent, but currently in popular usage is an ideal-
ization of a trendy bohemian lifestyle. The word
”bitch” is ambiguous, sometimes a sexist slur but
other times innocuously self-referential or even
friendly.

For these reasons, we only selected the top 20
terms we considered reliable (shown in Table 1).
We use both the singular and the plural form for
each of these seed slur terms.

3.3 Slur Term Learner

The slur term learning component extracts individ-
ual words from a set of hateful tweets as new slurs.
Intuitively, if a word occurs significantly more fre-
quently in hateful tweets than in randomly selected
tweets, this term is more likely to be a hateful slur
term. Following this intuition, we assign a score
to each unique unigram that appears 10 or more
times in hateful tweets, and the score is calculated
as the relative ratio of its frequency in the labeled
hateful tweets over its frequency in the unlabeled
set of tweets. Then the slur term learner recog-
nizes a unigram with a score higher than a cer-
tain threshold as a new slur. Specifically, we use
the threshold score of 100 in identifying individual
word slur terms.

The newly identified slur terms will be used to
match with unlabeled tweets in order to identify
additional hateful tweets. A tweet that contains
one of the slur terms is deemed to be a hateful
tweet.

While we were aware of other more sophisti-
cated machine learning models, one purpose of
this research is to detect and learn new slur terms
from constantly generated user data. Therefore,
the simple and clean string matching based slur
learner is designed to attentively look for specific
words that alone can indicate hate speech. In ad-
dition, this is in contrast with the second learning
component that uses a whole tweet and model its
compositional meanings in order to recognize im-
plicit hate speech. These two learners are comple-
mentary in the two-path bootstrapping system.

1https://www.hatebase.org
2http://www.rsdb.org
3https://en.wikipedia.org/wiki/List of LGBT slang terms

3.4 The LSTM Classifier

We aim to recognize implicit hate speech expres-
sions and capture composite meanings of tweets
using a sequence neural net classifier. Specifically,
our LSTM classifier has a single layer of LSTM
units. The output dimension size of the LSTM
layer is 100. A sigmoid layer is built on the top of
the LSTM layer to generate predictions. The input
dropout rate and recurrent state dropout rate are
both set to 0.2. In each iteration of the bootstrap-
ping process, the training of the LSTM classifier
runs for 10 epochs.

The input to our LSTM classifier is a sequence
of words. We pre-process and normalize tokens
in tweets following the steps suggested in (Pen-
nington et al., 2014). In addition, we used the
pre-processing of emoji and smiley described in
a preprocess tool 4. Then we retrieve word vector
representations from the downloaded5 pre-trained
word2vec embeddings (Mikolov et al., 2013).

The LSTM classifier is trained using the au-
tomatically labeled hateful tweets as positive in-
stances and randomly sampled tweets as negative
instances, with the ratio of POS:NEG as 1:10.
Then the classifier is used to identify additional
hateful tweets from the large set of unlabeled
tweets. The LSTM classifier will deem a tweet
as hateful if the tweet receives a confidence score
of 0.9 or higher. Both the low POS:NEG ratio and
the high confidence score are applied to increase
the precision of the classifier in labeling hateful
tweets and control semantic drift in the bootstrap-
ping learning process. To further combat semantic
drift, we applied weighted binary cross-entropy as
the loss function in LSTM.

3.5 One vs. Two Learning Paths

As shown in Figure 1, if we remove one of the two
learning components, the two-path learning sys-
tem will be reduced to a usual self-learning sys-
tem with one single learning path. For instance, if
we remove the LSTM classifier, the slur learner
will learn new slur terms from initially seed la-
beled hateful tweets and then identify new hateful
tweets by matching newly learned slurs with unla-
beled tweets. The newly identified hateful tweets
will be used to augment the initial hateful tweet
collection and additional slur terms can be learned
from the enlarged hateful tweet set. The process

4https://pypi.python.org/pypi/tweet-preprocessor/0.4.0
5https://code.google.com/archive/p/word2vec/
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will iterates. However as shown later in the evalu-
ation section, single-path variants of the proposed
two-path learning system are unable to receive ad-
ditional fresh hateful tweets identified by the other
learning component and lose learning momentum
quickly.

3.6 Tackling Semantic Drifts

Semantic drift is the most challenging problem in
distant supervision and bootstrapping. First of all,
we argue that the proposed two-path bootstrapping
system with two significantly different learning
components is designed to reduce semantic drift.
According to the co-training theory (Blum and
Mitchell, 1998), the more different the two com-
ponents are, the better. In evaluation, we will show
that such a system outperforms single-path boot-
strapping systems. Furthermore, we have applied
several strategies in controlling noise and imbal-
ance of automatically labeled data, e.g., the high
frequency and the high relative frequency thresh-
olds enforced in selecting hate slur terms, as well
as the low POS:NEG training sample ratio and the
high confidence score of 0.9 used in selecting new
data instances for the LSTM classifier.

4 Evaluations

4.1 Tweets Collection

We randomly sampled 10 million tweets from 67
million tweets collected from Oct. 1st to Oct. 24th
using Twitter API. These 10 million tweets were
used as the unlabeled tweet set in bootstrapping
learning. Then we continued to collect 62 mil-
lion tweets spanning from Oct.25th to Nov.15th,
essentially two weeks before the US election day
and one week after the election. The 62 million
tweets will be used to evaluate the performance
of the bootstrapped slur term learner and LSTM
classifier. The timestamps of all these tweets are
converted into EST. By using Twitter API, the col-
lected tweets were randomly sampled to prevent a
bias in the data set.

4.2 Supervised Baselines

We trained two supervised models using the 16
thousand annotated tweets that have been used
in a recent study (Waseem and Hovy, 2016).
The annotations distinguish two types of hateful
tweets, sexism and racism, but we merge both
categories and only distinguish hateful from non-
hateful tweets.

First, we train a traditional feature-based classi-
fication model using logistic regression (LR). We
apply the same set of features as mentioned in
(Waseem and Hovy, 2016). The features include
character-level bigrams, trigrams, and four-grams.

In addition, for direct comparisons, we train
a LSTM model using the 16 thousand annotated
tweets, using exactly the same settings as we use
for the LSTM classifier in our two-path bootstrap-
ping system.

4.3 Evaluation Methods

We apply both supervised classifiers and our
weakly supervised hate speech detection systems
to the 62 million tweets in order to identify hate-
ful tweets that were posted before and after the US
election day. We evaluate both precision and recall
for both types of systems. Ideally, we can easily
measure precision as well as recall for each sys-
tem if we have ground truth labels for each tweet.
However, it is impossible to obtain annotations for
such a large set of tweets. The actual distribution
of hateful tweets in the 62 million tweets is un-
known.

Instead, to evaluate each system, we randomly
sampled 1,000 tweets from the whole set of hate-
ful tweets that had been tagged as hateful by the
corresponding system. Then we annotate the sam-
pled tweets and use them to estimate precision and
recall of the system. In this case,

precision =
n

1000

recall ∝ precision ·N
Here, n refers to the number of hateful tweets

that human annotators identified in the 1,000 sam-
pled tweets, and N refers to the total number of
hateful tweets the system tagged in the 62 million
tweets. We further calculated system recall by nor-
malizing the product, precision ·N , with an esti-
mated total number of hateful tweets that exist in
the 62 million tweets, which was obtained by mul-
tiplying the estimated hateful tweet rate of 0.6%6

with the exact number of tweets in the test set. Fi-
nally, we calculate F-score using the calculated re-
call and precision.

Consistent across the statistical classifiers in-
cluding both logistic regression classifiers and

6We annotated 5,000 tweets that were randomly sampled
during election time and 31 of them were labeled as hateful,
therefore the estimated hateful tweet rate is 0.6% (31/5,000).
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LSTM models, only tweets that receive a con-
fidence score over 0.9 were tagged as hateful
tweets.

4.4 Human Annotations
When we annotate system predicted tweet sam-
ples, we essentially adopt the same definition of
hate speech as used in (Waseem and Hovy, 2016),
which considers tweets that explicitly or implicitly
propagate stereotypes targeting a specific group
whether it is the initial expression or a meta-
expression discussing the hate speech itself (i.e.
a paraphrase). In order to ensure our annota-
tors have a complete understanding of online hate
speech, we asked two annotators to first discuss
over a very detailed annotation guideline of hate
speech, then annotate separately. This went for
several iterations.

Then we asked the two annotators to annotate
the 1,000 tweets that were randomly sampled from
all the tweets tagged as hateful by the supervised
LSTM classifier. The two annotators reached an
inter-agreement Kappa (Cohen, 1960) score of
85.5%. Because one of the annotators become un-
available later in the project, the other annotator
annotated the remaining sampled tweets.

4.5 Experimental Results
Supervised Baselines

The first section of Table 2 shows the perfor-
mance of the two supervised models when applied
to 62 million tweets collected around election
time. We can see that the logistic regression model
suffers from an extremely low precision, which is
less than 10%. While this classifier aggressively
labeled a large number of tweets as hateful, only
121,512 tweets are estimated to be truly hateful.
In contrast, the supervised LSTM classifier has a
high precision of around 79%, however, this clas-
sifier is too conservative and only labeled a small
set of tweets as hateful.
The Two-path Bootstrapping System

Next, we evaluate our weakly supervised classi-
fiers which were obtained using only 20 seed slur
terms and a large set of unlabeled tweets. The two-
path weakly supervised bootstrapping system ran
for four iterations. The second section of Table 2
shows the results for the two-path weakly super-
vised system. The first two rows show the eval-
uation results for each of the two learning com-
ponents in the two-path system, the LSTM classi-
fier and the slur learner, respectively. The third

row shows the results for the full system. We
can see that the full system Union is significantly
better than the supervised LSTM model in terms
of recall and F-score. Furthermore, we can see
that a significant portion of hateful tweets were
identified by both components and the weakly su-
pervised LSTM classifier is especially capable to
identify a large number of hateful tweets. Then
the slur matching component obtains an preci-
sion of around 56.5% and can identify roughly 3
times of hateful tweets compared with the super-
vised LSTM classifier. The last column of this
section shows the performance of our model on
a collection of human annotated tweets as intro-
duced in the previous work (Waseem and Hovy,
2016). The recall is rather low because the data
we used to train our model is quite different from
this dataset which contains tweets related to a TV
show (Waseem and Hovy, 2016). The precision is
only slightly lower than previous supervised mod-
els that were trained using the same dataset.

Table 3 shows the number of hateful tweets our
bootstrapping system identified in each iteration
during training. Specifically, the columns Slur
Match and LSTMs show the number of hateful
tweets identified by the slur learning component
and the weakly supervised LSTM classifier re-
spectively. We can see that both learning compo-
nents steadily label new hateful tweets in each it-
eration and the LSTM classifier often labels more
tweets as hateful compared to slur matching.

Furthermore, we found that many tweets were
labeled as hateful by both slur matching and the
LSTM classifier. Table 4 shows the number of
hateful tweets in each of the three segments, hate-
ful tweets that have been labeled by both compo-
nents as well as hateful tweets that were labeled by
one component only. Note that the three segments
of tweets are mutually exclusive from others. We
can see that many tweets were labeled by both
components and each component separately la-
beled some additional tweets as well. This demon-
strates that hateful tweets often contain both ex-
plicit hate indicator phrases and implicit expres-
sions. Therefore in our two-path bootstrapping
system, the hateful tweets identified by slur match-
ing are useful for improving the LSTM classifier,
vice versa. This also explains why our two-path
bootstrapping system learn well to identify vari-
eties of hate speech expressions in practice.

One-path Bootstrapping System Variants
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Classifier Precision Recall F1 # of Predicted Tweets # of Estimated Hateful
Supervised Baselines

Logistic Regression 0.088 0.328 0.139 1,380,825 121,512
LSTMs 0.791 0.132 0.228 62,226 49,221

The Two-path Weakly Supervised Learning System
LSTMs 0.419 0.546 0.474 483,298 202,521
Slur Matching 0.565 0.398 0.468 261,183 147,595
Union 0.422 0.580 0.489 509,897 214,997
Union* 0.626* 0.258* 0.365* - -

Variations of the Two-path Weakly Supervised Learning System
Slur Matching Only 0.318 0.143 0.197 166,535 52,958
LSTMs Only 0.229 0.303 0.261 491,421 112,535

Table 2: Performance of Different Models

Its Prev Slur Match LSTMs
1 8,866 422 3,490
2 12,776 4,890 13,970
3 27,274 6,299 21,579
4 50,721 9,895 22,768

Table 3: Number of Labeled Tweets in Each Itera-
tion

Intersection LSTM Only Slur Only
234,584 248,714 26,599

Table 4: Number of Hateful Tweets in Each Seg-
ment

In order to understand how necessary it is to
maintain two learning paths for online hate speech
detection, we also ran two experiments with one
learning component removed from the loop each
time. Therefore, the reduced bootstrapping sys-
tems can only repeatedly learn explicit hate speech
(with the slur learner) or implicit hateful expres-
sions (with the LSTM classifier).

The third section of Table 2 shows the evalua-
tion results of the two single-path variants of the
weakly supervised system. We can see that both
the estimated precision, recall, F score and the
estimated number of truly hateful tweets by the
two systems are significantly lower than the com-
plete two-path bootstrapping system, which sug-
gests that our two-path learning system can effec-
tively capture diverse descriptions of online hate
speech, maintain learning momentums as well as
effectively combat with noise in online texts.

5 Analysis

5.1 Analysis of the Learned Hate Indicators

berk chavs degenerates douches
facist hag heretics jihadists
lesbo pendejo paedo pinche
retards satanist scum scumbag
slutty tards unamerican wench

Table 5: New slurs learned by our model

We have learned 306 unigram phrases using
the slur term learning component. Among them,
only 45 phrases were seen in existing hate slur
databases while the other terms, 261 phrases in to-
tal, were only identified in real-world tweets. Ta-
ble 5 shows some of the newly discovered hate in-
dicating phrases. Our analysis shows that 86 of the
newly discovered hate indicators are strong hate
slur terms and the remaining 175 indicators are re-
lated to discussions of identity and politics such as
’supremacist’ and ’Zionism’.

5.2 Analysis of LSTM Identified Hateful
Tweets

The LSTM labeled 483,298 tweets as hateful, and
172,137 of them do not contain any of the original
seed slurs or our learned indicator phrases. The
following are example hateful tweets that have no
explicit hate indicator phrase:

(1) @janh2h The issue is that internationalists
keep telling outsiders that they’re just as entitled
to the privileges of the tribe as insiders.

(2) This is disgusting! Christians are very tolerant
people but Muslims are looking to wipe us our and
dominate us! Sen https://t.co/7DMTIrOLyw
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We can see that the hatefulness of these
tweets is determined by their overall composi-
tional meanings rather than a hate-indicating slur.

5.3 Error Analysis

The error of our model comes from semantic drift
in bootstrapping learning, which partially results
from the complexity and dynamics of language.
Specifically, we found dynamic word sense of
slurs and natural drifting of word semantic. Many
slur terms are ambiguous and have multiple word
senses. For instance, “Chink”, an anti-Asian epi-
thet, can also refer to a patch of light from a small
aperture. Similarly, “Negro” is a toponym in ad-
dition to a racial slur. Further, certain communi-
ties have reclaimed slur words. Though the word
“dyke” is derogatory towards lesbians, for exam-
ple, some use it self-referentially to destigmatize
it, a phenomenon we sometimes encountered.

5.4 Temporal Distributions of Tagged
Hateful Tweets

By applying our co-training model on the 62 mil-
lion tweets corpus, we found around 510 thousand
tweets labeled as hateful in total.

Figure 2: Temporal Distribution of Hateful Tweets

The figure 2 displays the temporal distribution
of hateful tweets. There is a spike in hateful tweets
from Nov.7th to Nov.12th in terms of both number
of hateful tweets and ratio of hateful tweets to total
tweets.

5.5 Most Frequent Mentions and Hashtags of
Tagged Hateful Tweets

Table 6 and 7 show the top 30 most frequent men-
tions in hateful tweets. They are ranked by fre-
quency from left to right and from top to bottom.

It is clear that the majority of mentions found
in tweets tagged as hateful address polarizing
political figures (i.e. @realDonaldTrump and

@HillaryClinton), indicating that hate speech is
often fueled by partisan warfare. Other common
mentions include news sources, such as Politico
and MSNBC, which further support that ”trigger”
events in the news can generate inflammatory re-
sponses among Twitter users. Certain individual
Twitter users also received a sizable number of
mentions. @mitchellvii is a conservative activist
whose tweets lend unyielding support to Donald
Trump. Meanwhile, Twitter user @purplhaze42
is a self-proclaimed anti-racist and anti-Zionist.
Both figured among the most popular recipients of
inflammatory language.

Table 7 shows that the majority of hashtags also
indicate the political impetus behind hate speech
with hashtags such as #Trump and #MAGA (Make
America Great Again, Trump’s campaign slogan)
among the most frequent. The specific televised
events also engender proportionally large amounts
of hateful language as they can be commonly ex-
perienced by all television-owning Americans and
therefore a widely available target for hateful mes-
sages.

@realDonaldTrump @HillaryClinton @megynkelly
@CNN @FoxNews @newtgingrich
@nytimes @YouTube @POTUS
@KellyannePolls @MSNBC @seanhannity
@washingtonpost @narendramodi @CNNPolitics
@PrisonPlanet @guardian @JoyAnnReid
@BarackObama @thehill @BreitbartNews
@politico @ABC @AnnCoulter
@jaketapper @ArvindKejriwal @FBI
@mitchellvii @purplhaze42 @SpeakerRyan

Table 6: List of Top 30 Mentions in Hateful
Tweets During Election Days

#Trump #ElectionNight #Election2016
#MAGA #trndnl #photo
#nowplaying #Vocab #NotMyPresident
#ElectionDay #trump #ImWithHer
#halloween #cdnpoli #Latin
#Hillary #WorldSeries #1
#Brexit #Spanish #auspol
#notmypresident #C51 #NeverTrump
#hiring #bbcqt #USElection2016
#tcot #TrumpProtest #XFactor

Table 7: List of Top 30 Hashtags in Hateful Tweets
During Election Days

6 Conclusions

Our work focuses on the need to capture both ex-
plicit and implicit hate speech from an unbiased
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corpus. To address these issues, we proposed a
weakly supervised two-path bootstrapping model
to identify hateful language in randomly sampled
tweets. Starting from 20 seed rules, we found 210
thousand hateful tweets from 62 million tweets
collected during the election. Our analysis shows a
strong correlation between temporal distributions
of hateful tweets and the election time, as well as
the partisan impetus behind large amounts of in-
flammatory language. In the future, we will look
into linguistic phenomena that often occur in hate
speech, such as sarcasm and humor, to further im-
prove hate speech detection performance.
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Abstract

Traditional approaches to recommenda-
tion focus on learning from large volumes
of historical feedback to estimate simple
numerical quantities (Will a user click on a
product? Make a purchase? etc.). Natural
language approaches that model informa-
tion like product reviews have proved to be
incredibly useful in improving the perfor-
mance of such methods, as reviews pro-
vide valuable auxiliary information that
can be used to better estimate latent user
preferences and item properties.

In this paper, rather than using reviews
as an inputs to a recommender system,
we focus on generating reviews as the
model’s output. This requires us to effi-
ciently model text (at the character level)
to capture the preferences of the user, the
properties of the item being consumed,
and the interaction between them (i.e., the
user’s preference). We show that this can
model can be used to (a) generate plau-
sible reviews and estimate nuanced reac-
tions; (b) provide personalized rankings of
existing reviews; and (c) recommend ex-
isting products more effectively.

1 Introduction

Review text has been extensively studied in mod-
ern recommender systems as a means of improv-
ing the performance on traditional recommenda-
tion tasks. Compared with conventional tech-
niques that model simple numerical feedback (rat-
ings, clicks, purchases, etc.), review text pro-
vides valuable information about user and item
attributes, and more importantly the interaction
between them. Recent systems have adapted
ideas from topic modeling and sentiment analysis

to leverage the side-information contained in re-
views; in essence, these approaches use language
models as a form of ‘regularization,’ such that
the model should explain user preferences and re-
view text simultaneously (McAuley and Leskovec,
2013; Bao et al., 2014; Ling et al., 2014).

In parallel, recent advances in generative text
modeling have demonstrated the effectiveness of
recurrent neural networks in capturing content,
structure, and style in natural language. As a re-
sult, several recent works have focused on learn-
ing generative models of product reviews, either
to generate reviews per se, or as a means of learn-
ing user and item attributes (Lipton et al., 2015;
Radford et al., 2017; Dong et al., 2017; Hu et al.,
2017). In this paper, we address the problem of
how to leverage both review text and implicit feed-
back simultaneously in order to provide richer user
experiences and more meaningful recommenda-
tions. In particular, we focus on estimating latent
user preferences through implicit feedback while
simultaneously predicting the contents of the re-
views themselves. Thus, given an item that a user
hasn’t yet interacted with, our goals are to (a) gen-
erate a plausible review, in order to estimate the
user’s nuanced reaction to the product; (b) esti-
mate whether the user would be likely to interact
with the product, based on their learned latent at-
tributes; and (c) rank existing reviews using the
language model, in order to surface ‘meaningful’
reviews to the user.

To solve the above problems, we propose a
model—CF-GGN—that combines Collaborative
Filtering (CF) with Generative Concatenative Net-
works (GCN) (Lipton et al., 2015) to simultane-
ously perform item recommendation and review
generation. Given a large dataset of implicit feed-
back (e.g. purchases vs. non-purchases), we start
by modeling user and item latent factors through
collaborative filtering; we also adapt ideas from
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text embeddings (e.g. word2vec), and use multi-
layer perceptrons (MLP) to model complex inter-
actions between embeddings and latent preference
factors. Finally we build a generative concate-
native model by stacking two LSTM layers; we
adopt a simple replication strategy to concatenate
latent factors with text input and jointly train the
model in a supervised way. By sharing the same
model parameters, the two tasks (recommenda-
tion and generation) mutually reinforce each other
when all parameters are trained end-to-end.

To our knowledge, our work is the first to
show that we can generate plausible reviews while
simultaneously achieving substantial quantitative
improvements on recommendation tasks. To sum-
marize, our main contributions are as follows:

• We jointly perform recommendation and re-
view generation by combining collaborative
filtering with LSTM-based generative mod-
els. Our model captures latent information
such as user preferences and item attributes,
and learns to generate coherent, structured,
and personalized reviews.

• We investigate the effect of sparsity in both
reviews and implicit feedback data; a virtue
of our joint training approach is that we can
learn effective text models even for users with
limited reviews at training time, i.e., we can
learn to estimate likely reactions (in the form
of reviews), on the basis of implicit feedback
(e.g. purchases and clicks), even for users
who write few reviews.

• We conduct extensive experiments on three
real-word datasets in order to qualitatively
and quantitatively demonstrate the effective-
ness of our joint training approach.

2 Related Work

Review text provides valuable information about
users’ experiences and preferences toward the
items they consume. Modeling the detailed infor-
mation in reviews is especially important in sparse
datasets, where a small amount of reviews car-
ries substantially more information than is avail-
able in ratings alone. Several previous works
have taken reviews into consideration to improve
the performance of various recommendation tasks
(McAuley and Leskovec, 2013; Ling et al., 2014;
Bao et al., 2014; Wang et al., 2015).

Recently, neural-network-based models have
been considered when modeling review text, in
place of traditional topic modeling techniques.
Zheng et al. (2017) leveraged Convolutional Neu-
ral Networks (CNN) to extract embeddings from
reviews, which were used as features in a factor-
ization machine (Rendle, 2010) to generate rat-
ing predictions. Catherine and Cohen (2017) pro-
posed a model (‘transNet’) consisting of a source
network and a target network; the former learns
user and item embeddings from reviews while the
latter performs sentiment analysis over the ground
truth review. By minimizing the difference be-
tween the two networks’ latent representation lay-
ers, the model learns more expressive latent fac-
tors. Wu et al. (2017) presented a neural net-
work based model that jointly considers both rat-
ings and reviews. Their approach models the tem-
poral rating prediction task via a Recurrent Neu-
ral Network (RNN), and uses an additional LSTM
network to model the review text as a regulariza-
tion term in the loss function. Their experimen-
tal results show improvements on rating predic-
tion tasks over state-of-the-art techniques, how-
ever they do not report results in terms of the
model’s ability to generate plausible reviews.

Given their expressive power when modeling
sequential data, RNN-based methods have been
widely studied for a variety of generation tasks
(Graves, 2013; Zhang and LeCun, 2015; Sutskever
et al., 2011). Recently, several works have focused
on the task of learning language models to gener-
ate reviews. Generating coherent and personalized
reviews still poses considerable challenges, due
to their length, structure, and the sparsity of real
datasets. Radford et al. (2017) trained a character-
RNN language model based on the Amazon review
dataset (McAuley et al., 2015); they consider a
single multiplicative LSTM layer with 4096 hid-
den units and train the model for nearly a month.
The authors find a sentiment unit among the hid-
den units which is highly correlated to review sen-
timent. They can then generate reviews by forc-
ing this sentiment unit to be positive or negative.
Lipton et al. (2015) proposed a generative con-
catenative network to supervise the training of a
character-level language model; they concatenate
auxiliary information in the form of one-hot repre-
sentations of user/item IDs, categories and ratings.
The model generates plausible reviews when con-
ditioned on this auxiliary information, and demon-
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strates the potential for RNNs to capture subjec-
tive user information and generate personalized
text, though they do not consider recommendation
problems. Dong et al. (2017) studied attribute-to-
sequence generative models with stacked LSTMs;
they encode attributes such as user/item IDs and
ratings and use the encoded information to initial-
ize the hidden states of the LSTM layer. They
also make use of an attention mechanism in the
decoder to improve the accuracy of predictions.
Their model is based on word-level LSTMs and
struggles when generating long sequences. More-
over, their network does not have the ability to pre-
dict user preferences toward items, which limits
performance when given unseen (user,item) pairs.

The most relevant work to ours is perhaps Li
et al. (2017). They addressed the problem of
jointly learning rating prediction and ‘tip gen-
eration.’ They employ a standard latent factor
model with MLP layers to predict ratings, follow-
ing which they use the latent factors to initialize
the LSTM model for tip generation. Experimental
results show quantitative improvements at rating
prediction and their word-level generative model
produces tips that are consistent with users’ rat-
ings. Compared with their task, we focus on re-
view generation (rather than generating short tips),
which requires the model to maintain generation
quality over long sequences. Moreover, we con-
sider review text as content during the training
of our collaborative filtering model, which further
enhances the prediction of user preferences.

3 Proposed Method

First we define our problem before introducing our
CF-GCN model. Table 1 summarizes the notation
used throughout this paper.

Given an implicit feedback datasetR (i.e., a set
of ‘positive’ instances such as clicks or purchases),
and the corresponding set of reviews T , we focus
on two tasks: item recommendation and review
generation. We want to recommend a list of items
to a user while also generating plausible reviews
that the user might write.

3.1 Collaborative Filtering with Reviews

For the task of item recommendation with implicit
feedback, our goal is to estimate pairwise prefer-
ences of a user u toward an item i via a scoring
function ŷu,i. Many state-of-the-art techniques de-
fine their predictor in terms of matrix factorization

Table 1: Notation

Notation Description

R, T feedback set, review set
U ,I user set, item set
I+, I− set of observed and unobserved entries
ŷui predicted ‘score’ for user u and item i
γu, γi latent factors of user u and item i (K × 1)
θu, θi text factors for user u and item i (K × 1)
fu, fi word2vec embeddings of u and i (D × 1)
Eu K ×D embedding matrix of user u
Ei K ×D embedding matrix of item i
Θ set of neural network parameters
Φ set of collaborative filtering parameters

(MF), i.e.,
ŷui = γTu γi, (1)

where γu and γi representK-dimensional user and
item latent factors, whose inner product models
the preference of u toward i.

There have been many extensions of standard
MF methods by incorporating ‘side information’
such as categorical attributes, image features (He
and McAuley, 2016), and text (Hu, 2017; Zheng
et al., 2017). To fully take advantage of review
text, we start by incorporating text embeddings
from reviews into our predictor. Following this we
use a single layer MLP to model the interactions
between latent factors and text embeddings. The
extended predicator is defined as

ŷui = σ(W

 γTu γi
θTuEifi
θTi Eufu

+ b), (2)

where θu and θi are K-dimensional (latent) text
factors that interact with the text embeddings of
u and i. fu and fi are D-dimensional text fea-
tures extracted from reviews written by user u or
about item i. Only reviews in the training set are
used (since reviews are not available at test time).
Specifically, we first train a word2vec model on all
reviews in the training set; then we aggregate re-
views written by u or about i, and take an average
over the representations. Eu and Ei are transform
matrices that project D-dimensional text features
into K-dimensional ‘preference space.’

Given the preference predictor, we can learn the
model by minimizing the point-wise classification
loss (He et al., 2017):

L = −
∑

(u,i)∈I−∪I+
yui log ŷui+(1−yui) log(1−ŷui), (3)

where I+ and I− represent the set of observed
and unobserved entries in R. With (eq. 3), the
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item recommendation task becomes a classifica-
tion problem of deciding whether i belongs to the
positive or negative feedback set (I+ or I−).

3.2 Generative Concatenative Network

Recurrent neural networks with units such as long
short term memory (LSTM) and gated recurrent
units (GRU) have been widely used as generative
models for tasks such as natural language gen-
eration, image captioning, dialogue generation,
etc. (Józefowicz et al., 2016; Vinyals et al., 2015;
Ghosh et al., 2017; Sutskever et al., 2014; Karpa-
thy and Fei-Fei, 2017). In our model, we use a
two-layer LSTM network to generate review text
at the character level. We adopt the LSTM archi-
tecture from Zaremba et al. (2014). Updates of the
LSTM layer are defined as:

g
i
f
o

 =


tanh

sigmoid
sigmoid
sigmoid

Wl

(
htl−1

ht−1
l

)

stl = gtl � itl + st−1
l � f tl

htl = tanh(stl)� otl ,

(4)

where s is the internal state of the cell; g repre-
sents the input node which has an activation func-
tion; i, o and f are sigmoid gating units (‘input,’
‘output,’ and ‘forget,’ respectively); and h is the
hidden state of the cell. tanh and sigmoid are ap-
plied element-wise, as is the product �. Wl is the
weight matrix for layer l.

Next we consider the text generation task using
‘vanilla’ LSTMs. For a character-LSTM model,
each input xt is a character of the original text.
Given a text sequence x1 . . . xT , the LSTM-based
network takes an input xt for each step t and up-
dates its hidden states ht based on both the cur-
rent input xt and the previous step’s hidden state
ht−1. The network predicts the input xt+1 at the
next step, given all inputs x≤t before t + 1. The
output layer is connected to a softmax layer:

p(xt|x<t,Θ) = softmax(WshtL), (5)

where Ws is the weight matrix of the softmax
layer, htL is the hidden state at step t of the last
hidden layer L, and Θ is the complete set of neural
network parameters. Given the output probability
distribution over all characters, we can predict the
output by taking the character that maximizes the
probability.

So far, the above method samples text from a
‘background’ distribution, but lacks the ability to
generate personalized and item-specific text. We
aim to address this by providing the network with
auxiliary inputs xaux . Here we hope that the same
user and item latent factors γu and γi can also
be effective as input to the generative model; this
expectation is based on the notion that these fac-
tors describe the ‘aspects’ of user preferences and
item properties that contribute to the user’s over-
all opinion, and therefore the language in their re-
view. Furthermore the use of low-dimensional la-
tent factors means that the method can straight-
forwardly scale to large populations of users and
items, which is not possible for methods based on
one-hot encodings. Following Lipton et al. (2015)
we adopt a simple replication strategy to concate-
nate the latent factors with the character input, So
that the input to the model at each step becomes
x′t = [xtchar ; γu; γi].

By concatenating the latent factors together
with the character input, the auxiliary signal is pre-
served through hundreds of steps, allowing long
and coherent sequences to be generated. If we
were instead to treat latent factors as inputs to the
hidden cell, the signal would quickly vanish or ex-
plode. In practice we found that a dimensionality
of around K = 8 to 50 leads to acceptable per-
formance when modeling users and items. This is
a relatively small number compared with the hid-
den unit size (typically 256-1024), requiring only
a modest computational overhead.

By sharing the same user and item latent fac-
tors, the tasks of item recommendation and review
generation are learned jointly. The complete net-
work structure is shown in Figure 1. We train the
model in an end-to-end manner by optimizing the
joint loss function:

L =−
∑

(u,i)∈I−∪I+
yui log ŷui + (1− yui) log(1− ŷui)

− w
∑

(u,i)∈T

T∑
t=1

log p(xt|x<t,Θ, γu, γi)

+ λ(‖Θ‖22 + ‖Φ‖22),
(6)

where w is a hyperparameter that trades off be-
tween the two tasks, Φ = {γu, γi, θu, θi,Eu,Ei}
is the set of collaborative filtering parameters, and
λ is a regularization hyperparameter.

786



user latent factor item latent factor

MLP

transform transform

user text factor item text factor

user u item i

STR G o

LSTM

LSTM

G

LSTM

LSTM

o

LSTM

LSTM

o

o

LSTM

LSTM

d

d

LSTM

LSTM

EOS

Collaborative filtering network Generative concatenative network 

Figure 1: CF-GCN network structure

Table 2: Statistics after pre-processing.

Dataset #users #items #reviews

BeerAdvocate 7,354 8,832 1,270,650
Electronics 20,247 11,589 306,899
Yelp 15,806 12,824 740,984

4 Experiments

We conduct experiments on multiple real-world
datasets to investigate the following questions:

• RQ1: What can the model learn from review
text? Does our joint training framework im-
prove item recommendation performance?

• RQ2: What is the fidelity of the genera-
tive model? Does it successfully capture
user/item attributes, sentiment, and writing
style?

• RQ3: Can the model be used for personal-
ized review ranking? How does performance
improve as more reviews are available during
training?

4.1 Datasets

We focus on three real-world datasets: BeerAdvo-
cate,1 Amazon Electronics,2 and Yelp.3 We dis-
card users and items with few actions by extract-
ing the k-core, with k = 20 for BeerAdvocate
and Yelp, and k = 10 for Amazon Electronics
(which is substantially sparser). The statistics of
the datasets after pre-processing are shown in Ta-
ble 2.

1
https://snap.stanford.edu/data/

2
http://jmcauley.ucsd.edu/data/amazon/

3
https://www.yelp.com/dataset_challenge

4.2 Experimental Setting

We consider two experimental settings for sam-
pling implicit feedback instances and reviews. In
one (‘subset’) we consider a subset of implicit
feedback instances in R such that each is associ-
ated with exactly one review in T ; in the second
(‘wholeset’) we consider all implicit feedback in-
stances in R, but only a subset of the reviews. In
other words, the two settings have the same sub-
set of reviews, but differ in the amount of implicit
feedback used. Our reasons for considering the
latter setting are twofold: First, training LSTM
models with review data is time-consuming, but it
is relatively inexpensive to add additional implicit
feedback instances during training, meaning that
we can achieve a boost in performance with only
a modest increase in running time. And second,
in real recommendation scenarios, most users do
not write reviews, while all provide implicit feed-
back through their actions; thus this setup allows
us to train on both types of feedback simultane-
ously, and even to model likely reviews for users
who have written very few (or none!).

We randomly sample 10%/50%/20% of in-
stances from BeerAdvocate/Electronics/Yelp, re-
spectively. We use a different sample ratio so that
the subset maintains around 100,000 reviews for
each review model. Then we use a skip-gram
model to train word2vec on the training set for
each dataset so as to reduce noise and learn bet-
ter representations for those words that are dataset-
specific. We choose an embedding size of 64 and
keep the most frequent 20,000 words in each train-
ing corpus.

We implemented the proposed method using
Keras. For all datasets, we randomly withhold two
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Table 3: Comparisons of Hit Rate, NDCG and AUC on three datasets. CF-GCN improves all metrics
over BPR and GMF for all settings (higher is better for all metrics).

Dataset Setting Hit Rate NDCG AUC
BPR GMF CF-GCN BPR GMF CF-GCN BPR GMF CF-GCN

BeerAdvocate subset 0.583 0.584 0.613 0.351 0.334 0.371 0.826 0.847 0.861
wholeset 0.752 0.763 0.773 0.476 0.487 0.501 0.925 0.925 0.928

Electronics subset 0.375 0.428 0.459 0.224 0.254 0.275 0.690 0.746 0.779
wholeset 0.494 0.521 0.529 0.295 0.317 0.324 0.665 0.824 0.826

Yelp subset 0.641 0.660 0.679 0.378 0.392 0.412 0.899 0.895 0.902
wholeset 0.811 0.830 0.847 0.514 0.530 0.553 0.946 0.946 0.952

interactions per user as our validation/test set, and
use all other interactions for training, (i.e., leave-
one-out evaluation (Rendle et al., 2009)). All re-
sults are reported on the test set, for the hyper-
parameters resulting in the best performance on
the validation set. The dimensionality of the la-
tent factors is set to K = 8. Parameters of the
user and item latent factors and text embeddings
are initialized from a Gaussian distribution with
µ = 0 and σ = 0.01. For the review model, we
stacked two LSTM layers with 256 hidden units
per layer. We first train a conventional character-
LSTM model then load the pre-trained parameters
as initialization to speed up training. During train-
ing, we concatenate all reviews in the training set
and add start and end tokens (e.g. STR, EOS) as
delimiters. Then we split the concatenated string
into sequences of length 200.

The model is trained in min-batches with batch-
size 256. We adopt the Adam Optimizer (Kingma
and Ba, 2014) to update weights. We con-
sider learning rates in {0.01, 0.001, 0.0001} and
λ ∈ {0, 0.001, 0.0001, 0.00001, 0.000001}, se-
lecting the optimal values on the validation set us-
ing grid search. We also tune the weight w be-
tween 0 to 1 to trade off item recommendation
vs. review generation in (eq. 6).

4.3 Item Recommendation (RQ1)

We first demonstrate that our model can learn user
preferences through both implicit feedback and re-
view text. We focus on the item recommendation
task and compare the proposed model with two
state-of-the-art methods: Bayesian Personalized
Ranking (BPR) (Rendle et al., 2009) and General-
ized Matrix Factorization (GMF) (He et al., 2017).
Both BPR and GMF use the predicator as eq. 1.
We consider three metrics: Hit Rate, NDCG, and
AUC. At test time, given a user and item pair from
the held-out data, we return a truncated ranked list

of items with size 10. Then the Hit Rate at the top
10 (HR@10) represents the ratio of ground truth
items existing in the ranked list, while the NDCG
measures the position of the hits (He et al., 2017,
2016). The AUC (Area Under the ROC curve) is
evaluated as:

AUC =
1
|U|
∑
u

1
|S(u)|

∑
(i,j)∈S(u)

δ(ŷui > ŷuj),

where δ is an indicator (1 iff its argument is true),
and the set of pairs of u is defined as:

S(u) = {(i, j)|i ∈ I+
test(u)

∧ j /∈ I−train(u) ∪ I−valid (u) ∪ I−test(u)}.
As shown in Table 3, CF-GCN improves over

BPR and GMF on the three metrics. Note that
we only use a modest number of latent factors (8)
and word2vec embedding dimensions (64). More-
over, we can see that CF-GCN achieves greater
improvements in sparse settings, confirming the
ability of review text to overcome the sparsity of
implicit feedback datasets.

4.3.1 User Cold-Start
Real recommender systems often suffer from cold-
start issues due to data sparsity. It is a critical
task for the system to capture user preferences
toward items given limited data. To explore the
performance of CF-GCN, we further analyze the
improvement on cold (or ‘cool’) users. Figure 2
shows the improvement (in Hit Rate and NDCG)
for users with fewer than 5 reviews on BeerAdvo-
cate. The largest improvement ratio happens for
users with only a single review during training.

4.4 Review Generation Analysis (RQ2)
4.4.1 Perplexity
Perplexity is commonly used to measure the qual-
ity of generated text. It is defined as

ppx = e−
1
N

∑
(u,i)

1
T

∑T
c=1 log p(ct|c<t,Θ,γu,γi),
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Figure 2: Improvement Ratio on Cold-Start Users

Table 4: Comparison of Perplexity on test set
(lower is better).

Dataset Character CF-GCN CF-GCN
LSTM (subset) (wholeset)

BeerAdvocate 2.370 2.318 2.329
Electronics 3.033 2.998 2.959
Yelp 2.916 2.817 2.809

where (u, i) are pairs from the test set of reviews
Ttest , N is the number of reviews on the test set,
and T is the number of characters in each review.

We compare the test-set perplexity of CF-GCN
to that of a standard character-LSTM. As shown in
Table 4, CF-GCN achieves lower perplexity than
an unsupervised character-LSTM, suggesting that
the model is successfully able to leverage informa-
tion encoded in the user and item representations.

4.4.2 Generated Examples
Figure 3 gives a representative example of a gen-
erated review, for a (user,item) pair that is not
present in the training set. In other words, only
the user and item IDs are provided to the model,
from which it must synthesize a plausible review.

Qualitatively, CF-GCN appears to capture the
user’s writing style, the item’s attributes, and the
user’s sentiment, and more importantly maintains
the overall flow and structure of the review in spite
of its length and complexity. For example, the syn-
thetic review captures idiosyncrasies of the real re-
view, including the user’s tendency to use abbre-
viations to denote different sensory aspects (‘A:’
for Appearance, ‘S:’ for Smell, etc.) CF-GCN
also provides descriptions of the item’s color, taste
and category (“Pours a very dark brown,” “a slight
sweetness,” “bitter,” “ale”) which approximately
match those of the real review. Moreover, the
synthetic review shares the same overall sentiment
with the real review (3 stars, ‘not bad’).

Figure 4 presents synthetic review examples
conditioned on users who have not written any re-
views in the training set. We include the ground-

truth rating, which is a score between 1.0 and 5.0.
The model appears to successfully generates plau-
sible reviews that express sentiment matching the
ground-truth rating.

Note here that we only use two LSTM layers
with 256 hidden units. Performance could be fur-
ther improved by increasing the number of hidden
units and stacking more layers, at the cost of ad-
ditional computational resources. For the current
setting, it takes around 80 minutes to run 1 epoch
for the BeerAdvocate dataset. Typically CF-GCN
needs 5 to 10 epochs to converge.

4.5 Personalized review ranking (RQ3)

Besides synthesizing reviews, a more realistic ap-
plication of our model is to recommend (or rank)
existing reviews, by surfacing the review that is
most consistent with a user’s preferences or writ-
ing style. As with our previous experiments, this
can be done even for users who have never written
a review before: that is, based on their past behav-
ior we can surface the types of reviews written by
users who behave similarly.

Since CF-GCN captures both the sentiment and
writing style of users, it can also be used in a dis-
criminative way to identify which existing review
of an item a particular user is most likely to have
written. Given a target item and a list of users,
the personalized review ranking problem can be
quantitatively evaluated in terms of our ability to
rank the ‘true’ review (i.e., the one the user actu-
ally wrote) higher than others. This target captures
whether the model can recommend the most rele-
vant existing review to a potential user.

For a review written by user u on item i, we
first calculate the perplexity when the generative
model is given the latent factors of u and i. We
then estimate the AUC by randomly sampling re-
views (of the same item) by other users u′ and cal-
culating their perplexity when the model is again
given the latent factors of u and i. We can then
evaluate the model in terms of its ability to as-
sociate a lower perplexity to the review u actu-
ally wrote. The model generates reasonable re-
sults given only a modest number of reviews, and
can identify authors with almost perfect accuracy
once sufficiently many reviews are provided dur-
ing training.

Figure 5 shows AUC results for the personal-
ized review ranking task. As the number of re-
views available during training increases, the AUC
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Real review Synthetic review

12 oz. bottle, excited to see a new Victory product around, A:
Pours a dark brown, much darker than I thought it would be, rich
creamy head, with light lace. S: Dark cedar/pine nose with some
dark bread/pumpernickel. T: This ale certainly has a lot of malt,
bordering on Barleywine. Molasses, sweet maple with a clear
bitter melon/white grapefruit hop flavour. Not a lot of complexity
in the hops here for me. Booze is noticable. M: Full-bodied,
creamy, resinous, nicely done. D: A good beer, it isn’t exactly
what I was expecting. In the end above average, though I found
it monotonous at times, hence the 3. A sipper for sure.

A: Pours a very dark brown with a nice finger of tan
head that produces a small bubble and leaves decent
lacing on the glass. S: Smells like a nut brown ale.
It has a slight sweetness and a bit of a woody note
and a little cocoa. The nose is rather malty with some
chocolate and coffee. The taste is strong but not over-
whelmingly sweet. The sweetness is overpowering,
but not overwhelming and is a pretty strong bitter fin-
ish. M: Medium bodied with a slightly thin feel. D:
A good tasting beer. Not bad.

Figure 3: Real and synthetic reviews conditioned on the latent factor of user Halcyondays and item
Yakima Glory. Colors added for emphasis. The model successfully captures the high-level structure of
the review, as well as the fine-grained characteristics of their opinion.

Synthetic review: user BeerShirts, item Black Albert, sentiment 5.0

A - Pours a brownish-copper color with a thick tan head. S - Strong and smoky aroma, fruity and sweet. The alcohol
is not very prominent on the nose. Smells like a stout and enjoyable. It’s almost like a hefeweizen and the smell
is dominated by a slight burnt sugar character and a slight chocolate smell to it. The taste is sweet and malty. The
mouthfeel is very light and watery. Overall a very nice beer that I’d have again.

Synthetic review: user Morbo, item Avalon Spiced Ale, sentiment 1.5

I don’t like this beer. I was not a big fan of this beer. The aroma was pretty accessible and the taste was a bit sweet and
fruity. There was a hint of sweetness that was overwhelmed by the rice and malt also a bit of the hops in the finish. The
mouthfeel was medium bodied with a medium carbonation. This was a good beer to drink but I would not be able to
get more of this.

Figure 4: Synthetic reviews for users who have written no reviews in the training set. The model suc-
cessfully predicts user preferences and generates plausible reviews.
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Figure 5: Comparisons of AUC for personalized review ranking for users with different number of
reviews on the training set.

also increases, indicating that the method is better
able to capture the characteristics of the user and
item given more observations.

5 Conclusions

In this paper, we proposed to combine collabo-
rative filtering with generative concatenative net-
works to jointly perform the tasks of item recom-
mendation and review generation. We formulated
the item recommendation task using matrix factor-
ization, in order to capture low-dimensional user
preferences and item properties, which we com-
bined with a character-level LSTM model, so that

the latent factors are simultaneously responsible
for explaining both language and preferences. We
adopted a simple input replication strategy to al-
low the LSTM model to ‘remember’ the input on
which it is conditioned, so that it is able to gener-
ate long reviews that capture high-level structure
as well as fine-grained sentiment. In addition to
using the model generatively, we showed that it
can also improve recommendation performance,
both in terms of predicting products that a user is
likely to interact with, as well as personalized re-
view ranking.

790



References
Yang Bao, Hui Fang, and Jie Zhang. 2014. Topicmf:

Simultaneously exploiting ratings and reviews for
recommendation. In AAAI Conference on Artificial
Intelligence.

Rose Catherine and William W. Cohen. 2017.
Transnets: Learning to transform for recommenda-
tion. CoRR, abs/1704.02298.

Li Dong, Shaohan Huang, Furu Wei, Mirella Lapata,
Ming Zhou, and Ke Xu. 2017. Learning to generate
product reviews from attributes. In Association for
Computational Linguistics.

Sayan Ghosh, Mathieu Chollet, Eugene Laksana,
Louis-Philippe Morency, and Stefan Scherer. 2017.
Affect-lm: A neural language model for cus-
tomizable affective text generation. CoRR,
abs/1704.06851.

Alex Graves. 2013. Generating sequences with recur-
rent neural networks. CoRR, abs/1308.0850.

Ruining He and Julian McAuley. 2016. Vbpr: Visual
bayesian personalized ranking from implicit feed-
back. In AAAI Conference on Artificial Intelligence.

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie,
Xia Hu, and Tat-Seng Chua. 2017. Neural collabo-
rative filtering. In World Wide Web.

Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-
Seng Chua. 2016. Fast matrix factorization for on-
line recommendation with implicit feedback. In SI-
GIR.

Guang-Neng Hu. 2017. Integrating reviews into per-
sonalized ranking for cold start recommendation. In
Pacific-Asia Conference on Knowledge Discovery
and Data Mining.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P. Xing. 2017. Controllable
text generation. CoRR, abs/1703.00955.
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Abstract

In this research, we propose the task of
question summarization. We first ana-
lyzed question-summary pairs extracted
from a Community Question Answering
(CQA) site, and found that a proportion
of questions cannot be summarized by ex-
tractive approaches but requires abstrac-
tive approaches. We created a dataset by
regarding the question-title pairs posted
on the CQA site as question-summary
pairs. By using the data, we trained extrac-
tive and abstractive summarization mod-
els, and compared them based on ROUGE
scores and manual evaluations. Our exper-
imental results show an abstractive method
using an encoder-decoder model with a
copying mechanism achieves better scores
for both ROUGE-2 F-measure and the
evaluations by human judges.

1 Introduction

Questions are asked in many situations, such as
conference sessions and email communications.
However, questions can sometimes be lengthy and
hard to understand, because they often contain pe-
ripheral information in addition to the main focus
of the question. To address this issue, we propose
the task of question summarization; summarizing
a lengthy question into a simple question that con-
cisely represents the original content.

As an example of an excerpt from a Commu-
nity Question Answering (CQA) site, Yahoo An-
swers1, is shown in Table 1. In this example, the
gist of the question is whether the chlorine will
stripe the questioner’s hair. However, the question
also contains the additional information that the
questioner swims five days a week and has black

1https://answers.yahoo.com/

Table 1: Example of question-summary pair
Question Text:
I’m a swimmer for my school swim team and I
practice two hours a day, five days a week.
I would like to dye my hair black (it is dark
brown now) but I am wondering whether the
chlorine will stripe it. Will it or will it not ?
Summary:
Will the chlorine stripe my hair ?

hair. Although such information can sometimes be
important for finding the exact answer, it is often
peripheral when we want to grasp what is being
asked.

Summarizing a question, which can often be
lengthy, helps respondents understand the ques-
tion. The task of question summarization has not
been studied yet and is worth being explored. In
this work, we focus on a CQA site and examine the
characteristics of the question summarization task
with a CQA dataset as a case study. Specifically,
we first examine CQA data consisting of pairs of
a question text and its title, which we refer to as
“question-title” pairs. We then propose a method
for creating pairs of a question and its summary,
which we refer to as “question-summary” pairs,
out of the CQA data. We also propose methods for
question summarization and describe an empirical
evaluation we conducted.

Approaches used in generic summarization
tasks are often classified into two different types:
extractive and abstractive. Extractive approaches
select and order units, which are usually sentences
or words, from the input text. Abstractive ap-
proaches, rather than selecting units, generate a
summary using words not found in the input text.

However, existing summarization approaches,
whether extractive or abstractive, do not assume
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a question as an input. We therefore developed
a number of methods designed for question sum-
marization: extractive methods based on sim-
ple heuristic rules, extractive methods based on
sentence classification/regression, and abstractive
methods based on neural networks. We compared
the performance of these methods through evalu-
ations both by human judges and automatic scor-
ing using Recall-Oriented Understudy for Gisting
Evaluation (ROUGE) (Lin, 2004). The experi-
mental results show that an abstractive approach
using an encoder-decoder model with a copying
mechanism achieves the highest score for both
ROUGE and evaluations by human judges.

2 Related Work

Text summarization is one of the problems that
have been studied for a long time in the field of
natural language processing. In many of the exist-
ing summarization tasks including the shared tasks
in Document Understanding Conference (DUC)2,
documents from newspapers or scientific articles
are considered as an input. There are also other
summarization tasks in which other types of in-
put are assumed such as conversations or email
threads (Duboue, 2012; Oya and Carenini, 2014;
Oya et al., 2014). Unlike the researches, we as-
sume a question as an input.

As a related attempt in Question Answering re-
searches, Tamura et al. (2005) worked on classifi-
cation of multiple-sentence questions into classes
such as yes/no questions and definition questions,
and attempted to extract the question sentence that
was the most important in finding the correct class.
However, the extracted question sentence is not al-
ways a summary of the question. Consider the last
sentence “Wiil it or will it not?” for the aforemen-
tioned Table 1 question. This last sentence is im-
portant in finding the class of this question, which
is a yes/no question, but is not appropriate as a
summary, because it is impossible to understand
what is being asked merely from “Will it or will it
not?”

Many existing extractive approaches select the
sentences to be included in the summary on the
basis of calculated scores for each sentence. The
scores are often calculated by the TF-IDF mea-
sure (Luhn, 1958), the similarity measure between
sentences (Mihalcea and Tarau, 2004) and an ap-
proximation made by a regression model of the

2http://duc.nist.gov

ROUGE score or the bigram frequency included
in a summary (Peyrard and Eckale-Kohler, 2016;
Li et al., 2013). Other approaches consider sum-
marization tasks as a classification problem. They
adopt supervised machine learning techniques to
solve them (Hirao et al., 2002; Shen et al., 2007).

Abstractive summarization approaches in-
clude methods based on syntactic transduction
(Dorr et al., 2003; Zajic et al., 2004) or statistical
machine translation models (Bank et al., 2010;
Wubben et al., 2012; Cohn and Lapata, 2013)
and templates (Oya et al., 2014). In addition,
encoder-decoder approaches have been proposed
in recent years. They were originally applied to
machine translation tasks (Luong et al., 2015;
Bahdanau et al., 2015; Cao et al., 2017), and
have been actively applied to other sequence-to-
sequence tasks including sentence summarization
(Rush et al., 2015; Kikuchi et al., 2016; Gu et al.,
2016).

3 Data Analysis

We first carried out an analysis on the dataset
provided by Yahoo! Answers, “Yahoo! An-
swers Comprehensive Question and Answers ver-
sion 1.0”3. The data contains 4,484,032 question-
title pairs posted between June 28, 2005 and Oc-
tober 25, 2007. On the CQA site, users can freely
write a question text and its title. Thus, some of
the pairs in the data can be regarded as question-
summary pairs, but some others cannot. To obtain
a dataset that can be used for training, we need to
filter out the pairs that are not suitable for our ob-
jective. Furthermore, it is not clear how questions
are summarized, i.e., whether by extractive or ab-
stractive methods. Therefore, in this study, we first
analyzed the data to clarify the following issues:

1. What are the characteristics of the pairs
that cannot be regarded as question-summary
pairs?

2. Can an extractive approach generate a sum-
mary equivalent to the title, or are abstractive
approaches required?

3.1 Question text length
To characterize the question-title pairs that could
not be regarded as question-summary pairs, we
first focus on the number of sentences in ques-
tion text. We randomly extracted the question-title

3https://webscope.sandbox.yahoo.com/
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Table 2: Number of sentences in question text and
proportion of question-summary pairs

No. of sentences in question text Proportion
1 3/20
2 8/20
3 14/20
4 15/20
5 15/20

Table 3: Number of titles generated by extractive
and abstractive approaches

Not a question-summary pair 5/20
Extractive approach can summarize 8/20

Abstractive approach needed 7/20

pairs that contained 1-5 sentences in the question
text, and manually classified them as to whether
they could be regarded as a question-summary pair
or not. Table 2 shows the number of question-title
pairs that can be regarded as question-summary
pairs for question text size measured by the num-
ber of sentences.

This analysis showed that if there are two or
fewer sentences in the question text, the pairs are
unlikely to be question-summary pairs because the
question texts tend to contain only peripheral in-
formation to support the question presented in the
title. In contrast, if there are three or more sen-
tences, the proportion of the question-summary
pairs becomes high and substantially constant.
This suggests that the number of sentences in a
question text is one of the clues to find question-
summary pairs.

3.2 Nouns overlapping between question and
title

We show here an example that cannot be regarded
as a question-summary pair.

Title:

Why is there often a mirror in an

elevator?

Question text:

I just realized this when I was in an el-
evator. Does anybody know the reason?
What is the history behind it?

This is not a question-summary pair because the
question text does not express the content of the ti-
tle. In such cases, people cannot grasp the gist of

the question text when only the title is presented.
Here we focus on the words “mirror” and “eleva-
tor”; they appear in the title, but not in the ques-
tion text. We actually observed many similar in-
stances. This suggests that noun overlapping be-
tween a question and its title can be considered an
important clue to determine whether the pair can
be regarded as a question-summary pair or not.

3.3 Extractive vs. abstractive

We next analyzed question-summary pairs in
terms of whether the summaries can be generated
by an extractive method or an abstractive method
is required. Specifically, we randomly selected
pairs whose question text had 3-5 sentences and
manually classified them into one of the following
3 categories: 1) The pair cannot be regarded as a
question-summary pair, 2) An extractive method
can generate a summary that is equivalent to the
title, and 3) Others (i.e., an abstractive method
might be needed to generate a summary that is
equivalent to the title).

The manual classification results are shown in
Table 3. We also show representative examples of
question-summary pairs in Table 4.

Five out of 20 cases cannot be regarded as
question-summary pairs. In Example 1 of Ta-
ble 4, the questioner accidentally spilled buttered
popcorn and needs to know how to remove it.
However, the title “Please help!” does not contain
enough information to grasp the gist of the ques-
tion. In some cases, pronouns in the titles refer to
nouns in the question text.

In eight of the 20 pairs, an extractive approach
can generate a summary that is almost equivalent
to the title. Example 2 in Table 4 is such a case.
In this example, a summary can be generated by
extracting the last sentence in the original content.
However, if one takes the actual title into consid-
eration, the idiom “get rid of” in the original ques-
tion can be replaced by the word “remove”. Even
if a question text can be summarized by an extrac-
tive method, the actual titles are often generated
by abstractive approaches.

In the remaining seven pairs, the question texts
cannot be summarized by an extractive approach,
and abstractive approaches might be required. The
category is further split into two subcategories. In
the first subcategory, pronoun resolution as well as
sentence extraction is needed to generate a sum-
mary. In the second subcategory, a short question
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Table 4: Representative examples of pairs in Yahoo! Answers dataset
Example 1 (The title does not express the content of the question text):
I accidentally spilled buttered popcorn on my leather hospital shoe.
It has dark spots on it now and I don’t know how i can get them off.
...
Title: Please help!
Example 2 (Extractive approaches can be applied.):
I keep getting annoying Winfixer Pop Ups . I have tried all sorts of ad removal programs
to get rid of them but without success .
How can I get rid of them ?
Title:
How can one remove annoying pop ups ?
Example 3 (Abstractive approaches are required.):
“The Simpsons” is one of the funniest shows ever . It’s one of my favorites . Do you like it ?
Title:
Do you like “The Simpsons” ?
Example 4 (Abstractive approaches are required.):
I want my chocolate chip cookies to be thicker and kind of gooey–crispy outside, chewy inside.
I’ve experimented with various recipes and various oven temperature, but my cookies always
turn out thin and flat. Why? What am I doing wrong? Title:
Why do my chocolate chip cookies always turn out thin and flat?

follows a lengthy explanation.
In Example 3 in Table 4, the pronoun “it” in the

main question “Do you like it?” refers to the pro-
gram name “the simpsons”, which appeared pre-
viously. Therefore, the summary does not contain
enough information to grasp the gist if we naively
apply any extractive approaches. The short main
question “why” in Example 4 follows the expla-
nation about baking cookies. In examples such as
these, we cannot naively use extractive approaches
to generate an understandable summary, because
the title is generated by picking up the information
from multiple sentences.

4 Dataset and Methodology

In this section, we describe how we created a
dataset consisting of question-summary pairs, and
a number of methods for question summarization.

4.1 Dataset
As training data for extractive and abstractive
models, we use question-title pairs posted to a
CQA site, namely, “Yahoo! Answers Comprehen-
sive Question and Answers version 1.0”. The orig-
inal data contains 4,485,032 question-title pairs.
However, not all of them are question-summary
pairs. To filter out the pairs that are not question-
summary pairs, we removed the pairs that match

at least one of the following conditions:

Multiple sentences in the title Comprising two
or more sentences

Long Title The title consists of over 16 words.

Short Title The title consists of three or less
words.

Overlap of nouns
No nouns in the title appear in the question
text.

Short Question Text
The question text consists of two or less sen-
tences.

Long Question Text
The question text consists of over five sen-
tences.

After applying the filtering, we obtained
251,420 pairs4. We use the pairs for training ex-
tractive and abstractive models, and also for eval-
uations.

4Note that the data still contains non-English question-
title pairs, since the language recognition is not perfect.
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4.2 Extractive approaches
As extractive approaches, we adopted rule-based
approaches and machine learning based ap-
proaches.

4.2.1 Rule-based approaches
As rule-based approaches, we used three rules to
compare: “Lead Sentence”, “Lead Question”, and
“Last Question”. The first sentence presented
(Lead Sentence) is known as a strong baseline
for generic summarization tasks. However, in the
question summarization, the summaries should be
also questions. Therefore, we adopted methods to
select a question in the input by heuristic rules,
choosing the first question (Lead Question) and
the last question (Last Question). A sentence was
determined to be a question if the last character is
“?” or the first word is an interrogative word.

4.2.2 Machine learning-based approaches
We will here introduce two types of machine
learning-based methods: a classification-based
method and a regression-based method.

The regression-based model predicts the
ROUGE-2 F-measure score for each sentence
in the input question. After the prediction step
finishes, the model outputs the sentence with
the highest predicted ROUGE score. To train
the regression model, we first calculated the
ROUGE score for each sentence in the training
set, regarding the title as a reference summary.
After the calculation, we trained Support Vector
Regression (SVR) (Basak et al., 2007).

The classification-based method predicts the
sentence with the largest ROUGE-2 F-measure.
In the training phase, we regarded the ques-
tions which had the highest ROUGE score and
consisted of at least four words as positive in-
stances. Other questions were used as negative
instances. We adopted Support Vector Machine
(SVM) (Suykens and Vandewalle, 1999) as a clas-
sifier. If the SVM classifies more than one sen-
tence in a single input document as positive, then
our method outputs the first question. In contrast,
if the SVM classifies all questions in the input as
negative, then the model outputs the first question.
It outputs the first sentence if there is no question
in the output. A sentence is regarded as a question
if the last character is “?” or the first word is an
interrogative word.

We trained the regression and classification
models by using the following features:

• Word unigram

• Sentence length

• Whether the sentence is the initial sentence

• Whether the sentence is the first question

• Presence of other question sentences

All features are expressed as binary: i.e., 0 or
1. For unigram features, we adopted features that
appeared at least five times in the training set. We
used four sentence-lengthy features: the sentence
had less than three, less than five, more than 10,
and more than 15 unigrams.

4.3 Abstractive approaches
We adopted encoder-decoder based methods for
abstractive approaches. Specifically, we trained
three models: a vanilla encoder-decoder model, an
encoder-decoder model with an attention mecha-
nism and an encoder-decoder model with a copy-
ing mechanism.

Questions in the CQA site are usually com-
posed of 3-5 sentences, which are longer than
in the usual settings used in machine translations
tasks. Therefore, in addition to the vanilla model,
we trained a model with the attention mechanism
(Luong et al., 2015). To reduce the model size, we
replaced low-frequency words with the special to-
ken UNK, which is a well-known technique. Af-
ter the preprocessing, the vocabulary size was re-
duced to approximately 136,000. In summariza-
tion tasks, the words in the input are often likely
to appear in the summary. Therefore, we also
adopted the encoder-decoder model with the copy-
ing mechanism (Gu et al., 2016), which can select
words in the input as words in the output.

We briefly describe those models below.

4.3.1 Vanilla encoder-decoder
The encoder-decoder model is composed of two
elements: an encoder and a decoder. The encoder
receives the input question x1, ..., xn, and con-
verts it into the fixed-length continuous value vec-
tor hτ :

hτ = f(xτ , hτ−1), (1)

where f represents an activation function used
in any Recurrent Neural Network (RNN). In this
study, the vanilla encoder-decoder and the at-
tention models use Long Short-Term Memory
(Hochreiter and Schmidhuber, 1997), and Gated
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Recurrent Unit (GRU) (Cho et al., 2014) is used
in the model with the copying mechanism.
All encoder-decoder models adopt bidirectional-
RNNs as the encoder.

The decoder receives the last hidden state of
the encoder and generates a sentence. Each node
in the decoder receives the previously generated
word and the hidden state generated in the previ-
ous time step to calculate the hidden state st and
the softmax function. The occurrence probabil-
ity of yt is calculated by using the hidden state st

and a softmax function:

st = f(yt−1, st−1), (2)

p(yt|y<t, x) = softmax(g(st)). (3)

The conditional probability given the input se-
quence x can be decomposed to the product of the
probabilities of generating words as follows:

p(y|x) =
m∏

t=1

p(yt|y<t, x). (4)

In the training, we estimated the parameter val-
ues so that they maximize the log-likelihood of the
training set:

log p(y|x) = log
m∑

j=1

p(yt|y<t, x). (5)

In the test phase, the model generates the output
by beam-search.

4.3.2 Encoder-decoder with attention
In the vanilla encoder-decoder model, the input
document is encoded into the hidden state hn. The
decoder receives the hidden state as the initial state
s0 of the decoder (s0 = hn). In contrast, the
encoder-decoder model with the attention mech-
anism uses the context vector ct represented as a
weighted sum of the hidden states of the encoder:

ct =
n∑

τ=1

αtτhτ , (6)

where αtτ is the weight of the t-th word of the
input at time step τ and can be calculated as

αtτ =
exp(st · hτ )∑
h′ exp(st · h′)

. (7)

Finally, the conditional probability of the word
yt is calculated by the softmax function:

h̃ = tanh(Wc[ct;ht]), (8)

p(yt|y<t, x) = softmax(Wsh̃t). (9)

Table 5: Evaluation on ROUGE-2
Recall F-measure

Lead 39.4 27.0
Last-Q 42.6 33.9
Lead-Q 45.3 34.5

Classification 44.3 35.1
Regression 44.7 29.7

EncDec 3.5 2.6
EncDec+Attn 38.5 38.5

CopyNet 47.4 42.2

4.3.3 Encoder-decoder with copying
mechanism

As the encoder-decoder model with the copying
mechanism, we used the model proposed by Gu et
al. (2016). In the model, the decoder calculates
the probability of generating yt at time step t by
using a mixed probabilistic model of two modes:
the generate-mode and the copy-mode:

p(yt|y<t, x) = pgen(yt|st, yt−1, ct, x)+
pcopy(yt|st, yt−1, ct, x),

(10)

where pgen is the probability calculated by the
generate-mode using the same scoring function
proposed by Bahdanau et al. (2015) and pcopy is
the probability that the copy-mode will “copy” the
word yt from the input document if yt ∈ x. If
yt ̸∈ x, then pcopy is set to 0. Thus, the model in-
creases the probability that words in the input will
be generated. Refer to the original paper by Gu et
al., (2016) for more detailed explanations.

5 Experiments and Evaluation

We adopted ROUGE-2 (Lin, 2004) as a metric for
the automatic evaluation. Additionally, we carried
out an evaluation on a 5-point scale scored by hu-
man judges. In this section, we will describe the
details of model training, automatic and manual
evaluations we conducted.

5.1 Experimental setting and training

The created dataset contained 251,420 pairs. We
used 90% of the data for training. We separate
the remaining equally for the development and the
test set. Thus, we split the dataset into 18 (train):1
(development):1 (test).

As an implementation of SVM and SVR, we
used Liblinear (Fan et al., 2008). The linear ker-
nel was used as the kernel function for SVM and
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SVR. We tuned the regularization parameter C on
the development set.

For the encoder-decoder model, we adopted 256
dimensions for word embedding and hidden lay-
ers, setting the batch size to 64. The words that ap-
peared at least twice in the training set were used
in training, and other words were replaced by the
special token UNK. The end of a sentence was
represented by another special token, i.e., EOS.
For testing, we used the model which achieves
the minimum loss function in the development set.
When the encoder-decoder model does not output
the EOS token within 20 words in the decoding
step, the model outputs the first question in the in-
put text. If there is no question in the input, the
first sentence is output.

5.2 Evaluation with ROUGE

In our task setting, the number of sentences in the
output was limited to one. There was no length
constraint in terms of the number of characters or
words. However, we assumed that a better sum-
mary would contains more focused content in a
shorter output. Therefore, as the evaluation met-
ric, we adopted the ROUGE-2 F-measure in addi-
tion to Recall.

Table 5 shows ROUGE-2 scores for a number
of methods. Lead method (Lead), Last Question
(Last-Q) and Lead Question (Lead-Q) are rule-
based methods. The classification-based model
(Classification) and regression-based model (Re-
gression) are non-neural machine-learning based
methods. Vanilla encoder-decoder (EncDec),
encoder-decoder with an attention mechanism
(EncDec+Attn) and encoder-decoder with a copy-
ing mechanism (CopyNet) are neural-network
based methods.

In rule-based extractive methods, the lead
method, which simply outputs the first sentence, is
known as a strong baseline. However, in question
summarization, selecting questions such as Lead
Question or Last Question increases the ROUGE
score. Lead Question is a strong baseline in par-
ticular.

Classification was as good as Lead-Q, because
most input texts contained only one to two ques-
tion sentences; as a result, the two methods mostly
output the same results. The encoder-decoder
models with an attention and with a copying mech-
anism achieved a significantly higher ROUGE
score than the extractive approaches. Note that

the vanilla encoder-decoder model yielded sig-
nificantly low ROUGE score, because it gener-
ated mostly the same question for all input texts.
The input sequences in this task were longer than
those in machine translation. As Loung et al.
(2015) mentioned, encoder-decoders models with-
out an attention do not work well for long sen-
tences. Therefore, the model failed to decode the
sequence. On average, outputs of extractive meth-
ods are longer than those of abstractive methods.
This accounts for the relatively low F-measure and
competitive recall obtained with extractive meth-
ods.

5.3 Manual evaluation

Since our work is the first attempt to address the
task, no other annotated data exists. To make up
for this, we adopted manual evaluation in addition
to the evaluation using ROUGE scores. The man-
ual evaluation was performed using the “Crowd-
flower”, which is a crowdsoursing service5.

The evaluators were presented with a question
and four summaries from different models: Hu-
man, and the best model in each group, Lead-Q,
Classification and CopyNet. They were asked to
rate each summary on 1-5 scale: very poor(1),
poor(2), acceptable(3), good(4) and very good(5).
The evaluation criteria were “grammaticality” and
“focus”, which are based on the criteria used in
DUC. We asked the evaluators to give a higher
score for the aspect of “focus” if a summary ex-
pressed the main focus of the input text. We also
asked them to give a high “grammaticality” score
to a grammatical summary. To control the quality
of the evaluation, we randomly presented clearly
ungrammatical and non-focused summaries as test
to all evaluators, and excluded the the evaluations
by evaluators who failed the test questions. The
data for the manual evaluation consists of 100 ran-
domly selected instances from the test set for the
automatic evaluation. Each instance was evaluated
by 3 evaluators.

The results on “grammaticality” and “focus” are
respectively shown in Tables 6 and 7. The tables
show the number of times each method on a row
was evaluated higher than another method on a
column. Evaluations on both criteria showed a
trend similar to that of the automatic evaluation:
Human achieved the highest score, Lead-Q and
Classification were competitive, and CopyNet got

5https://www.crowdflower.com
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Table 6: Human Evaluation-Focus-
　 Human Lead-Q Classification CopyNet

Human - 135 135 103
Lead-Q 69 - 11 72

Classification 70 10 - 68
CopyNet 89 107 103 -

Table 7: Human Evaluation - Grammaticality -
　 Human Lead-Q Classification CopyNet

Human - 85 86 63
Lead-Q 51 - 10 54

Classification 54 10 - 53
CopyNet 69 79 82 -

Table 8: Example outputs from each model.

Question Text
The Simpsons is one of the funniest shows ever .

its one of my favorites . do you like it ?
Human : Do you like The Simpsons?
Lead-Q : Do you like it?
Classification : Do you like it?
EncDec+Attn: Do you like UNK?
CopyNet : Do you like The Simpsons?

the better score than Lead-Q and Classification.
CopyNet was judged better than Human in

terms of focus in 89 cases, and in terms of gram-
maticality in 69 cases, because Human sometimes
removes specific information. For example, Copy-
Net generated “How do you stop the itching af-
ter shaving?”, while Human summary omits “after
shaving”. In terms of grammaticality, some Hu-
man summaries are not complete sentences such
as “The best way to get money?”. Therefore, Hu-
man was sometimes judged lower than CopyNet.

5.4 Qualitative analysis

In this section, we review the outputs of each
model. Table 8 shows examples of each model.

The outputs of Lead-Q and Classification,
which are generated by extraction, include the un-
resolved pronoun “it”. This makes the summary
not clearly focused. Such cases are often seen in
lengthy questions that contain long supplementary
explanations followed by a short question. These
examples suggest that extractive approaches are
intrinsically not suitable for cases where informa-

tion needs to be picked up from multiple sentences
in the input. In contrast to extractive approaches,
the output of CopyNet properly resolves this; “it”
is resolved by “The Simpsons” even if the model
needed to use information across sentences. The
EncDec+Attn model faces the difficulty in gen-
erating low frequency words such as “The Simp-
sons”; its output includes the special token UNK.
This problem was also reported in other papers on
encoder-decoder models (Bahdanau et al., 2015).
Adding the copying mechanism effectively solved
the problem.

6 Conclusion

We proposed a novel task of summarizing lengthy
questions into simple questions that clearly ex-
press the focus of the original content. We created
a dataset by filtering out inappropriate instances
from a dataset provided by a CQA site, and de-
veloped extractive/abstractive models. Our results
show that abstractive approaches outperform ex-
tractive approaches both in automatic and human
evaluations. Since all the methods were inferior
to the Human method in terms of performance,
we believe there is still room for improvement.
As a subject for future work, we will extend the
approach to cover question summarization tasks
that have multiple focuses. We are also interested
in how existing analyzers such as coreference re-
solvers can improve the performance.
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Abstract

Concept-map-based multi-document sum-
marization is a variant of traditional sum-
marization that produces structured sum-
maries in the form of concept maps. In
this work, we propose a new model1 for
the task that addresses several issues in
previous methods. It learns to identify
and merge coreferent concepts to reduce
redundancy, determines their importance
with a strong supervised model and finds
an optimal summary concept map via in-
teger linear programming. It is also com-
putationally more efficient than previous
methods, allowing us to summarize larger
document sets. We evaluate the model on
two datasets, finding that it outperforms
several approaches from previous work.

1 Introduction

Concept-map-based multi-document summariza-
tion (MDS) is a variant of traditional MDS that
produces structured summaries in the form of a
concept map instead of a coherent text (Falke and
Gurevych, 2017a). A concept map, introduced by
Novak and Gowin (1984), is a labeled graph show-
ing concepts as nodes and relations between them
as edges. As an example, consider a document col-
lection discussing treatments for ADHD. A (very)
small concept map would be

Caffeine ADHD
reduces

in which Caffeine and ADHD are concepts, while
reduces is a relation, forming the proposition
“Caffeine – reduces – ADHD”.

A summary in this form has interesting appli-
cations, as it provides a concise overview of a

1Source code available at https://github.com/
UKPLab/ijcnlp2017-cmaps

document collection, structures it across document
boundaries and can be used as a table-of-contents
to navigate in the collection. Several studies report
successful applications of concept maps in this di-
rection (Carvalho et al., 2001; Briggs et al., 2004;
Richardson and Fox, 2005; Villalon, 2012; Valerio
et al., 2012; Falke and Gurevych, 2017b).

The task we consider in this work is defined as
follows: Given a set of documents on a certain
topic, extract a concept map that represents the
most important content on that topic, satisfies a
specified size limit and is connected.

Although work dealing with the automatic ex-
traction of concept maps from text exists (§2),
current methods have several limitations. First,
most approaches do not attempt to detect coref-
erences between extracted concepts. For instance,
if both ADHD symptoms and symptoms of ADHD
are found, they treat them as separate concepts. In
a concept map, such duplicate concepts are imme-
diately visible to a user, waste valuable space and
make it harder to look for relations of that concept,
as they are spread among the duplicates.

Second, previous work mostly focused on the
extraction of concepts and relations, largely ig-
noring the subsequent selection step necessary to
produce a summary of manageable size. Existing
studies suggested only a few unsupervised met-
rics to determine important elements, leaving it
unclear whether the task can benefit from more
sophisticated supervised approaches. In addition,
no method has been suggested to find an optimal
summary concept map under the constraints of the
size limit and connectedness.

Third, most approaches for concept map extrac-
tion and also traditional summarization are typi-
cally evaluated on small document sets where the
computational complexity of methods is less rel-
evant. We work on a corpus with sets of around
40 documents that should be summarized, which,
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while being a realistic real-world application sce-
nario, is 10 to 15 times larger than traditional
DUC2 and TAC3 summarization corpora. This
poses an additional challenge that requires the
methods to scale to these sizes.

In this work, we propose a new model for
concept-map-based MDS that overcomes the
aforementioned issues. Building upon previous
work in textual summarization, coreference res-
olution and semantic similarity, it learns to iden-
tify and merge coreferent concepts, scores them
for importance and finds an optimal summary con-
cept map via integer linear programming (ILP).
We also present several optimizations that make
it possible to apply our model to large document
sets. Experiments on two datasets demonstrate the
efficacy of the model, which outperforms several
methods suggested in previous work.

2 Related Work

Previous approaches to construct concept maps
from text, working with either single documents
(Zubrinic et al., 2015; Villalon, 2012; Valerio and
Leake, 2006; Kowata et al., 2010) or document
clusters (Qasim et al., 2013; Zouaq and Nkambou,
2009; Rajaraman and Tan, 2002), all follow a sim-
ilar pipeline: concept extraction, relation extrac-
tion, scoring and concept map construction.

During concept extraction, most approaches ap-
ply hand-written patterns to extract labels for con-
cepts from syntactic representations, focusing on
noun phrases-like structures. Similar approaches
are used to extract relation labels for pairs of
concepts. Alternatively, semantic representations
have been suggested as a more easily accessi-
ble representation compared to syntax (Falke and
Gurevych, 2017c; Olney et al., 2011).

Given these extractions, few attempts beyond
string matching have been made to identify unique
concepts. Valerio and Leake (2006) suggest to
consider only certain part-of-speech during string
matching, while the earlier approach of Rajara-
man and Tan (2002) uses a clustering algorithm
based on a vector space model. Our work pro-
poses a more comprehensive approach, leveraging
state-of-the-art semantic similarity measures and
set partitioning to also detect coreferent concept
labels that are paraphrases.

The selection of a summary-worthy subset of

2http://duc.nist.gov/
3https://tac.nist.gov/

all extracted concepts and relations was largely ig-
nored in previous work, as many studies did not
have a focus on summarization. However, when
dealing with larger document clusters, this step be-
comes inevitable. Zubrinic et al. (2015) suggest a
tf-idf metric on the level of concept labels, Vil-
lalon (2012) uses Latent Semantic Analysis and
Valerio and Leake (2006) suggest simple concept
frequencies. Our model goes a step further and
combines these with other features in a supervised
model, which works well for textual summariza-
tion (Cao et al., 2016; Yang et al., 2017).

For building a summary concept map that is
connected, does not exceed the target size and con-
tains as many important concepts as possible, we
are only aware of a heuristic approach suggested
by Zubrinic et al. (2015). It iteratively removes
low-scoring concepts from all extractions until a
connected graph of the target size remains. How-
ever, it is not guaranteed that the optimal subset
is found. Integer Linear Programming (ILP) has
been successfully used to solve the knapsack prob-
lem that arises in sentence-level extractive summa-
rization (McDonald, 2007). In our task, the knap-
sack problem is not present, as both the scoring
and size restriction are defined on the level of con-
cepts, but the connectedness requirement poses a
similar constraint that restricts the subset selec-
tion. ILP formulations for such a problem have
been proposed for graph-based abstractive sum-
marization (Li et al., 2016; Liu et al., 2015). In
our work, we transfer these ideas to concept maps
and evaluate their efficacy. This is important, as
the methods were originally proposed for differ-
ent kinds of graphs (event networks and AMR
graphs) and introduced to generate abstractive tex-
tual summaries, while we use our concept map
graphs directly as the final summaries.

3 Model

Given a document set D, topic t and size limit L,
our model applies the three stage approach that is
illustrated in Figure 1 to create a summary con-
cept map: (1) Concept and Relation Extraction,
(2) Concept Graph Construction, (3) Graph Sum-
marization. We describe these steps in the follow-
ing sections in detail.

3.1 Concept and Relation Extraction

The goal of the first step is to identify spans in the
documents that can be used as labels for concepts
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Input text: Caffeine, which is a mild CNS stimulant, reduces ADHD symptoms. Summary size: 2 concepts
Herbal supplements have been used to treat the symptoms of ADHD.

1 Concept & Relation Extraction

( Caffeine ; is ; a mild CNS stimulant )

( Caffeine ; reduces ; ADHD symptoms )

( Herbal supplements ; have been used to treat ;

the symptoms of ADHD )

2 Concept Graph Construction

Caffeine

ADHD
symptoms

Herbal
supplements

a mild CNS
stimulant

reduces

is

... used
to treat

3 Graph Summarization

Caffeine0.9

ADHD
symptoms0.6

Herbal
supplements0.8

a mild CNS
stimulant0.4

Figure 1: Conceptual illustration of the model: (1) Extracted propositions are (2) connected to a graph
based on coreference and (3) the best subgraph, here of target size 2, is selected after scoring concepts.

and relations in the concept map.

Extraction For the extraction, we rely on Open
Information Extraction (Banko et al., 2007), an ap-
proach that extracts binary propositions from text.
Given a sentence such as

Caffeine, which is a mild CNS stimulant, reduces
ADHD symptoms.

an Open IE system extracts the tuples:

(Caffeine ; is ; a mild CNS stimulant)
(Caffeine ; reduces ; ADHD symptoms)

This representation is particularly useful because
it is very similar to propositions in a concept map,
requiring only a few postprocessing steps. We
use the extracted tuples (m1, r,m2), after apply-
ing the postprocessing steps discussed below, and
use their arguments m1,m2 as concept mentions
and predicates r as relations.

Filtering To ensure that the arguments of the ex-
tractions are meaningful concept mentions, we fil-
ter the candidate set with two simple constraints:
First, an argument has to contain at least one noun
token, and second, it cannot be longer than ten to-
kens. This removes overly long arguments that are
clauses rather than suitable labels for concepts.

Post-Processing In addition, we apply three
rule-based post-processing steps that refine the ex-
tractions in order to increase the recall of the can-
didate sets. First, using off-the-shelf coreference
resolution, we try to resolve pronominal anaphora
in arguments of the propositions.

Second, if an argument is a conjoining construc-
tion, as indicated by conj-edges in a dependency
parse, we break it down into its conjuncts and in-

troduce separate extractions for each of them:

(Caffeine ; works with ; young children and teens)

would be split into two extractions

(Caffeine ; works with ; young children)
(Caffeine ; works with ; teens)

And third, if the second argument starts with a
verb, as in the following example,

(Herbal supplements ; have been used to ; treat
the symptoms of ADHD)

we move that verb and subsequent prepositions to
the predicate. In the example, the predicate is ex-
tended to have been used to treat, reducing the sec-
ond argument to the symptoms of ADHD.

3.2 Concept Graph Construction

Given the concept mentions extracted in the previ-
ous step, several of these mentions may refer to
the same concept. While this is obvious if the
mentions are identical (e.g. Caffeine in the first
two extractions of Figure 1), they could also differ
slightly (e.g. ADHD symptoms and the symptoms
of ADHD) or be synonyms or paraphrases with-
out any lexical overlap. In this step, we connect
all extracted propositions (m1, r,m2) to a con-
cept graph by grouping coreferent mentions to a
set of unique, non-redundant concepts (see Fig-
ure 1). As this special form of concept-specific
and cross-document coreference goes beyond the
capabilities of off-the-shelf coreference resolution
systems, we propose a solution based on pairwise
classification and set partitioning.
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3.2.1 Pairwise Mention Classification
Given the set M of concept mentions, we want to
determine whether a pair (m1,m2) ∈M2 refers to
the same concept or not. We model this as a binary
classification problem using a log-linear model

P (y = 1|m1,m2, θ) = σ(θTφ(m1,m2))

where a positive classification, y = 1, means that
the mentions are coreferent, φ(m1,m2) are fea-
tures for a pair of mentions, σ is the sigmoid func-
tion and θ are the learned parameters.

As features we use different similarity measures
that indicate if both terms have the same mean-
ing. Lexical features are normalized Levenshtein
distance and the overlap (Jaccard coefficient) be-
tween stemmed content words. To capture simi-
larity on a semantic level, we use cosine similar-
ity between concept embeddings4 and two mea-
sures using word-level similarity based on La-
tent Semantic Analysis (Deerwester et al., 1990)
and WordNet (Resnik, 1995) together with a word
alignment method, both implemented in Semilar
(Rus et al., 2013). The selection of these features
is driven by practical reasons: Since the number of
pairs is inO(|M |2), the feature set has to be small
and restricted to fast-to-compute metrics to make
the approach computationally feasible.

3.2.2 Mention Partitioning
The task of grouping mentions to concepts can be
seen as finding a partition of M based on the pair-
wise classifications. However, this is non-trivial,
as single predictions might conflict: Both (a, b)
and (b, c) could be classified as coreferent, but not
(a, c). Formally, the relation of all coreferent pairs
S ⊆ M2 has to be an equivalence relation, i.e.
reflexive, symmetric and transitive, to represent a
consistent partitioning.

For a similar problem, Barzilay and Lapata
(2006) propose to use ILP to find a valid partition-
ing that maximally agrees with the pairwise classi-
fications. Let xp ∈ {0, 1} indicate the coreference
of mentions p = (m1,m2) and be c(p) = P (y =
1|m1,m2). Then they optimize the assignments
xp to maximize∑

p∈M2

c(p) xp + (1− c(p)) (1− xp) (1)

4Using the sum of vectors for all tokens; 300-dimensional
word2vec Google News embeddings (Mikolov et al., 2013).

Algorithm 1 Greedy Local Partitioning Search
Input: pairwise predictions c(p) for p ∈M2

Output: coreferent pairs S ⊆M2

1: function SEARCH(x, y)
2: S ← { p | c(p) ≥ 0.5 }
3: b← SCORE(S)
4: Sm← SHUFFLE(TRANSREDUCTION(S))
5: for p ∈ Sm do
6: S′← S \ {p}
7: if b < SCORE(S′) then
8: b← SCORE(S′), S ← S′

9: return TRANSCLOSURE(S)
10: function SCORE(S)
11: S+← TRANSCLOSURE(S)
12: return Compute Equation 1 for S+

under the transitivity constraints

xpi ≥ xpj + xpk
− 1 (2)

for all pi, pj , pk ∈ M2 where i 6= j 6= k. Un-
fortunately, this ILP needs O(|M |2) variables and
O(|M |3) constraints, which makes it difficult to
solve for our problem (where |M | is up to 20k and
we thus have up to 400 million variables and 8 tril-
lion constraints). As an alternative approach, we
use an approximate optimization algorithm.

Algorithm 1 shows our greedy local search al-
gorithm. It creates the transitive closure over all
positive classifications as the initial solution and
computes the objective function (lines 2-3). This
solution is a very aggressive grouping that joins as
many mentions as possible, ignoring all negative
classifications. The algorithm then tries to itera-
tively improve this solution by removing one posi-
tive classification at a time (line 6) if that improves
the objective (lines 7-8). Removals are only tested
for pairs in the transitive reduction of the initial
solution (lines 4-5), as removing others would not
change the partitioning. This approach still runs
for several hours on large problem instances due
to the expensive calculation of SCORE (lines 11-
12), making more complete local searches, using
best-first or beam search, impractical.

As a result, we obtain a relation S that partitions
M into a set of sets C = {C1, . . . Cn} where each
Ci is a set of mentions representing a concept.

3.2.3 Graph Construction
Using the partitioning, we can now connect the
extracted propositions to a graph G = (C,R) in
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which the nodes are concepts C and an edge with
label r exists for every proposition (m1, r,m2) be-
tween the nodes of the concepts of m1 and m2.
For each concept Ci, we select one mention ml ∈
Ci as its label. We experimentally found that using
the most frequent mention, breaking ties by choos-
ing the shortest, is a good heuristic to choose the
most generic and representative label.

3.3 Graph Summarization

With the concept graph G = (C,R) built from the
documents, we can cast the selection of a summary
concept map as a subgraph selection problem:

Given G, find a subgraph G′ = (C ′, R′) with
C ′ ⊆ C and R′ ⊆ R that maximizes∑

Ci∈C′
s(Ci) (3)

such that the subgraph is connected and satisfies
the size constraint |C ′| ≤ L. With s(Ci), we de-
note the importance of concept Ci.

3.3.1 Subgraph Selection
The selection of a subgraph that maximizes Equa-
tion 3 can be formulated as an ILP. Let xi be a bi-
nary decision variable that represents whether con-
ceptCi is part of the subgraph. Then, the objective
can be written as

max
∑|C|

i=1 xi s(Ci) (4)

subject to5

xi ∈ {0, 1} ∀ i ∈ C (5)∑|C|
i=1 xi ≤ L. (6)

To ensure that the selected subgraph is connected,
we introduce flow variables following previous
work (Li et al., 2016; Liu et al., 2015). Let fij be
a non-negative integer variable capturing the flow
from concept Ci to Cj . We only introduce flow
variables for concept pairs that have a relation in
R. The constraints

fij ≤ xi · |C| ∀ (i, j) ∈ R (7)

fij ≤ xj · |C| ∀ (i, j) ∈ R (8)∑
i fij −

∑
k fjk − xj = 0 ∀ j ∈ C (9)

fij ∈ N ∀ (i, j) ∈ R (10)

5To simplify the notation, we write i ∈ C instead of i ∈
{1, . . . , |C|} and correspondingly for R.

enforce that flow can only move between concepts
that are selected (7,8) and a selected concept con-
sumes one unit of flow (9). Further, let i = 0 be
a virtual root node and e0i a virtual edge from the
root to each concept. The additional constraints

|C| · e0i − f0i ≥ 0 ∀ i ∈ C (11)∑|C|
i=1 e0i = 1 (12)∑|C|

i=1 f0i −
∑|C|

i=1 xi = 0 (13)

e0i ∈ {0, 1} ∀ i ∈ C (14)

f0i ∈ N0 ∀ i ∈ C (15)

ensure that only one virtual edge can be active
(12), that the virtual node can only send flow over
this active edge (11) and that the total amount of
flow sent from the root cannot exceed the size of
the selected subgraph (13). As a consequence, if
n concepts are selected, n units of flow are sent
from the root over the edges of the graph and each
selected concept consumes one of them. This is
only possible if the subgraph is connected.

The above ILP formulation has the advantage
that it only requires O(|C| + |R|) variables and
constraints as opposed to O(|C|2) with the flow
constraints used by Li et al. (2016). For sparse
graphs, where |R| � |C|2, this leads to much
smaller ILPs. We further leverage the fact that G
is typically disconnected and solve separate ILPs
for each connected component. Only with these
measures, the ILP approach can be solved for the
real-world problem sizes in our evaluation dataset.

3.3.2 Score Prediction
The subgraph selection introduced above relies on
estimates s(Ci) of a concept’s importance. These
scores are estimated with a linear model

s(Ci) = ϑTψ(Ci, t)

where ψ(Ci, t) are features for a concept Ci in
a document cluster on topic t. Parameters ϑ are
learned with SVMrank (Joachims, 2002). We use a
rich set of features that are commonly used in sum-
marization and keyphrase extraction and briefly
describe them in the following section:

Frequency Concept frequency and document
frequency based on the partitioned mentions.
In addition, frequencies re-weighted with back-
ground inverse document frequencies from
Google N-Grams (Klein and Nelson, 2009).
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Position First, average and last position of a
concept and the distance between first and last.

Topic Relatedness Relatedness of the concept
to the topic, measured as the semantic similarity
between the concept label and the document clus-
ter’s topic description t. As similarities, we use
the measures introduced in Section 3.2.1.

Length Length of shortest, average and longest
mention measured in tokens and in characters.

Label Several features describing the concept
label, including the number of stopwords, capital-
ization, part-of-speech and named entities.

Word Categories As suggested in recent work
by Yang et al. (2017), dictionary-based features
that capture general properties of words such
as concreteness, familiarity or imagery, using
the MRC Psycholinguistic Database (Coltheart,
1981), the LIWC dictionary and an additional list
of concreteness values (Brysbaert et al., 2014).

In addition, we derive several features from the
concept’s position in the concept graph G:

Centrality Measures Measures such as degree,
closeness and betweenness centrality as well as
PageRank scores that indicate the centrality of the
node Ci in the graph G.

Concept Map HARD and CRD scores sug-
gested by Reichherzer and Leake (2006) and their
underlying metrics. They are slight variations or
extensions of common graph metrics that were
specifically developed to describe concept maps.

Graph Degeneracy Following Tixier et al.
(2016) who show that graph degeneracy is helpful
to identify keyphrases, we use the graph core
number and core rank suggested by them.

All numeric features are discretized into bins, such
that the final feature set has only binary features.

3.3.3 Finalization
After predicting scores for every concept and se-
lecting the highest scoring subgraph with the ILP,
we use this subgraph as the summary concept map.
However, this graph might contain multiple edges
between certain concepts. Because this is rare and
the number of available relations is low, we use
a simple heuristic and select the relation that was

EDUC WIKI

Topics 30 38
Documents 40.5 14.6
Tokens 97880 27066
Concepts 25.0 11.3
Relations 25.2 13.8
Compression 0.16% 0.33%

Table 1: Benchmark datasets used in experiments.
Values are averages per topic. Compression = to-
kens in concept map / tokens in documents.

extracted with the highest confidence in the first
step. The resulting graph is the final summary.

4 Experimental Setup

4.1 Data

We evaluate our approach using two benchmark
datasets and compare the generated concept maps
against reference maps. As the first dataset, we
use a recently published corpus by Falke and
Gurevych (2017a) that provides summary concept
maps for document clusters on educational topics.
They were manually created using crowdsourcing
and expert annotators. As the second dataset, we
use a corpus in which the introductions of featured
Wikipedia articles are used as summaries for web
documents (Zopf et al., 2016). This property al-
lows us to make use of the links to other Wikipedia
pages in the summaries as annotations of concepts.
In combination with Open Information Extraction,
we can therefore automatically derive concepts
and relations from the Wikipedia summaries to ob-
tain a second corpus of summary concept maps.

We refer to these datasets as EDUC and WIKI.
Table 1 shows their characteristics. Note that in
both datasets the summaries are much smaller than
the document sets, posing a challenging summa-
rization task. In addition, the document clus-
ters of EDUC are very large, constituting a chal-
lenging but real-world evaluation setting regarding
computational efficiency. We randomly split both
datasets into equally sized training and test sets.

4.2 Evaluation Metrics

As input, our model receives the documents to
summarize, the corresponding topic description
and the number of concepts in the reference con-
cept map as the size limit. To compare a system-
generated concept map with a reference concept
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map we represent both as sets of propositions P ,
i.e. a set in which each element is the concatena-
tion of a relation label with its two concept labels.
We then calculate the overlap between the set PS
for the system map and the set PR for the reference
map. As the number of relations and thus propo-
sitions of the generated map can differ, we report
precision, recall and F1-scores.

Our first metric based on METEOR
(Denkowski and Lavie, 2014) has the advan-
tage that it takes synonyms and paraphrases
into account and does not solely rely on lexical
matches. For each pair of propositions ps ∈ PS
and pr ∈ PR we calculate the match score
meteor(ps, pr) ∈ [0, 1]. Then, precision and
recall per map are computed as:

Pr =
1
|PS |

∑
p∈PS

max{meteor(p, pr) | pr ∈ PR}

Re =
1
|PR|

∑
p∈PR

max{meteor(p, ps) | ps ∈ PS}

The F1-score is the equally weighted harmonic
mean of precision and recall. Scores per map are
macro-averaged over all topics.

As a second metric, we compute ROUGE (Lin,
2004), the standard metric for textual sumariza-
tion. We concatenate all propositions of a map
into a single string, sS and sR, and separate propo-
sitions with a dot to ensure that no bigrams span
across propositions and the metric is therefore
order-independent. We run ROUGE 1.5.56 with
sS as the peer summary and sR as a single model
summary to compute ROUGE-2.

4.3 Implementation and Training
All source documents are preprocessed with Stan-
ford CoreNLP 3.7.0 (Manning et al., 2014) to
obtain tokenization, sentence splitting, part-of-
speech tags, named entities, dependency parses
and coreference chains. For Open Information Ex-
traction, we use OpenIE-47, a system developed
at the University of Washington that is currently
state-of-the-art according to a recent comparison
(Stanovsky and Dagan, 2016). ILPs are solved
with the IBM CPLEX optimizer.8

The concept coreference model is implemented
using the logistic regression model of Weka (Hall

6Parameter: -n 2 -x -m -c 95 -r 1000 -f A -p 0.5 -t 0 -d -a
7https://github.com/knowitall/openie
8https://ibm.com/software/commerce/

optimization/cplex-optimizer/

et al., 2009). For EDUC, we trained it on 17,500
pairs of mentions, and for WIKI, on 4,500 pairs of
mentions, which were in both cases derived from
the reference concept maps of the training part of
the respective dataset.

The SVMrank model for importance scoring is
trained with Dlib9. We use the set of all extracted
concepts from all topics in the training set and as-
sign binary labels if these concepts also occur in
the reference concept maps. The SVM then learns
weights for all features such that the positive in-
stances per topic are ranked higher than the neg-
ative instances. We tuned the regularization pa-
rameter C of the SVM by testing values from 0.1
to 100 with leave-one-out cross-validation on the
training topics. The final models are trained on
the full training set with the best parameter. We
did this separately for all ablations of our model
that produce different training data, obtaining best
parameters of C = 10 for coref=lem on EDUC

and all models on WIKI as well as C = 30 for
coref=doc and our model on EDUC (see Table 2).

5 Results and Analysis

5.1 Evaluation Results
We compare our model against several previously
suggested methods. As unsupervised methods, we
include concept selection based on frequency (Va-
lerio and Leake, 2006), denoted as Valerio 06,
selection with idf-corrected frequencies (Zubrinic
et al., 2015), Zubrinic 15, and using the popular
PageRank algorithm (Page et al., 1999). For a fair
comparison, we run all methods on the same ex-
tracted concepts and relations and with our ILP-
based subgraph selection. In addition, we include
the baseline method Falke 17 published along with
the EDUC corpus (Falke and Gurevych, 2017a),
which includes a supervised importance scoring
model based on a binary classifier. To the best
of our knowledge, this is all existing work for this
task to which we can compare the proposed model.

Table 2 shows METEOR and ROUGE-2 scores
for all methods on both datasets. Our model out-
performs all three unsupervised approaches signif-
icantly on both datasets, demonstrating the superi-
ority of the supervised scoring model. With re-
gard to Falke 17, which is supervised to a sim-
ilar extent, the results are twofold: While our
model improves in ROUGE-2, it has a lower ME-
TEOR score. We looked into these results in de-

9http://dlib.net/ml.html
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EDUC WIKI
METEOR ROUGE-2 METEOR ROUGE-2

Approach Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1
PageRank 11.78 16.21 †13.61 7.14 11.66 †8.66 13.27 14.13 †13.62 8.35 6.17 ‡7.01
Valerio 06 11.89 16.12 †13.65 7.33 12.09 ‡8.97 13.44 13.79 ‡13.55 8.57 7.16 ‡7.61
Zubrinic 15 12.48 16.44 †14.15 7.68 12.08 ‡9.25 14.63 14.92 ‡14.72 10.50 7.91 ‡8.87
Falke 17 15.12 19.49 17.00 6.03 17.98 8.91 14.30 23.11 17.46 6.77 23.18 10.20
Our model 15.14 17.34 16.12 9.37 11.93 10.38 19.57 18.98 19.18 17.00 10.69 12.91
- coref=lem 13.93 15.42 †14.57 8.21 8.59 †8.25 18.32 17.24 17.59 13.99 9.53 11.07
- coref=doc 14.14 15.21 †14.54 7.99 6.78 †7.26 16.81 16.63 16.59 13.09 9.16 10.29
- w/o ILP 15.29 17.46 16.26 9.38 11.88 10.38 18.22 17.80 17.94 14.73 9.74 11.51
s*, ILP 23.32 27.52 25.16 26.09 23.93 24.74 29.04 26.76 27.73 29.08 18.79 22.54
s*, w/o ILP 18.28 25.15 †21.13 17.52 21.97 †19.34 24.45 24.46 †24.83 24.06 17.39 †19.57

Table 2: Results on test sections of both datasets for our model and previous work. (Improvements of
our model are significant compared to approaches marked (for F1) with † (p ≤ 0.01) or ‡ (p ≤ 0.05)).12

tail and found that the high scores of Falke 17 are
due to heavy overgeneration during relation ex-
traction, introducing many rather meaningless re-
lations into the concept map.10 Hence, the method
only obtains higher scores by sacrificing the qual-
ity of the extracted propositions.

To verify this observation, we carried out an
additional human evaluation between the two
systems, capturing aspects beyond the content-
oriented automatic metrics. For each topic, the
concept maps generated by both approaches were
shown to five crowdworkers on Mechanical Turk
and they were asked for their preference with re-
gard to different quality dimensions.11 Table 3
shows that our concept maps tend to have more
meaningful and topic-focused propositions and are
especially more grammatical and less redundant.

5.2 Analysis

Concept Coreference To analyze the contribu-
tion of our concept coreference detection and par-
titioning (§3.2.1,§3.2.2), we replaced it with two
simpler baselines: merging concepts based on
string matches after lemmatization (coref=lem), as
done in previous work, and using per-document
coreference chains detected by CoreNLP and
merging them across documents by lemmatized
string matching (coref=doc). Both alternatives
cause a drop in both metrics on EDUC and WIKI,
showing that our approach is important for the
model’s performance. The baselines merge much
less mentions than necessary but also tend to lump

10Note that METEOR scores can be improved by incor-
rect relations if they are between a correct pair of concepts,
leading to a partial match of the proposition.

11To control for the influence of graph layouting quality,
we showed the concept maps as simple lists of propositions.

Dimension Falke 2017 Our
Meaning 44% 56%
Grammaticality 31% 69%
Focus 44% 56%
Non-Redundancy 21% 79%

Table 3: Human preference judgments between
concept maps generated on EDUC (n = 75).

too many too different mentions together. In con-
trast, our model can make many more merges
based on semantic similarity and at the same time
manages to avoid lumping effects by relying on
the global partitioning approach.

Subgraph Selection To analyze the effective-
ness of the subgraph selection (§3.3.1), we re-
placed the ILP approach with a greedy heuristic
similar to Zubrinic et al. (2015): Given the graph
of scored concepts, start with the most important
one and select the best neighbor (by score, break-
ing ties by node degree) until the size limit is
reached. While the ILP will always find the op-
timal solution and hence the best subgraph, this
heuristic approach does not have such a guaran-
tee. In fact, it found the optimal subgraph for only
35% of the topics, selecting a subgraph with an on
average 0.63% (EDUC) and 1.30% (WIKI) lower
objective function score in the other cases.

Row w/o ILP in Table 2 shows the effect on the
summary concept map. While it is rather small for
EDUC, the differences on WIKI are bigger – in line
with the observation that the selected subgraphs
are less optimal. A problem for this analysis are
errors in the preceding scoring step: The optimal

12Approximate randomization test with N = 10000.
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Method Var. Const. Time (s)
(Li et al., 2016) 37M 75M 2670.61
by component 26M 52M 999.25
Our ILP 22k 31k 7.31
by component 18k 26k 5.61

Table 4: Comparison of average ILP size and run-
time per topic for subgraph selection on EDUC.

subgraph according to the estimated scores might
not be the best with regard to the gold standard,
explaining the slightly higher METEOR scores
on EDUC without the ILP. To control for this ef-
fect, we also tested the selection using gold scores
s∗(Ci) for all concepts Ci, demonstrating that the
optimal subgraphs selected by the ILP are clearly
superior (last two rows in Table 2).

Score Prediction The contribution of our su-
pervised scoring model based on ranking SVMs
(§3.3.2) can be seen in Table 2 when comparing
it to the unsupervised approaches PageRank, Vale-
rio 06 and Zubrinic 15. Note that all models use
the same concepts and relations as input and the
same ILP-based subgraph selection. Our model
clearly outperforms all of them. Looking into the
learned weights for our set of features, we ob-
served that the most helpful features are frequen-
cies, in particular document frequency and idf-
weighted concept frequency, and topic relatedness
as well as page rank. To identify unimportant con-
cepts (i.e. assigning low scores), the model makes
use of concreteness values and the label’s length.

Runtime As mentioned earlier, the size of the
document sets in EDUC resembles an interesting
real-world setting that required us to pay special
attention to complexity. Table 4 compares our sub-
graph selection ILP with the ILP formulation by Li
et al. (2016). For the extracted graphs, with on av-
erage 4022 nodes and 5613 edges between them,
our formulation leads to ILPs that are orders of
magnitude smaller and can be solved in a fraction
of the time.13 For both formulations, solving sep-
arate ILPs for each connected component in the
graph further improves the runtime.

Error Analysis Table 5 shows the number of
concepts and their recall at different steps in our
model, which is a good indicator of bottlenecks.

13Times for running CPLEX multi-threaded on 24 cores.
Direct comparison with the same data on the same machine.

EDUC WIKI

Step Count Recall Count Recall
Mentions 8630 73.87 2549 88.93
Concepts 4022 60.27 1315 82.38
Subgraph 25 16.53 11 30.71

Table 5: Average number of concepts and recall
per topic at different steps in our model.

The recall of mentions shows that performance is
already lost during extraction, suggesting that bet-
ter approaches would be beneficial. We observed
that the problem is mainly the identification of cor-
rect spans rather than missing some concepts com-
pletely. A custom extraction model instead of re-
lying on Open IE could resolve this.

With regard to concept coreference, we found
that even more coreferent mentions could be
grouped together. However, while the current
model only accidentally merged mentions of dif-
ferent gold concepts in two cases across all topics,
a stronger grouping could introduce more of these
errors. Please also note that the drop in recall in
Table 5 is due to exact string matching of the recall
metric used here, missing concepts for which the
selected cluster label is not exactly the gold con-
cept. As the METEOR and ROUGE evaluations
show, this is not a problem for the final result.

Finally, Table 5 reveals that one of the main bot-
tlenecks is to determine the important concepts.
On both datasets, but especially on the bigger doc-
ument sets of EDUC, a substantial amount of recall
is lost during this challenging step.

6 Conclusion

We proposed a new model for concept-map-based
MDS and showed that it outperforms several
methods from previous work. All of our contri-
butions, including concept coreference resolution,
the supervised scoring model and the global op-
timization approach contribute to its efficacy. In
addition, it is able to scale to large document sets,
which makes it much faster than previous methods
in realistic scenarios with such documents sets.
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Cañas. 2012. Using Automatically Generated Con-
cept Maps for Document Understanding: A Human
Subjects Experiment. In Proceedings of the 5th In-
ternational Conference on Concept Mapping, pages
438–445, Valetta, Malta.

Jorge J. Villalon. 2012. Automated Generation of Con-
cept Maps to Support Writing. PhD Thesis, Univer-
sity of Sydney, Australia.

Yinfei Yang, Forrest Bao, and Ani Nenkova. 2017. De-
tecting (Un)Important Content for Single-Document
News Summarization. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pages 707–712,
Valencia, Spain.

Markus Zopf, Maxime Peyrard, and Judith Eckle-
Kohler. 2016. The Next Step for Multi-Document
Summarization: A Heterogeneous Multi-Genre Cor-
pus Built with a Novel Construction Approach. In
Proceedings of the 26th International Conference on
Computational Linguistics (COLING), pages 1535–
1545, Osaka, Japan.

Amal Zouaq and Roger Nkambou. 2009. Evaluating
the Generation of Domain Ontologies in the Knowl-
edge Puzzle Project. IEEE Transactions on Knowl-
edge and Data Engineering, 21(11):1559–1572.

Krunoslav Zubrinic, Ines Obradovic, and Tomo
Sjekavica. 2015. Implementation of method for gen-
erating concept map from unstructured text in the
Croatian language. In 23rd International Confer-
ence on Software, Telecommunications and Com-
puter Networks (SoftCOM), pages 220–223, Split,
Croatia.

811



Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 812–821,
Taipei, Taiwan, November 27 – December 1, 2017 c©2017 AFNLP

Abstractive Multi-document Summarization by Partial Tree Extraction,
Recombination and Linearization

Litton J Kurisinkel
IIIT-H, Hyderabad

litton.jKurisinkel@research.iiit.ac.in

Yue Zhang
SUTD, Singapore

yue zhang@sutd.edu.sg

Vasudeva Varma
IIIT-H, Hyderabad
vv@iiit.ac.in

Abstract

Existing work for abstractive multi-
document summarization utilise existing
phrase structures directly extracted from
input documents to generate summary
sentences. These methods can suf-
fer from lack of consistence and coher-
ence in merging phrases. We introduce
a novel approach for abstractive multi-
document summarization through partial
dependency tree extraction, recombination
and linearization. The method entrusts
the summarizer to generate its own topi-
cally coherent sequential structures from
scratch for effective communication. Re-
sults on TAC 2011, DUC- 2004 and 2005
show that our system gives competitive
results compared with state-of-the-art ab-
stractive summarization approaches in the
literature. We also achieve competitive re-
sults in linguistic quality assessed by hu-
man evaluators.

1 Introduction

Multi-document summarization generates a tex-
tual summary from a corpus of documents deal-
ing with a set of related topics. An optimum
generated summary should encompass the most
relevant and topically diverse content, which can
represent the input corpus in stipulated summary
space. Extractive multi-document summarization
approaches pick out a subset of sentences to con-
stitute the summary, which can be noisy and inco-
herent, as all the portions of a sentence may not be
relevant for summary generation (Lin and Bilmes,
2011).

An abstractive multi-document summarizer, in
contrast, infers the most relevant information and
generates summary sentences exhibiting coher-

ence and fluency. There has been relatively little
existing work on abstractive multi-document sum-
marization. Bing et al. (2015) merge phrases that
are extracted from input documents into a coher-
ent summary. Banerjee et al. (2015) utilize multi-
sentence compression for summarization. Both of
the above approaches rely on sequential arrange-
ment of phrasal or subsentential structures existing
in the input corpus to generate summary. How-
ever, an ideal abstractive multi-document summa-
rizer should enjoy the freedom to exhibit its own
writing style and to generate the sentences from
scratch.

We build a model to this end by leveraging syn-
tactic dependencies. Input for our model is the set
of syntactic dependency trees obtained by parsing
sentences in the corpus to be summarized. Rel-
evant and noise pruned partial tree structures are
extracted from the set of dependency trees and dif-
ferent subsets of maximally relevant partial depen-
dency structures are identified. Partial trees in dif-
ferent subsets are linearized to generate individ-
ual summary sentences. In this work, we utilize
transition-based syntactic linearization approach
proposed by Puduppully et al. (2016) to linearize a
combination of partial trees and to generate a noise
free summary sentence. The combinability of a
set of partial trees to form a full dependency tree
of a valid sentence is estimated using a generative
model of syntactic dependency trees (Zhang et al.,
2016). As a result, the model is allowed to exhibit
its own learnt writing style while generating sum-
mary sentences.

The summaries generated by our system are
evaluated on the DUC 2004, DUC 2007 and TAC
2011 muti-document summarization data-sets. In
addition, we relied on human evaluation to evalu-
ate factual accuracy and linguistic quality of gen-
erated summary sentences. To our knowledge
this is the first work on multi-document abstrac-
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tive summarization with syntactic dependency
trees, which entrust the summarization model to
generate summary sentences without exploiting
any kind of subsentential or phrasal sequential
structures originally present in the input corpus.
Our code is released at https://bitbucket.
org/litton_kurisinkel/tree_sum

2 Related Work

Text summarization can be achieved using ex-
tractive (Takamura and Okumura, 2009; Lin and
Bilmes, 2011; Wang et al., 2008) and abstractive
methods (Bing et al., 2015; Li, 2015). Extrac-
tive summarization has the advantage of output
fluency due to direct use of human-written texts.
However, extractive summarization cannot ensure
a noise free and coherent summary. It can also re-
sult in a wrong inference to the reader due to out
of context sentence usage. In contrast, abstractive
summarization techniques can generate a noise-
free summary out of most relevant information in
the input corpus.

A subset of previous extractive summarization
approaches utilized parsed sentence structures to
execute noise pruning while extracting content for
summary (Morita et al., 2013; Berg-Kirkpatrick
et al., 2011). As a first step towards abstracting
content for summary generation, sentence com-
pression techniques were introduced (Lin, 2003;
Zajic et al., 2006; Martins and Smith, 2009; Wood-
send and Lapata, 2010; Almeida and Martins,
2013), but these techniques can merely prune
noise, and cannot combine related facts from dif-
ferent sentences to generate new ones. (Baner-
jee et al., 2015) suggests a better way of doing
sentence compression without harming linguistic
quality.

Recent work attempts to solve the problem of
abstractive multi-document summarization (Bing
et al., 2015; Li, 2015), claiming that the method
has the advantage of generating new sentences.
Bing et al. (2015) extracts relevant noun phrases
and verb phrases and recombines them to generate
new sentences while Li (2015) system make use
of semantic link network on basic semantic units
(BSUs) to generate summary. Neither of these
methods employ a learnt model to generate sum-
mary sentences. Instead, they make use sequen-
tial structures in the source text itself to construct
the summary sentences. Cheng and Lapata (2016)
propose a fully data driven approach using neu-

Figure 1: Overall approach

ral network for single document summarization by
extracting words. They have treated highlighted
text in news articles consisting of very short bul-
leted lines on the web as summary of the corre-
sponding article.

A major challenge of using a fully data driven
approach for multi-document abstractive summa-
rization using neural network is the expensive task
of creating dataset which can be used to jointly
model extraction of relevant content and genera-
tion good quality summary sentences. But multi-
document abstractive summarization becomes an
achievable task, by disintegrating the extraction of
knowledge granules from the input corpus and us-
ing a separate language generation model trained
in a sophisticated dataset which can take a sub-
set of extracted knowledge granules and gener-
ate a summary sentence of high linguistic quality.
To this end, we leverage partial tree linearization
(Zhang, 2013) synthesizing summaries from ex-
tracted treelets.

3 Approach

The overall approach (Figure 1) for abstractive
multi-document summarization detailed in the
current work starts with extracting the most rel-
evant set of partial trees of varying sizes from the
set of all syntactic dependency trees in the corpus
using maximum density sub-graph cut algorithm
(Su et al., 2008). In parallel, generative model for
syntactic dependency trees is trained (Zhang et al.,
2016) so that it can be leveraged for estimating
the combinability of a set of partial trees for con-
structing a whole or part of a full dependency tree
of a valid sentence during summary generation.
Also, the transition based syntactic linearization
model Puduppully et al. (2016) is trained using
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a dataset, consisting of dependency trees of sen-
tences in Penn-tree bank and corresponding sen-
tence.

The set of extracted partial dependency trees are
clustered to ensure topical diversity. We identify a
subset of partial trees from each cluster, which can
be linearized to a single sentence which represents
the cluster in the final summary. Integer linear pro-
gramming is used for locating the most accurate
subset of partial trees out of which representative
sentence can be generated.

The objective function consists of linear com-
ponents for maximising total relevance and to-
tal combinability of the subset of partial trees se-
lected. total combinability is measured using the
generative model Zhang et al. (2016). Here we try
to jointly model the human summarizers method
of collecting relevant knowledge granules and de-
ciding the combinable set of information. Clus-
ter representative sentence are generated using the
linearization model of Puduppully et al. (2016)
from the subset of partial trees identified earlier.
The following sections explain how the system
achieves each one of the tasks listed above in de-
tail.

3.1 Extracting Relevant Partial Trees

For each dependency tree in the input corpus, there
is a subtree rooted at every node. Each subtree do
not necessarily contain extractable information to
generate a summary. The method used to create a
noise pruned subset of subtrees containing cogniz-
able information from the set of all subtrees in the
corpus can be split into two steps.

• Identify the roots of valid subtrees contain-
ing cognizable information in all the syntac-
tic dependency trees in the input corpus.

• Prune the identified subtrees so that it con-
tains nodes relevant for generating summary.

3.1.1 Identify Subtree Roots
The level of granularity at which syntactic ele-
ments chosen to generate summary sentence con-
siderably decides factual accuracy of a generated
sentence. As extracted set of subtrees are basic
building units for summary sentence generation,
the structure of subtrees extracted should be suit-
able for generating factually correct summary sen-
tences with respect to the corpus to be summa-
rized. We observe that a node containing subject

Figure 2: Marking relevant subtree roots

relationship with its child node is a valid candi-
date. Consequently any node in a dependency tree
sharing dependency relations such as nsubj, csubj,
nsubjpass or xsubj with any of its child node is
treated as the root node of a subtree which contains
extractable and cognizable information. In Figure
2, for example, subtrees rooted at words visited
and happened are valid subtrees to contribute for
summary generation as per the linguistic criteria
discussed above.

3.1.2 Pruning Subtrees
Identified subtrees are dissected out from their
original dependency trees after pruning away their
noisy portions which are irrelevant for summary
generation. Su et al. (2008) introduced a dy-
namic programming approach to find a length-
constrained maximum-density subtree containing
the root r, from a tree rooted at r for which weight
and length is preset for all edges. The density of a
tree T is defined as follows.

density =
∑

eεEW (e)∑
eεE Len(e)

(1)

where E is the set of all edges in T, W(e) is the
weight of edge e and Len(e) is the length of edge e.
The constraint on length implies that total length
of all edges in the resultant maximum density sub-
tree should be between lower bound L and upper
bound U which are taken arguments by the algo-
rithm. We leverage multi density subtree extrac-
tion algorithm for dissecting out a noise pruned
subtree from an identified valid subtree in a depen-
dency tree after setting values for edge weights,
edge lengths, L and U.

The weight of an edge in a syntactic dependency
in the input corpus should represent its topical rel-
evance for summary generation. Consequently the
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weight depends on the frequency of bigram con-
stituted by words on either side of the dependency
edge(Dbigram). We set the weight of edge e as,

W (e) =
log(1 + fdbigram)

depth(e)2
, (2)

where fdbigram is the frequency of the Dbigram of
e in the corpus and depth(e) is the depth of depen-
dent node of e in the tree. Summary should prefer
general information over context specific informa-
tion. The specificity of the information contained
increases with depth in dependency tree and the
denominator term in Equation 2 penalizes deeper
edges.

The length of the edge is set as the size of the
word in the dependent node in bytes so that length
of all edges in the tree equals the total size of all
words in the tree. Length constraint U is the total
length of all edges in the tree and L is calculated
as follows

L = α ∗ tanh(β ∗ twe− σ) ∗ TL,

where twe is the total weight of all edges in the
subtree, TL is the total length of all edges in the
subtree and σ, α and β are constants optimized
empirically. σ sets the universal upper bound for
all subtrees minimum length while α and β set the
slope and position of tanh curve. The value of L
ensures that subtrees containing more relevant in-
formation are pruned lesser. We enforce a rule to
retain the tree nodes to maintain grammaticality
while pruning. If the grammatical relation point-
ing to a node from its parent is nsubj, csubj, nsub-
jpass, xsubj, aux, xcomp, pobj, acomp, dobj, case,
det, poss, possessive, auxpass, ccomp, neg, expl,
cop, prt, mwe, pcomp, iobj, number, quantmod,
predet, dep or mark, then the node cannot be re-
moved without also removing its parent to main-
tain grammatical and factual correctness.

For the rest of this paper, we refer to a noise-
pruned subtree extracted out of a dependency tree
as a partial tree. The partial trees pruned out of
subtrees sharing anscestor-descendant relationship
may contain overlapping information (eg: subtrees
rooted at ‘visited’ and ‘happened’ in Figure 2).
So ancestor-descendant relationship between cor-
responding partial trees is recorded to avoid redun-
dant information during summary sentence gener-
ation.

Figure 3: Combine(pt1, pt2)

3.2 Estimation of Combinability of Partial
trees using Generative Model of
Dependency Trees

During the final stage of summary sentence gener-
ation, each of the summary sentence is generated
from a precisely identified subset of relevant par-
tial trees. To arrive at such a precise subset, along
with information regarding topical relevance, due
consideration should be given to the combinability
of partial trees in the subset to form a full depen-
dency tree of a valid sentence w.r.t to the syntactic
and semantic information contained in them. As a
primitive measure upon which total combinability
of a set of partial trees can be built upon, we esti-
mate the combinability of any two partial trees to
form whole or a part of a valid dependency tree as
follows

DepTree→ Combine(pt1, pt2) (3)

C(pt1, pt2)→ Pdepgen(DepTree), (4)

where Combine(pt1, pt2) combines two partial
trees pt1 and pt2 as represented in Figure 3 by
adding a dummy root containing ‘,’ with ‘comma’
as the dependency relation of edges and pt1 comes
before pt2 in breadth first order. C(pt1, pt2) is the
Combinability of any two partial trees and Pdepgen
represents a generative distribution of syntactic
dependency trees trained with a large set of de-
pendency trees. Combine(pt1, pt2) need not ex-
actly represent a substep in the final process of
combination and linearization of a set of selected
partial trees to generate a summary sentence. But
Pdepgen(DepTree) acts as an indicative measure
on how much pt1 and pt2 can together participate
in the construction of a full-dependency tree of a
valid sentence with respect to the syntactic and se-
mantic information contained in them.

3.2.1 Learning Pdepgen
Zhang et al. (2016) introduced Tree Long Short-
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Term Memory (TreeLSTM), a neural network
model based on LSTM, which is designed to pre-
dict a tree rather than a linear sequence. They
define probability of a sentence as the generation
probability of its dependency tree. Under the as-
sumption that each word w in a dependency tree is
only conditioned on its dependency path, the prob-
ability of a sentence S given its dependency tree T
is:

P (S|T ) =
∏

wεBFS(T )\ROOT
P (w|D(w)) (5)

where D(w) is the dependency path of w and how
dependency path for each node is identified is de-
tailed in the paper Zhang et al. (2016) and each
word w is visited according to its breadth-first
search order (BFS(T)). P (S|T ) can be restated as
a generative probability Pdepgen(T

′
) where T

′
is

a restricted syntactic dependency tree structure in
which, for all nodes, left and right dependants and
breadth first order of its children are fixed. As
the above mentioned structural restrictions can be
fixed in parameter for partial trees for Combine in
Equation 3, we can directly use TreeLSTM net-
work to estimate Pdepgen in Equation 4.

The sentence dataset shared by Zhang et al.
(2016) is parsed using Standford parser for train-
ing a TreeLSTM network. The negative log prob-
ability values produced by the network is normal-
ized for partial tree pairs in the corpus.

3.3 Syntactic Linearization

We make use of the syntactic linearization model
proposed by Puduppully et al. (2016) to linearize
the input set of partial trees. Puduppully et al.
(2016) and Liu et al. (2015) propose a transition-
based word ordering model, which takes a bag
of words, together with optional POS and depen-
dency arcs on a subset of input words, yields a sen-
tence together with its dependency parse tree that
conforms to input syntactic constraints (Zhang,
2013). The system is flexible with respect to in-
put constraints, performing abstract word ordering
when no constraints are given, but gives increas-
ingly confined outputs when more POS and de-
pendency relations are specified. We retrain their
model1 using autoparsed data obtained using Stan-
ford Dependency Parser.

1https://github.com/SUTDNLP/ZGen

Figure 4: Cluster graph of partial trees

3.4 Clustering for Topical Diversity

To ensure topical diversity we apply K-means
clustering in the set of partial trees with an aim
of generating a sentence from each of the cluster
as a topical representative of the respective clus-
ter. Cosine similarity between Dbigram frequency
vectors of partial trees is treated as the similarity
metric during clustering. Number of clusters (K)
is decided using the relation,

K = bq ∗ ShannonEntc (6)

where ShannonEnt is the Shannon entropy of uni-
gram distribution of the corpus and q is a constant.

3.5 Generating Cluster Representative
Sentence

Our system generates a single sentence from each
of the partial tree clusters identified as described
in section 3.4 to represent the cluster in final sum-
mary. Here we search for a subset of partial trees
from each cluster which maximise the total rel-
evance and total combinability of the partial trees
in the selected subset. Relevance of a partial tree is
defined as the total weight of all dependency edges
calculated using the Equation 2.

A data structure which searchably organizes the
relevance and combination probabilities of partial
trees belonging to a cluster is essential for formu-
lating the partial tree subset selection as an integer
linear programming problem. For this purpose we
visualize the entire partial tree information orga-
nized in a cluster graph (CG) as shown in Figure
4 in which nodes represent partial trees, and edge
weights represent the combination probability of
partial trees represented by the edge nodes calcu-
lated using the Equation 4. An edge exists between
two nodes if the partial trees at the nodes contain
mention about same named entity.

From cluster graph we try to extract a con-
nected subgraph (SG) which maximizes the
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objective function which takes a binary indicator
vector representing a sub-graph of cluster graph
as argument.
F(x1, . . . , xn, e1,1, . . . , en−1,n)→

∑
iεNodesR(xi)∗

xi + λ ∗∑{i,j}εEdgesW ({i, j}) ∗ eij (7)

subject to constraints,

xi + xj − 2 ∗ eij >= 0→ C1

xi + xj − 2 ∗ eij <= 1→ C2

ei,j <= I(xi, xj)→ C3∑
i xi ∗ size(i) <= MaxLen→ C4

xi + ancestor(i) < 1→ C5

where λ is a constant, R(i) is the relevance of
partial tree at node i, W({i,j}) is the weight of the
edge {i,j} in CG, Nodes is the set of all nodes in
CG and Edges is the set of all edges in CG.

xi=
{

1 if node i is present in input SG
0 otherwise

eij=
{

1 if edge {i,j} is present in input SG
0 otherwise

I(xi, xj)=
{

1 if edge {i,j} is present in CG
0 otherwise

ancestor(i) indicator variable that represents a par-
tial tree that is extracted from a ancestor subtree of
the subtree from which i is extracted (Explained in
section 3.1). size(i) is the total size of all words in
subtree i and MaxLen is the maximum size of a
sentence in the input corpus.

The constraints C1 and C2 ensure that an edge
will be present if and only if the corresponding
edge nodes in CG are present in the input vector,
while C3 ensures that the input vector represents
a subgraph of CG. The constraint C4 keeps an up-
per bound on the size of sentence that is generated
from a single cluster, while C5 ensures that partial
trees with overlapping information are not present
together in the selected subset of partial trees in a
cluster.

The set of partial trees represented by the nodes
of the subgraph that maximizes the objective func-
tion in Equation 7 functions as the syntactic in-
gredients to generate the cluster’s representative
sentence. A selected subset of partial trees are
linearized using the transition based syntactic lin-
earization model detailed in Section 3.3 to gener-
ate cluster representative sentence.

4 Experiments

We evaluate our method using the test sets of DUC
2004, DUC-2007 and TAC-2011. In particular,
the set of attributes of the summary including con-
tent coverage of summaries and linguistic quality
and factuality of newly generated summary sen-
tences are evaluated. The content coverage is eval-
uated using ROUGE (Lin, 2004) and we relied on
human evaluation for evaluating linguistic quality
and factuality.

4.1 Data
DUC 2004, DUC-2007 and TAC-2011 consist of
several corpora, each of them consisting of 10 doc-
uments and four model summaries for those 10
documents. We have tuned our development pa-
rameters using DUC 2003 dataset.

4.2 Settings
The values of α, β, σ, q and λ are tuned on the de-
velopment set for optimum content coverage and
sentence quality. In order to objectively evaluate
a summary sentence generated by linearizing a set
of partial trees, we need a human written reference
sentence of high linguistic quality which is written
after carefully understanding the information con-
tained in selected partial trees. As it is timecon-
suming to create such reference sentences for each
of the combination constituted by the possible val-
ues of α, β, σ, q and λ, we choose to separate pa-
rameter tuning for optimal content coverage and
sentence quality. Optimal values of α, β, σ and q
contributes prominently for better content cover-
age while that of λ contributes for better sentence
quality as it weights combinability of partial trees.
In Subsections 4.2.1 and 4.2.2 we explain how we
tune different development parameters for optimal
content coverage and sentence quality.

4.2.1 Tuning α, β, σ and q for maximum
content coverage

The values α, β, σ and q are optimised for maxi-
mum content coverage where pruned partial trees
are extracted to fill the allotted summary space
without any combination to generate summary
sentences. Content coverage is measured as the
sum of ROUGE-1 and ROUGE-2 scores with ref-
erence summaries on the DUC-2003 dataset. The
values of α, β, σ and q optimized using grid search
to give maximum average ROUGE score for cor-
pora in DUC-2003 are 0.5, 0.15, 0.5 and 1 respec-
tively.
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System DUC 2004 DUC 2007 TAC 2011
Metric R-1 R-2 R-SU4 R-1 R-2 R-SU4 R-2 R-SU4
CompAbsum (Banerjee et al., 2015) - 0.120 0.148 - - - - -
PhraseAbSum (Bing et al., 2015) - - - - - - 0.117 0.147
Semantic (Li, 2015) - - - 0.421 0.110 0.150 - -
WordCoverage(Dbigram) 0.382 0.096 0.113 - - - - -
PartTreeAbSum(ours) 0.439 0.120 0.140 0.431 0.109 0.150 0.113 0.141

Table 1: Comparison with state of the art

λ ROUGE BLEU NCS
0 0.431 0.41 17%
9 0.429 0.41 27%
27 0.410 0.48 61%
42 0.403 0.54 70%
48 0.401 0.571 70%
75 0.373 0.579 77%
105 0.361 0.570 79%

Table 2: Optimizing λ for better topical coverage
sentence quality

4.2.2 Tuning λ for optimum content coverage
and sentence quality

The values of α, β, σ and q are preset to the opti-
mum values identified in the section above. The
value of λ is varied from 0 to 100 with an in-
crement of 3 and set partial trees to form each
of the summary sentences for all corpora in DUC
2003 is identified. We asked a human annotator to
write a linear sentence out of each of the selected
partial trees sets without using new words which
are not present in partial tree nodes in the set and
the BLEU score of generated summary sentences
with respect to the human written sentences is es-
timated. For each value of λ we estimate the aver-
age ROUGE-1 and BLEU for the generated sum-
maries and summary sentences respectively. The
value at which total value of average BLEU and
ROUGE-1 scores is maximum is set as the value
of λ during testing. Table 2 reports BLEU and
ROUGE-1 for different values of λ. Column NCS
in the Table 2 represents the percentage of com-
plex sentences generated by linearizing more than
one partial tree.

4.3 Final Results

4.3.1 Content coverage
While evaluating the relevant content coverage of
abstractive summarization system, we also have
to evidently substantiate the effectiveness of noise
pruning done using multi density partial tree ex-
traction algorithm. For this purpose we have
created extractive summarizer using maximum
weighted word coverage algorithm Takamura and

Okumura (2009), which tries to extract sentences
containing maximum weighted Dbigrams in their
dependency trees.

Table 1 shows the results on DUC-2004,
DUC-2007, TAC-2011 along with previous ap-
proaches. In the table R-1,R-2 and R-SU4
represents ROUGE-1, ROUGE-2 and ROUGE-
SU4 (skip-bigrams with unigrams), respectively.
WordCoverage(Dbigram) summarizer using max-
imum weighted word coverage algorithm repre-
sents the word coverage algorithm using Dbigram

weights while PartTreeAbSum abstractive summa-
rization approach detailed in the paper. Results on
DUC-2004 shows that noise-pruning using max-
imum weighted partial tree extraction was effec-
tive in terms of better content coverage. Despite
rephrasing content in many contexts, PartTreeAb-
Sum shows results comparable with previous ap-
proaches. CompAbsum (Banerjee et al., 2015) de-
mands high syntactic overlap between source sen-
tences to recombine and generate new sentences,
otherwise resembles an extractive summarization
system. Our system shows better ROUGE-1 and
equal ROUGE-2 values in DUC-2004 test set.
PhraseAbSum (Bing et al., 2015) which extracts
phrases from the corpus and phrases can enjoy
lower granularity in terms of information content
when compared to partial trees by compromising
topical coherence in summary sentence genera-
tion. Still our results are comparable with that
of PhraseAbSum in TAC 2011. Our results show
competitiveness with Semantic (Li, 2015) which
generate summary content from a corpus level se-
mantic network utilizing linear structures smaller
than a partial tree and does not employ explicit
means to ensure gramaticality.

4.3.2 Linguistic quality and factual accuracy

In order to fully evaluate the effectiveness of an
abstractive summarization approach it is also use-
ful to evaluate the linguistic quality and factual
accuracy of generated sentences. Here linguistic
quality refers to the quality of sentences in terms
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Input Corpus Sentences
Hun Sen’s Cambodian People’s Party won 64 of the 122 parliamentary seats in July’s elections [1]

Sam Rainsy and a number of opposition figures have been under court investigation for a grenade attack on
Hun Sen’s Phnom Penh residence on Sep. [2]

Hun Sen was not home at the time of the attack. [3]

Ranariddh and Sam Rainsy have charged that Hun Sen’s victory in the elections was achieved
through widespread fraud. [4]

Sentence Generated by PhraseAbSum (Bing et al., 2015)
Sam Rainsy and a number of opposition figures, have been under court investigation for a grenade
attack on Hun Sen’s Phnom Penh residence on Sep, charged that Hun Sen’s victory
in the elections was achieved through widespread fraud (source sentences [2] and [4])
Sentences Generated by PartTreeSum (Current Work)
Sam Rainsy and a number of opposition figures have been under court investigation for attack on Hun Sen residence,
at the time of the attack Hun Sen (He) was not home
(source sentences [2] and [3])
Hun Sen’s party won 64 of the 122 parliamentary seats in elections,
victory in the elections was achieved through widespread fraud, Ranariddh and Sam Rainsy have charged
(source sentences [1] and [4])

Table 3: Tree Combination vs Phrase Combination

LQ FA
Human Summary 4.5 4.3
PartTreeSum(WC) 2.1 2.32
PartTreeSum 3.15 3.09

Table 4: Human Evaluation on sentence quality

of grammaticality and readability, and factual ac-
curacy refers to how much the information con-
veyed by the generated summary sentences are
true with respect to what is contained in the input
corpus. For this purpose we employed 4 manual
evaluators who are post-graduate students in En-
glish literature. 10 random corpora were chosen
for manual evaluation and we asked the evaluators
to read the documents in each corpus and rate cor-
responding summary sentences for their linguistic
quality and factual accuracy.

For each corpus the summaries participated in
manual evaluation include a randomly chosen hu-
man summary for corpus, current approach for ab-
stractive summarization (PartTreeSum), the cur-
rent approach without combinability measure by
setting λ to 0 (PartTreeSum(WC)). Human evalu-
ation results shown in Table 4 proves that linguis-
tic quality and factual accuracy have considerably
increased with the introduction of combinability
measure.

4.4 Discussions

Tree combination vs phrase combination: Ta-
ble 3 contains the fours input corpus sentences
in one test example and sentences generated by

PhraseAbSum (Bing et al., 2015) and the current
work (PartTreeSum), PhraseAbSum could gener-
ate only one sentence respectively, due to the hard
constraint for verb phrases to coincidentally share
same noun phrase in source sentences and the sen-
tence exhibit poor topical coherence. In contrast,
PartTreeSum is flexible to generate more sentences
and the Combinablity component in Equation 7
ensures that generated summary sentence contain
topically related content. The original content is
rephrased when required as observed in the sec-
ond half of generated sentences. In Table 3, the
summary sentences generated by PartTreeSum are
more topically coherent compared to those gener-
ated by PhraseAbSum.
Error analysis : We have analysed the low-rated
sentences from human evaluators with their cor-
responding set of partial trees. Though the par-
tial trees contained information which can be com-
bined in a single complex sentence, text aggre-
gation during linearization should be more effec-
tive to improve the quality of sentences. For fu-
ture work we plan to construct a neural genera-
tion model, which can aggregate and generate a
sentence from a set of partial trees while main-
taining factual accuracy with respect to the input
documents. Also there should be a means to treat
quotes separately apart from normal sentences.

5 Conclusion

We built a model for abstractive multi-document
summarization by extracting partial dependency
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trees to represent knowledge granules, and gen-
erating summary sentences using combinable
granules utilizing syntactic linearization. Com-
pared to existing methods for the task, our method
has the advantages of generating new sequential
sentential structures by rephrasing information if
required as decided by the linearization model.
On standard evaluation of using ROUGE metric
and human evaluation for qualitative aspects
of summary, this method showed competitive
accuracies to the state-of-the-art methods for
multi-document summarization.
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Abstract

In this paper we investigate the perfor-
mance of event argument identification.
We show that the performance is tied to
syntactic complexity. Based on this find-
ing, we propose a novel and effective sys-
tem for event argument identification. Re-
current Neural Networks learn to produce
meaningful representations of long and
short dependency paths. Convolutional
Neural Networks learn to decompose the
lexical context of argument candidates.
They are combined into a simple system
which outperforms a feature-based, state-
of-the-art event argument identifier with-
out any manual feature engineering.

1 Introduction

Event extraction is a difficult information extrac-
tion task. The 2005 Automatic Content Extrac-
tion evaluation (ACE 2005) defines three challeng-
ing sub-tasks: Entity mention detection, the task
of finding mentions of predefined entity types like
persons and organizations; event trigger detection,
the task of finding words, mostly verbs or nomi-
nalizations, indicating an event from a set of pre-
defined event types; and event argument identifi-
cation, the identification of entity mentions1 play-
ing a role in the events, as well as the identification
of the roles they play.

When we look at the evaluations in three of
the most influential recent event extraction papers
(Li et al., 2013, 2014; Chen et al., 2015; Nguyen
et al., 2016) we note that argument identification
performance is low, ranging from 52.7 to 55.4
F1. There are multiple reasons for the low perfor-
mance. First, argument identification suffers from

1In this work we make no distinction between ‘entity’,
‘time’, and ‘place’ for the sake of simplicity.

error propagation. Missed or spurious event trig-
gers or entity mentions may lead to missed or spu-
rious event arguments. Second, event structure is
complex. Multiple entities can play the same role
in the same event. Additionally, one entity can
play different roles across events (and thus cause
multiple event arguments). Consider the following
example.

A Palestinian boy as well as his brother
and a sister were wounded late Wednes-
day by Israeli gunfire.

Here, the three entity mentions (in bold) are
all Victims of the INJURE event triggered by
‘wounded’ as well as Targets of the ATTACK

event triggered by ‘gunfire’. Such structures can
become even more complex when more events and
more entities are involved.

The third reason for low argument identification
performance is syntactic complexity. Many argu-
ments are syntactically far away from their trig-
gers, making it hard to construct meaningful syn-
tactic features. Section 3 shows that performance
is tied to the length of the shortest dependency
path connecting trigger and argument.

Error sources one and two were already targeted
by systems which jointly infer triggers and their
arguments. To the best of our knowledge, no pre-
vious work identified syntactic complexity as the
third key problem for argument identification per-
formance, and no previous system aimed to de-
compose syntactic structure in order to learn better
classifiers for the task. The contributions of this
paper are the following.

1. We observe that syntactic complexity is a cru-
cial factor for argument identification. Argu-
ment identification performance highly cor-
relates with dependency path length (Section
3.1).
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2. We propose to represent dependency paths
with bidirectional Long Short-term Mem-
ory networks (biLSTMs) in order to account
for their sequential and compositional na-
ture. Using LSTMs to learn dependency path
representations proved effective in other ar-
eas like relation extraction (Xu et al., 2015)
and semantic role labeling (Roth and Lapata,
2016). We investigate their use for argument
identification.

3. We propose to represent lexical contexts of
event arguments with Convolutional Neural
Networks. Together with LSTMs, they form
an effective and simple argument identifier
which beats a state-of-the-art, feature-based
system without any manual feature engineer-
ing, especially for long dependency paths.

2 Baseline

2.1 Baseline Argument Extraction
Our baseline is a re-implementation of Li et al.
(2013). It is a state-of-the-art event extractor that
predicts event triggers and arguments jointly. Be-
cause of this joint inference, it avoids error propa-
gation and can draw features based on joint event
extraction decisions, e.g., how many arguments of
a specific type does a specific trigger have?

The system uses a structured perceptron with
beam search. It processes a sentence from left to
right and token by token. With each position it
advances, it constructs new hypotheses containing
event trigger and argument assignments. Then, it
prunes the hypotheses spaces to the n best alterna-
tives and processes the next token position. After
the last token was processed, the hypothesis with
highest score is selected as the final prediction.
This hypothesis contains trigger and argument as-
signments for the entire sentence.

2.2 Baseline Argument Extraction Features
Our baseline system uses a rich, hand-engineered
feature set. Feature templates can be divided into
local templates and global templates. Local tem-
plates characterize single arguments, and they in-
volve only the mentions and triggers of this argu-
ment. They capture, e.g., the trigger and entity
types, the mention context, and the dependency
path between trigger and mention.

Global templates on the other hand characterize
multiple arguments, either in terms of shared men-
tions, or in terms of shared roles. Global templates

Argument type Supporttrain F1dev
Victim 578 79.0
Instrument 256 77.1
Artifact 605 75.6
Attacker 574 47.3
Target 438 42.6
Giver 94 32.9

Table 1: Training set support and development set
baseline F1 for the three best and three worst per-
forming argument types.

can be divided into segment level templates and
sentence level templates. Segment level templates
capture characteristics of the mentions within one
event, e.g., the words between two mentions shar-
ing a role in one event, or the head and modifier of
nominal modifications like ‘IBM CEO’. Sentence
level templates capture characteristics of events
sharing mentions, e.g., the roles such a mention
fills, or the dependency path connecting the two
triggers. The system uses two dozen feature tem-
plates, resulting in 150,000 features for argument
identification.

3 Performance Analysis

3.1 Analysis of Baseline Performance
We start the analysis of argument identification
performance with the observation that despite the
low overall performance, some argument types
perform reasonably well. Table 1 reports deve-
lopment set precision, recall, and F1 of our base-
line for the three best and the three worst perform-
ing argument types in the development set.2 As
we can see, the difference between the best type
(Victim) and the worst type (Giver) is 46.1 F1

points. What is the reason for this big difference?
Our first assumption is that the best perform-

ing types have more training samples. Indeed,
Victim has considerably more samples than
Giver. Attacker however has nearly the same
amount of training samples but a much lower
performance (-31.7 F1). Instrument on the
other hand has only half the training samples of
Attacker, but a better performance (+29.8 F1).

To further investigate this, Figure 1a plots train-
ing set support in decreasing magnitude against
development set F1 for the 12 most frequent ar-
gument types. The plot is not conclusive: More

2We excluded types with less than 20 samples in the deve-
lopment set.
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(b) Increasing dependency path length plotted against baseline
devset F1.
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(c) Increasing lexical distance plotted against
baseline devset F1.

Figure 1: Training set support, lexical distance of trigger and argument, and dependency path length
plotted against development set performance.

training data does not automatically lead to better
performance. The most frequent argument type
Place with 881 training samples has an F1 of
61.1, whereas Victim with 34% less training
samples has an F1 of 79.0. Instrument has
about 70% less training samples and an F1 of 77.1.
If the number of training samples is not an impor-
tant factor for performance, what else could be?

One important factor is semantic variety: Some
roles can only be filled by one or two entity types,
and most of their mentions are role fillers. This
is especially true for Instrument which can
only be filled by vehicles and weapons in ACE
2005; in turn, most weapons are Instruments.
This is reflected in the good performance of
Instrument in Table 1 and Figure 1a.

However, most roles can be filled by more than
two entity types, and their potential fillers are more
frequent than vehicles and weapons: Entity for
example can be filled by persons, organizations,
and geopolitical entities. At the same time, most
of the respective mentions are not Entities.
Even if a role can only be filled by one entity type,
it may be that most occurrences are not role fillers,
making the task to correctly fill those roles harder.
Consider Time for example, which can only be
filled by time mentions, yet it has only a mediocre
performance of 67.7 F1 points on the development
set. Semantic variety alone cannot explain the big
performance differences between argument types.

Another important factor is syntactic complex-
ity: How long and diverse are dependency paths
connecting arguments and triggers? To inves-
tigate the effect of syntactic complexity, Figure
1b depicts length of dependency paths connecting
triggers and arguments in decreasing magnitude
against development set F1. In this plot, we see
a much clearer trend: Shorter syntactic distance
leads to better performance. Length-1 paths (di-
rect trigger-argument dependency) have an F1 of
78.2. Length-2 path F1 drops to 56.4, and to 30.8
for length-3 paths. Length-4 and length-5 paths
have an F1 of 21.3 and 12.5, respectively.

This trend is also reflected in the performance
of individual argument types. The most frequent
type Place has a high average path length of 2.2
and a low F1 of 61.1. Victim on the other hand
has considerably less training data, but an average
path length of 1.5 and an F1 of 79.0. For the three
best performing types, the average path length is
1.7 vs. 2.3 for the three worst performing types.

Dependency path length is related to lexical
distance – the longer a dependency path, the
more words are usually between trigger and ar-
gument. To investigate the effect of lexical dis-
tance, Figure 1c depicts the number of words be-
tween trigger and argument against development
set performance. Here, we see a somewhat
less clearer trend: Increasing lexical distance
leads to lower performance; however, with a

824



considerable increase between distances 4 and
5, and a performance plateau between 8 and
11. Word sequences are much more diverse
than dependency paths. A dependency path

like returning
nmod:from−−−−−−−→summit nmod:in−−−−−→Ireland

abstracts from actual word sequences and ignores
many words which are less relevant for argument
identification, like adjectives and adverbs. This in
turn alleviates data sparsity.

Syntactic complexity is a crucial factor for argu-
ment identification, both in terms of overall per-
formance as well as and in terms of individual
argument type performance. Therefore, it is in-
evitable to reduce or better handle syntactic com-
plexity. Most systems incorporate dependency
paths merely as strings, or rely on direct depen-
dencies of triggers and arguments. They do not
decompose or further analyze dependency paths
in order to find relevant substructures, or to deal
with data sparsity of long paths. In Section 4,
we present a simple but efficient system which di-
rectly addresses syntactic complexity.

3.2 Dependency Paths

We now illustrate the benefits and difficulties of
using dependency paths for argument identifica-
tion. Our dependency paths are lexicalized; they
always start with the trigger word and end with a
mention word.3 We say that a path has length 1 if
trigger and argument are directly related, length 2
if the path includes one intermediate dependency,
etc.

Often, short dependency paths directly reflect
event argument structure:

killed
nsubj−−−→ father-in-law

killed
dobj−−→ him

The trigger (‘killed’, a DIE event) has two de-
pendencies, ‘father-in-law’ being the subject and
‘him’ being the object. Even without looking at
more context we can say with confidence that the
subject must be the Agent of the event and the
object must be the Victim. Even longer paths
may be quite clear:

returning
nmod:from−−−−−−−→summit nmod:in−−−−−→Ireland

Here, ‘returning’ indicates a TRANSPORT event.
The path conveys the information that some entity

3For multiword expressions, the path connects trigger and
entity mention head.

returns from a summit in Ireland, making ‘Ireland’
the Origin of the event.

Of course, not all dependency paths are as easy
to interpret. The following examples show the ne-
cessity to decompose dependency paths in order to
catch similarities between them.

war
dobj←−− fight

nsubj−−−→ U.S.

war nmod:to←−−−−− go
nsubj−−−→ we

These paths are more complex than previous
ones because trigger and argument are governed
by other words, namely by ‘fight’ and ‘go’. In
both cases, ‘war’ triggers an ATTACK event and the
subject is an Attacker argument. Humans can
easily spot similarities in the two paths. The argu-
ments are in both cases the subjects of the govern-
ing verbs: ‘U.S.’ is the entity fighting a war and
‘we’ is the entity going to war. However, the left
sides of the paths look quite different: In one case,
‘war’ is the direct object of the governing verb,
in the other it is the nominal modifier. Addition-
ally, the governing verbs do not share meaning.
In order to catch the similarities, a system needs
the ability to decompose the paths and to learn the
meaning of sequences of words and dependencies.

4 Approach

4.1 Problem Encoding

We cast argument identification as a classification
task. For a trigger-mention pair (t,m) we make
one instance for training/testing consisting of (a)
event type, mention type, and text genre, (b) the
shortest lexicalized dependency path t → m and
(c) the sentence. Figure 2 depicts the pair (‘return-
ing’, ‘Ireland’). Event type (TRANSPORT), entity
type (loc) and genre (newswire, not depicted) con-
stitute the first information layer. The second In-
formation layer is the lexicalized dependency path
(returning nmod:from−−−−−−→summit nmod:in−−−−→Ireland). The
third information layer is the sentence.

The three layers correspond to the most valu-
able information sources for the baseline. How-
ever, the baseline draws only simple categorical
features from them. Most notably, it relies on hav-
ing seen dependency paths during training because
it cannot decompose them into meaningful sub-
paths, which is crucial for better identification per-
formance (Section 3.1). The neural network archi-
tecture we present in Section 4.2 is able to auto-
matically construct more meaningful features.
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Bush returning to the United States from his summit in Ireland .
TRANSPORT loc

nmod:from→ nmod:in→

event argument type?

Figure 2: A training/test instance. Depicted in red is given information, depicted in blue is requested
information. The trigger is underlined, the entity mention is bold.

4.2 biLSTM/CNN: Architecture

Input to our system (called biLSTM/CNN) are in-
stances as described in Section 4.1. Each instance
has three information layers, each layer is pro-
cessed by a separate component. Figure 3 depicts
the system architecture. The figure is split in four
(bottom, middle left/right, and top), each part vi-
sualizing one component, plus the final classifica-
tion. We will now describe each part. In the fol-
lowing, ⊕ means the concatenation of vectors.

Bias
The bias vector b provides a representation of the
event type, entity type, and genre. The intuition
behind the bias vector is that arguments are ex-
pressed differently across event types, entity types,
and genres. b is input to the other two components
and helps to learn better representations.

More formally, b is the last layer of a fully-
connected three layer neural network whose input
is defined as follows: b1 = en ⊕ ev ⊕ ge, where
en, ev, and ge are representations of the entity
type, event type, and genre. They are randomly
initialized and will receive standard backpropaga-
tion updates during training.

biLSTMs
Representing dependency paths with Long Short-
term Memory networks (LSTMs, Hochreiter and
Schmidhuber 1997) shows good results in fields
like relation extraction (Xu et al., 2015) and se-
mantic role labeling (Roth and Lapata, 2016). We
investigate their use for argument identification.

Our LSTMs produce a representation of lexi-
calized dependency paths, such that similar paths
have similar representations. LSTMs automati-
cally learn meaningful patterns in arbitrarily long
paths. For example, they learn that the paths

attacked
nsubj−−−→US and attacked

nsubj−−−→Iraq have sim-
ilar representations given that both indicate an
Attacker and only differ in two closely re-

lated words. They also learn that attacked
dobj−−→Iraq

has a different representation because the change

from nsubj to dobj often distinguishes between
Target and Attacker.

Input to our LSTM is a lexicalized dependency
path P = (w1, d

1:2, w2, . . . , d
n−1:n, wn) where

w1 is the trigger word, wn is the argument word,
and da:b is the dependency between wa and wb.
The element at position i in P is resolved by
a vector vi = ei ⊕ disttrigger ⊕ distmention ⊕ b.
ei is either a pre-trained word embedding or a
randomly-initialized dependency embedding, ac-
cording to the element type at position i. disttrigger
and distmention refer to the lexical distance of a
word to the trigger or the argument word, re-
spectively.4 Finally, b is our bias vector as de-
fined above. We keep word embeddings fixed, but
dependency embeddings receive backpropagation
updates during training.

P is processed by a bidirectional LSTM
(biLSTM). For a path element i, the biLSTM
produces two (so-called) hidden states hfi (from
the forward LSTM) and hbi (from the backward
LSTM). These vectors contain information about
the respective input, i.e., vi, as well as the hid-
den states of previously processed elements, i.e.
elements to the left of i for hfi and elements to
the right for hbi . We average the hidden states be-
longing to the same input vector: ai = 1/2(hfi +
hbn−i+1). Instead of averaging one could com-
bine the vectors differently, e.g., by concatenat-
ing them. However, none of the other possibilities
worked better in our case.

Using biLSTMs has the advantage that each ai
contains information from the entire sequence; us-
ing only a forward LSTM limits the representa-
tions at each position to the left context.

The middle-left part of Figure 3 depicts the biL-
STM and its final output, the average vectors a.

Convolutional Neural Networks
In contrast to LSTMs, which are designed to
capture the meaning of sequences, Convolutional
Neural Networks (CNNs) are often used to pro-

4Dependencies have the same distance as their governor.
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a1 a3 a5a2 a4

e

disttrigger
distmention

b

returned nmod:from summit nmod:in Ireland Bush returned from . . .

e

disttrigger
distmention

b

c1,1c1,2
c1,3 c2,1c2,2

c2,3 cn,1cn,2
cn,3

maxmaxmax

ĉ1 ĉ2 ĉ3

0110

0.7.30

argument type mask

probability distribution

entity event genre

biLSTM CNN

bias

softmax

Figure 3: biLSTM/CNN architecture. Process flow is depicted from bottom to top. Embeddings e
depicted in white are fixed, every other node receives backpropagation updates during training. Section
4.2 describes each component in detail.

duce bag-of-words-like representations. They
were successfully applied to many NLP problems
(Kim, 2014; Johnson and Zhang, 2015, inter alia).

Input to our CNN is a tokenized sentence where
each word at position i is replaced by a vector xi
which is almost identical to the definition of vi
above. The only difference is that xi contains only
word embeddings.

CNNs apply filters (also called kernels) to a
fixed number of consecutive input vectors. Fil-
ters are then moved by a certain offset (also called
a stride) and re-applied. In our case, one filter
produces one feature for one position i: ci =
σ(W · xi:i+h−1 + s) where σ is a non-linearity
(tanh in our case), W is a weight matrix, s ∈ R is

a bias, and xi:i+h−1 is a concatenation of vectors
[xi ⊕ xi+1 ⊕ . . . ⊕ xi+h−1]. h is the filter width.
W and s receive backpropagation updates during
training, word embeddings are fixed.

We use CNNs to represent a sentence. The sen-
tence is important because the lexical contexts of
trigger and mention convey valuable information
for argument identification. This means that in our
case a filter of width h produces features for the
entire sentence, c = [c1, c2, . . . , cn−h+1]. We ap-
ply max-pooling afterwards, i.e., the final output
of one CNN filter is given by ĉ = max(c). Our
CNN uses 20 filters for filter widths 2,3,4. The
middle-right part of Figure 3 exemplifies a CNN
with 3 filters and filter width 2.
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Final Classification
Finally, the averaged biLSTM hidden vectors for
the dependency path and the max values for all
CNN filters applied to the entire sentence serve as
input to a softmax layer which produces a prob-
ability distribution over all argument types. We
pick the class with the highest probability as our fi-
nal result. However, choosing between all classes
is unnecessary because not all combinations of
event type, entity type and argument type are pos-
sible. For example, the argument type Vehicle
can only be assigned to TRANSPORT events, and
only mentions with entity type veh can be possible
fillers. We modify softmax to assign zero proba-
bility to classes which are disallowed:

yi =
mie

xi∑
jmjexj

The above equation gives the probability for a
particular argument type, yi, where x is the input
vector to softmax, and m is a binary vector indi-
cating allowed types. Note that yi > 0 only if the
respective argument type is allowed.

The top part of Figure 3 visualizes the softmax
component. The input vector is first reduced to
29 dimensions (28 argument types and one ‘null’
type), multiplied with the restriction mask, and
forwarded to our modified softmax.

Parameter Averaging
Inspired by the Averaged Perceptron (Freund and
Shapire, 1999; Collins, 2002) we do not use the
learned parameters directly for prediction. In-
stead, in each epoch we keep a moving average
of the parameters:

θV = αθT + (1− α)θV−1

Here, θT is the current weight vector after train-
ing epoch T , θV−1 is the averaged weight vector
before the new update, and α is the fraction of how
much θT influences θV . We set α = 0.1. θV is
then used during testing. Note that this procedure
does not change the training in any way.

With the formulation above, older weight vec-
tors have less influence on θV than more recent
vectors. After every training epoch, we evaluate
θV on the development set and keep the version
with highest F1 for the final evaluation.

Parameter averaging leads to better generaliza-
tion of our system. Furthermore, performance
fluctuation for different training runs is reduced.

5 Experiments

5.1 Data, Evaluation Metrics and Parameters

We evaluate on ACE 2005 and use the same data
split as most previous approaches (Ji and Grish-
man, 2008; Nguyen et al., 2016, inter alia). We
follow standard evaluation procedures: An event
argument is correct, if its span and role match a
reference argument (Ji and Grishman, 2008). Sec-
tion 1 gives an overview over the annotations pro-
vided in ACE 2005.

Because we want to measure argument iden-
tification performance by itself, we must ensure
that compared systems use the same entity men-
tion and trigger predictions; the best way to en-
sure this is to set both to gold. Using gold entity
mentions is a common setting in event extraction
(Li et al., 2013; Chen et al., 2015; Nguyen et al.,
2016, inter alia). Since we have evaluation num-
bers only for biLSTM/CNN and our baseline in
this setting, there is no direct comparability with
previous work other than Li et al. (2013).

Both systems were trained on the same training
set, and hyperparameters were optimized on the
same development set. We trained both systems
using enhanced++ dependencies (Schuster and
Manning, 2016).

We optimize hyper parameters for
biLSTM/CNN using Random Search (Bergstra
and Bengio, 2012). We use a batch size of 450, 20
CNN filters, 150 LSTM dimensions, and 130 bias
dimensions. In order to deal with class imbalance,
we set the weight of non-null training samples to
2; this value is used to scale the loss accordingly.
We used Keras (Chollet et al., 2015) version 2.0.2
with the TensorFlow backend as the learning
framework. Training the network on an NVIDIA
P40 GPU takes about 20 seconds per epoch.

5.2 Experiments and Results

We report the results of four main experiments,
namely measuring argument identification perfor-
mance in general, grouped by argument type,
grouped by dependency path length, and using
only a dependency path biLSTM. We report pre-
cision, recall, and F1.

Training neural networks is usually a non-
deterministic process. In order to increase relia-
bility, training was performed five times and the
evaluation on the test set was averaged across five
evaluation runs, one run per trained model.
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Baseline biLSTM/CNN
P R F1 P R F1 Support ∆F1

1 Micro 67.7 58.7 62.9 63.1 68.3 65.5† 916 2.6±0.5
2 dep-path biLSTM - - - 64.9 64.0 64.4 916 1.5
3 Time 69.9 70.9 70.4 70.9 80.1 75.2 134 4.8
4 Entity 63.7 56.7 60.0 57.7 65.2 61.2 127 1.2
5 Place 64.0 41.7 50.5 52.1 48.0 49.9 115 -0.6
6 Person 74.6 61.7 67.6 69.1 78.3 73.4 81 5.8
7 Artifact 78.5 71.8 75.0 70.3 77.2 73.5 71 -1.5
8 Destination 63.4 66.7 65.0 65.6 80.0 72.1 39 7.1
9 Crime 84.4 100.0 91.6 82.5 99.5 90.2 38 -1.4
10 Attacker 60.7 47.2 53.1 52.4 66.6 58.6 36 5.5
11 Defendant 70.0 63.6 66.7 67.6 75.2 71.1 33 4.4
12 Agent 64.7 34.3 44.9 55.9 40.6 46.8 32 1.9

Table 2: Test set precision, recall, and F1 for the baseline and biLSTM/CNN, ordered by frequency. Reported are argument
types with more than 30 instances. Mirco reports micro-averaged numbers, averaged across 5 training and testing rounds,
‘dep-path biLSTM’ reports numbers using only a dependency path biLSTM, the other rows report numbers per argument type.
‘Support’ reports the number of instances for the respective type. ‘∆F1’ reports the difference in F1 between biLSTM/CNN
and the baseline, as well as the standard deviation of biLSTM/CNN F1. † means statistically significant for every training and
testing round at the p < 0.05 level.
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(a) Test set F1 performance plotted against dependency path
length. The red curve depicts baseline F1, the blue curve de-
picts biLSTM/CNN F1.

Baseline biLSTM/CNN
Length F1 F1 Support ∆F1

1 80.2 83.5 432 3.3
2 53.9 59.5 248 5.6
3 27.8 36.9 123 9.1
4 31.5 35.4 59 3.9
5 29.3 14.3 26 -15.0

(b) Test set F1 by dependency path length for the baseline
and biLSTM/CNN. ‘Support’ reports the number of instances,
‘∆ F1’ reports the difference in F1 between biLSTM/CNN and
the baseline.

Figure 4: Test set F1 by dependency path length for the baseline and biLSTM/CNN.

Table 2 reports micro-averaged evaluation num-
bers for the baseline and biLSTM/CNN (Line 1),
a variant which uses only a dependency path biL-
STM (without context CNNs, Line 2) as well as
numbers per argument type (Lines 3-12). The
column ‘Support’ gives the number of instances
for the respective evaluation. Finally, the col-
umn ‘∆ F1’ reports the difference in F1 between
biLSTM/CNN and the baseline, positive num-
bers meaning better biLSTM/CNN performance,
as well as the standard deviation of the biL-
STM/CNN F1 score.

As we can see in Table 2, Line 1, biLSTM/CNN
has a lower precision and a considerably higher
recall than the baseline, resulting in an increase
of 2.6 points in micro-averaged F1 (with a stan-
dard deviation of 0.5 F1 points). This is statis-
tically significant at the p < 0.05 level.5 Note

5We measured significance using approximate random-
ization (Noreen, 1989). Each of the 5 models we trained per-
formed significantly better than the baseline.

that biLSTM/CNN does not use any manually en-
gineered features, whereas the baseline uses two
dozen feature templates, resulting in 150,000 fea-
tures. Furthermore, biLSTM/CNN is a simple
trigger-argument-pair classifier, whereas the base-
line jointly predicts all arguments of all triggers in
a sentence.

When we compare the performance using de-
pendency paths alone (Line 2), recall drops by 4.3
points, while increasing precision slightly by 1.8
points, resulting in a decrease of 1.1 F1 points.
The main advantage of the CNN is that it makes
the lexical context outside of the shortest depen-
dency path available to the system, which reflects
itself in the increased recall.

When we look at individual argument types,
we note that biLSTM/CNN improves performance
for all but three types. Destination has the
highest performance improvement (7.1 F1 points),
Artifact the highest loss (-1.5 F1 points).
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Time as the most frequent type in the test data
has a high improvement of 4.8 F1 points.

Figure 4 reports micro-averaged numbers for
the baseline and biLSTM/CNN per dependency
path length. Figure 4a is a visualization of Ta-
ble 4b. In total, 888 arguments (out of the 916 in
the test set) were connected to their triggers by de-
pendency paths of length 5 or less. biLSTM/CNN
performs considerably better for lengths 1-4, es-
pecially for paths of length 2 (+5.6 F1) and 4
(+9.1 F1). Length-1 paths, which are nearly as
frequent as all other path lenghts together, have
an increased performance of 3.3 F1 points. Only
length-5 paths (with a test set support of 26) lose
15 F1 points, mainly because biLSTM/CNN pro-
duced some false positives for this class.

Most of biLSTM/CNN’s errors are either false
positives (wrongly classified as an argument) or
false negatives (missed an argument). When it
confuses argument types, it usually confuses op-
posing types like Seller and Buyer.

6 Related Work

To the best of our knowledge, no other paper is tar-
geting event argument identification directly. For
this reason, we first summarize ‘neural’ event ex-
tractors, for which argument identification is one
necessary step. Then, we report work on repre-
senting dependency paths with neural networks.

Chen et al. (2015) use a pipelined event extrac-
tor based on CNNs. The input is a sentence, and
the output is, in phase one, all triggers in the sen-
tence and, in phase two, a classification of the ar-
gument type of a trigger-argument candidate pair.
The second phase is similar to the setting we ana-
lyze in this paper.

Nguyen et al. (2016) propose a joint and hybrid
approach using a Gated Recurrent Unit network
(Cho et al., 2014), a variant of an LSTM. Input to
their network is the word embedding matrix of a
sentence. In contrast to Chen et al. (2015), they
predict triggers and arguments jointly. They con-
catenate a one-hot representation of dependencies
to each word embedding. In contrast to this paper,
they do not attempt to directly operate on syntactic
structure. Instead, the GRU goes over the sentence
and passes its hidden states on to higher levels
of the network, which dynamically output triggers
and arguments for the entire sentence. Their ap-
proach is hybrid because they additionally use the
features from Li et al. (2013) We did not choose

this system as our baseline because it is consider-
ably more complex and would heavily rely on the
same features as our baseline in the setting we in-
vestigate in this paper.

Xu et al. (2015) use LSTMs for relation extrac-
tion. Similar to our work, they use LSTMs to com-
pute a representation of the shortest dependency
path connecting two related entities. While the
general learning scheme is similar to our biLSTM
component, they represent dependency paths dif-
ferently. Instead of one lexicalized path, they con-
struct four different representations, using only de-
pendency labels, only words, only part-of-speech
tags, and only WordNet categories. This results in
four LSTMs whose output is concatenated.

Roth and Lapata (2016) use dependency path-
encoding LSTMs for semantic role labeling
(SRL). Event extraction and SRL are similar in
terms of structures: SRL also involves finding
‘triggers’ and ‘arguments’. They differ however
in the nature of these structures. For example,
potential arguments in SRL may be assigned to
every verb in a sentence, while in event extrac-
tion, potential arguments must be assigned only
to event triggers. Similar to our work, Roth and
Lapata (2016) use an LSTM which processes a
dependency path connecting predicate and argu-
ment. Their dependency paths mix words, part-of-
speech tags and dependency relations.

7 Conclusions

In this paper, we show that argument identification
performance is tied to the length of dependency
paths connecting triggers and arguments. We pro-
pose a novel and efficient neural network that tar-
gets syntactic complexity. Without manual feature
engineering, it learns to produce meaningful repre-
sentations of dependency paths and to extract rel-
evant lexical context of arguments. We show that
our system outperforms a state-of-the-art baseline
which uses manually engineered features and pre-
dicts arguments jointly.
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Abstract

Cross-lingual open information extrac-
tion is the task of distilling facts from
the source language into representations
in the target language. We propose
a novel encoder-decoder model for this
problem. It employs a novel selective de-
coding mechanism, which explicitly mod-
els the sequence labeling process as well
as the sequence generation process on
the decoder side. Compared to a stan-
dard encoder-decoder model, selective de-
coding significantly increases the perfor-
mance on a Chinese-English cross-lingual
open IE dataset by 3.87-4.49 BLEU and
1.91-5.92 F1. We also extend our ap-
proach to low-resource scenarios, and gain
promising improvement.

1 Introduction

Cross-lingual open information extraction is de-
fined as the task of extracting facts from the source
language (e.g., Chinese text in Fig. 1(a)) and rep-
resenting them in the target language (e.g. English
predicate-argument information in Fig. 1(c))1. It is
a challenging task and of great importance to solve
the cross-lingual portability issues of various NLP
systems which are in the support of open informa-
tion extraction (Sudo et al., 2004). Additionally,
there is often a great demand for rapid access to
information across languages, especially when a
large-scale incident occurs (Lu et al., 2016).

Conventional solutions decompose the task as
a pipeline of machine translation followed by

1The predicate-argument information is normally repre-
sented by relation tuples. Here, we use a richer representation
(i.e., a tree structure) adopted by PredPatt (White et al., 2016),
a lightweight tool for identifying predicate-argument infor-
mation, available at https://github.com/hltcoe/
PredPatt.

P
[ Soldiers

A
started
P

mortars
A

]
PP

[ Soldiers
A

firing
P

]
P

[(Soldiers:ah) started:ph firing:ph (mortars:ah )]][(Soldiers:ah)

��.������������
(a)

(d)

(e)

started

firingSoldiers

Soldiers mortars

ARG ARG

ARG ARG

SOMETHING

(c)

 �	�����������������
������
(b)

Figure 1: Example of cross-lingual open IE:
Chinese input text (a), English translation (b),
English predicate-argument information (c), lin-
earized PredPatt output (d) and output with sep-
arated predicate and argument labels (e).

open information extraction (or vice versa), which
causes a deviation since machine translation at-
taches equal importance to adequacy and fluency
of the intermediate translation results (Snover
et al., 2009), whereas the final goal focuses more
on extracting correct predicates and arguments.

Recently Zhang et al. (2017a) proposes an end-
to-end solution that outperforms the conventional
pipeline solutions. They recast cross-lingual open
IE as a sequence-to-sequence learning problem
by converting the target facts in the tree struc-
ture (Fig. 1(c)) into a linear form called lin-
earized PredPatt2 (Fig. 1(d)), and employ a stan-

2Linearized PredPatt is converted from the PredPatt tree
structure by taking an in-order traversal of every node in the
tree. See Zhang et al. (2017a) for details.
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dard encoder-decoder model to address the prob-
lem (from (a) to (d) in Fig. 1). In the linearized
PredPatt (Fig. 1(d)), special labels are appended
to tokens as type indications. Brackets and paren-
theses have to be inserted to delimit predicate and
argument spans. Such a workaround inevitably ex-
pands the vocabulary space and increases the bur-
dens on the decoder, which is not ideal for sparse
data scenarios and limits the overall performance.

In this paper, we reformulate cross-lingual open
IE as a sequence generation and labeling problem
(from (a) to (e) in Fig. 1) by separating the predi-
cate and argument labels from the target linearized
PredPatt, and removing unnecessary parentheses.
We propose a novel encoder-decoder model which
employs a selective decoding mechanism to ex-
plicitly model the sequence labeling as well as the
sequence generation process. The new model sub-
stantially reduces the vocabulary space, eases the
burden on the decoder, and leads to a significant
gain of performance. And the natural of the selec-
tive decoding mechanism enables a joint training
strategy that optimizes sequence generation and
labeling simultaneously. In addition, we introduce
an adapted beam search algorithm to further im-
prove the prediction quality.

Experimental results demonstrate that our
model employing the selective decoding mecha-
nism significantly outperforms the previous end-
to-end solution not only on a Chinese-English
dataset, but also in low-resource cross-lingual
open IE scenarios.

2 Problem Formulation

Our goal is to learn a model which directly maps
a sentence input X in the source language into a
sentence Y in the target language, and simultane-
ously labels each token in Y with type information
T . For cross-lingual open IE, the types are pred-
icate and argument. It is important to label types
because they are used to annotate predicates and
arguments in the generated tokens. Formally, we
regard the input as a sequence X = x1, · · · , x|X|,
and the output as two sequences (Y, T ): (1) the
sentence in target language Y = y1, · · · , y|Y |, and
(2) the type information T = t1, · · · , t|Y |, where
ti ∈ T is the label for the token yi, and |X| and
|Y | are the length of the sequence X and Y re-
spectively. Our model maps X into (Y, T ) using a
conditional probability which is decomposed as:

Soldiers

started

Soldiers

firing

mortars

<eos>

s0

<bos> Soldiers started Soldiers firing mortars

Predicate
Decoder

Argument
Decoder

PA A P PA

Selector

Figure 2: Selective decoding process.
(Brackets and attention layers are omitted.)

P (Y, T | X) =
∏|Y |

i=1
P (yi, ti | y<i, t<i, X)

=
|Y |∏
i=1

P (yi | y<i, t≤i, X)P (ti | y<i, t<i, X) (1)

where y<i = y1 · · · yi−1 and t≤i = t1 · · · ti.
Equation (1) can be interpreted as at each de-

coding time step, the model first decides which
type (label) of tokens to generate, and then gen-
erates a token for that type.

3 Proposed Model

To learn the factored conditional probabilities
as shown in Equation (1), we propose a novel
encoder-decoder model with the selective decod-
ing mechanism: on the encoder side, an input sen-
tence X is encoded into vector representations;
on the decoder side, the selective decoding mech-
anism employs multiple decoders each of which
learns the conditional probability of decoding a
specific type of token (i.e., P (yi | y<i, t≤i, X)),
and a selector learning to decide which type of de-
coder to use (i.e., P (ti | y<i, t<i, X)) at each de-
coding time step.

Fig. 2 illustrates the selective decoding process
for the example shown in Fig. 1(e). s0 is the ini-
tial decoder hidden state initialized by the last hid-
den state of the encoder. Special tokens 〈bos〉 and
〈eos〉 are added to the beginning and the end of
the sequence to indicate the start and the finish of
decoding. The connections at each decoding time
step are dynamically changing according to the de-
cision of the selector. Specifically, at the decoding
time step i, firstly the selector on the top decides to
use which type of decoder Dti ∈ {DP, DA}3, and

3DP stands for the predicate decoder, and DA for the ar-
gument decoder.
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then the decoder Dti decodes the token yi which
is naturally given the label ti.

In addition to distinguish between labels, the
multiple decoders used by the selective decoding
mechanism has two prominent advantages over
the single standard RNN decoder: (1) Multiple de-
coders learn different conditional probability dis-
tributions for predicate and argument generation
respectively. For instance, given the same input to-
ken ”wanted”, the predicate decoder would like to
next generate tokens such as ”to” and ”by” which
starts a prepositional phrase, whereas the argu-
ment decoder would be in favor of tokens such
as ”a” and ”him” which starts a direct object. (2)
Multiple decoders reduce the decoder vocabulary
size, which eases the burden of sequence genera-
tion. Moreover, we propose an efficient architec-
ture that supports batch training of the model. The
details of the architecture are described in the De-
coder with Selective Decoding section.

3.1 Encoder
The encoder employs a bi-directional recurrent
neural network (Schuster and Paliwal, 1997) to en-
code the input sequence X = x1, · · · , x|X| into a
sequence of hidden states h = h1, · · · , h|X|. Each
hidden state hi in h is a concatenation of a left-
to-right hidden state

−→
hi ∈ Rn and a right-to-left

hidden state
←−
hi ∈ Rn,

hi =

[←−
h i
−→
h i

]
=

[←−
f (xi,

←−
h i+1)

−→
f (xi,

−→
h i−1)

]
,

where
←−
f and

−→
f are two L-layer stacked

LSTMs units (Hochreiter and Schmidhuber,
1997).

3.2 Decoder with Selective Decoding
Unlike the single standard RNN decoder (Bah-
danau et al., 2014), which recurrently uses the
same decoder to generate tokens, our model dy-
namically selects different decoders at each decod-
ing time step to generate tokens (Fig. 2). How-
ever, since the decoding path may be different for
each input sequenceX , directly running the selec-
tive decoding process suffers from a key technical
issue: it does not support batched computation,
which makes them slow and unwieldy for large-
scale NLP tasks (Bowman et al., 2016).

To address this issue, we introduce a general de-
coding architecture that is applicable to all selec-
tive decoding processes. The detailed connection

si-1

mi

yi-1

yi-1

yi
mi[P]

mi[A]

mi[P]

mi[A]

si

Predicate LSTMs

Argument LSTMs

Selector

Vector Transfer

Copy

Concatenate

Pointwise Add

Legend

Figure 3: Detailed connection at a decoding step.
(Attention layers are ommited.)

in the architecture is shown in Fig. 3. At each de-
coding time step, the model feeds the input token
and the previous hidden state to all types of de-
coders, and use a mask vector created by the selec-
tor to select the decoder output to generate tokens
and update the hidden state.

Formally, let si ∈ Rn denote the hidden state at
decoding time step i. The last left-to-right hidden
state

−→
h |X| from the encoder is used to initialize

the first hidden state s0 in the decoder.
Selector: At the decoding time step i, given the
sequence of encoder hidden states h and the pre-
vious decoder hidden state si−1, the selector com-
putes the conditional probability of ti (i.e., the type
of decoder to use) as:

P (ti | y<i, t<i, X) = g(ti, si−1,h)
=softmax(Uosi−1 + Coci−1 + bo)[ti], (2)

where Uo ∈ R|T |×n, Co ∈ R|T |×n and bo ∈ R|T |
are weight matrices and bias.4 [ti] indexes the ele-
ment of a vector that corresponds to the type ti.
Attention: The context vector ci−1 captures
the attention to the encoder side (Bahdanau
et al., 2014; Luong et al., 2015), computed as a
weighted sum of encoder hidden states: ci−1 =∑|X|

j a(i−1)jhj . The weight a(i−1)j is computed
by:

a(i−1)j =
exp (score(si−1, hj))∑|X|
j′=1 exp (score(si−1, hj′))

, (3)

where score(si−1, hj) = sᵀ
i−1Wahj , and Wa ∈

Rn×2n is a transform matrix.
Hidden State Update: According to the condi-
tional probability P (ti | y<i, t<i, X), a mask vec-
tor mi is created, which is used to mask out the

4|T | is the number of token types. In the example shown
in Fig. 3, T = {P,A}, and |T | = 2.
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decoders’ hidden states,

mi[ti] =


1, if ti=argmax

t′i∈T
P (t′i |y<i,t<i,X)

0, otherwise

Then the hidden state si for the decoding time
step i is computed by:

si =
∑
ti∈T

mi[ti]fti(yi−1, si−1, ci)

where ci is the context vector capturing the atten-
tion, computed in the same way as Equation (3).
fti is L-layer stacked LSTMs for the type ti.
In Fig. 3, there is an L-layer stacked LSTMs for
generating predicate tokens fP, and another L-
layer stacked LSTMs for generating argument to-
kens fA. They have untied parameters.
Token Generation: The conditional probability
of the token yi with the type ti is defined as:

P (yi | y<i, t≤i, X) = g′(yi−1, si−1,h,mi)
=softmax(U ′osi + C ′oci + b′o)[yi], (4)

where U ′o ∈ R|V|×n, C ′o ∈ R|V|×n and bo ∈ R|V|
are weight matrices and bias.5

3.3 Training
In the training procedure, our optimization objec-
tive is to minimize the negative log-likelihood of
the sequence Y and its type information T given
the input sequence X over the training data, de-
fined as:

minimize−
∑

(X,Y,T )∈D
logP (Y, T | X)

According to Equation (1), the log-likelihood
logP (Y, T | X) can be decomposed as:

|Y |∑
i=1

[logP (yi |y<i,t≤i,X)+logP (ti |y<i,t<i,X)],

where P (yi |y<i,t≤i,X) models the sequence gen-
eration process, and P (ti | y<i,t<i,X) models the
sequence labeling process. They are computed by
Equations (4) and (2) respectively. The decom-
position of the log-likelihood into these two parts
enables a joint optimization for the sequence gen-
eration and labeling process simultaneously.

We use the Adam optimizer (Kingma and Ba,
2014) and mini-batch gradient to solve this opti-
mization problem. To prevent overfitting, we ap-
ply dropout operators (Srivastava et al., 2014) to
non-recurrent connections between LSTM layers.

5|V| is the vocabulary size of the target language.

3.4 Inference

In the inference procedure, we predict the se-
quence Y and its type information T for an input
sequence X according to:

(Ŷ , T̂ ) = argmax
(Y ′,T ′)∈V|Y ′|×T |Y ′|

P (Y ′, T ′ | X)

V |Y ′| × T |Y ′| is the set of all possible (Y ′, T ′)
pairs. And (Ŷ , T̂ ) can be directly converted to the
form of linearized PredPatt which is used for eval-
uation.

However, it is impractical to iterate over all
these (Y ′, T ′) pairs during inference: here, we
use beam search to generate tokens and labels as
shown in Algorithm 1.

Algorithm 1 Beam search for selective decoding
Input: X - sequence in the source language
Output: (Y, T ) - sequence in the target language

and its type information
1: step← 0
2: b← beam size
3: l← max decoder length
4: fw hid← Encoder(X)
5: TERMINATED STATES.init(∅)
6: start state← State(〈bos〉, fw hid)
7: BEAM.init({start state})
8: while BEAM 6= ∅ and step < l do
9: step← step+ 1

10: ACTIVE STATES.init(∅)
11: for state in BEAM do
12: . Select the decoder.
13: t← Selector(state)
14: . Generate the next token.
15: states← Decodert(state)
16: . Update the active states.
17: ACTIVE STATES.update(states)
18: BEAM.clean()
19: . Get the top-k candidates.
20: for state in top(b, ACTIVE STATES) do
21: if state.decoded token = 〈eos〉 then
22: b← b− 1
23: . Move out the terminated states.
24: TERMINATED STATES.add(state)
25: else
26: . Update the beam.
27: BEAM.add(state)
28: TERMINATED STATES.update(BEAM)
29: state← top(1, TERMINATED STATES)
30: return (state.Y, state.T )
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The beam is used to increase the search space
for the sequence Y in the target language. At each
decoding time step, we first greedily select the
type of decoder, and then generate candidate to-
kens from the selected decoder to update the beam.
When the special token 〈eos〉 is generated, we re-
move the candidate sequence from the beam.

4 Related Work

The model we propose in this paper is adapted
from the RNN encoder-decoder architectures
which have been successfully applied to a wide
range of NLP tasks such as machine trans-
lation (Kalchbrenner and Blunsom, 2013; Cho
et al., 2014; Bahdanau et al., 2014), image de-
scription generation (Karpathy and Fei-Fei, 2015;
Vinyals et al., 2015b), syntactic parsing (Vinyals
et al., 2015a), question answering (Hermann et al.,
2015), summarization (Rush et al., 2015), and se-
mantic parsing (Dong and Lapata, 2016).

As a novel variation of the encoder-decoder ar-
chitecture, our model provides a general solution
to tasks involving translation and labeling. cross-
lingual open IE is an example of this kind of task.
The end-to-end solution proposed by Zhang et al.
(2017a) used a vanilla attention-based encoder-
decoder model to achieve results which outper-
form the traditional pipeline solutions. Compared
to the vanilla encoder-decoder model, our model
splits the joint task into two concurrent tasks (i.e.,
labeling and translating), which are jointly learnt
by a selector and multiple decoders. This eases
the burden of the decoder by shifting the labeling
task to the selector. As a result, our model requires
a smaller vocabulary for the target language.

The selective decoding mechanism can be
viewed as having different types of decoders
stacking together and adding a hard gate to the
RNN unit, through which the bit of information
will be either totally kept or dropped. It may
seem redundant since the RNN gated unit already
has the sophisticated gating mechanism such as
the GRU unit (Cho et al., 2014) and the LSTM
unit (Hochreiter and Schmidhuber, 1997). How-
ever, we think that the selective decoding mecha-
nism is a complement to the gated unit: rather than
having a soft pointwise control, the selective de-
coding mechanism adopts a hard vectorwise con-
trol to explicitly select a certain type of informa-
tion which corresponds to the predicate or the ar-
gument by keeping one and dropping the others,

whereas the GRU/LSTM gated unit itself learns
to memorize long short-term dependencies. Simi-
lar mechanisms have been used in neural machine
translating (Tu et al., 2016) and image caption
generation (Xu et al., 2015) to explicitly control
the influence from source or target contexts. The
experiments in § 5 also confirms our point: our
model using the selective decoding mechanism
significantly improves the performance, compared
to the standard encoder-decoder model.

Regarding to open IE systems for generat-
ing training data, PredPatt has shown promis-
ing performance on large-scale open IE bench-
marks (Zhang et al., 2017c). Compared to other
existing open IE systems (Banko et al., 2007;
Fader et al., 2011; Angeli et al., 2015), PredPatt
uses manual language-agnostic patterns on UD,
which makes it a well-founded component across
languages. Additionally, the underlying structure
constructed by PredPatt has been shown to be
a well-formed syntax-semantics interface (Zhang
et al., 2017b).

5 Experiments

We describe the hyper-parameters setting for ex-
periments, evaluate our approach in two kinds of
scenarios, and compare the results of our approach
and the other comparing approaches.

5.1 Hyper-parameters

On the encoder side, both the forward RNN and
the backward RNN have 2-layer stacked LSTMs
with 500 hidden units. On the decoder side, all
types of decoders are 2-layer stacked LSTMs with
500 hidden units. All LSTM parameters are sam-
pled from U(−0.1, 0.1). The dropout rate is set
to 0.3. The word embedding size is 300 for input
tokens on both the encoder side and the decoder
side. We use open-source GloVe vectors (Pen-
nington et al., 2014) trained on Common Crawl
840B with 300 dimensions6 to initialize the word
embeddings on the decoder side. The mini-batch
size is set to 64 and the step size set to 50. Gra-
dients are clipped when their norms are greater
than 5 (Pascanu et al., 2013). For simplicity, we
use vanilla softmax over the decoder vocabulary
as opposed to more efficient alternatives such as
sampled softmax (Jean et al., 2015). The vocabu-
lary size is set to 40,000. The number of epochs

6https://nlp.stanford.edu/projects/
glove/
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is 20. Early stopping is used to avoid overfitting.
The beam size is 5. Before feeding into the en-
coder, we reverse the input sentences (Sutskever
et al., 2014).

5.2 Chinese-English

5.2.1 Dataset

We first evaluate our approach on the Chinese-
English dataset (Zhang et al., 2017a), which con-
tains pairs of Chinese sentences and English lin-
earized PredPatt. Table 1 shows the number of
data for training, validation and test.

#Train #Valid #Test

941,040 10,000 39,626

Table 1: Number of data used for Chinese-English
cross-lingual open IE.

5.2.2 Comparisons

Our approach (Selective Decoding) is compared
against four other approaches: (1) Joint Seq2Seq,
which trains a standard encoder-decoder model on
the Chinese-English dataset described in Table 1;
(2) Joint Moses, which trains a phrase-based ma-
chine translation system, Moses (Koehn et al.,
2007), directly on the same data; (3) Pipeline-S
which consists of a Moses system that translates
Chinese sentence to English sentence, followed
by SyntaxNet Parser (Andor et al., 2016) for Uni-
versal Dependency parsing on English, and Pred-
Patt (White et al., 2016) for predicate-argument
identification; and (4) Pipeline-N is the same as
Pipeline-S except that the Moses system is re-
placed by OpenNMT (Klein et al., 2017), a neural
machine translation system.

5.2.3 Evaluation Metrics

For evaluation, we directly convert the output by
our approach (e.g. Fig. 1(e)) to the form of lin-
earized PredPatt (e.g., Fig. 1(d)), and follow the
same manner in Zhang et al. (2017a), using the
cased BLEU score and the token-level F1 score to
evaluate the results, since the generation of lin-
earized PredPatt involves translation and informa-
tion extraction. We also compute the recoverabil-
ity: the number of outputs can not be recovered to
the tree structure (e.g., Fig. 1(c)).

5.2.4 Evaluation using BLEU

Table 2 shows the cased BLEU scores of linearized
PredPatt and linearized predicates7 on the test set.
Selective Decoding significantly improves the per-
formance on both of them. Compared to the pre-
vious best approach (Joint Seq2Seq), Selective
Decoding improves the BLEU score of linearized
PredPatt to 23.88, and the score of linearized pred-
icates to 25.42.

Approach Linearized
PredPatt

Linearized
Predicate

Pipeline-S 17.19 17.24
Pipeline-N 18.03 18.59
Joint Moses 18.34 16.43
Joint Seq2Seq 18.94 21.55

Selective Decoding 23.88 24.81
- pretrained embeddings 23.67 25.42
- beam search 22.07 23.94

Table 2: Evaluation results (BLEU) of linearized
PredPatt and linearized predicates on the test set.

We also report two ablation variants of Selective
Decoding, i.e., without the pretrained word em-
beddings for parameter initialization (-pretrained
embeddings), and without beam search, only using
greedy search during inference (-beam search). As
shown in Table 2, while the pretrained word em-
beddings moderately improve the BLEU score of
linearized PredPatt, they have slightly negative im-
pact on linearized predicates. Beam search helps
improve the BLEU score of both.

Selective Decoding explicitly models sequence
generation and sequence labeling, which enables
a standalone evaluation of the sequence generation
process (i.e., the final output without predicate and
argument labels). To make a baseline comparison,
we train an OpenNMT system (Klein et al., 2017)
directly on the same data ignoring the labels.

OpenNMT Selective Decoding
24.92 25.16

Table 3: Evaluation results (BLEU) of sequence
generation on the test set.

Table 3 shows the BLEU score of sequence
generation on the test set. Selective Decoding
achieves higher BLEU than OpenNMT. It demon-
strates that the selective decoding mechanism

7In linearized predicates, arguments are replaced by
placeholders. For example, the linearized PredPatt in
Fig. 1(d) becomes “[ ?arg started:ph Sth:= [ ?arg firing:ph

?arg ] ]” after replacement.
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learning with extra labels helps improve the qual-
ity of sequence generation. We also notice that
the BLEU score (25.16 in Table 2) of the final lin-
earized PredPatt from Selective Decoding is even
higher than OpenNMT (24.92 in Table 3). Hence,
we can draw a conclusion that simply placing a
labeler atop the OpenNMT system to tackle the
cross-lingual open IE problem will not narrow the
gap in BLEU between itself and our Selective De-
coding approach.

5.2.5 Evaluation using F1

Approach Predicate Argument

Pipeline-S 24.24 33.54
Pipeline-N 24.41 33.51
Joint Moses 25.11 38.90
Joint Seq2Seq 25.79 34.44

Selective Decoding 31.71 40.81
- pretrained embeddings 31.56 40.81
- beam search 30.06 39.06

Table 4: Evaluation results (F1) of predicates and
arguments on the test set.

We compute the token-level F1 score (Liu et al.,
2015) of predicates and arguments. As shown
in Table 4, Selective Decoding substantially im-
proves the F1 score of both predicates and argu-
ments. In the ablation test, pretrained word em-
beddings slightly improve F1 of predicates, but
have no improvement on F1 of arguments. Beam
search helps improve the score of both.

5.2.6 Recoverability
We compute the number of the linearized PredPatt
outputs from which the tree structure representa-
tion can not be recovered, including the empty out-
puts and the outputs which have unmatched brack-
ets, or have zero or multiple heads for an argument
or a predicate. As shown in Table 5, compared to
the previous best Joint Seq2Seq approach, Selec-
tive Decoding further reduces the number of unre-
coverable outputs by one order of magnitude.

Pipeline-
S

Pipeline-
N

Joint
Moses

Joint
Seq2Seq

Selective
Decoding

5,965 6,014 33,178 557 53

Table 5: Number of unrecoverable outputs.

5.2.7 Analysis
To analyze the difference between Selective De-
coding and the previous best approach Joint

Seq2Seq, we plot the BLEU scores of the lin-
earized PredPatt on the test set with respect to
the lengths of the reference. As shown in Fig. 4,
when the reference length is greater than 20, the
linearized PredPatt generated by Selective Decod-
ing gets notably better BLEU scores, especially for
the reference length around 30. However, when
the reference length is shorter than 11, the per-
formance of Selective Decoding drops below the
Joint Seq2Seq approach.

10 15 20 25 30 35 40 45 50
Sequence Length
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Joint Seq2Seq

Figure 4: BLEU scores of the linearized PredPatt
on the test set w.r.t. the lengths of the references.

To explain this performance drop, we randomly
sample an example from the test set, where the
reference length is shorter than 11, and the BLEU

score of the linearized PredPatt generated by Joint
Seq2Seq is higher than Selective Decoding. The
example is shown in Table 6.

Input sentence and its English translation:

我哪怕有千分之一的希望呢 ,我死
活都要给他做最后的
(Even if there was only a one thousandth
of a hope , er , live or die I would give
him my all.)

Reference8:

(1) (I) would give (him) (my all)

Selective Decoding:

(1) Even if (we) have (a UNK per cent hope)

(2) uh , (I) would have SOMETHING9

(3) SOMETHING := (I) give (him) (the final thing)

Joint Seq2Seq:

(1) (I) wish (everyone) (last hope)

Table 6: Example outputs with the reference
length shorter than 11.
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In this example (Table 6), the Chinese input sen-
tence has a grammatical error: the object modified
by “最后 的” is missing. Additionally, the ref-
erence linearized PredPatt output in this example
is incomplete: the fact related to the concessive
clause is missing. Although here Joint Seq2Seq
gets the better BLEU score against the incomplete
reference, Selective Decoding is able to better gen-
erlize over the train data: the facts it generates
are much closer to the original input sentence, and
even better than the reference.

Input sentence and its English translation:
结果 ,民主党失去了列举布什 “罪状 ”的良
机 ,
(As a result, the Democratic party lost a good
opportunity to list the ‘ charges ’ against Bush.

Reference:

(1) As (a result) , (the Democratic party) lost (a good
opportunity)

(2) (a good opportunity) list (the ‘ charges ’ against Bush)

Selective Decoding:

(1) As (a result) , (the Democratic Party) lost (the good
opportunity)

(2) (the good opportunity) cite (Bush)

Joint Seq2Seq:

(1) (The result) is SOMETHING

(2) SOMETHING := (the Democratic Party) lost (his
opportunity)

(3) (his opportunity) give (him) (good opportunity)

Table 7: Example outputs with the reference
length longer than 20.

Another example where the reference length
is greater than 20 is shown in Table 7. In this
example, Selective Decoding generates the same
number of facts as the reference, and the mean-
ing of the facts is closer to the reference than
Joint Seq2Seq: though not perfect, Selective De-
coding captures “列举 布什 ‘ 罪状 ’” (“list
the ‘charges’ against Bush”) by generating “cite
(Bush)”, whereas Joint Seq2Seq fails to generate
any thing related.

8The predicate tokens are colored blue, and the argument
tokens are colored purple. Head tokens are underlined in
bold. Token labels and brackets are omitted.

9“SOMETHING” is a special argument used to indicate that
the argument is a proposition.

5.3 Low-resource Scenarios
One of the goals of cross-lingual open IE is to
extract facts from languages for which few NLP
resources and tools are available, and represent
the facts in the language for which plenties of re-
sources and tools can be used. Therefore, we ex-
tend the experiments to cross-lingual open IE from
5 languages to English in a low-resource setting.

5.3.1 Datasets

Task #Train #Valid #Test

uzb-eng 31,581 1,373 1,373

tur-eng 20,774 903 903

amh-eng 12,140 527 527

som-eng 10,702 465 465

yor-eng 5,787 251 251

Table 8: Number of data used for cross-lingual
open IE in low-resource scenarios.

To prepare the experiment datasets, we first
collect bitexts from DARPA LORELEI language
packs (Strassel and Tracey, 2016). The source lan-
guages of the bitexts are Uzbek, Turkish, Amharic,
Somali, and Yoruba.10

We then run a process similar to Zhang et al.
(2017a) to generate pairs of source-language sen-
tences and English linearized PredPatt: first, we
employ SyntaxNet Parser (Andor et al., 2016)
to generate Universal Dependency parses for the
English sentences, and then run PredPatt (White
et al., 2016) to generate English linearized Pred-
Patt from the Universal Dependency parses. We
remove empty sequences and very long sequences
(length>50) in the pairs, and randomly split them
into training, validation and test sets in the ratio
of 23:1:1. The detailed number of pairs for each
experiment is shown in Table 8.

5.3.2 Baseline
To compare with Selective Decoding, we imple-
ment the Joint Seq2Seq approach which uses a
standard encoder-decoder model as the baseline.

5.3.3 Evaluation Results
We train the models of Selective Decoding and
Joint Seq2Seq respectively using the same hyper-

10These bitexts are from LDC2016E29 (uzb-eng);
LDC2014E115 (tur-eng); LDC2016E86 and LDC2016E87
(amh-eng); LDC2016E90 and LDC2016E91 (som-eng);
LDC2016E104 and LDC2016E105 (yor-eng).
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parameters setting described in § 5.1, and evalu-
ate the results on the test set by computing the
cased BLEU score of the linearized PredPatt, and
the token-level F1 scores.

Task Joint
S2S

Selective
Decoding

uzb-eng 8.66 10.76
tur-eng 7.18 7.47

amh-eng 7.18 8.37
som-eng 10.61 13.06
yor-eng 11.31 12.19

Table 9: Evaluation results in low-resource cross-
lingual open IE scenarios: BLEU of linearized
PredPatt.

Table 9 shows the evaluation results using
BBLEU. Selective Decoding outperforms the Joint
Seq2Seq approach by 0.29-2.45, which is ex-
pected since Selective Decoding employs the de-
coder solely for sequence generation and the se-
lector solely for sequence labeling.

Task Predicate Argument
Joint
S2S

Selective
Decoding

Joint
S2S

Selective
Decoding

uzb-eng 12.50 12.46 19.57 24.08
tur-eng 9.89 6.49 17.39 17.76

amh-eng 8.44 8.82 17.31 18.58
som-eng 13.64 13.91 22.81 25.38
yor-eng 11.97 10.74 22.61 25.57

Table 10: Evaluation results in low-resource cross-
lingual open IE scenarios: the token-level F1 of
predicates and arguments.

The F1 score measure is shown in Table 10
where both the F1 scores of predicates and argu-
ments are computed seperately. For predicates,
Selective Decoding shows no advantage to the
Joint Seq2Seq approach. In the tur-eng task, its F1

score is obviously worse than the baseline. How-
ever, Selective Decoding in general shows promis-
ing results in the argument F1 scores.

6 Conclusions

In this paper, we recast cross-lingual open IE as
a more general problem, which involves sequence
generation and sequence labeling. We propose a
novel encoder-decoder model which employs the
selective decoding mechanism to explicitly model
the sequence generation and sequence labeling
process. Experimental results show our approach
achieves consistent and significant improvements
in a variety of cross-lingual open IE scenarios.

Since the selective decoding mechanism is not
limited to cross-lingual open IE, we believe that
it will also benefit other NLP tasks which can be
generalized as jointly doing sequence generation
and sequence labeling. In the future, we plan to
investigate its effectiveness to tasks such as cross-
lingual information retrieval.
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Abstract

This paper improves on several aspects of
a sieve-based event ordering architecture,
CAEVO (Chambers et al., 2014), which
creates globally consistent temporal rela-
tions between events and time expressions.
First, we examine the usage of word em-
beddings and semantic role features. With
the incorporation of these new features, we
demonstrate a 5% relative F1 gain over our
replicated version of CAEVO. Second, we
reformulate the architecture’s sieve-based
inference algorithm as a prediction rerank-
ing method that approximately optimizes a
scoring function computed using classifier
precisions. Within this prediction rerank-
ing framework, we propose an alternative
scoring function, showing an 8.8% relative
gain over the original CAEVO. We further
include an in-depth analysis of one of the
main datasets that is used to evaluate tem-
poral classifiers, and we show that in spite
of the density of this corpus, there is still
a danger of overfitting. While this paper
focuses on temporal ordering, its results
are applicable to other areas that use sieve-
based architectures.

1 Introduction

Narratives that describe a series of events rarely do
so in order. Basic rules of journalism dictate that
important information leads a news report, and ac-
cordingly, algorithms that re-order events chrono-
logically need to combine a wealth of contextual,
rhetorical, and commonsense information.

Most research on event ordering aims to pro-
duce only partial orderings of event mentions

and time expressions (Bethard and Martin, 2007;
Cheng et al., 2007; UzZaman and Allen, 2010;
Llorens et al., 2010; Bethard, 2013). In the past,
labeled corpora used for training and evaluation
contained only small subsets of pairs of events
and times. Some of these corpora, like Time-
bank, have annotations restricted to salient, eas-
ily labeled pairs within the same document. Other
more recent data sets contain annotations that form
timelines of events that involve common entities
(Pustejovsky et al., 2003; Minard et al., 2015).
Due to the lack of consistency of annotations
across event pairs, it is difficult to use these cor-
pora in accurately measuring the practical perfor-
mance of event ordering algorithms.

Richer datasets are becoming available that pro-
vide more complete event orderings which in-
clude logically implied relations that are less ev-
ident from local text features. In particular, the
TimeBank-Dense corpus provides a significantly
more dense and complete set of annotations, al-
lowing for the evaluation of methods that make
use of broad contextual information across many
event pairs (Cassidy et al., 2014). One method that
has been developed to leverage such information
is CAEVO—a sieve-based architecture that made
the first effort toward dense event ordering (Cham-
bers et al., 2014). This method maintains tran-
sitivity constraints across independent predictions
from several specialized classifiers. More specifi-
cally, the architecture runs a series of “sieve” clas-
sifiers with their predictions ranked in order by
precision using a held-out dataset. The higher pre-
cision classifiers are ranked more highly in the se-
ries, and predictions are expanded by transitivity
rules (e.g. if event e1 is before e2, and e2 is be-
fore e3, then e1 is before e3) after each individual
classifier generates its predictions. The high den-
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sity of the constructed prediction graph allows the
transitivity rules to generate accurate predictions
for links that would otherwise be difficult to pre-
dict from the text.

This paper proposes improvements to CAEVO
with respect to (1) feature engineering within ma-
chine learned sieves, (2) generalization of the
sieve-based architecture to facilitate higher per-
forming sieve prediction rerankings, and (3) the
leveraging of unlabeled data. First, for our fea-
ture engineering improvements, we are motivated
by the fact that TimeBank-Dense contains a rel-
atively small training sample, and so we extend
the feature sets for the architecture’s machine
learned classifiers to include features that encode
lexical information about events in relatively low
dimensional spaces based on word embeddings
(Mikolov et al., 2013) and semantic role labeling
(SRL) annotations (Gildea and Jurafsky, 2002).
Second, our generalization of the sieve-based ar-
chitecture allows us to experiment with alterna-
tive methods for establishing the precedence rank-
ing of sieve predictions. Furthermore, we iden-
tify an approximate upper bound on any rank-
ing method’s performance. Lastly, in our exper-
iments with unlabeled data, we analyze the effect
of changing the density of the architecture’s pre-
diction graph. Our hypothesis is that increasing
the number of predictions on unlabeled data will
increase performance on labeled data through the
application of CAEVO’s transitivity constraints.

Our extensions produce new state-of-the-art re-
sults on the original test split of TimeBank-Dense
(8.8% F1 increase). Beyond this, we describe al-
ternative evaluations on other splits of the data in
order to analyze the effect of the common small
sizes of temporal corpora like TimeBank-Dense.
This analysis is critical for future work in tempo-
ral ordering, and sheds further light on previous
work’s results.

2 Related Work

Early work on event ordering focused on develop-
ing machine-learned classifiers that label the tem-
poral relations between small subsets of pairs of
events within documents using lexical and syntac-
tical features (Bethard and Martin, 2007; Cheng
et al., 2007; UzZaman and Allen, 2010; Llorens
et al., 2010; Bethard, 2013). Later work lever-
aged information across pairwise predictions by
imposing transitivity constraints using techniques

like integer linear programming and Markov logic
networks (Bramsen et al., 2006; Chambers and Ju-
rafsky, 2008; Tatu and Srikanth, 2008; Yoshikawa
et al., 2009). CAEVO followed these and other
hybrid rule-based approaches (D’Souza and Ng,
2013), but with the transitivity constraints yielding
larger gains in performance for the more complete
temporal graph constructed on the TimeBank-
Dense corpus (Cassidy et al., 2014; Chambers
et al., 2014).

The TimeBank-Dense corpus provides a signifi-
cantly more dense and complete set of annotations
compared to previous corpora.1 TimeBank-Dense
extends a subset of the original TimeBank cor-
pus with annotations for (almost) all event-time,
time-time, and event-time pairs across consecu-
tive sentences, as well as relations to the doc-
ument creation time. This dense corpus facili-
tated the evaluation of CAEVO—a sieve-based ar-
chitecture which maintains transitivity constraints
across independent predictions from several spe-
cialized classifiers.

Recent work has focused on the construction
of timelines of related events, using SRL an-
notations to determine which events are related
through common actors (Laparra et al., 2015). In
addition, other work has outperformed the orig-
inal CAEVO with a 2.2% relative F1 gain on
TimeBank-Dense using word embedding features
within a stacked ensemble of event-event, event-
time, and event-creation-time logistic regression
classifiers (Mirza and Tonelli, 2016). We draw
inspiration from this recent work by incorporat-
ing SRL and word embedding features into the
machine-learned CAEVO sieves.

The CAEVO architecture is itself inspired by
the sieve-based architectures that have been suc-
cessfully applied to event and entity coreference
as well as spatial relation extraction tasks (Lee
et al., 2012, 2013; D’Souza and Ng, 2015). Years
since CAEVO’s introduction, a coreference sieve
architecture still achieves top performance (Lee
et al., 2017). The key idea behind these archi-
tectures is to combine information from several
classifiers by assigning precedence to predictions
according to the reliability of the classifier from
which they originate. A precision-ranked series of

1The new corpus is the result of several TempEval com-
petitions (Verhagen et al., 2007, 2010; UzZaman et al., 2012)
which prompted efforts to develop more complete event or-
dering annotations (Bramsen et al., 2006; Kolomiyets et al.,
2012; Do et al., 2012).
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“sieve” classifiers generate predictions, and pre-
dictions from the more reliable sieves earlier in the
series inform the predictions of the less reliable
sieves later in the series. Generally, the predic-
tions from a highly-ranked sieve can inform a low-
ranked sieve in several ways, but within CAEVO,
predictions from early classifiers are coupled via
transitive inference rules to generate an expanding
set of predictions that override output from less re-
liable classifiers later on in the series. In the next
section, we describe a more generic view of this
architecture which will motivate alternative meth-
ods for assigning precedence to predictions from
the collection of classifiers.

3 Generalizing Sieve Architectures

Sieve architectures are used in many areas such as
entity coreference, relation extraction, and tempo-
ral ordering. A core contribution of this paper is a
generalization of how these models score and rank
their decisions. Like other sieve models, CAEVO
uses a precision-ranked series of classifiers (i.e.
“sieves”) coupled with transitivity constraints to
provide a solution to the event ordering task. How-
ever, prior work has not investigated alternatives to
the coarse-grained precision-based rankings pro-
vided by the architecture. This section gives a
generalized formal view on this precision-ranked
setup, and Section 4.3.1 describes our experiments
with new alternatives to traditional sieve archi-
tectures that are available within our generalized
view.

Informally speaking, a sieve architecture ap-
plies a sequence of classifiers that each make
their own independent labeling decisions, and the
architecture resolves conflicts between these de-
cisions by assigning precedence to those which
have higher estimated precision. The architecture
estimates the precision for each sieve on a de-
velopment set of data, and associates all predic-
tions from a given sieve with this precision esti-
mate. These precision scores determine an over-
all ranking to predictions within the final system.
When labeling a new test document, the archi-
tecture chooses predictions from all higher preci-
sion sieves over predictions from lower precision
sieves. But this common ranking of predictions is
coarse-grained, so this paper proposes other ways
of ordering the classifier predictions. Figure 1 il-
lustrates the difference between prediction rank-
ings from traditional sieve architectures and our

P=.82

P=.75

P=.72

a b c

Figure 1: Sieve classifier decisions as ranked in a
sieve architecture: (a) three sieves with their preci-
sions, (b) each sieve’s decisions ranked as in a tra-
ditional system, (c) a potential ranking influenced
by precision, but not strictly bound to it.

alternatives. The middle column shows the strict
prediction ordering given by traditional sieve sys-
tems, but the fuzzy ordering in the right column is
possible within our proposed alternative architec-
tures. Section 4.3.1 explores this in depth.

We now formally define a typical sieve architec-
ture (in terms of the temporal ordering domain).
Consider the set of event mentions E, time
expressions T , and temporal relation types L =
{BEFORE, AFTER, INCLUDES, INCLUDED, SIMULTANEOUS, VAGUE}.
We desire an architecture that encodes functions
fee : E × E → L, fet : E × T → L, and
ftt : T × T → L which accurately classify
relations between event-event, event-time, and
time-time pairs, respectively. The gold-standard
annotations within our corpora are logically
consistent, so we can assume that the true event
orderings induced by the functions fee, fet, and
ftt conform to the transitivity constraints given in
Table 1.

Algorithm 1 depicts a generalized view of the
CAEVO architecture which encodes approxima-
tions to the desired fee, fet, and ftt labeling func-
tions (and this view also applies to other typical
sieve systems). The algorithm combines predic-
tions from a set of sieve classifiers F̂ that pro-
vide partial approximations to fee, fet, and ftt
within restricted syntactic contexts. As described
by Chambers et al. (2014), F̂ contains both rule
based and machine-learned classifiers. In this pa-
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Constraints
BEFORE(o1, o2), BEFORE(o2, o3)→ BEFORE(o1, o3)

BEFORE(o1, o2), INCLUDES(o2, o3)→ BEFORE(o1, o3)
BEFORE(o1, o2), SIMULTAN(o2, o3)→ BEFORE(o1, o3)
INCLUDED(o1, o2), BEFORE(o2, o3)→ BEFORE(o1, o3)

INCLUDED(o1, o2), INCLUDED(o2, o3)→ INCLUDED(o1, o3)
INCLUDED(o1, o2), SIMULTAN(o2, o3)→ INCLUDED(o1, o3)

INCLUDED(o1, o2), AFTER(o2, o3)→ AFTER(o1, o3)
INCLUDES(o1, o2), INCLUDES(o2, o3)→ INCLUDES(o1, o3)
INCLUDES(o1, o2), SIMULTAN(o2, o3)→ INCLUDES(o1, o3)

SIMULTAN(o1, o2), BEFORE(o2, o3)→ BEFORE(o1, o3)
SIMULTAN(o1, o2), INCLUDED(o2, o3)→ INCLUDED(o1, o3)
SIMULTAN(o1, o2), INCLUDES(o2, o3)→ INCLUDES(o1, o3)
SIMULTAN(o1, o2), SIMULTAN(o2, o3)→ SIMULTAN(o1, o3)

SIMULTAN(o1, o2), AFTER(o2, o3)→ AFTER(o1, o3)
AFTER(o1, o2), INCLUDES(o2, o3)→ AFTER(o1, o3)
AFTER(o1, o2), SIMULTAN(o2, o3)→ AFTER(o1, o3)

AFTER(o1, o2), AFTER(o2, o3)→ AFTER(o1, o3)
BEFORE(o1, o2)→ AFTER(o2, o1)
AFTER(o1, o2)→ BEFORE(o2, o1)

INCLUDES(o1, o2)→ INCLUDED(o2, o1)
INCLUDED(o1, o2)→ INCLUDES(o2, o1)
SIMULTAN(o1, o2)→ SIMULTAN(o2, o1)

VAGUE(o1, o2)→ VAGUE(o2, o1)

Table 1: Transitivity and symmetry constraints
in C from Equation 1 and Algorithm 1. In this
list, every constraint applies to events and/or times
o1, o2 and o3. We abbreviate “SIMULTANEOUS”
with “SIMULTAN” due to space constraints.

per, our experiments focus on the machine learned
sieves that give within-sentence event-event pre-
dictions (EEWS), within-sentence event-time pre-
dictions (ETWS), within-syntactic dominance re-
lation event-event predictions (EED), and event to
document creation time relations (EDCT).

Given a set of unlabeled data points D ⊆ (E ∪
T )× (E ∪T ), Algorithm 1 uses the sieves in F̂ to
construct a set of predictions F̂D = {(d, f̂(d), f̂) |
d ∈ D, f̂ ∈ F̂} where each prediction is indexed
with its associated sieve f̂ . The algorithm then
sorts and partitions F̂D according to a prediction
scoring function s : (D × L × F̂ ) → R. Finally,
the returned set of predictions R is constructed by
iteratively adding predictions from F̂D in descend-
ing order (with respect to s) while applying con-
straints C. C consists of the transitive rules (de-
picted in Table 1) along with the constraint that
prior predictions in R cannot be overwritten by

later predictions. The rules C are applied at each
iteration by extending the current predictions with
those implied by transitivity.

Algorithm 1 Sieve Inference
1: function SIEVEINFERENCE
2: Input F̂ := learned and rule-based sieves
3: Input D := data to classify
4: Input s := prediction scoring function
5: Input C := constraint application function
6: F̂D ← {(d, f̂(d), f̂) | d ∈ D, f̂ ∈ F̂}
7: P ← F̂D sorted and partitioned by s
8: R← {}
9: for i := 1 to |P | do

10: R← C(Pi ∪R)
return R

One of the weaknesses of CAEVO (and other
sieve-based systems) addressed in this paper is
that its scoring function, s(d, f̂(d), f̂), is simply
the precision of f̂ as measured on held-out data.
All predictions made by f̂ must have the same
ranking score (see Figure 1 again). This coarse-
ranking is likely to be sub-optimal relative to rank-
ings based on other scoring functions.

We can motivate improvements to Algorithm 1
by viewing it as a greedy approximation to the op-
timization problem which chooses a set of scored
predictions according to:

R = arg max
S⊆F̂D

(∑
p∈S

s(p)
)

subject to C (1)

Given the view that CAEVO is providing a so-
lution to the objective in Equation 1 using Algo-
rithm 1, it is straightforward to see possible direc-
tions for improvement. Namely, the architecture
can be improved through changes to the sieves F̂ ,
the scoring methods s, the constraints C, the data
D, and the underlying greedy approximation algo-
rithm. Intuitively, if we want Equation 1 to give a
highly accurate set of predictions, then we should
pick an F̂ to contain more accurate classifiers 2,
an s which ranks correct predictions above incor-
rect predictions, and a large setD which enablesC
to propagate precise labels from easy-to-classify
data samples onto hard-to-classify data samples.
Notably, CAEVO’s rigid choice of scoring func-
tion s to be the precision of f̂ only allows s to
give a coarse-grained scoring, which can score in-
correct predictions higher than correct predictions.

2This includes possibility that one or more f̂ ∈ F̂ could
be parameterized by more complex function approximators,
such as neural networks (LeCun et al., 2015).
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Furthermore, CAEVO’s sieve-inference in Algo-
rithm 1 is greedy, and other methods like inte-
ger linear programming (ILP) which provide bet-
ter solutions to Equation 1 might yield more accu-
rate predictions. Lastly, CAEVO limits D to only
contain labeled evaluation data without taking ad-
vantage of constraints imposed across unlabeled
event pairs. These observations motivate several
of the extensions we describe and experiment with
below.

4 Models and Experiments

In our experiments, we replicate CAEVO, add new
features to the sieves, modify the scoring func-
tion, and include larger amounts of related unla-
beled data to further constrain the predictions. Un-
less otherwise noted, results are computed using
the original train-dev-test split of the TimeBank-
Dense and original CAEVO experiments (Cham-
bers et al., 2014; Cassidy et al., 2014).

4.1 Replication

We replicate the CAEVO architecture within a
more generic framework with the aim of substan-
tiating and extending the CAEVO results from
Chambers et al. (2014). The replication process al-
lows us to validate the robustness of the originally
published results while determining their sensitiv-
ity to various parameter settings.

We reconstruct features within an alternative
feature engineering pipeline, and ensure that the
feature matrices match those from the original sys-
tem. During this process, we observed two issues
in the original system. First, features based on
gold-standard event “tense”, “aspect”, and “class”
were not included in the machine-learned mod-
els that produced the reported results even though
they were described in the original paper (they ap-
pear to have been inadvertently configured off). In
light of this, we leave these features out of our
replicated architecture, but add them into the re-
vised architecture in our feature engineering ex-
periments. Second, the EEWS, EED, and ETWS
sieves in CAEVO used a minimum feature oc-
currence cutoff of 2 across training data whereas
EDCT used a cutoff of 1. We experiment with dif-
ferent settings of these values in the next section.
Other minor bugs and the details of replication are
described in the appendix.

The R column of Table 2 gives micro-averaged

accuracies3 for the four machine-learned sieves
and the full replicated architecture. These accu-
racies reproduce the original CAEVO results up to
less than 1% discrepancy in accuracy due to ver-
sion differences between the machine-learning li-
braries and minor bugs in the original system. 4

4.2 Rich Feature Engineering
We extend our CAEVO replication with additional
knowledge of event attributes, word embeddings,
and SRL labels for each of the machine learned
sieves.

4.2.1 Event Attributes
As noted above, the original CAEVO paper had
reported the use of gold-standard TimeML tense,
aspect, class, polarity, and modality event attribute
features, but close inspection of the architecture
suggests that these features had been left out when
computing the final results. We experimented with
adding features computed from these attributes
into each of the machine-learned classifiers. For
each event in a given event-event or event-time
pair, we extend the feature vector with indicators
for possible values of each event attribute. Also,
for each event-event pair, we extend the feature
vector with indicators of whether the event at-
tributes are equal for the source and target (e.g.
equal tense), as well as features representing the
conjunction of each attribute across source and tar-
get (e.g. for the tense attribute, one of the indica-
tors is PAST-FUTURE, which is for a pair contain-
ing a past tensed event and a future tensed event).

The F1 scores computed on the TimeBank-
Dense test-set with the additional event attribute
features are given in the Ev column of Ta-
ble 2. Each machine-learned sieve increases in
F1, but the overall architecture decreases slightly.
This highlights the non-monotonic relationship
between the performance of individual sieves and
the performance of the overall architecture.

4.2.2 Semantic Role Labeling
We compute additional features from annota-
tions generated using the mate-tools SRL system
(Björkelund et al., 2009). Specifically, for a given
pair, we compute features representing SRL pred-
icates of the events as well as their conjunction.

3The micro-averaged accuracies are equivalent to micro-
averaged F1 scores computed on data for which some label is
output by a classifier.

4The results for the rule-based sieves are not shown, but
they match the original system exactly.
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Sieve R Ev SRL W2V R+ F+
EDCT .524 .547 .511 .524 .553 .553
ETWS .414 .450 .414 .450 .443 .480
EEWS .442 .466 .424 .450 .450 .456
EED .428 .500 .435 .473 .488 .466
Full .502 .495 .493 .504 .520 .527

Table 2: Micro-averaged accuracies on the
TimeBank-Dense test-set for machine-learned
sieves and the fully replicated architecture with
various feature extensions. Results are given for
our baseline CAEVO replication (R) and exten-
sions with gold-standard event attribute features
(Ev), SRL features (SRL), word embedding fea-
tures (W2V), all new features (R+), and all new
features with new feature count cutoffs (F+).

Also, we compute the shortest path between a pair
within the undirected graph formed by the SRL
predicates and arguments (i.e. where there are
nodes for predicate spans and argument spans, and
there is an edge between two spans if one is the ar-
gument of the other). As shown in Table 2 under
the SRL column, these features only give a minor
improvement in micro-averaged F1 for the EED
sieve, but hurt performance of the other sieves and
the architecture on the TimeBank-Dense test set.
However, we believe this may be due to over-
fitting, as we observe 3% and 4% gains for the
ETWS and EED sieves with these features on the
development set.

4.2.3 Word Embeddings
Given that recent work has shown improvements
using word embeddings (using log-linear neural
language models such as the Skip-Gram architec-
ture), we extend feature vectors with the word
vectors representing events and their similarity.
Following Mirza and Tonelli (2016), we use the
three million 300-dimensional word2vec vectors
5 pre-trained on part of the Google News dataset
(Mikolov et al., 2013). For each token span cor-
responding to either an event mention or time ex-
pression in a given pair datum, we extend the fea-
ture vector with normalized sums of word vectors
computed from tokens of the span. In addition, we
include the cosine similarity between the vectors
for the events in a pair, as well as a vector rep-
resenting the normalized difference between the
pair’s vectors. Micro-averaged F1 scores on the
TimeBank-Dense test set with these word embed-

5Pre-trained word vectors can be retrieved from https:
//code.google.com/archive/p/word2vec/.

ding features are given in the W2V column of Ta-
ble 2. The ETWS and EED sieves show improve-
ments of more than 3%, and the EEWS shows a
gain of about 1%. However, the F1 score for the
overall architecture remains nearly the same.

4.2.4 Full Extension
We extend the machine learned sieves with the full
set of event attributes, SRL, and word embedding
features as described above. As shown under the
R+ column of Table 2, this yields a 2% gain in
micro-averaged F1 for the overall architecture as
well as gains for each individual sieve. Also, Sec-
tion 4.1 mentioned that the feature count cutoffs
in R and R+ are set to 1 for EDCT and 2 for all
remaining machine-learned sieves. For simplic-
ity, we set the cutoff to 1 across all sieves in F+,
yielding a 4% improvement in ETWS and minor
gains in EEWS and the full system over R+. Over-
all, our feature engineering efforts give F+ a 5%
relative gain (2.5% absolute) over the replicated
CAEVO architecture (R).

4.3 Modifying Sieve Inference
This section proposes new inference methods for
sieve architectures by varying the scoring func-
tion s and adding unlabeled data to D from Al-
gorithm 1 and Equation 1 in Section 3. This is a
core contribution that can benefit not just tempo-
ral ordering, but also other sieve systems applied
to other NLP tasks.

4.3.1 Alternative Scoring Methods
In the original CAEVO architecture’s implemen-
tation of Algorithm 1 from Section 3, the score
s(d, f̂(d), f̂) is computed as the precision of the
sieve f̂ on the development set. This greedy scorer
s gives a coarse-grain ranking of sieve predictions,
assigning equal precedence to all predictions from
a given sieve f̂ . Intuitively, if we want to produce
a higher accuracy architecture, then we should
adjust the scoring function s to score all correct
predictions more highly than all incorrect predic-
tions6. CAEVO’s use of f̂ precision in comput-
ing s is a coarse-grained heuristic in line with this
goal, but there are better choices.

Ideal Scorer In the best case, the F+* column
of Table 3 shows the micro-averaged F1 (equiv-
alent to accuracy) when s scores a prediction as

6Note that while such a choice of s should produce good
performance, this performance is not necessarily optimal un-
der the transitivity constraints.

848



Data V CAEVO (R) F+ F+L F+S F+LU F+*
Dev .378 .481 .485 .490 .481 .491 .585
Test .403 .502 .527 .546 .521 .541 .642

Table 3: Micro-averaged F1 scores on the original TimeBank-Dense train-dev-test split for several
versions of the sieve architecture. Results are given for the VAGUE majority baseline (V), the CAEVO
replication (R), the architecture with the extended feature set (F+), and varying inference methods un-
der the extended feature set. The varying inference methods include an alternative prediction scoring
function s computed by precision of each sieve on each relation label (F+L), s computed by precision
multiplied by classifier probability estimates (F+S), s computed by precision on each label with extra
unlabeled data (F+LU), and s computed to produce near-optimal ordering (F+*).

s(d, f̂(d), f̂) = 1 if f̂(d) is the correct label
for datum d, and 0 otherwise. This near-optimal
choice of s in F+* gives a 10% gain over F+,
suggesting a large room for improvement by re-
ranking sieve predictions rather than improving
the accuracy of the individual sieves. This sug-
gests that architecture performance will increase
by improving the estimates of the prediction con-
fidence encoded by s, rather than improving the
predictions themselves.

New Scorers We thus consider several alterna-
tives for s. First, we attempted estimating s by
training a reranking logistic regression model to
predict whether f̂(d) is the correct label for d
within prediction (d, f̂(d), f̂). This approach did
not improve performance over other simpler ap-
proaches (possibly due to the small size of rerank-
ing training data), and so we only report results
for the simpler approaches. In one approach, mo-
tivated by the observation that precision varies
across relation labels, we compute s(d, f̂(d), f̂) as
the precision of f̂ for predictions with label f̂(d)
on the dev data. This sieve-label precision ap-
proach improves F1 over F+ as shown in the F+L
column of Table 3. In a second approach, we com-
pute s(d, f̂(d), f̂) as the precision of f̂ multiplied
by the probability assigned to f̂(d) by the logis-
tic regression model employed by f̂ . According to
the F+S column of Table 3, this approach does not
show improvement over F+.

4.3.2 Leveraging Unlabeled Data
CAEVO uses Algorithm 1 to draw inferences
about a data set D. In the original implementa-
tion, this set contained only the gold-standard la-
beled evaluation pairs within two sentence win-
dows. However, if D were expanded with other
unlabeled data points outside of two sentence win-
dows (for which it is easy to predict labels with

high precision), the transitivity constraints in C
might generate further high precision predictions
on the labeled data. Interestingly, this gives the ar-
chitecture the property that making a larger num-
ber of predictions on a logically connected set of
data can lead to higher overall performance on
subsets of that data. Given this observation, we ap-
ply the F+L version of the architecture to all pairs
of events and times within a document. The result-
ing F1 scores given this expansion of D with the
unlabeled TimeBank-Dense pairs are shown under
column F+LU of Table 3. Unfortunately, these
scores show no improvement over the scores un-
der column F+L which suggests that the architec-
ture did not draw high precision inferences from
the unlabeled data to labeled data. This may be
due to the lack of sieves tuned specifically to make
between-sentence unlabeled data predictions, or it
may be due to an inherent difficulty in making
these predictions over the labeled within-sentence
and consecutive sentence predictions.

5 Deep Dive into the Data

One of the difficulties facing the temporal order-
ing community is sparse data. This has been an
issue since the original TimeBank Corpus, and the
TimeBank-Dense Corpus had data expansion as
one of its core goals. However, we argue that
data sparsity is still a problem, and previous work
tends not to explore different test sets, potentially
misidentifying positive and negative results spe-
cific to particular splits of the data. This issue
seems especially relevant due to the small size of
the TimeBank-Dense data (only 5 documents in
dev and 9 documents in test for the original split
(Chambers et al., 2014)).

The underlying question is whether new re-
sults present a significant improvement upon older
ones. We consider multiple cross-validation splits
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of the data to get some sense about the answer
to this question. We chose this approach over
null-hypothesis significance testing due to limi-
tations induced by small sample size in conjunc-
tion with the dependencies between predictions
arising through the transitivity constraints. These
two issues render it difficult to make a hard de-
termination of significance in a way that does not
violate hypothesis testing assumptions. Instead,
our cross-validation splits give a weak qualitative
sense of the generalizability of our methods.

Our cross validation setup consisted of four
splits of the 36 documents with 5 documents per
test set and 4 documents per development set for
each split. Table 4 shows the micro-averaged F1
scores of the architectures described in the pre-
vious sections on each of these splits. Unsur-
prisingly, the results show that some architecture
scores were boosted while others lessened on these
alternative splits. Notably, the added features in
F+ still make consistent gains over the CAEVO
replication R, and the ideal scorer F+* makes con-
sistent large gains (as high as 18% on Fold 3, and
a low of 6% on Fold 1). However, F+L performs
well on the development sets but does not im-
prove performance on the test sets. We hypoth-
esize that F+L overfits to the development sets
due to their small size and the small number of
predictions available to compute sieve-label preci-
sions. The consistently large gains of F+L on the
dev sets suggest that the method will achieve high
performance as long as the precision estimates in
s are accurate, but the method requires more de-
velopment data than F+ to compute accurate esti-
mates without overfitting due to the large number
of sparsely distributed sieve-label combinations.

This extra analysis helps to highlight the poten-
tial for overfitting. We hope this encourages future
work to bear this in mind, and to also present re-
sults across multiple tests. Extra evaluations like
those in this section are often unexciting, but we
argue that it is of utmost importance that they
are conducted. This paper could have ended at
the previous section’s top test set results, but we
hope the reader sees extra value in the deep analy-
sis of one’s results.

6 Discussion

In the above experiments, we successfully repli-
cated the CAEVO system from Chambers et al.
(2014), and then proposed a generalization of the

sieve-based architecture that enabled several new
extensions and improvements. With the injection
of new features, we improve the overall system
with a 5% relative gain in F1. Furthermore, our
generalized version of CAEVO’s sieve architec-
ture allowed us to score and rank predictions based
on both label and sieve precision, raising the F1
results to an 8.8% relative improvement over our
replicated CAEVO (under F+L in Table 3). We
consider these results a new state-of-the-art on the
TimeBank-Dense corpus. In addition, the large
gains using a near-optimal scoring function (un-
der F+* in Table 3) suggest that future work might
make substantial progress by building further al-
ternative prediction scoring methods.

We also perform an in-depth analysis of our
improvements on alternative splits of the data.
Through this analysis, we find that our feature
engineering results are robust. More interest-
ingly, while the F+L scoring method gives in-
creased F1 on the original TimeBank-Dense split
and all cross-validation dev sets, it does not yield
improved performance on our alternative cross-
validation test sets. This analysis suggests signifi-
cant improvement for F+L over the original archi-
tecture, but with possible overfitting label-specific
precision estimates on our small amount of devel-
opment data.

Finally, we presented the first experiments that
leveraged unlabeled data. These experiments gave
negative results, but we believe future research
might see improvements through inference over
unlabeled data by (1) improving the precision
of unlabeled data predictions (through the incor-
poration of precise between-sentence prediction
sieves), (2) increasing the density of the unlabeled
data (e.g. by including easy-to-predict cross-
document links between related events), (3) in-
creasing the number of constraints across the data
through the incorporation of sieves for additional
tasks like event and entity coreference (coref), or
(4) increasing the size of the data for more reliable
evaluation and training. With respect to (4), we
hypothesize that although Timebank-Dense con-
tains more temporal relations than other tempo-
ral corpora, it is still small in size. Our hope for
future work is to extend the data set with more
dense annotations, but spread across a larger num-
ber of document contexts, such that different scor-
ing and inference methods may be robustly trained
and evaluated.
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Split Data V CAEVO (R) F+ F+L F+S F+LU F+*

Fold 0
Dev .385 .574 .571 .596 .593 .596 .676
Test .400 .503 .535 .534 .530 .534 .632

Fold 1
Dev .435 .519 .537 .592 .543 .592 .663
Test .312 .443 .503 .501 .506 .501 .558

Fold 2
Dev .450 .522 .542 .555 .521 .516 .684
Test .462 .528 .540 .507 .541 .506 .706

Fold 3
Dev .436 .536 .562 .575 .535 .573 .664
Test .470 .484 .497 .500 .500 .497 .682

Table 4: Micro-averaged F1 scores on four cross-fold validation train-dev-test splits of TimeBank-Dense
for the sieve architectures defined in Table 3. The new features in F+ make conistent gains across folds,
and the ideal scorer F+* demonstrates consistently large room for improvement using alternative scoring
methods. The F+L model still performs well on the dev sets, but it gives no performance gains on test
sets. This suggests the danger of overfitting the scoring functions s within sieve architectures, as the
sieve-label precision scores use in F+L were computed over a small, four document dev set in each fold.

In sum, we present a new state-of-the-art event
ordering model. Furthermore, we propose a gen-
eralized approach to classifier ranking that is ap-
plicable to all sieve architectures (not just tempo-
ral ordering). Instead of producing coarse-grained
ranking of classifier predictions, our proposal se-
lects more fine-grained, higher performing predic-
tion rerankings. In addition, we show temporal or-
dering gains using SRL and word embedding fea-
tures. The code for our event-ordering architec-
tures and experiments is publicly available7. We
hope that this work will encourage further efforts
in dense event ordering research.
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A Replication Details

While replicating CAEVO, we did not find any
major issues that significantly change the results
reported in the original paper. However, we found
the following minor bugs: (1) bias features are in-
cluded in the EEWS, EED, and ETWS machine-
learned sieves but not in EDCT, (2) the computa-
tion of dependency path features does not always
compute the shortest paths, and (3) code that com-
putes token paths is specified to only compute for
paths with length less than 4, but does not do this
correctly. In our replicated version, we remove
each of these bugs.

We also noticed the following quirks in the orig-
inal system:

• Features based on gold-standard event tense,
aspect, and class were not included in the
machine-learned models that produced the
reported results even though they were de-
scribed in the original CAEVO paper.

• The EEWS, EED, and ETWS sieves were
trained using feature matrices with a mini-
mum feature occurrence count of 2 across
training data whereas EDCT has a minimum
feature occurrence count of 1. We know of
no motivation for setting this parameter dif-
ferently for the EDCT sieve, but resetting it
to 2 within EDCT drops its performance to
below the “All Vague” baseline sieve, result-
ing it from it being effectively removed from
the system, and yielding a 5% drop in perfor-
mance. The sensitivity of the overall system’s
performance to this parameter setting high-
lights the importance of using enough data to
acquire accurate precision estimates to deter-
mine the prediction scoring.

• The EED sieve had a lower precision estimate
than EEWS, but EEWS makes predictions on
a superset of the event pairs for which EED
makes predictions. This means that EED has
no functional relevance with respect to the
performance of the original architecture.

The replication process also revealed the sen-
sitivity of the results to the details of feature en-
gineering and feature selection. Overall, the pro-
cess confirmed that minor flaws and oddities will
likely remain in complicated architectures like
CAEVO after they have been documented, and it

can be worthwhile to repeatedly inspect and repli-
cate these systems to ensure that they function as
specified.
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Abstract

Previous open Relation Extraction (open
RE) approaches mainly rely on linguis-
tic patterns and constraints to extract im-
portant relational triples from large-scale
corpora. However, they lack of abilities
to cover diverse relation expressions or
measure the relative importance of candi-
date triples within a sentence. It is also
challenging to name the relation type of
a relational triple merely based on con-
text words, which could limit the useful-
ness of open RE in downstream applica-
tions. We propose a novel importance-
based open RE approach by exploiting the
global structure of a dependency tree to
extract salient triples. We design an unsu-
pervised method to name relation types by
grounding relational triples to a large-scale
Knowledge Base (KB) schema, leverag-
ing KB triples and weighted context words
associated with relational triples. Exper-
iments on the English Slot Filling 2013
dataset demonstrate that our approach
achieves 8.1% higher F-score over state-
of-the-art open RE methods.

1 Introduction

Open Relation Extraction (open RE) (Banko and
Etzioni, 2008) aims at extracting relational triples
from an open-domain corpus. Each triple contains
two arguments and a phrase which denotes the re-
lation between them. In this paper, we focus on
discovering relations between entities.

Most successful open RE approaches (Fader
et al., 2011; Xu et al., 2013; Bovi et al., 2015;
Bhutani et al., 2016) extract salient relational
triples based on lexical or syntactic patterns. How-
ever, such handcrafted or automatically learned

patterns are incapable of covering diverse rela-
tion expressions (Soderland et al., 2013). Sub-
sequently, the shortest path between arguments
derived from a dependency tree has been widely
applied to generate patterns to capture long-
distance and complex relations. However, addi-
tional heuristic rules are usually needed to filter
out the resulting large number of meaningless pat-
terns (Wu and Weld, 2010; Mausam et al., 2012;
Bovi et al., 2015). Besides, such flat syntactic
structures lack the ability to measure the relative
importance of candidate triples in a sentence. For
example, the sentence in E1 places particular em-
phasis on the relation between “Lucille Clifton”
and “1936” which therefore should be retained.
E1 “Lucille Clifton, whom he married in 1958,

was born in 1936.”
We notice that a candidate relational triple is

likely to be salient if its two arguments are strongly
connected in a dependency tree. Instead of re-
lying on patterns to capture important triples, we
use an importance-based strategy by exploring the
entire dependency tree structure to automatically
measure the connection strength of candidate ar-
gument pairs. Specifically, we assume that a re-
lational triple is important if there is a relatively
short random walk-based distance between two
relatively important arguments, measured against
the entire dependency tree of a given sentence. For
each argument pair, we apply an effective random-
walk based method to assign weights to context
words in the sentence (Section 2).

How to assign a meaningful relation type name
to a relational triple is also a primary challenge
for open RE. Previous methods use relevant con-
text words in the associated sentence as relation
phrases (type names) (Del Corro and Gemulla,
2013; Bhutani et al., 2016). However, there is still
no generally accepted guideline for relation phrase
extraction. Multiple relation phrases can corre-
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Figure 1: Framework overview.

spond to the same relation type. Besides, overly-
specific or implicit relation phrases are incapable
of providing adequate information for downstream
applications. For example, the relation between
“Patricia” and “Gary Cooper” cannot be clearly
expressed by a set of words in the following
sentence E2. Therefore, previous studies heav-
ily rely on resources such as patterns (Soderland
et al., 2013), training data (Weston et al., 2013), or
distantly-labeled corpora (Angeli et al., 2015b) to
map open RE triples to a known relation schema.
E2 “Patricia later described her relation with

Gary Cooper as one of the most beautiful things
that ever happed to her in her life.”

Compared with a small number of predefined
relation types such as those defined in Automatic
Content Extraction (ACE) 1, the relation schema
in a large-scale Knowledge Base (KB) such as
DBpedia (Auer et al., 2007) covers a much wider
range of informative relations along with their
type signatures. Considering the open-domain na-
ture shared by open RE and a large-scale KB,
we propose an unsupervised grounding method to
name the relation type between two arguments as
either a KB relation or NONE, by leveraging KB
triples and weighted context information associ-
ated with each argument pair based on pre-trained
word embeddings (Section 3). Compared with
previous methods (e.g., (Riedel et al., 2013; We-
ston et al., 2013)), we regard intra-sentence con-
text words as intermediate results for the subse-
quent grounding process, and we do not require
any aligned training corpora or relation phrases for
KB triples. The proposed framework is illustrated
in Figure 1.

To the best of our knowledge, this is the first
open RE method which exploits the global struc-
ture of a dependency tree to extract salient re-
lational triples. This is also the first unsuper-
vised relation grounding method to name relation

1www.ldc.upenn.edu/collaborations/past-projects/ace.

types for open RE based on KB triples and intra-
sentence context information. Experiments on the
English Slot Filling (SF) (Ji et al., 2010, 2011)
2013 dataset demonstrate that our approach out-
performs state-of-the-art open RE approaches.

2 Relation Extraction

In this section, we introduce a graph-based method
to extract argument pairs of salient relational
triples. We first present the extended dependency
tree construction for each sentence (Section 2.1).
Then we show the computation of the relation
strength between two arguments (Section 2.4)
considering both their random-walk based dis-
tance (Section 2.2) and the relative importance of
each argument in the tree (Section 2.3).

2.1 Extended Dependency Tree Construction
Given a sentence containing N words, we con-
struct a weighted directed graph G = (V, E),
where V = {v1, . . . , vN} represents words, and
E is a directed edge set, associated with each di-
rected edge vi → vj representing a dependency
relation originating from vi to vj . We assign a
weight wij = 1 to vi → vj and add its reverse
edge vj → vi with wji = 0.5. By adding lower-
weighted reverse edges, we can analyze the rela-
tion between two nodes which are not connected
by directed dependency links while maintaining
our preferences toward the original directions.

We first apply a dependency parser to generate
basic uncollapsed dependencies.2 We annotate an
entity or time mention node with its type. For ex-
ample in E1, “Lucille Clifton” is annotated as a
person, and “1936” is annotated as a date. Finally
we perform coreference resolution which intro-
duces coreference links between nodes that refer
to the same entity within a document. We replace
any nominal or pronominal entity mention with its
coreferential name mention. For example, “he” is

2All the tools we used are introduced in Section 4.
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replaced by “Fred James Clifton”. Formally, an
extended dependency tree is an annotated tree of
entity mentions and their links. By adding the re-
verse edges, we generate the final extended depen-
dency tree in Figure 2. We regard any two entities
as a candidate argument pair. E1 contains 4 enti-
ties and therefore we can extract

(
4
2

)
= 6 argument

pairs (e.g., (“Lucille Clifton”, “1936”)).

E1:   Lucille Clifton, whom he married in 1958, was born in 1936. 

Lucille Clifton 

whom 

in 

he 1958 

Fred James Clifton in 

1936 

nsubjpass nmod 

dobj nsubj nmod 

coreference case 

Person Year 

Year 

born 

married 

was 

auxpass 

case 

Person 

Figure 2: Extended dependency tree of E1.

2.2 Distance Computation

As mentioned previously, a shorter distance be-
tween two strongly connected nodes is more likely
to indicate the existence of an important rela-
tion. We compute the distance between two nodes
based on a Markov-chain model of random walk.
We define a random walk through G by assign-
ing a transition probability to each directed edge.
Thus, a random walker can jump from node vi to
vj and represent a state of the Markov chain. For a
node vi, we denoteN (i) as the set of its neighbors.
The probability of transitioning from node vj to
node vi is defined as pji = wji/

∑
k∈N (j)wjk for

nodes vi that have an edge from vj to vi, and 0 oth-
erwise. We define the transition probability matrix
of the Markov chain associated with random walks
on G as P .

The mean first-passage time mji (Aldous and
Fill, 2002) is the average number of steps needed
by a random walker for reaching state i for the first
time, when starting from state j. We call cij =
mij +mji as the average commute time (Lovász,
1993). The fact that cij can be regarded as a dis-
tance in G between nodes vi and vj is proven
by Klein and Randić (1993). Compared with the
shortest path between vi and vj , the value of cij
will decrease when the number of paths connect-
ing vi and vj increases and when the length of any
path decreases (Fouss et al., 2007).

The fundamental matrix Z plays an essential
role in computing various quantities related to ran-

dom walks. For a weighted and directed graph, Li
and Zhang (2010) demonstrate that Z can be com-
puted directly using the following equation:

Z = (I − P + ED)−1 −ED (1)

where I is the identity matrix, E is a matrix con-
taining all 1s, and D is the diagonal matrix with
elements dkk = π(k) where π(k) is the stationary
distribution of node vk in the Markov chain.

We can directly compute a mean first-passage
|V| × |V| matrix and a symmetric average com-
mute time matrix C based on Z as follows:

mij =
zjj − zij
πj

(2)

cij =
zjj − zij
πj

+
zii − zji
πi

(3)

Using the example in Figure 2, we can obtain a
10 × 10 matrix M based on the above steps (10
nodes in total). We list the result involving only
entity nodes in Table 1.

m(row, col) Lucille 1958 he 1936

Lucille 0.0 64.2 24.7 74.7
1958 24.3 0.0 17.3 90.2
he 22.6 32.1 0.0 87.7
1936 20.2 101.3 37.1 0.0

Table 1: Mean first-passage time matrixM for E1.

Argument Role Identification: We notice that
argument roles can be identified based on the mean
first-passage time. In a weighted directed graph,
mij and mji are not necessarily similar. Actu-
ally in many cases nodes that lie on the boundaries
have shorter mean first-passage time to the cen-
tral nodes in the graph while there exists longer
mean first-passage time from a central node to a
node close to the boundary. A central node is
more likely to be the central argument. We define
the first argument as the more important argument.
Therefore, we can regard vi as the first argument of
the argument pair (vi, vj) ifmij is larger thanmji.
If mij and mji are equal, vi and vj have similar
argument roles. For example, the boundary node
“1936” in Figure 2 has shorter first-passage time
to the central node “Lucille Clifton” (i.e., the first
argument) compared with the reverse direction.
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2.3 Node Importance Computation
As we mentioned earlier, a candidate relational
triple is more likely to be salient if it involves im-
portant entities of the sentence. In this section, we
illustrate the node importance computation based
on the extended dependency tree of a sentence.

TextRank (Mihalcea and Tarau, 2004) can be
used to compute the importance of each node
within G. Similarly, suppose a random walker
keeps visiting adjacent nodes in G at random. The
expected percentage of walkers visiting each node
converges to the TextRank score.

We define a set of preferred nodesR which cor-
respond to entities in a sentence. We assign higher
preferences toward these nodes when computing
the importance scores since entities are more in-
formative for relation extraction (Björkelund and
Farkas, 2012). We extend TextRank by intro-
ducing a new measure called “back probability”
d ∈ [0, 1] to determine how often walkers jump
back to the nodes inR so that the converged score
can be used to estimate the relative probability of
visiting these preferred nodes. We define a pref-
erence vector pR = {p1, ..., p|V|} such that the
probabilities sum to 1, and pk denotes the relative
importance attached to vk. pk is set to 1/|R| for
vk ∈ R, otherwise 0. Let I be the 1 × |V| im-
portance vector to be computed over all nodes as
follows.

I(i) = (1− d)
∑

j∈N (i)

wji∑
k∈N (j) wjk

I(j) + d · pi (4)

ENTITY i Lucille he 1958 1936

I(i) 0.28 0.12 0.06 0.01

Table 2: Importance score of each entity in E1.

2.4 Combination and Filtering
Given the average commute time cij between
nodes vi and vj (Section 2.2) and their relative im-
portance scores I(i) and I(j) in G (Section 2.3),
we will discuss how to combine them and gen-
erate the final score which can be used to mea-
sure the relation strength between two nodes. In-
tuitively, there exists a strong relation when there
is a shorter distance between two relatively impor-
tant nodes.

Previous approaches (Spagnola and Lagoze,
2011; Guo et al., 2011) consider the distance be-
tween two nodes and the influence of each node

modeled by its weighted frequency to measure the
strength of links in networks. Similarly, in our
setting we can regard cij as the distance between
vi and vj and use the relative importance score to
measure the influence of each node in G. There-
fore, we obtain Equation 5 to compute the rela-
tion strength F (i, j) between nodes vi and vj . We
are more confident in predicting the existence of a
salient relation with stronger relation strength.

F (i, j) =
I(i)× I(j)

c2
ij

(5)

Relation Filtering: We get a complete entity
graph since we analyze the connection between
any two entities in a sentence. In this work, we fo-
cus on identifying the most significant structures
among entities based on the connection strength
we have obtained. Since the entity graph is undi-
rected, we can simply apply the maximum span-
ning tree algorithm to keep those relatively im-
portant pairs. For E1, we obtain three argument
pairs resulting after filtering: (“Lucille”, “1936”),
(“Fred”, “1958”), and (“Lucille”, “Fred”). In
comparison, the relations between argument pairs
such as (“1958”, “1936”) and (“he”, “1936”) are
less important.

3 Relation Grounding

We have presented how to extract candidate argu-
ment pairs in Section 2. In this section, we first
introduce how to rank the context words given
a pair of arguments (Section 3.1). Then we de-
scribe methods of learning KB relation representa-
tions from existing KB triples based on pretrained
word embeddings. Finally we ground each rela-
tional triple to a KB relation or assign NONE (Sec-
tion 3.2).

3.1 Context Word Selection and Weighting

In this section, we introduce how to extract infor-
mative context words and their associated weights
given an argument pair (vi, vj) in a sentence based
on the average commute time matrix C introduced
in Section 2.2. Previous work (Yu and Ji, 2016)
regards this problem as finding important nodes
in G relative to given arguments. However, they
need to run the algorithm repeatedly to analyze the
same graph for each argument pair. Here we dis-
cuss an efficient method to extract weighted con-
text words.

857



We only keep nouns, verbs, adjectives, preposi-
tions, and particles as indicative context words X .
We assume that a context word vk ∈ X is more
important relative to (vi, vj) if cik + ckj is close to
cij . Actually if the relation between vi and vj does
not rely on any indicative words, cij will be much
smaller than cik + ckj considering other nodes in
the same sentence. We denote Λ as the weight set
for all the context words of a given argument pair
(vi, vj) as follows. The higher λk is, the more im-
portant the context word vk is relative to (vi, vj).

λk =
cij

cik + ckj
(6)

In E1, given the argument pair (Lucille Clifton,
Fred James Clifton), we generate the following
weighted context words: {married : 0.60, in1 :
0.36, born : 0.29, in2 : 0.24}.

3.2 Grounding

The associated weighted context words of each
candidate argument pair are not sufficiently infor-
mative and flexible to clearly express the relation
between two arguments. Thus, we aim to name the
relation between a pair of arguments as one of the
KB relations or NONE by comparing the semantic
representations of context words and KB relations
based on word embeddings. We also learn argu-
ment type signatures from KB triples.

For each word we obtain its pretrained word
embedding e ∈ Rk where k is the embedding di-
mensionality. For a phrase which contains multi-
ple words, we simply average the vectors of all the
single words in the phrase as its embedding.

Given a KB triple (h, l, t) composed of two en-
tities h, t and a KB relation l ∈ L (the set of KB
relations), we leverage a large-scale KB to learn
the representation for each KB relation motivated
by the basic idea behind previous studies (Bordes
et al., 2013; Mikolov et al., 2013) that relation pat-
terns can be represented as linear translations. We
use Sl = {(hi, l, ti), i = 1, . . . , |Sl|} to represent
all the KB triples with the KB relation l.

KB relation type names can also provide impor-
tant semantic information for relation representa-
tion and disambiguation especially when multiple
relations co-occur in the same sentence, such as
family relations (e.g., spouse, parents, and other
family). We segment a compound name of a KB
relation type into a set of words. For example, we

separate a DBpedia relation type name political-
Groups into {political, groups}. Similarly, we av-
erage the vectors of all the words in a relation type
name as its embedding ẽl ∈ Rk. Incorporating
both implicit semantics from KB tuples and ex-
plicit semantics from KB relation names, we rep-
resent the relation embedding of each KB relation
l as follows.

el =
1
|Sl|

|Sl|∑
i=1

(ehi
− eti + ẽl) (7)

Both of the involved embeddings are obtained
from the linear combination of pretrained word
embeddings, which guarantees that they are in the
same space.

Given a single KB relation type l, an argument
pair (vi, vj) and a single context word x, we can
compute the cosine similarity between any can-
didate open RE triple and any KB relation. We
calculate the absolute value since we have already
captured the direction of arguments in Section 2.2.
Therefore, we can regard similarity scores −1 and
1 equally and 0 as the lowest score.

S(l, (i, j, x)) =
|ex · el|
‖ex‖‖el‖ (8)

When there are multiple context words x ∈ X ,
we can compute the weighted cosine similarity
between them as follows based on the squared
weights of context words described in Section 3.1.

S(l, (i, j,X )) = max
x∈X

S(l, (i, j, x))× λ2
x (9)

Since we have multiple KB relations l ∈ L, we
can ground a candidate relational triple (i, j,X )
and obtain its relation l̂i,j,X considering all the
possible relations. The predicted relation can ei-
ther be assigned a valid KB relation or NONE. We
use a marker to denote the relation between vi and
vj which cannot be grounded to any KB relation.

l̂i,j,X = arg maxl∈L S(l, (i, j,X )) (10)

Relation Argument Type Constraints
For each KB relation, we can obtain its type

constraints for its two arguments. Take the rela-
tion birthPlace as an example: the entity types of
two arguments should be person and location.
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Given all the KB triples, we can estimate the
probability of one of the arguments belonging to
a certain entity type z ∈ Z , where Z represents
the set of all the KB concept types. For a given
KB relation l, we define c(k ; z | l) to be the
number of times the kth argument is seen paired
with the entity type z where k ∈ {1, 2} since there
are two arguments. Given the above definitions,
the maximum likelihood estimate is as follows.

p(k, z | l) =
c(k ; z | l)∑
z∈Z c(k ; z | l) (11)

Therefore, given a candidate argument pair
(vi, vj) and their entity types zi and zj , we can
compute the probability of its being labeled as
the relation l by considering both p(1, zi | l) and
p(2, zj | l). We set S(l, (i, j,X )) to 0 if the har-
monic mean of p(1, zi | l) and p(2, zj | l) is smaller
than a given threshold which will be introduced
later in Section 4.4. We will not consider a can-
didate KB relation for comparison if the argument
type of i or j fails to satisfy its type constraints. In
this way, we can filter out some candidate triples
and reduce the number of similarity computations.
For example, given a KB relation placeOfBurial,
the concept type Species is less likely to be the
correct second argument type compared with other
entity types such as City and Location. Remind
that the order of arguments in the candidate triple
has been introduced in Section 2.2.

4 Experiments

4.1 Knowledge Base and Word Embeddings
We use the April 2016 dump of DBpedia as
our KB which contains 2, 060 relation types and
30, 024, 093 relation triples in total. We use
the 300-dimensional GloVe vectors (Pennington
et al., 2014) pretrained on 6 billion tokens from
the English Gigaword Fifth Edition and a 2014
Wikipedia dump.

4.2 Evaluation based on Slot Filling
There are several benchmarks developed for open
RE (e.g., (Fader et al., 2011; Stanovsky and Da-
gan, 2016)). However, we mainly focus on re-
lations between entities and therefore we cannot
directly compare with state-of-the-art open RE
methods on those datasets. To evaluate the ef-
fectiveness of our approach, we choose the TAC-
KBP SF (McNamee and Dang, 2009; Ji et al.,

2010, 2011; Surdeanu and Ji, 2014) task as our
evaluation platform which has been widely used
by open RE methods (Soderland et al., 2013; An-
geli et al., 2015b) since 2009. The goal of SF is
to extract the values (slot fillers) of specific at-
tributes (slot types) for a given entity (query) from
a large-scale corpus which includes news docu-
ments, web blogs, and discussion forum posts.
Justification sentences should be provided to sup-
port slot fillers. SF defines 25 slot types for person
queries and 16 slots for organization queries.

We use the SF 2013 dataset for which we
can compare with the ground truth and state-
of-the-art open RE results reported in SF. We
obtain 1, 701 relevant documents from the offi-
cial evaluation assessment for 50 person queries
and 50 organization queries. We manually
map KB relations to slot types based on TAC-
KBP slot descriptions.3 Note that a single
KB relation can be mapped to multiple slot
types. For example, birthPlace can be mapped
to per:city of birth, per:stateofprovince of birth,
and per:country of birth. We assign a subtype
(e.g., country, province, or city) to a location entity
based on gazetteer matching.

DBpedia Relations Slot Types

founder org:founded by
keyPeople org:top members employees
education per:schools attended
workInstitution per:employee or member of
birthDate per:date of birth

Table 3: Example Mappings from DBpedia rela-
tions to slot types.

We ignore all the slot types which require nomi-
nal phrases as fillers (e.g., per:cause of death) and
slot types per/org:alternate names which depend
on cross-document coreference resolution. We
apply Stanford CoreNLP (Manning et al., 2014)
for English part-of-speech tagging, name tagging,
time expression extraction, dependency parsing,
and coreference resolution. We use the official
Slot Filling evaluation scoring metrics: Precision
(P), Recall (R), and F-measure (F1).

As shown in Table 4, our method outperforms
the KBP2013 SF submission from the Univer-
sity of Washington (Soderland et al., 2013) which
applies Open IE V4.0, which is an extension of
SRL-based IE (Christensen et al., 2011) and noun

3The resource is publicly available for research purposes
at: http://nlp.cs.rpi.edu/data/dbpedia2slot.zip.
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Method P R F1

UW Official (Soderland et al., 2013) 69.9 12.2 20.8
UMass Official (Singh et al., 2013) 10.6 19.5 13.7

Our Approach
[1] KB Tuples 17.3 21.1 19.0
[2] Relation Names 24.3 30.9 27.2
[1]+[2] Joint 26.2 32.4 28.9

Table 4: Performance (%) on KBP2013 English
SF based on different relation representations.

phrase processing (Pal and Mausam, 2016), to
generate relation triples. This is their latest pub-
lished approach which uses Open IE for Regular
Slot Filling. Their approach achieves very high
precision but comparatively low recall (12.2%). In
our experiments, we keep all the candidate triples
which could be mapped to a slot type without
tuning thresholds. On the same dataset, we also
compare with an approach (Singh et al., 2013)
which extracts relations with matrix factorization
and universal schemas (Riedel et al., 2013) con-
sisted of textual patterns and all the slot types. We
do not directly compare with the work of Angeli
et al. (2015b) because of the lack of access to their
SF output.4

The importance-based strategy is effective at
extracting more salient information. For example,
previous methods only extract one argument pair
(“the top Egyptian cleric”, “Wednesday”) from
the sentence “Sheikh Tantawi, the top Egyptian
cleric who died on Wednesday on a visit to . . . ”
while omitting the person name. Our method ex-
tracts both (“Sheikh Tantawi”, “Egyptian”) and
(“Sheikh Tantawi”, “Wednesday”) with their as-
sociated top-weighted context words “cleric” and
“died” respectively, since the connection between
“Egyptian” and “Wednesday” is much weaker.

Compared with relation phrases, the word em-
beddings of weighted context words are more
flexible for comparison when we map relational
triples to a known schema. For example, it is
impossible for previous methods (e.g., (Soder-
land et al., 2013)) to summarize all the related
mentions (e.g., “appointed” and “CEO”) and
manually map them to the relation employment.
Therefore previous approaches missed the slot
filler “Al-Azhar University” of the query “Mo-
hammed Sayed Tantawi” from the following sen-
tence “Tayeb, the president of Al-Azhar Uni-
versity since 2003, succeeds Mohammed Sayed

4The highest recall they achieve is around 13% on all the
slot types including nominal relations on the same dataset.

Tantawi” as “succeeds” was not included into the
related terms. Our approach extracts it based on
their semantic representations.

In addition, we obtain more generalized rela-
tion type names based from the KB schema. For
example, we ground the relation in E2 between
“Patricia” and “Gary” to influencedBy. Simi-
larly, in the sentence “Ginzburg shared the Nobel
Physics Prize with US physicists Alexei Abrikosov
and Anthony Leggett for their contributions to the
theory of superconductors ...”, the relation phrase
“shared the Nobel Physics Prize with” between
“Ginzburg” and “Alexei” is too specific compared
with the grounded KB relation alongside by our
approach for subsequent applications.

4.3 Impact of Relation Representations
In Section 3.2, we use KB tuples and their rela-
tion type names to learn KB relation representa-
tions. As shown in Table 4, our approach can al-
ready achieve promising performance based on the
relation representations learned from KB relation
names. However, sometimes relations are implic-
itly expressed. It is likely that the context words of
a relation triple and its corresponding KB relation
name are not semantically similar. In this case, we
need more general relation representations with
the help of millions of KB tuples. For example,
we can ground the relation school between “Mc-
Gregor” and “Colorado State University” suc-
cessfully by comparing the representation of con-
text words “tight” and “end” with the joint rela-
tion representations from the following sentence:
“McGregor was a two-time All-America tight end
at Colorado State University” even though this re-
lation is not explicitly described.

4.4 Impact of Argument Type Constraints
As mentioned in Section 3.2, we aim to filter out
some candidate relation triples if the entity types
of the arguments are not popular for a given KB
relation. By tuning thresholds, there are no signif-
icant differences in performance when the thresh-
old falls in the range 0.05–0.2. On the other hand,
if the threshold is set too high (e.g., greater than
0.35%), we will mistakenly discard correct candi-
dates which satisfy type constraints.

We implement Jenks optimization (Wikipedia,
2017) to automatically split the frequency values
of all entity types into two tiers given a certain ar-
gument position and a KB relation. This is done
by minimizing each tier’s average deviation from
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the tier mean, while maximizing each tier’s devi-
ation from the means of other groups (McMaster
and McMaster, 2002). We set the threshold auto-
matically using the obtained natural breaks for two
arguments respectively to compute the harmonic
mean of them. This approach achieves 28.9% F1

which is comparable to the highest F1 (29.2%) ob-
tained by threshold tuning.
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Figure 3: Performance (%) based on different
thresholds for argument type constraints.

5 Related Work

5.1 Open Information Extraction
Lexical or syntactic features and patterns
have been widely used to extract relational
triples (Suchanek et al., 2009; Poon and Domin-
gos, 2009; Wu and Weld, 2010; Nakashole et al.,
2011; Fader et al., 2011; Nakashole et al., 2012;
Mausam et al., 2012; Bovi et al., 2015; Angeli
et al., 2015b; Grycner and Weikum, 2016). Our
work explores the global structure of a depen-
dency tree to identify salient triples within a
sentence. Some open IE approaches have the
capability to extract relations between concepts
or phrases (Kok and Domingos, 2008; Min et al.,
2012; Del Corro and Gemulla, 2013). Currently
we focus on relations between two entities.

Given the SF schema, Soderland et al. (2013)
manually design rules to map relational triples to
slot types within hours. Researchers also use dis-
tantly labeled corpora to compute the PMI2 value
between open IE and SF relation pairs (Angeli
et al., 2015b). Instead, we propose a novel ground-
ing approach which facilitates building a mapping
table between KB relations and slot types. We
do not compare with RE methods specifically de-
signed for SF (Sun et al., 2011; Li et al., 2012;
Angeli et al., 2015a) since these methods actively
search for candidate fillers of the given queries

based on slot-specific training resources while ig-
noring the salient relations which are irrelevant to
the queries or the predefined slot types.

5.2 Relation Grounding

Besides textual features, large-scale knowledge
bases are widely used for distant supervised rela-
tion extraction (Mintz et al., 2009; Riedel et al.,
2010) to deal with the challenges caused by in-
sufficient training data. Weston et al. (2013) com-
bine two relation representations trained from KB
triples and context words independently for rela-
tion extraction. Recent studies such as (Toutanova
et al., 2015) train relation representations of
KB and textual relations jointly. Another kind
of representations combining matrix factoriza-
tion (Riedel et al., 2013) with first-order logic in-
formation is learned by Rocktäschel et al. (2015).
Compared with these previous efforts, our un-
supervised grounding method does not need the
aligned training corpus or relation mentions for
KB tuples. Wijaya and Mitchell (2016) introduce
an approach to map words to KB relations based
on web text, but they only focus on verb phrases.

5.3 Node Importance Computation

Graph-based algorithms such as PageRank (Page
et al., 1999) and TextRank (Mihalcea and Tarau,
2004) are useful in keyword extraction. The way
we rank nodes is most similar to the work of White
and Smyth (2003) and Yu and Ji (2016) which gen-
erate the relative importance score of each node to-
ward a set of preferred nodes. However, they only
deal with unweighted undirected graphs.

6 Conclusions and Future Work

We propose an unsupervised open relation extrac-
tion method by exploring the global structure of
dependency tree and show its effectiveness in ex-
tracting salient candidate relation triples. We also
leverage the knowledge from the large-scale KB
relation triples and weighted context words based
on general embeddings to enhance the quality of
our relation grounding technique. Experiments on
English Slot Filling demonstrate that our approach
outperforms state-of-the-art open RE approaches.
In the future, we aim to extend our framework for
multilingual open RE based on the KB schema.

861



Acknowledgments

This work was supported by the DARPA DEFT
No. FA8750-13-2-0041, U.S. ARL NS-CTA No.
W911NF-09-2-0053, and NSF IIS 1523198. The
views and conclusions contained in this document
are those of the authors and should not be inter-
preted as representing the official policies, either
expressed or implied, of the U.S. Government.
The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

References
David Aldous and Jim Fill. 2002. Reversible markov

chains and random walks on graphs.

Gabor Angeli, Sonal Gupta, Melvin Johnson Premku-
mar, Christopher D Manning, Christopher Ré, Julie
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Abstract
Genetic information in the literature has
been extensively looked into for the pur-
pose of discovering the etiology of a dis-
ease. As the gene-disease relation is sen-
sitive to external factors, their identifica-
tion is important to study a disease. En-
vironmental influences, which are usu-
ally called Gene-Environment interaction
(GxE), have been considered as impor-
tant factors and have extensively been re-
searched in biology. Nevertheless, there is
still a lack of systems for automatic GxE
extraction from the biomedical literature
due to new challenges: (1) there are no
preprocessing tools and corpora for GxE,
(2) expressions of GxE are often quite
implicit, and (3) document-level compre-
hension is usually required. We propose
to overcome these challenges with neu-
ral network models and show that a mod-
ified sequence-to-sequence model with a
static RNN decoder produces a good per-
formance in GxE recognition.1

1 Introduction

Identifying genetic information related to a dis-
ease is an effective method for discovering the
etiology of the disease. Many researchers in bi-
ology have attempted to identify the relationship
between different types of genetic information,
such as genes, gene mutations or other biological
events, and diseases.

One of the difficult aspects in the research is
that it is necessary to consider various external fac-
tors, because they can affect whether such biolog-
ical relationships hold or not. For example, it has

∗Corresponding author
1Our source code and gold standard corpus are available

at http://biopathway.org/GxE

been shown that there is no association of NAT2
gene and breast cancer (Zgheib et al., 2013), but
after three years, other researchers made a con-
flicting claim that NAT2 gene is associated with
breast cancer (Kasajova et al., 2016). There may
be many factors causing this difference, but inves-
tigating the environmental factors has been one
of the important research topics. Kasajova et al.
(2016) found that NAT2 gene is associated with
breast cancer when women with NAT2 gene poly-
morphisms have been exposed to long-period ac-
tive smoking. As a result, active smoking has been
considered as a crucial factor that determines the
relation between NAT2 gene and breast cancer,
which biologists called gene and environment in-
teraction (GxE).

Since the importance of studying GxE is rec-
ognized, the amount of related work has steadily
been increasing (Hunter, 2005). Nonetheless,
there is still a lack of systems and databases that
deal with this information (Simonds et al., 2016).
For the purpose of addressing this situation, we
present an automatic system that extracts environ-
ment terms indicating a change of gene-disease re-
lations from the biomedical literature.

There are three major challenges that make it
difficult to perform GxE recognition using exist-
ing systems in the biomedical domain. First, in
contrast to general biomedical natural language
processing (BioNLP) tasks, there are no prepro-
cessing tools and corpora for GxE, though there
are some resources for chemical-disease relations,
such as named entity recognition systems special-
ized for chemical and disease names and corpora
that annotate chemical and disease relations in ab-
stracts (Wei et al., 2015b). Second, research on
discovering biomedical relations usually specifies
environmental information in the literature in var-
ious ways, using not only expressions that explic-
itly refer to certain biomedical concepts such as

865



pregnancy and smoking, but also statistical terms
that refer to a comparison between two control
groups, such as p-value and odds ratio, which are
quite difficult to capture using conventional tools.
Since the literature for GxE also tends to report
experiment results in similar ways, the system
needs to understand such implicit information to
determine whether the result is meaningful or not.
Third, information of this kind indicating GxE is
usually not reported in a single sentence, requiring
document-level comprehension of text.

To address this situation, we build an annotated
corpus for GxE and develop an end-to-end sys-
tem that recognizes environment information for
gene-disease pairs given in single document. We
exploit high-dimensional models based on neural
networks to enable document-level understanding
of text and to deal with the issues above. We also
perform experiments with different neural network
models to investigate which models are most suit-
able to GxE recognition.

2 Related work

One of the related areas that have been actively
researched in BioNLP is biomedical event extrac-
tion. For example, a system was proposed in the
recent shared tasks (Kim et al., 2013), attempt-
ing to extract ten biological events, with the best
performance under a 0.6 F1-score. This score,
however, was extremely skewed to particular event
types. While all the systems showed good perfor-
mance, with nearly a 0.8 F1-score, in extracting
simple events such as gene expression and tran-
scription, they showed quite poor performance for
complex events such as binding and regulation.
This is because, in contrast to simple events, com-
plex events consist of more than two elements or
another event. In particular, the task of extracting
binding events is usually treated as finding ternary
relations, where a system is supposed to recog-
nize two biological entities together with a partic-
ular site where their binding takes place. This task
is similar to our task as the relation between two
entities can be changed according to the third en-
tity. The best system for binding event extraction
achieved a 0.49 F1-score.

Another recent work on dealing with com-
plex relations in BioNLP is reading comprehen-
sion (RC), where the system is to find proper an-
swers to given questions about a biological pro-
cess within single document. For example, the

system in (Berant et al., 2014) attempts to find
answers through comparisons between two graphs
constructed from given documents and questions.
Although the system explicitly combines biolog-
ical events extracted from sentences to construct
a long biological process, possibly leading to the
propagation of errors, they reported fairly good
performance and meaningful results, considering
that it is the first attempt for document-level bio-
logical information extraction.

On the other hand, there are quite a few sys-
tems and corpora for document-level comprehen-
sion from a similar perspective in other domains,
such as news articles (Hermann et al., 2015) and
children’s books (Hill et al., 2016). One of the re-
cent studies, (Hermann et al., 2015), addresses the
reading comprehension task for which proposed
models infer missing entities. From the perspec-
tive of evaluating how well such models under-
stand documents for answering given questions,
the task is similar to the present work. In this task,
neural network models were shown to be effective
for processing document-level information. More
specifically, they demonstrated that a variant of
neural network, RNN with attention mechanism,
achieved the state-of-the-art performance (Chen
et al., 2016).

WikiReading is most similar to our task as it
deals with inference over entities based on a se-
quence of tokens (Hewlett et al., 2016). The
authors were inspired from the QA task, treat-
ing given properties as questions and develop-
ing models to find proper entities that could be
answers to the questions. There are two types
of properties in WikiReading: (1) the categori-
cal property that requires selection among a rel-
atively small number of possible answers and (2)
the relational property that requires extraction of
rare or unique answers from the document. The
authors compared various types of models from
simple word embedding models to sequence-to-
sequence models and showed that the sequence-
to-sequence model gives rise to outstanding per-
formance in both types of properties.

3 Task definition

3.1 GxE extraction

We formulate the GxE recognition task as extract-
ing terms indicating a particular environment that
is involved in a change of gene-disease relations.
Figure 1 illustrates an example abstract that con-
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Figure 1: An illustrated abstract describing GxE for lung cancer. In this figure, gene and disease are
shown in blue and red, respectively. Expressions in bold-face are targeted environment terms. Sentences
highlighted in gray are the evidence supporting the claim that an association between MTNR1a and
breast cancer is changed by menopausal status.

Environment type Example

Energy balance
dietary factors,

physical activity

Lifestyle
smoking, alcohol,

breastfeeding

Exogenous hormones HRT, OC use

Endogenous hormones
menopausal status,

age of menarche

Chemical environment
grilled foods/meats,

heterocyclic amines

Drugs/treatment statin, NSAIDS

Infection and inflammation
helicobacter pylori,

autoimmune disease

Physical environment
x-rays,

sun exposure

Table 1: The list of biological environment types
(Simonds et al., 2016)

tains information about GxE for breast cancer,
where gene and disease names are shown in blue
and red, respectively (Wei et al., 2015a; Lee et al.,
2016). There are four types of genes (MTNR1a,
MTNR1b, AANAT, insulin) and two types of dis-
eases (breast cancer, cancer). Therefore, we con-
sider twelve gene-disease combinations for which
our system attempts to find environment terms
from the abstract. As an example of environment
terms, it is claimed in the abstract that the associ-
ation between MTNR1a and 1b genes and breast
cancer may vary to menopausal status. Sentences
highlighted in gray are the evidence supporting the

claim. Expressions in bold-face are targeted envi-
ronment terms to be extracted by our system.

Our model is given the abstract marked with
genes and diseases, and considers each unique
gene-disease combination, one at a time, to find
its environment terms. For example, if we want to
consider the combination of MTNR1a and breast
cancer, the input is the abstract marked only with
these two entities, without other entities marked
such as MTNR1b or AANAT. We used two state-
of-the-art named entity recognizers (Wei et al.,
2015a; Lee et al., 2016) to identify gene and dis-
ease names from a given abstract. For each com-
bination, we consider the following four cases: (1)
the combination consists of an unassociated gene-
disease pair, not affected by an environment; (2)
although the combination consists of a pair that is
basically unassociated, it becomes associated due
to a particular environment; (3) the combination
consists of an associated pair but it is not affected
by an environment; and (4) the combination con-
sists of an associated pair and the degree of its as-
sociation is changed by an environment. Our sys-
tem is trained to choose the most proper environ-
ment term for a given combination in cases (2) and
(4), but not to choose any term in cases (1) and (3).

3.2 Corpus
For experimental data, we collected 253 raw ab-
stracts that are taken from review papers on GxE
for diverse diseases (Simonds et al., 2016; Dunn
et al., 2011; DiGangi et al., 2013; Iyegbe et al.,
2014; Hunter, 2005). To establish the gold stan-
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dard data to train and test the system, we manually
annotated the biological environments that should
be extracted. For the clear definition of an envi-
ronment, we only annotated the terms that can be
categorized into one of the types in Table 1 and
that are clearly reported as associated with gene-
disease relations in the abstract.

Annotation was conducted by two experts in
bioinformatics, who were given abstracts marked
with gene and disease names. They did not an-
notate combinations consisting of entities that are
incorrectly recognized by the named entity recog-
nizer (i.e., entities that are neither gene nor dis-
ease). For each abstract, one annotator read the
entire body of its text and annotated terms refer-
ring to an environment that is involved in a given
combination of gene and disease, and then another
annotator validated its correctness, in a way simi-
lar to other annotation tasks in BioNLP (e.g., Be-
rant et al. 2014). The agreement on annotated
environment terms between the two annotators is
0.81. If they did not agree on a certain annotation,
they had a discussion on the disagreement and re-
solved it afterwards. The corpus contains a total of
1,429 combinations of unique genes and diseases.
Among them, 341 combinations are annotated as
being affected by environment, i.e., they are linked
to some environment terms annotated in the same
abstract.

4 Method

We use two types of models, a feature-based
model and an neural-based model, that could be
applied to document-level understanding of re-
lations between entities in order to investigate
which models are suitable to GxE recognition and
whether or not there are important issues partic-
ularly in this new task. There are three variants
based on the neural-based model: (1) an attentive
reader (Hermann et al., 2015), (2) a sequence-to-
sequence model (Sutskever et al., 2014), and (3)
a static RNN decoder. We envision that different
characteristics of these models would lead to dif-
ferent performance, according to the types of task.

In our experiment, the three models relied nei-
ther on any prior knowledge nor on external tools
for collecting candidate environment terms. Even
though such words as ‘smoking’ or ‘alcohol’ can
be considered to have a higher probability to be a
biological environment than other words, we did
not use such information to prevent error propaga-

tion and to investigate the possibility of handling
newly introduced terms.

4.1 A feature-based model

We combined two models proposed by Chen
et al. (2016) and Xu et al. (2016): a model that
adapts an entity-centric approach to the RC task,
and a feature-based model that extracts chemical-
disease relations on a document level.

Inspired by these two models, we use the fol-
lowing feature sets that we expect are suitable to
our task. We describe each feature in detail be-
low, where g, d, and e indicate gene terms, disease
terms, and candidate environment terms, respec-
tively: (1) shortest distance from e to g and d in
the abstract, (2) whether e and g pair in the same
sentence, (3) whether e and d pair in the same sen-
tence, (4) whether e, d, and g pair in the same sen-
tence, (5) whether e is included in MeSH (Medical
Subject Headings) terms, (6) the frequency of e in
an abstract, (7) the frequency of e in all abstracts,
(8) whether e and g are connected by the depen-
dency parser (De Marneffe et al., 2006), and (9)
whether e and d are connected by the dependency
parser (De Marneffe et al., 2006).

Using these features, the model tried to classify
all terms that are present in the abstract. If the
model assigns 1 to a term, we regard it as an envi-
ronment. If the model classifies all terms for a par-
ticular gene-disease combination as 0, we assume
that there is no environment for this combination
in the abstract.

4.2 An neural-based model

We propose three neural-based models; 1) an at-
tentive reader, 2) a sequence-to-sequence model,
and 3) a static RNN decoder. The three mod-
els comprise two parts: converting text to vector
representation, called encoding, and predicting the
vector to answer, called decoding. The encoding
is the same in all the three models. We look over
the encoding and then compare each decoding part
of the three models.

4.2.1 Encoding
Our encoding with attention is based on the model
proposed by Chen et al. (2016), which shows bet-
ter performance than any other encoders. The
model runs in two steps, text encoding and atten-
tion, described in detail as follows.

Text encoding: All words are mapped to d-
dimensional vectors using the PubMed/PMC word
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embedding model (Pyysalo et al., 2013) with a
limited dictionary size (V ). We include special to-
kens, ‘<NOE>’, that stands for no environment
terms for the combination and ‘<UNK>’, that
stands for terms that are not included in the dic-
tionary. The sequence of words in an abstract ex-
cluding stop words and special characters is en-
coded as p1, ...,pm ∈ Rd where m is the number
of words in the abstract. Then, we pass the se-
quence p1, ...,pm to bi-directional RNN:

−→
hi = RNN(

−→
h i−1,pi) ∈ Rh, i = 1, ...,m

←−
hi = RNN(

←−
h i+1,pi) ∈ Rh, i = m, ..., 1

p̃i = concat(
−→
hi,
←−
hi) =

[−→
hi←−
hi

]
∈ R2h, i = 1, ...,m

where h is the dimension of hidden units of RNN.
From p1, ...,pm, the model extracts marked

gene and disease names. Let the set of gene
names be {g1, ...gn} where n is the number of
gene names in the abstract. Let the set of dis-
ease names be {d1, ...dl} where l is the number
of disease names in the abstract. Then, we make
the gene-disease combination vector c by element-
wise summation of concatenated vectors:

c = WT
c (
[
g1

d1

]
⊕
[
g2

d1

]
...⊕

[
gn

dl

]
)

where Wc ∈ R2d×2h is the weight vector for gene
and disease.

Attention: In order to enable the model to fo-
cus more on evidence for identifying environment
terms in the abstract, we used the attention mech-
anism. In the QA task, the vector of questions is
projected to a document for calculating the proba-
bility of relevance degree between a question and a
document. Likewise, we project the gene-disease
combination vector (c) to the sequence of word
vectors (p̃1, ..., p̃m). We applied a bilinear term,
a variant of attention mechanism, to combine the
combination vector and the sequence of vectors:

a = softmax(cTWbp̃i), i = 1, ...,m

where Wb ∈ R2h×2h.
And then, we generated an attention vector by

summation of projecting the bilinear term to the
sequence of vectors:

ã =
∑
i

ap̃i, i = 1, ...,m

Figure 2: An overview of each decoding part in
three models

4.2.2 Decoding
In this section, we describe each decoding of the
three models. Figure 2 illustrates an overview of
three models.

(a) An attentive reader
By mapping the attention vector (ã) to vocabulary,
we compute output vector (oa) as follows,

oa = WT
a ã

where Wa ∈ R2h×V :
We choose terms that come from their conjunc-

tion showing the top values of the output vector
and that are represented in the abstract, and con-
sider them as environment. However, if the top
value of the output vector indicates ‘<NOE>’, we
conclude that there is no environment.

(b) A sequence-to-sequence model
A decoder in the sequence-to-sequence model dy-
namically generates tokens from ‘<SOE>’ (start
of token) to ‘<EOE>’ (end of token). The model
is based on a previous hidden vector, a previous
token vector and an encoding vector that is an out-
put vector of the encoding. The previous token
vector is computed by projecting a token gener-
ated in previous time step to an embedding layer.
We try to set the attention vector (ã) to the encod-
ing vector as we expect that the attention vector
is more properly tuned to extract terms depending
on the gene-disease combinations than the original
encoding vector:

ti−1 = WT
e oi−1

yi = RNN(
−→
h i−1, ti−1, ã) ∈ R2h, i = 1, ..., e
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where e is the number of environment terms and
WT

e is an embedding layer.

oi = argmax(WT
s yi), i = 1, ..., e

where WT
s ∈ R2h×V . The oi is the index of the

vocabulary and a sequence of tokens, (o1,...,e), is
regarded as environment terms predicted by the
model.

If the first decoding token indicates ‘<NOE>’
in the output sequence, we assume that there is no
environment.

(c) A static RNN decoder
As a modification to the sequence-to-sequence
model, we suggest that the model uses a static
RNN decoder, which does not use a previous to-
ken vector (ti−1). In particular, the model used
randomly normalized token vectors. Because the
model is needed to set the length of the decoder
in advance, it seems to statically generate envi-
ronment terms, which is an outstanding feature
in comparison to the sequence-to-sequence model.
Because our answer tokens are usually atomic and
spread over the abstract, the previous output state,
which is usually used when making a long se-
quence of tokens, is not useful for our task.

yi = RNN(
−→
h i−1, t′i, ã) ∈ R2h, i = 1, ..., e′

where e′ is the number of environment tokens that
is set in advance.

oi = argmax(WT
r yi), i = 1, ..., e′

where WT
r ∈ R2h×V . The oi is the index of the

vocabulary and a sequence of tokens, (o1,...,e′), is
regarded as environment terms predicted by the
model.

Similar to the sequence-to-sequence model, if
the first decoding token indicates ‘<NOE>’ in the
output sequence, we assume that there is no envi-
ronment.

5 Experiments

5.1 Corpus statistics

In the 253 abstracts that report the presence of
GxE, 341 out of 1429 gene-disease combinations
show a relationship and are considered affected
by environment. Table 2 provides some statistics
of the dataset. There are a total of 247 types of
gene and 106 types of disease. In an abstract,

Category #
Types of genes 267
Types of diseases 106
Avg. # of tokens 304.1
Avg. # of sentences 10.4
Avg. # of environment tokens 2.7
Min. # of environment tokens 1
Max. # of environment tokens 15
Avg. # of environments
per combination

1.4

Min. # of environments
per combination

1

Max. # of environments
per combination

8

Table 2: Data statistics of the GxE dataset. All
values are based on the statistics from the entire
dataset.

there are about 304 tokens and 10 lines on aver-
age. Also, the average number of environment to-
kens is about 3 and the maximum number is 15.
Assuming that the combination shows GxE in an
abstract, the average number of unique environ-
ments per combination is 1.4. From the statistics,
we see that the environment is made of just one
or two words and that the combinations showing
GxE appear rarely.

In order to balance positive and negative val-
ues, we randomly sampled 146 combinations from
almost 1000 redundant combinations that do not
show GxE, and abstracts with a total of 487 com-
binations were given as input to the system. The
input is already marked with gene and disease, and
the annotated gold standard environment term was
used as the target answer. We randomly selected
80% of the dataset (389) and used them for train-
ing, 10% for validation (49), and 10% for test (49).

5.2 Setup
For training the proposed model, we set common
parameters empirically as follows. According to a
given embedding model, the dimension of word
vectors is 200. We built a dictionary using the
most frequent 2.5K words. And we split sentences
using the tool (Kazama and Tsujii, 2003) and to-
kenized the sentences using the supporting tool in
BioNLP Shared Task 20112, where both tools are
specialized to BioNLP.

2https://github.com/ninjin/bionlp_
st_2011_supporting/blob/master/tools/
GTB-tokenize.pl
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Model P R F1
Baseline model (DT) 0.157 0.172 0.152
Baseline model (SVM) 0.279 0.274 0.275
Baseline model (RF) 0.204 0.196 0.196
Baseline model (GB) 0.1 0.123 0.095
Baseline model (AB) 0.168 0.155 0.153
RNN reader (top-5) 0.321 0.359 0.338
Attentive reader (top-5) 0.362 0.373 0.366
Attentive reader (top-10) 0.290 0.542 0.378
Attentive reader (top-15) 0.283 0.639 0.390
Attentive reader (top-20) 0.214 0.670 0.324
Seq2seq model
(basic encoding) 0.305 0.298 0.301

Seq2seq model
(attention encoding) 0.322 0.319 0.320

Static RNN decoder
(basic encoding) 0.484 0.389 0.426

Static RNN decoder
(attention encoding) 0.450 0.380 0.409

Table 3: The performances of different models
on GxE recognition. P and R stand for preci-
sion and recall, respectively. DT, SVM, RF, GB
and AB stand for Decision Tree, Support Vector
Machine, Random Forest, Gradient Boosting, and
AdaBoost, respectively. The RNN reader indicates
attentive reader without attention encoding.

The baseline models followed the initial pa-
rameter setting of a machine learning framework,
sklearn3. We tried to change the parameter setting,
without any significant difference in performance.

In the attentive reader and the static RNN de-
coder, we used LSTM (Hochreiter and Schmidhu-
ber, 1997), a variant of the RNN model, and set
the hidden size and dropout rate of RNN to 64 and
0.5, respectively. On the other hand, the sequence-
to-sequence model used GRU (Cho et al., 2014),
another variant of the RNN model, and we set the
hidden size of 64 and dropout rate of 0.5. In the
case of the static RNN decoder, it is necessary to
set the length of the model due to a static attribute.
Therefore, we evaluated the performance of the
model according to the length, and we found that
the model with a length of 25 performs best.

All weights of three models are initialized from
Gaussian distribution with 0 mean and 0.01 STD.
At each update, we randomly sampled a mini-
batch of 16, and the attentive reader, sequence-
to-sequence model, and static RNN decoder used
the Adam algorithm (Kingma and Ba, 2015) with
0.0001, 0.001, and 0.01 learning rates for opti-
mization, respectively. Except for the attentive
reader, we additionally used l2 regularizations.
And we clipped the gradients when the norm of

3http://scikit-learn.org

the gradients exceeds 10. We ran all neural net-
work models up to 100 epochs.

We implemented the proposed neural network
models using TensorFlow4.

5.3 Results

The overall performance of our proposed mod-
els is shown in Table 3. We ran each model 10
times independently, and reported average scores
in the table. Among others, it shows that it is
hard to detect environment terms with feature-
based models and that it is necessary to use high-
dimensional models such as deep neural network.
It also shows that the static RNN decoders out-
perform other models. It is an interesting result
because, contrary to our result, the sequence-to-
sequence model showed outstanding performance
in WikiReading, which is the most similar task to
ours. The fact that the static RNN decoder shows
best performance is probably due to the character-
istics of our corpus where environment tokens are
more widespread and atomic.

If the reader model and the sequence-to-
sequence model use attention as demonstrated in
other studies, it shows higher performance than
the model without attention. On the other hand,
the static RNN decoders show a different case, in
that our proposed attention seems to hamper the
model in exactly extracting the environment.

In order to monitor how performance varies to
the choice of top-k values, we evaluated the at-
tention model with different top-k values (k =
5, 10, 15, 20). When we increase k values, recall
increases and precision decreases. Overall, pre-
cision of the static RNN decoder is found better
than that of the other models. On the other hand,
the attentive reader model shows outstanding per-
formance in extracting all relevant environment to-
kens.

5.4 Analysis

The baseline models mainly show F1-scores un-
der 30, which are worse than we expected. Among
them, SVM outputs skewed results, failing to find
any environment terms, and classifying all test
data to ‘<NOE>’. As a result, its performance
depends on the number of input data showing no
environment terms, which explains why the model
shows even precision and recall. In contrast to
SVM, the other two models can detect environ-

4https://www.tensorflow.org/
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Polymorphisms in CRHR1 and the serotonin transporter loci: gene x gene x environment
interactions on depressive symptoms. [PMID: 20029939]

... These data suggest that G x E interactions predictive of depressive symptoms may be differentially sensitive to levels
of childhood trauma, ...

attentive reader seq2seq static RNN decoder
high history low status <UNK> levels current hormone stress ... <UNK> <UNK> childhood levels high trauma

Peroxisome proliferator-activated receptor-alpha (PPARA) genetic polymorphisms and
breast cancer risk: a Long Island ancillary study. [PMID: 18586686]

... but there was some evidence of interaction between PPARA variants and aspirin use, defined as use at least once per
week for 6 months or longer. ...

attentive reader seq2seq static RNN decoder
use aspirin <UNK> women levels body mass cancer index ... hcas aspirin

Table 4: Results of experiment with four proposed models. Words in red and blue indicate disease and
gene names, respectively, and the words in bold-face indicate environment terms.

ment terms, but they also identify irrelevant tokens
as environment terms in most cases.

In order to analyze how differently the proposed
models output, we select three proposed models
showing the best performance, the attentive reader,
the sequence-to-sequence model (attention encod-
ing), and the static RNN decoder (basic encoding)
among them, and show the result of experiments
for two abstracts. In Table 4, the first row rep-
resents a partial content of the abstract and the
second row represents the results. We show a se-
quence of tokens in the attentive reader as much
as possible, and the sequence is ordered by scores.
On the other hand, a sequence of tokens in the
sequence-to-sequence model and static RNN de-
coder is ordered in which they were made in the
decoding part.

The first example in Table 4 provides GxE for
two genes, where we ask our models to extract
environment tokens for serotonin transport and
depressive symptoms. Although the three mod-
els failed to identify all answer tokens, the static
RNN decoder shows better performance than the
others. In tokens extracted by the attentive reader,
there are not only answer tokens but also error to-
kens, which results in decreasing the performance.
These weaknesses sometimes work as an advan-
tage for the cases with many environment terms as
shown in the abstract in the second example.

In the second example, the number of tokens is
bigger than that in the first example. Interestingly,
the performance of the attentive reader and that
of the static RNN decoder are reversed. Although
there are many answer tokens, the static RNN de-
coder seems to extract minimal tokens. On the
other hand, the majority of tokens extracted by the

Figure 3: Performance of the two models, the at-
tentive reader and the static RNN decoder model,
according to the number of environment tokens.
X-axis and Y-axis represent the number and F1
score, respectively.

attentive reader are included in answer tokens.
As shown in Table 4, the static RNN decoder

models work better in extracting a small number of
tokens. On the other hand, the attentive reader is
suitable to the data with a large number of tokens.
And the choice of k seems an important factor to
affect the performance of the attentive reader. In
order to see that the observations are common, we
compared F1-scores of three models, the attentive
reader (top-5 and top-20) and the static RNN de-
coder, according to the number of environment to-
kens.

Figure 3 presents the change of F1-score when
the number of environment tokens varies. When
the number is smaller than 2, the static RNN de-
coder works best. While the static RNN decoder is
sensitive to the number, the attentive reader (top-5)
shows stable performance. Therefore, the attentive
reader (top-5) shows better performance than the
static RNN reader at both 4 and 8 points. The per-
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Serious obstetric complications interact
with hypoxia-regulated/vascular-expression
genes to influence schizophrenia risk. [PMID:
18195713]

basic encoding attention encoding

<NOE>
obstetric serious
complications

Table 5: An example showing the benefits of us-
ing attention model: the words in bold-face indi-
cate environment terms.

formance of the attentive reader (top-20), however,
increases steadily according to the number. As a
result, the attentive reader (top-20) works best at 6
points afterwards.

At 6 points, the performance of the static RNN
decoder and that of attentive reader (top-20) are
reversed, so it seems that there is not much perfor-
mance difference among them in the graph. But,
the overall difference in performance is much big-
ger because the average of the numbers in the cor-
pus is nearly 5. As a result, the static RNN decoder
outperforms other models. From this observation,
we anticipate that if we address the GxE task fo-
cusing on the number by combining the two mod-
els, the performance will exceed the current best
score, 0.426.

In the static RNN decoder, the attention encod-
ing did not seem to work well, which is in contrast
to our assumption that it would be better to con-
sider combinations for our task. However, there
is a special case showing the benefits of attention
encoding as shown in Table 5. Table 5 shows
part of an abstract where there are 39 combina-
tions (13 genes and 3 diseases) and four genes as-
sociated with schizophrenia among them have the
same environment terms (serious obstetric com-
plications). Unless considering the combination,
it seems hard to identify environment terms due to
many negative examples. As a result, given a com-
bination, (RGS4 and fetal hypoxia), without an en-
vironment term such as the example in Table 5, the
static RNN decoder using a basic encoding seems
to regard the majority of combinations including
the combination with environment as a negative
example, as shown in the first column of Table 5.
However, interestingly, the static RNN decoder us-
ing attention encoding identified three tokens that
are correct environment terms when the four com-
binations with environment are given. This incor-

rect result may be due to the lack of training exam-
ples like this case. So, if we are given many cases
as shown in Table 5, we envision that attention en-
coding will help improve performance.

6 Conclusion

In this paper, we proposed various methods for
GxE recognition and showed that our models
achieved good performance, despite the inherent
difficulty of the task. Unlike general approaches,
such as CNN, RNN, and attention mechanism,
in order to extract targeted relations or infer the
correct answer, we used an RNN decoder as a
sequence-to-sequence model with a static decoder,
and demonstrated that it is suitable to the task in
extracting terms from documents. It is necessary
to identify conditional information that creates the
contradiction of gene-disease relations to develop
advanced systems for understanding the full eti-
ology of a disease or the full genetic network.
We anticipate that the model will help researchers
not only to identify correct gene-disease relations
but also to apply them to other tasks, such as ex-
tracting location information that indicates where
events occur.
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Abstract

Massive Open Online Courses (MOOC-
s), offering a new way to study online,
are revolutionizing education. One chal-
lenging issue in MOOCs is how to de-
sign effective and fine-grained course con-
cepts such that students with differen-
t backgrounds can grasp the essence of
the course. In this paper, we conduc-
t a systematic investigation of the problem
of course concept extraction for MOOC-
s. We propose to learn latent repre-
sentations for candidate concepts via an
embedding-based method. Moreover, we
develop a graph-based propagation algo-
rithm to rank the candidate concepts based
on the learned representations. We eval-
uate the proposed method using different
courses from XuetangX and Coursera. Ex-
perimental results show that our method
significantly outperforms all the alterna-
tive methods (+0.013-0.318 in terms of R-
precision; p� 0.01, t-test).

1 Introduction

In contrast with traditional courses that have lim-
ited numbers of students, each online course in
a MOOC platform may draw more than 100,000
registrants (Seaton et al., 2014). The students have
very diverse backgrounds; and knowledge present-
ed in MOOCs is well understood by certain stu-
dents, but might be difficult to others. In MOOC-
s, we use course concepts to refer to the knowl-
edge concepts taught in the course videos, and re-
lated topics that help students better understand
course videos. Identifying course concepts at a
fine level is very important, as students with dif-
ferent backgrounds have totally different require-
ments. Figure 1 shows an example to illustrate the

Figure 1: Example of a video clip and its course concepts

problem addressed in this work. It is a clip (about
ten minutes long) of video captions from the data
structure course in XuetangX 1, one of the largest
MOOCs in China. The related course concepts are
marked in red and blue. We see that there are a
dozen concepts mentioned in this clip. The ma-
jor concept is “quick sort” (marked in red), but
the content is related to many other prerequisite
concepts such as “divide-and-conquer”, “bubble
sort”, and “unstable sorting algorithm” (marked in
blue). For students with a computer science back-
ground, those concepts would be easy; however,
for students from other discipline areas, the con-
cepts may be completely new. With the identified
course concepts, we can build an interactive learn-
ing environment to help individual students better
grasp the knowledge in a course. For example, for
a non-science student, the system may display the
definition of “unstable sorting” and “uniform dis-
tribution”; while for a science student, the system
could recommend advanced concepts or potential
applications of “quick sort”.

Course concepts were previously provided by
the teacher, but only at a coarse level—it is time-
consuming and tedious to annotate all fine-grained
concepts in all videos of a course. Our goal is
to automatically identify all course concepts from
each video clip. Despite quite a few studies on
related research topics, including keyphrase ex-
traction (Salton and Buckley, 1988; Mihalcea and
Tarau, 2004; Liu et al., 2010) and term extrac-

1http://www.xuetangx.com/
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tion (Hisamitsu et al., 2000; Li et al., 2013), the
problem of course concept extraction in MOOC-
s is far from solved. The most challenging issue
in the MOOC context is the low-frequency prob-
lem. Course video captions often contain many
course concepts with low frequency, primarily for
three reasons: (1) course video captions are rela-
tively short documents, containing small numbers
of words; (2) many infrequent course concepts are
from other prerequisite or related courses (e.g., “u-
niform distribution” is from mathematical courses
and “divide-and-conquer” is from courses about
algorithms); (3) a disambiguated course concept
tends to be expressed in various ways, which pro-
duces many scattered infrequent terms. For exam-
ple, “Q sort” is a colloquial expression referring to
quick sort, and “partition exchange sort” is anoth-
er name for quick sort. They both have infrequent
presence in course videos.

Handling infrequency errors remains an open
challenge for state-of-the-art keyphrase extrac-
tors (Hasan and Ng, 2014). In MOOCs, the low-
frequency problem makes it difficult for video
captions to provide reliable statistical informa-
tion (e.g., tf-idf, c-value, and co-occurrence) for
extracting and ranking terms, and results in the
ignoring of many course-relevant yet infrequent
concepts. For example, in Figure 1, we can cor-
rectly extract the frequent concept “quick sort” us-
ing tf-idf, but fail to extract “partition exchange
sort” due to its infrequent presence, even if these
two concepts have the same meaning. The above
problem can be addressed if we know the seman-
tic relationship between “quick sort” and “parti-
tion exchange sort”. Such an “understanding” can
be facilitated by the incorporation of background
knowledge from external data sources. There ex-
ist quite a few attempts (Vivaldi and Rodr?uez,
2010; Rospocher et al., 2012) that utilize exter-
nal knowledge sources such as Wikipedia cate-
gories and WordNet to incorporate semantic rela-
tions (e.g. synonymy, is-a) into keyphrase extrac-
tion. However, these methods are not suitable in
the MOOC context, because many highly techni-
cal course concepts are not covered by generic se-
mantic resources, including Wikipedia and Word-
Net.

Recently, distributed representations of word-
s, namely word embeddings (Mikolov et al.,
2013b,a), provides us with powerful tools to rep-
resent semantic relations between words. In our

work, to address the low-frequency problem, we
incorporate online encyclopedias to learn the la-
tent representations for candidate course concepts.
Moreover, we present a novel graph-based propa-
gation algorithm to rank the candidates based on
the learned representations. We evaluate the pro-
posed method using real courses from XuetangX
and Coursera 2 with different domains and dif-
ferent languages, and compare our method with
state-of-the-art keyphrase extractors. In summa-
ry, our contributions include: a) the first attemp-
t, to the best of our knowledge, to systematically
investigate the problem of course concept extrac-
tion in MOOCs; b) proposal of an efficient model
for course concept extraction via semantic repre-
sentation learning, and ranking candidates through
graph-based propagation; c) design of four novel
datasets using real courses of different disciplines
from XuetangX and Coursera to evaluate our pro-
posed method.

2 Problem Formulation & Framework

In this section, we first give some necessary defi-
nitions and then formulate the problem of course
concept extraction.

A course corpus is composed of n cours-
es in the same subject area, denoted as D =
{Cj}j=1,...,n, where Cj is one course. We assume
that course Cj = {vij}i=1,··· ,mj consists of mj

course videos, where vij stands for the i-th video.
Each video vij is composed of its video title tij
and its video texts (video subtitles or speech script-
s) dij .

Course concepts are subjects taught in the
course. Formally, a course concept c can be de-
fined as a k-gram in D with the following proper-
ties: a) phraseness: c should be a semantically and
syntactically correct phrase; b) informativeness: c
should represent a scientific or technical concept
related to courses in D.

Course concept extraction is formally defined
as follows. Given the course corpus D, the objec-
tive is to extract candidate course concepts from
D, denoted as T = {c1, . . . , cM}, and output the
confidence score si for each candidate ci ∈ T . si
indicates the likelihood of ci to be a course con-
cept in D.

The fundamental challenge for course concep-
t extraction is how to capture the phraseness and
informativeness of course concepts. The general

2https://www.coursera.org/
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architecture of our model consists of three parts:
(1) candidate concepts extraction, (2) candidate
concepts ranking, and (3) postprocessing.

Candidate concepts extraction pre-processes
the input corpus and extracts candidate course
concepts. Considering that most concepts are
noun phrases consisting of nouns, adjectives and
some variants of verbs, and end with a noun word
(Liu et al., 2010; Hulth, 2003; Li et al., 2013), we
obtain candidate course concepts by extracting al-
l noun phrases in the course corpus. The input
text is first tokenized and annotated with part-of-
speech (POS) tags. Next, we employ the linguistic
pattern ((A|N)+|(A|N)∗(NP )?(A|N)∗)N , in-
troduced by Justeson and Katz (1995), to extract
all k-gram noun phrases as our candidates, where
A, N , and P denote the adjectives, nouns, and
prepositions, respectively.

Candidate concepts ranking, which is the most
important part of our method, involves ranking the
extracted candidates based on their phraseness and
informativeness. In our model, we utilize local
mutual frequencies to measure the phraseness of
the extracted candidates. The informativeness of
a candidate is largely dependent on its semantic
meaning. Due to the low-frequency problem, lo-
cal statistical features do not provide sufficient in-
formation for capturing the semantic meaning car-
ried by each candidate concept. In our method,
we propose an embedding-based method, which
incorporates external knowledge from online en-
cyclopedias, to provide semantic representation-
s for candidate concepts. Based on the learned
phraseness and informativeness information, we
construct a weighted undirected graph, namely a
course concept graph (CCG), where each vertex
represents a candidate course concept. We then
rank the vertexes in the graph via a novel iter-
ative graph-based propagation algorithm, namely
course concept propagation (CCP).

In the postprocessing step, by choosing an ap-
propriate cut-off value for the ranking list, we can
easily annotate course concepts in video texts via
string matching.

3 Course Concept Graph

We combine the phraseness and informativeness
information of candidate course concepts syner-
gistically to construct the course concept graph,
formally defined as follows.

The course concept graph (CCG) of D is a

weighted undirected fully-connected graph denot-
ed as G = (V,E), where V is the vertex set of G
and E is the edge set of G. Each vertex in V rep-
resents a candidate course concept ci ∈ T and is
associated with a phraseness score ph(ci), indicat-
ing the phraseness of ci. For an edge (ci, cj) ∈ E,
its edge weight e(ci, cj) = SR(ci, cj), where
SR(ci, cj) indicates the semantic relatedness (SR)
between ci and cj , i.e., the likeness of their mean-
ing or semantic content.

A fully-connected CCG stores the SR between
any candidate pair. But in practice, we introduce
a parameter θ for pruning the graph. An edge
(ci, cj) exists in a CCG only if SR(ci, cj) > θ.
The reason for pruning is: (1) the propagation on a
fully connected CCG is computationally challeng-
ing, and (2) low-SR candidate pairs may introduce
noise during propagation. In the following subsec-
tions, we introduce the essential building blocks
of CCG, i.e., the calculation of phraseness and the
representation of semantic relatedness.

3.1 Phraseness Measurement
Phraseness examines the likelihood of a multi-
word term to be a semantically and syntactically
correct phrase. There exists several mechanisms
such as Log-likelihood (LL) (Dunning, 1993) and
Pointwise Mutual Information (PMI) (Church and
Hanks, 1990) to measure the phraseness of a ter-
m. These methods are mostly based on the as-
sumption that if the constituents of a multi-word
candidate term form a collocation, rather than co-
occurring by chance, it is more likely to be con-
sidered as a phrase (Korkontzelos et al., 2008).
In our paper, we propose a simple PMI-based ap-
proach, which utilizes local mutual frequencies in
the course corpus, to calculate the phraseness s-
core for each candidate. Specifically, for a k-
gram candidate c = {w1, · · · , wk} ∈ T , where
k > 1, we split c into fi = {w1, · · · , wi} (pre-
fix) and bi = {wi+1, · · · , wk} (suffix), where
i = 1, · · · , k−1. Then, the phraseness score ph(c)
is defined as follows.

ph(c) = max{pmi(fi, bi) | i = 1, · · · , k − 1} (1)

where pmi(fi, bi) is the PMI of the prefix fi and
the suffix bi, defined as follows.

pmi(fi, bi) =
2× freq(c)

freq(fi) + freq(bi)
(2)

where freq(c), freq(fi), freq(bi) are the occur-
rence frequencies of terms c, fi and bi in the cor-
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pus, respectively. Due to the low-frequency prob-
lem in the MOOC corpus, the phraseness scores
for infrequent candidates may be statistically un-
reliable. Thus, the final phraseness of a candidate
is estimated on both the MOOC corpus and the on-
line encyclopedia corpus as follows.

ph(c) = α · F [phD(c)] + (1− α) · F [phE(c)] (3)

where phD(c) and phE(c) are the phraseness cal-
culated on the course corpus and the encyclope-
dia corpus, respectively. α ranges between 0 and
1, controlling the phraseness contribution of each
corpus. F [·] is a filter for the value of ph(c).
If the frequency of c is lower than a pre-defined
threshold minc, or c is an unigram, the filter sim-
ply assigns a priori value of 0.5 to the term, i.e.,
F [ph(c)] = 0.5.

3.2 Semantic Relatedness Learning

As mentioned in Section 2, statistical informa-
tion in the course corpus cannot adequately cap-
ture the informativeness of concepts because of
the low-frequency problem. In our method, we
use word embeddings (Mikolov et al., 2013b,a)
based on the online encyclopedia corpus to pro-
vide semantic representations for candidate con-
cepts. Word embeddings represents each word as
a low-dimensional, real-valued vector, and the se-
mantic similarity between two words can be re-
flected by the cosine distance of their vectors. Our
method for calculating semantic relatedness be-
tween candidate concepts consists of three steps:
(1) corpus annotation, (2) representation learning,
and (3) relatedness calculation.

Corpus Annotation. An online encyclopedia
corpus is a set of articles, and can be represented
as a sequence of words W = 〈w1 · · ·wi · · ·wm〉,
where wi denotes a word and m is the length
of the word sequence. In W , we replace any
adjacent words which literally matches a candi-
date in T as an unique token. After this step,
we obtain a concept-annotated corpus W ′ =
〈x1 · · ·xi · · ·xm′〉, where xi corresponds to a
word w ∈ W or a concept c ∈ T . Note that
the length m′ of W ′ is less than the length m of
W because multiple adjacent words are labeled as
one token.

Representation Learning. We then learn word
embeddings on W ′ to obtain vector representa-
tions for all annotated candidates and words inW ′.
For any unannotated candidate concept in T , we

obtain its semantic representations via the vector
addition of its individual word vectors.

Relatedness Calculation. When vector repre-
sentations of candidate concepts are learned, we
define the semantic relatedness between two can-
didates c1 and c2 as the cosine similarity of their
vectors, denoted as SR(c1, c2).

With this method, a candidate course concept
has no corresponding vector only if any of its con-
stituent word is absent in the whole encyclopedia
corpus. This case is unusual because a large online
encyclopedia corpus can easily cover almost all in-
dividual words of the vocabulary. Our experimen-
tal results verify that over 98% of the candidates
have vector representations in this way.

4 Graph Propagation-Based Ranking

After the construction of a course concept graph,
we propose an algorithm to rank the candidate
course concepts, based on the following assump-
tion about CCG. In CCG, a course concept is like-
ly to connect with other course concepts with high
semantic relatedness. We make this assumption
based on two reasons. First, course concepts are
usually scientific concepts. Scientific concepts in
the same domain usually have strong semantic re-
lations. Second, the main ideas of a document can
be captured by a group or groups of words with
strong semantic relationships. Course concepts
are strongly related to the course corpus, which
makes them more likely to connect with each oth-
er with high semantic relatedness.

For a vertex c in CCG, we denote conf(c) as its
confidence score of being a course concept. Fol-
lowing the above assumption, the confidence score
of a candidate course concept is evidenced by its
semantic relations with other course concepts. In
other words, high-confidence course concepts in
CCG could propagate their confidence scores to
their neighbor nodes that have high semantic re-
latedness with them, to discover other potential
course concepts. Therefore, we propose an iter-
ative graph-based algorithm, namely course con-
cept propagation (CCP), which first assigns each
vertex of CCG an initial confidence score, and it-
eratively updates the score for each vertex through
propagation. The initial confidence score of each
candidate course concept is determined by a seed
set S, which contains a list of known course con-
cepts in D. Specifically, let us denote the confi-
dence score of the vertex c in the k-th iteration as
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confk(c), and the initial confidence score of c as
conf0(c). We set conf0(c) = 1 if c ∈ S and
conf0(c) = 0, otherwise. In the following sub-
sections, we first introduce the construction of a
seed set, and then present the propagation process
in detail.

4.1 Seed Set Construction

In our method, the seed set can be constructed ei-
ther manually or automatically. For some cours-
es, key course concepts may already be included
in course materials; however, this is not the case
for most MOOC courses. For those courses in
which key course concepts are not explicitly pro-
vided, we propose to extract them automatically
from course outlines. A course in a MOOC usu-
ally contains hundreds of videos, each of which
is associated with a video title. These video ti-
tles serve as an outline of a course and become a
potential good resource for providing high-quality
course concepts. Specifically, for each course Ci,
we first extract candidates from video titles of Ci,
following the same pattern-based procedure in the
candidate extraction step. Then, candidates are
ranked based on their tf-idf in Ci. Finally, we se-
lect the top-N ranked candidates to form the seed
set S.

4.2 Propagation Process

To design the propagation process, we need to an-
swer two crucial questions. First, a vertex should
receive confidence scores from which vertexes in
each iteration? Second, how much score should
a vertex receives from another vertex in each it-
eration? Based on the above questions, we de-
fine two general functions as follows: a) voting
score vsk(cj , ci): determines the confidence score
cj propagates to ci in the k-th iteration; b) voter-
s A(ci): it specifies the vertex set from which ci
receives the voting scores in each iteration. There-
fore, a general propagation process can be defined
as follows.

confk+1(ci) =
1

Z

(∑
cj∈A(ci)

vsk(cj , ci)

|A(ci)|

)
(4)

where Z a the normalization factor. The main idea
of Equation 4 can be explained as a voting pro-
cess. During each iteration, each vertex in A(ci)
will vote for ci. The score of ci in the next iter-
ation is dependent on the average voting score of
vertexes in A(ci). We implement the voting score

function as follows.

vsk(cj , ci) = ph(cj) · e(ci, cj) · confk(cj) (5)

where ph(cj) · e(ci, cj) determines the “authorita-
tiveness” of the vote from cj to ci. If cj has a high-
er phraseness (the voter is more credible) and cj is
more relevant to ci (the voter knows more about
the candidate), then cj tends to propagate more of
its score to ci (the vote from cj has a greater im-
pact on determining whether ci is a course concept
than the votes from other voters). As for the im-
plemention of A(ci), a natural way would be to
set A(ci) as the neighbor vertexes of ci in CCG.
Because a course concept is likely to connect with
other course concepts with high semantic related-
ness, it tends to receive high voting scores from
its course concept neighbors, compared with other
vertexes, during propagation.

However, in practice, the propagation process is
usually hampered by the overlapping problem. If
two terms ci and cj contain one or more identical
words, we say that ci and cj are overlapping. For
example, “merge sort” and “bubble sort” are over-
lapping because they both have the word “sort.”
Overlapping frequently occurs among course con-
cepts because scientific terms often have back-
ground words such as “function,” “algorithm,” and
“culture”. We find that vs(cj , ci) is less reliable if
cj and ci overlap. For example, the term “same
algorithm” is not a course concept, but it contain-
s the word “algorithm,” which makes it to have a
high SR with the course concepts including word
“algorithm,” as in “bfs algorithm” and “kmp al-
gorithm”. Therefore, the score of the term “same
algorithm” tends to be blindly increased by votes
from these course concept neighbors. To solve this
problem, we generalize the voting score by intro-
ducing a penalty function opf , which restricts the
propagation of voting scores among overlapping
terms. The generalized voting score (gvs) is de-
fined as follows.

gvsk(cj , ci) = opf(ci, cj) · ph(cj) · e(ci, cj) · confk(cj)
(6)

where opf(ci, cj) = 1 when ci and cj is not over-
lapping, and opf(ci, cj) = λ otherwise, where λ
ranges from 0 to 1.

Termination Condition. To determine when
the iteration process stops, we introduce a termi-
nation set F , including S course concepts. Let us
denote the average ranking of concepts in F af-
ter the k-th iteration as Ark(F). The propagation
process terminates if Ark+1(F) > Ark(F).
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Dataset Domain Language #courses #videos #tokens #candidates #labeled correlation

CSEN Computer Science English 8 690 1,242,156 59,050 4,096 0.734
EcoEN Economics English 5 381 401,192 27,571 3,652 0.696
CSZH Computer Science Chinese 18 2,849 2,291,258 79,009 5,309 0.721
EcoZH Economics Chinese 8 455 645,016 60,566 3,663 0.646

Table 1: Dataset Statistics

5 Experiments

5.1 Datasets

Because there is no publicly available dataset for
course concept extraction in MOOCs, we con-
struct four course corpuses with different domains
and languages to evaluate our model. Specifical-
ly, we collect Computer Science and Economic-
s courses from two famous MOOC platforms —
Coursera and XuetangX — to construct our evalu-
ation datasets.

Coursera is one of the first MOOC platform-
s in the world. We collect video captions from
8 Computer Science courses to form the CSEN
dataset. Similarly, video captions from 5 Eco-
nomics courses are picked to construct the EcoEN
dataset. All video captions in CSEN and EcoEN
are in English. XuetangX is one of the most popu-
lar MOOC websites in China. Video captions of
18 Computer Science courses and 8 Economics
courses are collected to form the CSZH dataset
and EcoZH dataset, respectively. All video cap-
tions in CSZH and EcoZH are in Chinese.

The statistics of the four datasets are list-
ed in Table 1, where #courses, #videos, and
#tokens are the total number of courses, videos,
and tokens in each dataset. For each dataset, the
video captions are preprocessed following the pro-
cedure of Candidate concepts extraction in Sec-
tion 2. #candidates denotes the number of ex-
tracted candidates for each dataset. To create a
gold standard for evaluation, candidates for each
dataset are sent to two human annotators majoring
in the corresponding domain. For each candidate,
the annotator is asked to make a judgement about
whether it is a course concept based on the course
contents. Thus, each dataset is doubly annotat-
ed, and pearson correlation coefficient is applied
to assess inter-annotator agreement. A candidate
is labeled as a course concept only if the two an-
notators are in agreement. The column #labeled
presents the ground-truth number for each dataset.
In each dataset, we use 10% of ground truth to
form the termination set and others for evaluation.

The datasets will be publicly available later.
As for the online encyclopedia corpus, we em-

ploy the Baidu encyclopedia3, which is the largest
web-based encyclopedia in China, for Chinese
language. Our training corpus includes 6,223,649
web pages crawled from the latest Baidu ency-
clopedia. For the English language, we extract
9,834,664 articles from the latest publicly avail-
able Wikipedia dump.4

5.2 Evaluation Metrics

For our experiments, we select two evaluation
metrics. The first metric is R-precision (Rp)
(Zesch and Gurevych, 2009), which is an IR met-
ric that focuses on ranking. Given a ranking list
with n gold keyphrases, it computes the precision
of a system over its n highest-ranked candidates.
However, R-precision does not take the order of
extracted keyphrases into account. To address the
problem, we select the Mean Average Precision
(MAP), which has been the preferred metric in in-
formation retrieval for evaluating ranked lists.

5.3 Influence of Parameters

We first investigate the parameters that may influ-
ence the performance including: (1) α in Equation
3, (2) the size of seed set N , and (3) the penalty
factor λ.

The phraseness parameter α. The parame-
ter α controls the contribution of a course corpus
when calculating the phraseness score. If α is too
large, the calculated phraseness may suffer from
unreliable estimation; however, the calculated s-
core may fail to reflect the real phraseness distri-
bution in the course course when α is too small.
We investigate the influence of α in Figure 2(a).
This figure shows the R-precision of CCP when
λ = 0.3, N = 100, and α ranges from 0 to 1.
From this figure we find that, when α is set from
0.2 to 0.7, the performance is consistently good,
and remains stable with the variations of α. When
α is larger than 0.85, the R-precision drops in all

3http://baike.baidu.com/
4https://dumps.wikimedia.org/enwiki/20170120/
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evaluation datasets. The results demonstrate that
the large-scale encyclopedia data is conducive to
making reliable estimations of the phraseness. In
our experiment, α is set as 0.4 for all four datasets.

The size of seed set N . As mentioned in Sec-
tion 4.1, we utilize the video titles to automatically
construct the seed set for each dataset. We set the
size of the seed set N = 10, 50, 100, 200 for each
dataset and explore the influences of N on CCP.
Figure 2(b) shows the R-precision of CCP with d-
ifferent N on CSEH (λ = 0.3, α = 0.4). From
the figures, we observe that the CCP reaches its
best performance through 3 to 5 iterations. When
N becomes larger, the algorithm tends to achieve
the best performance faster, i.e., it terminates with
fewer iterations. However, different settings of N
all lead to a competitive best performance (around
0.43 on CSEN). We obtain similar observation-
s on other datasets. In our experiments, we set
N = 100 for all datasets.

The penalty factor λ. The parameter λ rec-
onciles the influence of voting scores from over-
lapping terms. We demonstrate the influence of
λ in Figure 2(c). This figure shows that the C-
CP achieves its best R-precision when λ ranges
from 0.20 to 0.40 in all datasets. If we do not
severely lower the voting scores from overlap-
ping terms (λ > 0.5), or even have no penalty
(λ = 1.0), the performance is consistently un-
satisfactory. The experimental results verify that
the voting score from a non-overlapping neighbor
(e.g., “data mining” to “machine learning”) is rela-
tively more reliable than an overlapping one (e.g.,
“difficult learning” to “machine learning”) in CCP.
However, voting scores from overlapping terms
still encode some useful semantics (e.g., “merge
sort” to “quick sort”), ignoring them (λ close to
0.0) may cause a decline in performance. We set
λ = 0.3 for all datasets.

5.4 Comparison with Baselines

After we explore the influences of parameters, we
employ four baseline methods to compare with our
proposed method, i.e., course concept propagation
(CCP).

5.4.1 Baseline Approaches
First, we select two statistics-based methods, i.e.,
TF-IDF and PMI, as our baselines. TF-IDF ranks
the candidate course concepts based on their tf-idf
in the course corpus. For a candidate c ∈ T , its
tfidf R(c) = tfc × log(idfc), where tfc is the fre-

(a) α (b) N (CSEN)

(c) λ

Figure 2: The Study of Parameter Influence on CCP

quency of c in D, and idfc is based on the num-
ber of videos in which c appears. In the PMI
method, we directly rank candidates based on their
phraseness, using the method described in Section
3.1. We use the same parameter α with CCP for
a fair comparison. Second, we also employ two
graph-based methods. TextRank (Mihalcea and
Tarau, 2004) and Topical PageRank (TPR) (Liu
et al., 2010) are two state-of-the-art graph-based
keyphrase extraction approaches. They all con-
struct a graph based on word co-occurrences with-
in the corpus, and apply the PageRank algorithm
(Brin and Page, 1998) to score the vertices. The s-
core of a multi-word candidate is the average score
of all words within the candidate. Different from
TextRank, TPR decomposes traditional PageRank
into multiple PageRanks specific to various topics
using LDA (Blei et al., 2003). Topics in TPR are
learned from external data sources, and we use the
same encyclopedia corpus as ours to make a fair
comparison.

5.4.2 Implementation Details

For pruning the CCG, we set θ = 0.3 for al-
l datasets. The minc is heuristically set as 5 in
our experiments. The skip-gram model (Mikolov
et al., 2013b) is applied to train word embeddings
using the Python library gensim 5 with default
parameters. For TextRank and TPR, we use the
THUTag6, a state-of-the-art keyphrase extraction
package, which provides the implementations of
these methods.

5http://radimrehurek.com/gensim/
6https://github.com/YeDeming/THUTag
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Method CSEN EcoEN CSZH EcoZH

TF-IDF
Rp 0.125 0.303 0.118 0.198

MAP 0.105 0.232 0.109 0.145

PMI
Rp 0.239 0.222 0.246 0.179

MAP 0.141 0.197 0.187 0.121

TextRank
Rp 0.151 0.290 0.142 0.161

MAP 0.137 0.263 0.131 0.115

TPR
Rp 0.284 0.414 0.305 0.303

MAP 0.255 0.387 0.267 0.288

CCP
Rp 0.443 0.427 0.434 0.435

MAP 0.432 0.365 0.416 0.423

Table 2: Performance of Different Methods on Differen-
t Datasets

5.4.3 Performance Comparison
In Table 2 we summarize the results of different
methods across different datasets. From the table,
we find that the proposed methods outperform all
baselines on all datasets, which indicates the ro-
bustness and effectiveness of CCP 7. Specifically,
we have the following observations.

First, TF-IDF performs competitively with Tex-
tRank, but they both perform worse than TPR and
CCP. TF-IDF and TextRank only use statistical
information within the course corpus and have a
strong reliance on term frequency, which hamper-
s their performances. For example, both TF-IDF
and TextRank correctly extract the concept “IP”,
which appears 139 times in the Computer Net-
work course, but failed to extract “Internet Pro-
tocol”, the full name of “IP”, due to its infrequent
presence. Moreover, they also highly ranked many
irrelevant yet frequent terms, such as “English lan-
guage”. These errors are significantly reduced in
CCP with the incorporation of semantic relations.

Second, TPR performs better than TextRank
across all datasets (an average of +0.141 in terms
of R-precision), but is worse than CCP. In MOOC-
s, a course usually contain multiple topics, but
TextRank often falls into a single topic, and fail-
s to cover other substantial topics of a course. For
example, in the Data Structure course, TextRank
highly ranked phrases with “tree”, but lower-
ranked concepts related to “sort”. TPR alleviates
this problem by incorporating topic information
from online encyclopedias. However, TPR also
favors frequent course concepts, because frequen-
t words tend to have high connectivity in the co-
occurrence graph, and thus receive high rankings
using PageRank.

7The improvements are all statistically significant tested
with bootstrap re-sampling with 95% confidence.

6 Related Works

Our work is relevant to automatic keyphrase ex-
traction, which concerns the automatic extrac-
tion of important and topical phrases from the
body of a document” (Turney, 2000). General-
ly, keyphrase extraction techniques can be classi-
fied into two groups: supervised approaches and
unsupervised approaches. In supervised machine-
learning approaches, the training phase usually in-
cludes a classification task: each phrase in the doc-
ument is either a keyphrase or not (You et al.,
2013). Different learning algorithms have been
employed to train the classifier, including naı̈ve
bayes (Frank et al., 1999; Witten et al., 1999), de-
cision trees (Turney, 2000), maximum entropy (Y-
ih et al., 2006; Kim and Kan, 2009) and sup-
port vector machines (Lopez and Romary, 2010;
Kim and Kan, 2009). Unsupervised approach-
es usually involve assigning a saliency score to
each candidate phrase, by considering various fea-
tures (Wan and Xiao, 2008). Generally speak-
ing, the information such as tf-idf, co-occurrence,
or neighbor documents are frequently used in un-
supervised keyphrase extraction. For example,
TextRank (Mihalcea and Tarau, 2004) is a well-
known method that ranks keywords based on the
co-occurrence graph. Huang et al. (2006) utilize
co-occurrence information to construct a semantic
network for each document and derive the impor-
tance of phrases by analyzing the network. The
ExpandRank (Wan and Xiao, 2008) model uses a
set of neighborhood documents to enhance single-
document keyphrase extraction. Recently, Liu et
al., (2015) proposed a new framework that extract-
s quality phrases from text corpora integrated with
phrasal segmentation. This model also rely on lo-
cal statistical information and requires a relatively
large corpus.

However, extracting low-frequency keyphrases
remains an open challenge for all these method-
s. To address this problem, many related works
consider not only the document level information
but also knowledge from external data sources, to
improve the effectiveness of automatic keyphrase
extraction. Representative examples include the
KEA++ system (Medelyan and Witten, 2006) that
obtains candidate phrases from a domain-specific
thesaurus. The work of Gazendam et al. (2010)
also use the thesaurus as a background corpus.
Besides the thesaurus, knowledge bases are wide-
ly used to calculate semantic relations between
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terms. For example, Rospocher et al. (2012) use
the WordNet to detect synonym terms, and then
rank a synonym term higher even if it is ranked
lower by the statistical method. The work of Vival-
di and Rodrı́guez (2010) utilizes an ontology hier-
archy extracted from Wikipedia categories to pro-
vide background knowledge. Similarly, Berend
and Farkas (2010) invent features concerning the
Wikipedia level to achieve enhancements in per-
formance. All these methods make use of on-
ly the explicit semantic knowledge contained in
the external source. Different from them, we use
word embeddings to learn semantic representa-
tions for candidate concepts and rank them via a
novel graph-based propagation process.

7 Conclusion and Future Work

In this paper, we study the problem of course con-
cept extraction in MOOCs. We precisely define
the problem and propose a graph-based propaga-
tion method to extract course concepts by incorpo-
rating external knowledge from online encyclope-
dias. Experimental results on evaluation datasets
validate the effectiveness of the proposed method.
Incorporating external knowledge of various kind
to help extract course concepts is an intriguing di-
rection for future research. A straightforward task
is to incorporate structured information such as
“is-a” relation into the proposed model.
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Abstract

This paper addresses the task of detecting
identity deception in language. Using a
novel identity deception dataset, consist-
ing of real and portrayed identities from
600 individuals, we show that we can build
accurate identity detectors targeting both
age and gender, with accuracies of up to
88%. We also perform an analysis of the
linguistic patterns used in identity decep-
tion, which lead to interesting insights into
identity portrayers.

1 Introduction

With the ever growing usage of social media and
other online interactions, cyber-crimes such as
identity thief, fraud, and sexual predation have be-
come increasingly common. The availability of
a wide variety of social platforms and apps fur-
ther facilitates these kind of crimes, which are
often characterized by the ease of deception and
concealment of one’s real identity. Moreover,
the increased sense of security due to the spatial
and temporal “distanciation” involved with online
communications leads to a growing number of oc-
currences of identity deception.

Identity deception is defined as “pretending to
be someone you are not” (Rowe, 2009). The inten-
tions of identity deceivers differ between achiev-
ing monetary benefits, committing fraud, sexual
predating, appearing more attractive in online dat-
ing, and so on. The risk is further increased with
the massive number of children and teens using
social media as well as the elderly who get in-
volved in online interactions that they assume to
be trustworthy by default due to their lack of ex-
perience. Multiple stories of teenagers who be-
came victims of these activities, as well as elderly
who lost hundreds of thousands of dollars are now

often encountered in the news. For instance, a re-
cent study reported that 92% of teens go online on
daily basis including 24% who are online “almost
constantly”. 1 The study additionally reported that
females tend to use social media more than males.

Hence, due to the financial, social, physical,
and psychological damages associated with cyber-
crimes, there is a growing need to learn more about
the patterns and behaviors of identity deceivers,
in order to develop computational approaches that
can aid in preventing such crimes.

In this work, we seek to identify linguistic dif-
ferences in individuals’ self-presentation when en-
gaging in identity deception behaviors. We target
the two most common behaviors related with on-
line identity deception i.e., individuals portraying
themselves as either younger and older, and indi-
viduals lying about their gender –also known as
gender switching (Macwan and inz. Grzegorz Fil-
cek, 2017; Herring and Martinson, 2004) .

We perform a set of experiments to explore
three main research questions. First, given a de-
ceptive corpus consisting of written samples of
gender switching, can we build fake identity detec-
tors that predict gender deception? Second, given
a deceptive corpus consisting of written samples
of age deception, can we build fake identity detec-
tors that predict age deception? Lastly, are there
linguistic differences associated with individuals’
gender and age in identity deception?

2 Related Work

Several approaches have been developed to de-
tect and prevent identity deception (Tsikerdekis
and Zeadally, 2015). Integration of latent tex-
tual features with spatial and temporal features
has been suggested using probabilistic generative

1http://www.pewinternet.org/2015/04/09/teens-social-
media-technology-2015/
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modelling to detect identity thieves (Wang et al.,
2017). Another study analyzed the connection be-
tween time traces of stolen accounts and compared
them to that of the original users using support
vector machines (Villar-Rodrguez et al., 2016).

As linguistic patterns represent the main
method for detecting identity theft, previous work
used text mining techniques by extracting semi-
structured information from online news stories
and reports on the topic of identity theft, and iden-
tified behavioral and temporal patterns and re-
sources used by identity thieves (Zaeem et al.,
2017). An analysis of thieves’ behavior in the
Massive Multiuser Online Role Playing Game
suggested a detection model based on specific se-
quences including item production, item sales, and
acquisition of game money (Kim et al., 2015).

Focusing specifically on the patterns associated
with impersonating the opposite gender, a research
study using the Turing Game identified stereotyp-
ical content performed by the deceivers as well
as stylistic cues to their real gender (Herring and
Martinson, 2004). The study additionally sug-
gested that linguistic cues referring to gender seem
to be unconsciously generated.

One of the common practices of identity thieves
is online sexual predation. To identify such be-
havior, word patterns and search engine query de-
tection were suggested as means for detecting pe-
dophilic activity (Macwan and inz. Grzegorz Fil-
cek, 2017). Examples include the detection of
predators using lexical and behavioral features
and calculating the predator-hood score as a func-
tion of features weights (Dhouioui and Akaichi,
2016). A method was developed to identify sexual
predation using phrase-matching and rule-based
systems and reported the usefulness of statement
lengths in chat lines for improving the identifica-
tion process (Mcghee et al., 2011). A study (Bog-
danova et al., 2012) analyzing a corpus of chats
for detecting cyberpedophilia found that character
n-grams are capable of discriminating pedophiles’
chats. However, higher-level features that mod-
eled behavior and emotion were required to detect
conversations with cyberpedophiles from cybersex
chat logs (Bogdanova et al., 2014).

An analysis of twenty chat rooms to detect sex
offenders indicated eight recurrent themes, includ-
ing ’implicit and explicit content of discourse’,
’on-line solicitation’, ’fixated discourse’, ’use of
colloquialisms’, ’conscience’, ’acknowledging il-

legal/immoral behavior’, ’risk minimization’, and
’preparing to meet offline’ (Egan et al., 2011).
Other work used automatic text categorization
techniques with a support vector machine and dis-
tance weighted k-NN classifiers to distinguish be-
tween a sexual predator and a pseudo victim using
data collected from volunteers posing as underage
victims (Pendar, 2007). A language processing
module was developed in order to successfully dif-
ferentiate between porn titles and titles of ency-
clopedia articles using support vector machine and
linear regression (Panchenko et al., 2012).

More recently, a conversational agent was de-
veloped by mimicking the behavior of a teenager
and inferring its conversational rules from a
real dialogue corpus in order to detect cyberpe-
dophilia (Callejas-Rodrı́guez, 2016). The study
reported a successful approach using a combina-
tion of the least frequent word and the most fre-
quent bigram.

In summary, most of the previous work has fo-
cused on specific topics and in particular sexual
predation and gaming, and relied primarily on lim-
ited text mining approaches. Instead, our approach
uses a novel dataset where the participants are not
restricted from discussing any topics, and hence
we can identify general patterns of identity decep-
tion related to both gender and age. Moreover,
an advantage of our dataset is the knowledge of
the real identity and demographic information of
the participants. Furthermore, we conduct multi-
ple experiments using a wide variety of linguistic
features in order to explore and analyze the textual
clues that identify identity deceivers.

3 Data Collection

We seek to examine written samples of individuals
presenting themselves with their real identity as
well as a fake identity. To achieve this, we collect
a corpus of writings from several participants, in-
cluding responses to open-ended questions about
their real identity, as well as about a pre-assigned
fake identity. We target four fake identities: 1) 18-
year-old female, 2) 18-year-old male, 3) 65-year-
old female, 4) 65-year-old male. The choice of the
fake identities was based on two practical consid-
erations. First, the most prominent form of online
identity deception is gender switching, thus we
seek to collect samples of individuals portraying
themselves as being from the opposite sex. Sec-
ond, 18 and 65 years are extreme values on the age
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FAKE IDENTITY REAL IDENTITY

I’m Ashley, and I’m currently enrolled in a freshman in the
nursing program at my university. My family is very im-
portant to me. I have two sisters, both of whom are younger
than me. I do volunteer work in my free time through my
church I enjoy hanging out with my friends, traveling (I get
a lot of chances to do this through mission trips I go on). I
want a husband and family, but my career comes first. I’m
excited to see what new opportunities will appear on life’s
path.

I am a guy in his mid-30’s. I have a cat and live with two
roommates. I am self employed, selling various items on
eBay as well as doing my Mechanical Turk work. I love
music (alt and indie rock, electronica, and 80’s especially),
concerts, karaoke, video games, DC Comics, technology,
reading, streaming TV and movies, camping and hiking,
exploring the city, and good food and coffee. I’m currently
involved in various projects to improve my life.

I am a male, aged 65 years old. I have a wife who is 59 years
old and two grown children ages 30 and 32, both boys. I
worked for Boeing making airplanes for thirty years before
I was injured and needed shoulder surgery. I retired just
recently and teach an after school class about airplanes and
how they are built. I check the mail at 3 pm each day and
go to the grocery store four times a week, my wife picks me
up a 6 pack of Ice House nightly ...

I am a 35 year old female with bleached blonde hair and
hazel eyes. I am a graduate in Public Admin and I enjoy
bodybuilding. I have four children and a husband and we
live in Seattle. I like to take hikes outside in the moun-
tains but not when it is too hot outside. I am from Maine
originally but lived in florida for ten years and hated it. The
weather is too hot and there are too many snakes and lizards
crawling all over your yard.

Table 1: Sample responses from our dataset. Top row: 35-year-old male acting as an 18-year-old female;
bottom row: 35-year-old female acting as a 65-year-old male
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Figure 1: Participants’ age clustered by gender
when assuming four fake identities

distribution of Internet users, and this can allow us
to explore deceptive behaviors in individuals por-
traying themselves as being younger or older than
they actually are.

We designed four surveys using the Qualtrics
survey software and distributed them via Mechan-
ical Turk. In each survey, participants were asked
to respond to the following prompt:

1. Describe yourself.

2. Discuss any topic that comes to your mind.

3. Imagine you are trying to convince someone
that you are a 18 | 65 year old male |
female. Briefly describe yourself, pretend-
ing you are a 18 | 65 year old male |
female.

4. Imagine you are trying to convince someone

that you are a 18 | 65 year old male |
female. Discuss any topic that comes to
your mind as if pretending you are a 18 | 65
year old male | female.

Note that the participants are asked to respond
to two open-ended questions when presenting
themselves with their real and fake identity: one
asking for a self-description, and another one ask-
ing for an essay on a topic of choice. Our mo-
tivation for this setup is to avoid stereotypical
responses for each target identity, i.e., descrip-
tions focusing on physical appearance and activ-
ities frequently associated to the target gender and
age. Two sample responses (self-description only)
from individuals posing as female and male are
shown in Table 1.

We also collect demographic data from partici-
pants, including their gender, age, education, pri-
mary language, ethnicity, country of origin, and
country of residence. During the data collection,
participants self-reported their gender, using the
male/female options. In the future, with larger-
scale data collections, we will be able to work with
an extended set of gender options. Also, note that
individual’s true identity is self-reported so we as-
sume workers to provide accurate information –
previous studies analyzing Mechanical Turk as a
participant’s pool show that this is often the case
(Paolacci and Chandler, 2014).

In order to obtain responses with a reasonable
amount of text, we constrain the response’s length
to be at least 400 characters. Additionally, we
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Fake Identity Respondents Male Female Age (M,SD)
18 Y/O Fem. 151 41.7% 58.3% (33.24, 10.82)
18 Y/O Male 154 35.7% 64.3% (34.24,11.62)
65 Y/O Fem. 150 38.0% 62.0% (33.42, 12.03)
65 Y/O Male 149 42.3% 57.7% (35.07,11.96)

Table 2: Gender distribution and age statistics for four fake identities.

manually check for coherence and relevance to the
prompt. We reject contributions that failed to fol-
low the provided guidelines and did not pass the
manual verification.

After this filtering, we obtained a total of 604
completed surveys, each of them containing de-
scriptions of participants’ real and fake identities,
as well as their corresponding demographic data.
The data statistics are shown in Table 2.

Figure 1 shows the participants real age, clus-
tered by gender, when assuming different fake
identities. We observe that the average age of the
respondents ranges between 33-35 year-old, thus
suggesting a reasonable distance between their ac-
tual and fake age. In addition, the graph suggests
differences in how deceivers portray themselves
given their actual gender, which we further explore
in section 5.

4 Features

In this section, we describe the sets of features ex-
tracted, which are used to build our classifiers.

Unigrams We extract unigrams and bigrams de-
rived from the bag of words representation of
each identity response.

POS These features consist of part-of-speech
(POS) tags obtained with the Stanford Parser
(Chen and Manning, 2014).

Semantic LIWC These features include the 74
semantic classes present in the LIWC lexicon
2015 (Pennebaker et al., 2015). Each feature
represents the number of words in a response
belonging to a specific semantic class, nor-
malized with respect to the length of the re-
sponse.

Semantic Word2Vec To obtain these features,
we use the word2vec (Mikolov et al., 2013)
implementation available in the Gensim
toolkit (Řehůřek and Sojka, 2010) to obtain
word vectors with dimension 300 for each
word in the responses. The final identity vec-
tor is calculated by adding all the word vec-
tors in the response.

Lexical diversity This set includes four lexical
diversity metrics, including type/token ra-
tio (McCarthy and Jarvis, 2010), mean
word frequency, and the Yule’s I and K in-
dexes (Oakes, 2000).

Readability We also extract features that indicate
text understandability. These include read-
ability metrics such as the Flesch-Kincaid,
Flesch Reading Ease, Gunning Fog, and the
Automatic Readability Index (ARI) (Kincaid
et al., 1975; Senter and Smith, 1967)

5 Experimental Results

We conduct several experiments to answer the re-
search questions formulated at the beginning of
this paper. During our experiments, we perform
the evaluations at individual level, by merging the
two open-ended questions asked during the survey
(i.e., the self-description and topic-of-choice es-
say), for both the real and the fake identities. Also,
given the contributors’ age distribution shown in
Figure 1, we opted to cluster the participants age
into into two groups: young (≤ 30 years) and old
(>30 years).

The classifiers are built using the SVM algo-
rithm2 and the different sets of features described
in section 4. We perform leave-one-out cross-
validation in all our experiments. In all cases,
we use the majority class baseline as a reference
value.

5.1 Classification of Real and Fake Identities
Before focusing on our main research questions,
we seek to evaluate whether deception detection
can be conducted using our fake identity dataset.
Thus, we focus on two main classification tasks.
First, using our entire dataset, we explore whether
we can discriminate between the portrayed iden-
tities and the real identities. Second, we once
again attempt to discriminate between real and
fake identities, but this time filtering by either age
or gender.

2As implemented in the LIBLINEAR library, using (L2)
SVM classification.
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Features All Identities Gender Age
Female Male Young Old

Baseline 50.12 49.93 50.21 49.90 50.14
Ngrams 86.67 86.59 84.25 85.35 84.31
POS 66.61 68.39 68.93 68.97 67.30
LIWC 63.28 64.70 64.89 60.69 66.56
Word2Vec 77.51 77.70 72.34 77.26 75.51
LexDiv 49.45 50.47 46.38 46.62 48.09
Readability 54.55 52.25 51.16 51.55 54.45
All features 85.76 87.50 85.10 85.74 85.48

Table 3: Classification results for deception detection regardless of gender or age (All Identities); for
people with a certain gender, according to their real identity (Gender); and people with a certain age
according to their real identity (Age).

Identity
Fake Real Total

Gender Male 234 236 470
Female 355 366 721

Age Old 340 342 682
Young 259 260 519

All identities 599 602 1201

Table 4: Class distribution for all identities, fil-
tered by gender, and filtered by age.

To perform these experiments, we start by cre-
ating five subsets from all the data. The first one
consists of all the real and fake identities that we
collected; the second and third one consist of re-
sponses filtered by the individuals’ actual gender,
i.e., male and female; and the last two consist of
responses filtered by the individuals’ actual age,
i.e., old and young. During this process, we dis-
card those instances where the fake identity over-
laps with the actual identity. The class distribution
of the resulting subsets is shown in Table 4.

We then build classification models that attempt
to discriminate between the real and fake identi-
ties under the following scenarios: a) having no
previous knowledge of the actual individual’s age
or gender, i.e., all data; b) knowing that the indi-
vidual’s actual gender is female; c) knowing that
the individual’s actual gender is male; d) know-
ing that the individual’s actual age is 30 years and
under; and e) knowing that the individual’s actual
age is over 30 years.

Classification results and the corresponding ma-
jority class baselines are shown in Table 3. For
most of the prediction tasks, except for the first
one, the best performing feature set is the combi-
nation of all features (All features), followed by
Ngrams. The remaining sets of features achieve
accuracy values ranging from 63% to 77%, which
still represent a noticeable improvement over the
majority class baseline (the only exception is the

Real Identity Fake Identity
Male Female

Male 185 181
Female 116 120
Total 301 301

Table 5: Class distribution for gender deceivers

lexical diversity feature set).
While the overall results are largely similar

across the five experiments, note that the size of
the datasets used in the gender and age-filtered ex-
periments is much smaller than the one used in the
All Identities experiment. This suggests that the
gender (or age) of the writer plays an important
role in this classification, and the gender (or age)
characteristics can make up for the smaller data
size.

5.2 Classification of Gender Deceivers

Motivated by our previous findings, we investi-
gate our first research question. Can we build fake
identity detectors that predict gender deception?
This question focuses on the scenario in which we
are interested in knowing if a text whose author
claims to be of a certain gender is indeed authored
by that particular gender. E.g., if the author claims
to be a female, is the writer indeed a female or a
male? This can be useful in the verification of user
profiles in dating websites, where gender switch-
ing is a common form of deception.

For this classification task, we use only the data
from the portrayed identities. That is, we use the
responses from the 16 Y/O male, 65 Y/O male, 16
Y/O female, and 65 Y/O female identities. While
we could have potentially also used the real identi-
ties, we chose to focus only on the portrayed ones
so that we obtain a more consistent dataset. The
distribution for this subsets is shown in Table 5.

For each portrayed gender, the classifier aims to
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Features Fake Identity
Female+Male Female Male

Baseline 50.00 60.00 61.00
Ngrams 86.20 82.72 87.04
LIWC 70.40 66.11 73.08
Word2Vec 75.90 63.78 65.11
POS 67.40 64.45 66.77
LexDiv 54.30 57.14 54.15
Readability 61.29 54.48 71.42
All features 86.04 83.05 87.70

Table 6: Classification results for gender de-
ceivers, overall (Female+Male column) and bro-
ken down by portrayed gender.
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Figure 2: Learning curves on gender deceivers
classification using three feature sets

predict the real gender. Classification accuracies
for the resulting models are shown in Table 6. This
table also shows the results of the models built us-
ing the portrayed male and female responses sep-
arately. In these experiments, the Ngrams features
outperform all the other feature sets. The second
best performing features are the ones based on the
LIWC lexicon, followed by the part-of-speech fea-
tures POS. Overall, the results suggest that it is
easier to identify females portraying themselves as
males (Male identity column) than males portray-
ing themselves as females (Female identity col-
umn).

As an additional experiment, we investigate
whether larger amounts of training data can im-
prove the identification of gender deceivers. We
plot the learning curves of the best performing sets
of features using incremental amounts of data as
shown in Figure 2. In this graph, the learning
trends for the LIWC and Word2Vec features sug-
gest that larger amounts of training data could im-
prove the classification performance.

Real Identity Fake Identity
Young Old

Young 168 174
Old 137 123
Total 305 297

Table 7: Class distribution for age deceivers

Features Fake Identity

Young+Old Young Old

Baseline 51.00 55.00 58.00
Ngrams 83.38 86.22 83.83
LIWC 71.26 73.11 67.67
Word2Vec 77.24 73.77 65.99
POS 69.76 63.27 64.30
LexDiv 49.66 50.16 56.90
Readability 60.32 60.54 53.87
All features 82.72 87.21 81.81

Table 8: Classification results for age deceivers
overall, and broken down by portrayed age.
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Figure 3: Learning curves on age deceivers classi-
fication using three feature sets

5.3 Classification of Age Deceivers

Next, we focus our attention on identifying age
deceivers to answer our second research question:
can we build fake identity detectors that predict
age deception? This time we focus on the sce-
nario where the author of a text claims to be ei-
ther young or old (using our earlier definition of
young/old), and we want to determine if the real
age of the writer is indeed corresponding to their
claims. This can be particularly useful in the iden-
tification of sexual predators who target younger
people, or scammers who target elderly people.

For this classification task, we once again use
only the data from the portrayed identities, i.e., we
use only the responses corresponding to the por-
trayed 16 Y/O male, 65 Y/O male, 16 Y/O female,
and 65 Y/O female identities. The distribution for
this dataset is shown in Table 7.

For each portrayed age range (young or old), the
classifier aims to predict the real age range. Clas-
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Female as a Male Real Female Male as a Female Real Male
SWEAR 2.35 SEXUAL 2.03 FILLER 4.07 ACHIEV 1.57
FILLER 2.35 ANX 1.48 FEMALE 3.16 MONEY 1.51
ASSENT 2.15 INGEST 1.44 SWEAR 2.29 WORK 1.50
FRIEND 1.96 BIO 1.36 FAMILY 1.96 SEXUAL 1.36
INFORMAL 1.81 RISK 1.31 BODY 1.94 DEATH 1.34
YOU 1.75 HEALTH 1.28 NETSPEAK 1.91 RISK 1.29
DEATH 1.70 NUMBER 1.20 FRIEND 1.81 RELIG 1.27
NETSPEAK 1.61 RELIG 1.19 YOU 1.67 CAUSE 1.24
MOTION 1.50 INSIGHT 1.18 MALE 1.63 INSIGHT 1.23
FOCUSFUTURE 1.43 ADJ 1.17 INFORMAL 1.60 IPRON 1.18

Table 9: Top ranked semantic classes from the LIWC lexicon associated to gender impersonators and
actual gender.

Younger as Older Real Young Older as Younger Real Old
YOU 2.02 ASSENT 1.76 NETSPEAK 5.43 RELIG 2.71
FAMILY 2.00 ANX 1.63 FILLER 4.48 INGEST 1.92
DEATH 1.86 ACHIEV 1.56 SWEAR 4.05 HEALTH 1.84
FILLER 1.79 NETSPEAK 1.47 FRIEND 3.05 SEXUAL 1.75
FEMALE 1.72 WORK 1.34 INFORMAL 2.82 RISK 1.73
THEY 1.66 HEAR 1.34 ASSENT 2.32 NUMBER 1.59
FOCUSPAST 1.63 LEISURE 1.25 FOCUSFUTURE 1.84 DEATH 1.56
TIME 1.42 ANGER 1.25 YOU 1.62 SAD 1.48
SEXUAL 1.39 NEGEMO 1.23 MOTION 1.51 BIO 1.48
HEALTH 1.33 POSEMO 1.18 HEAR 1.42 ANX 1.26

Table 10: Top ranked semantic classes from the LIWC lexicon associated to age impersonators and actual
age.

sification accuracies for the resulting models are
shown in Table 8. This table also shows the re-
sults of models built using the portrayed young or
portrayed old responses separately. In these exper-
iments, the Ngrams features also outperform all
the other feature sets. The second best perform-
ing features are the ones based on the semantic
vector obtained with Word2vec, followed by LIWC
and part-of-speech POS features. Overall, the re-
sults suggest that it is easier to identify older in-
dividuals portraying themselves as being younger
(Young identity column) than younger individuals
portraying themselves as being older (Old identity
column).

To explore whether more training data would be
beneficial to improve classifiers performance, we
plot the learning curves of the bests sets of fea-
tures using incremental amounts of data as shown
in Figure 3. As observed, all feature sets show a
positive learning trend suggesting that more train-
ing data might improve the performance in the age
deception task.

5.4 Analysis of Linguistic Differences
Associated to Gender and Age Deceivers

Seeking to answer our third research question: are
there linguistic differences associated to individu-
als’ gender and age in identity deception? we an-

alyze differences in word usage that might reveal
the real identity of age and gender impersonators.

From the gender-based analysis, we use re-
sponses from actual females writing as males and
responses from actual males writing as females
as well as their truthful self-descriptions. Simi-
larly, in the age-based analysis, we consider the
responses from younger respondents writing as
older and older respondents writing as younger as
well as their truthful self-descriptions.

Our analyses are based on the semantic word
classes from the LIWC lexicon and the seman-
tic word-class scoring by (Mihalcea and Pulman,
2009). Tables 9 and 10 show the top classes for
each deception group and their real identities.

The analyses reveal interesting word usage pat-
terns among gender impersonators. On the one
hand, when females pose as males they use more
‘swear’, ‘fillers’, and ‘informal talk’ words. On
the other hand, males that impersonate females use
more ‘fillers’, ‘female’, and ‘family’ words. When
looking at the word associations for actual gen-
ders, it would seem that there is no clear relation
with how males and females portray each other
when faking their gender. We believe that this
could be attributed to gender-related stereotypes
and biases. In the age deceiver case, the younger
individuals who portray themselves as older use
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Real Female Male as Female Real Male Female as Male
Real Female 1
Male as Female 0.670∗∗ 1
Real Male 0.663∗∗ 0.994∗∗ 1
Female as Male 0.668∗∗ 0.999∗∗ 0.995∗∗ 1

Table 11: Correlation of LIWC classes across real and fake gender identities. ∗∗ Correlation is significant
at 0.001 level (2-tailed)

Real Young Old as Young Real Old Young as Old
Real Young 1
Old as Young 0.973∗∗ 1
Real Old 0.975∗∗ 0.996∗∗ 1
Young as Old 0.976∗∗ 0.997∗∗ 0.994∗∗ 1

Table 12: Correlation of LIWC clases across real and fake age identities. ∗∗ Correlation is significant at
0.001 level (2-tailed)

more ‘you’, ‘family’, ‘death’ and ‘filler’ words.
In contrast, older individuals who portray them-
selves as younger use more internet slang ‘net-
speak’, ‘fillers’, and ‘swear’ words. Similar to
the gender findings, age deception seems to be af-
fected by stereotypes.

For further insights into the linguistic differ-
ences between gender and age impersonators, we
also calculate the Pearson correlation of the LIWC
class counts across actual and corresponding fake
identities. We use word class counts normalized
by the number of words in the sentence.

The correlation between Real Female and Real
Male shown in Table 5.3 present an estimate of
how similar the actual male and female writings
are. We observe a positive mid-strength correla-
tion as compared with the other correlation pairs.
The Real Male vs Female as Male correlation sug-
gests that females are good at emulating males’
writing. In contrast, the analysis shows that males
are not as good emulating female language (see
correlation of Real Female vs Male).

Surprisingly, the analysis of age deceivers in Ta-
ble 5.3 shows a strong correlation trend between
the different age-based identities. In particular, the
correlation between Real Old and Young suggests
high language similarity between the two groups.
Furthermore, the correlation between the Real Old
vs Old as Young and Real Young vs Young as Old
indicates that in general, older people are good at
imitating younger people and vice versa.

6 Conclusions

In this paper, we addressed the task of identity de-
ception detection. We collected a novel identity
deception dataset, consisting of individuals por-

traying themselves with four fake identities, tar-
geting different ages and genders.

Through several experiments, we showed that
we can build accurate identity detectors. Specifi-
cally, we focused on the prediction of gender and
age impersonators. We were able to identify iden-
tity deceivers with accuracies up to 88%. Our
main findings showed that it is easier to identity
females posing as males and similarly, it is eas-
ier to identify older individuals posing as younger
individuals.

Furthermore, we presented a statistical analy-
sis of linguistic patterns that differentiate between
fake and real identities based on age and gender.

The datasets introduced in this paper are
publicly available under http://lit.eecs.
umich.edu/downloads.html.
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Abstract

Clinical diagnosis is a critical and non-
trivial aspect of patient care which often
requires significant medical research and
investigation based on an underlying clin-
ical scenario. This paper proposes a novel
approach by formulating clinical diagnosis
as a reinforcement learning problem. Dur-
ing training, the reinforcement learning
agent mimics the clinician’s cognitive pro-
cess and learns the optimal policy to ob-
tain the most appropriate diagnoses for a
clinical narrative. This is achieved through
an iterative search for candidate diagnoses
from external knowledge sources via a
sentence-by-sentence analysis of the in-
herent clinical context. A deep Q-network
architecture is trained to optimize a reward
function that measures the accuracy of the
candidate diagnoses. Experiments on the
TREC CDS datasets demonstrate the effec-
tiveness of our system over various non-
reinforcement learning-based systems.

1 Introduction

Clinical diagnosis is a critical aspect of patient
care requiring expert medical knowledge and intu-
ition. Given a clinical case narrative such as a pa-
tient’s past medical history and current condition,
a clinician performs complex cognitive processes
to infer the probable diagnosis based on his/her ex-
perience or up-to-date knowledge obtained from
relevant external resources (Norman et al., 2007).
Table 1 shows an example clinical narrative with
relevant external knowledge, which suggests that
Pulmonary Embolism is the diagnosis for this clin-
ical scenario.1

1The clinical narrative with corresponding diagnosis is
obtained from the Text REtrieval Conference (TREC) Clin-

Clinical Narrative:
An 87 yo woman with h/o osteoporosis, DM2, dementia,
depression, and anxiety presents s/p fall with evidence of
C2 fracture, chest pain, tachycardia, tachypnea, and low
blood pressure.
External Knowledge (partially shown)
From Wikipedia page for Pulmonary Embolism -
“Signs and symptoms” Section:
Symptoms of pulmonary embolism are typically sudden
in onset and may include one or many of the following:
dyspnea (shortness of breath), tachypnea (rapid breath-
ing), chest pain of a “pleuritic” nature (worsened by
breathing), cough and hemoptysis (coughing up blood).
From MayoClinic page for Pulmonary Embolism -
“Symptoms” Section:
Pulmonary embolism symptoms can vary greatly, de-
pending on how much of your lung is involved, the size of
the clots, and whether you have underlying lung or heart
disease.
Diagnosis:
Pulmonary Embolism

Table 1: An example clinical narrative with rele-
vant external knowledge and diagnosis.

This paper considers the challenge of infer-
ring the diagnoses of a patient condition based on
available documentation in the Electronic Health
Record (EHR), specifically free text clinical re-
ports. Earlier work that builds Artificial Intelli-
gence (AI) systems to support clinical decision
making, mostly uses structured clinical data (e.g.
physiological signals, vital signs, lab tests etc.)
stored in the EHR (Lipton et al., 2015; Choi et al.,
2015, 2016). They commonly formulate diagnosis
inferencing as a supervised classification task.

The efficacy of these models largely depends on
the size of the annotated datasets used for training,
which requires expert-derived annotations that are
expensive to obtain. These models also tend to
lack the ability to capture the underlying uncer-
tainties related to generating differential diagnoses
(Richardson et al., 1999) and linguistic complex-

ical Decision Support (CDS) track 2016 dataset (Roberts
et al., 2016a).
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ities (Seidel et al., 2015) of a clinical scenario as
they consider medical codes and a finite number
of diagnoses for prediction labels.

By contrast, we explore the discriminatory ca-
pability of the unstructured clinical narratives to
infer the possible diagnoses. To overcome the
sparsity in annotated data and adequate represen-
tation of ambiguities, we formulate the problem as
a sequential decision-making process using deep
reinforcement learning while leveraging external
knowledge to infer the differential diagnoses.

Our proposed approach is novel as, unlike pre-
vious approaches, it focuses on the clinician’s cog-
nitive process to infer the most probable diagnoses
from clinical narratives. Given a clinical text sce-
nario, a physician typically reviews the sentences
sequentially, skipping those s/he deems irrelevant
and focusing on those that would contribute to
his/her understanding of the clinical scenario.

While assimilating the sentences (i.e. under-
standing partial information), s/he tries to recog-
nize a logical pattern or clinical progression simi-
lar to one or more prior patient encounters towards
arriving at a candidate diagnosis. Ultimately, the
intuition of the clinician is guided by understand-
ing of these sentences and s/he can make an overall
assessment of the scenario based on the narrative
and/or additional evidence obtained from relevant
external knowledge sources.

Our system replicates this cognitive flow by us-
ing a deep reinforcement learning technique. Dur-
ing training, the agent learns the optimal policy to
obtain the final diagnoses through iterative search
for candidate diagnoses from external knowledge
sources via a sentence-by-sentence analysis of the
inherent clinical context.

A deep Q-network architecture (Mnih et al.,
2015) is trained to optimize a reward func-
tion that measures the accuracy of the candi-
date diagnoses. Our model predicts the differ-
ential diagnoses by utilizing the optimum policy
learned to maximize the overall possible reward
for an action during training. Extensive experi-
ments on the TREC CDS track (Roberts et al.,
2015, 2016a) datasets demonstrate the effective-
ness of our system over several non-reinforcement
learning-based systems.

In recent TREC CDS tracks, clinical diagno-
sis inferencing from free text clinical narratives
has been showcased as a significant milestone in
clinical question answering and a path to improv-

ing the accuracy of relevant biomedical article re-
trieval (Roberts et al., 2015, 2016b; Goodwin and
Harabagiu, 2016).

In addition to these established use cases, we
envisage that our work can also lead to a busy clin-
ician considering relevant differential diagnoses
that could otherwise be ignored due to inadver-
tent diagnostic errors (Nendaz and Perrier, 2012;
Graber et al., 2012; Berge and Mamede, 2013).
Also, nurse practitioners can use the proposed sys-
tem as a source of second opinion before contact-
ing a physician towards accurately diagnosing and
managing their patients.

2 Related Work

Addressing inference tasks generally requires sig-
nificant contributions from domain experts and
access to a variety of resources (Ferrucci et al.,
2013; Lally et al., 2014) such as structured knowl-
edge bases (KBs) (Yao and Van Durme, 2014; Bao
et al., 2014; Dong et al., 2015). However, KBs are
known to have limitations such as knowledge in-
completeness, sparsity, and fixed schema (Socher
et al., 2013; West et al., 2014; Bordes et al., 2014),
which have motivated researchers to use unstruc-
tured textual resources like Wikipedia for various
related tasks (Katz et al., 2005; Wu and Weld,
2010; Miller et al., 2016; Chen et al., 2017). In
this paper, we also leverage the power of unstruc-
tured knowledge sources to address clinical diag-
nosis inferencing.

Previous clinical diagnosis inferencing works
mostly utilized various bio-signals from patients
(Lipton et al., 2015; Choi et al., 2015, 2016).
EHRs typically store such structured clinical data
(e.g. physiological signals, vital signs, lab tests
etc.) along with unstructured text documents that
contain a relatively more narrative picture of the
associated clinical events.

Recently, diagnosis inferencing from unstruc-
tured clinical text has gained much attention
among AI and Natural Language Processing re-
searchers, with the advent of the TREC CDS
tracks (Simpson et al., 2014; Roberts et al., 2015,
2016b; Goodwin and Harabagiu, 2016; Zheng and
Wan, 2016; Balaneshin-kordan and Kotov, 2016;
Prakash et al., 2017; Ling et al., 2017a). Although
the main task in the CDS track was to retrieve
relevant biomedical articles given a clinical sce-
nario, researchers also explored diagnosis infer-
encing from clinical narratives as part of the pilot
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Figure 1: Overall architecture of the DBrain system.

task in 2015 that investigated the impact of diag-
nostic information on retrieving relevant biomedi-
cal articles (Roberts et al., 2015, 2016b).

Existing approaches for diagnosis inferencing
mostly propose supervised classification models
using various neural network architectures (Lipton
et al., 2015; Choi et al., 2015; Prakash et al., 2017).
However, such models heavily rely on large la-
beled data, and lack the ability to capture inher-
ent ambiguities and complexities of a clinical sce-
nario. Moreover, they are limited by the number
of diagnosis labels and the use of medical codes
to simplify the computational and linguistic diffi-
culties of a clinical case. Other works have ex-
plored graph-based reasoning methods to incor-
porate relevant medical concepts and their asso-
ciations (Shi et al., 2017; Geng and Zhang, 2014;
Goodwin and Harabagiu, 2016; Zheng and Wan,
2016; Ling et al., 2017a).

These approaches do not focus on the intuitive
and analytical processes of a clinician to infer the
probable diagnoses from a clinical case narrative
(Pelaccia et al., 2011; Kushniruk, 2001). By con-
trast, we propose a novel approach for clinical di-
agnosis inferencing that formulates the task as a
reinforcement learning problem to mimic the clin-
ician’s cognitive process for clinical reasoning.

Prior works that use reinforcement learning for
clinical decision support tasks focused on other
modalities e.g. medical imaging (Netto et al.,
2008) or specific domain-dependent use cases, and
clinical trials (Poolla, 2003; Shortreed et al., 2011;
Zhao et al., 2011), but not for inferencing diag-
nosis. Recent works have shown the utility of
deep reinforcement learning techniques for chal-

lenging tasks like playing games and entity extrac-
tion via utilizing external evidence (Mnih et al.,
2015; Narasimhan et al., 2015, 2016). To the best
of our knowledge, we are the first to explore deep-
reinforcement learning for clinical diagnosis infer-
ence using text data from EHR.

3 Inferencing Diagnoses with Deep
Reinforcement Learning

Our proposed approach, DBrain, uses a reinforce-
ment learning formulation that leverages evidence
from external resources to mimic the clinician’s
complex reasoning. The overall architecture of our
method is depicted in Figure 1.

DBrain takes free-text clinical narratives as in-
put, and generates differential diagnoses as out-
put. It scans the clinical narrative sentence-by-
sentence and each sentence is used as a query to
obtain a candidate diagnosis from external knowl-
edge sources. We use a Markov Decision Process
(MDP) to model this process. DBrain system cre-
ates two pools for each clinical narratives to keep
the candidate sentences and the candidate diag-
noses, namely: 1) bag-of-sentences, and 2) bag-
of-diagnoses. Actions are taken at each step to de-
cide which candidate sentence goes into the bag-
of-sentences, and which candidate diagnosis goes
into the bag-of-diagnoses.

3.1 MDP Framework

We model the integration of external knowledge
sources for clinical diagnosis inferencing as a
Markov Decision Process (MDP) (Bellman, 1957;
Sutton and Barto, 1998). At each MDP step, the
agent takes a sentence from the clinical narrative
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and uses it as a query to obtain an external article
from the evidence pool so that the sentence can
be mapped to a candidate diagnosis. The evidence
pool contains external knowledge sources, such as
Wikipedia articles (details in Section 4.1).

For each sentence and the corresponding can-
didate diagnosis, a state vector s is created to en-
code their information. The state vector comprises
information on the importance of the current sen-
tence and the current candidate diagnosis with re-
spect to inferring the most probable diagnoses for
a clinical narrative. In a state s, the agent takes
an action a to get to the next state, s′ = s + a.
A reward function r(s, a) is used to estimate the
reward at each state s after taking an action a.

We estimate a state-action value function
Q(s, a), which determines the optimal action a to
take in a state s using the Q-learning technique
(Watkins and Dayan, 1992). The Q-function is
approximated using a deep Q-network (DQN) ar-
chitecture (Mnih et al., 2015). The trained DQN
agent takes state s and reward r as input, and out-
puts an action a.

Once the training is complete, the sentences
in the bag-of-sentences represent the most impor-
tant sentences, and the diagnoses in the bag-of-
diagnoses denote the final predicated diagnoses
for the clinical narrative. The overall MDP frame-
work for clinical diagnosis inferencing is pre-
sented in Algorithm 1.

Algorithm 1: MDP framework
Input : clinical narrative C = s1, s2, ..., sn

Output: bag-of-diagnoses D, bag-of-sentences S
1 D = ∅ and S = ∅;
2 for each sentence si in C do
3 Use si as query, search in knowledge sources, get

candidate diagnosis d;
4 Generate state vector v for sentence-diagnosis pair

(si, d);
5 Calculate reward value r;
6 Send (v, r) to DQN agent, and get action value a1

and a2 from agent (where a1 and a2 denote actions
for diagnoses and sentences, respectively);

7 if action == “stop” then break;
8 Update D according to a1;
9 Update S according to a2;

10 end
11 return D, S

For each clinical narrative, the output is a bag-
of-diagnoses D and a bag-of-sentences S. For the
training phase, the steps in Algorithm 1 for each
clinical narrative are run for multiple epochs. Dur-
ing the testing stage, each clinical narrative is pro-

cessed only once in a single epoch. The next sub-
sections provide details on the state, actions, and
the reward function of the MDP framework.

3.1.1 State
The state s in our MDP comprises DBrain sys-
tem’s confidence on the current sentence and the
corresponding candidate diagnosis. We represent
state s as a continuous real-valued vector contain-
ing the following information: 1) S1: similar-
ity between the current sentence and the bag-of-
sentences, 2) S2: similarity between the current
sentence and the context of the clinical narrative,
3) S3: similarity between the current sentence and
the source article context of a candidate diagno-
sis, 4) S4: similarity between the bag-of-sentences
and the source article context of a candidate diag-
nosis, 5) S5: similarity between a candidate diag-
nosis and the bag-of-diagnoses, and 6) number of
words in the current sentence.

We compute the aforementioned similarities in
two ways: 1) string similarity, which includes n-
gram (unigram/bigram/trigram), and Levenshtein
distance, 2) similarity/distance measures using
one-hot vector representations including Jaccard
similarity, cosine similarity, Manhattan distance,
Euclidean distance, and fractional distance.

In addition to the above similarities, words in
the current sentence are encoded into the state vec-
tor using a Long Short Term Memory (LSTM) net-
work and mean pooling. In particular, we take the
sequence of words in the current sentence as input,
pass their one-hot vector embeddings to the LSTM
cells, and output a corresponding vector represen-
tation, which combined with the similarities (de-
scribed above) produces a state vector to serve as
the input for the DQN module.

3.1.2 Actions
At each step, there are two kinds of actions for the
agent: a1 for updating the bag-of-diagnoses and
a2 for updating the bag-of-sentences, where a1 in-
cludes: 1) accept the candidate diagnosis, 2) reject
the candidate diagnosis, 3) reject all candidate di-
agnoses, and 4) stop; and, a2 includes: 1) accept
the current sentence, and 2) reject the current sen-
tence.

3.1.3 Reward Function
The agent receives limited supervision from the
ground truth diagnoses via a reward function dur-
ing training. The reward function is chosen in
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Figure 2: DQN architecture.

a way such that the accuracy of the final diag-
noses prediction can be maximized. We consider
two types of rewards: instant reward rinstant and
global reward rglobal. The overall reward r is com-
puted as:

r = rinstant + rglobal (1)

where rinstant is calculated based on the match
of a candidate diagnosis with gold standard diag-
noses as:

rinstant =

{
1, if candidate diagnosis matches
0, otherwise

(2)

On the other hand, rglobal is equal to the number
of correct diagnoses minus the number of incorrect
diagnoses in the bag-of-diagnoses.

3.2 DQN Architecture
In order to learn the Q-value, the iterative updates
are derived from the Bellman equation(Sutton and
Barto, 1998):

Qi+1(s, a) = E[r + γmaxa′Qi(s
′, a′)|s, a], (3)

where γ is a discount factor for the future re-
wards and the expectation is over the whole train-
ing process.

It is impractical to maintain the Q-values for
all possible state-action pairs. Mnih et al. (2015)
proposed a deep Q-network (DQN) architecture,
which approximates the Q-value function and pre-
dicts Q(s, a) for all possible actions. We extended
the DQN architecture in Narasimhan et al. (2015)
to fit our problem formulation (Figure 2).

4 Experimental Setup

4.1 External Knowledge Sources
Our work relies on external knowledge sources
to provide candidate diagnoses for the sentences

from a clinical narrative. We use two external
knowledge sources: Wikipedia pages and May-
oClinic pages. We index Wikipedia and May-
oClinic using Elasticsearch2. As an example,
Wikipedia and MayoClinic pages for the diagno-
sis “pulmonary embolism” are partially displayed
in Table 1.

4.1.1 Wikipedia
We select 37,245 Wikipedia pages under the “clin-
ical medicine” category3. Each page title is used
as the diagnosis name and the texts from the
Signs and symptoms subsection are used as an
evidence for mapping candidate diagnosis. As
shown in Table 1, “Sign and symptom” section
describes symptoms of “pulmonary embolism”.
These symptoms have a higher chance of appear-
ing in a clinical narrative if the documented diag-
nosis is “pulmonary embolism”.

4.1.2 MayoClinic
The MayoClinic4 disease corpus contains 1,117
pages, which include sections of Symptoms,
Causes, Risk Factors, Treatments and Drugs, Pre-
vention, etc. Each MayoClinic page title is re-
garded as one diagnosis. We select sentences from
the “Symptoms” section as the external source of
evidence for mapping candidate diagnoses.

4.2 Candidate Diagnosis Mapping

Each sentence from a clinical narrative is used as a
query to search in both Wikipedia and MayoClinic
corpora. Each search returns top 10 results per
corpus. If there is any common diagnoses, we re-
turn the top ranked diagnosis as the candidate di-
agnosis. Otherwise, we consider the top ranked
diagnosis from Wikipedia as the candidate diag-
nosis since Wikipedia has a higher coverage for
ground truth diagnoses in both training and testing
dataset. Table 2 presents the diagnoses coverage
for Wikipedia and MayoClinic in our training and
test set, where the test set numbers essentially de-
note the maximum possible recall of our systems.

Wikipedia MayoClinic
Training Set 93.33% 80.00%

Test Set 96.67% 86.67%

Table 2: Diagnoses coverage.

2https://www.elastic.co/
3https://en.wikipedia.org/wiki/Category:Clinical medicine
4http://www.mayoclinic.org/diseases-conditions
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4.3 Datasets of Clinical Narratives

We use the 2015 and 2016 TREC CDS track
datasets (Roberts et al., 2015, 2016a) for our ex-
periments. Each dataset contains 30 topics, where
each topic is a medical case narrative that de-
scribes a patient scenario. A topic example is par-
tially shown as the clinical narrative in Table 1 (see
accompanied dataset for all topics).

Each topic contains “description”, “summary”,
and “diagnosis” fields. “description” includes a
comprehensive description of the patient’s situ-
ation, whereas “summary” contains an abridged
version of the most important information. In ad-
dition, the 2016 dataset includes a “note” field
for each topic, which resembles an actual clini-
cal note in terms of linguistic complexity. We use
“description”, “summary” and “note” fields sepa-
rately to generate more samples with same/similar
patient situations.

We use all fields from the 2016 dataset for train-
ing our systems, while “description” and “sum-
mary” fields from the 2015 dataset are used sepa-
rately for testing (see dataset statistics in Table 3).

Train Test-
description

Test-
summary

# of Topics 30 30 30
# of Samples 90 30 30
Total # of Sent. 703 152 45
Avg. # of Sent. 7.8 5.1 1.5

Table 3: Dataset statistics.

4.4 Evaluation Metrics

We use precision, recall and F-score as the eval-
uation metrics. Precision is the fraction of cor-
rectly predicted diagnoses among all predicted di-
agnoses. Recall is the fraction of correctly pre-
dicted diagnoses among all gold standard diag-
noses. F-score is calculated based on precision
and recall as follows:

F =
2× precision× recall
precision+ recall

(4)

Instead of using an exact match for comparing
predicted diagnosis and gold diagnosis, we use
paraphrases and disease synonyms based on the
human disease network (Schriml et al., 2012) to
compare two diagnosis terms.

4.5 Systems for Comparison

We explore a supervised method using Support
Vector Machines (SVM), an information retrieval-

based method (IR-based), and two heuristic meth-
ods (KG-based and Concept-based) to systemati-
cally evaluate the performance of our DBrain sys-
tem. In addition, we also compare the perfor-
mance among different representational variations
of the DQN architecture.

4.5.1 Supervised Method
We build a supervised method using SVM (Cortes
and Vapnik, 1995). Each sentence si in a clinical
narrative is used as a query to search in knowledge
sources. We use the top retrieved Wiki page, p as
the candidate diagnosis. For each sentence, we get
a sentence-page pair (si, p). If the page title indi-
cates the correct diagnosis for a clinical narrative,
we label the sentence-page pair (si, p) as a pos-
itive example, otherwise, the pair is labeled as a
negative example.

The feature space for SVM contains 13 fea-
tures5 denoting the similarity between a sentence
from the clinical narrative and an external knowl-
edge source page: cosine similarity, Damerau-
Levenshtein distance, Jaccard similarity, JaroWin-
kler distance (Winkler, 1995), Levenshtein dis-
tance, weighted Levenshtein distance, longest
common subsequence, metric longest common
subsequence (Bakkelund, 2009), N-gram similar-
ity (Kondrak, 2005), optimal string alignment, Q-
gram distance (Ukkonen, 1992), Sorensen-Dice
coefficient, and the relevance score returned from
Elasticsearch. The similarity scores are concate-
nated to generate a vector. Finally, the similarity
vector and positive/negative labels are used as in-
put to train the SVM model. During testing, each
clinical narrative generates multiple sentence-page
pairs and the positive diagnoses predicted by the
SVM model are considered as the final diagnoses.

4.5.2 IR-based Method
The IR-based method has the similar setting as the
supervised method. Each sentence si is used as a
query to obtain top 5 pages as candidate diagnoses.
Each page is associated with a relevance score. We
combine the results from each sentence in the nar-
rative, and use the cumulative relevance scores to
get top 5 ranked diagnoses pages per clinical nar-
rative.

4.5.3 KG-based Method
We create a knowledge graph (KG)-based method,
which uses Wikipedia pages under the “clinical

5https://github.com/tdebatty/java-string-similarity
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Figure 3: (a) Description vs. Summary. (b) State vectors with or without similarity scores.

medicine” category to build a knowledge graph.
The hierarchy of each Wikipedia page is preserved
to encode its distinguishing characteristics with re-
spect to other pages. Each page consists of several
sections and is related to other medical conditions.
We build a directed graph (digraph) by using these
relations, where each node is a medical condition,
diagnosis, test, procedure, medication or any other
clinical concept, and each edge is a relation be-
tween two nodes.

The constructed knowledge graph contains ∼
100K nodes and ∼ 1M edges, where leaf nodes
represent medical symptoms and are connected to
relevant diseases and medical conditions. Based
on this graph, we infer the clinical diagnoses given
a list of signs and symptoms extracted from a clin-
ical narrative using a clinical information extrac-
tion engine. This method produces a ranked list of
diagnoses. We take the top 5 ranked results as the
diagnoses.

4.5.4 Concept-based Method

We compare our system with the concept graph-
based method proposed by Ling et al. (2017a).
This method builds a concept graph by integrat-
ing knowledge from structured and unstructured
sources to infer top 5 ranked diagnoses from a
clinical narrative.

4.5.5 Representational Variations of DQN

As discussed in Section 3.1.1, we use LSTM and
mean pooling to encode words in a sentence. We
compare the DQN-LSTM model with two vari-
ations (Figure 6) (Narasimhan et al., 2015): 1)
DQN-BOW, which uses a bag-of-words approach
to represent words in a sentence, and 2) DQN-
Rand, where instead of using the DQN agent to
choose actions, we randomly choose an action in
each step.

Figure 4: Evolution of reward with different simi-
larities.

4.6 DQN Settings

For the DQN learning, we use a replay memory
of size 50K, and a discount of 0.99. The embed-
ding dimension is 300. All other settings are kept
similar to Narasimhan et al. (2015).

5 Results and Discussion

5.1 Description vs. Summary

We use Description and Summary separately as
clinical narratives for our experiments to evalu-
ate their impact on the performance of our system.
Figure 3 (a) shows Precision, Recall, and F-scores
for Description and Summary. We can see that
the results for Description is better than Summary.
One reason is that Description has more average
number of sentences than Summary. It is impor-
tant for the reinforcement learning agent to infer
candidate diagnoses from a sufficient number of
sentences. Only one or two sentences may not be
adequate for this purpose. Therefore, in the fol-
lowing experiments, we only use Description for
system comparisons.
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Figure 5: Evolution of accuracy.

5.2 State Vector Variations

In Figure 3 (b), we compare results for similarity
scores in state vector to omitting similarity scores
on state vector. We see that the inclusion of simi-
larity vectors with the mean pooling of the context
of a current sentence inside the DQN architecture
provides better results for our model.

In Figure 4, we display the evolution of rewards
by comparing with different similarities (used sep-
arately) as listed in Section 3.1.1. We see that S3,
the similarity between the current sentence and the
source article context of a candidate diagnosis, has
better performance compared to other similarities.

5.3 Reward Functions

Figure 5 shows the learning curve of our DBrain
system by measuring accuracy over epochs for dif-
ferent rewards functions. By using instant reward
only, the accuracy trend over epochs on training
set is not stable. Global reward function becomes
stable after ∼ 10 epochs. By combining instant
reward with global reward, the accuracy is slightly
better than just using global reward. Therefore, we
use the combined reward function in other experi-
ments.

5.4 System Comparison Results

Table 4 presents the evaluation results of our sys-
tem in comparison to other considered systems.

From these results we can see that the DBrain
system achieves the best precision and F-value
scores over other methods demonstrating the ef-
fectiveness of our reinforcement learning formu-
lation. The concept-based approach shows an im-
pressive recall score although with a loss in preci-

Precision Recall F-Value
Supervised Method

SVM 4.44 33.33 7.84
IR Method

IR-based 7.33 36.67 12.22
Heuristic Methods

KG-based 7.33 36.67 12.22
Concept-based 8.96 44.78 14.93

Our System
DQN-BOW 11.94 20.00 14.11
DQN-LSTM 10.28 33.33 15.71

Table 4: Evaluation results (%).

sion. On the other hand, DQN-LSTM achieves the
best F-Value, which is better than DQN-BOW, il-
lustrating the importance of having a better repre-
sentation of words as input. All the improvements
of our system (DQN-LSTM) are statistically sig-
nificant (p < 0.05) over SVM using the paired
samples t-test (David and Gunnink, 1997) except
for the methods that compute scores for the top 5
diagnoses as output (IR and heuristic-based).

Overall, the low F-measures demonstrate the
difficulty of the task, as they are consistently low
for all methods. We use exact sentences from a
clinical narrative as queries to search for the diag-
noses in the knowledge sources. Thus, sometimes
our system is not able to identify the correct diag-
nosis due to noise in the query (see Table 6). This
can be rectified with forming the query by extract-
ing relevant clinical concepts from a sentence as
shown in Ling et al. (2017b). Another reason for
low F-scores is that some ground-truth diagnoses
(from the training and test set) are missing in both
MayoClinic and Wikipedia (Table 2). A knowl-
edge source with a better coverage for diagnoses
may offer additional room for improvements.

Figure 6 shows the evolution of average rewards
for DQN-LSTM, DQN-BOW, and DQN-Rand.
DQN-Rand performs poorly, which again demon-
strates the importance of using a DQN agent to
learn the best strategies for actions.

5.5 Example Outputs from DBrain System

We present two detailed examples to show how
our DBrain system predicts the diagnoses for two
test set topics. Table 5 shows that our system can
correctly predict the diagnosis “Hypothyroidism”
while Table 6 shows an example where the DBrain
system failed to predict the correct diagnosis as
the candidate diagnoses list mapped from the sen-
tences of the clinical narrative did not contain the
correct diagnosis.
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Figure 6: Evolution of reward with representa-
tional variations.

Example 1
Input:
Description: A 56-year old Caucasian female complains
of being markedly more sensitive to the cold than most
people. She also gets tired easily, has decreased appetite,
and has recently tried home remedies for her constipa-
tion. Physical examination reveals hyporeflexia with de-
layed relaxation of knee and ankle reflexes, and very dry
skin. She moves and talks slowly.
Ground-Truth Diagnosis: Hypothyroidism
Stage 1:
Sentence 1: A 56-year old Caucasian female complains
of being markedly more sensitive to the cold than most
people.
Candidate Diagnosis: Triple X syndrome
Action for the agent: reject the candidate diagnosis
Stage 2:
Sentence 2: She also gets tired easily, has decreased ap-
petite, and has recently tried home remedies for her con-
stipation.
Candidate Diagnosis: Colorectal cancer
Action for the agent: reject the candidate diagnosis
Stage 3:
Sentence 3: Physical examination reveals hyporeflexia
with delayed relaxation of knee and ankle reflexes, and
very dry skin.
Candidate Diagnosis: Hypothyroidism
Action for the agent: accept the candidate diagnosis
Stage 4:
Sentence 4: She moves and talks slowly.
Candidate Diagnosis: Conjugate gaze palsy
Action for the agent: reject the candidate diagnosis
Output:
Bag-of-Diagnoses: {Hypothyroidism}

Table 5: DBrain predicts the correct diagnosis.

6 Conclusion

We present a novel approach for clinical diagno-
sis inferencing that mimics the cognitive process
of clinicians using deep reinforcement learning via
leveraging evidence from external resources. Our
experiments on the TREC CDS datasets demon-
strate that the DBrain system learns to diagnose
by digesting clinical narratives sentence by sen-
tence and achieves better results than supervised,
IR-based, and heuristic-based methods. Further-
more, our experiments using different variations
such as Description vs. Summary for clinical nar-
ratives, Instant vs. Global vs. Combined for re-
ward functions, State Vector with/without Similar-
ity Scores as input to the DQN module along with
various representational variations for the DQN
architecture reveal that Description, Combined re-
ward function, State Vector with Similarity Score,
and DQN-LSTM provide the best results to infer
the probable diagnoses, respectively.

Example 2
Input:
Description: A 31-year-old woman with no previous
medical problems comes to the emergency room with a
history of 2 weeks of joint pain and fatigue. Initially she
had right ankle swelling and difficulty standing up and
walking, all of which resolved after a few days. For the
past several days she has had pain, swelling and stiffness
in her knees, hips and right elbow. She also reports inter-
mittent fevers ranging from 38.2 to 39.4 degrees Celsius
and chest pain.
Ground-Truth Diagnosis: Rheumatic fever
Stage 1:
Sentence 1: A 31-year-old woman with no previous med-
ical problems comes to the emergency room with a his-
tory of 2 weeks of joint pain and fatigue.
Candidate Diagnosis: Premenstrual syndrome
Action for the agent: reject the candidate diagnosis
Stage 2:
Sentence 2: Initially she had right ankle swelling and dif-
ficulty standing up and walking, all of which resolved af-
ter a few days.
Candidate Diagnosis: Caput succedaneum
Action for the agent: reject the candidate diagnosis
Stage 3:
Sentence 3: For the past several days she has had pain,
swelling and stiffness in her knees, hips and right elbow.
Candidate Diagnosis: Synovial osteochondromatosis
Action for the agent: reject the candidate diagnosis
Stage 4:
Sentence 4: She also reports intermittent fevers ranging
from 38.2 to 39.4 degrees Celsius and chest pain.
Candidate Diagnosis: Dientamoebiasis
Action for the agent: reject the candidate diagnosis
Output:
Bag-of-Diagnoses: {}

Table 6: DBrain fails to predict the correct diag-
nosis.
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Abstract

Progress in natural language interfaces to
databases (NLIDB) has been slow mainly
due to linguistic issues (such as language
ambiguity) and domain portability. More-
over, the lack of a large corpus to be used
as a standard benchmark has made data-
driven approaches difficult to develop and
compare. In this paper, we revisit the
problem of NLIDBs and recast it as a se-
quence translation problem. To this end,
we introduce a large dataset extracted from
the Stack Exchange Data Explorer web-
site, which can be used for training neural
natural language interfaces for databases.
We also report encouraging baseline re-
sults on a smaller manually annotated test
corpus, obtained using an attention-based
sequence-to-sequence neural network.

1 Introduction

Natural language interfaces have received atten-
tion as tools for simplifying the interaction be-
tween users and computers. These interfaces often
exclude or complement input devices, such as key-
board or touch screens, or even specific languages
used for interacting with an application. A more
focused area is composed of Natural Language In-
terface to Databases (NLIDB), which would allow
a person to retrieve useful information from any
database without knowledge of specific query lan-
guages such as structured query language (SQL)
for relational databases.

Despite initial efforts into NLIDBs started
decades ago, research has advanced slowly and at
this moment there are no commercial solutions or
widespread prototypes. The main difficulties in
solving this problem stem from linguistic failures
and the inability to develop general-purpose solu-

tions that are portable to different databases and
schemas.

Due to the recent success of deep neural ap-
proaches in natural language processing, our aim
is twofold. First, we hope to rejuvenate interest in
the NLIDB problem by proposing a large dataset,
called the Stack Exchange Natural Language In-
terface to Database (SENLIDB) corpus, for de-
veloping data-driven machine learning models and
for reporting progress. The training set consists
of 24, 890 pairs (textual description, SQL snippet)
crawled using the Stack Exchange API that we fil-
tered and cleaned. A smaller test set consisting of
780 pairs that were manually created by two anno-
tators is also available for comparing solutions.

Second, we report results on a neural base-
line that uses an attention-enhanced sequence-
to-sequence (SEQ2SEQ) architecture (Bahdanau
et al., 2014) to model the conditional probability
of an SQL query given a natural language descrip-
tion. This model is trained on the aforementioned
dataset and its performance is computed both us-
ing cross-validation and on the manually labeled
test set. Qualitative results reveal code that is syn-
tactically correct most of the times and closely re-
lated to the user’s intention. Moreover, we report
results on two smaller tasks, which we call the ta-
bles and columns identification tasks. These re-
sults suggest that our dataset is indeed valuable for
training end-to-end neural natural language inter-
faces for databases (NNLIDB).

The paper continues with a short overview of
related work in natural language interfaces for
databases and in similar tasks where deep net-
works have been successfully employed. Section
3 contains a detailed description of the large SEN-
LIDB dataset created for training, together with
the smaller dataset used for testing and comparing
various NLIDB systems. Preliminary results using
a SEQ2SEQ neural model with attention trained
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on the dataset proposed in this paper are presented
in Section 4. We then propose alternative indi-
cators for assessing the correctness of generated
SQL queries in Section 5, while Section 6 con-
cludes the paper by highlighting the key insights
and future work.

2 Related Work

As all current NLIDB solutions are using mainly
dependency and semantic parsing together with
rule-based or constraint-based algorithms, we also
present similar problems which inspired our ap-
proach, where deep networks have achieved state
of the art results. In the last part of the section,
we introduce the most frequently used corpora for
evaluating the performance of NLIDB systems.

2.1 Current approaches for NLIDB

Natural language interfaces for databases have
been studied for decades. Early solutions pro-
posed using dictionaries, grammars and dialogue
systems for guiding the user articulate the query
in natural language on a step by step basis (Codd,
1974; Hendrix et al., 1978). Most systems devel-
oped until mid-90s used a mix of pattern matching,
syntactic parsing, semantic grammar systems, and
intermediate representation languages for generat-
ing the query from text (Androutsopoulos et al.,
1995). The most important problems encoun-
tered by NLIDBs were related to ambiguity in
semantics and pragmatics present in natural lan-
guage: modifier attachment, understanding quan-
tifiers, conjunction and disjunction, nominal com-
pounds, anaphora, and elliptical sentences (An-
droutsopoulos et al., 1995).

In more recent studies, Popescu et al. (2004)
combine syntactic parsing and semantic interpre-
tation for natural language queries to change parse
trees such that, by changing the order of some
nodes in a tree, it will be correctly interpreted
by the semantic analyzer. Then they use a maxi-
mum flow algorithm and dictionaries for semantic
alignment between the text and several SQL can-
didates. One of their main contributions is that
they introduce a subset of semantically tractable
text queries, for which the proposed method gen-
erates correct SQL queries in most cases.

NaLIR (Li and Jagadish, 2014) uses depen-
dency parse trees generated with CoreNLP (Man-
ning et al., 2014) and several heuristics and rules to
generate mappings from natural language to can-

didate SQL queries. Given the dependency tree,
the database schema and associated semantic map-
pings, the system proceeds in building alternative
query trees which can be easily translated to SQL.
To determine the best query tree, the system com-
bines a scoring mechanism and an interaction with
the user to select the best choice (from a list of
reformulations of the query tree into natural lan-
guage). The scoring for each query tree takes into
account the number of alterations performed on
the dependency tree in order to generate it, the
database similarity/proximity between nodes adja-
cent in the query tree, and the syntactic correctness
of the generated SQL query.

The most promising results reported on several
databases used for validating NLIDBs have been
recently achieved by Sqlizer (Yaghmazadeh et al.,
2017). Its main contributions are related to the fact
that it uses a semantic parser to generate a query
sketch, which is then completed using a rule based
system, and iteratively refined and repaired using
rules and heuristics until the score of the generated
SQL query cannot be improved. Sqlizer is one of
the few systems which employs machine learning
and Word2Vec (Mikolov et al., 2013) for generat-
ing the query sketch - a general form of the query,
including clauses, but which does not contain any
specific database schema information (e.g. table
and column names).

2.2 Deep learning solutions for NLIDB and
related problems

Mou et al. (2015) introduced a case study for code
generation from problem descriptions using re-
current neural networks (RNN). They trained a
SEQ2SEQ architecture with a character-level de-
coder and produced program snippets that are syn-
tactically correct most of the times and retain func-
tionality. Moreover, they showed that the RNN
generates novel code alternatives compared to the
programs seen during training, thus ruling out the
possibility that the network merely memorizes the
input examples. Ling et al. (2016) combined the
SEQ2SEQ approach with a pointing mechanism
(Vinyals et al., 2015) in order to generate Python
and Java code using textual descriptions auto-
matically extracted from collectible trading card
games.

More recently, Yin and Neubig (2017) proposed
a syntax-aware neural model that generates Ab-
stract Syntax Trees from natural language descrip-
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tions, which then get mapped deterministically to
the target source code. The decoder is guided by
a predefined grammar, so their solution is agnostic
of the target programming language. Using this
syntax aware decoding mechanism, they show to
improve the SEQ2SEQ baseline for code genera-
tion.

Another related topic is semantic parsing using
deep neural networks. Semantic parsing focuses
on converting natural language into logical forms
which are used for querying knowledge bases (Be-
rant et al., 2013). Neural approaches for seman-
tic parsing use a SEQ2SEQ network to map natu-
ral language text to logical forms (Dong and La-
pata, 2016; Herzig and Berant, 2017). Other so-
lutions bypass the need for ground truth logical
forms and instead train a supervised neural model
from query-answer pairs (Yin et al., 2015; Nee-
lakantan et al., 2016). Iyer et al. (2017) are the
first to use a SEQ2SEQ network to map natural
language directly to SQL language. They leverage
feedback-based learning to continuously improve
the parser accuracy.

2.3 Existing corpora for NLIDB evaluation

Solutions to the NLIDB problem have been tradi-
tionally evaluated against databases with few ta-
bles and on validation datasets with a small num-
ber of entries.

One of the most complex databases for NLIDB
evaluation is ATIS (Air Travel Information Cor-
pus) (Hemphill et al., 1990), which stores in-
formation about data flights and features 27 ta-
bles. However, it only has 2,886 natural language
queries and no corresponding SQL statements,
making it unsuitable for a data-driven approach.
Most recent systems have moved to validation
datasets which contain both the natural language
query and the corresponding SQL snippet, such as
MAS (Microsoft Academic Search), IMDB, and
Yelp. For example, Sqlizer (Yaghmazadeh et al.,
2017) achieves 80% accuracy on MAS, while
NaLIR (Li and Jagadish, 2014) obtains only 32%
accuracy on the same data. There also exist some
slightly larger corpora for querying geolocation
databases, the largest being NLmaps (Haas and
Riezler, 2016) which contains 2,380 text queries
but with no corresponding SQL code (instead they
use machine readable language - MRL for ex-
pressing queries).

The training set (SENLIDB Train) proposed in

this paper is by far larger than any of the existing
datasets, as can be seen from Table 1. This makes
it extremely useful for training solutions using ma-
chine learning, including neural NLIDBs. More,
the test set (SENLIDB Test), which has been man-
ually annotated by two experts, is twice as large
as current validation corpora and contains several
text formulations for the same SQL query.

3 Dataset construction

A deep neural architecture, such as SEQ2SEQ,
requires a large number of input-output pairs to
produce qualitative results. The next subsections
describe the steps taken to build the SENLIDB
dataset, including our attempts to correct some of
the problems inherent with crowdsourced data.

3.1 Data crawling and preprocessing

The Stack Exchange Data Explorer allows users
to query the entire database of the well-known
question-answering platform through a public API
1. The database uses Microsoft SQL Server, there-
fore users query it using the SQL extension devel-
oped by Microsoft, called Transact-SQL (T-SQL).
For each query to the Stack Exchange database is-
sued by a user, the web interface enforces the user
to add a title and also an optional longer descrip-
tion. The main rationale for these two fields is
for users to provide an accurate textual descrip-
tion for each query they make. However, there is
no method to ensure that the title or the description
entered for a query are actually relevant in describ-
ing it.

The list of all user queries is available online
2 and Stack Exchange offers various sorting and
filtering capabilities including most upvoted or
viewed queries. An important characteristic is that
all available queries are correct, meaning that they
do not throw any errors when querying the Stack
Exchange database. Moreover, some of them are
”interactive” - users can input values in the web
interface for temporary variables enclosed by ’##’
or ’#’ in the SQL query.

In order to build the proposed dataset, we
started by crawling all user queries from Stack Ex-
change, as they appear in the section ’Everything’
in descending order by creation date.

1http://data.stackexchange.com/
stackoverflow/query/new

2http://data.stackexchange.com/
stackoverflow/queries
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Dataset # Tables # Columns # Text queries # SQL queries
ATIS 27 - 2,866 N/A
NLmaps N/A N/A 2,380 N/A
MAS 17 53 196 196
IMDB 16 65 131 131
Yelp 7 38 128 128
SENLIDB Train 29 204 24,890 24,890
SENLIDB Test 15 98 780 296

Table 1: Comparison of existing datasets and the SENLIDB corpora for NLIDB systems

First of all, we discarded SQL snippets longer
than 2, 000 characters as we considered them to
be too complex. This step resulted in about
2, 000, 000 queries. The next step was to create
pairs of textual description (which included the ti-
tle and the actual description of a query) and cor-
responding SQL snippet. We then removed du-
plicate pairs (identical SQL code and description)
and approximately 600,000 pairs were left. After
this step, we removed items with SQL code in the
description using simple empirical rules (descrip-
tions starting with ’select’ and containing ’from’).
The remaining dataset was reduced to roughly
170,000 pairs.

Afterwards, we removed the comments from
the SQL snippets and eliminated the entries that
now had void snippets. Finally, we took away
items with identical textual descriptions and dif-
ferent SQL snippets. For description d and cor-
responding SQL snippets s1, ..., sn, we kept the
code snippet si of median length, as we consider
that an average length description is probably bet-
ter than very long and very short ones which are
probably outliers. This resulted in a dataset with
24,890 items, each having an unique textual de-
scription and an associated SQL query.

Although descriptions in this dataset are unique,
there are 2, 225 identical SQL queries with differ-
ent descriptions.

3.2 Large dataset for training and validation

We consider that the previously described dataset
can be used effectively for training machine learn-
ing models for NLIDB, including more data-
hungry models such as neural NLIDBs. As this
corpus was created by a large number of users
from the Stack Exchange data portal, one might
expect that the quality of the entries to be simi-
lar to other corpora created using various crowd-
sourcing mechanisms. To this extent, although this

dataset can also be used for validation (using ei-
ther cross-validation or a hold-out set), the results
will be impacted by the inherent biases, noise and
errors collected through crowdsourcing. Some of
the particularities of these data are addressed next.

First, most of the SQL snippets are relatively
simple, containing at most 10 distinct tokens, as
can be easily seen in Table 2. In contrast, textual
descriptions are more evenly distributed, based
on the number of tokens, with 2, 003 of the en-
tries in the dataset having more than 100 tokens.
Thus although some queries might have an incom-
plete textual description, most of them are well ex-
plained.

Second, the Stack Exchange database schema
available in the dataset contains 29 tables. Inter-
estingly, their actual appearances in the dataset,
judging by the number of occurrences in individ-
ual queries, follows Zipf’s law (Zipf, 1949) as it
can be observed in Table 3. We note that a large
majority of queries refer to the ’Posts’ and ’Users’
tables, while other tables make almost no appear-
ance in the dataset (e.g. ’PostNotices’, ’PostNo-
ticeTypes’). In Table 4 we present the most fre-
quent SQL expressions in the datasets. Half of
the queries contain ordering clauses and almost a
third include multiple joined tables and group by
clauses.

Third, the dataset contains samples of varied
difficulty, from simple select operations to com-
plex nested queries. We computed the Halstead
complexity metrics (Halstead, 1977) to gain an in-
sight into the difficulty of the SQL snippets in our
datasets. To measure the difficulty of a snippet we
used the formula (Halstead, 1977):

Difficulty =
η1

2
· N
η2

(1)

where η1 is the number of distinct operators, η2 is
the number of distinct operands and N is the total

909



# SQL query tokens
# text tokens 1-10 11-25 26-50 51-100 100+ Total

2-4 2094 3321 2634 1536 605 10190
5-10 641 2547 3182 2306 742 9418
11-20 121 724 1150 876 318 3189
21-50 21 239 470 584 266 1580
51+ 1 10 35 99 72 217
Total 2878 6841 7471 5401 2003

(a) Length statistics for the training dataset

#SQL query tokens
# text tokens 1-10 11-25 26-50 51-100 Total

2-4 88 1 0 0 89
5-10 270 69 8 4 351
11-20 77 181 23 4 285
21-50 1 34 18 2 55
Total 436 285 49 10

(b) Length statistics for the test dataset

Table 2: Overview of the number of tokens from the SQL snippet and the textual description for the
SENLIDB corpora

Table name # occur. train # occur. test
Posts 15159 383
Users 7672 229
Tags 4765 134
Posttags 3370 39
Votes 2476 22
Comments 1583 41
Posthistory 1214 2
Badges 625 16
Posttypes 616 4
Votetypes 336 6
Other tables 1080 16

Table 3: Most frequent table names in SENLIDB
sorted descending by occurrences in training set

SQL expr. # occur. train # occur. test
select 22145 295
from 21982 295
where 18894 203
order 13114 77
count 8294 57
join 7943 29
group 7366 27

Table 4: Most frequent SQL expressions in
SENLIDB

number of operands.
Finally, we used an off-the-shelf library 3 to de-

tect the language of the query descriptions. More
than 95% were classified as English, followed at
a great distance by French and Russian with less
than 100 entries each. We remarked that some of
the descriptions contain table and column names,
which could affect the language identification per-
formance (with a small bias towards English).

3.3 Manually annotated test dataset

In order to have a reliable test and validation
dataset for the Stack Exchange database, we also
developed a smaller corpus which was manually
annotated by two senior undergraduate students in
Computer Science. The SQL queries included in
the test dataset are a subset of the data collected
from the Stack Exchange Data Explorer as previ-
ously described. Each query has been labelled by
at least one annotator using between 1 and 3 differ-
ent textual descriptions that describe the respective
SQL snippet in natural language (English). The
annotators then ran the query in the interface and
verified that the returned results are correct and
correspond to the description. The total number
of distinct queries is 296, while the number of tex-

3https://pypi.python.org/pypi/polyglot
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(a) Training dataset difficulty

(b) Test dataset difficulty

Figure 1: Histograms of the Halstead difficulty
measure for the training (a) and test (b) sets

tual annotations is 780, averaging to 2.63 textual
reformulations per query.

In order to facilitate the annotation process, the
annotators used an application which allowed the
user to view a SQL query from the original dataset
and add one or more possible descriptions. The
SQL queries chosen for manual annotation were
randomly selected from those with a very short
textual description in the original corpus, consist-
ing of only 1-2 tokens. These items were con-
sidered not informative enough to be included in
the training set and were thus added to the human-
annotated test set.

In order to achieve a better understanding of
how similar or different the produced annotations
are, for each sample we computed the BLEU score
(Papineni et al., 2002), with the smoothing func-
tion proposed in Chen and Cherry (2014), between
the descriptions of one annotator and those pro-
duced by the other annotator. The average of the
scores obtained for each sample was 57.10, which

Dataset Perplexity BLEU
Validation 1.16 16.9
Test-original 1.24 13.5
Test-annotated 1.23 18.2

Table 5: Perplexity and BLEU score of the gener-
ated SQL statements on the validation set, original
test set and annotated test set descriptions

is consistent with inter-translator BLEU scores ob-
served in machine translation. It is important to
notice that there are some differences between the
train and test dataset. The most important one is
highlighted in Figure 1 where the Halstead diffi-
culty score for the test set is concentrated between
0-5 as opposed to the train dataset where the mode
is at 8. This means that the queries in the test
dataset are slightly less complex than the queries
in the train dataset. There are also some other dif-
ferences between the two datasets, such as the dis-
tribution of query and description sizes (see Table
2) and most frequent table names (see Table 3);
these arise from how the test SQL queries were
subsampled and annotated.

4 Model and experiments

We trained a SEQ2SEQ model with attention on
the (description, SQL) pairs in the SENLIDB
train set. We used the open-source neural ma-
chine translation toolkit OpenNMT (http://
opennmt.net/) (Klein et al., 2017). This
system implements a standard SEQ2SEQ model
with global-general-attention (Luong et al., 2015).
Both the encoder and the decoder are long short-
term memory (LSTM) cells with two hidden lay-
ers and 500 neurons. The word embedding layer
has 500 neurons. We used batches of maximum
size 64. We trained the models with Stochas-
tic Gradient Descent (SGD) for 25 epochs with a
learning rate of 1.0 and a learning decay of 0.5 if
perplexity did not decrease on the validation set.
We generated SQL statement using a beam search
of size 5.

Similarly to Ling et al. (2016), we report the
BLEU score between the generated SQL queries
and the ground truth SQL snippets in Table 5.
While the BLEU score could penalize differently
written, but otherwise correct, code snippets, it is
still useful to measure the degree of token overlap.
The results are reported for a validation set (hold-
out of 4, 000 random samples from the train set)
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Natural language description Predicted SQL query
top 50 users from india select top 50 id , displayname , reputation , web-

siteurl , location from users where location like
india order by reputation desc

top 100 users with no of gold badge select top 100 b . userid , u . displayname , count
( * ) as gold from badges b inner join users u
on u . id = b . userid group by b . userid , u .
displayname order by count ( b . name ) desc

user rep select reputation , count ( * ) from users group by
reputation order by reputation

text of highest - scored comment select top 100 id as [ comment link ] , score , text
from comments order by score desc

questions with most view select top 500 id as [ post link ] , viewcount from
posts order by viewcount desc

Table 6: Examples of SQL queries generated by the SEQ2SEQ model with attention

Dataset Precision Recall F1 score
Validation 0.71 0.55 0.62
Test-original 0.51 0.41 0.45
Test-annotated 0.82 0.72 0.76

Table 7: Precision, recall and F1 score for the
tables identification task

Dataset Precision Recall F1 score
Validation 0.65 0.47 0.54
Test-original 0.35 0.29 0.31
Test-annotated 0.55 0.47 0.50

Table 8: Precision, recall and F1 score for the
columns identification task

and for the test set, using both the original and the
manually annotated texts. We notice similar per-
plexities for SQL code generated from the original
test titles and from the manually annotated ones,
which means that both generate likely code. This
is to be expected as the decoder is trained on SQL
select statement therefore it will probably gener-
ate some sort of select statement even for short in-
put texts given to the encoder. However, the orig-
inal titles are much shorter compared to the an-
notated titles, and so the more informative natural
language descriptions yield a SQL query that re-
sembles more closely the ground truth SQL under
a BLEU score. Thus, although both shorter (in-
complete) and longer (and more descriptive) texts
generate likely SQL statements, the manually an-
notated texts generate queries significantly more
similar to the ground truth (BLEU score 18.2 vs

13.5, as reported in Table 5) than the original de-
scriptions.

The initial vocabulary for the encoder (text de-
scriptions) had 6, 000 tokens, while the vocabulary
of the decoder (SQL queries) consisted of 16, 000
tokens. This resulted in a very large embedding
matrix, thus we decided to restrict the number of
tokens for both encoder and decoder to 500 and
2, 000, respectively, by keeping only the most fre-
quent tokens and replacing the others with the
UNK token. Reducing the size of the vocabular-
ies for both encoder and decoder resulted in a sig-
nificant improvement for the performance of the
model (BLEU score 18.2 vs 13.06 for the anno-
tated test set).

From a qualitative perspective, Table 6 provides
several examples of SQL queries generated for the
validation set. The generated SQL statement are
syntactically correct most of the time even when
the textual description is incomplete or use abbre-
viations (e.g. ”no” for ”number). More, in the sec-
ond example, we can also observe that the model
learns to use table aliases correctly in complex
queries with joined tables. On another hand, al-
though the generated queries are syntactically cor-
rect, in most cases they fail to return the desired re-
sults when they are executed against the database.
When the system fails to generate the correct SQL
query for a description, it still generates a query
related to the natural language description.

It is important to mention that, in order to cor-
rectly write an SQL statement, one needs to know
the schema of the database. This is an aspect that
we did not take into consideration when training
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the baseline model. Thus the model is not explic-
itly provided with the database schema, however it
can infer it from the training set. However, we be-
lieve that more complex approaches that integrate
schema information and are syntax-aware can pro-
duce better results than a SEQ2SEQ model.

5 Discussion

Generating SQL queries from natural language
can be broken down to a number of independent
sub-problems. For example, in order to retrieve
the desired information from a database, the ap-
propriate table columns need to be instantiated in
the SELECT clauses, and the correct tables need
to be instantiated in the FROM clause. Breaking
down the complex task of automatically generat-
ing SQL in multiple simpler tasks and working on
each task separately can, in our opinion, yield sig-
nificant improvements faster.

Apart from the BLEU score, we propose two
new tasks that are easier than the NLIDB problem.
This approach stemmed from the difficulty of the
problem and the need for a more structured grasp
of the performance of a certain system on this task.
Therefore, we chose to also evaluate the ability of
the proposed NNLIDB to correctly instantiate ta-
bles and columns from the database schema. For
these two tasks, the most important metrics are
precision and recall. For example, given a sam-
ple from the dataset, we compare the SQL query
generated by the neural network architecture with
the correct SQL statement and count existing and
missing table and column names.

In Tables 7 and 8 we evaluate the performance
of our baseline on the tables and columns identi-
fication tasks. We observe that on the validation
and annotated test set, precision and recall scores
are significantly higher, due to the fact that these
are more informative than the original test set de-
scriptions. Given the fact that the database schema
contains a total of 29 entities (table names) and
204 attributes (column names), the precision and
recall scores prove that the baseline model delivers
decent performance on these tasks and moreover,
that both tasks are representative for measuring the
performance of a system on the NLIDB problem.
It is important to mention that, for the sake of sim-
plicity, for the columns identification task we ig-
nored the fact that in different tables there may be
columns with the same name (e.g. ”id”).

Both the tables and columns identification tasks

can be made more difficult using stricter eval-
uation. For example, for the table task, one
could consider only the entities that are instanti-
ated strictly in the FROM clause and the attributes
that are instantiated in the SELECT clause.

6 Conclusions

In this paper we have introduced new datasets for
training and validating natural language interfaces
to databases. The SENLIDB train dataset is the
first large corpus designed to develop data-driven
NLIDB systems and it has been successfully used
to train an end-to-end neural NLIDB (NNLIDB)
using a SEQ2SEQ model with attention. Although
the generated SQL output may sometimes be syn-
tactically invalid and is rarely the desired SQL
statement for the given textual query, we hope the
dataset will prove valuable for future research.

The pursuit of a successful NNLIDB is still at
the beginning and we hope that the current re-
search will provide the first steps needed to in-
vestigate more complex solutions. Future research
will investigate whether using a stacked decoder -
one for generating a query sketch (e.g. subclauses)
and one for the elements related to the database
schema - will provide a better solution.

In comparison with existing approaches for
NLIDB systems, our solution does not use any
rules, heuristics or information about the underly-
ing database schema or SQL syntax. On the other
hand, the generated SQL queries are more often
than not inaccurate and thus we have not com-
pared the accuracy of the NNLIDB with existing
solutions. However, we have focused on verify-
ing how similar the generated SQL queries are to
the annotated ones using measures from machine
translation (BLEU) and also precision and recall
for simpler tasks, such as generating the correct
table and column names in a SQL statement.
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Abstract

In a dialogue system, the dialogue man-
ager selects one of several system actions
and thereby determines the system’s be-
haviour. Defining all possible system ac-
tions in a dialogue system by hand is a te-
dious work. While efforts have been made
to automatically generate such system ac-
tions, those approaches are mostly focused
on providing functional system behaviour.
Adapting the system behaviour to the user
becomes a difficult task due to the limited
amount of system actions available. We
aim to increase the adaptability of a dia-
logue system by automatically generating
variants of system actions. In this work,
we introduce an approach to automatically
generate action variants for elaborateness
and indirectness. Our proposed algorithm
extracts RDF triplets from a knowledge
base and rates their relevance to the origi-
nal system action to find suitable content.
We show that the results of our algorithm
are mostly perceived similarly to human
generated elaborateness and indirectness
and can be used to adapt a conversation
to the current user and situation. We also
discuss where the results of our algorithm
are still lacking and how this could be im-
proved: Taking into account the conver-
sation topic as well as the culture of the
user is likely to have beneficial effect on
the user’s perception.

1 Introduction

In a dialogue system (DS), the dialogue man-
ager (DM) is responsible for choosing the sys-
tem’s contribution to a conversation. Several stud-
ies (e.g. (Ultes et al., 2015; Bertrand et al., 2011;

Jaksic et al., 2006; Partala and Surakka, 2004))
show that adjusting the system’s behaviour to the
user can improve the user experience. To enable
such adaptivity, the system needs several possi-
ble dialogue actions from which to choose. Of-
ten, those system actions are predefined manu-
ally. Hence, the amount of variants that the DM
can choose from to adapt the system behaviour
is limited by conversational skills, creativity and
time of the person responsible for creating those
actions. Foreseeing every possible situation the
DS could find itself in and coming up with mul-
tiple viable system actions while considering pos-
sible types of users and their preferences in a con-
versation is demanding work. Approaches to the
automatic generation of system actions, such as
(Kadlec et al., 2015), have been presented to fa-
cilitate that process. However, those approaches
often consider only system actions that are nec-
essary from a functional point of view. There is
no variety of system actions produced that would
enable the DM to adapt to specific users charac-
teristics or preferences. However, automatically
generating variants of system actions can greatly
increase the adaptability of a DM and thereby im-
prove the user experience.

Studies (e.g. (Miehle et al., 2016; Pragst et al.,
2017)) have shown that elaborateness and indirect-
ness can be useful in adaptive DM. Here, elabo-
rateness refers to the amount of additional infor-
mation provided to the user and the level of indi-
rectness describes how concretely information is
addressed by a speaker. We have proposed the au-
tomatic generation of elaborateness and indirect-
ness in (Pragst et al., 2016). In this work, we intro-
duce an algorithm that, given a core statement on
a semantic level, automatically creates more elab-
orated or indirect versions of that statement by re-
trieving semantic content from a knowledge base
(KB) and assessing its relevance to the original
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statement. Additionally, we ascertain that elabo-
rateness and indirectness are suitable options for
providing adaptability to the DM, and that our au-
tomatically generated system actions are mostly
perceived similarly compared to human instances
of elaborated and indirect statements. We further
examine the circumstances under which the per-
ception of automatically generated system actions
deviates from human ones and discuss how to im-
prove our algorithm based on those insights.

The remainder of the paper is structured as fol-
lows: In Section 2, we discuss related work. Sec-
tion 3 gives an overview of the DS our approach is
employed in. Our algorithm for the automatic gen-
eration of elaborateness and indirectness is pre-
sented in Section 4 and evaluated in Section 5. Fi-
nally, we draw a conclusion in Section 6.

2 Related Work

Adaptive DMs can be beneficial to the user expe-
rience (Ultes et al., 2015; Bertrand et al., 2011;
Jaksic et al., 2006; Partala and Surakka, 2004) and
has been implemented in a number of DMs (e.g.
(Gnjatović and Rösner, 2008; Ultes and Minker,
2014; Rieser and Lemon, 2011)). Often, adaptive
DMs consider user characteristics such as culture
(Aylett and Paiva, 2012; Mascarenhas et al., 2013)
or emotion (André et al., 2004; Gnjatović and
Rösner, 2008; Pittermann and Pittermann, 2007).
Komatani et al. (2005) use the amount of infor-
mation presented as adaptation mechanism to the
user’s knowledge and the degree of urgency. Such
architectures provide the decision making process
necessary for choosing the best suited system ac-
tion. However, they depend on the availability of
suitable system actions to perform optimally.

To facilitate the process of defining system
actions, efforts have been made to model di-
alogues automatically, e.g (Beveridge and Fox,
2006; Kadlec et al., 2015; Zhai and Williams,
2014; Niraula et al., 2014). Those approaches are
mostly focused on functional system behaviour.
Only system actions that are necessary to solve a
task are defined, limiting the possibilities for adap-
tation. Our goal is to generate variants of system
actions that address the same functionality, and
thereby increase the adaptability.

Our efforts to generate variants of system ac-
tions is paralleled by a number of tasks in the
area of natural language generation. Natural lan-
guage generators produce human-readable sen-

Dialogue
Manager

Elaborateness/Indirectness
Generator

Knowledge
Integration
Knowledge Base

Language
Generation

System Action

User Action

Selection of System Actions

Core Statement

Related RDF Triplets

Subject/Predicate/Object

Figure 1: Partial architecture of the KRISTINA
system, enhanced by the proposed algorithm.

tences from a more structured representation.
With regard to surface realisation, one character-
istic of good generators is their ability to provide
variation in the generated sentences, which has
been explored, among others, by Wen et al. (2015).
With a similar goal, efforts towards the paraphras-
ing of sentences have been made (e.g. (Kozlowski
et al., 2003; Langkilde and Knight, 1998)). Those
approaches provide variation at the word level and
preserve the semantic content of a sentence. They
are complemented by our approach that focuses
on variations of the semantic content of a sys-
tem action. The content selection task is con-
cerned with choosing relevant information that is
to be communicated in the generated text, often
with the goal of creating summaries (e.g. (Duboue
and McKeown, 2003; Barzilay and Lapata, 2005)).
While this research area certainly provides impor-
tant insights to the generation of elaborateness,
they need to be considered with respect to the pe-
culiarities of dialogue. Instead of providing an
overview over the most important information in
a larger amount of data, the goal of our work is
to augment an already determined piece of infor-
mation with relevant further information. Hence,
content selection is more concerned with filter-
ing information, while our approach focuses on
adding information.

3 System Architecture

We embed our approach to the generation of elab-
orateness and indirectness into an existing DS, the
KRISTINA system (Wanner et al., 2016; Medit-
skos et al., 2016). It is employed in the health-
care domain, with the overarching goal to support
immigrants with health-care related issues in a so-
cially competent manner. To enable a deeper un-
derstanding of the workings of the proposed algo-
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rithm, this section presents the system architecture
of KRISTINA. A graphic representation of the rel-
evant parts can be found in Figure 1.

The KRISTINA system does not rely on prede-
fined system actions. Instead, a knowledge inte-
gration component (KI) (Meditskos et al., 2017)
is responsible for interpreting the user request and
searching a KB for the required information. The
information retrieved from the KB is represented
as RDF triplets. RDF triplets consist of sub-
ject, predicate and object and are used to describe
the relationship between objects, e.g (s:mother,
p:is from, o:Berlin). As a result of this repre-
sentation, system actions are given as a set of
RDF triplets that represent the semantic content
to be conveyed to the user. A language generation
component (Bouayad-Agha et al., 2012) transfers
those RDF triplets into sentences.

To enhance our system from a purely function-
ally oriented DS to a user oriented DS, our goal is
to transform the RDF triplets retrieved by the KI in
a way that makes them either more elaborated or
more indirect, while preserving the original mean-
ing. Thereby, the DM has more choices than just
the functional answer to the user question. The
KB employed by the KI is utilised to gather suit-
able RDF triplets for the new system action vari-
ants. Newly created system actions can be trans-
formed to sentences by the language generation in
the same manner as the output from the KI.

4 Generation of Elaborateness and
Indirectness

The starting point for both the generation of elabo-
rateness and indirectness is the set of RDF triplets
that was selected to answer the user request by the
KI. We call this set the core statement. To gen-
erate a more elaborated version of the core state-
ment, further RDF triplets that are relevant to the
core statement are added. To achieve a more indi-
rect variant, the core statement is omitted from the
system response and instead a set of RDF triplets
that is closely related to it is used. This process
is divided in two parts: the acquisition of relevant
RDF triplets from the KB and the assessment of
those triplets to find the ones most suitable with
regard to the core statement. In the following, the
procedure is described in more detail.

Algorithm 1: Pseudocode for the acquisition
of RDF triplets from the KB.

Data: coreStmt, the set of RDF triplets selected by
the KI
spo, a function that relates each triplet to the set of its
subject, predicate and object
maxDist, the maximal number of iterations for the
search of the KB
minDist, the minimal number of iterations after which
triplets are included
retrAll, a function that retrieves all triplet containing
the given resource or predicate from the KB
Result: triplets, the set of gathered triplets

stmtSet←− coreStmt
rmStmt←− ∅
if minDist > 0 then

rmStmt←− coreStmt

for dist = 1 to maxdist do
stmtSet←− ⋃

x∈stmtSet

⋃
y∈spo(x) retrAll(y)

if dist < minDist then
rmStmt←− stmtSet

triplets←− stmtSet \ rmStmt

4.1 Acquisition of Semantic Content

To avoid having to assess every RDF triplet stored
in the KB with regard to its relevance to the core
statement, triplets that are connected to the core
statement are preselected. The pseudocode for
this process is depicted in Algorithm 1. For every
triplet in the core statement, the KB is searched
for all further triplets that contain either its sub-
ject, predicate or object. Exemplary, if (s:mother,
p:is from, o:Berlin) is part of the core state-
ment, the triplets (s:Berlin, p:is in, o:Germany)
and (s:mother, p:has age, o:42) could be retrieved
from the KB. This process is repeated for the
newly gathered triplets to find further candidates.
The number of iterations is determined by the de-
sired level of elaborateness. The higher the tar-
geted elaborateness, the more iterations are per-
formed. A further parameter is used to adjust the
level of indirectness. It determines the number
of iterations that have to be performed before a
triplet can be added to the final system action. If
a triplet is encountered before sufficient iterations
have been performed, it can be used to find further
triplets, but is not allowed as part of the final sys-
tem action. If an elaborated, but direct answer is
desired, this parameter is set to 0. After gathering
potential RDF triplets as candidates, the next step
is to assess their relevance to the core statement.
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Algorithm 2: Pseudocode for the assessment
of semantic content.

Data: coreStmt, the set of RDF triplets selected by
the KI
triplets, the set of gathered RDF triplets
nrTriplets, the number of desired triplets, derived
from the level of elaborateness
f , a function to adjust the weight of the individual
inputs to the rating
Result: addStmt, the set of additional
statements chosen

addStmt←− ∅
while |addStmt| < nrTriplets do

allStmts←− coreStmt ∪ addStmt
p←− getCondProb(t, allStmt)
d←− getDistance(t, allStmt)
i←− getInterrelation(t, allStmt)
best←− argmaxt∈triplets f(p, d, i)

addStmt←− addStmt ∪ best
triplets←− triplets \ best

Algorithm 3: The function that estimates the
conditioned probability of a triplet given the
core statement.

Data: p, the probability function
spo, a function that relates each triplet to the set of its
subject, predicate and object

Function getCondProb(t, coreStmt)
return
means∈coreStmtmeanx∈spo(s)meany∈spo(t)

p(x,y)
p(x)

4.2 Assessment of Semantic Content

The overall process to choose triplets for the final
system action is depicted in Algorithm 2, with Al-
gorithms 3, 4 and 5 contributing necessary func-
tions. All gathered RDF triplets are ranked with
regard to the core statement and those with the
highest rank are included in the final system ac-
tion. After the inclusion of each new RDF triplet,
the ranking is repeated. It takes as reference the
newly added triplets as well as the core statement.
This improves the overall consistency. The num-
ber of triplets in the final system action is restricted
by the targeted level of elaborateness.

The ranking function f takes into account sev-
eral factors: p, the probability for the triplet to oc-
cur given the core statement, d, the mean distance
between triplet and core statement in the KB, and
i, the number of triplets in the core statement re-
lated to the triplet. It can be chosen freely to reflect
the importance of the individual factors. In our ex-
periments, we choose f(p, d, i) = p+ 2di.

The probability for a triplet to occur given the
core statement is derived from a corpus of dia-

Algorithm 4: The function that calculates the
mean distance between a triplet and the core
statement.

Data: spo, a function that relates each triplet to the set
of its subject, predicate and object
maxDist, the maximal number of iteration for the
search of the KB
retrAll, a function that retrieves all triplet containing
the given resource or predicate from the KB

Function getDistance(t, coreStmt)

accDist←− 0
for s ∈ coreStmt do

dist←− 0
stmtSet←− {s}
while t 6∈ stmtSet ∧ dist ≤ maxDist do

dist←− dist + 1
stmtSet←−⋃

x∈stmtSet

⋃
y∈spo(x) retrAll(y)

if t 6∈ stmtSet then
meanDist←− meanDist + 100

else
meanDist←− meanDist + dist

return accDist
|coreStmt|

logues between humans. An automated mapping
of words to the semantic concepts that are used in
the KB was performed and this data was used to
calculate the probability that two concepts would
appear in one dialogue turn as well as the overall
probability that a concept would occur in a dia-
logue turn. From those probabilities, the condi-
tioned probability that the concept of a new triplet
will be in a turn if a concept of the core statement
occurs in that turn can be calculated, as is shown in
Algorithm 3. The mean of all conditioned proba-
bilities between the concepts of the core statement
and the triplet that is to be rated is used as input to
the ranking.

Pseudocode for the calculation of the mean dis-
tance between a triplet and the core statement is
given in Algorithm 4. The distance between two
triplets in the KB refers to the number of itera-
tions that have to be performed to find one triplet
when starting from the other. If the triplet can-
not be found due to the elaborateness restriction,
a high number is assumed instead. The mean dis-
tance between a triplet and the core statement is
used as a metric on how closely related they are.

The process to determine the number of triplets
a triplet is related to can be found in Algorithm
5. A triplet is related to another triplet of the core
statement if the triplet could be reached from it
during the acquisition. It can be assumed that a
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Algorithm 5: The function that calculates the
number of relations between a triplet and the
core statement.

Data: spo, a function that relates each triplet to the set
of its subject, predicate and object
maxDist, the maximal number of iteration for the
search of the KB
retrAll, a function that retrieves all triplet containing
the given resource or predicate from the KB

Function getInterrelation(t, coreStmt)

nrRel←− 0
for s ∈ coreStmt do

stmtSet←− {s}
for dist = 1 to maxdist do

stmtSet←−⋃
x∈stmtSet

⋃
y∈spo(x) retrAll(y)

if t ∈ stmtSet then
nrRel←− nrRel + 1

return nrRel

triplet that is related to the whole core statement
is more relevant to the situation than one that is
related to part of it.

5 Evaluation

Our approach has been evaluated in an online
user study. Participants were asked to rate both
human generated (HG) and computer generated
(CG) variants of dialogue contributions with re-
gard to the original statement. The research ques-
tion of the study was twofold: First, to compare
the variants produced by our algorithm to HG
ones. Second, to show that elaborateness and indi-
rectness have the potential to be used in adaptive
DM. In the following, an overview of the partici-
pants of the user study, the study design as well as
the results are presented. Finally, the findings and
their implications for the proposed algorithm and
adaptive DM in general are discussed.

5.1 Participants
The study included 21 Japanese and 21 German
participants, most of which were between the age
of 20 and 30. The 26 male participants slightly
outweigh the female participants. The language
of the study was English, so to identify potential
influences of the individual English reading skill,
participants were asked to rate their English skill
using either the Common European Framework of
Reference for Languages (CEFR), which is often
used in Germany to assess language skills, or the
Test of English for International Communication
(TOEIC), which is more common in Japan. All

Statement 4
KRISTINA: Your mother is not originally from here?
Does she miss Germany sometimes?
TOM (ORIG.): Yes, my mother misses Germany.
TOM (HG): I think my mother misses Germany because
most of her relatives and friends are there and when she is
there she is able to communicate much better.
TOM (CG): My mother misses Germany. She and my fa-
ther married there. They immigrated, but they visit Ger-
many. My father is happy.
Statement 6
TOM: Do you know how the weather is going to be?
KRISTINA (ORIG.): It is going to rain this afternoon.
KRISTINA (HG): It is going to rain this afternoon, but it’s
not going to be cold, still 20◦C. But I would take an um-
brella.
KRISTINA (CG): It is going to rain this afternoon. It is
not going to be cold in the afternoon, 20◦C by then. The
temperature tomorrow is also going to be 20◦C.

Figure 2: Examples for human and computer gen-
erated elaborated statements.

of the participants reported English reading skills
above the beginner level (CEFR: A1/TOEIC read-
ing: 115), with the majority even reporting skills
at or above the upper intermediate level (CEFR:
B2/TOEIC reading: 385 or better).

5.2 Study Design
The proposed algorithm was evaluated by compar-
ing its results to actual human generated exam-
ples of elaborateness and indirectness. To this end,
ten elaborated and ten indirect statements were ex-
tracted from natural conversations. The conver-
sations take place between caregivers, caretakers
and their relatives, with topics ranging from bio-
graphical information, eating preferences, health
issues to recreational activities. For the extracted
statements, the concise/direct version of the state-
ment was determined manually, taking into con-
sideration both previous and following parts of
the conversation. Those concise/direct statements
are referred to as the original statements for the
remainder of the paper. The original statements
were transformed into semantic representations of
their content and the proposed algorithm was used
to produce an altered semantic representation, ei-
ther aiming to be more elaborated or more indi-
rect. As the performance of our content acquisi-
tion and rating component was to be tested, not
that of a language generation component, a hu-
man transformed the semantic representation of
the content into sentences. They were instructed
to create simple sentences and only include the in-
formation provided by the RDF triplets. Examples
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Statement 1
TOM: My mother doesn’t speak English very well.
KRISTINA (ORIG.): Can you translate for the nurses?
KRISTINA (HG): If the nurses need someone for transla-
tion can they contact you?
KRISTINA (CG): Can the nurses contact you to give them
information about your mother?
Statement 6
KRISTINA: How much support does your father need?
Can he walk on his own?
TOM (ORIG.): My father needs support walking.
TOM (HG): My father is unsteady and shaky if he has
nothing to hold onto. He can do two, three steps if some-
one holds him.
TOM (CG): My father can do two, three steps if someone
holds him.

Figure 3: Examples for human and computer gen-
erated indirect statements.

of the resulting sentence pairs can be found in Fig-
ure 2 and 3. A full list of the sentences pairs is
provided in the additional material.

The study consisted of an online questionnaire,
presenting pairs of an original statement and a HG
or CG variant of it to the participants. The partici-
pants were not made aware that some of the state-
ments were computer generated. Furthermore, the
exchanges were presented as human-human in-
stead of human-computer interaction. All partic-
ipants assessed all HG and CG variants, resulting
in 20 evaluated statements pairs for elaborateness
and indirectness each. For elaborated variants,
the participants were asked how relevant the addi-
tional information is. This question was rated on a
five point scale from 1 - ‘not at all’ to 5 - ‘very re-
levant’. For indirect statements, participants rated
how easily they could derive the meaning of the
original statement from the indirect statement on
a five point scale from 1 - ‘it is impossible’ to 5 -
‘it is obvious’. For all sentence pairs, participants
were asked to rate which statement they preferred
on a 5 point scale from 1 - ‘the original one’ to 5 -
‘the elaborated/indirect variant’.

Apart from the comparison of the generation
methods, differences between the nationalities and
the individual original statements were also con-
sidered. Differing ratings in those areas suggest
possible adaptations that may be employed by a
DM to cater to different cultures or different situ-
ations.

The results for each research question were ob-
tained using a three-way mixed ANOVA.

1 2 3 4 5

HG

CG

How relevant is the additional information?
Which Statement do you prefer? (Elaborateness)

How easily is the meaning of the statement derived?
Which statement do you prefer? (Indirectness)

Figure 4: Comparison of the mean rating and stan-
dard error by the generation method used.

Statement Japanese German
HG CG HG CG

1 4.05 3.43 4.29 2.38
2 3.95 3.00 4.48 1.95
3 4.62 3.71 2.76 2.81
4 4.38 3.38 3.76 2.57
5 3.71 2.29 3.00 2.81
6 3.86 3.67 3.48 2.76
7 4.00 3.67 3.57 2.71
8 4.33 4.33 3.52 3.14
9 4.29 3.10 4.19 2.48

10 3.57 3.62 3.71 3.19

Table 1: Mean ratings for the question ‘How rele-
vant is the additional information?’.

5.3 Results

Figure 4 depicts the mean and standard error of the
rating for each of our research questions. Statisti-
cal tests show that HG and CG statements yield
mostly similar results. No significant differences
between the generation methods can be found for
a significance level of 0.05, except for the ease
with which indirect statements can be interpreted.
Here, CG statements are harder to understand than
HG ones. However, this does not significantly in-
fluence the preference of participants for either di-
rect or indirect statements. Additionally, we find
that nationality and situation influence the rating,
suggesting that adapting to them by changing the
level of elaborateness and indirectness is viable.
Apart from the main factors generation method,
nationality and original statement, we also tested
for influences of age, gender or proficiency in En-
glish on the results of our study but found no sig-
nificant effects.

In the following, a more detailed description of
the results is presented. A complete list of mean
ratings for each research question can be found in
Tables 1, 2, 3 and 4.
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Statement Japanese German
HG CG HG CG

1 3.75 2.95 4.14 2.24
2 3.76 2.86 4.48 1.90
3 3.95 3.57 2.86 2.57
4 4.29 2.81 3.95 2.62
5 3.29 2.00 2.57 2.81
6 2.86 2.62 3.62 2.57
7 3.24 1.95 3.76 2.43
8 3.90 3.90 3.76 3.19
9 4.33 3.10 4.24 2.52

10 4.10 3.10 4.05 3.14

Table 2: Mean ratings for the question ‘Which
statement do you prefer?’ (Elaborateness).

Statement Japanese German
HG CG HG CG

1 4.19 3.24 4.81 3.00
2 3.33 3.14 4.24 2.86
3 1.67 1.19 2.29 1.00
4 2.67 2.19 2.48 1.71
5 4.00 3.48 4.76 4.38
6 3.86 3.81 4.62 4.24
7 2.81 1.81 4.14 1.71
8 3.29 2.71 3.95 2.38
9 3.00 1.38 2.90 1.05

10 4.52 4.10 5.00 4.38

Table 3: Mean ratings for the question ‘How easy
is it to derive the original meaning?’.

5.3.1 Impact of Generation Method
The relevance of additional information as well as
the user preference for either the original or the
elaborated/indirect statement do not show signifi-
cant differences regarding the generation method
with a significance level of 0.05. Only the ease
with which the meaning of an indirect statement
can be derived is significantly influenced by the
generation method (F (1, 37) = 5.401,p = .026).
This indicates that overall participants perceived
HG and CG statements to be similar, but had prob-
lems to interpret CG indirect statements. In addi-
tion to those results, several significant interaction
effects can be found. Those interaction effects of-
fer valuable information about potential improve-
ments that can be made to the proposed algorithm.
Hence, they are examined in closer detail in the
following.

Significant interaction effects between genera-
tion method, nationality and original statement ex-
ist for both the relevance of additional informa-
tion (F (9, 333) = 2.731, p = .004) as well as the
user preference for either the original or the elab-
orated statement (F (9, 333) = 2.486, p = .009).
For both question, several interaction patterns can
be observed, depending on the original statement:

Statement Japanese German
HG CG HG CG

1 3.57 3.05 4.19 2.57
2 3.05 2.38 2.95 1.43
3 2.62 2.14 2.24 1.38
4 1.95 1.52 2.00 1.38
5 3.90 2.57 3.90 2.57
6 3.86 3.29 3.76 3.19
7 4.33 3.00 3.10 2.38
8 3.81 3.67 3.71 2.76
9 3.95 2.29 2.71 1.52

10 3.29 3.10 3.62 1.33

Table 4: Mean ratings for the question ‘Which
statement do you prefer?’ (Indirectness).

1 2 3 4 5

HG
CG

(a) Statement 3

1 2 3 4 5

HG
CG

(b) Statement 4

1 2 3 4 5

HG
CG

(c) Statement 5

1 2 3 4 5

HG
CG

(d) Statement 6

Japanese German

Figure 5: Interactions between nationality and
generation method for the question ‘Which state-
ment do you prefer?’ (Elaborateness). Different
patterns can be found: Nearly no difference be-
tween HG and CG, a sharp decline for CG, a sharp
decline only for Japanese and a sharp decline only
for Germans.

The generation method can have almost no impact
or lead to a declining rating from either Japanese,
Germans or both, as can be seen exemplary in Fig-
ure 5. For some statements, one of the cultures
rates the CG statement in a similar manner as the
HG one, while the rating of the other culture shows
a sharp decline for CG statements. As a conse-
quence of the different perceptions across cultures,
it might be beneficial to consider the target culture
during the generation process and thereby improve
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its performance. Furthermore, a few original state-
ments receive a worse rating for CG variants than
for HG variants by both cultures. This suggests
that while the generation of elaborateness often
works well, potential for improvements still exists
in those cases.

The ease with which the meaning of an indirect
statement can be derived depends significantly on
the interaction between generation method and na-
tionality (F (1, 37) = 10.469, p = .003). The cor-
responding interaction pattern is depicted in Fig-
ure 6. If the indirect statement is HG, Germans
seem to have an easier time to derive the orig-
inal meaning than Japanese (F (1, 37) = 5.547,
p = .024), who mostly rate this question neutrally.
This difference between cultures disappears for
CG statements. It is possible that Germans have an
advantage with the HG statements, as those state-
ments were extracted from German dialogues and
the original statements were derived by a German.
Hence, the implicit connections between original
and indirect statement could be more obvious to
Germans due to a similar cultural imprint. This
advantage disappears when the implicit connec-
tion between original statement and indirect one
is made automatically by an algorithm and there-
fore foreign to both cultures. This would suggest
that an effort should be made to better capture
the human approach to generating indirectness and
thereby reduce the difficulty of interpreting it. In
this endeavour, the target culture needs to be taken
into account.

The preference for either the original or the in-
direct statement is influenced significantly by the
interaction between generation method, national-
ity and original statement (F (9, 333) = 3.124,
p = .001). Here, patterns similar to the ones found
for the preference regarding elaborated statements
can be observed: The generation method can have
almost no impact or lead to a declining rating from
either Japanese, Germans or both, depending on
the original statement. This affirms the potential
for improvements regarding the adjustment to the
target culture as well as the overall performance.

5.3.2 Potential for Adaptation
To ascertain the ability of elaborateness and indi-
rectness to contribute to the adaptability of a DM,
we assess the impact of nationality and original
statement on user preferences.

A significant interaction effect of nationality
and original statement on the preference for ei-

1 2 3 4 5

HG

CG

Japanese
German

Figure 6: Interactions between nationality and
generation method for the question ‘How easy is
it is to derive the original meaning?’.

1 2 3 4 5 6 7 8 9 10

2

3

4

Statement

Japanese German

Figure 7: Interactions between nationality and
original statement for the question ‘Which state-
ment do you prefer?’ (Elaborateness).

ther the original or the elaborated statement can be
found (F (9, 333) = 2.578, p = .007). As can be
seen in Figure 7, Germans seem to be rather indif-
ferent to the level of elaborateness. They mostly
rate neutrally. In contrast, a clear distinction be-
tween topics can be found for Japanese. They
tend to prefer concise statements if the topic of
conversation is uncritical, such as the weather or
day trips. This can be seen for Statements 5, 6
and 7. When talking about family members, more
elaborated statements are preferred. Considering
those findings, a culture and situation adaptive DM
could utilise elaborateness as means to implement
suitable adaptation.

As discussed in Section 5.3.1, there exist sig-
nificant interactions of generation method, nation-
ality and original statement on the preference of
elaborateness/indirectness. If the generation meth-
ods are examined separately, the interaction of na-
tionality and original statement still impacts the
rating for both elaborateness (HG: F (9, 333) =
2.197, p = .022, CG: F (9, 333) = 2.838, p =
.003) and indirectness (HG: F (9, 333) = 2.143,
p = .026, CG: F (9, 333) = 1.922, p = .048).
This implies that, while nationality and origi-
nal statement always influence the user prefer-
ence, the way they impact it is not the same for
HG and CG statements. The different interac-
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Figure 8: Comparison of the interaction pattern
between nationality and original statement for the
question ‘Which statement do you prefer?’ (Elab-
orateness) for HG and CG statements.

tion patterns are depicted exemplary in Figure 8.
Those results suggests that an adaptive DM should
not learn its dialogue strategy based on human-
human dialogue containing examples of elaborate-
ness/indirectness, as this can lead to wrong as-
sumption about the user preferences. Instead, the
dialogue strategy should be based on CG vari-
ants that reflect more accurately the elaborate-
ness/indirectness variants that will be used.

5.4 Discussion

Overall, CG statements perform well compared to
HG ones. However, there are cases when the rat-
ing of CG generated statements decreases for one
or both of the considered cultures when compared
to the HG statement. Therefore, it might be benefi-
cial to consider both nationality as well as the topic
of the original statement during the generation of
system action variants. Another possibility would
be to generate multiple elaborated/indirect vari-
ants and let the DM choose the most suitable with
regard to the context and culture. Both approaches
might improve the results of CG statements in
cases where participants rated them worse than
HG ones with the current approach.

In our study, the potential for adaptivity that is

provided by system actions with different levels
elaborateness and indirectness was investigated.
For elaborateness, we could show that different
preferences exist depending on the culture and
original statement. Therefore, it is feasible for an
adaptive DM to choose either the elaborated or the
concise variant depending on both the culture of
the user as well as the current context of the con-
versation to improve the user satisfaction. Further-
more, our results show that the interaction between
generation method, nationality and original state-
ment has an impact on the user’s preference for
elaborated/indirect statements. This implies that,
while both elaborateness and indirectness can be
used for adaptation, the DM should base its dia-
logue policy on experiences with CG statements
instead of HG ones.

6 Conclusion

In this work, an approach to the automatic gener-
ation of more elaborated or indirect variants of a
system action on the semantic level has been dis-
cussed. We proposed an algorithms for the acqui-
sition of semantic data and the assessment of this
data with regard to the dialogue contribution un-
der consideration. Furthermore, a user study was
performed to investigate the performance of our
approach compared to humans and the applica-
bility of elaborateness and indirectness for adap-
tiveness. The results show that, while the vari-
ants produced by the proposed algorithm are often
perceived in a similar manner as human generated
variants, complex interactions exist with both na-
tionality and topic of the statement. Taking those
into account can further improve the performance.
Additionally, the study shows that differing pref-
erences across cultures and statements exist and
hence can be considered in adaptive DM.

In future work, the presented approach will be
integrated into a fully functional DS, including
the knowledge integration and language genera-
tion components that it relies on. Furthermore,
the proposed algorithm will be further improved
to better adjust to the user culture and the topic of
the conversation.
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Abstract

Most social media platforms grant users
freedom of speech by allowing them to
freely express their thoughts, beliefs, and
opinions. Although this represents in-
credible and unique communication op-
portunities, it also presents important chal-
lenges. Online racism is such an exam-
ple. In this study, we present a super-
vised learning strategy to detect racist lan-
guage on Twitter based on word embed-
ding that incorporate demographic (Age,
Gender, and Location) information. Our
methodology achieves reasonable classi-
fication accuracy over a gold standard
dataset (F1=76.3%) and significantly im-
proves over the classification performance
of demographic-agnostic models.

1 Introduction

The advent of microblogging services has im-
pacted the way people think, communicate, be-
have, learn, and conduct their daily activities. In
particular, the lack of regulation has made social
media an attractive tool for people to express on-
line their thoughts, beliefs, emotions and opinions.
However, this transformative potential goes with
the challenge of maintaining a complex balance
between freedom of expression and the defense of
human dignity (Silva et al., 2016). Indeed, some
users misuse the medium to promote offensive and
hateful language, which mars the experience of
regular users, affects the business of online com-
panies, and may even have severe real-life conse-
quences (Djuric et al., 2015). In the latter case,
(Priest et al., 2013; Tynes et al., 2008; Paradies,
2006b; Darity Jr., 2003) evidenced strong corre-
lations between experiences of racial discrimina-
tion and negative mental health outcomes such as

depression, anxiety, and emotional stress as well
as negative physical health outcomes such as high
blood pressure and low infant birth weight.

As the information contained in social media
often reflects the real-world experiences of their
users, there is an increased expectation that the
norms of society will also apply in social media
settings. As such, there is an increasing demand
for social media platforms to empower users with
the tools to report offensive and hateful content
(Oboler and Connelly, 2014).

Hateful content can be defined as ”speech or ex-
pression which is capable of instilling or inciting
hatred of, or prejudice towards, a person or group
of people on a specified ground, including race,
nationality, ethnicity, country of origin, ethno-
religious identity, religion, sexuality, gender iden-
tity or gender” (Gelber and Stone, 2007). While
there are many forms of hate speech, racism is the
most general and prevalent form of hate speech in
Twitter (Silva et al., 2016). Racist speech relates
to a socially constructed idea about differences be-
tween social groups based on phenotype, ancestry,
culture or religion (Paradies, 2006a) and covers
the categories of race (e.g. black people), ethnic-
ity (e.g. Chinese people), and religion (e.g. jewish
people) introduced in Silva et al. (2016).

Racism is often expressed through negative
and inaccurate stereotypes with one-word epithets
(e.g. tiny), phrases (e.g. big nose), concepts (e.g.
head bangers), metaphors (e.g. coin slot), and jux-
tapositions (e.g. yellow cab) that convey hate-
ful intents (Warner and Hirschberg, 2012). As
such, its automatic identification is a challenging
task. Moreover, the racist language is not uni-
form. First, it highly depends on contextual fea-
tures of the targeted community. For example,
anti-african-american messages often refer to un-
employment or single parent upbringing whereas
anti-semitic language predominantly makes refer-
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ence to money, banking, and media (Warner and
Hirschberg, 2012). Second, the demographic con-
text of the speaker may greatly influence word
choices, syntax, and even semantics (Hovy, 2015).
For instance, a young female rapper from Aus-
tralia may not use the exact same language as an
elder male economist from South Africa to express
her racists thoughts (Figure 1).

Figure 1: (Top) Tweet from a 25 years-old Aus-
tralian rapper. (Bottom) Tweet from a senior South
African economist.

To address these issues, we propose to fo-
cus on demographic features (age, gender, and
location) of Twitter users to learn demographic
word embeddings following the ideas of Bam-
man et al. (2014) for geographically situated lan-
guage. The distributed representations learned
from a large corpus containing a great proportion
of racist tweets are then used to represent tweets
in a straightforward way and serve as input to
build an accurate supervised classification model
for racist tweet detection. Different evaluations
over a gold-standard dataset show that the demo-
graphic (age, gender, location) word embeddings
methodology achieves F1 score of 76.3 and sig-
nificantly improves over the classification perfor-
mance of demographic-agnostic models.

2 Related Work

Despite the prevalence and large impact of online
hateful speech, there has been a lack of published
works addressing this problem. The first studies
on hateful speech detection are proposed by (Xu
and Zhu, 2010; Kwok and Wang, 2013; Warner
and Hirschberg, 2012) but with very limited scope
and basic supervised machine learning techniques.

One of the very first attempts to propose
a computational model that deals with offen-
sive language in online communities is pro-
posed by Xu and Zhu (2010). The authors pro-

pose a sentence-level rule-based semantic filter-
ing approach, which utilizes grammatical relations
among words to remove offensive contents in a
sentence from Youtube comments. Although this
may be a valuable work, its scope deviates from
our specific goal, which aims at automatically de-
tecting racist online messages.

The first identified studies that can directly
match our objectives are proposed by Kwok and
Wang (2013) and Warner and Hirschberg (2012).
In Kwok and Wang (2013), the authors propose
a naı̈ve Bayes classifier based on unigram fea-
tures to classify tweets as racist or non-racist. It
is important to notice that the standard data sets of
racist tweets were selected from Twitter accounts
that were self-classified as racist or deemed racist
through reputable news sources with regards to
anti-Barack-Obama articles. Although this is the
very first attempt to deal with Twitter posts, the
final model is of very limited scope as it mainly
deals with anti-black community racism. Simi-
larly, (Warner and Hirschberg, 2012) propose a
template-based strategy that exclusively focuses
on the detection of anti-semitic posts from Yahoo!.
In particular, some efforts were made to propose
new feature sets, but with unsuccessful results.

In Warner and Hirschberg (2012), the authors
propose a similar idea focusing on the specific
manifestation of anti-semitic posts from Yahoo!
and xenophobic urls identified by the Ameri-
can Jewish Congress. In particular, they use a
template-based strategy to generate features from
the part-of-speech tagged corpus augmented with
Brown clusters. Then, a model is generated for
each type of feature template strategy, resulting in
six SVM classifiers. Surprisingly, the smallest fea-
ture set comprised of only positive unigrams per-
formed better than bigram and trigram features.
Similarly to Kwok and Wang (2013), this study
focuses on a specific community and is of lim-
ited scope. However, efforts were made to propose
new features, although with unsuccessful results.

Burnap and Williams (2016) is certainly the first
study to propose a global understanding of hateful
speech on Twitter including a wide range of pro-
tected characteristics such as race, disability, sex-
ual orientation and religion. First, they build indi-
vidual SVM classifiers for each of the four hateful-
speech categories using combinations of feature
types: ngrams (1 to 5), slur words and typed-
dependencies. Overall, the highest F1 scores are
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achieved by combining ngrams and hateful terms,
although the inclusion of typed dependencies re-
duces false positive rates. In a second step, the
authors build a data-driven blended model where
more than one protected characteristic is taken
at a time and show that hateful speech is a do-
main dependent problem. The important finding
of this work is the relevance of the simple dictio-
nary lookup feature of slur words.

In Waseem and Hovy (2016), the authors study
the importance of demographic features (gender
and location) for hateful speech (racism, sexism
and others) classification from Twitter as well as
proposed to deal with data sparseness by substi-
tuting word ngrams with character ngram (1 to 4)
features. 10-fold cross validation results with a lo-
gistic regression show that the demographic fea-
tures (individually or combined) do to not lead
to any improvement, while character-based clas-
sification outperforms by at least 5 points the F1

score of word-based classification. Although non-
conclusive results are obtained with demographic
features, we deeply believe that these contextual
features can lead to improvements.

While all these efforts are of great importance,
most works point at the drawbacks of discrete rep-
resentations of words and texts. This especially
holds in the context of the racist language where
offenders often use simple yet effective tricks to
obfuscate their comments and make them more
difficult for automatic detection (such as replacing
or removing characters of offensive words), while
still keeping the intent clear to a human reader. For
that purpose, including continuous distributed rep-
resentations of words and texts may lead to im-
proved classification results.

Following this assumption, two studies have
been proposed with different strategies. Tulkens
et al. (2016) present a dictionary-based approach
to racism detection in Dutch social media com-
ments following the findings of Burnap and
Williams (2016). In particular, they broaden the
coverage of the categories in their dictionaries by
performing a dictionary expansion strategy that
uses a word embedding (skip-gram model) ob-
tained from a general-purpose 3.9 billion words
Dutch corpus. For instance, they show that the
entry “mohammed”1 can be expanded with “mo-
hamed”, “mohammad” and “muhammed”. The
SVM classification results show that the auto-

1The study specifically focuses on anti-Islamic racism.

mated expansion of the dictionary slightly boosts
the performance, but with no statistical signifi-
cance. To our point of view, this may be due to
the non-specificity of the corpus used to produce
the word embeddings.

Indeed, more successful results are obtained by
Djuric et al. (2015), who propose to build a spe-
cific paragraph embeddings for hateful speech. In
particular, they show a two-step method. First,
paragraph2vec (Le and Mikolov, 2014) is used for
joint modeling of comments and words from Ya-
hoo! comments with the bag-of-words neural lan-
guage model. Then, these embeddings are used
to train a binary classifier to distinguish between
hateful and clean comments. The results of the lo-
gistic regression for 5-fold cross-validation show
improved performance of the continuous represen-
tation when compared to discrete ngram features.

In this paper, we propose to study further the
initial “unsuccessful” idea of Waseem and Hovy
(2016) of taking into account demographic factors
for racism classification in Twitter. Indeed, recent
linguistic studies have shown that the racist lan-
guage can differ from place to place (Chaudhry,
2015). Moreover, we deeply think that the speci-
ficity of racist language can be better modeled by
continuous spaces as shown in Djuric et al. (2015).

As a consequence, we propose to build de-
mographic word embeddings following the initial
findings of Bamman et al. (2014) (location) and
Hovy (2015) (age and gender) for discrete fea-
tures. These embeddings are computed on a cor-
pus specifically built for racism detection and ob-
tained by massive gathering of tweets containing
slur words listed in different referenced sources
such as the racial slur database.2 Then, the low-
space distributed continuous representations are
used as direct input of binary (racist vs. non racist)
SVM classifiers, which are compared to concur-
rent approaches over a gold standard data set.

3 Data Sets

In this section, we first detail the process that con-
sists in gathering a huge quantity of potentially
racist and non-racist tweets from which the de-
mographic word embeddings are computed. Then,
we present the manual annotation process defined
to create a gold standard data set and used to eval-
uate the proposed classification strategy.

2http://www.rsdb.org/ Last accessed on 10-04-
2017.
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3.1 Unlabeled Data Set

The process starts by crawling English tweets us-
ing the Twitter streaming API3 for a period of
three months (05/02/2015 to 05/05/2015). From
this set, potentially racist tweets are collected by
selecting all those that contain at least one racist
candidate keyword from (1) a collection of 3000
plus racial and ethnic slurs or (2) a set of racially
motivated phrases. In particular, the first list of
keywords is compiled from the Wikipedia list of
ethnic slurs4 and the racial slur database.5 The
second list of racist phrases is produced by com-
bining a general purpose insult with the name of a
given ethnicity, giving rise to slurs such as “dirty
jew” or “russian pig”. For that particular purpose,
we collected 70 common insulting modifiers such
as “dog”, “filthy”, “honky”, “redneck”, or “rat”.
This process allowed to gather about 17.2 million
potentially racist tweets from 1.8 million users.

In parallel, a random sample (≈ 1% of all re-
trieved tweets) of potentially clean (i.e. that do not
contain racial and ethnic slurs) tweets is collected
resulting in 41.3 million tweets from 4.6 million
users all over the world.

In addition to the message conveyed in a given
tweet, some information is stored for all tweets,
such as location, time and user’s profile. However,
this information is not accessible for most tweets.
As a consequence, we propose different text pro-
cessing methodologies to compute the three demo-
graphic variables: age, gender and location.

In particular, age and gender are predicted us-
ing the text-based models described in Sap et al.
(2014). These models are trained on data from
over 70,000 Facebook users and report an accu-
racy rate of 91.9% for gender (resp. 88.9% on
Twitter data) and a Pearson correlation coefficient
of 0.84 for age prediction. For location, we use the
geo-coding scheme proposed in Chen and Neill
(2014), which is based on three major rules with
priorities.6 For each tweet, (1) we search for
a location mention from GeoNames7 in the text
message, then (2), we verify if the user enabled

3https://dev.twitter.com/streaming/
overview. Last accessed on 10-04-2017.

4https://en.wikipedia.org/wiki/List_
of_ethnic_slurs. Last accessed on 10-04-2017.

5http://www.rsdb.org/. Last accessed on 10-04-
2017.

6This methodology is clearly prone to error. But, improv-
ing this pre-processing step is out of the scope of this paper.

7http://www.geonames.org/. Last accessed on
10-04-2017.

the geo-coding function of his/her device, and (3)
we look for location information from the stored
user’s profile. The first location information iden-
tified is then returned as the geographic location of
the tweet. Note that the returned location informa-
tion is at country-level.

Finally, similarly to Hovy (2015), we lower-
case tweet texts, remove special characters, re-
place numbers with a 0, and join frequent bigrams
with an underscore to form a single token.

Table 1 presents the distribution of the obtained
corpus broken down by the contextual variables.

Country Tweets Users Users Demographics
U. 35 O. 35 M F

Potentially racist tweets
USA 3.9M 124.2k 54.7k 69.5k 79.9k 44.3k
India 3.4M 132k 89.7k 42.3k 93.8k 38.2k
UK 2.8M 105k 55.8k 49.2k 61.3k 43.7k

Canada 1.3M 96k 44.7k 51.3k 52.8k 43.2k
Japan 1.1M 98.4k 50.6k 44.8k 49.8k 45.6k

Potentially clean tweets
USA 11.8M 259.4k 121.6k 137.8k 137.4k 121.9k
UK 8.3M 184.5k 98.3k 86.2k 94.1k 90.4k

India 6.4M 218.4k 136.2k 82.2k 145.6k 72.8k
Japan 2.3M 102.5k 54.8k 47.7k 57.3k 45.2k
Indon. 2.1M 109.4k 63.2k 46.2k 71.9k 37.5k

Table 1: Top five countries with most tweets in the
unlabeled data sets. Tweet users are broken down
by age - (i) Under 35 (U. 35); (ii) Over 35 (O. 35)
- and gender - (i) Male (M); (ii) Female (F).

3.2 Classification Data Set

It is anticipated that recognizing racist tweets can
be difficult. Certainly, the use of ethnic and racial
slurs has been clearly not always hateful. A num-
ber of studies have examined how the slur “nig-
ger” has been appropriated by African Americans
as a way of actively rejecting the connotations
it carries, e.g. for comedic purposes, a status
symbol, a shorthand term expressing familiarity
among friends, or even forgetting what the term
ever denoted in the first place (Anderson and Lep-
ore, 2013). Therefore, tweets that merely contain
these slurs may not be always offensive.

In order to build a gold-standard data set that
allows the evaluation of classifiers learned to de-
tect “true” racist tweets, we adopt an approach,
which depends on the assessments made by users
of a crowdsourcing platform. For that purpose,
we randomly sample 4 sub-collections from the
collection of potentially racist tweets gathered in
section 3.1, namely two for gender (Male and Fe-
male), and two for age (Under 35 and Over 35).
The same strategy is followed to select 4 sub-
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Tweet R1 R2 R3 Maj.V
Dog, this nigga does not stop staring at me in the gym. Dickface got a staring problem! Y Y Y Y
The after effect of being a wigger. http:/*** N N N N
@*** i told yo racist ass to stop callin me a niger. Dumb white boy! Y N Y Y
Who cares where they were born, camel breath, they call themselves Israelis and Jews. Un Y Un Un
Radical Islam on the rise in Indonesia. http://****. N Un Un Un
So I can see iphone emojis now, soooo coolie!!!! N N Y N

Table 2: Examples of tweets annotated for racism: Yes (Y), No (N), and Unsure (Un.). R1, R2, R3:
judgements from each rater. Maj.V: choice from majority voting.

Country Number of Tweets
Total U. 35 O. 35 M F

Racist tweets
USA 1036 387 649 572 464
UK 728 346 382 382 346

India 587 413 174 445 142
Japan 485 268 217 289 196

Canada 431 198 233 256 175
Clean tweets

India 1132 712 420 694 438
USA 956 438 518 534 422
UK 762 352 410 387 375

Canada 631 309 322 336 295
Japan 610 294 316 327 283

Table 3: Top five countries with most tweets in the
classification data set. Tweets are broken down by
age and gender.

collections from the set of potentially clean tweets.
The samples are equally distributed among

male, female, and the two age groups, and the ge-
ographic distributions (at the country level) in the
8 sub-collections are in line with the distributions
over the whole corpus of tweets.

Note that while the effect of age on language
use is undisputed (Rickford and Price, 2013), pro-
viding a clear cut-off is hard. We therefore used
age ranges that result in roughly equally sized data
sets for both groups in the overall corpus.

Each sub-collection consists of 1000 tweets that
are uploaded to the crowdsourcing service of the
CrowdFlower platform8 for annotation. In partic-
ular, each tweet is represented by its text, location
information, user’s age and gender, and a multiple
choice question is asked to the annotators to de-
cide whether the tweet has indeed a racist intent or
not. The available answers are “Yes”, “No”, and
“Unsure”. Each tweet is annotated by at least 3 an-
notators. Each annotator requires to be an English
speaker and preferably in the same country as the
origin of the tweet.

Out of the 8000 tweets that were judged, 7358
received a majority of “Yes” or “No” votes. The

8http://www.crowdflower.com/. Last accessed
on 10-04-2017.

remainder were less determinant with the addition
of “Unsure” votes. Of these 7358 tweets, 3267
(44%) had a majority of votes confirming they
were racist, with the remaining 4091 (56%) con-
sidered as not racially motivated tweets. Table 2
shows some examples of tweets with their anno-
tations and Table 3 summarizes the classification
data set by demographic variable.

This data set can be thought as a hard test for
classifiers as non racist tweets may contain slurs
unlike most works so far, which assess their mod-
els based on the hypothesis that non racist tweets
usually contain general vocabulary and do not ex-
hibit any critical content. In parallel, we acknowl-
edge that some racist tweets may not contain any
slur such as illustrated in Figure 1. Future work
will definitely have to deal with the integration of
racist tweets that do not present any direct racist
mention, in the classification data set.

4 Methodology

Following the self-taught learning paradigm
(Raina et al., 2007), we first construct demo-
graphic word embeddings from the unlabeled
data described in section 3.1. Then, we ob-
tained context-aware high-level low-dimensional
features form a succinct input representation for
the specific task of racist tweet detection.

4.1 Demographic Word Embeddings

Djuric et al. (2015) were the first to propose a
self-taught learning strategy in the context of hate-
ful speech detection, where they simultaneously
learn low-dimension representations of documents
and words in a common vector space. However,
contextual/demographic characteristics were not
taken into account.

A simple way to take demographic variables
into account when building word embeddings is
to train individual models on each variable value
(e.g. a “male” model is obtained by using data
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only from male users). This has been the strategy
followed by Hovy (2015) for age and gender in
the context of sentiment classification, topic iden-
tification, and author attributes identification.9

A more sophisticated model has been proposed
in Bamman et al. (2014), which defines a joint pa-
rameterization over all variable values in the data.
In this specific case, they study geographic vari-
ables. As such, information from data originat-
ing in some location can influence the representa-
tions learned for other locations. A joint model has
three a priori advantages over independent mod-
els: (i) sharing data across variable values, en-
courages representations across those values to be
similar; (ii) such sharing can mitigate data sparse-
ness for less-witnessed variables; and (iii) all rep-
resentations are guaranteed to be in the same vec-
tor space and can therefore be compared to each
other.

In this work, we propose to follow the work of
Bamman et al. (2014) and introduce a set of demo-
graphic features, namely Age (Under 35 and Over
35), Gender (Male and Female) and Location (top
20 countries in the unlabeled data set10).

This model corresponds to an extension of the
skip-gram language model proposed in (Mikolov
et al., 2013). Formally, given an input word wi in
a vocabulary V and a set of demographic variables
A, the objective is to maximize the average data
log-likelihood given in equation (1), where c is the
length of the word context.

L =
1
|V |

|V |∑
i=1

∑
c∈{−1,1}

log Pr(wi+c|wi) + (1)

1
|A|

|A|∑
a=1

1
|Va|

|Va|∑
i=1

∑
c∈{−1,1}

log Pr(wi+c|wai )

So, while any word has a common low-
dimension representation that is invoked for ev-
ery instance of its use (regardless of its demo-
graphic context), the word embedding specific
to a given demographic variable indicates how
that common representation should shift in the k-
dimension space when used in this special context.

In terms of implementation, back-propagation
functions as in the standard skip-gram language
model, with gradient updates for each training ex-

9Thus, outside our application scope.
10Remaining countries did not have a reasonable amount

of tweets to learn embeddings.

ample and computation is speeded up using the hi-
erarchical softmax function.

4.2 Racist Tweet Classification

For the classification process, we use linear Sup-
port Vector Machines (SVM) models that take as
input a feature representation of tweets based on
demographic word embeddings.

On the one hand, each word of a given tweet
is represented by its joint embedding, which is
the concatenation of its common low-dimension
representation of dimension k and each low-
dimension representation of its specific demo-
graphic embeddings, each one also of dimension
k. For example, if a given word appears in a
tweet issued by a male user of 45 years-old in
the USA, its representation will be the concatena-
tion of its common embedding with its 3 specific
embeddings computed from the active variables
Age=Over 35, Gender=Male and Location=USA.
In this particular case, each word will be repre-
sented by a vector of 4k continuous values.

On the other hand, we need to represent tweets
with variable lengths based only upon the concate-
nated embeddings of the words they contain. For
that purpose, we follow the same strategy as pro-
posed in Hovy (2015). For each learning instance
(i.e. tweet), we collect 5 N -dimensional statistics
(i.e. minimum, maximum, mean representation,
as well as one standard deviation above and be-
low the mean) over a N × t input matrix, where
N is the dimensionality of the concatenated em-
beddings (i.e. N = |A∗| × k, where |A∗| is the
number of active variables and k is the dimension
of each individual embedding), and t is the sen-
tence length in words. We then concatenate those
5 N -dimension vectors to a (5N )-dimension vec-
tor to represent each learning instance in a single
format and feed it to the SVM classifiers.

Note that taking the maximum and minimum
across all embedding dimensions is equivalent to
representing the exterior surface of the instance
manifold (i.e. the volume in the embedding space
within which all words in the instance reside).
And adding the mean and standard deviation acts
as the density per-dimension within the manifold.

We are aware that different tweet representa-
tions could have been tested, namely those based
on neural sequence modeling. In particular, fu-
ture work will aim to adapt models such as para-
graph2vec (Le and Mikolov, 2014) or LSTM (Tai
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et al., 2015) to demographic embeddings.

5 Evaluation

5.1 Experimental Setups
The demographic word embeddings were com-
puted based on the implementation provided
by Bamman et al. (2014)11 with k = 100
for the low representation dimension, while
demographic-agnostic models were built using
the word2vec12 implementation for the same size
of k. In particular, we built 8 different em-
beddings i.e. one demographic-agnostic embed-
ding based on the unlabeled data set presented
in section 3.1 without any demographic variable
and 7 others with different demographic variables
combinations such as Age, Gender, Location,
Age+Gender, Age+Location, Gender+Location
and Age+Gender+Location. With respect to the
discrete representation of tweets, we proposed
6 different configurations using either word uni-
grams and/or bigrams, or character ngrams (n=1
to 4). In this context, the demographic informa-
tion was included as binary variables for Gender
and Age, and a n-ary variable for Location. One
final model was proposed that joins demographic-
agnostic word embeddings with demographic di-
crete variables. As a consequence, 15 different in-
put settings were tested for classification as shown
in the first column of Table 4, using the linear
SVM model implemented in the Weka13 platform
with standard parameters settings14.

As for evaluation, we proposed to split the gold-
standard data set of 7358 tweets described in sec-
tion 3.2 into a training data set of 5149 tweets
(70%) and a test data set of 2209 tweets (30%).
In particular, the test data set is equally distributed
among male, female, the two age groups, and the
top 20 countries with most tweets in our collected
unlabeled data set. In order to evaluate the capac-
ity of the classification models to generalize over
the original data distribution, we also performed
10-fold cross-validation for all the settings. More-
over, we analyzed the effect of the training data
size for the classification purposes.

11https://github.com/dbamman/geoSGLM.
Last accessed on 10-04-2017.

12https://code.google.com/archive/p/
word2vec/. Last accessed on 03-10-2017.

13http://www.cs.waikato.ac.nz/ml/weka/.
Last accessed on 10-04-2017.

14The magnitude of the improvements could be improved
by tuning the parameters over a development set. But this
remains out of the scope of this paper.

5.2 Quantitative Results

The classification results over the annotated gold
standard test data presented in section 3.2 are
given in Table 4 for all 15 different configurations.

Tweet Representation Prec. Rec. F1

Uni. 58.2 54.2 56.1
Uni. + Age + Loc. + Gen. 60.1 58.3 59.0
Uni. + Bi. 58.9 57.2 58.0
Uni. + Bi. + Age + Loc. + Gen. 61.8 60.2 60.9
Ch. ngrams 60.6 62.2 61.3
Ch. ngrams + Age + Loc. + Gen. 60.3 61.8 61.0
W.2V. 67.3 66.4 66.8
W.2V. + Age + Loc. + Gen. 70.3 70.7 70.5
Demo. W.2V. (Age) 72.3 71.5 71.9
Demo. W.2V. (Gen.) 68.7 67.5 68.0
Demo. W.2V. (Loc.) 73.6 73.1 73.4
Demo. W.2V. (Age + Gen.) 72.7 72.1 72.4
Demo. W.2V. (Age + Loc.) 75.3 76.2 75.8
Demo. W.2V. (Gen. + Loc.) 74.0 73.4 73.7
Demo. W.2V. (Age + Gen. + Loc.) 76.4 76.1 76.3

Table 4: Precision (Prec.), Recall (Rec.), and F1

Score (F1) for racist tweet detection over the test
data set. Demographic variables Location and
Gender are represented by Loc. and Gen., respec-
tively. W.2V. stands for word2vec model learned
over the racist data set.

The first finding is that demographic-aware
models perform better than the demographic-
agnostic ones across almost all configurations.
This improvement raises at 5.3% of F1 on aver-
age with a maximum increase of 9.5%. The only
contradictory case is when character ngrams (n=1
to 4) are used as text representation. In that spe-
cific configuration, the inclusion of demographic
variables has no impact on the results, confirm-
ing previous results of Waseem and Hovy (2016).
However, using character ngrams improves over a
word ngrams representation as noted by Waseem
and Hovy (2016) but, it fails to benefit from the
introduction of demographic variables, unlike the
word ngrams representation which is boosted by
the introduction of contextual variables. Note that
this result was not reported in Waseem and Hovy
(2016). Furthermore, we computed the exact same
best configuration of Waseem and Hovy (2016),
i.e. logistic regression over character ngrams with
the Gender variable, and a F1 score of 60.7% was
achieved, which is comparable to our results with
SVM reaching F1 score of 61.0%.

The second important result is that the model
learned over continuous feature representations
of tweets from general embeddings in combina-
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tion with features containing demographic infor-
mation, namely Age, Gender, Location (row 8 in
Table 4) outperforms all demographic-aware con-
figurations based on discrete text representations
(i.e. unigrams, bigrams or character ngrams) by a
minimum (resp. maximum) margin of 9.5% (resp.
11.5%) of F1 score. This result, particularly shows
that word semantics is better captured by word em-
beddings than classical text representations.

The third result supports our initial hypothesis
that demographic word embeddings can improve
the task of racist tweet classification. Indeed, all
demographic-aware embeddings improve over the
demographic-agnostic embeddings, even boosted
by discrete demographic variables, to the only ex-
ception of the gender-aware model (row 10 in Ta-
ble 4). In particular, a maximum difference is ob-
tained by the demographic word embedding that
counts with Age, Gender and Location variables
at levels of 9.5% of F1 score, when compared to
demographic-agnostic word embeddings.

Finally, although all demographic variables im-
prove on classification, the Gender variable seems
to have the smallest impact on the overall results.
Indeed, at each inclusion it slightly improves re-
sults, while Location is the most productive vari-
able, as hypothesized by Chaudhry (2015). In
particular, note that the demographic-aware con-
tinuous model with the single Gender variable is
outperformed by the model built on general word
embeddings increased by discrete context variable
(row 8 in Table 4).

Tweet Representation Prec. Rec. F1

Uni. 65.3 61.5 63.3
Uni. + Age + Loc. + Gen. 66.7 62.4 64.4
Uni. + Bi. 65.8 60.7 63.1
Uni. + Bi. + Age + Loc. + Gen. 66.2 62.3 64.1
Ch. ngrams 64.2 65.6 64.8
Ch. ngrams + Age + Loc. + Gen. 65.0 67.2 66.0
W.2V. 71.2 69.5 70.3
W.2V. + Age + Loc. + Gen. 73.5 72.8 73.1
Demo. W.2V. (Age) 75.3 74.5 74.8
Demo. W.2V. (Gen.) 72.3 71.2 71.7
Demo. W.2V. (Loc.) 75.4 76.3 75.8
Demo. W.2V. (Age + Gen.) 75.1 74.4 74.7
Demo. W.2V. (Age + Loc.) 78.2 78.8 78.5
Demo. W.2V. (Gen. + Loc.) 77.6 74.2 75.8
Demo. W.2V. (Age + Gen. + Loc.) 79.0 77.4 77.1

Table 5: Precision (Prec.), Recall (Rec.), and F1

Score (F1) for 10-fold cross-validation.

Results of the 10-fold cross-validation are pre-
sented in Table 5 and show similar conclusions,

but following the original distribution of the learn-
ing data sets, oppositely to the first experiment,
where we forced the test data to be balanced. The
only small difference is that in these conditions the
character ngrams representation seems to take ad-
vantage of the introduction of contextual variables
reaching the best results in terms of discrete text
representation.

Note that all improvements in Table 4 and Ta-
ble 5 are statistically significant. In particular,
we adopted a bootstrap-sampling test similarity to
Hovy (2015) with a standard cutoff of p < 0.05.

Effect of Training Data Size: The size of the
training data set is an important concern in super-
vised learning methods as lots of manual efforts
are required to tag learning instances. Thus, we
want to evaluate the impact of the training data
set size on the performances of two different word
embeddings configurations: (1) W.2V. + Age +
Gen. + Loc. (Baseline) and (2) Demo. W.2V.
(Age + Gen. + Loc.).

For that purpose, we randomly select d% (by
steps of 20%) of the training data set to train the
classifiers and test them on the test data set. Note
that for each d%, we generate the training set 20
times and the averaged performance is recorded.
F1 scores for both approaches over the test data
are presented in Table 6.

Data size Baseline Demo. W.2V. (Age+Gen.+Loc.)
1k 63.4 68.3
2k 65.2 70.2
3k 68.5 73.8
4k 69.9 75.5

5.1k (all) 70.5 76.3

Table 6: Classification performances (F1 score)
with different sizes of training data.

Results show that our proposed framework per-
forms consistently better than its counterpart. In
particular, the results show that with 3k training
examples better results can be obtained by our
approach than relying on 5.1k training examples
for the state-of-the-art supervised machine learn-
ing approach (Baseline) based on common word
embeddings for racist tweet detection.

5.3 Qualitative Results

In order to better understand figures given in sec-
tion 5.2, we examined different qualitative criteria.
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Error Analysis We performed a manual error
analysis of the instances where our best perform-
ing configuration and manual annotation differed.
We noticed that some of the tweets were difficult
to classify because of their ambiguity with respect
to racism classification. For example, tweets such
as “adam 15 boy prob bi whitey is an irl egg” or
“@... but the pakis are still trying to get across
the border” could be “racist” tweets, but without
the context it is difficult to judge even for humans.
Part of our future work will be to extract the con-
text (e.g. previous tweets, threads) of tweets and
use it for (i) annotation purposes and (2) classifi-
cation issues.

Lexical Distribution. Table 7 represents the top
ten most frequent racial slurs occurring in auto-
matically tagged racist tweets broken down by
Age and Gender. Results show that majority of
racial slurs discuss about Islam. Considering that
many tweets are issued from the USA or India
rather than other countries, it is not surprising that
several of the terms are in line with the Indian and
American political discourses orientations.

Overall U.35 O.35 M F
islam nigger islam islam nigga
nigger muslims hebe muslims islam

muslims paki muslims paki nigger
white boy islam white boy white boy desi

mohammed prophet nigger chinki mohammed
pedophile bihari negro mohammed pedophile

paki white boy pedophile nigger whitey
prophet pedophile whitey whitey muslims
whitey gook paki bihari hebe
bihari whitey coon mallu coon

Table 7: Ten most frequently occurring racial slurs
in racist tweets broken down by age and gender.

Demographic Distribution. The distributions
by Age and Gender of the automatically tagged
racist tweets are presented in Table 8. It can be
seen that the Gender distribution is skewed to-
wards men. This goes in line with an earlier study
made by (Roberts et al., 2013) who found that the
majority (more than 70%) of the offenders of hate
crimes were men. The results also demonstrate
that people under the age of 35 years-old seem
to be more racist than people with the age over
35. Note that 40.2% of the Twitter users are less
than 35 years old15, which indicates a clear bias
towards racism by youngers. We further analyzed
the racist tweets and found that roughly 35% of to-
tal racist offenders are aged under 25. So, it seems

15http://goo.gl/qHlIQq. Last Accessed on 6-06-
2017.

that younger adults are more likely to be involved
in racist offenses than older adults.

Variable Value % Racist tweets

Gender Men 64.7%
Women 35.3%

Age Under 35 67.2%
Over 35 32.8%

Table 8: Distribution of tweets by Gen. and Age.

Usage Patterns of Racial Slurs. Finally, we an-
alyzed the set of automatically tagged racist tweets
and categorized the patterns of usage of racial slurs
into four main categories:
- Group Demarcation: The user’s intention is to
demarcate group boundaries (people as in or out)
as in the following example “Dirty Jews, Im Hitler,
Ill kill the Jews.”.
- Directed Attack: Here, an attack is directed at
an individual or group known personally to the
sender. Tweets in this pattern use racial/ethnic
slurs directly such as in “@*** why you rotten nig-
ger bitch, how dare you.”.
- Unnecessary Use: In this case, the main dis-
course of the tweet may not be race or ethnicity,
but rather the use of a given slur in an offhand or
casual fashion, e.g. “@: disgusting Indian shops
that charge you for paying by card.” ;
- Ideological: Here, authors consciously use
racial/ethnic slurs within a political statement that
would justify an action in the real world, such as in
“Leftist have no right view. They have an agenda
for Paki and muslim. Support BJP”.

6 Conclusions

In this paper, we proposed to build demographic-
aware word embeddings for the classification of
racist tweets. We showed that such models out-
perform strategies based on discrete text repre-
sentations and demographic-agnostic word em-
beddings. However, overall performance (F1 =
76.3%) is still insufficient confirming that hateful
speech detection is a hard task. To improve initial
results, future works will aim to (1) incorporate
additional context (such as connected tweets) to
leverage tweet ambiguity, (2) build demographic-
aware sequence embeddings to better capture text
semantics, (3) combine both discrete and continu-
ous representations to build semi-supervised mod-
els, as weak detection of racist tweets in large
amount is possible and (4) test new character-
based word embeddings (Bojanowski et al., 2017).
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Abstract

Social media texts, such as tweets from
Twitter, contain many types of non-
standard tokens, and the number of nor-
malization approaches for handling such
noisy text has been increasing. We present
a method for automatically extracting
pairs of a variant word and its normal form
from unsegmented text on the basis of a
pair-wise similarity approach. We incor-
porated the acquired variant-normalization
pairs into Japanese morphological analy-
sis. The experimental results show that our
method can extract widely covered vari-
ants from large Twitter data and improve
the recall of normalization without degrad-
ing the overall accuracy of Japanese mor-
phological analysis.

1 Introduction

Social media texts contain many non-standard
tokens (lexical variants), e.g., by lengthen-
ing (“goooood” for “good”) or abbreviating
them (“tmrw” for “tomorrow”). Current lan-
guage processing systems often fail to ana-
lyze such non-standard tokens, so normaliz-
ing them into standard tokens as a prepro-
cess is promising for analyzing such noisy texts
robustly (Cook and Stevenson, 2009; Han et al.,
2012; Li and Liu, 2012, 2014). The normalization
task mainly consists of two components. One is
detecting variant words and generating normaliza-
tion candidates. The other is constructing a word
lattice from possible normalization candidates and
decoding to select the best normalized word se-
quences. Early work on normalization focused on
supervised approaches using labeled text, e.g., an
approach based on a statistical machine translation

∗Present affiliation: Future Architect,Inc.

(Aw et al., 2006; Pennell and Liu, 2011). How-
ever, social network service (SNS) text has a dy-
namic nature, and large SNS text is costly to an-
notate. Recent work has been focused on unsuper-
vised approaches. For example, Han et al. (2012)
proposed generating variant-normalization pairs
automatically on the basis of distributional simi-
larity and string similarity. Hassan and Menezes
(2013) developed the approach by using a graph-
based approach. Yang and Eisenstein (2013) in-
troduced a highly accurate unsupervised normal-
ization model. As just described, unsupervised
methods have been developed for English normal-
ization tasks.

Japanese SNS text also contains variant words,
and several normalization methods have been pro-
posed (Sasano et al., 2013; Kaji and Kitsuregawa,
2014; Saito et al., 2014). The basic framework of
Japanese normalization is quite similar to that of
English normalization. However, the problem is
more complicated in Japanese normalization be-
cause Japanese words are not segmented using
explicit delimiters, so we have to estimate word
segmentation simultaneously in the decoding step.
Variant words are also more difficult to extract
automatically in Japanese than in explicitly seg-
mented languages such as English. Unlike En-
glish normalization, the approaches for generating
normalization candidates in Japanese are based on
manually created rules or supervised training us-
ing annotated text. Japanese normalization con-
tains problems to which the English unsupervised
approach is simply applied. Although the English
unsupervised approach assumes that there are ex-
plicit word segmentations, conventional analyz-
ers often fail to segment non-standard words in
Japanese. Therefore, to extract variants in an un-
supervised fashion, we have to introduce an idea
to generate correct word segmentation of variant
words.
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Our idea for this problem is to use short sen-
tences and phrases in SNS text. SNS text, like
tweets from Twitter, contains many short sen-
tences and phrases consisting of a single word or
several words. For Example, “おっはよーん！
(ohayon, Good Morning)” is a variant form of “
おはよう！(ohayou),” and “ちょーさみー (cho
samii, It is very cold)” is a variant form of “超
(cho, very)/寒い (samui, cold).” Since these short
sentences often contain variant words, they can be
used as efficient cues for extracting a variant word.
Our idea is to not extract a variant-normalization
pair in one step. Instead, we present a two-step
normalization approach. In the first step, we ex-
tract coarse candidates for variant-normalization
pairs from unlabeled text, and in the second step,
we incorporate the extracted pairs into Japanese
morphological analysis and normalization. The
appropriate normalization candidates are selected
in the second step. We use training data for mor-
phological analysis in the second step but do not
use annotated data in the first step. Therefore,
we can efficiently extract many types of variant-
normalization pairs that appear in real text.

The contributions of this study are summarized
as follows.

• We developed a new method for extract-
ing pairs of variant and normal forms from
tweets, which have no explicit delimiters, by
focusing on short phrases and sentences in
Twitter.

• We incorporated the variant-normalization
pairs extracted by our method from tweets
into a Japanese morphological analysis
method and statistically significantly im-
proved the accuracy for variant words with-
out degrading the overall accuracy for
Japanese morphological analysis.

2 Background

2.1 Japanese Morphological Analysis
As we mentioned above, we have to consider
Japanese normalization tasks with Japanese mor-
phological analysis. In this section, we describe
the basic idea of Japanese morphological analy-
sis. Japanese Morphological analysis can be in-
terpreted as ranking while using a word lattice
and scores of each path (Kaji and Kitsuregawa,
2013). There are two points to consider in
the analysis procedure: how to generate the

とー	
[interjec*on]	

input：とーてもたのしぃ (totemo  tanoshii, “It is such fun”)	

BOS	

て	
[par*cle]	

たのし	
[fun,	adjec*ve]	

ぃ	
[unk]	

たのしぃ（たのしい）	
[fun,	adjec*ve]	

とーても（とても）	
[such,		adverb]	

EOS	

も	
[par*cle]	

Figure 1: Example of Japanese morphological
analysis and normalization

word lattice and how to formulate the score
of each path. In Japanese morphological anal-
ysis, the dictionary-based approach has been
widely used to generate word lattices (Kudo et al.,
2004; Kaji and Kitsuregawa, 2013). To calcu-
late the score of each path, two main scores are
widely used: the score for a candidate word and
the score for a pair of adjacent parts-of-speech
(POSs). We can consider other various scores
by using discriminative model (Kudo et al., 2004;
Kaji and Kitsuregawa, 2013).

2.2 Related Work

Several studies have been conducted on Japanese
morphological analysis and normalization. The
approach proposed by Sasano et al. (2013) devel-
oped heuristics to flexibly search by using a sim-
ple, manually created derivational rule. Their sys-
tem generates a normalized character sequence
based on derivational rules and adds new nodes
when generating the word lattice using dictionary
lookup. Figure 1 presents an example of this ap-
proach. If the non-standard written sentence “とー
てもたのしぃ (totemo tanoshii, It is such fun)” is
input, the traditional dictionary-based system gen-
erates nodes that are described using solid lines,
as shown in Figure 1. Since “とーても (totemo,
such)” and “たのしぃ (tanoshii, fun)” are Out Of
Vocabulary (OOVs), the traditional system cannot
generate the correct word segments or POS tags.
However, their system generates additional nodes
for the OOVs, shown as broken line rectangles in
Figure 1. In this case, derivational rules are used
that substitute “ー” with “null” and “ぃ (i)” with
“い (i)”, and the system can generate the stan-
dard forms “とても (totemo, such)” and “たのし
い (tanoshii, fun)” and their POS tags. If we can
generate sufficiently appropriate rules, these ap-
proaches seem to be effective. However, there are
many types of derivational patterns in SNS text,
and they are difficult to all cover manually. More-
over, how to set the path score for appropriately
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Figure 2: Overview of proposed system

ranking the word lattice when the number of can-
didates increases becomes a serious problem.

Saito et al. (2014) proposed supervised extrac-
tion of derivational patterns (we call them trans-
formation patterns), incorporated these patterns
into a word lattice, and formulated morphologi-
cal analysis and normalization using a discrimi-
nate model. Although this approach can generate
broad-coverage normalization candidates, it needs
a large amount of annotation data of variant words
and their normalization. Kaji and Kitsuregawa
(2014) also proposed morphological analysis and
normalization based on a discriminative model
and created variant words on the basis of hand-
made rules. As far as we know, automatic extrac-
tion of variant-normalization pairs has not been re-
searched. If we can extract variant-normalization
pairs automatically, we can decrease the annota-
tion cost and possibly increase accuracy by com-
bining our method with other conventional meth-
ods.

Several studies have applied a character-based
approach. For example, Sasaki et al. (2013) pro-
posed a character-level sequential labeling method
for normalization. However, it handles only one-
to-one character transformations and does not take
the word-level context into account. The proposed
method can handle many-to-many character trans-
formations and takes word-level context into ac-
count, so it has a wider scope for handling non-
standard tokens.

Many studies have been done on text normaliza-
tion for English; for example, Han and Baldwin
(2011) classifies whether or not OOVs are
non-standard tokens and estimates standard
forms on the basis of contextual, string, and

phonetic similarities. Han et al. (2012) and
Hassan and Menezes (2013) developed the
method of extracting variant-normalization pairs
automatically for English. Yang and Eisenstein
(2013) introduced a highly accurate unsupervised
normalization model using log-linear model. In
these studies, clear word segmentations were
assumed to exist. However, since Japanese is
unsegmented, the normalization problem needs
to be treated as a joint normalization, word
segmentation, and POS tagging problem.

Thus, we propose automatically extracting nor-
malization candidates from unlabeled data and
present a method for incorporating these candi-
dates into Japanese morphological analysis and
normalization. Our method can extract new vari-
ant patterns from real text.

3 Proposed Method

Our method consists of two parts. The first in-
volves extracting normalization candidates and
their normal forms from unlabeled data. The sec-
ond involves a morphological analysis and nor-
malization using extracted variants. Basically,
we use a previously proposed dictionary based
approach (Sasano et al., 2013; Saito et al., 2014;
Kaji and Kitsuregawa, 2014), but the method for
generating normalization candidates and some
features used in a discriminative model are new.
The proposed system is illustrated in Figure 2.

In the first part, we generate a coarsely seg-
mented corpus and calculate the pairwise sim-
ilarity of two arbitrary nodes that appear in
the segmented corpus. In a previous study
(Han and Baldwin, 2011), the nodes were as-
sumed to be single words. On the other hand, our
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Figure 3: Flow of generating coarsely segmented
corpus

method assigns a node to not only single words but
also short phrases (See. 3.1). To calculate similar-
ity between two nodes, we use semantic similarity
and phonetic similarity. After calculating similar-
ity, we filter the pairs that do not exceed a similar-
ity threshold. We use word embeddings as a se-
mantic similarity measure. We describe this more
precisely in 3.1.2.

In the second part, the problem is how to incor-
porate extracted variants into Japanese morpho-
logical analysis. We use a discriminative model
and Viterbi decoding for estimating word seg-
mentation, POS tagging, and normalization. To
prevent degradation induced by incorporating ex-
tracted variants, we introduce many types of fea-
tures. We describe this more precisely in 3.2.

3.1 Extracting Candidates of
Variant-Normalization Pairs from
Twitter Texts

3.1.1 Preparation of Coarsely Segmented
Corpus Using Short SNS Sentences and
Phrases

We have to prepare a segmented corpus for gen-
erating normalization candidates and calculating
similarity. The flow of generating coarsely seg-
mented corpus is shown in Figure 3. As we men-
tioned above, we cannot determine the explicit
word segmentation of unlabeled data, especially
for variant words. However, we can assume that
there are some explicit segmentations in text: the
left and right ends of sentences and symbols such
as punctuation, brackets, pictographs, emoticons,
linefeed characters, commas, and spaces. SNS text
contains many short sentences and phrases con-
sisting of a word or several words. Our idea is to
use the units of short sentences and short phrases
delimited in symbols in SNS text as cues for ex-
tracting variant words.

More specifically, we first segment large Twitter

text with several predefined symbols, extract char-
acter sequences consisting of ten or fewer char-
acters, and insert them into a standard dictionary.
Then we segment the large twitter corpus using
an expanded dictionary and conventional analyzer.
An example of a segmented sentence using an ex-
panded dictionary is “おっはよーう (ohhayou)/！
(Good morning!)”, whereas the result using a stan-
dard dictionary is “おっ(o)/は (ha)/よー (yo)/う
(u)/！” Since this segmented text contains several
segmentation errors and noise, we extract reliable
candidates using a similarity threshold described
in the next subsection.

3.1.2 Similarity Measures
To calculate the similarity between two nodes wi

and wj appearing in a segmented corpus (3.1.1),
we mainly use two similarity measures: semantic
and phonetic.

Semantic Similarity We calculate semantic
similarity between wi and wj by inducing dense
real-valued low-dimensional embeddings from
large unlabeled text (Mikolov et al., 2013). We
use the tool word2vec 1 to calculate embeddings
of each node. Semantic similarity is defined as

semsim(wi, wj) = cos(vec(wi), vec(wj)) (1)

This semantic similarity is used as a feature of a
normalization and morphological analysis model
(3.2.3). We set the embedding size is 200.

Phonetic Similarity We first convert a surface
string into pronunciations (Japanese Kanji to Hira-
gana) and calculate the edit distance. We use two
types of edit distance: standard and modified. For
calculating modified edit distance, we set the sub-
stitution cost of two strings 0.5 when two strings
have the same vowels, two strings have the same
consonant or two strings are vowels. We also set
insertion and deletion cost of vowels 0.5, while the
standard cost of substitution, insertion and dele-
tion is 1.

We use standard edit distance and modified
edit distance as a threshold of candidate filtering
(3.1.3) and modified edit distance as an element
of a feature of a normalization and morphological
analysis model (3.2.3). For a feature and thresh-
old, we set the phonetic similarity psim(wi, wj)
as follows:

psim(wi, wj) =
∏

mi,mj

p(mi,mj) (2)

1http://code.google.com/p/word2vec/
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p(mi,mj) = 1 − MED(mi,mj)/OC(mi,mj)
(3)

Where OC(mi,mj) indicates the total number
of operations for calculating edit distance of mi

and mj and MED(mi,mj) indicates the modi-
fied edit distance. mi and mj indicate the mor-
phemes in wi and wj , respectively.

To calculate morphological-level features, we
analyzed wj using conventional morphological
analyzer and make morphological-level alignment
using character-level alignment of wi and wj and
morphological information of wj . Here, wj and wi

are regarded as a normal form and a variant form,
respectively. Here is an example of wi = “たんじ
ょーび (birthday)” and wj = “たんじょうび (birth-
day)”. In this case, morphological-level alignment
is (たんじょー/たんじょう,び/び) since character-
level alignment is (た/た, ん/ん, じ/じ, ょ/ょ, ー/
う, び/び) and word segmentation of wj is (たん
じょう,び).

3.1.3 Candidate Filtering using Similarity
Measures

We calculate the pairwise similarity between two
nodes appearing in a segmented corpus (3.1.1)
and their filter using a similarity measure we de-
fined (3.1.2). The set of nodes N consists of all
tokens w that appear in the segmented corpus.
Since there is a huge number of node pairs and
most are irrelevant, we have to filter the pairs that
have low similarities. Here, we set the thresh-
old of semsim to 0.4, and the threshold of stan-
dard phonetic edit distance is 2. Moreover, we
filter the pairs in which the consonants of the be-
ginning phonetic symbols of each morphemes are
different or morphological-level phonetic similar-
ity p(mi,mj) is lower than 0.6. We also filtered
the candidates when the number of consonants and
all characters in a variant form (except for “っ”, “
ん”, and lower case letters) are larger than that of
a normal form at morphological level. If a vari-
ant word is already exists in a standard dictionary,
we filtered the candidate. Note that this filtering
is not intended to exactly identify whether the pair
has the relationship of variant and normalization.
Since we use only two similarities, simple pho-
netic information and the coarsely segmented cor-
pus in this phase, we only extract candidates of
variants and their normal forms coarsely in the
first step. Then, we exactly identify the word seg-
mentation and normalization simultaneously in the

Figure 4: Example of proposed lattice

second step (3.2).

3.2 Normalization and Morphological
Analysis

3.2.1 Incorporating Normalization
Candidates in Japanese Morphological
Analysis

We generate the word lattice using extracted can-
didate for variant-normalization pairs and dictio-
nary lookup (See Figure 4). The broken line rect-
angles in Figure4 are nodes added by the pro-
posed method. We exploit dictionary lookup by
using the possible character sequence of the ex-
tracted normalized character sequences when vari-
ant character sequences match the input charac-
ter sequences. For example, we exploit dictio-
nary lookup for input character sequences such as
“おたんじょーびおめっとー (happy birthday)”
and add the possible normalized word sequences
such as “お/誕生/日（birthday）” and “お/めで
とう (congratulations)” which are from extracted
variant-normalization candidates. The proposed
method is intended to generate normalized word
sequences. In the first step, appropriateness of
word segmentation is not taken into account, but
in this phase, we can exactly evaluate whether the
acquired pair is appropriate for normalization or
not by considering the morphological connectiv-
ity.

3.2.2 Objective Function
We used a discriminative model for incorporating
many features. The decoder selects the optimal se-
quence ŷ from L(s) when given the candidate set
L(s) for sentence s. This is formulated as follows
(Jiang et al., 2008; Kaji and Kitsuregawa, 2013):

ŷ = arg max
y∈L(s)

w · f(y) (4)

Where ŷ is the optimal path, L(s) is the lattice
created for s, w · f(y) is the dot product between

941



Name Feature
Word unigram score fmipi

POS bi-gram score fpi−1,pi

Character sequence score 1/log(p′ti/p′s) if p′ti > p′s otherwise 0.
where, p′x = p

1/length(x)
x , px =

∏k
j=1 p(cj |cj−1

j−5), x ∈ (s, ti)
Character similarity score log(psim)
Semantic similarity score log(semsim)
Character frequency score log(freqw + 1)
Character and morph transformation score log(freqct + 1), log(freqmt + 1), ϕct, ϕmt

Table 1: Feature list

weight vector w and feature vector f(y). The opti-
mal path is selected in accordance with the w·f(y)
value. For estimating parameters, we used the av-
eraged perceptron, which is widely used (Collins,
2002).

3.2.3 Features

The proposed lattice generation method generates
a lattice larger than that generated in traditional
dictionary-based lattice generation. Therefore, we
need to introduce appropriate normalization scores
into the objective function to prevent degradation.
Table 1 lists the features we used. Let mi be the ith
word candidate and pi be the POS tag of mi. pi−1

and mi−1 are adjacent POS tag and word, respec-
tively. We used the word unigram score fmipi , the
cost for a pair of adjacent POSs fpi−1,pi that are
estimated by MeCab 2, and additional scores.

The character sequence score reflects the char-
acter sequence probability of the normalization
candidates (Saito et al., 2014). Here, s and ti are
input string and transformed string, respectively
(e.g., in Figure 4, for the normalized node ”お誕生
日 (birthday)”, s is ”おたんじょーびおめっとー”
and ti is ”お誕生日おめっとー”. Then ps and pti

are calculated by using the character 5-gram of a
news corpus. cj is the jth character of character
sequence. We also used character sequence score
as a candidate filter. We filtered the candidates
that did not satisfy the pre-defined condition that
p′s ≤ p′ti .

The character similarity score is calculated
using psim (see 3.1.2). The semantic sim-
ilarity score is calculated using semsim (see
3.1.2). The Character frequency score is a fre-
quency of surface character sequences of vari-
ant nodes appeared in news data. Since vari-

2http://taku910.github.io/mecab/ (in Japanese)

ant words rarely appear in the news data, we use
this feature to identify variant words and stan-
dard words. The character and morph transfor-
mation score is related to transformation patterns.
log(freqct + 1) and log(freqmt + 1) are the fre-
quency of transformation patterns ct (character-
level) and mt (morphological-level) that are ex-
tracted from variant-normalization candidates, re-
spectively. ϕct and ϕmt are 1 if a node contains
transformation patterns ct and mt, otherwise 0, re-
spectively. The scale of features were adjusted.

Since all those features can be factorized, the
optimal path is searched by using the Viterbi algo-
rithm.

3.2.4 Candidate Expansion
Although our method can extract many variants,
we expand the variants to achieve higher recall.
We use a simple rule for adding simple variation
in the decoding step. For example, first, repeti-
tions of more than one character of “ー”, “～” and
“っ” are reduced to one character and repetitions of
more than three characters of Japanese Hiragana
and Katakana are reduced to three characters and
one character. Moreover, we use the patterns of
deletions of “ー”, “～”, “っ” and lowercase char-
acters (Saito et al., 2014).

4 Experiments

4.1 Data and Settings

We prepared the Balanced Corpus of Contempo-
rary Written Japanese (BCCWJ) (Maekawa et al.,
2014), which is a commonly used dataset in Japan
and Twitter data. For unsupervised variant extrac-
tion, we used about 70 million unlabeled Twit-
ter corpora. We used 2,000 sentences of BCCWJ
text for training the decoder and Twitter data for
the test. Twitter data contain manually annotated
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variant forms norm forms translation semsim

うれしーい (ureshiii) うれしい (ureshii) happy 0.655
うれしー (ureshii) うれしい (ureshii) happy 0.684
うれしぃ (ureshii) うれしい (ureshii) happy 0.575
うれすぃ (uresui) うれしい (ureshii) happy 0.568
うれちい (uretii) うれしい (ureshii) happy 0.649
うれしす (ureshishu) うれしい (ureshii) happy 0.715
かわええ (kawaee) かわいい (kawaii) cute 0.744
かんわいい (kanwaii) かわいい (kawaii) cute 0.683
きゃわいい (kyawaii) かわいい (kawaii) cute 0.770
お/ねげー/し/ます (o/negee/shi/masu) お/ねがい/し/ます (o/negai/shi/masu) please 0.657
お/ながい/し/ます (o/nagai/si/masu) お/ねがい/し/ます (o/negai/shi/masu) please 0.590
お/ねがい/し/まふ (o/negai/shi/mahu) お/ねがい/し/ます (o/negai/shi/masu) please 0.678
ちかれ/た (tikare/ta) 疲れ/た (tukare/ta ) I’m tired 0.742
お/めでとー (o/medeto) お/めでとう (o/medetou ) congratulations 0.911
お/めでとぉ (o/medeto) お/めでとう (o/medetou ) congratulations 0.796
お/めっとー (o/metto) お/めでとう (o/medetou ) congratulations 0.753
お/めてとう (o/meteto) お/めでとう (o/medetou ) congratulations 0.665

Table 2: Example of extracted pair of variants-normalization candidates

word segmentations, POS tags, and normal forms
for variant words and consist of 7,213 sentences
and 995 variant words. We used Unidic (unidic-
mecab) 3 as a standard dictionary.

4.2 Baselines and Evaluation Metrics

We compared the three methods listed in Ta-
ble 3 in our experiments. Conventional means
a method that generates no normalization candi-
dates and only uses the word cost and the cost
for a pair of adjacent POSs, so we can consider
it as a conventional Japanese morphological anal-
ysis. Rule-based means the conventional rule-
based method proposed by Sasano et al. (2013).
The rule-based method considers insertion of long
sound symbols and lowercase characters and sub-
stitution with long sound symbols and lowercase
characters. We basically use the transformation
rule of Sasano et al. (2013) and use three features
for the model of Rule-based method: the word
score, score for a pair of adjacent POSs, and char-
acter transformation score. The character trans-
formation score is constant for all transformation
rules. Proposed is our method. We used ex-
tracted variant-normalization pairs and all features
described in 3.2.3.

We evaluated each method on the basis of preci-
sion, recall, and the F-value for the overall system
accuracy and the recall for normalization. Since
Japanese morphological analysis simultaneously

3http://osdn.jp/projects/unidic/ (in Japanese)

estimates the word segmentation and POS tagging,
we have to assess whether or not adding the nor-
malization candidates negatively affects a system.

4.3 Results

4.3.1 Results of Extracted
Variant-Normalization Candidates

Table 2 lists examples of the extracted variant-
normalization candidates. Our method automat-
ically extracted well-known transformation pat-
terns such as substitution of lowercase characters,
insertion of lowercase characters, and insertion of
“ー” and “っ” such as “うれしーい (ureshii)”.

Our method also extracted more variant pho-
netic transformation patterns such as substitu-
tion of “shi” with “pi,” “ji,” or “hi” and these
combinations such as “うれちい (uretii)”. We
also list examples of extracted multi-word variant-
normalization pairs. The phrase “お/ねげー
/し/ます (o/nege/shi/masu)” is a variant pat-
tern of the original phrase “お/ねがい/します
(o/negai/shi/masu)”. Our method extracted these
multi-word mappings.

Moreover, our method can extract typing errors
such as“お/めでとう (o/medetou)”with “お/めて
とう (o/meteto)” and slang such as“うれしす (ure-
shisu)”with“うれしい (ureshii).”Such relatively
less frequent patterns were often excluded from
normalization targets. Our method also extracts
many paraphrases: semantically and phonetically
similar pairs that are not variant-normalization

943



word seg word seg and POS tag normalization
method prec rec F prec rec F rec
Conventional 0.865 0.949 0.905 0.837 0.919 0.876 -
Rule-based 0.879 0.952 0.914 0.848 0.918 0.881 0.294
Proposed 0.882 0.951 0.915 0.851 0.918 0.883 0.340

Table 3: Test data (Twitter) precision, recall, and F-value results

proposed conventional gold translation

(1)おも (思っ) /た おもた おも (思っ) /た I thought
　 omo (omott) /ta omota omo (omott) /ta
(2)ばよりん (バイオリン) ば/より/ん ばよりん (バイオリン) violin
　 bayorin (baiorin) ba/yo/rin bayorin (baiorin)
(3)かんわいい (かわいい) かん/わ/いい かんわいい (かわいい) cute
　 kanwaii (kawaii) kan/wa /ii kanwaii (kawaii)
(4)さっむ (寒い) さっ/む さっむ (寒い) It is cold
　 samu (samui) sa/mu samu (samui)
(5)わろえる (笑える) わろ/える わろえる (笑える) It is funny
　 waroeru (waraeru) waro/eru waroeru (waraeru)
(6)おー/こく おー/こく おーこく (王国) Kingdom
　 oo/koku oo/koku ookoku (oukoku)
(7)ついった (ツイート) つ/いっ/た ついった (ツイッター) Twitter
　 tuitta (tuitta) tu/i/ta tuitta (tuitta)

“/” indicates the estimated word segmentation. Words in parentheses “()” are esti-
mated normal forms. Underlined words are variant words.

Table 4: Example of morphological analysis and normalization outputs

pairs. This often degrades the results of morpho-
logical analysis. We use a discriminative model
to prevent such paraphrase pairs appearing in the
decoding step.

4.3.2 Morphological Analysis and
Normalization Results

Tables 3 and 4 list the results for the Twitter
text. The F-value of the proposed method is sig-
nificantly higher than those of the conventional
method and rule-based method. Our method was
able to extract broad-coverage variant words, and
these candidates also improve the recall of normal-
ization without degrading the overall accuracy of
morphological analysis.

Table 4 show examples of the system output. In
the table, slashes indicate the positions of the esti-
mated word segmentations, and the correctly ana-
lyzed words are written in bold. Examples (1) to
(5) are examples improved by using the proposed
method. Examples (6) and (7) are examples that
were not improved.

Error Analysis There were roughly two types
of errors. The first occurred as a result of a lack of

variant-normalization candidates, and the second
was search errors. Example (6) shows an example
of a case in which our method could not generate
the correct normalized form because we could not
extract the correct normalized form. Because we
extract normalization candidates by phrase level,
some patterns are difficult to extract as a word unit.
To increase recall, we need to extract character-
level and morph-level transformation patterns that
occur frequently from phrase-level patterns and
add them into morphological analysis and normal-
ization. Example (7) shows an example of a case
in which a normalized candidate was generated
but a search failed. We will need to develop a more
complicated model or introduce other features into
the current model to reduce the number of search
errors.

Besides the above errors, there are some errors
in which correct normalization candidates were
filtered. In this study, we filtered many candidates
to eliminate noise. Some normalization candidates
are filtered, and the correct normalization candi-
dates cannot be generated in the word lattice. To
increase recall further, we have to filter functions
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or calculate similarity scores more precisely. Also,
some errors are associated with unknown words.
Twitter data contain many unknown words such
as names, and our system sometimes treats these
names as other nouns. Non-standard and standard
words needs to be more precisely discriminated
between for higher accuracy.

5 Conclusion and Future Work

We introduced a new idea for extracting variant
words from an unsegmented corpus and incorpo-
rated it into morphological analysis. The proposed
method can effectively analyze noisy words with-
out manual annotation. The limitation of this work
is that this method is based on phonetic similar-
ity. Although our method can extract many vari-
ant patterns, it cannot extract a pair of words that
have quite low phonetic similarity. In addition,
our method is based on a heuristic segmentation
method for extracting normalization candidates.
Though it works well in practice, we want to ex-
tend this idea for a more general framework.

In future work, we would like to increase the
coverage of variant-normalization pairs. For this,
we have to extract the character- and morph-level
transformation patterns from the acquired phrase
level variant-normalization pairs.
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Abstract

In this paper, we model the document revi-
sion detection problem as a minimum cost
branching problem that relies on comput-
ing document distances. Furthermore, we
propose two new document distance mea-
sures, word vector-based Dynamic Time
Warping (wDTW) and word vector-based
Tree Edit Distance (wTED). Our revision
detection system is designed for a large
scale corpus and implemented in Apache
Spark. We demonstrate that our system
can more precisely detect revisions than
state-of-the-art methods by utilizing the
Wikipedia revision dumps 1 and simulated
data sets.

1 Introduction

It is a common habit for people to keep several
versions of documents, which creates duplicate
data. A scholarly article is normally revised sev-
eral times before being published. An academic
paper may be listed on personal websites, digital
conference libraries, Google Scholar, etc. In major
corporations, a document typically goes through
several revisions involving multiple editors and
authors. Users would benefit from visualizing the
entire history of a document. It is worthwhile to
develop a system that is able to intelligently iden-
tify, manage and represent revisions. Given a col-
lection of text documents, our study identifies re-
vision relationships in a completely unsupervised
way. For each document in a corpus we only use
its content and the last modified timestamp. We
assume that a document can be revised by many
users, but that the documents are not merged to-
gether. We consider collaborative editing as revis-
ing documents one by one.

1https://snap.stanford.edu/data/wiki-meta.html

The two research problems that are most rele-
vant to document revision detection are plagiarism
detection and revision provenance. In a plagiarism
detection system, every incoming document is
compared with all registered non-plagiarized doc-
uments (Si et al., 1997; Oberreuter and VeláSquez,
2013; Hagen et al., 2015; Abdi et al., 2015). The
system returns true if an original copy is found in
the database; otherwise, the system returns false
and adds the document to the database. Thus, it
is a 1-to-n problem. Revision provenance is a 1-
to-1 problem as it keeps track of detailed updates
of one document (Buneman et al., 2001; Zhang
and Jagadish, 2013). Real-world applications in-
clude GitHub, version control in Microsoft Word
and Wikipedia version trees (Sabel, 2007). In con-
trast, our system solves an n-to-n problem on a
large scale. Our potential target data sources, such
as the entire web or internal corpora in corpora-
tions, contain numerous original documents and
their revisions. The aim is to find all revision doc-
ument pairs within a reasonable time.

Document revision detection, plagiarism detec-
tion and revision provenance all rely on compar-
ing the content of two documents and assessing
a distance/similarity score. The classic document
similarity measure, especially for plagiarism de-
tection, is fingerprinting (Hoad and Zobel, 2003;
Charikar, 2002; Schleimer et al., 2003; Fujii and
Ishikawa, 2001; Manku et al., 2007; Manber et al.,
1994). Fixed-length fingerprints are created us-
ing hash functions to represent document features
and are then used to measure document similar-
ities. However, the main purpose of fingerprint-
ing is to reduce computation instead of improv-
ing accuracy, and it cannot capture word seman-
tics. Another widely used approach is comput-
ing the sentence-to-sentence Levenshtein distance
and assigning an overall score for every docu-
ment pair (Gustafson et al., 2008). Neverthe-
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less, due to the large number of existing docu-
ments, as well as the large number of sentences
in each document, the Levenshtein distance is not
computation-friendly. Although alternatives such
as the vector space model (VSM) can largely re-
duce the computation time, their effectiveness is
low. More importantly, none of the above ap-
proaches can capture semantic meanings of words,
which heavily limits the performances of these
approaches. For instance, from a semantic per-
spective, “I went to the bank” is expected to be
similar to “I withdrew some money” rather than
“I went hiking.” Our document distance measures
are inspired by the weaknesses of current doc-
ument distance/similarity measures and recently
proposed models for word representations such as
word2vec (Mikolov et al., 2013) and Paragraph
Vector (PV) (Le and Mikolov, 2014). Replacing
words with distributed vector embeddings makes
it feasible to measure semantic distances using ad-
vanced algorithms, e.g., Dynamic Time Warping
(DTW) (Sakurai et al., 2005; Müller, 2007; Ma-
tuschek et al., 2008) and Tree Edit Distance (TED)
(Tai, 1979; Zhang and Shasha, 1989; Klein, 1998;
Demaine et al., 2007; Pawlik and Augsten, 2011,
2014, 2015, 2016). Although calculating text dis-
tance using DTW (Liu et al., 2007), TED (Sidorov
et al., 2015) or Word Mover’s Distance (WMV)
(Kusner et al., 2015) has been attempted in the
past, these measures are not ideal for large-scale
document distance calculation. The first two al-
gorithms were designed for sentence distances in-
stead of document distances. The third measure
computes the distance of two documents by solv-
ing a transshipment problem between words in the
two documents and uses word2vec embeddings
to calculate semantic distances of words. The
biggest limitation of WMV is its long computa-
tion time. We show in Section 5.3 that our wDTW
and wTED measures yield more precise distance
scores with much shorter running time than WMV.

We recast the problem of detecting document
revisions as a network optimization problem (see
Section 2) and consequently as a set of document
distance problems (see Section 4). We use trained
word vectors to represent words, concatenate the
word vectors to represent documents and combine
word2vec with DTW or TED. Meanwhile, in or-
der to guarantee reasonable computation time in
large data sets, we calculate document distances at
the paragraph level with Apache Spark. A distance

score is computed by feeding paragraph represen-
tations to DTW or TED. Our code and data are
publicly available. 2

The primary contributions of this work are as
follows.

• We specify a model and algorithm to find the
optimal document revision network from a
large corpus.

• We propose two algorithms, wDTW and
wTED, for measuring semantic document
distances based on distributed representa-
tions of words. The wDTW algorithm calcu-
lates document distances based on DTW by
sequentially comparing any two paragraphs
of two documents. The wTED method rep-
resents the section and subsection structures
of a document in a tree with paragraphs being
leaves. Both algorithms hinge on the distance
between two paragraphs.

The rest of this paper is organized in five parts. In
Section 2, we clarify related terms and explain the
methodology for document revision detection. In
Section 3, we provide a brief background on ex-
isting document similarity measures and present
our wDTW and wTED algorithms as well as the
overall process flow. In Section 4, we demonstrate
our revision detection results on Wikipedia revi-
sion dumps and six simulated data sets. Finally,
in Section 5, we summarize some concluding re-
marks and discuss avenues for future work and im-
provements.

2 Revision Network

The two requirements for a document D̄ being a
revision of another document D̃ are that D̄ has
been created later than D̃ and that the content of
D̄ is similar to (has been modified from) that of
D̃. More specifically, given a corpus D , for any
two documents D̄, D̃ ∈ D , we want to find out
the yes/no revision relationship of D̄ and D̃, and
then output all such revision pairs.

We assume that each document has a creation
date (the last modified timestamp) which is read-
ily available from the meta data of the document.
In this section we also assume that we have aDist
method and a cut-off threshold τ . We represent a
corpus as network N0 = (V 0, A), for example

2https://github.com/XiaofengZhu/wDTW-wTED

948



(a) Revision network N0 (b) Cleaned revision network N (c) Possible solution R

Figure 1: Revision network visualization

Figure 1a, in which a vertex corresponds to a doc-
ument. There is an arc a = (D̄, D̃) if and only
if Dist(D̄, D̃) ≤ τ and the creation date of D̄
is before the creation date of D̃. In other words,
D̃ is a revision candidate for D̄. By construction,
N0 is acyclic. For instance, d2 is a revision candi-
date for d7 and d1. Note that we allow one docu-
ment to be the original document of several revised
documents. As we only need to focus on revision
candidates, we reduce N0 to N = (V,A), shown
in Figure 1b, by removing isolated vertices. We
define the weight of an arc as the distance score
between the two vertices. Recall the assumption
that a document can be a revision of at most one
document. In other words, documents cannot be
merged. Due to this assumption, all revision pairs
form a branching inN . (A branching is a subgraph
where each vertex has an in-degree of at most 1.)
The document revision problem is to find a mini-
mum cost branching in N (see Fig 1c).

The minimum branching problem was earlier
solved by Edmonds (1967) and Velardi et al.
(2013). The details of his algorithm are as follows.

– For each node select the smallest weighted
incoming arc. This yields a subgraph.

– If cycles are present in the selected subgraph,
then recursively find the replacing arc that has
the minimum weight among previously non-
selected arcs to eliminate cycles.

In our case, N is acyclic and, therefore, the sec-
ond step never occurs. For this reason, Algorithm
1 solves the document revision problem.

The essential part of determining the minimum
branching R is extracting arcs with the lowest dis-
tance scores. This is equivalent to finding the most
similar document from the revision candidates for
every original document.

Algorithm 1 Find minimum branching R for net-
work N = (V,A)

1: Input: N
2: R = ∅
3: for every vertex v ∈ V do
4: Set δ(u) to correspond to all arcs with head

u.
5: Select a = (v, u) ∈ δ(u) such that

Dist(v, u) is minimum
6: R = R ∪ a
7: end for
8: Output: R

3 Distance/similarity Measures

In this section, we first introduce the classic VSM
model, the word2vec model, DTW and TED. We
next demonstrate how to combine the above com-
ponents to construct our semantic document dis-
tance measures: wDTW and wTED. We also dis-
cuss the implementation of our revision detection
system.

3.1 Background

3.1.1 Vector Space Model
VSM represents a set of documents as vectors of
identifiers. The identifier of a word used in this
work is the tf-idf weight. We represent documents
as tf-idf vectors, and thus the similarity of two doc-
uments can be described by the cosine distance
between their vectors. VSM has low algorithm
complexity but cannot represent the semantics of
words since it is based on the bag-of-words as-
sumption.

3.1.2 Word2vec
Word2vec produces semantic embeddings for
words using a two-layer neural network. Specif-
ically, word2vec relies on a skip-gram model that
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uses the current word to predict context words in a
surrounding window to maximize the average log
probability. Words with similar meanings tend to
have similar embeddings.

3.1.3 Dynamic Time Warping
DTW was developed originally for speech recog-
nition in time series analysis and has been widely
used to measure the distance between two se-
quences of vectors.

Given two sequences of feature vectors: A =
a1, a2, ..., ai, ..., am and B = b1, b2, ..., bj , ..., bn,
DTW finds the optimal alignment for A and B by
first constructing an (m + 1) × (n + 1) matrix
in which the (i, j)th element is the alignment cost
of a1...ai and b1...bj , and then retrieving the path
from one corner to the diagonal one through the
matrix that has the minimal cumulative distance.
This algorithm is described by the following for-
mula.

DTW (i, j) = Dist(ai, bj) +min(
DTW (i− 1, j), //insertion

DTW (i, j − 1), //deletion

DTW (i− 1, j − 1)) //substitution

3.1.4 Tree Edit Distance
TED was initially defined to calculate the minimal
cost of node edit operations for transforming one
labeled tree into another. The node edit operations
are defined as follows.

– Deletion Delete a node and connect its chil-
dren to its parent maintaining the order.

– Insertion Insert a node between an existing
node and a subsequence of consecutive chil-
dren of this node.

– Substitution Rename the label of a node.

Let L1 and L2 be two labeled trees, and Lk[i]
be the ith node in Lk(k = 1, 2). M corresponds
to a mapping from L1 to L2. TED finds mapping
M with the minimal edit cost based on

c(M) = min{
∑

(i,j)∈M
cost(L1[i]→ L2[j])

+
∑
i∈I

cost(L1[i]→ ∧)

+
∑
j∈J

cost(∧ → L2[j])}

where L1[i] → L2[j] means transferring L1[i] to
L2[j] based on M , and ∧ represents an empty
node.

3.2 Semantic Distance between Paragraphs

According to the description of DTW in Section
3.1.3, the distance between two documents can be
calculated using DTW by replacing each element
in the feature vectors A and B with a word vector.
However, computing the DTW distance between
two documents at the word level is basically as
expensive as calculating the Levenshtein distance.
Thus in this section we propose an improved algo-
rithm that is more appropriate for document dis-
tance calculation.

In order to receive semantic representations for
documents and maintain a reasonable algorithm
complexity, we use word2vec to train word vectors
and represent each paragraph as a sequence of vec-
tors. Note that in both wDTW and wTED we take
document titles and section titles as paragraphs.
Although a more recently proposed model PV can
directly train vector representations for short texts
such as movie reviews (Le and Mikolov, 2014),
our experiments in Section 5.3 show that PV is
not appropriate for standard paragraphs in general
documents. Therefore, we use word2vec in our
work. Algorithm 2 describes how we compute the
distance between two paragraphs based on DTW
and word vectors. The distance between one para-
graph in a document and one paragraph in another
document can be pre-calculated in parallel using
Spark to provide faster computation for wDTW
and wTED.

Algorithm 2 DistPara
Replace the words in paragraphs p and q with
word2vec embeddings: {vi}ei=1 and {wj}fj=1

Input: p = [v1, .., ve] and q = [w1, .., wf ]
Initialize the first row and the first column of
(e+ 1)× (f + 1) matrix DTWpara +∞
DTWpara(0, 0) = 0
for i in range (1, e+ 1) do

for j in range (1, f + 1) do
Dist(vi, wj) = ||vi − wj ||
calculate DTWpara(i, j)

end for
end for
Return: DTWpara(e, f)
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4 wDTW and wTED Measures

4.1 Word Vector-based Dynamic Time
Warping

As a document can be considered as a sequence of
paragraphs, wDTW returns the distance between
two documents by applying another DTW on top
of paragraphs. The cost function is exactly the
DistPara distance of two paragraphs given in Al-
gorithm 2. Algorithm 3 and Figure 2 describe our
wDTW measure. wDTW observes semantic in-
formation from word vectors, which is fundamen-
tally different from the word distance calculated
from hierarchies among words in the algorithm
proposed by Liu et al. (2007). The shortcomings
of their work are that it is difficult to learn seman-
tic taxonomy of all words and that their DTW al-
gorithm can only be applied to sentences not doc-
uments.

Algorithm 3 wDTW
Represent documents d1 and d2 with vectors
of paragraphs: {pi}mi=1 and {qj}nj=1

Input: d1 = [p1, .., pm] and d2 = [q1, .., qn]
Initialize the first row and the first column of
(m+ 1)× (n+ 1) matrix DTWdoc +∞
DTWdoc(0, 0) = 0
for i in range (1,m+ 1) do

for j in range (1, n+ 1) do
Dist(pi, qj) = DistPara(pi, qj)
calculate DTWdoc(i, j)

end for
end for
Return: DTWdoc(m,n)

Figure 2: wDTW visualization

4.2 Word Vector-based Tree Edit Distance

TED is reasonable for measuring document dis-
tances as documents can be easily transformed to
tree structures visualized in Figure 3. The docu-
ment tree concept was originally proposed by Si
et al. (1997). A document can be viewed at mul-
tiple abstraction levels that include the document
title, its sections, subsections, etc. Thus for each
document we can build a tree-like structure with
title→ sections→ subsections→...→ paragraphs
being paths from the root to leaves. Child nodes
are ordered from left to right as they appear in the
document.

Figure 3: Document tree

We represent labels in a document tree as
the vector sequences of titles, sections, subsec-
tions and paragraphs with word2vec embeddings.
wTED converts documents to tree structures and
then uses DistPara distances. More formally, the
distance between two nodes is computed as fol-
lows.

– The cost of substitution is the DistPara value
of the two nodes.

– The cost of insertion is the DistPara value of
an empty sequence and the label of the in-
serted node. This essentially means that the
cost is the sum of the L2-norms of the word
vectors in that node.

– The cost of deletion is the same as the cost of
insertion.

Compared to the algorithm proposed by
Sidorov et al. (2015), wTED provides different
edit cost functions and uses document tree struc-
tures instead of syntactic n-grams, and thus wTED
yields more meaningful distance scores for long
documents. Algorithm 4 and Figure 4 describe
how we calculate the edit cost between two doc-
ument trees.
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Algorithm 4 wTED
1: Convert documents d1 and d2 to trees T1 and
T2

2: Input: T1 and T2

3: Initialize tree edit distance c = +∞
4: for node label p ∈ T1 do
5: for node label q ∈ T2 do
6: Update TED mapping cost c using
7: cost(p→ q) = DistPara(p, q)
8: cost(p→ ∧) = DistPara(p,∧)
9: cost(∧ → q) = DistPara(∧, q)

10: end for
11: end for
12: Return: c

Figure 4: wTED visualization

4.3 Process Flow

Our system is a boosting learner that is composed
of four modules: weak filter, strong filter, revision
network and optimal subnetwork. First of all, we
sort all documents by timestamps and pair up doc-
uments so that we only compare each document
with documents that have been created earlier. In
the first module, we calculate the VSM similar-
ity scores for all pairs and eliminate those with
scores that are lower than an empirical threshold
(τ̃ = 0.5). This is what we call the weak filter.
After that, we apply the strong filter wDTW or
wTED on the available pairs and filter out docu-
ment pairs having distances higher than a thresh-
old τ . For VSM in Section 5.1, we directly filter
out document pairs having similarity scores lower
than a threshold τ . The cut-off threshold esti-
mation is explained in Section 4.4. The remain-
ing document pairs from the strong filter are then
sent to the revision network module. In the end,
we output the optimal revision pairs following the
minimum branching strategy.

4.4 Estimating the Cut-off Threshold

Hyperprameter τ is calibrated by calculating the
absolute extreme based on an initial set of docu-
ments, i.e., all processed documents since the mo-
ment the system was put in use. Based on this set,
we calculate all distance/similarity scores and cre-
ate a histogram, see Figure 5. The figure shows the
correlation between the number of document pairs
and the similarity scores in the training process of
one simulated corpus using VSM. The optimal τ
in this example is around 0.6 where the number of
document pairs noticeably drops.

As the system continues running, new docu-
ments become available and τ can be periodically
updated by using the same method.

Figure 5: Setting τ

5 Numerical Experiments

This section reports the results of the experiments
conducted on two data sets for evaluating the per-
formances of wDTW and wTED against other
baseline methods.

5.1 Distance/Similarity Measures

We denote the following distance/similarity mea-
sures.

– wDTW: Our semantic distance measure ex-
plained in Section 4.1.

– wTED: Our semantic distance measure ex-
plained in Section 4.2.

– WMD: The Word Mover’s Distance intro-
duced in Section 1. WMD adapts the earth
mover’s distance to the space of documents.

– VSM: The similarity measure introduced in
Section 3.1.1.
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– PV-DTW: PV-DTW is the same as Algorithm
3 except that the distance between two para-
graphs is not based on Algorithm 2 but rather
computed as ||PV (p1) − PV (p2)|| where
PV (p) is the PV embedding of paragraph p.

– PV-TED: PV-TED is the same as Algorithm
4 except that the distance between two para-
graphs is not based on Algorithm 2 but rather
computed as ||PV (p1)− PV (p2)||.

Our experiments were conducted on an Apache
Spark cluster with 32 cores and 320 GB total
memory. We implemented wDTW, wTED, WMD,
VSM, PV-DTW and PV-TED in Java Spark. The
paragraph vectors for PV-DTW and PV-TED were
trained by gensim. 3

5.2 Data Sets

In this section, we introduce the two data sets
we used for our revision detection experiments:
Wikipedia revision dumps and a document revi-
sion data set generated by a computer simulation.
The two data sets differ in that the Wikipedia re-
vision dumps only contain linear revision chains,
while the simulated data sets also contains tree-
structured revision chains, which can be very com-
mon in real-world data.

5.2.1 Wikipedia Revision Dumps
The Wikipedia revision dumps that were previ-
ously introduced by Leskovec et al. (2010) con-
tain eight GB (compressed size) revision edits
with meta data.

We pre-processed the Wikipedia revision
dumps using the JWPL Revision Machine (Fer-
schke et al., 2011) and produced a data set
that contains 62,234 documents with 46,354 re-
visions. As we noticed that short documents
just contributed to noise (graffiti) in the data, we
eliminated documents that have fewer than three
paragraphs and fewer than 300 words. We re-
moved empty lines in the documents and trained
word2vec embeddings on the entire corpus. We
used the documents occurring in the first 80% of
the revision period for τ calibration, and the re-
maining documents for test.

5.2.2 Simulated Data Sets
The generation process of the simulated data sets
is designed to mimic the real world. Users open

3https://radimrehurek.com/gensim/models/doc2vec.html

Figure 6: Corpora simulation

some existing documents in a file system, make
some changes (e.g. addition, deletion or re-
placement), and save them as separate documents.
These documents become revisions of the original
documents. We started from an initial corpus that
did not have revisions, and kept adding new doc-
uments and revising existing documents. Similar
to a file system, at any moment new documents
could be added and/or some of the current docu-
ments could be revised. The revision operations
we used were deletion, addition and replacement
of words, sentences, paragraphs, section names
and document titles. The addition of words, ...,
section names, and new documents were pulled
from the Wikipedia abstracts. This corpus gener-
ation process had five time periods {t1, t2, ..., t5}.
Figure 6 illustrates this simulation. We set a Pois-
son distribution with rate λ = 550 (the number
of documents in the initial corpus) to control the
number of new documents added in each time pe-
riod, and a Poisson distribution with rate 0.5λ to
control the number of documents revised in each
time period.

We generated six data sets using different ran-
dom seeds, and each data set contained six cor-
pora (Corpus 0 - 5). Table 1 summarizes the first
data set. In each data set, we name the initial
corpus Corpus 0, and define T0 as the timestamp
when we started this simulation process. We set
Tj = Tj−1 + tj , j ∈ [1, 5]. Corpus j corre-
sponds to documents generated before timestamp
Tj . We extracted document revisions from Cor-
pus k ∈ [2, 5] and compared the revisions gen-
erated in (Corpus k - Corpus (k − 1)) with the
ground truths in Table 1. Hence, we ran four ex-
periments on this data set in total. In every exper-
iment, τk is calibrated based on Corpus (k − 1).
For instance, the training set of the first experi-
ment was Corpus 1. We trained τ1 from Corpus 1.
We extracted all revisions in Corpus 2, and com-
pared revisions generated in the test set (Corpus 2 -
Corpus 1) with the ground truth: 258 revised doc-
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uments. The word2vec model shared in the four
experiments was trained on Corpus 5.

Table 1: A simulated data set

Corpus Number of Number of Number of
documents new documents revision pairs

0 550 0 0
1 1347 542 255
2 2125 520 258
3 2912 528 259
4 3777 580 285
5 4582 547 258

5.3 Results

We use precision, recall and F-measure to evalu-
ate the detected revisions. A true positive case is a
correctly identified revision. A false positive case
is an incorrectly identified revision. A false nega-
tive case is a missed revision record.

We illustrate the performances of wDTW,
wTED, WMD, VSM, PV-DTW and PV-TED on
the Wikipedia revision dumps in Figure 7. wDTW
and wTED have the highest F-measure scores
compared to the rest of four measures, and wDTW
also have the highest precision and recall scores.
Figure 8 shows the average evaluation results on
the simulated data sets. From left to right, the
corpus size increases and the revision chains be-
come longer, thus it becomes more challenging to
detect document revisions. Overall, wDTW con-
sistently performs the best. WMD is slightly bet-
ter than wTED. In particular, when the corpus size
increases, the performances of WMD, VSM, PV-
DTW and PV-TED drop faster than wDTW and
wTED. Because the revision operations were ran-
domly selected in each corpus, it is possible that
there are non-monotone points in the series.

wDTW and wTED perform better than WMD
especially when the corpus is large, because they
use dynamic programming to find the global opti-
mal alignment for documents. In contrast, WMD

relies on a greedy algorithm that sums up the min-
imal cost for every word. wDTW and wTED per-
form better than PV-DTW and PV-TED, which in-
dicates that our DistPara distance in Algorithm 2 is
more accurate than the Euclidian distance between
paragraph vectors trained by PV.

We show in Table 2 the average running time of
the six distance/similarity measures. In all the ex-
periments, VSM is the fastest, wTED is faster than
wDTW, and WMD is the slowest. Running WMD
is extremely expensive because WMD needs to
solve an x2 sequential transshipment problem for
every two documents where x is the average num-
ber of words in a document. In contrast, by split-
ting this heavy computation into several smaller
problems (finding the distance between any two
paragraphs), which can be run in parallel, wDTW
and wTED scale much better.

Combining Figure 7, Figure 8 and Table 2 we
conclude that wDTW yields the most accurate re-
sults using marginally more time than VSM, PV-
TED and PV-DTW, but much less running time
than WMD. wTED returns satisfactory results us-
ing shorter time than wDTW.

6 Conclusion

This paper has explored how DTW and TED can
be extended with word2vec to construct semantic
document distance measures: wDTW and wTED.
By representing paragraphs with concatenations of
word vectors, wDTW and wTED are able to cap-
ture the semantics of the words and thus give more
accurate distance scores. In order to detect revi-
sions, we have used minimum branching on an ap-
propriately developed network with document dis-
tance scores serving as arc weights. We have also
assessed the efficiency of the method of retriev-
ing an optimal revision subnetwork by finding the
minimum branching.

Furthermore, we have compared wDTW and

(a) Precision (b) Recall (c) F-measure

Figure 7: Precision, recall and F-measure on the Wikipedia revision dumps
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Figure 8: Average precision, recall and F-measure on the simulated data sets

Table 2: Running time of VSM, PV-TED, PV-DTW, wTED, wDTW and WMD

VSM PV-TED PV-DTW wTED wDTW WMD
Wikipedia revision dumps 1h 38min 3h 2min 3h 18min 5h 13min 13h 27min 515h 9min
corpus 2 2 min 3 min 3 min 7 min 8 min 8 h 53 min
corpus 3 3 min 4 min 5 min 9 min 11 min 12 h 45 min
corpus 4 4 min 6 min 6 min 11 min 12 min 14 h 34 min
corpus 5 7 min 9 min 9 min 14 min 16 min 17 h 31 min

wTED with several distance measures for revision
detection tasks. Our results demonstrate the effec-
tiveness and robustness of wDTW and wTED in
the Wikipedia revision dumps and our simulated
data sets. In order to reduce the computation time,
we have computed document distances at the para-
graph level and implemented a boosting learning
system using Apache Spark. Although we have
demonstrated the superiority of our semantic mea-
sures only in the revision detection experiments,
wDTW and wTED can also be used as semantic
distance measures in many clustering, classifica-
tion tasks.

Our revision detection system can be enhanced
with richer features such as author information and
writing styles, and exact changes in revision pairs.
Another interesting aspect we would like to ex-
plore in the future is reducing the complexities of
calculating the distance between two paragraphs.
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Grigori Sidorov, Helena Gómez-Adorno, Ilia Markov,
David Pinto, and Nahun Loya. 2015. Computing
text similarity using tree edit distance. In Fuzzy In-
formation Processing Society (NAFIPS) held jointly
with 2015 5th World Conference on Soft Comput-
ing, 2015 Annual Conference of the North American,
pages 1–4. IEEE.

Kuo-Chung Tai. 1979. The tree-to-tree correction
problem. Journal of the ACM, 26(3):422–433.

Paola Velardi, Stefano Faralli, and Roberto Navigli.
2013. Ontolearn reloaded: A graph-based algorithm
for taxonomy induction. Computational Linguistics,
39(3):665–707.

Jing Zhang and HV Jagadish. 2013. Revision prove-
nance in text documents of asynchronous collabora-
tion. In 2013 IEEE 29th International Conference
on Data Engineering, pages 889–900. IEEE.

Kaizhong Zhang and Dennis Shasha. 1989. Simple
fast algorithms for the editing distance between trees
and related problems. SIAM Journal on Computing,
18(6):1245–1262.

956



Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 957–966,
Taipei, Taiwan, November 27 – December 1, 2017 c©2017 AFNLP

An Empirical Analysis of Multiple-Turn Reasoning Strategies
in Reading Comprehension Tasks

Yelong Shen†, Xiaodong Liu†, Kevin Duh‡, Jianfeng Gao†
† Microsoft Research, Redmond, WA, USA

‡ Johns Hopkins University, Baltimore, MD, USA
†{yeshen,xiaodl,jfgao}@microsoft.com ‡kevinduh@cs.jhu.edu

Abstract

Reading comprehension (RC) is a chal-
lenging task that requires synthesis of in-
formation across sentences and multiple
turns of reasoning. Using a state-of-the-art
RC model, we empirically investigate the
performance of single-turn and multiple-
turn reasoning on the SQuAD and MS
MARCO datasets. The RC model is an
end-to-end neural network with iterative
attention, and uses reinforcement learn-
ing to dynamically control the number of
turns. We find that multiple-turn reason-
ing outperforms single-turn reasoning for
all question and answer types; further, we
observe that enabling a flexible number
of turns generally improves upon a fixed
multiple-turn strategy. We achieve results
competitive to the state-of-the-art on these
two datasets.

1 Introduction

There is an old Chinese proverb that says: “Read
a hundred times and the meaning will appear.”
Several recent reading comprehension (RC) mod-
els have embraced this kind of multiple-turn strat-
egy; they generate predictions by making multiple
passes through the same text and integrating in-
termediate information in the process (Hill et al.,
2016; Dhingra et al., 2016; Sordoni et al., 2016;
Shen et al., 2016). While state-of-the-art results
have been achieved by these models, there has yet
to be an in-depth analysis of the impact of the
multiple-turn strategy to reasoning. This paper at-
tempts to fill this gap.

We provide empirical results and analysis on
two challenging RC datasets: the Stanford Ques-
tion Answering Dataset (SQuAD) (Rajpurkar
et al., 2016), and the Microsoft Machine Reading

Comprehension Dataset (MS MARCO) (Nguyen
et al., 2016). Given a question Q, the RC model
is to read passages P and produce an answer A,
which could be free-form text or one of the possi-
ble candidate spans in the passage.

The following example from SQuAD illustrates
the need for synthesis of information across sen-
tences and multiple turns of reasoning:

Q: What collection does the V&A Theator &
Performance galleries hold?

P : The V&A Theator & Performance gal-
leries opened in March 2009. ... They
hold the UK’s biggest national collection of
material about live performance.

To infer the answer (the underlined portion of the
passage P ), the model needs to first perform coref-
erence resolution so that it knows “They” refers
“V&A Theator”, then extract the subspan in the
direct object corresponding to the answer. This
process can be modeled by the repeated process-
ing of intermediate states and input in a neural net.

To perform the analysis, we adopt the ReasoNet
model of Shen et al. (2016). This is an end-
to-end neural network that uses an iterative at-
tention mechanism to simulate multiple-turn rea-
soning in RC. It has achieved strong results on
cloze-style RC tasks like CNN/DailyMail (Her-
mann et al., 2015) and we extend it to SQuAD and
MS MARCO tasks. The advantage of using Rea-
soNet for our purpose is that it uses reinforcement
learning to dynamically determine the number of
turns for each question-passage pair. This enables
us to analyze the behavior of multiple-turn reason-
ing in neural network models.

We find that multiple-turn reasoning outper-
forms single-turn reasoning across the board for
various types of question and answer types. Fur-
thermore, the flexibility to dynamically decide the
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SQuAD MS MARCO
query source crowdsourced user logs
answer (A) span of words free-form text
#questions (Q) 100K questions 100K queries
#passages (P ) 23K paragraphs 1M paragraphs

Table 1: Dataset characteristics

number of turns generally improves over a fixed
multiple-turn strategy, where the number of turns
are set a priori. As an additional contribution, our
extension to the ReasoNet model achieves results
competitive with the state-of-the-art on SQuAD
and MS MARCO.

In the following, Section 2 describes our two
RC tasks, Section 3 explains the model we used
for analysis, and Section 4 discusses results.

2 Reading Comprehension Tasks

We focus this study on two RC tasks which we be-
lieve require sophisticated reasoning.

SQuAD: SQuAD is a machine comprehension
dataset constructed on 536 Wikipedia articles
(23K paragraphs), with more than 100,000 ques-
tions. In contrast to prior datasets such as
(Richardson et al., 2013; Hermann et al., 2015),
SQuAD does not provide a multiple choice list of
answer candidates. Instead, the RC model must
select the answer from all possible spans in the
passage. Crowdsourced workers are asked to read
each passage (a paragraph), come up with ques-
tions, and then mark the answer spans.

There is a variety of questions and answers. The
authors of SQuAD described several types of rea-
soning required to answer questions: (a) lexical
variation between question (Q) and answer (A)
that can be solved by understanding synonyms,
(b) lexical variation that could be solved by world
knowledge, (c) syntactic variation between Q and
A sentence, and (d) multiple sentence reasoning
that require anaphora or higher-level fusion.

The 100K (question, passage, answer) tuples is
randomly partitioned into a training (80%), a de-
velopment (10%) and test set splits (10%). Two
evaluation metrics are used: Exact Match (EM),
which measures the percentage of span predic-
tions that matched any one of the ground truth an-
swer exactly, and Macro-averaged F1 score, which
measures the average overlap between the predic-
tion and the ground truth answer. Human perfor-
mance on the test set is 82.3% EM and 91.2% F1.

MS MARCO: MS MARCO is a large scale real-
world RC dataset that contains 100,000 queries
collected from anonymized user logs from the
Bing search engine. The characteristic of MS
MARCO is that all the questions are real user
queries and passages are extracted from real web
documents. The data is constructed as follows:
for each question/query Q, up to approximately
10 passages P are extracted from public web doc-
uments and presented to human judges. These
passages might potentially have the answer to the
question, and are selected through a separate in-
formation retrieval system. The judges write down
answers in free-form text, and according to the au-
thors of MS MARCO, the complexity of answer
varies from a single “yes/no” or entity name (e.g.
Q: “What is the capital of Italy”; A: Rome), to
long textual answers (e.g. Q: “What is the agenda
for Hollande’s state visit to Washington?”). Long
textual answers may need to be derived through
reasoning across multiple pieces of text.

The dataset is partitioned into a 82,430 train-
ing, a 10,047 development, and 9,650 test tuples.
Since the answer is free-form text, the evaluation
metrics of choice are BLEU (Papineni et al., 2002)
and ROUGE-L (Lin, 2004). To apply the same
RC model to both SQuAD (where answers are
text spans in P ) and MS MARCO (where answer
are free-form text), we search for spans in MS
MARCO’s passages that maximizes the ROUGE-
L score with the raw free-form answers. Our train-
ing data uses these spans as labels, but we evalu-
ate our model with respect to the raw free-form
answers; this has an upper bound of 94.23 BLEU
and 87.53 ROUGE-L on the dev set. By this con-
struction, there are multiple number of passages to
read for each question, but the answer span might
only involve a few passages (i.e. the ones that in-
clude the max ROUGE substring). We describe
techniques to handle this case in Section 3.2.

3 Model: ReasoNet++

The reading comprehension task involves a ques-
tion/query Q = {q0, q1, ..., qm−1} and a passage
P = {p0, p1, pn−1} and aims to find an answer
span A = 〈astart, aend〉 in P . Here, m and n
denote the number of tokens in Q and P , respec-
tively, while astart and aend indicate the indices
of tokens in P . The learning process for reading
comprehension is to learn a function f(Q,P ) →
A trained on a set of tuples 〈Q,P,A〉.
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Figure 1: Architecture of ReasoNet++: The embedding/encoder layers compute representations for the
question Q and the passage document P . The aggregation layer uses co-attention to compute question-
aware passage information and passage-aware question information. Then a GRU combines these infor-
mation into memory cells and feeds them to the output layer. The output layer models the multiple-turn
reasoning mechanism, where intermediate results are stored in St and the answer is generated only when
the termination signal is triggered. Each St is a recurrent network state and models one turn of reasoning.

Our model ReasoNet++, is an extension of Rea-
soNet (Shen et al., 2016) with three enhancements:
(1) In the input layer, we added character and let-
ter 3-gram embeddings to improve robustness to
rare words. (2) We implemented co-attention (Seo
et al., 2016) in the aggregation layer to focus on
relevant words in both Q and P . (3) For the
MS MARCO task, which needs to handle multiple
passages, we incorporated an extra passage ranker
component. The architecture is shown in Figure 1.
In brief, the embedding/encoder layers first build
representations ofQ and P . The aggregation layer
uses co-attention to fuse information from the Q-
P pair. The output layer is a recurrent net that
maintains intermediate state and dynamically de-
cides at which turn to generate the answer.

3.1 Detailed description of ReasoNet++
Embedding Layer: We adopt three types of em-
beddings to represent input word tokens in Q and
P . For word embeddings, we use pre-trained
GloVe vectors (Pennington et al., 2014). To ad-
dress the out-of-vocabulary problem, we also in-
clude character and letter 3-gram embeddings.
Character embeddings are fed into a convolutional
neural network (CNN) as in (Kim, 2014), then
max-pooled to form a fixed-size vector for each
token. For letter 3-gram embeddings, we follow
Huang et al. (2013) by first hashing each word as
a bag of letter 3-gram, then feeding them into an-
other CNN. The concatenation of all embeddings
are then fed to a two-layer Highway Network (Sri-
vastava et al., 2015). Therefore, we obtain the
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final embedding for the words in Q as a matrix
Eq ∈ Rd×m, and words in P as Ep ∈ Rd×n,
where d is the dimension of the embedding.

Encoding Layer: On the top of embedding
layer, we utilize a bidirectional Gated Recur-
rent Unit (GRU), a variety of the Long Short-
Term Memory Network (LSTM) (Hochreiter and
Schmidhuber, 1997), to encode the words in con-
text. We obtainHq ∈ R2d×m as the representation
of Q and Hp ∈ R2d×n as the representation of P .

Aggregation Layer: In this layer, we construct
the memory, a summary of information from both
the Q and P , for each word in P . A co-attention
mechanism (Seo et al., 2016), which attends to Q
and P simultaneously, is applied by first comput-
ing an alignment matrix in two directions: from Q
to P and from P to Q. The alignment matrix C
measures the similarity between Q and P :

C = fmatch(Hq, Hp) ∈ Rm×n (1)

The element at i-th row and j-th of the align-
ment matrix, Cij , indicates the similarity between
i-th word in the question and j-th word in the
passage. In detail, Cij = fmatch(H

q
:i, H

p
:j) is a

trainable scalar function that measures the simi-
larity between two input vectors, Hq

:i, which is
the i-th column vector of Hq, and Hp

:j , which is
the j-th column vector of Hp. We parameterize
fmatch(a, b) = wTC [a; b; a ◦ b], where ◦ denotes
the Hadmard product, [; ] indicates vector concate-
nation across rows, and wC ∈ R6d is a trainable
weight vector. We normalize C row-wise to pro-
duce the attention weight across the passage for
each word of the question:

Cq = softmax(C) ∈ Rm×n. (2)

To measure which context words in the P have the
closest similarity to the words in the Q, we define
an attention weight on the words in passage as:

cp = softmax(maxcol(C))T ∈ Rn. (3)

The final context representation of the P is:

U = fagg(Hp, HqCq,
i=m−1∑
i=0

Hp
:ic
p) ∈ R8d×n.

(4)
In our experiment, we define fagg(B,C,D) =
[B;C;B ◦ C;B ◦ D]. Note that B,C,D are
matrices with the same dimension, ◦ denotes
the Hadmard product and ; indicates matrix con-
catenation across columns. Note that since

Hp, HqCq,
∑i=m−1

i=0 Hp
:ic
p are all 2d by n matri-

ces, U is a 8d by n matrix. Finally, to incorporate
the full context, the “memory cells” of the passage
are computed by a bidirectional GRU on top of U :

Mp = BiGRU(U) ∈ R2d×n (5)

Output Layer: This layer dynamically decides
when to stop reasoning and output the answer. A
recurrent neural network (Rumelhart et al., 1986;
Elman, 1990) is adopted to maintain the states of
the reasoning process. Formally, the t-th time step
of inference state is denoted as St, and the next
state is defined by St+1 = GRU(St, Xt). Note
that the Xt is an attention vector generated based
on the current state and the memory of the pas-
sage: Xt = fa(St,Mp) as in (Shen et al., 2016).
Specifically, the attention score at,i on a memory
vector mi ∈ Mp given a state St is computed as
at,i = softmaxi=1,...,|Mp|λcosine(w1mi, w2St),
where λ is set to 10 in our experiments and the pro-
jection matrices w1 and w2 map the memory vec-
tor and state into the same space, they are learned
during training. The attention vector Xt can be
written as Xt =

∑|M |
i at,imi. The initial state S0

of the inference is from the encoding representa-
tion of the question (we pick the last state of the
forward GRU and the backward GRU in the Hq).

The termination gate will produce a stochastic
random variable according to the current inference
state: Tt ∼ p(·|ft(St)), where ft is modeled by a
2d×10×10×10×1 feed-forward neural network.
Note Tt is a binary random variable: if Tt is true,
the recurrent net will stop and the answer model
will execute; otherwise it will generate an atten-
tion vector Xt+1 and update the next state St+1.

The answer module needs to output a span in
passage. We do this with two feedforward net-
works, one predicting the start point of the span
and the other predicting the end point, so predicted
answer at turn t is at = (yts, y

t
e):

yts = softmax(wTs [Mp, (wTpsM
p) ◦ St]) (6)

yte = softmax(wTe [Mp, (wTpeM
p) ◦ St]). (7)

wherews, we, wps andwpe are trainable model pa-
rameters. Since the termination state is discrete
and is not connected to the final output directly, we
use the Contrastive Reward method (Shen et al.,
2016) inspired by deep reinforcement learning
(Weissenborn, 2016; Mnih et al., 2014) for train-
ing.
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3.2 Passage ranking extension

The MS MARCO dataset provides multiple pas-
sages per question/query. Our architecture in Fig-
ure 1 is built for a single passage-question pair,
so we need to extend it to handle multiple pas-
sages. We propose a solution using passage rank-
ing. Assume there are J passages, P (1), . . . , P (J).
First, our model runs independently on every
(P (j), Q)j=1,...,J pair, generating J different an-
swer spans (empty spans are possible). Then, we
multiply the probability of each answer span with
a score r(P (j), Q) provided by a passage ranker,
and output the answer with the maximum com-
bined score, similar to EpiReader (Trischler et al.,
2016). The passage ranker is a information re-
trieval model (Shen et al., 2014).1 It can be trained
on the same RC data, where documents with an-
swers are considered relevant and those that do not
are considered irrelevant.

All our MS MARCO results use the passage
ranking extension, unless otherwise mentioned.

4 Experiments
We seek to answer the following questions:

1. Is multiple-turn reasoning beneficial for RC?
(Section 4.1)

2. What types of questions/answers benefit most
from multiple-turn reasoning? (Section 4.2)

3. How many turns are employed in practice
by ReasoNet++, and what are the implica-
tions for dynamic versus fixed strategies in
multiple-turn reasoning? (Section 4.3)

In addition to the above analyses, we also
demonstrate that our ReasoNet++ achieves state-
of-the-art results (Section 4.4) and discuss some
ablation studies on model variants (Section 4.5).2

1Our implementation first hashes words into letter 3-gram
(50K dimension), then use a CNN with 256 hidden nodes
and the size of window 5, and lastly optimizes the similarity
between the vector representations of P and Q.

2A note on hyperparameters: Throughout all experiments,
we use NLTK to tokenize P and Q, and employ pre-trained
case-sensitive 300 dimension GloVe embeddings3. A one
layer CNN with 100 dimensions and window size of 5 is
used to compute the character embeddings; a one layer CNN
with 100 dimension and window size of 1 is used for let-
ter 3-gram embeddings. The size of hidden nodes of all
GRU’s is set to 128. A five layers feedforward network
(2d(256)× 10× 10× 10× 1) is used for the terminate net-
work and the maximum number of reasoning turns in the re-
current net is capped at 5. To avoid overfitting, we adopt 0.15
dropout rate over the letter 3-gram and character embeddings,

SQuAD MS MARCO
Single model EM/F1 Score BLEU/ROUGE-L
Single turn 67.8/76.7 33.65/36.54
Fixed 5-turn 70.1/78.9 34.93/36.67
ReasoNet++ 70.8/79.4 38.62/38.01

Table 2: Main results—Comparison of sin-
gle turn to multiple turn reasoning strategies on
SQuAD and MS MARCO dev sets. Both multiple
turn strategies (fixed at 5, or dynamically decided
based on ReasoNet++) outperform Single turn in
all metrics. The dynamic strategy further improves
upon the fixed multiple 5-turn strategy.

Figure 2: Case study from SQuAD of answers
from multiple turns. In Turn 1, the model identi-
fies a span similar to the question. This is refined
and at Turn 3 a better answer becomes attainable.

4.1 Is multiple-turn reasoning beneficial?

In summary, yes. We compare three systems:

Single turn: the RC model only has one turn of
reasoning. This corresponds to a model like Fig-
ure 1 without termination nodes, where the output
layer always stops at St=1.

Fixed 5-turn: the RC model runs 5 turns of itera-
tive attention. This is Figure 1 without termination
nodes, where output layer always stops at St=5.

ReasoNet++ (Dynamic multiple-turn reason-
ing): this is the RC model in Figure 1, which can
decide from 1 to T turns based on the termination
probability on each Q-P pair at test time. We set
T = 5 to compare with the Fixed 5-turn system.

The main results are shown in Table 2. We ob-
serve that both multiple turn strategies (either fixed
at 5 turns, or dynamically decided based on Rea-
soNet++) outperform the single turn system in all
metrics. The dynamic strategy further improves
upon the fixed multiple 5-turn strategy. For ex-

and 0.25 dropout rate (Srivastava et al., 2014) over GRU net-
work. The model is optimized with AdaDelta (Zeiler, 2012)
with an initial learning rate 0.5.
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(a) SQuAD

(b) MS MARCO

Figure 3: Score breakdown by answer length

ample, the F1 score on SQuAD improves from
76.7 to 78.9 when increasing the number of turns
from 1 to 5, and further improves to 79.4 with
dynamic multiple turns. On MS MARCO, we
see a ROUGE improvement from 36.54 (1-turn)
to 36.67(5-turn) and 38.62 (dynamic multi-turn).
These results convincingly show that multiple-turn
reasoning is helpful for SQuAD and MS MARCO
tasks. Figure 2 shows a case study of how answers
improve with each turn.

4.2 What types of questions/answers benefit
most from multiple-turn reasoning?

We find that improvements from multiple-turn rea-
soning is generally seen across the board, but
particularly helps questions with longer answers.
Figure 3 shows the score breakdown of Table 2
according to answer length (# of words). For
SQuAD, both ReasoNet++ and Fixed 5-turn out-
perform Single turn for all answer lengths, and
ReasoNet++ outperforms Fixed 5-turn for answer
lengths > 3. For MS MARCO, ReasoNet++ out-
performs Fixed 5-turn for answer lengths > 5;
on the other hand, there is almost no difference
among systems for short answers (0-4). We hy-

(a) SQuAD

(b) MS MARCO

Figure 4: Score breakdown by query/answer type

pothesize there is a correlation between answer
length and the difficulty of the question; for dif-
ficult questions there may be more potential for
multiple-turn reasoning to improve results.

We also visualize the score breakdown accord-
ing to question/answer type (Figure 4). For MS
MARCO, the questions are annotated by the type
of the correct answer: description (e.g. Q: “How
to cook a turkey”), numeric (e.g. Q: “Xbox one
release data”), entity, location, person. There is no
such annotation for the entire SQuAD dev data,
but we can classify questions by their first word:
What, Who, When, Which, etc. Similar to the
answer length results, we observe that multiple-
turn reasoning outperforms single turn for SQuAD
across the board, regardless of question type. For
MS MARCO, ReasoNet++ gave large improve-
ments over single turn in particular for descrip-
tion and location types. Descriptions tend to be
lengthy, so this again corroborates our hypothesis
that there may be more potential gains for ques-
tions requiring long answers.
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Figure 5: Distribution on the number of turns by
ReasoNet++on the SQuAD dev set. Note that start
points are often decided before end points, and
most answer spans are generated after 3 turns.

4.3 How many turns of reasoning are
employed in practice?

We are interested in understanding the number of
turns determined by ReasoNet++. When does it
decide to terminate? In Figure 5, we plot the dis-
tribution of turns until the model decides on start
points and end points (of the answer span).

First, note the start point is often decided before
the end point, e.g. the start is already determined
at turn 3 for approximately 20% of the questions ,
but the end does not get predicted until turn 4 or 5.
Intuitively, we think it is easier to first identify the
start of an answer, then use that signal as interme-
diate state St to identify the end point.

Second, there is almost no termination at turns 1
or 2, implying the model prefers more iterations of
reasoning. Most terminations are done at step 4 or
5, which explains the relatively close performance
results between Fixed 5-turn and ReasoNet++.

4.4 Comparison with state-of-the-art

Our ReasoNet++ model, which is an extension
of ReasoNet (Shen et al., 2016), achieves scores
competitive with state-of-the-art results. The offi-
cial leaderboard results are shown in Table 3 (MS
MARCO) and Table 4 (SQuAD) Results are di-
vided by whether we use an individual model or
an ensemble of models. For SQuAD, the Rea-
soNet++ ensemble model achieves the best EM
and F1 test score among all published works,
and places second if we include r-net. Simi-
larly, the ReasoNet++ individual model results are
in the top 1 or 2 ranks, competitive with pub-
lished works like Zhang et al. (2017) and Weis-

System
BLEU/ROUGE-L

Dev Set Test Set
ReasoNet++ Individual 38.62/38.01 39.86/38.81
Match-LSTM -/- 40.72/37.33
FastQA Ext 35.0/34.4 33.93/33.67
FastQA 34.9/33.0 33.99/32.09
Human Performance -/- 46/47

Table 3: Official MS MARCO leaderboard per-
formance on April 5, 2017.

senborn et al. (2017). For MS MARCO (Table 3),
ReasoNet++ ranks first in test ROUGE and sec-
ond in test BLEU (after Match-LSTM (Wang and
Jiang, 2016)). Note that some of the models on
the leaderboard use multiple-turn reasoning, while
others do not. But we refrain from drawing con-
clusions about multiple-turn reasoning by compar-
ing across models, due to other confounding vari-
ables, e.g. different embeddings and network ar-
chitectures.

4.5 Ablation studies and model variants

We now present some ablation studies to
demonstrate the differences between our Rea-
soNet++ and the original ReasoNet (Shen et al.,
2016) in which we are based on.4

First, Table 5 shows the improvement from
adding sub-word level modeling to ReasoNet,
which only used word embeddings. We observe
marked improvements of update number +1.1 F1
in SQuAD and +0.9 ROUGE in MS MARCO.
Although these improvements are not as large as
those we achieved with multiple-turn reasoning,
they are are still considerable and imply that robust
representations of words is an important building
block to strong RC models.

Secondly, Table 6 shows the impact of passage
ranking—this is only relevant for MS MARCO,
which contains multiple passages for each ques-
tion/query. Recall that the RC model needs to read
approximately 10 passages to answer each query,
and on average only one or two passage contain
answer spans. ReasoNet++ extracts answer spans
from each passage independently, then combines
with an IR model to output the final answer. If we
assume oracle ranking from the IR model, we can
achieve 62 BLEU / 63 ROUGE, suggesting that

4Due to time constraints, we only perform ablation studies
on the embedding and passage ranking enhancements, and
leave the study of the impact of co-attention to future work.
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Ensemble model results: Dev Set (EM/F1) Test Set (EM/F1)
r-net* -/- 76.9/84.0
ReasoNet++ (Ensemble model) 75.4/82.9 75.0/82.6
BiDAF (Seo et al., 2016) 73.3/81.1 73.7/81.5
Multi-Perspective Matching (Wang et al., 2016) 69.4/78.6 73.8/81.3
Dynamic Coattention Networks (Xiong et al., 2016) 70.3/79.4 71.6/80.4
Match-LSTM with Ans-Ptr (Wang and Jiang, 2016) 67.6/76.8 67.9/77.0
Fine-Grained Gating(Yang et al., 2017) 62.4/73.4 62.4/73.3
Individual model results:
r-net* -/- 72.3/80.7
jNet (Zhang et al., 2017) -/- 70.6/79.8
Ruminate Reader* -/- 70.6/79.5
ReasoNet++ (Individual model) 70.8/79.4 70.6/79.36
Document Reader* -/- 70.7/79.35
FastQAExt (Weissenborn et al., 2017) 70.3/78.5 70.8/78.9
RaSoR (Lee et al., 2016) 66.4/74.9 70.0/77.7
BiDAF (Seo et al., 2016) 67.7/77.3 68.0/77.3
Iterative Co-attention Network* -/- 67.5/76.8
Dynamic Coattention Networks (Xiong et al., 2016) 65.4/75.6 66.2/75.9
Match-LSTM with Bi-Ans-Ptr (Wang and Jiang, 2016) 64.1/73.9 64.7/73.7
Attentive CNN context with LSTM* -/- 63.3/73.5
Dynamic Chunk Reader (Wang and Jiang, 2016) 62.5/71.2 62.5/71.0
LR baseline (Rajpurkar et al., 2016) 40.0/51.0 40.4/51.0
Human Performance 80.3/90.5 82.3/91.2

Table 4: Official SQuAD leaderboard performance on April 5, 2017. Asterisk * denotes unpublished
works. Results are sorted by Test F1.

System
SQuAD MS MARCO

EM/F1 Score BLEU/ROUGE
word+char+3gram 70.8/79.4 38.62/38.01
word+char 70.4/79.1 38.37/37.91
word 69.9/78.3 37.77/37.14

Table 5: Comparison of input embeddings:
the addition of character (char) and letter tri-
gram (3gram) embeddings to word embeddings
(word) clearly improve results on SQuAD and MS
MARCO development sets.

BLEU/ROUGE-L
Oracle passage selection 62.83/63.17
Passage ranking 38.62/38.01

Table 6: Effect of multiple passages per query in
MS MARCO.

better passage ranking models (e.g. via joint train-
ing with RC models) is fruitful as future work.

5 Conclusion

This paper empirically investigates the perfor-
mance of single-turn and multiple-turn reasoning
on two challenging reading comprehension tasks:
SQuAD and MS MARCO. To perform the anal-
ysis, we adopt the neural network model of Shen
et al. (2016), which employs iterative attention and
uses reinforcement learning to dynamically con-
trol the number of turns. We find that multiple-
turn reasoning outperforms single-turn reasoning
for all question and answer types; further, we ob-
serve that enabling a flexible number of turns gen-
erally improves upon a fixed multiple-turn strat-
egy. While our analysis is based on a single
model, we believe the conclusions will be valuable
for most RC methods using attention-based neu-
ral network. Our model extension to (Shen et al.,
2016) achieves results competitive to the state-of-
the-art on both tasks. As future work, we plan to
investigate the impact of even deeper layers of rea-
soning and explore fast training methods to make
such methods practical for large-scale datasets.
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Abstract

This paper presents a hybrid approach to
the verification of statements about his-
torical facts. The test data was collected
from the world history examinations in
a standardized achievement test for high
school students. The data includes var-
ious kinds of false statements that were
carefully written so as to deceive the stu-
dents while they can be disproven on the
basis of the teaching materials. Our sys-
tem predicts the truth or falsehood of a
statement based on text search, word cooc-
currence statistics, factoid-style question
answering, and temporal relation recog-
nition. These features contribute to the
judgement complementarily and achieved
the state-of-the-art accuracy.

1 Introduction

The proliferation of social media in the Internet
drastically changed the status of traditional jour-
nalism, which has been an indispensable build-
ing block of modern democracy. News are now
produced, propagated, and consumed by people in
quite a different way than twenty years ago (Pew
Research Center, 2016). The downside is that fake
news and hoaxes spread through the social net-
work as quickly as those from trustable sources.
A mechanism for fact-checking, i.e., finding a sup-
port or disproof of a claim in a credible informa-
tion source, is thus needed as a new social infras-
tructure.

The sheer amount of the information flow as
well as the decentralized nature of the social me-
dia calls for support to the fact-checking by infor-
mation technology (Cohen et al., 2011a,b). Al-
though its full automation seems to be beyond cur-
rent technology (Vlachos and Riedel, 2014; Has-

Context: ... During the period of the Carolingian
dynasty of Francia, the Roman Catholic Church
preached that the religious cleansing of sins was
necessary in order to achieve salvation after death. ...
Instruction: From (1)-(4) below, choose the one correct
sentence concerning events during the 8th century when
the kingdom referred to in the underlined portion was
established.
Choices:

(1) Pepin destroyed the Kingdom of the Lombards.
(2) Charlemagne repelled the Magyars.
(3) The reign of Emperor Taizong of Tang was called

the Kaiyuan era.
(4) The reign of Harun al-Rashid began.

Figure 1: Example of a True-or-False question

san et al., 2015), even its partial automation would
greatly enhance the power of the current fact-
checking services.

As a step towards this direction, we take up the
automatic verification of a statement about histori-
cal facts against credible information sources. The
test statements are collected from the world his-
tory examinations in a standardized achievement
test for high school students in Japan (the National
Center Test for University Admissions, NTCUA).
Approximately 60% of the NCTUA world history
exams are “True-or-False” questions. A question
in this format consists of a paragraph of text that
provides the context of the question, an instruc-
tion sentence, and four choices (Fig. 1)1. One has
to choose a correct or incorrect statement from the
four choices according to the instruction.

The test statements in the True-or-False ques-
tions are thoroughly tuned and checked by the ex-
amining board so that they are not too easy nor
too difficult for human, and their truth or false-
hood can be objectively determined on the basis

1The questions are posed in Japanese but we use English
in the examples for the sake of readability.
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of the teaching materials written according to the
official curriculum guidelines. The automatic veri-
fication of these statements hence serves as an ide-
alized but still difficult test-bed for the basic fact-
checking technologies.

In previous studies, three main approaches
for answering True-or-False questions were pre-
sented: passage retrieval (Kano, 2014), conversion
to factoid-style question answering (Kanayama
et al., 2012), and textual entailment recogni-
tion (Tian and Miyao, 2014). In these approaches,
the fact-checking task is directly converted to an-
other, existing problem setting. We however show
that the test statements in the True-or-False ques-
tions have compound characteristics through an
analysis of past exams (§3). Thus, direct conver-
sion alone does not suffice for solving this task sat-
isfactorily, because each method is built on its own
problem setting, which does not fully cover the
variety of the test statements, especially the false
ones. In this work, to overcome this difficulty, we
attempt to decompose the problems according to
our observations of past exams and design a solver
that integrates the ideas behind the existing meth-
ods as the features of a statistical classifier (§4).
Experimental results show that our decomposition
of the task of historical fact-checking is success-
ful in that the features work complementarily and
the solver achieved the state-of-the-art accuracy
(§6). An analysis of the remaining errors indicates
a room for further improvement by the incorpora-
tion of linguistic and domain-specific knowledge
into the system (§7).

Our essential contributions to this problem are
as follows.

• Careful observations of past exams were con-
ducted, based on which hypothetical charac-
terizations of the task were formulated. Ev-
idences were then collected to support these
hypotheses.

• According to the observed evidences, five
features that range over text search, statistics,
and logical entailment were designed. They
were combined as the features of a classi-
fier and yielded state-of-the-art results on the
task.

2 Related Work

Fact-checking can be framed as a question-
answering (QA) task in a broad sense. How-
ever, it has not been studied as intensively as other

QA tasks such as factoid-style question-answering
(Ravichandran and Hovy, 2002; Bian et al., 2008;
Ferrucci, 2012). Kanayama et al. (2012) pro-
posed to convert a fact-checking question into
a set of factoid-style questions. In the conver-
sion, the named entities in a test statement are in
turn replaced with an empty slot. The answer,
i.e., the most appropriate word that fills the slot,
was obtained by an open-domain factoid QA sys-
tem. They define a confidence score that decreases
when the QA system’s answer differs from the hid-
den named entity (i.e., the one replaced with the
empty slot). They experimented the idea by manu-
ally converting the test statements to factoid ques-
tions. We follow their idea in designing one of
the features. We however fully automatized the
conversion and defined another confidence score
based on a simple document retrieval system in-
stead of a full-fledged factoid QA system (§4.2.2).

Textual entailment recognition (RTE) (Dagan
et al., 2013) has been extensively studied in the
field of language processing. RTE can be seen as
a quite restricted form of fact-checking where two
sentences t and h are given and a system judges
whether t is an evidence of (i.e., it entails) h or
not. Tian and Miyao (2014) showed the effective-
ness of their logic-based RTE system on the True-
or-False questions of NCTUA history exams cast
in the form of RTE (i.e., a test statement and an
evidence sentence are given to the system).

Recent effort pursued a more realistic task set-
ting for RTE, in which a system is given a sentence
h and a large number of candidates of its evidence
{ti} that are drawn from a document collection in
advance. The system tests the entailment relation
between each of tis and h (Bentivogli et al., 2010,
2011). In the RITE-VAL shared task in NTCIR-
2014 conference (Matsuyoshi et al., 2014), the
participating RTE systems were evaluated both in
the traditional RTE task setting and one that fully
integrates the document retrieval and entailment
recognition (i.e., only h and a document collec-
tion are given to the systems). The test sentences
(i.e., hs) included those taken from NCTUA world
history exams and hence the latter task setting is
close to ours. The performance degradation be-
tween the two task settings was around 14% (ab-
solute) for the case of the best-performing system.
It indicates the difficulty of our task setting of the
historical fact-checking.

In a series of recent papers, elementary science
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questions are used as a benchmark of AI systems
(Khot et al., 2015; Jansen et al., 2016; Clark et al.,
2016; Khashabi et al., 2016). The questions, all in
the form of multiple-choice questions, were col-
lected from 4th grade science tests. In the majority
of the questions, the choices are nouns rather than
sentences as in the following example taken from
(Khashabi et al., 2016):

Q. In New York State, the longest period
of daylight occurs during which month?
(A) December (B) June (C) March (D)
September

The majority of them can hence be regarded as a
factoid-style question with hints (i.e., the answer is
one of the four). Clark et al. (2016) and Khashabi
et al. (2016) demonstrated that the system per-
formance was boosted by multi-step inference that
combines, e.g., taxonomic knowledge (“N.Y. is in
the northern hemisphere”) and general law (“The
summer solstice in the northern hemisphere is in
June”). A special kind of logical relation, tempo-
ral inclusion, is considered in our system (§4.3).
The intention is however on the detection of the
falsity of a statement that is not in a temporal in-
clusion relation with an evidence sentence. The
feature based on the conversion to factoid ques-
tions is also designed for the detection of false-
hood by finding a counter-evidence. The different
orientations, i.e., proof of a scientific fact vs. dis-
proof of a historical non-fact, reflect the different
natures of the problems.

3 Observation of Task

We examined past True-or-False questions prior
to implementing the solver. The observation tar-
gets were the NCTUA world history exams 2005,
2007, 2009, 2011, and 2013s (supplementary
exam). We used four sets of high school textbooks
of world history and Wikipedia as knowledge re-
sources.

From the observations, we formulated three hy-
potheses as follows. First, to verify most of the test
statements (i.e., the choices), it is not necessary
to gather several evidence sentences across differ-
ent paragraphs in the resources; usually there is
sufficient information in a local portion, such as a
paragraph or a sentence in a knowledge resource.
This is a natural consequence of the fact that most
of the test statements describe a single historical
event. Second, the knowledge resources include a

Knowledge resource Count (ratio)
Textbook 111/137 (0.81)
Wikipedia 118/137 (0.86)
Textbook + Wikipedia 129/137 (0.94)

Table 1: Ratio of correct statements that can be
evidenced by a single paragraph in the knowledge
resource

Count (ratio)
NE change 163 / 275 (0.59)
Time change 47 / 275 (0.17)
NE or Time change 210 / 275 (0.76)

Table 2: Ratio of incorrect statements in which
one named entity or time expression is the reason
of the falsity

more detailed time expression than the questions,
e.g., “1453” as compared to “15th Century,” and
“1945” as compared to “1940s.” Third, the fal-
sity of many incorrect statements is attributed to
a single named entity (NE) or time expression in
them. For example, Choice (2) in Fig. 1, “Charle-
magne repelled the Magyars.” is an incorrect state-
ment created by changing “Avars” to “Magyars”
in a correct sentence “Charlemagne repelled the
Avars.”

To support these hypotheses, we gathered ev-
idences from past exams. First, we examined
the correct statements (137 in total) to determine
whether: (1) a single paragraph in the knowledge
resources includes all the NEs in the statement and
(2) the knowledge resources include a more de-
tailed time expression than the statement. Table 1
shows that, in most cases, a single paragraph in-
cludes sufficient information to allow the solver to
verify the truth of a statement. Among the 137 cor-
rect statements, 48 of them included a time expres-
sion. The knowledge resources provided a more
detailed time for 45 out of these 48 statements
(94%). It is thus important to resolve the level of
detail of the time expressions. Next, we counted
the incorrect statements (275 in total) which can
be turned into a correct one by changing one NE
or time expression in it. Table 2 shows that to de-
tect the falsity of an incorrect statement, detection
of the changed NE is crucial.

4 Features and their Combination

Based on the above observations, we designed the
following five features to score the confidence of
truth. This section describes them in turn and ex-
plains how they are combined as the features of a
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statistical classifier.
These features are defined using several statis-

tics collected on a set of documents. We cre-
ated three document sets, Ds, Dp, and Dm, all
from Wikipedia and four high school textbooks of
world history, as follows. We first segmented the
Wikipedia pages and the textbooks in two ways:
one into a set of sentences Ds and the other into a
set of paragraphs Dp. Dm is the union of Ds and
Dp.

4.1 Text Search Feature
The observations revealed that, in most cases, the
NEs in a correct statement are fully included in
one paragraph or one sentence in the knowledge
resources. The text search feature of the statement
S is defined as the number of documents in Dm

which include all NEs and content nouns in S. The
solver expects that the greater the number is, the
more likely the statement is true.

4.2 Statistical Features
The observations showed that an incorrect state-
ment is created mainly by changing one NE in a
correct sentence. To detect such a conversion, the
solver estimates the strength of relatedness among
the NEs in the statement. The solver uses two sta-
tistical features, which are respectively defined us-
ing global and local statistics collected on the doc-
ument set.

4.2.1 Pointwise Mutual Information (PMI)
Feature

The first statistical feature is PMI (Church and
Hanks, 1989), which is defined for a pair of words
as,

pmi(w1, w2) ≡ log
p(w1, w2|Ds)

p(w1|Ds)p(w2|Ds)
,

where p(wi|Ds) denotes the probability of observ-
ing the word wi in a sentence that is randomly cho-
sen from Ds and p(w1, w2|Ds) denotes the proba-
bility of observing both w1 and w2 in a randomly
chosen sentence. A low PMI score indicates the
independence of the two words. The solver ex-
pects that a low PMI score indicates that two NEs
are not related to each other and suggests that the
statement is incorrect.

The solver calculates PMI for the pairs of an
NE and the subsequent NE or a content word that
appears before the subsequent NE in the state-
ment, because the two words positioned close to

𝑝 Avars | D(S−𝑤) =
1 ⋅ 𝑑𝑠 𝑑1, 𝑆−𝑤 + 0 ⋅ 𝑑𝑠 𝑑2, 𝑆−𝑤 +⋯+ 1 ⋅ 𝑑𝑠 𝑑𝑘 , 𝑆−𝑤

𝑍

Charlemagne repelled the  Avars near Regensburg.

Test statement:
hidden NE: w = “Avars”

Query: S-w = {Charlemagne,repelled, the, near, Regensburg} 

Document
collection

Search Engine

… Avars …
…

d1
… Magyars…
…

d2
… Avars …

…

dk

…

Search results:

D(S-w) = { }
“Avars” ∈ 𝑑𝑖 ? yes yesno

Figure 2: Calculation of the probability
p(w|D(S−w)) of finding w in the search re-
sults D(S−w)

each other tend to have strong relation. We write
WP(S) for the set of such pairs of words in S ex-
cluding the pairs of synonymous words. The final
PMI feature of the statement S is defined by the
average of pmi(wi, wj).

pmi(S) =
1

|WP(S)|
∑

(wi,wj)∈WP(S)

pmi(wi, wj).

4.2.2 Virtual Question Answering (VQA)
Feature

The second feature is based on the result of a
search that approximates the process of factoid
QA. It directly attempts to detect the changed
word in an incorrect statement (Fig. 2). The solver
hides each NE w in a statement S in order and
makes a VQA query S−w, which is the set of
words in S excluding w. If the statement is cor-
rect, the hidden word is expected to be found in
the search results of the query S−w at high proba-
bility.

For a hidden NE w, we first calculate the ra-
tio vqa(w) of the probabilities of finding w in the
search results D(S−w) of the query S−w and in a
randomly chosen document in the collection Dm:

vqa(w) = log
p(w|D(S−w))

p(w|Dm)
.

In the numerator, we consider the probability of
finding w in a document d ∈ D(S−w) that is sam-
pled according to the confidence on the search re-
sult d against the query S−w, rather than assuming
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a uniform distribution on D(S−w):

p(w|D(S−w)) =∑
d∈D(S−w)

[w ∈ d] · p(d|D(S−w)), (1)

where [w ∈ d] is the binary indicator function that
takes value 1 if d includes w, and 0 otherwise.
The confidence factor p(d|D(S−w)) is assumed to
be proportional to a document score ds(d, S−w)
and we only consider top-k search results. That
is, letting di denote the document ranked i-th in
the search results according to ds(d, S−w), we as-
sume

p(di|D(S−w)) ={
ds(di, S−w) · Z−1 (1≤ i≤k)
0 (k<i)

(2)

where Z =
∑k

j=1 ds(dj , S−w) is the normaliza-
tion factor. From (1) and (2), we have

p(w|D(S−w)) =
k∑

i=1
w∈di

ds(di, S−w)∑k
j=1 ds(dj , S−w)

.

We set k = 30 in our experiments.
The document score ds is defined by Term

Frequency-Inverse Document Frequency (TF-
IDF), which is written as

ds(d, S−w) =
1

ℓ(d)

∑
w′∈S−w

tf(w′, d) · idf(w′),

where tf(w′, d) is the frequency of the word w′ in
the document d, idf(w′) is the inverse document
frequency of the word w′, and ℓ(d) is the length of
d.

The VQA feature uses document-local statis-
tics (except for IDF) and counts only in the top-
k search results. However, in this feature, all the
query words jointly contribute through the doc-
ument score ds, in contrast to the case of PMI
where only the pairwise relations are considered.
The final VQA feature is defined as the average of
vqa(w).

vqa(S) =
1

|NE(S)|
∑

w∈NE(S)

vqa(w),

where NE(S) is the set of NEs in the statement S.

4.2.3 Length Feature
We also use the length of the statement (number of
words) as a feature. PMI and VQA features of a
long statement tend to have low values regardless
of the correctness of the statement. The length fea-
ture adjusts this bias.

4.3 Time Feature (Logical Entailment)

The observations revealed that the level of detail of
the time expressions in the choice sentences differs
from that in the knowledge resources. The time
information is a key factor of historical events.
Therefore, the solver needs a more rigorous in-
ference about temporal relations than about the
matching of other NEs. We implemented a module
that logically determines the inclusion relation be-
tween two time expressions. The time expressions
in the statements and the knowledge resources are
extracted and converted to ranges of date (e.g.,
“19th century” → 1801-01-01 ... 1900-12-31) by
NormalizedNumexp2. If the range of a time ex-
pression in a statement includes one in the knowl-
edge resources, they are judged as “matched”. The
solver hides the time expression t from the state-
ment S and makes the VQA query S−t. The time
feature of the statement S is defined as the number
of documents in the top-k search results of query
S−t (k = 30) that include a time expression that
matches the hidden time expression t.

4.4 Combination of Features (Machine
Learning)

The solver combines the above five features us-
ing statistical binary classifiers. In our settings,
N training samples {(x1, y1), . . . , (xN , yN )} are
given, where xi is a five-dimensional feature vec-
tor and yi ∈ {1, 0} indicates the truth or falsehood
of the sample. We used the “scikit-learn” toolkit3

and created an ensemble of three classifiers, by
simply averaging their [0, 1] probabilistic outputs
to reduce variance of each classifier (Pedro, 2012).
As the classifiers, we used logistic regression, gra-
dient boosting classifier, and support vector ma-
chine. The hyperparameters of each classifier are
determined by cross validation.

5 Resources and Common Modules

This section describes additional modules that
were used in the experiments described in §6.

2
https://github.com/nullnull/normalizeNumexp

3
http://scikit-learn.org/stable/
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Dataset # test statements %correct %incorrect
DEV 412 33.3% 66.7%
TEST 1112 35.3% 64.7%

Table 3: Size of development and test data

5.1 Custom Dictionary
We use a named entity dictionary and a synonym
dictionary, both of which were manually com-
piled based on textbooks and Wikipedia. The
named entity dictionary was created by mainly us-
ing the index of textbooks. In the dictionary, ap-
proximately 20,000 NEs are categorized into var-
ious classes (time, person, etc.) by human ex-
perts. The synonym dictionary was created based
on Wikipedia redirect and bracketed expressions
after NEs (e.g., “Charlemagne (Charles I)”). Ad-
ditionally, the solver uses Nihongo Goi-Taikei4,
a Japanese thesaurus, to discriminate NEs from
common nouns.

5.2 Retrieval Module
The retrieval module of the solver is based
on Apache Solr5. We used the Solr defaults
(TFIDF-weighted cosine similarity) and the Kuro-
moji Japanese morphological analyzer6 to tok-
enize Japanese sentences. As mentioned in §4, all
knowledge resources are indexed at overlapping
levels of the sentence and the paragraph, and re-
trieval is executed across fields of both levels by
means of the ExtendedDisMax Query Parser7.

5.3 Matching of Words
When two words are compared in the solver, some
suffixes are ignored to absorb orthographical vari-
ants (e.g., “Japan” and “Japanese” are considered
to be the same). The suffix list is made from high
frequency morphemes (Okita and Liu, 2014). We
examined the frequency of morphemes in the text-
books, and then from the top, if the morpheme is
a suffix of NE, we added to the list.

Additionally, if a word w in a question has a
synonym in a document retrieved from the knowl-
edge resources, the word w is considered to be in-
cluded in the document.

5.4 Complementing the Lack of Information
The truth or falsehood of a choice sentence is of-
ten indeterminable without the information pro-

4
http://www.iwanami.co.jp/hotnews/GoiTaikei/

5
http://lucene.apache.org/solr/

6
http://www.atilika.org/

7
https://cwiki.apache.org/confluence/display/

solr/The+Extended+DisMax+Query+Parser

Context: Coexistence between Christians and Muslims
was seen on the Iberian Peninsula in the Middle Ages,
...
Instruction: From (1)-(4) below, choose the most ap-
propriate sentence that describes the history of Spain in
the 20th century related to the underlined portion.
Choices:

(1) The French army suffered in guerrilla warfare in
Spain.

(2) In the Spanish Civil War, Germany and Italy
maintained a policy of non-intervention.

(3) Franco established a dictatorial regime.
(4) The Philippines were seized from it by the U.S.A.

Figure 3: Question 31 in the 2011 data set

vided in the context and the instruction. For in-
stance, (1), (3), and (4) in Fig. 3 all describe his-
torical facts but the condition in the instruction,
“in the 20th century,” turns (1) and (4) to false
since they happened in the 19th century. Mean-
while, the context and the instruction also include
irrelevant information that does not affect the truth
of the choices. For instance, the underlined por-
tion, “Iberian Peninsula,” is redundant since the
instruction asks more restrictively about “Spain.”
Furthermore, “the Middle Ages” in the context is
not relevant to any of the choices.

The instruction tends to include a condition that
applies to all choices, such as the location and the
time of the historical events described in them.
The context usually provides relevant condition
only when it is explicitly indicated so.

We utilize these observations as well as the cat-
egory of the NEs to extract only relevant keywords
from the instruction and the context. First, the lo-
cation names and time expressions are extracted
from the instruction if a choice includes no such
phrases. The NEs in the underlined portion of
the context are then extracted if the instruction
includes none of the phrases in a pre-defined set
of cue phrases, such as “related to,” that indicate
the context is not so relevant to the determination
of the truth of the choices. Finally, among the
NEs extracted from the context, we discard those
categorized as an abstract concept in the NE dic-
tionary, such as “social phenomena” and “social
role.” For the choice (1) in Fig. 3, “the 20th cen-
tury” in the instruction is extracted since (1) does
not include a time expression but “Iberian Penin-
sula” in the context is not extracted since the in-
struction refers to the underlined portion using the
cue phrase “related to.”
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Features DEV TEST
Binary T/F 4-way Binary T/F 4-way

All 80.8% 75.7% 74.2% 68.0%
-Text search 77.7% 66.0% 70.5% 60.1%
-PMI 79.6% 74.8% 73.7% 66.2%
-VQA 74.0% 64.1% 71.2% 60.8%
-Time 79.6% 75.7% 73.4% 66.9%
-Length 80.6% 75.7% 73.8% 67.3%

Table 4: Feature ablation study

Features DEV TEST
Binary T/F 4-way Binary T/F 4-way

Text search 73.8% 58.3% 71.0% 52.5%
PMI 67.7% 53.4% 66.3% 45.7%
VQA 74.8% 58.3% 70.8% 53.2%
Time 68.2% 35.0% 65.3% 28.4%
Length 66.5% 33.0% 65.3% 23.7%

Table 5: Accuracy with only one feature

6 Experiments

6.1 Experimental Setup
We exhaustively extracted the True-or-False ques-
tions from past NCTUA world history exams held
from 2005 to 2015 and evaluated the accuracy of
the true-or-false (T/F) binary predictions individ-
ually made on each of the choice sentences8. The
data was divided into two disjoint subsets, DEV

and TEST. DEV consists of the questions used
in the preliminary analysis described in §3. TEST

consists of the rest of the questions. Table 3 pro-
vides the number of the test statements (i.e., the
choice sentences) and the distributions of the cor-
rect and incorrect statements. Approximately 20%
of the questions ask to choose a false statement
in four choices, which include three correct state-
ments. For reference, we also report the accuracy
on the 4-way multiple-choice questions. The an-
swer to a multiple-choice question is the choice on
which the ensemble of the classifiers yielded the
maximum or minimum score.

For the evaluation, we adopted cross validation.
DEV and TEST were divided into 20 subsets, each
of which was taken from the questions in the same
exam. We applied 20-fold cross validation on the
subsets. We summarized the results with DEV and
TEST respectively.

6.2 Experimental Results
To evaluate the importance of each feature, we
tested two feature combination patterns. In the

8 Although the instruction sentences indicate either (i)
only one of the choices is correct (“choose the correct one”)
or (ii) only one of them is incorrect (“choose the incorrect
one”), our solver does not utilize this information in any form
when it makes binary T/F prediction.

System T/F binary acc. 4-way acc.
Kanayama et al. (2012) 79% (73/92) 65% (15/23)
This paper (VQA only) 73% (67/92) 52% (12/23)
This paper (all features) 84% (77/92) 83% (19/23)

Table 6: Comparison with manual question con-
version on NCTUA 2007 questions

first pattern, the classifiers were trained excluding
one feature (Table 4) and in the second one the
classifiers were trained with only one feature (Ta-
ble 5). These results show that the VQA and Text
search features are more important than the oth-
ers. The highest T/F judgement accuracy, 80.8%
on DEV and 74.2% on TEST, was obtained us-
ing all the features. On the DEV set, the abla-
tion of one of the five features resulted in a loss of
0.2-6.8 points in the T/F judgement accuracy and
0.0-11.6 points in the 4-way multiple-choice ac-
curacy (Table 4). It suggests that the combination
of the features is more effective for comparing the
confidence on the truth of four statements rather
than for the T/F judgement on a single statement.
Comparison of the results in Table 5 with ‘All’ in
Table 4 further supports it; the effect of combin-
ing the five features compared with the result by a
single feature is far more evident in the accuracy
on the multiple-choice format. These results show
the five features worked complementarily and val-
idates our decomposition of the task into the five
features.

Table 6 presents a comparison with Kanayama
et al. (2012)’s result based on the conversion of
T/F judgement to factoid-style questions. The test
questions were taken from NCTUA 2007 exam.
This comparison is not strict in a few regards.
First, Kanayama et al. used English translations
of the questions while we used the original ques-
tions in Japanese. Second, they manually sup-
plied the choice sentences with necessary infor-
mation extracted from the instruction and the con-
text. Finally, they converted the choice sentences
to factoid-style questions also manually, while our
system is fully automated. The results of VQA
feature are slightly worse than Kanayama et al.’s
which is based on a similar idea. The addition of
the other four features boosted the accuracy and it
surpassed their result.

Finally, Table 7 presents the accuracy of our
system in comparison with previously reported re-
sults by fully automatic systems (Shibuki et al.,
2014, 2016). We compared the accuracy on the
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System 4-way acc.
NCTUA 2007

This paper 83% (19/23)
Okita and Liu (2014) 74% (17/23)
Kano (2014) 57% (13/23)
Sakamoto et al. (2014) 52% (12/23)

System 4-way acc.
NCTUA 2011

This paper 90% (18/20)
Kobayashi et al. (2016) 80% (16/20)
Takada et al. (2016) 60% (12/20)
Sakamoto et al. (2016) 60% (12/20)

Table 7: Comparison with previous automatic sys-
tems

True-or-False questions in the 4-way multiple-
choice format. Our system achieved a higher ac-
curacy than the best previous results on NTCUA
2007 and 2011 exams.

7 Error Analysis

We now show some examples that cannot be
solved by our current approach and describe the
cause of the errors.

Antonym of Verbs (10 sentences) Some in-
correct statements in the choices are created by
changing a verb to its antonym. For example, in
Question 8 in the 2009 exam, the falsity of the sen-
tence “The Agricultural Adjustment Act (AAA)
resulted in the prices of agricultural produce be-
ing lowered,” is attributed to the verb “lowered”
because the sentence becomes correct if we re-
place “lowered” with “raised.” To properly recog-
nize such false sentences, we need to utilize lexi-
cal knowledge about the antonymy and synonymy
relations among verbs.

Semantic Roles (five sentences) Many histori-
cal events involve two or more participants. For
example, in Question 3 in the 2007 exam, the sen-
tence “The Almohad Caliphate, which advanced
into the Iberian Peninsula, was overthrown by the
Almoravid dynasty.” includes the two participants,
“The Almohad Caliphate” and “the Almoravid dy-
nasty.” The sentence is incorrect because the truth
was “The Almoravid dynasty was overthrown by
the Almohad Caliphate.” To detect this kind of fal-
sity, we need to recognize the semantic roles (e.g.,
agent and patient) of the participants in the event
denoted by the verb. It is beyond the expressive-
ness of the VQA and PMI features that are largely
based on word cooccurrence.

Indirect Description of Time (four sentences)
In Question 15 in the 2007 exam, the instruction
includes the following phrase: “choose the one
term that correctly describes the religion that was
established after the time of Genghis Khan.” The
current system cannot extract any temporal infor-
mation from “after the time of Genghis Khan,”
which is equivalent to “after the death of Genghis
Khan” and thus to “after 1227.” To this end, we
need to analyze the combination of the tempo-
ral expression (e.g., the time before/after/during
of X) and the entity type (e.g., X: Person) and
utilize domain-knowledge such as birth/death or
establishment/abolishment years of historical en-
tities.

8 Conclusion and Future Work

As a step towards the goal of automated fact-
checking, we have worked on the task of true-
or-false judgement on the statements about his-
torical facts. We scrutinized the characteristics of
the task and designed five confidence metrics ac-
cording to the observations, which are integrated
as the features in a statistical classifier. Experi-
mental results showed that the five features com-
plementarily contributed to the discrimination be-
tween a true statement and a false one. Our sys-
tem achieved the state-of-the-art accuracy on a few
datasets. An analysis of the remaining errors indi-
cated a room for improvement by the incorpora-
tion of linguistic knowledge such as antonymy of
verbs and semantic roles of the events, and extrac-
tion of temporal information based on linguistic
patterns and domain-knowledge.
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Abstract 

This paper presents an approach to 

identify subject, type and property 

from knowledge base for answering 

simple questions. We propose new fea-

tures to rank entity candidates in KB. 

Besides, we split a relation in KB into 

type and property. Each of them is 

modeled by a bi-directional LSTM. 

Experimental results show that our 

model achieves the state-of-the-art per-

formance on the SimpleQuestions da-

taset. The hard questions in the experi-

ments are also analyzed in detail.  

1 Introduction 

With the popularity of the Internet, more and more 

new information is generated every day. The in-

formation may be stored in unstructured data, such 

as Wikipedia, which is presented as an article or 

web page, or in the form of structured data. 

Knowledge base (KB), such as Freebase (Bol-

lacker et al., 2008) and DBpedia (Lehmann et al., 

2015), is very popular. The information in the KB 

is a description of the relationship between two en-

tities and is stored in the form of (subject, relation, 

object) triple. In KB, each entity is represented by 

a unique id, for example, J.K. Rowling's mid (Ma-

chine ID) in Freebase is “m.042xh”. 

With these large-scale open-domain KBs, it is 

important to access the knowledge efficiently and 

effectively to meet what users need. The most di-

rect and close to people's life is question answering 

(QA) system in natural language. People can ask 

any questions in their familiar languages, and then 

use the QA system to get answers from the web re-

sources. Current QA research is often based on KB 

to find appropriate triples for answering question, 

which is called QA over KB. 

QA systems can be classified by the form of the 

question. There are two categories of questions in 

QA system, i.e., simple questions and complex 

questions. Simple questions can be answered by 

exactly one triple in the KB. For example, the 

question “Who is the author of Harry Potter?” can 

be answered by triple “(Harry Potter, author, J.K. 

Rowling)”. Although this category is “simple” 

question, retrieving a triple from the KB is not a 

trivial task due to the billions of facts in the KB. 

Complex questions contain more restrictions. 

These questions may involve two or more triples 

in the KB, or have other semantic constraints to re-

strict the answers to a smaller set. For example, 

“the first” in the question “What is the name of the 

first Harry Potter novel?” restricts that there is only 

one answer. Previous researches showed that sim-

ple questions are the more common category in 

community QA websites (Fader et al., 2013). This 

paper focuses on factoid simple question-answer-

ing over Freebase. 

Simple question can be answered with the object 

of one KB triple. Thus, the systems only need to 

find the subject and relation of the triple which can 

describe the question properly. The issues of sim-

ple QA are the identification of the subject entity in 

a question, and the resolution of the gap between 

the natural language expression in the question and 

the relation description in the KB. After a QA sys-

tem receives users’ questions, it needs to transform 

a question into a KB query, e.g. SPARQL. The 

question can then be transformed into the KB query, 

which can access KB to get the answer.  

976



 
 
 

  

Previous simple QA model often adopts a two-

step paradigm. Entity-linking step identifies the 

subject entities in questions, and forms the candi-

date entity set and relation set. The candidate rela-

tion set is formed by all the relations which have 

connections with any entity in candidate entity set. 

Relation-finding step further identifies a proper re-

lation from the candidate relation set. Dai et al. 

(2016) propose a neural-network based two-step 

approach to simple QA over Freebase, and formu-

late the task into a probabilistic form. Given a 

question q, the first step is to find the candidate re-

lation r with high probability 𝑃(𝑟|𝑞). The second 

step is to find the subject s with high 𝑃(𝑠|𝑟, 𝑞). As 

a result, the object in the KB triple which contains 

the subject s and the relation r with the highest 

𝑃(𝑠, 𝑟|𝑞) is the answer. 

The relation in KB triple has hierarchical struc-

ture: domain-type-property. For example, in “peo-

ple.person.place_of_birth”, “place_of_birth” is the 

property used to present the birth place of a person. 

The type of this relation is “person”, and the do-

main is “people”. In Freebase, many relations have 

the same property, but are in different types. For 

example, both “film.film.genre” and “music.art-

ist.genre” have the property “genre”, but they are 

under different domains and types. These two rela-

tions are regarded as the same if we only consider 

the property. The major issue is: they are different 

relations although they have the same meaning. On 

the other hand, if the whole relation is considered 

as a class, the distribution of relations is getting 

sparser. The past two-step approaches cannot dis-

tinguish the subtlety in the structured relation. 

In this paper, we will propose a novel three-step 

approach, including subject, type and property 

identification steps, to deal with the hierarchical 

structure of the relation. Our approach introduces 

new features in subject identification to distinguish 

similar entities from different aspects. Moreover, 

splitting relation into type and property predicts re-

lation more precisely. Experimental results show 

our model outperforms the existing models and 

achieves a state-of-the-art accuracy of 76.7%. 

This paper is organized as follows. Section 2 in-

troduces related works of QA system. Section 3 

presents our three-step paradigm. Section 4 shows 

the experiments on the SimpleQuestions dataset 

(Bordes et al., 2015) and compares ours with pre-

vious works. We also discuss the importance of 

each component of our system. Section 5 analyzes 

the errors in the experiments. Section 6 concludes 

the remarks. 

2 Related Works 

Previous simple QA models can be divided into 

two categories. The first one is based on semantic 

parsing, which maps a question to its logical form. 

Then, the logical form can be transformed to 

SPARQL for KB retrieval.  

Berant et al. (2013) present a semantic parser 

that does not need to be trained through the anno-

tated logical form. They construct a lexicon that 

maps natural language phrases to KB relations by 

aligning large text corpus with Freebase. Candi-

date logical forms can be obtained by this lexicon 

and the other bridging operations. 

Berant and Liang (2014) propose a semantic 

parser via paraphrasing. They use the intermediate 

question to deal with the problem of the mismatch 

between input question and its logical forms. 

Yih et al. (2015) treat a question as a query 

graph, which can be directly mapped to its logical 

form. Semantic parsing is then equivalent to find-

ing a sub-graph of the KB which can represent the 

question. 

The semantic parsing approach which often re-

quires the human annotated logical form may in-

crease the cost of obtaining training data. Although 

the use of rule-based method to generate logical 

forms can reduce the use of annotated data, it limits 

the application domain. The second approach is in-

formation extraction, which needs only question-

answer pairs for training. This method retrieves 

some candidate answers from KB for each ques-

tion, and ranks the candidates through several fea-

tures. Deep neural network models are often em-

ployed for deriving the vector representations of 

questions and the KB elements. 

The Memory Network based QA system is pro-

posed by Bordes et al. (2015). By embedding all of 

the KB elements and questions in the same vector 

space, the system can deal with the relationship be-

tween input language and the KB language. 

Glob and He (2016) propose a character-level, 

attention-based encoder-decoder QA model. Their 
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model embeds the questions and KB elements by a 

long short-term memory (LSTM) (Hochreiter and 

Schmidhuber, 1997) encoder and a CNN-based en-

coder, respectively. And a LSTM decoder with at-

tention mechanism is used to predict the appropri-

ate answer entity and relation. 

Dai et al. (2016) formulate the QA problem into 

a probabilistic form. Given a question, the answer 

is the triple in KB containing the subject and rela-

tion with the highest conditional probability. They 

first use a focused pruning method to tag the span 

in question which is most probable to be the sub-

ject entity and gets the candidate answer triples. 

Then they use a relation network and a subject net-

work, both are a two-layer bidirectional-GRU 

model, to get the similarity scores between candi-

date triples and question. We modify their proba-

bilistic form with the splitting of the relation part 𝑟 

into type 𝑡 and property 𝑝. 

Dong et al. (2015) introduce a multi-column 

CNNs (MCCNNs) to analyze the question in three 

different aspects: answer path, answer context and 

answer type. The system represents the question in 

three low-dimensional vectors, each of them then 

matches to one of the answer aspect to derive the 

scores of candidates. 

Yin et al. (2016) also use the CNN-based ap-

proach to implement the QA system. They use a 

word-level CNN with attentive max-pooling to 

model the relationship between KB relations and 

question pattern. They also add an active linker, 

which is similar to the focused pruning method in 

Dai et al. (2016), to reduce the number of candi-

dates and improve the performance significantly. 

3 Methodology 

Our method includes subject identification, type 

identification, and property identification steps, as 

shown in Figure 1. We first give an overall picture 

and then describe each of them in deep in the fol-

lowing sections. 

3.1  A Three-Step Paradigm 

The relation in a Freebase triple has a hierarchical 

structure in three levels: domain, type, and property. 

Many relations have the same property but they are 

in different types and domains. For example, both 

 

 

Figure 1: System Overview. 

the relations “wine.wine.color” and 

“roses.roses.color” are used to describe the color of 

things, but they are in type “wine” and “roses”, re-

spectively. We separate a relation into type and 

property parts to understand the question meaning 

more precisely. 

Given a KB 𝒦 and a question 𝑞, the three-step 

paradigm aims at finding a KB triple containing s, 

t, and p with the highest probability 𝑃(𝑠, 𝑡, 𝑝|𝑞) , 

where s is a subject, and t and p are type and prop-

erty of a structured relation, respectively. The pro-

cess is formulated by Equations (1) and (2). The 

answer of the question is the object o of the triple 

(s, r, o) in 𝒦. 

𝑃(𝑠, 𝑡, 𝑝|𝑞) =  𝑃(𝑠|𝑞) ∙ 𝑃(𝑡|𝑠, 𝑞)

∙ 𝑃(𝑝|𝑠, 𝑡, 𝑞) 
(1) 

𝑠∗, 𝑡∗, 𝑝∗ =  argmax
𝑠,𝑡,𝑝∈𝒦

𝑃(𝑠, 𝑡, 𝑝|𝑞) (2) 

3.2 Entity Identification 

The first step is to find potential entities in the 

question, and link them to KB. We use the Freebase 

subset FB5M in the SimpleQuestions dataset as the 

KB. We retrieve all candidate subject entities in 

question from the KB and calculate their entity 

linking scores on account of eight features, as in 

steps A1-A3 of Figure 1. 

To find candidate entities for a question, we ex-

tract mentions in the question by maximum string 

matching. A mention that matches an entity name 

or an entity alias is extracted. When multiple 

matches are found in an overlapped span, the long-

est one is taken. And the mention is filtered if it is 

a stop word or a number that contains less than four 
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digits. All the entities in 𝒦  that have the same 

names or aliases as the mentions form the candi-

date entity set.  

After obtaining all the candidate entities, we as-

sign each of the candidates a linking score. The 

score is measured by a learning-to-rank model with 

eight features in different aspects. The eight fea-

tures are described as follows. 

Word Proportion (Yin et al., 2016):  We com-

pute the proportion as the length of candidate entity 

divided by the length of the question. The length is 

measured by the number of words. The longer the 

matched entity name is, the more likely it is a sub-

ject. 

Char Proportion: Similar to word proportion, 

the length is computed by the number of characters 

instead. 

Relative Position in Question (Yin et al., 2016): 

The relative position of a candidate entity is the po-

sition of its last token divided by the length of the 

question (in words). That models an observation: 

most entity is far from the beginning of the ques-

tion. 

 Relative Position to Be Verb/Auxiliary Verb: 

Subject entity tends to be close to and behind Be 

verb/auxiliary verb in a question. We take the sub-

traction of the Be verb/auxiliary verb position and 

the first token of candidate entity position as 𝛼. If 

the candidate entity position is before the Be 

verb/auxiliary verb, this feature is 𝛼 , which is a 

negative number. Otherwise, this feature is 1/𝛼 , 

which is a positive number. If no such verbs exist, 

this feature is set to 0 

Out-degree: The number of out-going links of 

the entity in the KB is taken as Out-degree feature. 

The more the number of links the entity has, the 

higher the feature value is and the entity in the KB 

is more informative. The direction of links from 

subject to object represents the impact of the entity. 

IDF: We take each question in SimpleQuesions 

training set as a document, and compute the in-

verse document frequency of the entity. The higher 

the value is, the more specific the entity is. 

 NER_LCS: We use the LSTM-CRF named en-

tity recognition (NER) tagger1 (Lample et al., 2016) 

to find the span from the question that is most 

 
                                                      
1 https://github.com/glample/tagger . 

 

Figure 2: Structure of Type_LSTM in entity 

identification. 

 

likely to be a subject entity, and compute the length  

of the longest common subsequence (in characters) 

between the candidate entity and the words in the 

tagged span. The tagger consists of an embedding 

layer, a bidirectional-LSTM layer, and a condi-

tional random field layer to predict the label for 

each word. The higher the NER_LCS value is, the 

more possible the candidate is a subject entity. 

Type_LSTM: Each entity has entity types in 

Freebase to describe its characteristics, e.g., entity 

“Alex Golfis” belongs to types “person”, “actor”, 

and “deceased_person”. There are total 500 types 

for entities in FB5M. For a question, we estimate 

the types of its subject. A bidirectional-LSTM with 

attention is trained to derive the probability distri-

bution of each question over the 500 types. The 

structure of the network is shown in Figure 2. The 

training input of the LSTM is the whole questions 

and the types of their ground truth entities, and the 

training objective is categorical cross entropy. The 

test input is a question, and the output is a proba-

bility distribution of the question over the 500 

types. We can get the type information of the can-

didate entity from Freebase, and sum over all di-

mensions corresponding to the types to get this fea-

ture. It means how probable the question is in some 

types. 

 With the above eight features, support vector 

machine for ranking (SVMrank) (Joachims, 2006) is 

trained to combine these features and derive a 

score 𝑢1(𝑠, 𝑞)  for each candidate entity s in the 

question q. Then each entity has the probability 

𝑃(𝑠|𝑞): 
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𝑃(𝑠|𝑞) =  
exp(𝑢1(𝑠, 𝑞))

∑ exp(𝑢1(𝑠′, 𝑞))𝑠′

 (3) 

where 𝑠′ is an entity in the candidate entity set. For 

the entities in the KB but not in the candidate entity 

set, their 𝑃(𝑠|𝑞) = 0. 

3.3 Type Identification 

Given a question q, the type network determines 

the type of the relation most likely to be answered. 

We use 𝐸(𝑡)  to represent the embedding of the 

type 𝑡 , and use 𝑔1(𝑞)  to represent the vector of 

question 𝑞. Our goal is to make the cosine similar-

ity between 𝑔1(𝑞) and the correct type embedding 

𝐸(𝑡∗) higher than the cosine similarities between 

𝑔1(𝑞) and the other types. 
  The network structure is shown in Figure 3. 

First, the question vector 𝑔1(𝑞) is generated by a 

bidirectional-LSTM model. We change the words 

in q to lowercase and remove the punctuation. 

Then we put the words into the embedding layer. 

After the bidirectional-LSTM layer, the two vec-

tors in left and right directions are concatenated to-

gether. The concatenated vector is put into a linear 

projection layer with sigmoid, and the question 

vector 𝑔1(𝑞) is generated. After that, we calculate 

the similarity between 𝑔1(𝑞)  and different type 

embeddings 𝐸(𝑡). The embedding 𝐸(𝑡) is trained 

with the bidirectional-LSTM model, and has the 

same dimension as 𝑔1(𝑞) . 𝐸(𝑡)  and 𝑔1(𝑞)  are in 

the same space so that the cosine similarity 

𝑢2(𝑡, 𝑞) can be computed by Equation (4). 

𝑢2(𝑡, 𝑞) = cos(𝑔1(𝑞), 𝐸(𝑡)) (4) 

The probability of type 𝑡 given the question 𝑞 and 

the candidate entity set is defined as follows: 

𝑃(𝑡|𝑠, 𝑞) = {
 

exp(𝑢2(𝑡, 𝑞))

∑ exp(𝑢2(𝑡′, 𝑞))𝑡′
, 𝑖𝑓 𝑡 ℎ𝑎𝑠 𝑙𝑖𝑛𝑘 𝑤𝑖𝑡ℎ 𝑠 

0              , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5) 

where 𝑡′ is a type in the candidate type set. To re-

duce the computation and the number of candidate 

types, only those types which have links with an 

entity in the candidate entity set is chosen into the 

candidate type set. 𝑃(𝑡|𝑠, 𝑞)  is set to 0 for those 

types which are impossible to be the correct answer 

due to the lack of links with any candidate entity. 

 

Figure 3: Type identification network. 

 

For training the type network, the hinge loss 

with negative samples is the objective function to 

be minimized. 

ℓ(𝜃𝑡) = ∑ max(0, 𝓂𝑡 − 𝑢2(𝑡∗, 𝑞) + 𝑢2(𝑡𝑖, 𝑞))
𝑁𝑡
𝑖=1   (6) 

where 𝜃𝑡 is the parameters to learn, 𝑁𝑡 is the num-

ber of negative samples, 𝓂𝑡  is the margin, 𝑡∗  is 

the correct type, and 𝑡𝑖 is the type randomly sam-

pled from all types except 𝑡∗.  

3.4 Property Identification 

Given a question q, property identification deter-

mines the property of the relation most likely to be 

answered. We use 𝐸(𝑝)  to represent the embed-

ding of the property 𝑝, and 𝑔2(𝑞) to represent the 

vector of question 𝑞. Similar to the type network, 

our goal is to make the cosine similarity between 

𝑔2(𝑞) and the correct property embedding 𝐸(𝑝∗) 

higher than the cosine similarities between 𝑔2(𝑞) 

and the other properties. 

The structure of the property network is the 

same as that of the type network, which is shown 

in Figure 3, but all the weights and embedding ma-

trixes are not shared with the type network. After 

deriving 𝑔2(𝑞) and 𝐸(𝑝), we compute the cosine 

similarity 𝑢3(𝑝, 𝑞): 

𝑢3(𝑝, 𝑞) = cos(𝑔2(𝑞), 𝐸(𝑝)) (7) 

The probability of property 𝑝  given question 𝑞 , 

candidate entity s, and candidate type t is defined 

as follows: 

𝑃(𝑝|𝑠, 𝑡, 𝑞) = {
 

exp(𝑢3(𝑝, 𝑞))

∑ exp(𝑢3(𝑝′, 𝑞))𝑝′
, 𝑖𝑓 𝑝 ℎ𝑎𝑠 𝑙𝑖𝑛𝑘 𝑤𝑖𝑡ℎ 𝑠, 𝑡 

0              , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8) 

where 𝑝′ is a property in the candidate property set. 

To reduce the computation and the number of can-

didate properties, only the properties which have 

links with an entity in the candidate entity set and 
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belongs to a type in the candidate type set are cho-

sen into the candidate property set. 𝑃(𝑝|𝑠, 𝑡, 𝑞) is 

set to 0 for those properties which are impossible 

to be the correct answer due to the lack of links 

with any candidate entity and type. 

For training property network, the hinge loss 

with negative samples is the objective function to 

be minimized. 

ℓ(𝜃𝑝) = ∑ max(0, 𝓂𝑝 − 𝑢3(𝑝∗, 𝑞) + 𝑢3(𝑝𝑖 , 𝑞))
𝑁𝑝

𝑖=1
  (9) 

where 𝜃𝑝 is the parameters to learn, 𝑁𝑝 is the num-

ber of negative samples, 𝓂𝑝  is the margin, 𝑝∗  is 

the correct property, and 𝑝𝑖  is the property ran-

domly sampled from all properties except 𝑝∗.  

4 Experiments 

The SimpleQuestions2 dataset (Bordes et al., 2015), 

which contains 75,910 training data, 10,845 vali-

dation data, and 21,687 test data, is adopted in the 

experiments. The evaluation is the same as in Bor-

des et al. (2015). The predicted answer is correct 

when the subject-relation pair is the same as the 

correct answer. We train our model on the training 

set. The validation set is used for early stop and pa-

rameter tuning. The test set is used for evaluation. 

4.1 Experimental Setup 

The number of negative samples used in SVMrank 

is set to 5. Other parameters for SVMrank are C = 

0.1, epsilon = 0.01, and loss function option = 2. 

The word embeddings used in each neural network 

is initialized with the pre-trained GloVe (Penning-

ton et al., 2014) with the dimension of 300. All the 

networks are optimized by mini-batch and Adam 

(Kingma et al., 2014) with the learning rate 0.001.  

The TYPE_LSTM in entity identification step 

has a drop rate of 0.2. The hidden size of LSTM is 

                                                      
2 https://research.fb.com/downloads/babi/ . 

500. Batch size is 128. The parameters of type net-

work and property network are the same. Maximal 

question length is 25. Mini-batch size is 100. The 

type and property embeddings are 500-dimen-

sional with randomly initialized. The hidden size 

of LSTM is 500. Both hinge loss margins 𝓂𝑡 and 

𝓂𝑝 are 0.4. The numbers of negative samples 𝑁𝑡 

and 𝑁𝑝 are 65. 

4.2 Overall Results 

Table 1 shows the performances of our model com-

pared with the other four methods. Bordes et al. 

(2015) use a memory network. Dai et al. (2016) 

employ a conditional focused neural-network 

based approach. Yin et al. (2016) apply attentive 

convolutional neural network with the passive or 

active linker. Golub and He (2016) use the charac-

ter-level encoder-decoder framework. In our ap-

proach, “probability” means the outcome is the tri-

ple with the highest probability computed by Equa-

tion (1). We find that the subject entity and the 

property are more important than the type. The ap-

proach “sum” combines the scores 𝑢1(𝑠, 𝑞) , 

𝑢2(𝑡, 𝑞) , and 𝑢3(𝑝, 𝑞)  by weighted summation, 

and selects the triple with the highest weighted sum. 

The weights are entity:type:property = 4:1:3, 

which are tuned on the validation data. 

Our “probability” approach outperforms all pre-

vious models on FB5M, including the previous 

best model by Yin et al. (2016). The “sum” ap-

proach even significantly outperforms the “proba-

bility” approach on McNemar’s test (p < 0.01). 

4.3 Entity Identification Results 

This section discusses the performance of the en-

tity identification step. The hit rates of the top N 

entities are shown, which means the coverage of 

N 
(Yin et al., 2016) 

Our approach 
Passive Active 

1 56.6 73.6 80.9 

5 71.1 85.0 90.2 

10 75.2 87.4 92.2 

20 81.0 88.8 93.7 

50 85.7 90.4 95.1 

100 87.9 91.6 96.0 
 

Table 2:  Hit rates of the ground-truth entity. 

Method Accuracy (%) 

(Bordes et al., 2015) 63.9 

(Dai et al., 2016) 75.7 

(Yin et al., 2016) 75.9 

(Golub and He, 2016) 70.3 

Our approach (probability) 76.1 

Our approach (sum) 76.7 
 

Table 1:  Results on the SimpleQuestions test 

data. 
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the ground truth entity by top-N results. 𝑁 ∈
 {1,10,20,50,100}. Entity linker proposed by Yin 

et al. (2016) has two versions, passive and active 

linker. The difference between them is that they use 

the longest consecutive common subsequence be-

tween question and KB entity names to get candi-

dates in the passive linker. On the other hand, the 

active linker first gets the span from the question 

that is most likely to be a subject entity by sequen-

tial labeling, and the linker uses the labeled span to 

search the candidate entity from KB. The number 

of the candidates in the active linker is less than the 

passive linker, because the active linker uses spe-

cific span in question to search candidates, and en-

tities not in this span are filtered out. 

Table 2 shows our performance in entity identi-

fication compares to Yin et al. (2016). Our entity 

linker outperforms their approach by over 7% in 

top-1 result using FB5M as background KB. We 

have six new features to score the entities in differ-

ent aspects. The features “Char Proportion” and 

“Relative Position to Be Verb/Auxiliary Verb” can 

analyze the entities by their surface form in ques-

tion, e.g., name and relative position. The features 

“Out-degree” and “Type_LSTM” can distinguish 

entities even if they have the same name. The “IDF” 

feature can kick out common entities and keep the 

more important ones. And “NER_LCS” feature 

has the similar effect to the active linker of Yin et 

al. (2016), but our feature can withstand the wrong 

subject entity prediction in sequential labeling, be-

cause we do not filter out any candidates, we give 

them the lower score instead. 

4.4 Importance of Entity Identification 

Features 

In this section, we discuss the importance of each 

feature in entity identification in three ways. We 

first show the performances with a single feature. 

And then, we consider the performances with one 

feature or a group of features being removed. 

Performance with Single Feature 

Table 3 shows the hit rates of the top N entities gen-

erated by a single feature. The feature “NER_LCS” 

has the best performance because this feature con-

tains a part of information from the four surface  

 

 

                      N 

Fetures 

Hit rates @ N 

1 5 10 20 50 100 

Word Prop. 41.0 62.7 70.5 77.6 85.8 90.3 

Char Prop. 55.5 73.7 78.9 83.4 88.9 91.7 

Rel. Position in Q 16.7 36.5 47.7 60.9 77.0 86.4 

Rel. Position to 

BeV./AuxV. 
30.2 44.2 52.6 61.4 75.7 84.2 

Out-degree 15.0 39.6 52.5 67.2 82.6 89.5 

IDF 43.4 68.9 76.4 82.5 88.5 91.6 

NER_LCS 59.5 77.0 81.5 85.5 90.1 92.6 

Type_LSTM 44.1 68.8 77.0 85.3 91.6 94.4 

Table 3:  Hit rates generated by a single feature in 

entity linker. 

form features: “Word Proportion”, “Char Propor-

tion”, “Relative Position in Question”, and “Rela-

tive Position to Be Verb/Auxiliary Verb”. The NER 

tagger labels the span of possible position of the 

subject entity in a question, and thus “NER_LCS” 

contains the position information. Moreover, the 

length of the longest common subsequence be-

tween the candidate entity and the words in the 

span gives the length proportion information. 

The feature “Out-degree” has the lowest perfor-

mance in N=1 hit rate, because the entities with 

many out-going links sometimes represent that 

they are general entities. For example, the entity 

“album (m.02lx2r)” in question “Which genre of 

album is harder……faster?” has 323,467 out-go-

ing links in FB5M, but the subject entity 

“harder……faster (m.01jp8ww)” has only 5 links. 

Although this feature sometimes highlights the 

general entities, it can distinguish entities that have 

the same names with the help of other features. 

Table 3 also shows that the performance of “Rel-

ative Position to Be Verb/Auxiliary Verb” is almost 

twice the performance of “Relative Position in 

Question”. It shows that the observation about po-

sition “subject entity tends to be close to and be-

hind Be verb/auxiliary verb in a question” is more 

appropriate, and the Be verb/auxiliary verb plays 

an important role in identifying entities. 

Performance without One of the Features 

Table 4 shows the hit rates of the top N entities gen-

erated by removing one of the eight features from 

the entity linker. First, we can see that the perfor-

mances without one of the first four features are 
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only reduced by about 1%, because the feature 

“NER_LCS” contains a part of the information 

from them, and it can make up for the removal of 

them. And then, we can find that although the per-

formance of the feature “Out-degree” has the low-

est accuracy in Table 3, its removal affects the per-

formance by more than 2%. 

 The removal of “Type_LSTM” has the greatest 

impact. The result with this feature outperforms the 

result without it by 6%. The comparison shows the 

importance of the entity types which can help us 

get deeper meanings of an entity. And the 

“Type_LSTM” is difficult to make up by other fea-

tures. 

Performance without a Group of Features 

Table 5 shows the hit rates and overall accuracy of 

our “probability” approach generated by removing 

a group of features from the entity linker. We group 

the features with similar effect together. The first 

four features in Table 3 are about surface forms of 

entities, and thus they are put together. The “Indi-

vidual features” group contains features “Out-de-

gree” and “Type_LSTM”, which can distinguish 

entities with the same name. The features “IDF” 

and “NER_LCS” are grouped into “features of 

specificity”, which can identify the more likely 

subject entities in the question and kick out com-

mon entities. 

The removal of individual features reduces the 

performance of entity identification by more than 

20%. This result shows the importance of identify-

ing entities with the same name. Otherwise, these 

entities would have the same score. However, the 

removal of these features only reduces the overall 

accuracy of 0.7%, because type identification step 

can make up a part of the removed “Type_LSTM” 

information. For example, the entity with name 

“Estonia” can be a country or a book, if one “Esto-

nia” is a “book”, it may not have a property in type 

“location”, and thus we can distinguish these two 

types of “Estonia” a bit. 

The removal of features of specificity affects the 

overall accuracy by 2.7%. These two features fo-

cus on more specific words and make the scores of 

the general entities, such as “album” or “movie”, 

become lower. This behavior is important and can-

not be replaced by the rest of the system.  

4.5 Importance of Type Identification 

Table 6 shows the importance of our type identifi-

cation step. The models with type identification 

significantly outperform the models without type 

network on McNemar’s test (p < 0.01), and in-

creases the accuracies by at least 1%, no matter the 

final score is by probability or weighted sum. This 

shows that the type identification step can effec-

tively handle the hierarchical structure of Freebase 

relations, and can better understand the semantics 

of the question. 

 

 

                      N 

Fetures 

Hit rates @ N 

1 5 10 20 50 100 

All features 80.9 90.2 92.2 93.7 95.1 96.0 

w/o Word Prop. 79.8 89.6 91.7 93.3 95.0 96.0 

w/o Char Prop. 79.4 89.3 91.4 93.2 94.9 95.9 

w/o Rel. Position  79.6 89.6 91.8 93.4 95.0 96.0 

w/o Rel. Position 

to BeV./AuxV. 
79.7 89.6 91.7 93.3 95.0 96.0 

w/o Out-degree 78.8 88.6 90.9 92.8 94.6 95.7 

w/o IDF 79.1 89.3 91.4 93.1 94.9 95.9 

w/o NER_LCS 78.4 88.8 91.1 92.9 94.8 95.8 

w/o Type_LSTM 74.9 88.0 90.7 92.7 94.4 95.6 

Table 4:  Hit rates generated by removing one 

feature from entity linker. “w/o” means the re-

moval of the feature. 

 

 

               

                               N 

Feature 

Entity identification 

(Hit rates @ N) 

Overall 

(prob.) 

1 5 10 100 Acc. 

All features 80.9 90.2 92.2 96.0 76.2 

w/o Surface form features 78.8 89.1 91.4 96.0 75.1 

w/o Individual features 60.7 77.9 82.5 92.8 75.5 

w/o Features of specificity 75.8 87.1 89.9 95.6 73.5 

Table 5:  Hit rates generated by removing group 

of features from entity linker. 

 

 

Settings Accuracy (%) 

Probability w/ type identification 76.1 

Probability w/o type identification 75.1 

Sum w/ type identification 76.7 

Sum w/o type identification 75.2 

Table 6:  Gain by the addition of the type identifi-

cation step. 
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5 Error Analysis 

We categorize some errors into the following types.  

 Entities with the same name: The subject 

entity of the question “What is the place of 

birth of Sam Edwards?”  is “Sam Edwards”. 

Both entities “m.03kt3y” (an actress) and 

“m.042gjt” (a physicist) have the same name. 

This question does not have enough infor-

mation to distinguish the two entities. 

 Deleted entity in Freebase: Some questions’ 

subject entities are deleted in the Freebase 

dump. 

 Similar properties: Some relations are very 

similar, e.g., both “music.release.track” and 

“music.release.track_list” indicate tracks in 

an album. 

 Incomplete question: Some questions in the 

dataset are not complete. For example, the 

question “What production company pro-

duced?” does not provide any entities.  

 Question from object-relation pair: There 

are some questions formed by object-rela-

tion pairs of the triple. E.g., the question 

“Name a lawyer.” is from triple (Charlie 

Herschel, people.person.profession, lawyer). 

We cannot find the subject of the triple from 

the question. 

 Typo: Some questions contain typo. For ex-

ample, the question “What is Roger Mol-

liens gender?” should be “What is Roger 

Mollien’s gender?”  

 Wrong answer: Some answers are wrong. 

For example, the answer of the question 

“Where was David Armstrong born?” is the 

triple (Undisputed Comedy Series: Lil Rel, 

film.film.language, English). Obviously, it 

is not a correct answer to the question.  

 Controversial answer: E.g., the relation of 

the question “Leo Bertos was born in what 

country?” is “people.person.nationality”, 

but the more appropriate relation should be 

“people.person.place_of_birth”, because 

people can have the naturalized citizenship. 

6 Conclusion 

We propose a three-step approach to identify sub-

ject, type and property from knowledge base (KB) 

for answering simple questions. Our ranking 

model with additional features outperforms the 

previous models in subject entity identification. 

The experiments also show that all entity features 

are important. Besides, by splitting the structured 

relation into type and property, our model benefits 

from understanding the question meaning more 

precisely. Our model achieves the state-of-the-art 

performance on the SimpleQuestions dataset. Er-

ror analysis shows that most errors come from the 

problematic questions in the dataset. Extension to 

complex questions will be explored. 
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Abstract

We develop a high-quality multi-turn dia-
log dataset, DailyDialog, which is intrigu-
ing in several aspects. The language is
human-written and less noisy. The dia-
logues in the dataset reflect our daily com-
munication way and cover various topics
about our daily life. We also manually la-
bel the developed dataset with communi-
cation intention and emotion information.
Then, we evaluate existing approaches on
DailyDialog dataset and hope it benefit the
research field of dialog systems1.

1 Introduction

Developing intelligent chatbots and dialog systems
is of great significance to both commercial and aca-
demic camps. A good conversational agent enables
enterprises to provide automatic customer services
and thus reduce human labor costs. For academia,
it is challenging yet appealing to build up such
an intelligent chatbot which involves a series of
high-level natural language processing techniques,
such as understanding the underlying semantics of
user input utterance, and generating coherent and
meaningful responses.

However, the training datasets for this research
area are still deficient. Traditional dialogue sys-
tems are often trained with domain-specific spoken
dialogue datasets (Ringger et al., 1996; Petukhova
et al., 2014), which are often small-scale and ori-
ented to complete a specific task. More recent work
feed their conversational models with open-domain
datasets. Switchboard (Godfrey et al., 1992) and
OpenSubtitles (Jörg Tiedemann, 2009) datasets

∗Authors contributed equally. Correspondence should be
sent to Y. Li (csyli@comp.polyu.edu.hk).

1The dataset is available on http://yanran.li/
dailydialog

A: I’m worried about something.
B: What’s that?
A: Well, I have to drive to school for a meeting
this morning, and I’m going to end up getting
stuck in rush-hour traffic.
B: That’s annoying, but nothing to worry about.
Just breathe deeply when you feel yourself getting
upset.
A: Ok, I’ll try that.
B: Is there anything else bothering you?
A: Just one more thing. A school called me this
morning to see if I could teach a few classes this
weekend and I don’t know what to do.
B: Do you have any other plans this weekend?
A: I’m supposed to work on a paper that’d due on
Monday.
B: Try not to take on more than you can handle.
A: You’re right. I probably should just work on
my paper. Thanks!

Figure 1: An example in DailyDialog dataset.
Some text is shortened for space. Best viewed
in color.

comprise approximately 150 turns in a “conversa-
tion” and thus are too disperse to capture the main
topic. Twitter Dialog Corpus (Ritter et al., 2011)
and Chinese Weibo dataset (Wang et al., 2013) are
comprised of posts and replies on social networks,
which are noisy, informal and different from real
conversations.

In this work, we develop a high-quality multi-
turn dialogue dataset, which contains conversations
about our daily life. We refer to it as DailyDialog.
In our daily life, we communicate with others by
two main reasons: exchanging information and en-
hancing social bonding. To exchange and share
ideas, we often communicate with others following
certain dialog flow. Typically, we do not rigidly
answer others’ questions and wait for the next ques-
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tion. Instead, humans often first respond to previ-
ous context and then propose their own questions
and suggestions. In this way, people show their
attention others’ words and are willing to continue
the conversation. Another reason why people com-
municate is to strengthen their social bonding with
others. Therefore, daily conversations are rich in
emotion. By expressing emotions, people show
their mutual respect, empathy and understanding
to each other, and thus improve the relationship
between them.

We demonstrate the above two phenomena by an
example conversation as in Figure 1. The words in
Italic are speaker B’s own ideas that are new for the
other speaker A. The underlined words in purple
explicitly indicate the emotions. In the fourth
speaker turn, speaker B first expresses his/her feel-
ing on what he/she has heared from speaker A,
which reveals his/her understanding. Then, speaker
B suggests by saying Just breathe deeply when you
feel yourself getting upset. Following the direct
response towards A, B’s suggestion is original yet
context-dependent. It shows that B builds up a con-
nection link by responding to forgoing context and
proposing new suggestions.

We describe the dataset construction process and
annotation criteria in Section 2, present and analyze
the detailed characteristics in Section 3. We then
evaluate existing mainstream approaches, including
retrieval-based and generation-based approaches
on the developed datasets in Section 4.

2 Dataset Construction

2.1 Basic Features and Statistics

To construct a multi-turn dialog dataset, we crawl
the raw data from various websites which serve for
English learner to practice English dialog in daily
life. That’s why we refer it as DailyDialog dataset.
The dialogues in the dataset preserve the following
three appealing properties.

First, the language in DailyDialog is human-
written and thus is more formal than those datasets
like Twitter Dialog Corpus (Ritter et al., 2011) and
Chinese Weibo dataset (Wang et al., 2013). The lat-
ters are constructed by posts and replies on social
networks, which are noisy, short and different from
real conversations.

Second, the conversations in DailyDialog often
focus on a certain topic and under a certain physical
context. For example, a conversation happens in
a shop is often between a customer looking for

suitable goods and a salesman who is willing to
help for purchasing. Another typical conversation
happens between two students talking about their
summer vacation trips.

The third desirable feature is that the crawled di-
alogues usually end after reasonable speaker turns.
This makes DailyDialog distinguished from exist-
ing dialog datasets such as Switchboard (Godfrey
et al., 1992) and OpenSubtitles (Jörg Tiedemann,
2009), which often have 150+ and 1,000+ speaker
turns in one “conversation”. By examining some
examples, we find that in such a conversation, peo-
ple often talk about three or more topics (or scenes).
Compared with them, our dataset has in average
approximate 8 turns, which is more suitable to train
compact conversational models.

After crawling, we de-duplicate the raw data,
filter out those dialogues involving more than two
parties (three or more speakers) and automatically
correct the misspelling using autocorrect package2.
Finally, the DailyDialog datasets contain 13,118
multi-turn dialogues. We also count the average
speaker turns and tokens to give a brief view of the
dataset. The resulting statistics are given in Table 1.
From the statistics we can see, the speaker turns
are roughly 8, and the average tokens per utterance
is about 15.

Total Dialogues 13,118
Average Speaker Turns Per Dialogue 7.9

Average Tokens Per Dialogue 114.7
Average Tokens Per Utterance 14.6

Table 1: Basic Statistics of DailyDialog.

2.2 Annotation Criteria and Procedure

Because the dialogues in DailyDialog datasets are
written to reflect our daily conversations, they
mainly conform certain communication ways. As
stated before, the purpose of the dialogues are ex-
changing information and enhancing social bond-
ing. To allow further research on our daily commu-
nication behaviors, we manually label the DailyDi-
alog dataset to reflect the two purposes.

The communication purpose of exchanging in-
formation is related to the communication inten-
tions. This factor has been extensively explored
under the name of dialog act and speech act. In
general, dialog acts represent the communication

2https://github.com/phatpiglet/
autocorrect/
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(a) Emotion distributions in DailyDialog. (b) Topic distributions in DailyDialog. (c) Interactions of dialog acts in each ut-
terance pairs.

Figure 2: Statistics in DailyDialog.

functions when people saying something. To la-
bel the dialog acts in DailyDialog, we follow the
criteria in Amanova et al. (2016) because it is adap-
tive to mainstream annotation criteria ISO 24617-
2 (Petukhova, 2011) and consistent with existing
annotated dataset such as Trains (Ringger et al.,
1996) and DBox (Petukhova et al., 2014). Follow-
ing Amanova et al. (2016), we label each utterance
as one of four dialog act classes: {Inform, Ques-
tions, Directives, Commissive}. The Inform class
contains all statements and questions by which the
speaker is providing information. The Questions
class is labeled when the speaker wants to know
something and seeks for some information. The
Directives class contains dialog acts like request,
instruct, suggest and accept/reject offer. The Com-
missive class is about accept/reject request or sug-
gestion and offer. The former two classes are in-
formation transfer acts, while the latter two are
action discussion acts. Detailed explanations can
be found in Amanova et al. (2016). Thereafter, in
the DailyDialog dataset, we have four intention
classes.

The second communication purpose, enhancing
social bonding, is highly correlated with human
emotion. Following (Wang et al., 2013), we adopt
the “BigSix Theory” (Ekman, 1992) to label each
utterance in DailyDialog. Ekman (1992) thinks
that there are six primary and universal emotions in
human beings: {Anger, Disgust, Fear, Happiness,
Sadness, Surprise}. Besides the main six categories
of emotions, we find it necessary to add additional
category to represent other emotions. Hence, we
have seven emotion categories in DailyDialog.

To guarantee the annotation quality, we recruit
three experts who have good knowledge in dialog
and communication theory. After teaching them
the criteria, we sample 100 dialogues for them to
annotate and reduce the discrepancy by discussion
among them. Then, they independently annotate

the whole dataset and achieve the inter annotator
agreement of 78.9%. When the disagreement hap-
pens, we follow the majority rule or let them re-
annotate to find a “common” annotation. The de-
tailed statistics of the final annotation information
are given in the following section.

3 Characteristics

In this section, we delve deeply into DailyDialog
datasets, and show our datasets are beneficial in
several aspects:

• Daily Topics: It covers ten categories ranging
from ordinary life to financial topics, which is
different from domain-specific datasets.

• Bi-turn Dialog Flow: It conforms basic dia-
log act flows, such as Questions-Inform and
Directives-Commissives bi-turn flows, mak-
ing it different from question answering (QA)
datasets and post-reply datasets.

• Certain Communication Pattern: It follows
unique multi-turn dialog flow patterns reflect-
ing human communication style, which are
rarely seen in task-oriented datasets.

• Rich Emotion: It contains rich emotions and is
labeled manually to keep high-quality, which
is distinguished from most existing dialog
datasets.

3.1 Daily Topics

The dialogues in the developed dataset happens
in our everyday life, and that’s why we name it
DailyDialog. They cover a wide range of daily
scenarios: chit-chats about holidays and tourisms,
service-dialog in shops and restaurants, and so on.
After looking into its topics, we cluster them into
ten categories. The statistics for each category is
summarized in Figure 2(b).
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The largest three categories are: Relationship
(33.33%), Ordinary Life (28.26%) and Work
(14.49%). This is also consistent with our real
experience that we often invite people for social ac-
tivities (Relationship), talk about what happened re-
cently (Ordinary Life) and what happened at work
(Work).

3.2 Bi-turn Dialog Flow

Because the dialogues are assumed to happen in
daily life, they follow natural dialog flow. It makes
DailyDialog dataset quite different from existing
QA datasets such as SubTle dataset (Dodge et al.,
2015)which are improperly used for training di-
alog systems. DailyDialog dataset also distin-
guishes from those post-reply datasets such as
Reddit comment (Al-Rfou’ et al., 2016), Sina
Weibo (Shang et al., 2015) and Twitter (Ritter et al.,
2011) datasets. The latter datasets comprise post-
reply pairs on social networks where people inter-
act with others more freely (often more than two
speakers) and results in ambiguous dialog flows.

Instead, the dialog act flows in Dailydialog are
more consistent with our daily communication. For
example, we usually do not leave alone others’
question and just tersely change the topic. Instead,
we will answer others’ questions politely. By the
definitions we introduce in Section 2.2, this reflects
a Questions-Inform bi-turn dialog flow. This is a
frequent circle phenomena because it represents a
information transfer between the two speakers in
the dialog. Another example is that when someone
proposes a idea, such as going out for dinner, the
other speaker in the dialog usually responds to this
proposal. This reflects a Directives-Commissives
dialog flow and captures the speakers’ suggestions
and commitments to conduct certain acts. By la-
beling each utterances in dialogues, Dailydialog
datasets contain more than ten thousands examples
of approximately 8-turn dialog act flows. We hope
this is beneficial for the research in dialog man-
agement. The distributions of these four dialog
acts are given in Table 2. We also demonstrate
the interactions between each four dialog acts in
Figure 2(c).

Inform Questions Directives Commissive

46,532 29,428 17,295 9,724
45.2% 28.6% 16.8% 9.4%

Table 2: Intention Statistics in DailyDialog.

3.3 Certain Communication Pattern

Besides the basic Questions-Inform and Directives-
Commissives bi-turn dialog flows, we also find
two unique multi-turn flow patterns in DailyDialog
dataset.
Pattern 1: In human-to-human communication,
people are inclined to both answer the questions
and then initiate a new question to let the dialog
last. In other words, a speaker can change from
information-provider to information-seeker in a sin-
gle speaker turn. We find 2,398 (18.3%) dialogues
in DailyDialog exhibits this patterns, which is quite
frequent.
Pattern 2: When someone is proposing an activity
or offering a suggestion, the other speaker usually
comes up with another idea. This is sensible be-
cause the two speakers often have different views
about a topic and by exchanging different propos-
als, they persuade and influence the other. This
results in a Directives-Directives-Commissives-like
pattern in dialog flows, which happens totally 1,203
times (9.2%) in our dataset.

The two patterns shed light on our daily com-
munications style, which are merely found in
single-turn datasets or task-oriented datasets like
Ubuntu (Lowe et al., 2015) and restaurant reserva-
tion datasets (Bordes and Weston, 2016).

3.4 Rich Emotion

As discussed before, the other main purpose of our
daily communication is enhancing social bonding.
Hence, people tend to express their emotions dur-
ing communication. When hearing from others’
miseries, we often say “I’m sorry to hear that” or
“What a poor guy”. And when we appease oth-
ers, the listener often feels better. Such emotional
words are rich in DailyDialog dataset. Because
automatic emotion classification is difficult (Zhou
et al., 2017), we manually label the emotion for
each utterance to make them as accurate as possi-
ble. This distinguishes DailyDialog datasets from
most existing dialog datasets. Similarly, we sum-
marize the basic statistics on labelled emotion in
Table 3.3

Additionally, we observe in our daily life, a
healthy and pleasant conversation often ends with
positive emotions. Therefore we examine our Dai-

3The imbalanced emotion categories suggest that it might
be improper to label the emotion following “BigSix” The-
ory (Ekman, 1992). However, we keep it in this work to
follow previous work (Wang et al., 2013). To propose a novel
emotion theory is beyond this work.
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Count of EU of Total

Anger 1022 5.87 0.99
Disgust 353 2.03 0.34

Fear 74 1.00 0.17
Happiness 12885 74.02 12.51

Sadness 1150 6.61 1.12
Surpise 1823 10.47 1.77

Other 85572 - 83.10

Table 3: Emotion Statistics in DailyDialog. EU
denotes for utterances that contain the main six
categories of emotion, while Total denotes for all
utterances in the dataset. Numbers are multiplied
by 100%.

lyDialog dataset by how many conversations are
ending or positive emotions (i.e., happy), and find
3,675 (28.0%) “happy” dialogues. We also count
how many conversations have changed to positive
emotions even though they begin with negative
emotions (e.g., sad, disgust, anger) and find 113
(0.8%) such examples. We hope our dataset facili-
tates future research on developing conversational
agents able to regulate the conversation towards a
happy ending.

4 Evaluating Existing Approaches

In this section, we evaluate existing mainstream
approaches on the proposed DailyDialog. We
mainly compare five categories of approaches:
(1) Embedding-based Similarity for Response Re-
trieval (Luo and Li, 2016); (2) Feature-based Sim-
ilarity for Response Retrieval (Jafarpour et al.,
2010); (3) Feature-based Similarity for Response
Retrieval and Reranking (Luo and Li, 2016; Ot-
suka et al., 2017); (4) Neural network-based for
Response Generation (Shang et al., 2015; Sor-
doni et al., 2015); (5) Neural network-based
for Response Generation with Labeling Informa-
tion (Zhou et al., 2017). All the evaluated ap-
proaches are implemented by TensorFlow (Abadi
et al., 2015).

4.1 Experimental Setup

We randomly separate the DailyDialog
datasets into training/validation/test sets with
11,118/1,000/1,000 conversations. We tune
the parameters on validation set and report the
performance on test sets. In all experiments, the
vocabulary size is set as 25,000 and all the OOV
words are mapped to a special token UNK. We

set word embeddings to size of 300 and initialize
them with Word2Vec embeddings trained on the
Google News Corpus4. The encoder and decoder
RNN in the following experiments are 1-layer
GRU with 512 hidden neurons (Cho et al., 2014).
All the trained model parameters are then used as
an initialization point. We set the batch size as 128
and fix the learning rate as 0.0002. Models are
trained to minimize the cross entropy using Adam
optimizer (Kingma and Ba, 2014).

4.2 Retrieval-based Approaches

4.2.1 Compared Approaches
First, we choose three categories of four retrieval-
based approaches, i.e., (1) Embedding-based Simi-
larity (Luo and Li, 2016); (2) Feature-based Sim-
ilarity (Jafarpour et al., 2010; Yan et al., 2016);
(3)(4) Feature-based Similarity with Intention and
Emotion Reranking (Luo and Li, 2016; Otsuka
et al., 2017). We aim to see whether classical
embeddings-based, feature-based and reranking-
enhanced approaches are effective on DailyDialog.
Embedding-based The embedding-based ap-
proach is using basic neural networks as described
in Section 4.1 and denoted as {Embedding} be-
low. We measure the distance between embed-
dings as the average of cosine similarity, Jaccard
distance and Euclidean distance. At test time, can-
didates whose context embedding is closer to the
test context embedding are ranked higher. Simi-
lar approaches have been adopted extensively on
response retrieval task, such as Luo and Li (2016).
Feature-based We then evaluate the performance
of feature-based retrieval approach. We adopt sev-
eral linguistic features: TF-IDF and three fuzzy
string matching features, i.e., QRatio, WRatio, and
Partial ratio. We first use TF-IDF to select 1,000
candidates and rank them with the fuzzy features.
These fuzzy features is implemented with fuzzy-
wuzzy package5. We denote this feature engineer-
ing approach as {Feature}. Similar approaches
have been demonstrated effectively on response re-
trieval task and duplicate question detection task6,
such as Yan et al. (2016); Luo and Li (2016).
Reranking By Intention We also examine
reranking-enhanced retrieval approaches, which

4ttps://code.google.com/archive/p/
word2vec/

5https://github.com/seatgeek/
fuzzywuzzy

6https://github.com/abhishekkrthakur/
is_that_a_duplicate_quora_question
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Epoch Test Loss PPL BLEU-1 BLEU-2 BLEU-3 BLEU-4

Seq2Seq 30 4.024 55.94 0.352 0.146 0.017 0.006
Attn-Seq2Seq 60 4.036 56.59 0.335 0.134 0.013 0.006

HRED 44 4.082 59.24 0.396 0.174 0.019 0.009
L+Seq2Seq 21 3.911 49.96 0.379 0.156 0.018 0.006

L+Attn-Seq2Seq 37 3.913 50.03 0.464 0.220 0.016 0.009
L+HRED 27 3.990 54.05 0.431 0.193 0.016 0.009

Pre+Seq2Seq 18 3.556 35.01 0.312 0.120 0.0136 0.005
Pre+Attn-Seq2Seq 15 3.567 35.42 0.354 0.136 0.013 0.004

Pre+HRED 10 3.628 37.65 0.153 0.026 0.001 0.000

Table 4: Experiments Results of generation-based approaches.

BLEU-2 BLEU-3 BLEU-4

Embedding 0.207 0.162 0.150
Feature 0.258 0.204 0.194

+ I-Rerank 0.204 0.189 0.181
+ I-E-Rerank 0.190 0.174 0.164

Table 5: BLEU scores of retrieval-based ap-
proaches.

encourages the retrieved response to follow a cer-
tain rules. Luo and Li (2016) provides a simplest
way to realize it. Because intention has shown as
a beneficial factor in response selection (Otsuka
et al., 2017), we first examine reranking-enhanced
retrieval approach based on the intention (dialog
act) label in DailyDialog dataset. We compare the
intention history of the test example with that of
the candidate example, and use the compared sim-
ilarity as reranking feature. For example, if the
test intention history is {2,1,3}, then the candidate
response whose intention history is also {2,1,3}
will be reranked higher. Based on the feature-based
retrieval approach, we denote the reranking by in-
tention as {+I-Rerank}.
Reranking By Intention & Emotion The last
retrieved-based approach we evaluate is similar
with {+I-Rerank}, with the only difference that
the candidate responses are reranked by both in-
tention and emotion labels. We denote it as {+I-E-
Rerank}.

Because the groundtruth responses in the test set
are not seen in the training set, we can not evaluate
the performance using ranking-like metrics such
as Recall-k. We instead report the BLEU scores
achieved by retrieval-based approaches in Table 5.

We also evaluate them by calculating the “Equiv-
alence” percentage between the labels (i.e., inten-
tion, emotion) of the retrieved responses and those

of the groundtruth responses. The results are re-
ported in Table 6. Though subtle improvements
can be seen when using labels, we speculate it as
not a very strong evaluation metric. It is unsafe to
conclude that the higher the “equivalence” percent-
age is, the better (more coherent, more suitable) the
retrieved response will be.

Feature +I-Rerank +I-E-Rerank

Intention 46.3 47.3 46.7
Emotion 73.7 72.3 74.3

Table 6: “Equivalence” percentage (%) of retrieval-
based approaches.

4.2.2 Intention And Emotion Matters

In dialog response generation, word-level overlap
metrics such as BLEU are inadequate (Liu et al.,
2016). To provide insights on whether intention
and emotion are beneficial, and how they works,
we conduct several case studies in Table 7.

In the first block, we give a example of how
intention helps to find more proper response. The
intentions in the test context (U1 & U2) are {3,
3}, meaning {Directives, Directives}. The gold
answer (GA) in the test set is “Thanks.” Although
both three retrieved responses are not exactly same
with GA, the approaches that reranking by intention
(+I) and reranking by intention and emotion (+I-E)
find more suitable response than the feature-based
approach without reranking (F). It is because, the
context corresponding to the retrieved response
“About how long will it take me to get there?” is
“Excuse me, but can you tell me the way... Just go
straight... You can t miss it”, whose dialog act
flow {3, 3} is consistent with the context test. On
the contrary, the response found by feature-based
approach has the context “Can you direct me to
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Test Context Retrieved Response

U1: Can you direct me to Holiday inn ? (3)
U2: Cross the street... You can’t miss it. (3)
GA: Thanks.

F: Well, we’ve got some great mangoes on sale.
+I: About how long will it take me to get there?
+I-E: About how long will it take me to get there?

U1: No way... You can’t keep it here. (1)
U2: Please...it’s so cute and tame. (0)
U3: All right. But you have to... (0)
GA: I will. Thank you, Mummy.

F: Is there somewhere you wanted to go eat at?
+I: Sprite with ice, please.
+I-E: Now we get along very well. It makes me feel...

Table 7: Case Study of Reranking-enhanced Retrieve Approaches. Context words are shortened for space.

Test Context Generated Response

U1: I have to check out today.
I’d like my bill ready by 10 in morning.

U2: You can be sure of that, sir .
GA: Thank you.

Attn: all right, sir.
Pre+Attn: how long will it take to get there?
HRED: here you are.
Pre+HRED: how long will it take to get there?

Table 8: Case Study of Generation-based Approaches.

some fresh produce that’s on sale?”, which should
be attributed to the poor result.

Similar cases are given in the second block
where emotion history information benefits. The
emotions in the test context (U1, U2 & U3) are {1,
0, 0}, meaning {Anger, Others, Others}. The most
proper retrieved responses are from the reranking
approach by intention and emotion (+I-E) that finds
“Now we get along very well. It makes me feel that
I’m someone special. It makes me feel that I’m
someone special.” The context history for this re-
sponse is “oh, really? so you just took home a
stray cat? // Yes. It was starving and looking for
something to eat when I saw it. // Poor cat.” whose
emotion history is {6, 0, 0}.
4.3 Generation-based Approaches

4.3.1 Compared Approaches
Seq2Seq The simplest generation-based approach
we adopt is a vanilla Seq2Seq with GRU as basic
cell, as described in Section 4.1. Such approach
is widely selected as baseline models in dialog
generation Shang et al. (2015); Lowe et al. (2015);
Al-Rfou’ et al. (2016).
Attention-based Seq2Seq We then evaluate the
Seq2Seq approach with attention mechanism (Bah-
danau et al., 2014) which has shown its effective-
ness on various NLP tasks including dialog re-
sponse (Hermann et al., 2015; Luong et al., 2015;
Mei et al., 2017). We denote this approach as {Attn-
Seq2Seq}.
HRED The third generation-based approach

we evaluate is hierarchical encoder-decoder
(HRED) (Sordoni et al., 2015). Due to its context-
aware modeling ability, HRED has shown better
performances in previous work (Sordoni et al.,
2015).
Intention and Emotion-enhanced To utilize the
intention and emotion labels, we follow Zhou et al.
(2017) to incorporate the label information during
decoding. The intention and emotion labels are
characterized as one-hot vectors. We denote the
label-enhanced approaches as {L+} and the perfor-
mances are given in the second box in Table 4.
Pretrained We also examine whether pre-training
with other dataset will boost the performance of
the first three generation-based approaches. Follow-
ing Li et al. (2016, 2017), we use the OpenSubtitle
dataset (Jörg Tiedemann, 2009)7. Because it has no
clear and concise segmentation for each conversa-
tion, we treat each of three consecutive utterances
as context, and the foregoing one as response. Fi-
nally, 3,000,000 three-turn dialogs are randomly
sampled and used to pre-train the compared mod-
els for 12 epochs. We denote the approaches using
pre-training as {Pre+}.

According to BLEU scores from Table 4 (last
four columns), we can see that in general attention-
based approaches are better than vanilla Seq2Seq
model. Among the three compared approaches,
HREDs achieve highest BLEU scores because
they take history information into consideration.

7https://github.com/jiweil/
Neural-Dialogue-Generation
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Furthermore, label information is effective even
though we utilize them in the simplest way. These
findings are consistent with previous work (Sordoni
et al., 2015; Serban et al., 2016b).

On the other hand, the first three columns in
Table 4 show that models pretrained by OpenSub-
title converge faster, achieving lower Perplexity
(PPL) but poorer BLEU scores. We conjecture
it as a result of domain difference. OpenSubtitle
dataset is constructed by movie lines, whereas our
datasets are daily dialogues. Moreover, OpenSubti-
tles has approximately 1000+ speaker turns in one
conversation, while our dataset has in average 8
turns. To pretrain a model by corpus from different
domain will harm its performance on the target do-
main. Hence, it is less optimal to simply pretrain
models with large-scale datasets such as OpenSub-
title, which is domain different from the evaluation
datasets. We further examine this issue by compar-
ing the generated answers by models trained solely
on DailyDialog with and without pre-training.

4.3.2 Case Study
We give a case study in Table 8. It can be seen the
two pre-trained models (the second and the fourth
row) generate responses that are irrelevant with
the context. In contrast, the corresponding model
without pre-training produce more reasonable re-
sponses.

5 Related Work

5.1 Domain-Specific Datasets

The research on chatbots and dialog systems is still
new and developing. Literature on traditional dia-
log system primarily relies on template-based and
retrieval-based approaches and applies to specific-
domain of data.

Popular datasets for this research area include
TRAINS (Ringger et al., 1996), DBOX (Petukhova
et al., 2014), bAbI synthetic dialog (Bordes and
Weston, 2016) and Movie Dialog datasets (Dodge
et al., 2015). These datasets feature different
types of dialogues happening in different physi-
cal contexts. For example, the TRAINS corpus
contains problem-solving dialogues and the dia-
log systems trained with TRAINS are performing
as task-oriented assistants. The tasks are often
about the shipping of railroad goods and thereafter
it is called TRAINS. The bAbI (Bordes and We-
ston, 2016) and Movie Dialog dataset (Dodge et al.,
2015) contain dialogues about movies and the tasks

in these datasets are movie question answering,
movie recommendation and so on. Another pop-
ular dataset is Ubuntu dataset (Lowe et al., 2015)
which extracts the user posts and replies in Ubuntu
forums and the task is to answer users’ computer-
related questions.

5.2 Open-Domain Datasets

More recent work concentrates on generation-
based approaches, which are mainly based on
the sequence-to-sequence encoder-decoder archi-
tecture (Sordoni et al., 2015; Serban et al.,
2016b). These generation-based approaches are of-
ten trained with large-scale open-domain datasets.

In Shang et al. (2015), the authors propose a neu-
ral responding machine (NRM) and examine their
approach on Sina Weibo dataset (Wang et al., 2013).
The Sina Weibo dataset is constructed by crawling
users’ posts and replies on a Chinese social net-
work. Similar dataset is constructed by Ritter et al.
(2011) who provides a Twitter dataset. Besides
social network, Al-Rfou’ et al. (2016) constructs
a dialog training dataset with Reddit Forum posts.
Existing work based on neural networks has ex-
amined their approaches on these datasets (Zhou
et al., 2017; Wang et al., 2013; Sordoni et al., 2015;
Serban et al., 2016b). Although these datasets are
large-scale, the dialogues in them are often noisy
and short. Even worse, the artificially constructed
post-reply pairs are different from our real conver-
sations.

To train neural network based conversational
models, researchers often pre-train their models
by using movie subtitles which are large-scale and
conversation-like. The most widely adopted dataset
is OpenSubtitle (Jörg Tiedemann, 2009) which
is used in Li et al. (2016, 2017). Other similar
datasets are SubTle dataset (Bordes and Weston,
2016) which is then used to build up MovieQA sub-
dataset and MovieTriples (Serban et al., 2016a).

6 Conclusions and Future Work

In this work, we develop the dataset DailyDialog
which is high-quality, multi-turn and manually la-
beled. We show the proposed dataset is appeal-
ing in four main aspects. The dialogues in the
dataset cover totally ten topics and conform com-
mon dialog flows such as Questions-Inform and
Directives-Commissives bi-turn flows. In addition,
DailyDialog contains unique multi-turn dialog flow
patterns, which reflect our realistic communication
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ways. And it is rich in emotion. The evaluation
results in Section 4 are initial but indicative.

In the future we plan to design advanced mech-
anisms to explore the unique multi-turn dialog
flows described in Section 3. It is also promis-
ing to utilize the topic information in our dataset
by domain adaptation and transfer learning. Our
dataset is available on http://yanran.li/
dailydialog, and we hope it is beneficial for
future research in this field.
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Abstract

We propose to unify a variety of existing se-
mantic classification tasks, such as seman-
tic role labeling, anaphora resolution, and
paraphrase detection, under the heading
of Recognizing Textual Entailment (RTE).
We present a general strategy to automat-
ically generate one or more sentential hy-
potheses based on an input sentence and
pre-existing manual semantic annotations.
The resulting suite of datasets enables us
to probe a statistical RTE model’s perfor-
mance on different aspects of semantics.
We demonstrate the value of this approach
by investigating the behavior of a popular
neural network RTE model.

1 Introduction

The Recognizing Textual Entailment (RTE) task
aims to assess a system’s ability to do textual
inference—i.e. derive valid conclusions from tex-
tual clues (Dagan et al., 2006, 2013; Bar-Haim
et al., 2006; Giampiccolo et al., 2007, 2009; Ben-
tivogli et al., 2009, 2010, 2011). In this task, a
system judges whether “typically, a human read-
ing [the sentential context, or text] T would infer
that [the sentential hypothesis] H is most likely
true” (Dagan et al., 2006).

Recent efforts in textual inference have focused
on the Stanford Natural Language Inference (SNLI)
dataset. SNLI is made up of hundreds of thou-
sands of text-hypothesis pairs, wherein the texts are
image captions drawn from the Flickr30k corpus
(Young et al., 2014) and the hypotheses are elicited
from crowdsourcing workers based on those cap-
tions (but not the corresponding image). While
SNLI has led to significant methodological im-
provements, its collection protocol does not lend
itself to understanding the types of semantic knowl-

edge necessary for properly understanding a partic-
ular example. Researchers compete on which sys-
tem achieves the highest score on a test set, but this
itself does not lead to an understanding of which
linguistic properties are better captured by a quan-
titatively superior system.

In contrast, datasets such as FraCaS (Cooper
et al., 1996) are precisely designed to illustrate
a range of semantic phenomenon that a text un-
derstanding system should handle. But though
this careful design enables fine-grained probes
into a system’s semantic capabilities, FraCaS-like
datasets tend not to be large-scale enough for recent
work in data-driven computational semantics. Ask-
ing experts, such as those who constructed FraCaS,
to author hundreds of thousands of examples is not
practical, just as the existing elicitation protocol
behind SNLI will not lead to cleanly partitioned
sets of examples that focus specifically on certain
kinds of semantic inference.

Our proposal is to leverage existing large-scale
semantic annotation collections as a source of tar-
geted textual inference examples. This strategy
requires only minor effort in developing dataset-
specific generation capabilities to recast annota-
tions into a shared universal representation: natural
language sentences.

We demonstrate the use of this strategy in two
steps. First, we construct three recasted datasets
from three existing semantic resources that target
three distinct semantic phenomena:1 (i) the Seman-
tic Proto-Roles v1 (SPR) dataset (Reisinger et al.,
2015), which contains likelihood judgments about
the semantic proto-role properties (Dowty, 1991) of
verbal arguments found in PropBank (Palmer et al.,
2005), (ii) the FrameNet Plus (FN+) dataset, which
contains likelihood judgments about the paraphrase
validity of frame triggers (Pavlick et al., 2015), and

1These recasted datasets are made publicly available at
http://decomp.net.
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(iii) the Definite Pronoun Resolution (DPR) dataset,
which contains annotations relevant to complex
anaphora resolution (Rahman and Ng, 2012). We
use these recasted datasets to train a recent neural
RTE model (Bowman et al., 2015) and measure its
performance. We show that complex anaphora is
the most difficult semantic phenomenon for neu-
ral RTE models to capture, followed by predicting
thematic proto-role properties. Perhaps unsurpris-
ingly, given the nature of the RTE task, paraphras-
ing seems to be the easiest phenomenon to model.

In the next section (§2), we discuss previous
work in RTE, focusing in particular on the devel-
opment of RTE datasets. We then discuss our data
creation process (§3) as well as the results of a
small validation (§4). Finally, we report on the
setup and results of our three experiments (§5) and
then conclude (§6).

2 Background and Prior Work

The current paper touches on both the broad theme
of understanding continuous approaches to natu-
ral language understanding as well as the more
narrow focus on textual entailment. We begin by
discussing how the current paper fits within the
broader context and then specify its place within
textual entailment.

2.1 Approaches to logical form

All approaches to natural language understanding
utilize intermediate logical forms that are inter-
pretable to varying degrees. On one end of the
spectrum are approaches that utilize declarative log-
ical forms. In such approaches, semantic parsers
first convert a sequence into a meaning representa-
tion that expresses the semantics needed for infer-
ence. In this case, each individual component of
the logical form is clearly interpretable. Tremen-
dous energies within computational linguistics have
been spent on building declarative, component-
wise-interpretable logical forms such as Hobbsian
Logic (Hobbs, 1985), Discourse Representation
Theory (Kamp et al., 2011), the Rochester Inter-
active Planning System (Allen et al., 2007), Mini-
mal Recursion Semantics (Copestake et al., 2005),
Episodic Logic (Schubert and Hwang, 2000), Com-
binatory Categorical Grammar (Steedman, 2000),
Semantic Role Labeling (Gildea and Jurafsky,
2002), Framenet Parsing (Fillmore et al., 2003)
and Abstract Meaning Representation (Banarescu
et al., 2013).

Opposite the above approaches are methods that
utilize vector space-based logical forms. Recent
work on word and string embeddings (Mikolov
et al., 2013; Pennington et al., 2014) has produced
vector space representations that can be induced
from large corpora in an unsupervised manner that
have been used to initialize the training of neural
networks for tasks as complex as English-to-French
machine translation (Sutskever et al., 2014). Vector
space-based intermediate forms are not commonly
recognized as logical forms but in light of recent
work (Bouchard et al., 2015) it seems worthwhile
to reconsider this view.

An argument in favor of declarative, inter-
pretable logical forms is that one can directly ob-
serve the specific mistakes made by a system in the
interpretive process of mapping natural language
strings to logical forms—e.g., it is possible to find
out whether a prepositional phrase was attached
incorrectly, or the wrong sense of a particular word
was selected, causing a cascade of downstream
errors. Neural systems that use vector space repre-
sentations for textual inference, instead of logical
forms, lack such modularity and interpretability,
and therefore it is very difficult to figure out the
cause of a particular error in a neural network.

Much prior work has aimed to improve the in-
terpretability of neural networks, focusing in par-
ticular on extracting rules from the activations of
feed forward networks (Towell and Shavlik, 1993;
Thrun, 1993; Fu, 1994; Thrun, 1995). In recent
years, this focus has shifted to understanding and
visualizing other architectures such as Convolu-
tional Neural Networks and Recurrent Neural Net-
works (Zeiler and Fergus, 2014; Karpathy et al.,
2015), though the guiding principle remains the
same: understanding the behavior of neural net-
works in terms of its activations.

The current paper also presents a strategy for
understanding the behavior of neural RTE systems
used for solving the task of RTE, but we take a
different route. Instead of explaining the behav-
ior of neural networks in terms of its parameters
and activations, we benchmark their performance
on datasets that each require distinct types of se-
mantic reasoning for high performance. In this
sense, our motivation and strategy is similar to the
reasoning behind the bAbI dataset for question an-
swering (Weston et al., 2016). Weston et al. argue
that, in order to measure the progress towards build-
ing dialogue agents, it can be useful to evaluate the
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ID Dataset Label Text Hypothesis

1 SPR entailed
The network must refund money to the advertisers
and loses considerable revenue and prestige.

The network was altered or somehow changed
during or by the end of the losing.

2 SPR entailed
He turned himself in to authorities in New York
earlier this year.

He changes location during the turning.

3 SPR not-entailed Later, he marketed glue. He changes location during the marketing.
4 SPR not-entailed So he asked the IRS if the plan would work. The asking caused a change in the IRS.

5 FN+ entailed An agreement is to be signed in late 10/92. An agreement is to be inked in late 10/92.
6 FN+ entailed So our work must continue. So our labor must continue.
7 FN+ not-entailed Friday had beautiful weather. Friday had beautiful forecast.
8 FN+ not-entailed Your support will help them go to work. Your support will allow them go to work.

9 DPR entailed The bird ate the pie and it died. The bird ate the pie and the bird died.
10 DPR not-entailed The bird ate the pie and it died. The bird ate the pie and the pie died.
11 DPR entailed The bird ate the pie and it was ruined. The bird ate the pie and the pie was ruined.
12 DPR not-entailed The bird ate the pie and it was ruined. The bird ate the pie and the bird was ruined.

Table 1: Examples of text-hypothesis pairs generated from the SPR, FN+, and DPR datasets.

ability of systems to perform different kinds of
question answering tasks that require specific types
of reasoning. Our strategy for building specific
datasets that can probe the ability of machine learn-
ing systems to perform specific types of reasoning
is similar to theirs; however, instead of construct-
ing completely artificial datasets, we recast datasets
constructed on top of natural text.

2.2 Approaches to textual entailment

Research in textual entailment, at least in its most
recent form, was catalyzed by the RTE shared
task (Dagan et al., 2006; Bar-Haim et al., 2006;
Giampiccolo et al., 2007, 2009; Bentivogli et al.,
2009, 2010, 2011). With each iteration of this
shared task, manually annotated examples were
created for testing competing systems. But even
after multiple iterations, the amount of available
data for RTE was still small. The Sentences In-
volving Compositional Knowledge (SICK) corpus
was released with the goal of alleviating this prob-
lem (Marelli et al., 2014).

A significant further contribution was made with
the Stanford Natural Language Inference (SNLI)
corpus, which uses crowdsourcing to gather two
orders of magnitude more examples than all pre-
vious datasets (Bowman et al., 2015). SNLI en-
abled fully supervised training of powerful machine
learning models like neural networks. A number
of researchers have pursued this direction by ap-
plying completely supervised neural models for
sequential data to the problem of textual entail-
ment (Rocktäschel et al., 2015; Mou et al., 2015;
Shuohang and Jing, 2015; Liu et al., 2016; Cheng
et al., 2016; Parikh et al., 2016; Munkhdalai and
Yu, 2016).

But though the state of the art performance of
neural sequential models has steadily increased
over the past year, it appears that this area has
reached a point where the paradigm of training and
evaluating on a single general-purpose RTE dataset
has become insufficient for reaching the next level
of improvements. It is still informative to measure
the performance of a new RTE model on the SNLI
dataset, but this black-box evaluation does not help
us understand the fine-grained aspects of a model’s
capability in performing particular types of natural
language inference, such as its ability to handle
coreference, paraphrasing, or its ability to judge
thematic properties of a named entity. The issue
of lack of understandability is especially important
for neural models, which are notoriously difficult
to interpret.

To address this issue, we take inspiration from
the FraCaS dataset (Cooper et al., 1996) and con-
struct a suite of targeted datasets that separately
test a system’s ability to perform individual bits of
interpretation such as paraphrasing, semantic role
labeling, and coreference. In contrast to the origi-
nal FraCaS data set, which is relatively small and
which could not support the training of purely lexi-
cal neural RTE classifiers, we pursue the strategy of
automatically converting semantic classifications—
i.e., human judgments about semantic properties—
into labeled examples for textual entailment. This
strategy allows us to construct textual entailment
datasets that are of the same order of magnitude as
SNLI—and hence support data-driven training of
large neural networks—but that are also focused
on specific semantic properties.

With our strategy we can also quantify the types
of semantic phenomenon that an existing semanti-
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cally undifferentiated dataset contains. For exam-
ple, if a neural model trained on the SNLI dataset
performs poorly on a test set from another domain
that exercises the trained model’s ability to perform
anaphora resolution, then it can be inferred that ei-
ther the original dataset did not contain enough
examples of anaphora resolution, or that the statis-
tical model failed to capture that phenomenon.

Finally, we note that the idea of converting
question-answer pairs into text-hypothesis pairs
is not novel: the RTE dataset for the second
RTE Shared task was created by manually con-
verting existing Information Extraction, Informa-
tion Retrieval and QA pairs from manually cu-
rated datasets such as ACE, MUC, TREC and
CLEF (Bar-Haim et al., 2006). The main contri-
bution of the current work is to show that such
conversion need not be done manually; automatic
conversion of some semantic datasets can be done
with a high enough quality to create large-scale
RTE datasets.

3 Data Creation Process

In order to create annotated RTE datasets that can
probe specific aspects of understanding, our strat-
egy is to rewrite semantic classifications into the
form of textual entailment pairs. As mentioned
above, we define a semantic classification dataset
to be a text corpus, along with manual annotations
of a particular meaning-related aspect of the data.
Here, we describe how to apply this strategy to
the SPR, FN+, and DPR datasets, but there exist
many further datasets to which this strategy can be
applied.

The SPR dataset Semantic Proto-Role Labeling
(SPRL) is the problem of assigning a likelihood
value for a particular proto-role property holding
of a particular argument of a particular predicate
(Reisinger et al., 2015; White et al., 2016; Teichert
et al., 2017). These proto-role properties are in-
spired by the thematic proto-role theory proposed
by Dowty (1991), who argued that, for the purpose
of determining the mapping from predicates’ se-
mantic roles to its syntactic arguments, semantic
roles should be viewed not as categories, but rather
as sets of entailments that arguments must satisfy
in the context of an event kind.

For purposes of recasting, we use the SPR1
dataset, which was collected by Reisinger et al.
(2015) and contains likelihood judgments for the
twelve proto-role properties listed in Table 2.

Role property How likely or unlikely is it that...

instigation ARG caused the PRED to happen?
volition ARG chose to be involved in the PRED?
awareness ARG was/were aware of being involved in the PRED?
sentient ARG was/were sentient?
change of location ARG changed location during the PRED?
exists as physical ARG existed as a physical object?
existed before ARG existed before the PRED began?
existed during ARG existed during the PRED?
existed after ARG existed after the PRED stopped?
change of possession ARG changed possession during the PRED?
change of state ARG was/were altered or somehow changed during or by the

end of the PRED?
stationary ARG was/were stationary during the PRED?
location of event ARG described the location of the PRED?
physical contact ARG made physical contact with someone or something else

involved in the PRED?
was used ARG was/were used in carrying out the PRED?
pred changed arg The PRED caused a change in ARG?

Table 2: Questions posed to SPR annotators.

These judgments were collected by providing the
annotator with a sentence in which a predicate and
an argument of that predicate were highlighted and
asking them to answer, on a five-point scale from
1 (very unlikely) to 5 (very likely), how likely or
unlikely each property was to hold of the argument
in the context of the predicate.2

For example, given (1), with the antibody as the
highlighted argument and killed as the highlighted
predicate, the annotator’s job was to answer ques-
tions like the one in (2).

(1) The antibody killed the virus.

(2) How likely or unlikely is it that the antibody
caused the killing to happen?

For the purposes of SPRL task, Teichert et al.
(2017) propose to collapse the five-point scale to
a binary variable by mapping response 1–3 to not-
entailed and 4–5 to entailed and predicting the
resulting binary variable. Collapsing across proper-
ties, the current state-of-the-art F1 for the resulting
task of predicting this binary variable is reported
by Teichert et al. (2017) at 81.7.

Binarized proto-role property judgments can be
readily converted to text-hypothesis pairs by simply
treating the original sentence as the text and con-
verting the questions listed in Table 2 to statements
for use as hypotheses. For example, (1) would
be treated as a text, and (3) would be treated as a
hypothesis generated from (2).

(3) The antibody caused the killing to happen.

In this case, the annotator gave a 5 (very likely)
response to (2), and so in our recasted dataset, the
resulting pair is labeled entailed.

2Annotators were also given the option of saying that the
question was not applicable (NA). We filter these these re-
sponses from our dataset.
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I Three women enjoying a balloon joyride.
Three women are on a balloon ride.

I A woman sings into a microphone indoors.
a women sings

I The kid is sliding down a tan plastic slide.
The kid is sliding.

I A black dog is playing in water with a green toy.
the dog has a toy

I A woman with glasses and a pink hat rides her bike.
A woman with glasses and a pink hat rides her bike

Table 3: Examples of artifacts in the SNLI dataset that pro-
mote hypothesis sentences to be substrings of the evidence
sentences, specially in case of entailments. The bullet marked
sentences are the evidence sentences and the hypothesis sen-
tences below them.

This is a simple and inexpensive way of cre-
ating entailment pairs, with the benefit that this
annotation scheme probes for fundamental seman-
tic information from an annotator. Also, note that,
since Reisinger et al. collect annotations for the
twelve types of proto-role properties mentioned
above, the errors made by a neural RTE model
can be automatically subcategorized into these 12
categories, further aiding in interpretation.

One potential criticism of our method is that,
because our hypothesis sentences are constructed
by filling in templates, they do not have the same
syntactic diversity as the free elicitation method
used by Bowman et al.. We suggest that this is not
a problem for two reasons.

First, since our goal is to distinguish between
the kinds of semantic phenomenon that can be ac-
curately modeled by statistical RTE models, the
lack of diversity is not an obstacle as long as the
particular phenomenon that we wish to probe is
being covered properly. Second, even the method
used by Bowman et al. of enlisting workers on
the Amazon Mechanical Turk (AMT) Platform to
write hypotheses sentences in response to an im-
age caption is not without its drawbacks since their
method introduces artifacts such as the fact that the
hypotheses sentences in SNLI are on average half
the length of the text prompts. We believe that this
happens because workers on AMT have an incen-
tive to spend the least amount of time possible in
constructing their responses. In Table 3, we list a
few such examples.

The FN+ dataset In Frame Semantics (Fillmore
et al., 2003), the primary unit of lexical analysis
is the frame, which captures the central proper-
ties of a concept, situation, or event. The largest
resource for frame annotated sentences with infor-
mation about evoked frames, their trigger phrases,

Dataset Sentences Label Percentage
Entailed Not-Entailed

FN+ 154,605 43.45 56.55
SPR 154,607 34.80 65.20
DPR 3,661 49.99 50.01

Total 312,873 39.13 60.87

SNLI† 569,033 33.41 66.59

Table 4: Number of text-hypothesis pairs generated from
each dataset along with percentage of entailing v. non-
entailing sentences. SNLI included for comparison.

and frame arguments is the FrameNet dataset (Fill-
more and Baker, 2001), which despite its scale, still
suffers from lexical sparsity.

In order to alleviate this problem of lexical
sparsity Rastogi and Van Durme (2014) use the
Paraphrase Database (Ganitkevitch et al., 2013)
to automatically paraphrase trigger tokens that
evoke frames inside sentences from the FrameNet
dataset. These paraphrases are noisy, and their
quality is not high enough for our use. How-
ever, these paraphrases were subsequently man-
ually rated by Pavlick et al., who asked annota-
tors to “judge each paraphrase in terms of how
well it preserved the meaning of the original sen-
tence” (Pavlick et al., 2015). These ratings were
collected on a scale from 1 to 5, where 5 meant that
the paraphrase retained all of the meaning of the
original sentence and 1 meant that paraphrase did
not mean anything close to the original phrase. We
generate our text–hypothesis pairs using the manual
judgments of meaning retention on these sentence–
paraphrase pairs collected by Pavlick et al..

While the sentence–paraphrase pairs that are la-
beled entailed and rated 3.0 and above are usually
grammatically correct, the sentences with an aver-
age rating below 3 and labeled entailed sometimes
contain a grammatical errors, and some are rated
neutral or contradictory. Therefore, we remove
sentences with an average rating less than or equal
to 3.0 and greater than 2.5. All of the sentence
pairs that were rated less than 2.5 were not valid
entailments and they were labeled as not-entailed.

As an example, consider (4), which is a sentence
from FrameNet.

(4) So our work must continue.

The word work triggers a frame and is replaced by
its paraphrase labor by Pavlick et al. to create (5).

(5) So our labor must continue.

We consider the first sentence to be the text and the
second sentence to be the hypothesis. The annota-
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Dataset Accuracy Grammaticality

FN+ 85 77
SPR 94 92
DPR 98 96
SNLI 91 96

Table 5: Accuracy of the labels assigned to the RTE pairs and
the grammaticality of the hypothesis sentences. 100 random
RTE pairs from each dataset were selected and each pair was
assigned a value of 1 if it was correctly labeled/grammatical
and 0 otherwise. We report the average score as a percentage
in two separate columns for each dataset.

tors on Mechanical Turk gave this pair of sentences
an average rating of around 4, and so we consider
this pair of sentences as an instance of the entailed
relation.

The DPR dataset Definite Pronoun Resolution
is the problem of identifying the correct antecedent
for a definite pronoun—e.g. he/him, she/her, it,
etc.—in one clause, given two potential antecedents
in a preceding clause. Data generation for this
task is done manually and relies on the concept
of twin sentences. Twin sentences are (minimally)
biclausal sentences that share a (linearly) initial
clause containing at least two non-pronominal re-
ferring expressions but differ on a non-initial clause
containing a pronoun that could corefer with either
of the two referring expressions in the initial clause
but which is biased to corefer with only one.

This concept is exemplified in (6), where the bee
and the flower are the two referring expressions in
the initial clause for both (6a) and (6b), and it is
the pronoun.

(6) The bee landed on the flower because...
a. ...it wanted pollen.
b. ...it had pollen.

In (6a), it is biased to corefer with the bee, and in
(6b), it is biased to corefer with the flower.

In order to assign the correct antecedent of it
in both sentences, a computational system would
presumably need world-knowledge about bees and
flowers. The DPR dataset is a collection of such
problems and their solutions, collected by Rahman
and Ng (2012) as a step towards solving the Wino-
grad Schema Challenge (Hector et al., 2012). The
ranking-based system that Rahman and Ng present
obtains an accuracy of 73.1% on their dataset. This
result—which, to our knowledge, remains the best
posted on this dataset—outperforms a random base-
line as well as various systems based on the Stan-
ford resolver (Lee et al., 2011).

Dataset Sentence

FN+
12:06 a.m. hrh: i was per the berkeley main

library when it hit.

SPR Me existed as a physical object.

DPR
John could not understand his waiter,

because the his waiter spoke Spanish.

SNLI A person in on concrete.

Table 6: Examples of ungrammatical hypothesis sentences
from each of our datasets and SNLI.

Each DPR coreference problem-solution pair
can be converted to two annotated entailment prob-
lems by substituting the target pronoun with the
two expressions that it could corefer with. Thus,
two RTE pairs are generated for each DPR pair:
one that is entailed and one that is not entailed.

For example, (6a) is rewritten to (7a) and (7b).

(7) a. The bee landed on the flower because the
bee wanted pollen.

b. The bee landed on the flower because the
flower wanted pollen.

The two RTE pairs are then (7a)–(8a), which is
paired with the output entailed, and (7a)–(8b),
which is paired with the output not-entailed.

Statistics Table 4 summarizes the constructed
datasets as well as number of sentences and the
class category breakdown of the SNLI dataset.3

4 Data Validation

Since our data is automatically generated, we per-
formed manual validation to ensure that the gen-
erated data was high quality. To conduct this vali-
dation, we assessed a small subset of our recasted
datasets as well as the SNLI dataset.

We randomly sampled 100 RTE pairs from each
of the four datasets, and then a single annotator
rated those 400 RTE pairs on two criteria of gram-
maticality and correctness. The results of the man-
ual validation presented in Table 5 show that the
data quality of the DPR and SPR datasets is on
par with the quality of the RTE pairs in the SNLI
datasets. The grammaticality of the hypothesis sen-
tences in the FN+ dataset is worse than the other
three datasets, but its accuracy is reasonably high.

Tables 6 and 7 show examples of ungrammat-
ical hypothesis sentences and incorrectly labeled

3For the SNLI statistics, we map the two categories of
contradiction and neutral to not-entailed.
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Assigned
Category Text and Hypothesis

(FN+)
Not Entailed

I The steps passed along the path on the other side of the wall under which i crouched.
the steps passed along the path on the other outboard of the wall under which i crouched.

(SPR)
Not Entailed

I The machine employs reduced instruction-set computing, or RISC, technology.
Reduced instruction-set computing, or RISC, technology existed after the employing stopped.

(DPR)
Entailed

I A series of injections are used to battle a type of cancer in patients because they have a special
type of drug which counteracts this sickness.

A series of injections are used to battle a type of cancer in patients because patients have a special
type of drug which counteracts this sickness.

(SNLI)
Neural

I two guys playing music with a band
The guys play music

Table 7: Examples of incorrectly labeled RTE pairs from each of our datasets and SNLI.

RTE sentence pairs to illustrate the types of errors
that we make in comparison to the errors made by
mechanical turkers.

5 Experiments and Results

We now conduct experiments to measure the varia-
tion in performance of neural RTE models trained
using the datasets described above. The driving
idea is that, by analyzing the variation in accuracy
of a neural RTE model trained on different datasets
on the same test set, such as the SNLI dataset, we
can gain insights into the behavior of the model
and potentially reveal interesting information about
the SNLI dataset itself.

We first split our three datasets into train, vali-
dation, and test sets in the proportion of 80:10:10.
Prior to training we convert the SNLI test set to a
binary scheme by replacing both neutral and con-
tradiction class labels with not-entailed.

For our model, we use the LSTM-based neural
RTE model described by Bowman et al. (2015)
which was their best performing individual neu-
ral model. This model first embeds the words us-
ing 300 dimensional word embeddings created us-
ing the Glove method (Pennington et al., 2014).
Then, two LSTM neural networks (Hochreiter
and Schmidhuber, 1997) independently encode
the text and hypothesis sentences into 100 dimen-
sional vectors. These representations are concate-
nated and input to a 3-layer deep 200 dimensional
neural network classifier. The entire network is
trained by maximizing the cross-entropy of the
input-output pairs over the entire dataset using
the AdaDelta (Zeiler, 2012) update rule with L2-
regularization and Dropout. We evaluated each of
our models on all the test sets to obtain the results
in Table 8.

These results show that when the neural RTE
model is trained and tested on the same dataset, the

performance on the test set is high (above 80%) for
FN+, SPR, and SNLI. This suggests that these three
tasks are relatively amenable to the application of
neural sequence models, with the FN+ and SPR
dataset being comparable in their difficulty.

Moreover, we see that the performance of the
model trained on all four datasets is equal to chance
performance on the DPR dataset. Further, it is
consistently lower than other cross-evaluation re-
sults shown on the off-diagonals of Table 8. This
suggests that complex anaphora resolution is dif-
ficult for our model to capture, especially when
its training data are not focused on demonstrating
correct coreference resolution. And since the per-
formance of the SNLI trained model is the least
on the DPR dataset, this may suggest that the phe-
nomenon of anaphora resolution occurs less often
than paraphrasing or proto-role resolution in the
SNLI dataset.

This is corroborated by a small manual analysis.
In our random sample of 100 sentences from the
SNLI dataset, we did not find a single example
where pronoun coreference resolution was required
to predict the label correctly. In fact, in this analy-
sis, we found that the only text that might plausibly
have been rewritten as a pronoun resolution prob-
lem (8a) was not; the hypothesis for (8a) is (8b).

(8) a. A man speaking to a woman in a grocery
store as he selects a carton of juice.

b. A man is complimenting a woman on her
jacket.

Finally, we can see that the SNLI trained model
achieves 62.0% on the FN+ test set. While bet-
ter than a most frequent label baseline (56%), this
is still considerably worse than the FN+ model
(80.5%), optimized for paraphrastic inference un-
der single word replacement. We believe this is
because the sentences in FN+ contain language
that is rarely seen. Thus, they contain more subtle
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Train Set FN+ SPR DPR SNLI

FN+ 80.5 60.0 49.5 62.0
SPR 65.8 80.6 50.7 52.3
DPR 19.2 65.2 49.5 65.7
SNLI 62.0 57.6 48.8 85.3

Table 8: Accuracy under 0-1 loss of predicting the entailment
relation. Each cell describes the accuracy of a model trained
on the corresponding row’s training set and tested on the
corresponding column’s test set

differences compared to the differences between
the text and the hypothesis in the SNLI dataset.
This may also be why the model trained on SNLI
does not perform well on any of the other datasets.

As a second illustration, we analyzed the SNLI
trained RTE model’s performance on the SPR test
set by dissecting the overall performance of the
model by the proto-role properties that the entail-
ment pairs were generated from. Note that all the
categories appear equally in the test data. The re-
sults, shown in Figure 1, show that entailments be-
longing to the change of State category caused the
highest number of errors. Based on manual inspec-
tion of examples, such as sentence 4 in Table 1, we
believe that this happens because such entailments
are not easily captured using lexical patterns. On
the other hand information about stationarity and
change of possession may be captured by neural
models because the entailments are tightly coupled
to the argument tokens.

6 Conclusion

We argue for constructing a suite of large-scale
textual inference datasets that probe specific as-
pects of semantics, in order to analyze a statistical
RTE model’s ability of “understanding” distinct se-
mantic phenomena. To construct such datasets we
presented a general strategy of converting semantic
classification examples to annotated textual infer-
ence pairs that can be used to create large datasets
for free on which even neural models for RTE can
be trained. Further we used these datasets to gain
insights into the behavior of a popular neural RTE
model and the SNLI dataset itself. The variation in
the performance of that model on the three datasets
showed that neural models for natural language
understanding recognise lexical variations or para-
phrasing much better than anaphora resolution. Re-
cently (Chen et al., 2016) also presented a simi-
lar conclusion after manually analyzing the errors
made by neural systems on a reading comprehen-

Figure 1: Percentage of errors of RTE model by proto-role
properties on the SPR test set. The percentage numbers at
the bottom are the contribution of the category above to the
total errors. Error percentages that are close to each other are
omitted for clarity.

sion task. Our approach can be thought of as an
automatic way of automating the manual error anal-
ysis so that it can be used iteratively in a larger sys-
tem and it can remove the requirement of a human
in the loop. Our results also strongly suggested
that the SNLI dataset does not contain examples
of anaphora resolution which we validated manu-
ally. Our datasets and annotations are available at
http://decomp.net.

In future work, we plan to execute our strategy
on labeled data for Word Sense Disambiguation
and Prepositional Phrase attachment resolution,
among other semantic resources, because we be-
lieve that such diverse datasets will require sophis-
ticated RTE models that combine world knowledge
with the pattern recognition abilities of neural net-
works. For example, given the sentence The dog
wagged its tail and a known sense of the dog the fol-
lowing hypotheses sentences can be generated: The
dog is a domestic dog and The dog is a wiener. The
former hypothesis is entailed but the latter is not.
Disambiguating between word senses and decid-
ing the correct governor of a prepositional phrase
requires world knowledge and RTE examples gen-
erated from such sources, even though they are gen-
erated automatically unlike the FraCaS dataset, will
help researchers build robust statistical models for
RTE since each semantic classification dataset high-
lights a particular type of semantic phenomenon
that a robust system for RTE must model.
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Abstract

In this paper we present a novel ap-
proach to the automatic correction of
OCR-induced orthographic errors in a
given text. While current systems depend
heavily on large training corpora or exter-
nal information, such as domain-specific
lexicons or confidence scores from the
OCR process, our system only requires
a small amount of relatively clean train-
ing data from a representative corpus to
learn a character-based statistical language
model using Bidirectional Long Short-
Term Memory Networks (biLSTMs). We
demonstrate the versatility and adaptabil-
ity of our system on different text corpora
with varying degrees of textual noise, in-
cluding a real-life OCR corpus in the med-
ical domain.

1 Introduction

Recently, Optical Character Recognition (OCR)
technology has improved substantially, which has
allowed for a large-scale digitization of textual
resources such as books, old newspapers, an-
cient hand-written documents, etc. (Romero et al.,
2011). The quality of the subsequent digital cor-
pora can vary substantially, depending on factors
such as quality of the original paper, ink quality,
differences in fonts, etc. The amount of noise in
digital collections can have a severe negative im-
pact on the accuracy of subsequent text mining
processes (e.g., Named Entity Recognition, Infor-
mation Extraction, etc.).

OCR post-correction techniques are used to
improve the text quality of OCR output. Tra-
ditionally, they rely on domain-specific lexi-
cons (de Does and Depuydt, 2013) and character-
based errors statistics obtained from a corrected

training set (Kumar and Lehal, 2016). However,
they have some drawbacks that limit their useful-
ness for specific, low-resource domains. Such re-
sources are expensive to create and for highly spe-
cialized texts (e.g., medical domain) not always
possible to obtain. The recent advances in neu-
ral network models, based on textual context and
needing no external resources, provide new oppor-
tunities for OCR post-correction. Character-level
sequence modeling architectures are especially
suited for this task (Chrupała, 2014; Schmaltz
et al., 2016), as they reduce the complexity at
output time. Moreover, current systems are of-
ten limited to processing texts with a limited de-
gree of OCR corruption, i.e., so-called single-error
word corrections (Kissos and Dershowitz, 2016)
and correction of OCRed corpora that have been
generated by older OCR engines can prove too
challenging. The correct recognition of historical
texts remains an open challenge (Kluzner et al.,
2009). A general-purpose OCR post-correction
tool should be adaptable to the ratio of error that
is present in the OCR output in order to deal with
both types of errors.

In this paper, we propose a novel approach
to OCR post-correction using bidirectional re-
current neural networks for learning a robust
character-based language model that (i) captures
the domain-specific vocabulary of a text and
(ii) which is able to detect and correct noise in
corrupted text in the same time. In order to over-
come the problem of producing manually anno-
tated data, our system requires zero pre-annotated
training material. Rather than using a large cor-
rected training corpus to learn an error model, we
propose a method of generating our own training
material from clean text. This has multiple advan-
tages: it allows us complete control over the learn-
ing process, and we can train on larger and more
diverse corpora.
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First, we demonstrate the flexibility of the pro-
posed model by evaluating it on artificially cre-
ated test sets with varying degrees of noise. We
also show how variation inherent in the texts influ-
ences training rates. Second, we explore a more
realistic setting in which very little clean training
data is available to learn a language model. We
test our method on a real-life OCRed corpus of
French medical reports. Our method outperforms
the baseline by 14.3% on domain-specific noisy
data, even when the latter is supplemented with a
domain-specific lexicon.

2 Background

The problem of OCR post-correction has been
studied since the seventies (Kukich, 1992). While
traditional OCR error detection systems focused
on constructing ‘confusion matrices’ of likely
character (pairs) to detect corruptions of existing
words into non-words, recent systems improve ac-
curacy using information on the language context
in which the error appears (Evershed and Fitch,
2014), using bigrams (Kissos and Dershowitz,
2016), large-scale word n-grams and character n-
grams from the web (Bassil and Alwani, 2012)
or associating confusion scores into a Bayesian
model (Tong and Evans, 1996) or a HMM model
(Borovikov et al., 2004) to select the optimal word
candidate. These systems are explicitly or implic-
itly limited to cases in which an erroneous word
appears in an otherwise clean context. For serious
degrees of corruption (e.g., historical texts), the
common approach aims to optimally combine an
ensemble of multiple OCR engines (Nakano et al.,
2004; Lund and Ringger, 2009).

‘Noisy channel paradigm’ aims to learn er-
ror models describing the OCR output genera-
tion from the reference text, and as such com-
bine error and language models. Kolak and Resnik
(2005) used finite state machines on a small set
of training material while Llobet et al. (2010)
combined all OCR process hypotheses for each
recognized character. Such models need a large
amount of training material which is costly and
not always easily available. In response, the Text-
Induced Corpus Clean-up (TICCL) system (Rey-
naert, 2011) was developed to run with no anno-
tated training data. It takes noisy texts and extracts
the high-frequency word variants through statisti-
cal analysis and clusters typographical word vari-
ants within a user-defined Levenshtein distance.

Recently, Neural Network Language Models
have proven to be extremely effective in complex
NLP tasks. For spelling errors correction, sys-
tems either include auto-encoders to detect near-
est neighbor matches of spelling errors with cor-
rect words (Raaijmakers, 2013) or learn edit oper-
ations from labeled data while incorporating fea-
tures induced from unlabelled data via character-
level neural text embeddings (Chrupała, 2014).
Contrary to Azawi (2015) which makes use of
LSTM based on character-aligned strings, our
method does not require annotated training data
(gold standard) to learn the character-based lan-
guage model. Moreover, our method does not cap-
italize on learning character transformation rules
based on frequently occurring errors, as done in
Azawi (2015), but learns a robust character-based
language model.

3 Method

The model we proposed consists of a many-to-
many character sequence learning network using
long short term memory (LSTM) nodes.

3.1 Definition

LSTM are a special type of Recurrent Neural Net-
work (RNN), a neural network hierarchy designed
to model times series or other sequences. Stan-
dard RNNs have trouble capturing long-distance
sequential dependencies, as the error signal during
back propagation tends to disperse or blow up over
time, which is known as the problem of vanishing
or exploding gradients (Hochreiter, 1991; Bengio
et al., 1994). This problem is typically addressed
by replacing the standard RNN cell with a long
short-term memory cell, which allows for a con-
stant error flow along the input sequence (Hochre-
iter and Schmidhuber, 1997).

Technically, the LSTM architecture is given by
the following equations,

i(t) = σ(W ix.x(t)) +W ih.h(t−1) + bi)
f (t) = σ(W fx.x(t)) +W fh.h(t−1) + bf )
o(t) = σ(W ox.x(t) +W oh.h(t−1) + bo)
g(t) = tanh(W gx.x(t) +W gh.h(t−1) + bg)
c(t) = f (t) � c(t−1) + i(t) � g(t)

h(t) = tanh(c(t))� o(t)

in which σ is the sigmoid function, i stands for
the input gate (a selection of information coming
from a previous cell state, given the new informa-
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tion contained in x); f stands for the forget gate,
which select which parts of the information to for-
get and which to retain; g creates a vector of new
candidate values that are used to update the cell
state; o stands for the output gate which decides
what parts of the cell state should be outputted.

A bidirectional LSTM (biLSTM) is a combina-
tion of two unidirectional LSTM layers, the first of
which encodes the input string from left-to-right,
the second from right-to-left. This ensures that er-
rors that occur at the beginning of the input string
have enough context (on the right-hand side) to be
corrected.

3.2 Encoder-Decoder Model: biLSTM model
We stack two bidirectional LSTM layers on top of
each other: the first hidden level is an encoder that
reads the source character sequence and the other
is a decoder that functions as a language model
and generates the output. Figure 1 shows the lay-
ers in their unrolled forms as they read in the input.

Figure 1: Hierarchy of bidirectional 2-layer many-
to-many sequence learning network; lighter nodes
in the hidden layers refer to disconnected nodes
due to dropout

Architecture We first define a character vocabu-
lary V =

{
v1, v2, ..., v|V |

}
which contains all the

characters that are present in the training corpus.
Each input string of 20 characters is padded on the
right-hand side to a maximum length of 23, which
allows for differences in string length due to inser-
tions in the training phase (see Section 3.3). For an
input string we define a 23-dimensional vector x
in which each element corresponds to the index of
the corresponding character in vocabulary V , thus
preserving the order. The input x is then passed
to an embedding layer that returns the sequence
S =

{
cj |j = x1, x2..., x23

}
where cj is the char-

acter embedding (by a hyperparameter d = 64) for

the characters in the initial string. This sequence is
then passed to the first biLSTM, which combines
two unidirectional LSTM layers that process the
input from the left-to-right and right-to-left hand
side, respectively. Each LSTM layer H consists
of k LSTM memory units, and its output is a ma-
trix H =

{
htεRk | t = 1, 2, ..., 23

}
. We set k

at 512. The output of the individual LSTM layers
is concatenated and given as input for the second
biLSTM layer. The last hidden layer then projects
unto a |V |-dimensional output layer. Finally, we
apply the softmax function to select the character
with the highest probability for a given timestep
and obtain a 23-dimensional vector y with the
characters indices for the corrected string.

We also added two drop-out layers to the hidden
layers, each set at 0.5, since this has been shown
to improve performance (Srivastava et al., 2014).
The model was implemented in Keras, a python
library for deep learning.

3.3 Training strategy

During training, the neural network is fed cor-
rupted input strings and provided the original non-
corrupted string as output labels. In this way,
the network learns the domain-specific character-
based language model that underlies the text in
the training documents, while at the same time
it learns to detect and eliminate noise introduced
by OCR errors. Following the observations that
OCR-induced variation is generally much less sys-
tematic than spelling errors (Reynaert, 2008), we
generate corrupted strings by randomly deleting,
inserting and substituting one or two characters for
a given string (cf. algorithm 3.1).

We used a random number generator to deter-
mine if and which edit operations were selected.
Character substitutions were performed at random
with characters from the character set. Since a
string could be submitted to multiple corrupting
edits, this results in both single-error as well
as multi-error words and environments in the
corrupted string. Since the if-statements are
independent, multiple edits on one string are
possible, which can result in longer consecutive
errors (three or more consecutive characters can
be corrupted for a given string). In our script, the
ratio of noise is set by the user, which corresponds
to a fixed level of corruption in the training data.
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Algorithm 3.1: CORRUPTSTRING(str, noiseRatio)

len = len(str)
chars = set of characters in corpus

comment: Randomly delete a character

if rand() < (noiseRatio ∗ len) :

then
{

pos = randInt(len)
str = str[: pos] + str[pos + 1 :]

comment: Randomly insert a character

if rand() < (noiseRatio ∗ len) :

then

pos = randInt(len)
str = str[: pos] + randChoice(chars)

+str[pos :]

comment: Randomly replace 1 or 2 characters

if rand() < (noiseRatio ∗ len) :

then



numChars = randChoice([1, 2])
pos = randInt(len)

do numChars time


str = str[: pos]

+(randChoice(chars))
+str[pos + 1 :]

pos + +

Table 1 shows the generated input strings for a
given string for the different noise ratios we used.
In this table, the second row shows the percentage
of strings with at least one OCR error in the real-
life test set. We split the initial text into windows
of 20 characters with an overlap per 3 characters.
This length was empirically determined on train-
ing experiments w.r.t. accuracy and training speed.

Table 1: Percentage and examples of corrupted
strings w.r.t. the noise ratio on the clean corpus.
Bold highlights generated errors
noise corrupted strings (20 characters length)
ratio strings original: n oven for 15 minute
0.001 5%
0.003 17%
0.005 30%
0.01 48% n o5en for 15 minute
0.02 76%
0.03 92% noven fQr 15 minute#
0.04 99% n oeen for 1% minüte

4 Corpora

In our experiments, we used a few corpora, both
‘clean’ (digital corpora that contain no OCR or
orthographic errors) and ‘real-life’ corpora (that
contain varying degrees of OCR errors). They
were selected according to two criteria: (i) text
genre, either ‘structured text’ or ‘free text’, and

(ii) domain, ‘general domain’ or ‘specialized do-
main’, more particularly the medical domain.

Table 2 gives an overview of the different cor-
pora and their attributes. We give the sizes of the
corpora in number of characters, rather than words
since the varying degrees of OCR errors make the
latter an unreliable metric.

Table 2: Overview of used corpora
text style

domain
size

& language train/test

CURD
structured

general
150K

English 44K

LM
free text

general
2M

French 100K

Handbook
free text

foetopath
1M

French -
medical structured other 1M
reports French medical -
foetopath structured

foetopath
500K

reports French 57K

We generate several artificial test sets for two
clean corpora. Artificially corrupted strings are
created using the same methodology as used for
training. We generated two types of artificial test
sets:

• test sets with a set noise ratio, which contain
both corrupted and uncorrupted strings

• and test sets that contain only corrupted
strings of a set Levenshtein Distance (LD)

4.1 Clean corpora

CURD corpus The Carnegie Mellon University
Recipe Database corpus (Tasse and Smith, 2008)
contains 260 structured cooking recipes in En-
glish: a list of ingredients followed by short de-
scriptive sentences. This corpus closely resembles
the real-life OCRed corpus of medical reports pre-
sented in the next section. Unlike medical reports,
we consider it to be ‘general domain’. We did not
use the semantic annotations in the original CURD
corpus but extracted only the plain text.

LM corpus We used documents from the Le
Monde newspaper from 2000 to 2005 on as train-
ing material, and created test sets on a subset of
articles from 2006.
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Handbook on foetopathology We used an elec-
tronic copy of a comprehensive French handbook
of foetopathology (Bouvier et al., 2008) to train
a domain-specific language model of free text for
the foetopathological domain.

Medical reports This set of in-house French
medical reports were written in the same report-
ing style as the real-life OCRed foetopathological
reports presented in Section 4.2. While medical,
they do not treat the foetopathological domain but
rather cancer and gastro-internal illnesses.

4.2 Real-life OCR corpora
The foetopathological reports corpus is a data set
of French patient notes from the domain of foe-
topathology, spanning 22 years. In total, the cor-
pus contains the files from 2476 individual pa-
tients. The files were processed with a custom-
trained commercial OCR engine, and later de-
identified with an in-house de-identification tool
(Grouin and Zweigenbaum, 2013).

Since the model of the OCR engine used to con-
vert the entire corpus was trained on a subset of
documents of more recent years (implying good
paper quality, clear font, etc.), the OCR quality of
the OCRed documents decreases substantially for
the older documents (D’hondt et al., 2016).

All evaluations in this paper were carried out on
an annotated set of 53 files, for which reference
texts have been created manually by one annotator
in two passes.1 We extracted two sets of training
material from the corpus. One set has a reasonable
OCR quality,2 the second set is taken randomly
from the corpus and contains texts with varying
degrees of OCR quality. Both training sets have
the same size.

5 Evaluation

5.1 Evaluation metrics
For evaluation, we use the CER metric (for-
mula 1), as defined in OCR post-correction eval-
uations:

CER =
S +D + I

S +D + C
(1)

where S refers to the number of substituted
characters in the OCR text (w.r.t. the reference

1These reference texts were later verified by a second an-
notator. The role of the second annotator was to check that
the existing annotations were correct and consistent. Ergo the
annotations were not done independently.

2Based on the proportion of out-of-vocabulary words
present in a document for a given lexicon.

texts), D to the number of deleted characters, I
to the number of inserted characters and C to the
number of ‘correct’ characters. We use the CER
metric when comparing to the baseline system (see
Section 6.4), using the ocrevalUAtion3 pack-
age (Carrasco, 2014).

Since our models use overlapping4 windows of
20 characters, a purely character-based metric is
not ideal to evaluate. We want to measure the sys-
tems performance per input, rather than per char-
acter. We therefore introduce two complementary
accuracy-based evaluation metrics, which evaluate
on the level of the character window:

• detection accuracy (detAcc) shows the pro-
portion of correctly detected errors and non-
errors in the evaluated set of 20-character
strings

• correction accuracy (corrAcc) reflects the
ability of the language model to accurately
correct corrupted strings without overgener-
ating and editing non-corrupted strings

These metrics are calculated as follows:

detAcc =
(TP + TN + incorrectEdit)

(TP + TN + FP + FN + incorrectEdit)

corrAcc =
(TP + TN)

(TP + TN + FP + FN + incorrectEdit)

Table 3 illustrates the different elements of the
formulae.

5.2 Baseline model

We compare our system against the only other ap-
proach which requires zero annotated training ma-
terial and no external resources, the TICCL sys-
tem (Reynaert, 2011). As explained in Section 2,
this system is word-based and uses anagram hash-
ing to handle lexical variation in a large, noisy text
collection. The system analyses a corpus to se-
lect high-frequency word variants, and then aims
to map near-neighbours (in terms of edit distance)
to those forms in order to reduce global variation
in the corpus.

3https://github.com/impactcentre/
ocrevalUAtion

4Allowing this overlap is a deliberate choice to maximize
the ability to learn language models over a small corpus.
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Table 3: Example of evaluation categories for the
detection accuracy (detAcc) and correction accu-
racy (corrAcc) metrics, given the reference string
‘n oven for 15 minute’

input
string

output
string

True Positive (TP) n o5en
for 15
minute

n oven
for 15
minute

incorrectEdit n o5en
for 15
minute

n oven
for 15
mlnute

True Negative (TN) n oven
for 15
minute

n oven
for 15
minute

False Positive (FP) n oven
for 15
minute

n oven
for 15
mlnute

False Negative (FN) n o5en
for 15
minute

n o5en
for 15
minute

We used the system available for French with
pretrained character confusion models with its de-
fault settings.5 For the foetopathological reports
test corpora, we provided TICCL with the full
available corpora to extract word variants but cal-
culated CER only on the test sets. TICCL per-
forms specific preprocessing to limit the size of its
character vocabulary (all numbers and digits are
mapped unto the character ‘3’).

6 Experiments and Discussion

Since our system does not use annotated data, the
language and error models learned from the train-
ing data are approximations of what will be en-
countered in the test set. In Sections 6.1 and 6.2,
we examine how the error model (the prior prob-
ability of encountering an error in a given input
string) learned during training corresponds to the
(expected) noise ratio in the test set, and how the
text genre and size of the training corpus influence
performance. Section 6.3 presents how Language
Models can be learned when no clean training ma-
terial is available for a given test set. Section 6.4
shows a comparison with the word-based baseline.

5Online TICCL interface for French with default settings:
http://ticclops.clarin.inl.nl/ticclops/

6.1 Adaptability to different degrees of noise

One of the advantages of our approach is its adapt-
ability to different levels of expected noise. It suf-
fices to train the model with a noise ratio that cor-
responds to the noise found in the test set.

The upper subfigure in Figure 2 shows the de-
tection accuracy (full line) and correction accuracy
(dotted line) on a test set with a 0.005 noise ratio
for three different models which were trained in 30
iterations on the CURD training data with 0.003,
0.01 and 0.03 noise ratio, respectively.

(a) 0.005 noise ratio

(b) 0.03 noise ratio

Figure 2: Performance of models trained with dif-
ferent noise ratios on the CURD corpus for the
0.005 noise ratio test (upper) and 0.03 noise ratio
test (lower), in terms of detection accuracy (full
line) and correction accuracy (dotted line)

A 0.005 noise ratio is a fairly easy test set,
with few errors, as is evidenced by the overall
high scores. We do see that the model which was
trained to expect a lot of noise (0.03) underper-
forms compared to its more conservative counter-
parts. For the same models on the 0.03 test set,
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however, the more aggressively trained model per-
forms the best. The high detection accuracy scores
in both figures (full lines) show that the models
are correctly identifying errors (i.e., unlikely char-
acter sequences) and have little tendency to ig-
nore errors (FN) or incorrectly edit a correct string
(FP). The difference between the detection accu-
racy (full lines) and correction accuracy (dotted
lines) in Figure 2 shows the increased difficulty for
the language models to make correct edits when
the input strings have multiple corruptions.

Figure 3 examines this more closely. Here, the
training model has been fixed (trained with noise
ratio 0.03) and we examine its performance on test
sets were each corrupted string has the same Lev-
enshtein distances to its reference string. Here as
well, overall detection accuracy is quite high, but
the increasingly lower correction accuracy scores
show the increased difficulties of the language
model to propose correct edits for a given cor-
rupted string. Since the 0.03 model is trained to
expect moderate corruption, it performs best on
corrupted strings with a Levenshtein distance of 2.

Figure 3: Performance of best model (ratio 0.03)
on test sets which contain only corrupted sub-
strings, with a fixed Levenshtein Distance (LD),
in terms of detection accuracy (full line) and cor-
rection accuracy (dotted line)

6.2 Impact of text variability on training

The previous experiments were carried out on the
CURD corpus, a small corpus with relatively fixed
vocabulary and structured text, which makes it
easy to learn a comprehensive model. Figure 4
shows the performance of a corpus with more in-
herent variation, the journalistic LM corpus.

Figure 4: Performance of best-performing models
on the CURD and LM 0.005 test set, in terms of
detection accuracy (full line) and correction accu-
racy (dotted line)

As expected, the language model of a more vari-
able corpus has a slower learning rate and needs
more training data to achieve good performance.
The green lines (lemonde (small)) refer to a subset
of the LM corpus of exactly the same size as the
CURD corpus (150K characters), which is clearly
not enough training material to learn a language
model on free text.

6.3 Adaptation to a real-life corpus

While the previous experiments only used artifi-
cial test sets, a more realistic setting is that in
which an OCRed test set needs to be corrected but
no clean data is available to train the system on.

Table 4 presents the results we achieved on the
real life test set while training our model on dif-
ferent types of text that are either similar to the
test set w.r.t. text genre or domain. We also com-
pared these to the performance of models that
were trained on noisy training data from the same
corpus as the test set. For the foetopathological
reports, we trained models on two test sets of sim-
ilar size, one which contained data with relatively
few OCR errors, and one whose text quality was
mixed.

Overall, we find that the language model of
the structured foetopathological reports is fairly
easy to learn, as evidenced by the high correction
scores. The scores in the first two rows of Table 4
show the impact of noisy training data. While rela-
tively clean training data pose little problem, train-
ing on the mixed set leads to a more corrupted lan-
guage model. Interestingly, we find that training
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Table 4: Performance of different models trained
on different training data (with 0.003 noise ratio)
on real-life test set of foetopathological reports

detAcc corrAcc
foet. reports (fairly clean) 0.87 0.82
foet. reports (mixed) 0.86 0.76
medical reports (clean) 0.85 0.79
foet. handbook (clean) 0.87 0.81
LM corpus (clean) 0.60 0.52

on similar corpora, both in text genre (medical re-
ports) and domain (Handbook) leads to almost as
good correction accuracy as training on the orig-
inal corpus. The language model trained on the
LM corpus, whilst having seen the most training
data, has the worst performance since the text in
this corpus is too far removed from foetopatholog-
ical reports, both in domain and text genre.

6.4 Comparison with baseline

To compare against our baseline system, we trans-
formed the output of the two best performing sys-
tems from the experiments in Section 6.3 to a sin-
gle final output string. Where two characters dif-
fered in the overlapping output strings from our
system, we used majority vote to construct the fi-
nal output string.

Table 5 shows the results against the TICCL
baseline system, using the CER metric. TICCL-
lex refers to a setting in which it was provided
with a French, domain-specific lexicon of frequent
terms in the foetopathology domain. We find that
our system significantly outperforms the baseline
on the structured, domain-specific data, by 14.3%.

Table 5: Comparison of baseline system (TICCL)
with best performing systems on the foetopatho-
logical real-life test set

Character Error Rate (CER)
original text 34.3
biLSTM 7.1
TICCL 34
TICCL-lex 21.4

7 Conclusion

In this paper we proposed a novel zero-annotated
data approach to OCR post-correction. We used
biLSTMs to build an encoder-decoder model.

Rather than learning from annotated data, we de-
veloped a method to generate our own training ma-
terial. Our model is trained on clean or moderately
clean data in order to produce a robust character-
based language model.

We have evaluated our method on different text
genres and domains. We found that our method is
especially suited to correct domain-specific, struc-
tured text, even when no training text from the
same corpus is available.
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Abstract

Hierarchical attention networks have re-
cently achieved remarkable performance
for document classification in a given lan-
guage. However, when multilingual doc-
ument collections are considered, train-
ing such models separately for each lan-
guage entails linear parameter growth and
lack of cross-language transfer. Learn-
ing a single multilingual model with fewer
parameters is therefore a challenging but
potentially beneficial objective. To this
end, we propose multilingual hierarchical
attention networks for learning document
structures, with shared encoders and/or
shared attention mechanisms across lan-
guages, using multi-task learning and an
aligned semantic space as input. We eval-
uate the proposed models on multilingual
document classification with disjoint la-
bel sets, on a large dataset which we pro-
vide, with 600k news documents in 8 lan-
guages, and 5k labels. The multilingual
models outperform monolingual ones in
low-resource as well as full-resource set-
tings, and use fewer parameters, thus con-
firming their computational efficiency and
the utility of cross-language transfer.

1 Introduction

Learning word sequence representations has be-
come increasingly useful for a variety of NLP
tasks such as document classification (Tang et al.,
2015; Yang et al., 2016), neural machine trans-
lation (NMT) (Cho et al., 2014; Luong et al.,
2015), question answering (Chen et al., 2015; Ku-
mar et al., 2015) and summarization (Rush et al.,
2015). However, when data are available in mul-
tiple languages, representation learning must ad-

Figure 1: Vectors of documents labeled with ‘Eu-
rope’, ‘Culture’ and their Arabic counterparts.
The multilingual hierarchical attention network
separates topics better than monolingual ones.

dress two main challenges. Firstly, the compu-
tational cost of training separate models for each
language, which grows linearly with their number,
or even quadratically in the case of multi-way mul-
tilingual NMT (Firat et al., 2016a). Secondly, the
models should be capable of cross-language trans-
fer, which is an important component in human
language learning (Ringbom, 2007). For instance,
Johnson et al. (2016) attempted to use a single
sequence-to-sequence neural network model for
NMT across multiple language pairs.

Previous studies in document classification at-
tempted to address these issues by employing
multilingual word embeddings, which allow di-
rect comparisons and groupings across languages
(Klementiev et al., 2012; Hermann and Blunsom,
2014; Ferreira et al., 2016). However, they are
only applicable when common label sets are avail-
able across languages which is often not the case
(e.g. Wikipedia or news). Moreover, despite re-
cent advances in monolingual document modeling
(Tang et al., 2015; Yang et al., 2016), multilingual
models are still based on shallow approaches.

In this paper, we propose Multilingual Hier-
archical Attention Networks to learn shared doc-
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ument structures across languages for document
classification with disjoint label sets, as opposed
to training language-specific training of hierarchi-
cal attention networks (HANs) (Yang et al., 2016).
Our networks have a hierarchical structure with
word and sentence encoders, along with atten-
tion mechanisms. Each of these can either be
shared across languages or kept language-specific.
To enable cross-language transfer, the networks
are trained with multi-task learning across lan-
guages using an aligned semantic space as in-
put. Fig. 1 displays document vectors, projected
with t-SNE (van der Maaten, 2009), for two topics
and two languages, either learned by monolingual
HANs (a) or by our multilingual HAN (b). The
multilingual HAN achieves better separation be-
tween ‘Europe’ and ‘Culture’ topics in English as
a result of the knowledge transfer from Arabic.

We evaluate our model against strong monolin-
gual baselines, in low-resource and full-resource
scenarios, on a large multilingual document col-
lection with 600k documents, labeled with general
(1.2k) and specific topics (4.4k), in 8 languages
from Deutsche Welle’s news website.1 Our mul-
tilingual models outperform monolingual ones in
both scenarios, thus confirming the utility of cross-
language transfer and the computational efficiency
of the proposed architecture. To encourage fur-
ther research in multilingual representation learn-
ing our code and dataset are made available at
https://github.com/idiap/mhan.

2 Related Work

Research on learning multilingual word repre-
sentations is based on early work on word em-
beddings (Turian et al., 2010; Mikolov et al.,
2013; Pennington et al., 2014). The goal is to
learn an aligned word embedding space for mul-
tiple languages by leveraging bilingual dictionar-
ies (Faruqui and Dyer, 2014; Ammar et al., 2016),
parallel sentences (Gouws et al., 2015) or com-
parable documents such as Wikipedia pages (Yih
et al., 2011; Al-Rfou et al., 2013). Bilingual em-
beddings were learned from word alignments us-
ing neural language models (Klementiev et al.,
2012; Zou et al., 2013), including auto-encoders
(Chandar et al., 2014). Despite progress at the
word level, the document level remains compar-
atively less explored. The approaches proposed
by Hermann and Blunsom (2014) or Ferreira et al.

1Germany’s news broadcaster: http://dw.com.

(2016) are based on shallow modeling and are
applicable only to classification tasks with label
sets shared across languages, which are costly to
produce and are often unavailable. Here, we re-
move this constraint, and develop deeper multilin-
gual document models with hierarchical structure
based on prior art at the word level.

Early work on neural document classification
was based on shallow feed-forward networks,
which required unsupervised pre-training (Le and
Mikolov, 2014). Later studies focused on neural
networks with hierarchical structure. Kim (2014)
proposed a convolutional neural network (CNN)
for sentence classification. Johnson and Zhang
(2015) proposed a CNN for high-dimensional data
classification, while Zhang et al. (2015) adopted
a character-level CNN for text classification. Lai
et al. (2015) proposed a recurrent CNN to capture
sequential information, which outperformed sim-
pler CNNs. Lin et al. (2015) and Tang et al. (2015)
proposed hierarchical recurrent NNs and showed
that they were superior to CNN-based models. Re-
cently, Yang et al. (2016) proposed a hierarchi-
cal attention network (HAN) with bi-directional
gated encoders which outperforms traditional and
neural baselines. Using such networks in multi-
lingual settings has two drawbacks: the computa-
tional complexity increases linearly with the num-
ber of languages, and knowledge is acquired sepa-
rately for each language. We address these issues
by proposing a new multilingual model based on
HANs, which learns shared document structures
and to transfer knowledge across languages.

Early examples of attention mechanisms ap-
peared in computer vision, e.g. for optical char-
acter recognition (Larochelle and Hinton, 2010),
image tracking (Denil et al., 2012), or image clas-
sification (Mnih et al., 2014). For text classifica-
tion, studies which aimed to learn the importance
of sentences included those by Yessenalina et al.
(2010); Pappas and Popescu-Belis (2014); Yang
et al. (2016) and more recently those by Pappas
and Popescu-Belis (2017); Ji and Smith (2017).
For NMT, Bahdanau et al. (2015) proposed an
attention-based encoder-decoder network, while
Luong et al. (2015) proposed a local and ensem-
ble attention model. Firat et al. (2016a) proposed
a single encoder-decoder model with shared at-
tention across language pairs for multi-way, mul-
tilingual NMT. Hermann et al. (2015) developed
attention-based document readers for question an-
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swering. Chen et al. (2015) proposed a recurrent
attention model over an external memory. Simi-
larly, Kumar et al. (2015) introduced a dynamic
memory network for question answering and other
tasks. We propose here to share attention across
languages, at one or more levels of hierarchical
document models, which, to our knowledge, has
not been attempted before.

3 Background: Hierarchical Attention
Networks for Document Classification

We adopt a general hierarchical attention archi-
tecture for document representation, displayed in
Figure 2, which is derived from the one proposed
by Yang et al. (2016). Our architecture is gen-
eral in the sense that it defines only the hierar-
chical structure, but accommodates different types
of individual components, i.e. encoders and at-
tention models. We consider a dataset D =
{(xi, yi), i = 1, . . . , N} made of N documents
xi with labels yi ∈ {0, 1}k. Each document is
represented by the sequence of d-dimensional em-
beddings of their words grouped into sentences,
xi = {w11, w12, . . . , wKT }, T being the maxi-
mum number of words in a sentence, and K the
maximum number of sentences in a document.

The network takes as input a document xi and
outputs a document vector ui. In particular, it has
two levels of abstraction, word vs. sentence. The
word level is made of an encoder gw with parame-
ters Hw and an attention model aw with param-
eters Aw, while the sentence level similarly in-
cludes an encoder and an attention model (gs, Hs

and as, As). The output ui is used by the classifi-
cation layer to determine yi.
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Figure 2: General architecture of hierarchical at-
tention neural networks for modeling documents.

3.1 Encoder Layers
At the word level, the function gw encodes the se-
quence of input words {wit | t = 1, . . . ,KT} for

each sentence i of the document, noted as:

h(it)
w = {gw(wit)| t = 1, . . . ,K} (1)

At the sentence level, after combining the inter-
mediate word vectors {h(it)

w | t = 1, . . . , T} to a
sentence vector si (as explained in 3.2), the func-
tion gs encodes the sequence of sentence vectors
{si | i = 1, . . . ,K}, noted as h(i)

s .
The gw and gs functions can be any feed-

forward or recurrent networks with parameters
Hw and Hs respectively. We consider the fol-
lowing networks: a fully-connected one, noted
as DENSE, a Gated Recurrent Unit network (Cho
et al., 2014) noted as GRU2, and a bi-directional
GRU which captures temporal information for-
ward or backward in time, noted as biGRU. The
latter is defined as a concatenation of the hidden
states for each input vector obtained from the for-
ward GRU, ~gw, and the backward GRU, ~gw:

h(it)
w =

[
~gw(h(it)

w ); ~gw(h(it)
w )
]
. (2)

The same concatenation is applied for the hidden-
state representation of a sentence h(i)

s .

3.2 Attention Layers
A typical way to obtain a representation for a given
word sequence at each level is by taking the last
hidden-state vector that is output by the encoder.
However, it is hard to encode all the relevant input
information needed in a fixed-length vector. This
problem is addressed by introducing an attention
mechanism at each level (noted αw and αs) that
estimates the importance of each hidden state vec-
tor to the representation of the sentence or docu-
ment meaning respectively. The sentence vector
si ∈ Rdw , where dw is the dimension of the word
encoder, is thus obtained as follows:

1
T

T∑
t=1

α(it)
w h(it)

w =
1
T

T∑
t=1

exp(v>ituw)∑
j exp(v>ijuw)

h(it)
w

(3)
where vit = fw(h(it)

w ) is a fully-connected neural
network with Ww parameters. Similarly, the doc-
ument vector u ∈ Rds , where ds is the dimension
of the sentence encoder, is obtained as follows:

1
K

K∑
i=1

α(i)
s h

(i)
s =

1
K

K∑
i=1

exp(v>i us)∑
j exp(v>j us)

h(i)
s

(4)
2GRU is a simplified version of Long-Short Term Mem-

ory, LSTM (Hochreiter and Schmidhuber, 1997).
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where vi = fs(h
(i)
s ) is a fully-connected neural

network with Ws parameters. The vectors uw and
us are parameters which encode the word context
and sentence context respectively, and are learned
jointly with the rest of the parameters. The total
set of parameters for aw is Aw = {Ww, uw} and
for as is As = {Ws, us}.
3.3 Classification Layers
The output of such a network is typically fed to a
softmax layer for classification, with a loss based
on the cross-entropy between gold and predicted
labels (Tang et al., 2015) or on the negative log-
likelihood of the correct labels (Yang et al., 2016).
However, softmax overemphasizes the probability
of the most likely label, which may not be ideal for
multi-label classification because each document
should have more than one likely labels indepen-
dent of each other, as we verified empirically in
our preliminary experiments. Hence, we replace
the softmax with a sigmoid function, so that for
each document i represented by the vector ui we
model the probability of the k labels as follows:

ŷi = p(y|ui) =
1

1 + e−(Wcui+bc)
∈ [0, 1]k (5)

whereWc is a ds×k matrix and bc is the bias term
for the classification layer. The training loss based
on cross-entropy is computed as follows:

L(θ) = − 1
N

N∑
i=1

H(yi, ŷi) (6)

where θ is a notation for all the parameters of the
model (i.e. Hw, Aw, Hs, As,Wc), andH is the bi-
nary cross-entropy of the gold labels yi and pre-
dicted labels ŷi for a document i. The above ob-
jective is differentiable and can be minimized with
stochastic gradient descent (SGD) (Bottou, 1998)
or variants such as Adam (Kingma and Ba, 2014),
to maximize classification performance.

4 Multilingual Hierarchical Attention
Networks: MHANs

When multilingual data is available, the above
network can be trained on each language sepa-
rately, but in this case the needed parameters grow
linearly with the number of languages. More-
over, this does not exploit common knowledge
across languages or to transfer it from one to
another. We propose here a HAN with shared
components across languages, which has slower

Hw

αw

Hs

αs

wKTw11 ...

HW1

wKTw11 ...

HWM

αw

HS1 HSM

αs

sKs1 ...

...

...

u1

WC1 WCM
...

uM

sKs1 ...

u1

WC1 WCM...

uM

Hs

αS1

sKs1 ...

u1

WC1 WCM...

uM

αSM

Hw

αW1 αWM

sKs1 ...

wKTw11 ...

...

...

(a) Sharing Encoders (b) Sharing Attentions (c) Sharing Both

Figure 3: Multilingual hierarchical attention net-
works for modeling documents and classifying
them over disjoint label sets.

parameter growth (hence sublinear) compared to
monolingual ones and enables knowledge trans-
fer across languages. We now consider M lan-
guages noted L = {Ll | l = 1, . . . ,M}, and a
multilingual set of topic-labeled documents Dl =
{(x(l)

i , y
(l)
i ) | i = 1, . . . , Nl, l = 1, ...,M} defined

as above (Section 3).

4.1 Sharing Components across Languages

To enable multilingual learning, we propose three
distinct ways for sharing components between net-
works in a multi-task learning setting, depicted
in Figure 3, namely: (a) sharing the parameters
of word and sentence encoders, noted θenc =
{Hw,W

(l)
w , Hs,W

(l)
s ,W

(l)
c }; (b) sharing the pa-

rameters of word and sentence attention models,
noted θatt = {H(l)

w ,Ww, H
(l)
s ,Ws,W

(l)
c }; and

(c) sharing both previous sets of parameters, noted
θboth = {Hw,Ww, Hs,Ws,W

(l)
c }. For instance,

the document representation of a text for language
l based on a shared sentence-level attention would
be computed based on Eq. 4 by using the same pa-
rameters Ws and us across languages.

Let θmono = {H(l)
w ,W

(l)
w , H

(l)
s ,W

(l)
s ,W

(l)
c } be

the parameters of multiple independent monolin-
gual models with DENSE encoders, then we have:

|θmono| > |θenc| > |θatt| > |θboth| (7)

where | · | is the number of parameters in a set. For
GRU and biGRU encoders, the inequalities still
hold, but swapping |θenc| and |θatt|. Excluding the
classification layer which is necessarily language-
specific, the (a) and (b) networks have sublinear
numbers of parameters and the (c) network has a
constant number of parameters with respect to the
number of languages. The word embeddings are
not considered as parameters in our setup because
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they are fixed during training. For learned word
embeddings, the argument still holds if we con-
sider their parameters as part of the word-level en-
coder.

Depending on the label sets, several types of
document classification problems can be solved
with such architectures. First, label sets can be
common or disjoint across languages. Second,
considering labels as k-hot vectors, k = 1 cor-
responds to a multi-class task, while k > 1 is a
multi-label task. We focus here on the multi-label
problem with disjoint label sets. Moreover, we
assume an aligned input space i.e. with multilin-
gual word embeddings that have aligned meanings
across languages (Ammar et al., 2016). With non-
aligned word embeddings, the multilingual trans-
fer is harder due to the lack of parallel information,
as we show in Section 6.2, Table 4.

4.2 Training over Disjoint Label Sets

For training, we replace the monolingual train-
ing objective (Eq. 6) with a joint multilingual
objective that facilitates the sharing of compo-
nents, i.e. a subset of parameters for each language
θ1, . . . , θM , across different language networks:

L(θ1, . . . , θM ) = − 1
Z

Ne∑
i

M∑
l

H(y(l)
i , ŷ

(l)
i ) (8)

where Z = M ×Ne and Ne is the epoch size.3

The joint objective L can be minimized with re-
spect to the parameters θ1, . . . , θM using SGD as
before. However, when training on examples from
different languages consecutively it is difficult to
learn a shared space that works well across lan-
guages. This is because updates for each language
apply only on a subset of parameters and may bias
the model away from other languages. To address
this issue, we employ the training strategy pro-
posed by (Firat et al., 2016a), who sampled par-
allel sentences for multi-way machine translation
from different language pairs in a cyclic fashion at
each iteration.4 Here, we sample a document-label
pair from each language at iteration. For mini-
batch SGD, the number of samples per language
is equal to the batch size divided by M.

3In the future, it may also be beneficial to add a γl term
for each language objective, which encodes prior knowledge
about its importance.

4We verified this empirically in our preliminary experi-
ments and found that mixing languages in a single batch per-
formed better than keeping them in separate batches.

Languages Documents Labels
L |X| s̄ w̄ |Yg| |Ys|

English 112,816 17.9 516.2 327 1,058
German 132,709 22.3 424.1 367 809
Spanish 75,827 13.8 412.9 159 684

Portuguese 39,474 20.2 571.9 95 301
Ukrainian 35,423 17.6 342.9 28 260
Russian 108,076 16.4 330.1 102 814
Arabic 57,697 13.3 357.7 91 344
Persian 36,282 18.7 538.4 71 127

All 598,304 17.52 436.7 1,240 4,397

Table 2: Statistics of the Deutsche Welle corpus:
s̄ and w̄ are the average numbers of sentences and
words per document.

5 A New Corpus for Multilingual
Document Classification: DW

Multilingual document classification datasets are
usually limited in size, have target categories
aligned across languages, and assign documents
to only one category. However, classification is
often necessary in cases where the categories are
not strictly aligned, and multiple categories may
apply to each document. For instance, this is the
case for online multilingual news agencies, which
must keep track of news topics across languages.

Two datasets for multilingual document classifi-
cation have been used in previous studies: Reuters
RCV1/RCV2 (6,000 documents, 2 languages and
4 labels), introduced by (Klementiev et al., 2012),
and TED talk transcripts (12,078 documents, 12
languages and 15 labels), introduced by Hermann
and Blunsom (2014). The former is tailored for
evaluating word embeddings aligned across lan-
guages, rather than complex multilingual docu-
ment models. The latter is twice as large and cov-
ers more languages, in a multi-label setting, but
biases evaluation by including translations of talks
in all languages.

Here, we present and use a much larger dataset
collected from Deutsche Welle, Germany’s public
international broadcaster, shown in Table 2. The
DW dataset contains nearly 600,000 documents,
in 8 languages, annotated by journalists with sev-
eral topic labels. Documents are on average 2.6
times longer than in Yang et al.’s (2016) monolin-
gual dataset (436 vs. 163 words). There are two
types of labels, namely general topics (Yg) and
specific ones (Ys) both described by one or more
words. We consider (and count in Table 2) only
those specific labels that appear at least 100 times,
to avoid sparsity issues.

The number of labels varies greatly across the
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English + Auxiliary→ English English + Auxiliary→ Auxiliary
Models de es pt uk ru ar fa de es pt uk ru ar fa

Y
g
e
n

e
ra

l

M
on

o NN (Avg) 50.7 53.1 70.0 57.2 80.9 59.3 64.4 66.6
HNN (Avg) 70.0 67.9 82.5 70.5 86.8 77.4 79.0 76.6
HAN (Att) 71.2 71.8 82.8 71.3 85.3 79.8 80.5 76.6

M
ul

ti MHAN-Enc 71.0 69.9 69.2 70.8 71.5 70.0 71.3 69.7 82.9 69.7 86.8 80.3 79.0 76.0
MHAN-Att 74.0 74.2 74.1 72.9 73.9 73.8 73.3 72.5 82.5 70.8 87.7 80.5 82.1 76.3
MHAN-Both 72.8 71.2 70.5 65.6 71.1 68.9 69.2 70.4 82.8 71.6 87.5 80.8 79.1 77.1

Y
sp

ec
ifi

c

M
on

o NN (Avg) 24.4 21.8 22.1 24.3 33.0 26.0 24.1 32.1
HNN (Avg) 39.3 39.6 37.9 33.6 42.2 39.3 34.6 43.1
HAN (Att) 43.4 44.8 46.3 41.9 46.4 45.8 41.2 49.4

M
ul

ti MHAN-Enc 45.4 45.9 44.3 41.1 42.1 44.9 41.0 43.9 46.2 39.3 47.4 45.0 37.9 48.6
MHAN-Att 46.3 46.0 45.9 45.6 46.4 46.4 46.1 46.5 46.7 43.3 47.9 45.8 41.3 48.0
MHAN-Both 45.7 45.6 41.5 41.2 45.6 44.6 43.0 45.9 46.4 40.3 46.3 46.1 40.7 50.3

Table 1: Full-resource classification performance (F1) on general (top) and specific (bottom) topic cate-
gories using bilingual training with English as target (left) and the auxiliary language as target (right).

8 languages. Moreover, we found for instance
that only 25-30% of the labels could be manually
aligned between English and German. The com-
monalities are mainly concentrated on the most
frequent labels, reflecting a shared top-level divi-
sion of the news domain, but the long tail exhibits
significant independence across languages.

6 Evaluation

6.1 Settings
We evaluate our multilingual models on full-
resource and low-resource scenarios of multi-
lingual document classification on the Deutsche
Welle corpus. Following the typical evaluation
protocol in the field, the corpus is split per lan-
guage into 80% for training, 10% for validation
and 10% for testing. We evaluate both type of la-
bels (Yg, Ys) on a full-resource scenario and only
the general topic labels (Yg) on a low-resource sce-
nario. We report the micro-averaged F1 scores for
each test set, as in previous work (e.g., Hermann
and Blunsom, 2014).

Model configuration. For all models, we
use the aligned 40-dimensional multilingual em-
beddings pre-trained on the Leipzig corpus us-
ing multi-CCA from Ammar et al. (2016). The
non-aligned embeddings used for comparison pur-
poses are trained with the same method and data.
We zero-pad documents up to a maximum of 30
words per sentence and 30 sentences per docu-
ment. The hyper-parameters were selected on
the validation sets. We made the following set-
tings: 100-dimensional encoder and attention em-
beddings (at every level), relu activation function
for all intermediate layers, batch size of 16, epoch
size of 25k, and optimization using SGD with
Adam until convergence.

All the hierarchical models have DENSE en-
coders in both scenarios (Tables 1, 4, and 5), and
GRU and biGRU in the full-resource scenario for
English+Arabic (Table 3). For the low-resource
scenario, we define three levels of data availabil-
ity: tiny from 0.1% to 0.5%, small from 1% to
5% and medium from 10% to 50% of the original
training set. We report the average F1 scores on
the test set for each level based on discrete incre-
ments of 0.1, 1 and 10 percentage points respec-
tively. The decision threshold for the value of p in
Eq. 5 for the full-resource scenario is set to 0.4 for
labels such that |Ys| < 400 and 0.2 for |Ys| ≥ 400,
and for the low-resource scenario it is 0.3 for all
sets. For the ensemble in the low-resource setting,
we train the three proposed multilingual models
and choose the optimal one based on the validation
data for each language respectively (see Fig. 4).

Baselines. We compare against the following
monolingual neural networks, with shallow or hi-
erarchical structures. These networks are based on
the state of the art in the field, reviewed in Sec-
tion 2, and thus represent strong baselines.

• NN : A neural network which feeds the av-
erage vector of the input words directly to
a classification layer, as the common base-
line for multilingual document classification
(Klementiev et al., 2012).

• HNN : A hierarchical network with encoders
and average pooling at every level, followed
by a classification layer.

• HAN: A hierarchical network with encoders
and attention, followed by a classification
layer. This model is the one proposed by
Yang et al. (2016) adapted to our task.

Our multilingual models with the three sharing
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configurations from Section 4.1, are noted as Enc,
Att and Both. Their implementation amounts to,
first, creating a HAN model for each language,
second, sharing components across multiple lan-
guages as illustrated in Fig. 3, and, third, training
them with the objective of Eq. 8.

6.2 Results

Full-resource scenario. Table 1 displays the re-
sults of full-resource document classification us-
ing DENSE encoders for general and specific la-
bels. On the left side, the performance on the En-
glish sub-corpus is shown when English and an
auxiliary sub-corpus are used for training, and on
the right side, the performance on the auxiliary
sub-corpus is shown when that sub-corpus and the
English sub-corpus are used for training.

The multilingual model trained on pairs of lan-
guages outperforms on average all the examined
monolingual models, namely a bag-of-word neu-
ral model and two hierarchical neural models
which use average pooling and attention respec-
tively. The best-performing multilingual model
bilingually on average is the one with shared atten-
tion across languages, especially when tested on
English. The consistent gain for English as target
could be attributed to the alignment of the word
embeddings to English and to the many English
labels, which makes it easier to find multilingual
labels from which to transfer knowledge. Interest-
ingly, this reveals that the transfer of knowledge
across languages in a full-resource setting is max-
imized with language-specific word and sentence
encoders, but language-independent (i.e. shared)
attention for both words and sentences.

However, when transferring from English to
Portuguese (en→pt), Russian (en→ru) and Per-
sian (en→fa) on general categories, it is more ef-
fective to have only language-independent compo-
nents. We hypothesize that this is due to the under-
lying commonness between the label sets rather
than to a relationship between languages, which
is hard to identify on linguistic grounds.

We will now quantify the impact of three im-
portant model choices on the performance: en-
coder type, word embeddings, and number of lan-
guages used for training. In Table 3, we observe
that when we replace the DENSE encoder layers
with GRU or biGRU layers, the improvement from
the multilingual training is still present. In par-
ticular, the multilingual models with shared atten-

Encoders Mono Multi
Ygeneral HAN Enc Att Both

ar
→

en DENSE 71.2 70.0 73.8 68.9
GRU 77.0 74.8 77.5 75.4
biGRU 77.7 77.1 77.5 76.7

en
→

ar DENSE 80.5 79.0 82.1 79.1
GRU 81.5 81.2 83.4 83.1
biGRU 82.2 82.7 84.0 83.0

Table 3: Full-resource classification performance
(F1) for English-Arabic with various encoders.

Ygeneral Yspecific

Word embeddings |L| nl fl nl fl

1 50K – 77.41 – 90K – 44.90 –
Aligned 2 40K ↓ 78.30 ↑ 80K ↓ 45.72 ↑

8 32K ↓ 77.91 ↑ 72K↓ 45.82 ↑
Non-aligned 8 32K ↓ 71.23 ↓ 72K ↓ 33.41 ↓

Table 4: Average number of parameters per lan-
guage (nl), average F1 per language (fl), and their
variation (arrows) with the number of languages
|L| and the word embeddings used for training.

tion are superior to alternatives, regardless of the
employed encoders. For reference, using simply
logistic regression with bag-of-words (counts) for
classification leads to F1 scores of 75.8% in En-
glish and 81.9% in Arabic, using many more pa-
rameters than biGRU: 56.5M vs. 410k in English
and 5.8M vs. 364k in Arabic.

In Table 4, when we train our multilingual
model (MHAN-att) on eight languages at the same
time, the F1 score improves on average across lan-
guages – for both types of labels, general or spe-
cific – while the number of parameters per lan-
guage decrease, by 36% for Ygeneral and 20% for
Yspecific . Lastly, when we train the same model
with word embeddings that are not aligned across
languages, the performance of the multilingual
model drops significantly. An input space that is
aligned across languages is thus crucial.

Low-resource scenario. We assess the abil-
ity of the multilingual attention networks to trans-
fer knowledge across languages in a low-resource
scenario, i.e. training on a fraction of the available
data, as defined in 6.1 above. The results for seven
languages when trained jointly with English are
displayed in detail in Table 5 and summarized in
Figure 4. In all cases, at least one of the multi-
lingual models outperforms the monolingual one,
which demonstrates the usefulness of multilingual
training for low-resource document classification.

Moreover, the improvements obtained from our
multilingual models for lower levels of availabil-
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Figure 4: Low-resource document classification performance (F1) of our multilingual attention network
ensemble (blue lines) vs. a monolingual attention network (purple dashed lines) on the DW corpus.

Size Mono Multi
Ygeneral HAN Enc Att Both ∆%

en
→

de 0.1-0.5% 29.9 41.0 37.0 39.4 +37.2
1-5% 51.3 51.7 49.7 52.6 +2.6

10-50% 63.5 63.0 63.8 63.8 +0.5

en
→

es 0.1-0.5% 39.5 38.7 33.3 41.5 +4.9
1-5% 45.6 45.5 50.8 50.1 +11.6

10-50% 74.2 75.7 74.2 75.2 +2.0

en
→

pt 0.1-0.5% 30.9 25.3 31.6 33.8 +9.6
1-5% 44.6 44.3 37.5 47.3 +6.0

10-50% 60.9 61.9 62.1 62.1 +1.9

en
→

uk 0.1-0.5% 60.4 62.4 59.8 60.9 +3.1
1-5% 68.2 67.7 70.6 69.0 +3.4

10-50% 76.4 76.2 76.3 76.7 +0.3

en
→

ru 0.1-0.5% 27.6 26.6 27.0 29.1 +5.4
1-5% 39.3 38.2 39.6 40.2 +2.2

10-50% 69.2 70.5 70.4 69.4 +1.9

en
→

ar 0.1-0.5% 35.4 35.5 39.5 36.6 +11.7
1-5% 45.6 48.7 47.2 46.6 +6.9

10-50% 48.9 52.2 46.8 47.8 +6.8

en
→

fa 0.1-0.5% 36.0 35.6 33.6 41.3 +14.6
1-5% 55.0 55.6 51.9 55.5 +1.0

10-50% 69.2 70.3 70.1 70.0 +1.5

Table 5: Low-resource classification performance
(F1) with various sizes of training data.

ity (tiny and small) are larger than in higher levels
(medium). This is also clearly observed in Fig-
ure 4 with our multilingual attention network en-
semble, i.e. when we do model selection among
the three multilingual variants on the development
set. The best performing architecture in a major-
ity of cases is the one which shares both the en-
coders and the attention mechanisms across lan-
guages. Moreover, this architecture also has the
fewest number of parameters.

This promising finding for the low-resource sce-
nario means that the classification performance
can greatly benefit from the multilingual training
(sharing encoders and attention) without increas-
ing the number of parameters beyond that of a sin-
gle monolingual document model. Nevertheless,
in a few cases, we observe that the other archi-
tectures with increased complexity perform better
than the “shared both” model. For instance, shar-
ing encoders is superior to alternatives for Arabic
language, i.e. the knowledge transfer benefits from
shared word and sentence representations. Hence,
to generalize to a large number of languages, we

may need to consider more dynamic models which
are able to choose for each language individually
which sharing scheme is the most appropriate for
transferring from another language. Lastly, we did
not generally observe a negative (or positive) cor-
relation of the similarity between languages with
the performance in the low-resource scenario, al-
though the largest improvements were observed
on languages more related to English (German,
Spanish, Portuguese) than others (Arabic).

Overall, the above experiments pinpointed the
most suitable multilingual sharing scheme (Fig-
ure 3) for each setting independently of the en-
coder type, rather than the optimal combination of
sharing scheme and encoder. Therefore, as shown
in Table 3, increasing the sophistication of the en-
coders (from DENSE to GRU to biGRU) is ex-
pected to further improve accuracy.

6.3 Qualitative Analysis

We analyze the performance of the multilingual
model over the full range of labels, to observe on
which type of labels it performs better than the
monolingual model, and provide some qualitative
examples. Figure 5 shows the cumulative true pos-
itive (TP) difference between the monolingual and
multilingual models on the Arabic, German, Por-
tuguese and Russian test sets, ordered by label fre-
quency. We can observe that the cumulative TP
difference of the multilingual model consistently
increases as the frequencies of the labels decrease.
This shows that labels across the entire range of
frequencies benefit from joint training with En-
glish and not only a subset, for example only the
highly frequent labels.

For example, the top 5 labels on which the mul-
tilingual model performed better than the mono-
lingual one for en→de were: russland (21), berlin
(19), irak (14), wahlen (13) and nato (13), while
for the opposite direction those were: germany
(259), german (97), soccer (73), football (47) and
merkel (25). These topics are likely better covered
in the respective auxiliary language which helps
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en → ru

en → ar

en → pt

en → de

Figure 5: Cumulative true positive (TP) difference
between monolingual and multilingual (ensemble)
models for topic classification with specific labels,
in the full resource scenario.

the multilingual model to better distinguish them
in the target language as well. This is also ob-
served in Figure 1 presented in the introduction,
through an improved separation of topics using
multilingual model vs. monolingual ones.

7 Conclusion

We proposed multilingual hierarchical attention
networks for document classification and showed
that they can benefit both full-resource and low-
resource settings, while using fewer parameters
than monolingual networks. In the former set-
ting, the best option was to share only the attention
mechanisms, while in the latter one, it was shar-
ing the encoders along with the attention mech-
anisms. These results confirm the merits of lan-
guage transfer, which is also an important com-
ponent of human language learning (Odlin, 1989;
Ringbom, 2007). Moreover, our study broadens
the applicability of multilingual document classi-
fication, since our framework is not restricted to
common label sets.

There are several future directions for this study.
In their current form, our models cannot gener-
alize to languages without any example, as at-
tempted by Firat et al. (2016b) for neural machine

translation. This could be achieved by a classi-
fication layer independent of the size of the la-
bel set as in zero-shot classification (Qiao et al.,
2016; Nam et al., 2016). Moreover, although we
explored three distinct architectures, other con-
figurations could be examined to improve docu-
ment modeling, for example by sharing the atten-
tion mechanism at the sentence-level only. Lastly,
the learning objective could be further constrained
with sentence-level parallel information, to embed
multilingual vectors of similar topics more closely
together in the learned space.
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Abstract

In this work we investigate how role-based
behavior profiles of a Wikipedia editor,
considered against the backdrop of roles
taken up by other editors in discussions,
predict the success of the editor at achiev-
ing an impact on the associated article. We
first contribute a new public dataset in-
cluding a task predicting the success of
Wikipedia editors involved in discussion,
measured by an operationalization of the
lasting impact of their edits in the article.
We then propose a probabilistic graphical
model that advances earlier work induc-
ing latent discussion roles using the light
supervision of success in the negotiation
task. We evaluate the performance of the
model and interpret findings of roles and
group configurations that lead to certain
outcomes on Wikipedia.

1 Introduction

In this paper we explore the discussion strategies
and configurations of conversational roles that al-
low Wikipedia editors to influence the content of
articles. In so doing, we contribute both a new
public dataset and proposed model that advance
work towards induction of latent conversational
roles using light supervision.

Online production communities like Wikipedia,
an online encyclopedia which anyone can edit,
have the potential to bring disparate perspectives
together in producing a valuable public resource.
Individual Wikipedia editors unavoidably carry
their own perspectives; these voices can explic-
itly or subtly influence the jointly produced article
content even when editors strive for neutrality1.

1https://en.wikipedia.org/wiki/
Wikipedia:Neutral_point_of_view

This work explores the interaction between indi-
vidual editors and the collaborative process that
supervises the development of a Wikipedia article.

Wikipedia editors discuss article improvements,
coordinate work and resolve disagreements on
talk pages associated with each article (Ferschke,
2014). Pairing talk page discussions with simulta-
neous edits in shared content, we introduce a task
predicting the success of a particular editor’s arti-
cle edits based on the corresponding discussion.

We propose a lightly supervised probabilistic
graphical model of discussion roles and behav-
iors that offers advances over the prior discus-
sion role modeling work of Yang et al. (2015),
which employs a more restricted conceptualiza-
tion of role taking. While the earlier model only
allowed each role to be played by one editor, our
extended model learns a distribution over roles for
each editor. Furthermore, it can assign roles to an
arbitrary number of editors rather than being re-
stricted to a specific number.

This model allows the interpretation of config-
urations of roles that are conducive or detrimental
to the success of individual editors. We find that
the greatest success is achieved by detail-oriented
editors working in cooperation with editors who
play more abstract organizational roles.

2 Related Work

This work investigates influence in discussion
as part of the collaborative editing process of
Wikipedia, but achieving influence through dis-
cussion has also been studied in online environ-
ments other than Wikipedia. For example, other
work in language technologies has studied the ef-
fectiveness of argumentative speech in changing
others’ minds (Tan et al., 2016) and revealing
subgroups of users with similar attitudes (Hassan
et al., 2012).
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Our work fits with research on editor be-
havior on Wikipedia, which is relatively well-
studied on article pages and somewhat less stud-
ied on talk pages. Wikipedia has been a popu-
lar source of data for modeling social interaction
and other issues of language behavior from mul-
tiple perspectives including collaboration (Fer-
schke et al., 2012), authority (Bender et al., 2011),
influence (Bracewell et al., 2012; Swayamdipta
and Rambow, 2012), and collegiality and adver-
sity (Bracewell et al., 2012).

Much work analyzing behavior in Wikipedia
has focused on types of edit behavior. Yang et al.
(2016) use an LDA-based model to derive ed-
itor roles from edit behaviors. They then find
correlations between certain editor roles and arti-
cle quality improvements. Their approach differs
from ours in that our model is supervised with an
outcome measure and that we define editor roles
based on talk page behavior.

Behavior in discussion can be characterized at
multiple levels of granularity. Viégas et al. (2007)
categorize talk page contributions into 11 classes,
and find that the most common function of talk
page behavior is to discuss edits to the correspond-
ing article, but that requests for information, ref-
erences to Wikipedia policies, and off-topic re-
marks are also commonly found. Bender et al.
(2011) annotate authority claims and agreement in
Wikipedia talk pages.

Above the level of individual contributions to
discussion, the notion of a conversational role is
relevant both for characterizing the rights and re-
sponsibilities an individual has within an interac-
tion as well as the configuration of conversational
behaviors the person is likely to engage in. There-
fore, it is not surprising that prior work has re-
vealed that the process of becoming a Wikipedia
moderator is associated both with changes in lan-
guage use and in the roles editors play on the talk
pages (Danescu-Niculescu-Mizil et al., 2012).

Attempts have been made to understand roles
Wikipedia editors play. Arazy et al. (2017) find
self-organizing roles based on the edit behavior of
thousands of editors. Editors frequently move in
and out of those roles, but on the aggregate the
proportions of these roles are relatively stable.

Our work is similar to that of Ferschke et al.
(2015), who apply the role identification model
of Yang et al. (2015) to Wikipedia talk page contri-
butions. This model learns a predefined number of

user roles, each of which is represented as weights
on a set of user behaviors, and assigns the roles to
the participants in each discussion. The roles are
induced by rewarding latent role representations
with high utility in selecting users whose behavior
was highly predictive of the task outcome of arti-
cle quality. We extend this work by predicting an
outcome that is specific to one discussion partici-
pant, i.e. the editing success of a particular editor
within an interaction. We also relax the constraint
that every role must be assigned to a single partici-
pant and that each participant can take at most one
role. Our model is thus more flexible in capturing
more nuanced configurations of roles.

3 Data and Task

One of the contributions of this work is the cre-
ation of a new public dataset2 and task for predict-
ing the influence of editors in Wikipedia discus-
sions. The dataset comprises 53,175 instances in
which an editor interacts with one or more other
editors in a talk page discussion and achieves a
measured influence on the associated article page.
In this section we detail the motivation for the con-
ceptualization of the task as an influence predic-
tion task, and the details for the construction of
the dataset.

3.1 Task Conceptualization

Wikipedia talk pages are not stand-alone discus-
sion forums. They are explicitly designed to sup-
port coordination in editing of their associated ar-
ticle pages. In order to extract task instances, we
pair discussions with the record of concurrent ed-
its to the associated article page.

Once a discussion has been paired with a se-
quence of edits, an assessment can be made for
each editor who participated both in the discus-
sion and in article edits of how successful that ed-
itor was in making changes to the article page. It
is this assessment that forms the class value of our
predictive task. In this study we explore negoti-
ation strategies and role configurations that affect
article editing; each data point in our task provides
both discussion and an article edit success value
for each editor involved.

2This dataset is available at http://github.com/
michaelmilleryoder/wikipedia-talk-scores
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3.2 Data Acquisition

To form our dataset, we extracted all versions
(revisions) of English Wikipedia articles from
2004 to 2014 and removed much of the Medi-
awiki markup using the Java Wikipedia Library
(JWPL) (Ferschke et al., 2011). The most recent
revisions of talk pages corresponding to the arti-
cles were split into turns using paragraph bound-
aries and edit history. We grouped discussion
posts under the same section headings as discus-
sion threads.

We sampled 100,000 articles with talk page dis-
cussions and filtered to include discussion threads
with 2 or more participants who made edits to the
article page from 24 hours before the discussion
began to 24 hours after the discussion ended. Dis-
cussion thread beginnings and endings are defined
as the time of the first post and last post, respec-
tively. Statistics on our discussion dataset can be
seen in Table 1.

number of articles 7,211
number of discussion threads 21,108
number of editor-discussion pairs 53,175
average #editors/discussion 2.52

Table 1: Dataset statistics

3.3 Editor Success Scores

Editors frequently enter into talk page discussions
to modify the article page in a particular way or
challenge others’ edits. We wish to quantify the
success of editors on the article page as related
to these goals on the talk page. In prior work,
editor success has been measured with respect to
the longevity of edits made to a page (Priedhorsky
et al., 2007), and we take a similar approach. We
define a success score y for each editor in a spe-
cific discussion. Intuitively, this measure is com-
puted as the change in word frequency distribution
associated with an editor’s edits between the arti-
cle revision prior to discussion and the article re-
vision when the discussion ends. In particular, this
score is the proportion of an editor’s edits–words
deleted and words added–that remain 1 day after
the discussion ends. Note that this score only re-
flects changes in word frequencies and does not
take word re-ordering into account.

Formally, we consider each edit e as a vector
of word frequency changes, both positive (addi-

tions) and negative (deletions) for each word type,
stopwords removed. For an example in English,
an edit that changed one instance of suggested to
insinuated, as well as adding old might be repre-
sented as {’suggested’: -1, ’insinuated’: +1, ’old’:
+1’}. For each edit ei, let vector ci be the changes
in word frequencies from that edit to the final re-
vision after the discussion. This change vector
represents how many tokens that an editor deleted
were put back and how many tokens the editor
added were afterward deleted. Let |e| be the num-
ber of tokens changed in that edit and |c| be the
total word frequency changes (deletions if tokens
of the word were added in the edit, or vice versa) in
those specific word types from the edit to the final
revision. The score y of a particular Wikipedia ed-
itor u in thread t across edits {e1, e2, ..., en}made
by u in t is:

y(u, t) = 1−
∑n
i=1 |ci|∑n
i=1 |ei|

Each editor’s score is the proportion of tokens
they changed that remain changed, so s ∈ [0, 1].

The goal of this editor score is to capture the
“ground truth” of an editor’s influence on the ar-
ticle page. To validate this editor success mea-
sure, we sampled 20 conversations, read through
the corresponding article edits by those editors,
and made sure our automated editor success scores
were reasonable compared with the success that
editors seemed to achieve.

In our experiments, we aim to predict this ed-
itor success measure calculated from article revi-
sions with behaviors and interactions simultane-
ously occurring on the talk page. This assumes
that talk page discussions in our data are related to
the simultaneous article edits that those same ed-
itors are doing. To validate that editors who were
editing the article while having a discussion on the
talk page simultaneously were talking about those
simultaneous article edits, and not something else,
we manually went through 20 conversations and
simultaneous edits. Nineteen out of the 20 conver-
sations directly related to simultaneous edits, and
the only one not specifically about simultaneous
edits related to similar content on the article page.

4 Model

We present a model which attempts to learn both
discussion behaviors of the target editor (editor we
are predicting the success of) and roles of other
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discussion participants that influence the success
of a particular editor.

4.1 Role Modeling Task
The task of role modeling as described is to iden-
tify latent patterns of behavior in discourse which
explain some conversational outcome measure.
The learned roles can then be intuitively inter-
preted to better understand the nature of the dis-
course and the interactions between the partici-
pants with respect to the chosen outcome measure.

4.2 Prior Approach: Role Identification
Model (RIM)

A similar task was explored by (Ferschke et al.,
2015) and (Yang et al., 2015), who represented
role modeling as a bipartite matching problem be-
tween participants and roles. More specifically,
RIM learns conversational roles from discussion
behaviors, supervised by discussion outcome. A
role is defined as a weight vector over discussion
behaviors, where the weights represent the posi-
tive or negative contribution of the behaviors to-
ward outcome measures.

However, this approach suffers from several
simplifying assumptions which reduce its applica-
bility to realistic conversation settings:

1. All roles are present in every conversation.
2. Each role is played by exactly one editor.
3. Each editor plays exactly zero or one roles.
4. All behaviors from editors with a role con-

tribute to the outcome metric under that role.
5. No behaviors from editors without a role con-

tribute to the outcome metric.

The proposed approach addresses these limitations
by using a probabilistic graphical model that en-
codes a more appropriate hierarchical structure for
the task.

4.3 Probabilistic Role Profiling Model
(PRPM)

For modeling roles in discourse, we propose a gen-
erative model shown in Figure 1, whose generative
story is shown in Figure 2.

4.3.1 Inference
Appropriate values for the parameters η, β, and τ
may be inferred from data, and represent the set-
tings with which the data is best explained (i.e. has
the highest likelihood) under the generative story.

y

θ

r b τ

L

Mn

N

K

Figure 1: PRPM plate diagram relating for each
conversation N the outcome measure y and each
user M ’s L behaviors b.

• For each role k ∈ {1, . . . ,K},
– Draw behavior distribution τk ∼ Dir(α).

• For each conversation n ∈ {1, . . . , N},
– For each user m ∈ {1, . . . ,M},
∗ Observe user participation znm.

– For each user m ∈Mn,
where Mn = {m|znm = 1},
∗ Draw role distribution θnm ∼ Dir(γ).
∗ For each behavior l ∈ {1, . . . , L},
· Draw role rnml ∼ Multi(θnm).
· Draw behavior bnml ∼ Multi(τrnml).

– Draw outcome yn ∼ N (µn, σ),
where µn =

∑
m
znmθnm · β.

Figure 2: PRPM generative story

Computationally efficient methods for exact infer-
ence will not work for the proposed model due to
the model structure, so approximate inference is
used to estimate the parameter values.

We implement the model sampler using the
JAGS framework (Plummer, 2003), which uses
Gibbs sampling to generate dependent samples
from the posterior distribution. These samples
are used to obtain posterior mean estimates of the
model parameters.

5 Features

5.1 Dialogue Act Features

We are interested in linguistic moves that charac-
terize editors in conversation, and so we extract
features that represent conversational acts. In par-
ticular, we extract dialogue act features from the
model of Jo et al. (2017), an HMM-based unsuper-
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vised dialogue act identification method that has
been found to usefully separate between content-
related words that are relatively static across con-
versations and words more related to dialogue
acts, which change over the course of discussion.
These features were found to yield better perfor-
mance with our model than unigrams with tf-idf
selection.

The model of Jo et al. (2017) learns separate
language models for dialogue acts (DA LMs) and
topical content (content LMs), where each word
can be generated from either type of language
model. This structure helps the model identify
content words that are consistent throughout a
conversation and separate them out from language
models for dialogue acts.

To identify dialogue acts on talk pages that may
be related to conversational roles of interest, we
ignore content-specific words by providing pre-
trained content LMs trained using LDA over the
content pages. Each conversation is provided with
the topic distribution of the content page of the
same article, and in the modified model, each word
may come from a different content LM indepen-
dently chosen from the provided distribution over
content LMs.

5.2 Behavior Features
To be used in combination with roles, we extract
general discussion features motivated by relevance
in other work.

Along with a simple bag of words of each edi-
tor’s talk contributions and the contributions of all
other editors, we consider the following discussion
features.

5.2.1 Position of the editor in a discussion.
• Number of editor turns
• Number of other editors’ turns
• Whether the editor takes the first turn
• Whether the editor takes the last turn

5.2.2 Style characteristics.
Drawn from (Tan et al., 2016), these may reflect
the style and state of editors.

• Number of definite/indefinite articles
• Number of singular/plural personal pronouns
• Examples: number of occurrences of “for ex-

ample”, “for instance”, and “e.g.”
• URLs: number of URLs that end with

“.com”, “.net”, “.org”, or “.edu”

• Questions: number of question marks that
follow an alphabetic character

5.2.3 Authority claims.
Bender et al. (2011) define these authority claim
categories annotate them in Wikipedia talk pages.
For each word type in their annotated data, we cal-
culated the pointwise mutual information for each
category. In our data, we scored each sentence
with the log sum of the word scores for each cate-
gory.

The categories used are:

• Credentials: education or occupation
• Experiential: personal involvement
• Forum: policy or community norms
• External: outside authority, such as a book
• Social expectations: expected behavior of

groups

5.2.4 Emotion expressed by editors.
For a simple measure of emotion, we use LIWC
(Tausczik and Pennebaker, 2010).

• Counts of positive/negative emotion words

6 Experiments

We frame our task as a regression problem, pre-
dicting editor scores based on discussion behav-
iors of the target editor and the other editors. Our
outcome measure is the editor success score of a
single editor. Since there are multiple editors in a
discussion, we have multiple instances per discus-
sion.

We use root mean squared error (RMSE) be-
tween the true scores and the predicted scores as
an evaluation metric. We hypothesize that in spec-
ifying our model with latent roles as mediators be-
tween the raw discussion data and the predictive
task we can achieve a lower RMSE than from a
baseline that takes only the behaviors into account,
especially for conversations with a greater number
of participants, for which there can be more inter-
action.

Furthermore, to the extent to which the pro-
posed graphical model better captures a valid con-
ceptualization of roles, we hypothesize that we can
achieve a lower RMSE than the model of Yang
et al. (2015). In this section we first specify the
baselines used for comparison in our experiments,
and then explain the testing process with our own
model and experimental design.
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6.1 Baselines
These two hypotheses suggests different baseline
models. Our first hypothesis is that introducing
a model with latent roles improves over simply
using discussion features, and the second is that
PRPM better captures interaction than the prior
RIM model.

6.1.1 Linear Regression
The simplest baseline model allows us to evalu-
ate the first hypothesis. This model assumes that
the whole is not greater than its parts. In other
words, it assumes that the sum total of positive
impact the features can achieve on performance
is just through their inclusion as separate features.
For this baseline, we use a simple linear regression
model. We bound the linear regression predictions
to be between 0 and 1, the range of the editor
scores. The full set of features in this model are
included twice, once from the target editor in the
discussion, and once from an aggregation across
all non-target editors in the discussion.

6.1.2 RIM
We evaluate our model against RIM, introduced
by Yang et al. (2015). RIM was originally ap-
plied to Wikipedia talk page discussions in Fer-
schke et al. (2015), who assigned a single success
score to each page. In our work, for each discus-
sion, we evaluate the success of each editor in each
discussion thread separately. Since there is differ-
ential success between editors in the same interac-
tion, the same interaction is associated with mul-
tiple different success measures. We handle this
by slightly tweaking the original RIM model such
that the first role is reserved exclusively for target
editors, i.e., editors whose success measure is be-
ing evaluated. The other roles represent the roles
of other editors in terms of their influence on the
success of the target editor. Additionally, for con-
versations having fewer editors than the number
of roles, we leave some of the roles unassigned by
adding dummy editors whose behavior values are
zero.

To predict the success measure of an editor for a
test instance, RIM first assigns the learned roles to
the editors. This process is identical to the train-
ing process, except that there is only the role as-
signment step without the weight adjustment step.
Specifically, the first role is assigned to the target
editor as in training, and the other roles are as-
signed according to the original model. Once the

roles are assigned, the predicted score is simply
the sum over roles of the inner product of a role’s
weight vector and the behavior vector of the editor
who is assigned the role.

6.2 PRPM

To infer role distributions for each editor in a test
instance conversation, we first fix the model pa-
rameters to the estimates learned during the train-
ing phase. Gibbs sampling is then used to infer
the non-target users’ role distributions θm and the
conversation outcome measure y over the unseen
data. The role distributions for each non-target ed-
itor are then averaged together and concatenated
with the target editor role distribution. Finally, a
linear regressor is used analogously to the above
baseline to evaluate the predictive power of the
PRPM roles in aggregating the information from
editor behavior features.

6.3 Experimental Design

In order to evaluate our approach and model, we
split our data into a training set of 60%, a develop-
ment set of 20% to train regression weights on the
roles learned from the training set, and a test set of
20%.

For the original and proposed role identification
models, we manipulated the number of latent roles
the learned models were allowed to include.

7 Results and Discussion

Results from baselines and PRPM are presented
in Table 2. We do not include scores with unigram
tf-idf counts as features, as this decreases the per-
formance of all models. The pattern of results is
consistent with the hypotheses, i.e., role informa-
tion and our model’s configuration improves per-
formance over both baselines.

First, the relatively high RMSE values indicate
the challenging nature of this task. Talk page
discussion is only one factor in editor success,
and undoubtedly much interaction between edi-
tors comes from edit behavior, past interactions
between editors, and even the short edit comments
that editors leave about their edits. We were not
able to find a comprehensive study of the effect
of Wikipedia talk pages on article pages, but links
from discussion features to outcomes in collabora-
tive editing are often tenuous (Wen et al., 2016).

Our model performs slightly better than the
linear regression baseline, though it performs
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Model Setting 2 3 4 5+ All

LinReg tgt editor 0.286 0.302 0.287 0.302 0.292
LinReg all 0.287 0.302 0.289 0.301 0.292

RIM K=2 0.316 0.317 0.308 0.342 0.318
RIM K=3 0.307 0.320 0.310 0.337 0.314
RIM K=4 0.307 0.314 0.311 0.327 0.311
RIM K=5 0.309 0.315 0.308 0.321 0.312

PRPM K=2 0.286 0.302 0.288 0.297 0.292
PRPM K=3 0.286 0.302 0.288 0.295 0.291
PRPM K=4 0.286 0.302 0.289 0.295 0.291
PRPM K=5 0.286 0.302 0.288 0.295 0.291

Table 2: RMSE for baselines and models. Rows are model settings. Scores are reported for different
numbers of participants, which are the columns headings. (LinReg: editor uses only the target editor’s
features, and all uses all participants’ features. RIM and PRPM: K is the number of roles.)

substantially better than the previously proposed
RIM model. One advantage of our role-based
model above the linear regression baseline is clear
when looking at conversations with more editors
(columns in Table 2 denote the number of discus-
sion participants in analyzed conversations). This
points to the utility of using role information with
larger groups, when roles are likely more relevant.

Another advantage of PRPM over the linear re-
gression baseline is that it allows interpretation of
both target editor strategies and group dynamics
that characterize the success or failure of a target
editor. Where linear regression allows only the
characterization of behaviors that make individual
editors successful, PRPM captures roles in inter-
action with other roles in group conversation. In
this way, PRPM allows a more full interpretation
of group interaction.

7.1 PRPM Role Analysis

Our best-performing model classified editors into
5 different roles. We identified the combinations
of roles that are predictive of editor success (or
failure).

To assess roles, we examined the text and dis-
cussion features of editors who scored highly, as
well as considered the weights assigned to each
feature for each role. The relative frequencies of
each behavior for each role are shown in Figure 3.
A characteristic example discussion post for each
role is given in Table 3. Each role is named and
described qualitatively below.

Moderator. This role primarily helps discus-
sion flow without getting too involved, perform-

ing and summarizing the results of administrative
tasks. High probability dialogue act features for
this role include asking questions of other editors
and discussing itemized content. The moderator
role is less likely than other roles to have success
as a target editor and has the lowest target editor
success when paired with other editors playing the
moderator role.

Architect: This role is predominantly focused
on page hierarchy, with the bulk of its probability
focused on the page format dialogue act, which
is relevant to discussions of adding new page sec-
tions, merging, archiving, and creating new pages.
The architect role is moderately likely to have suc-
cess as a target editor.

Policy Wonk: This role is an knowledgeable
Wikipedia user, frequently mentioning source ac-
countability, fair use or copyright policy for im-
ages. Dialogue act features which have high prob-
ability for the policy wonk include appealing to
Wikipedia policy and discussing engagement with
other users on user talk pages. The policy wonk
role is moderately unlikely to have success as a
target editor.

Wordsmith: This role is predominantly con-
cerned with the naming, creation, and wording
of pages. Dialogue act features which have high
probability for the wordsmith include discussing
the spelling, pronunciation, or translation of words
and phrases, as well as discussing the (re-)naming
of new or existing pages or sections. The word-
smith role is strongly correlated with target editor
success, especially when combined with the mod-
erator or architect.
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Figure 3: Behavior distributions for each role, expressed for each behavior as the number of standard
deviations above the mean.

Role Example post

Moderator It was requested that this article
be renamed but there was no con-
sensus for it be moved.

Architect I think a section in the article
should be added about this.

Policy
Wonk

The article needs more
WP:RELIABLE sources.

Wordsmith The name of the article should be
““Province of Toronto”” because
that is the topic of the article.

Expert There actually was no serious
Entnazifizierung in East Ger-
many.

Table 3: Examples of discussion posts from users
in certain learned roles

Expert: This role is the most content-oriented
role learned by our model. Dialogue act fea-
tures which have high probability for the expert
include making comparisons, discussing historical
and geopolitical content, giving examples, and cit-
ing sources. The expert role is most strongly cor-
related with target editor success when combined
with other users playing the expert role.

We find that the roles that lend themselves most
strongly to target editor success (the Wordsmith
and Expert) are more concrete edit-focused roles,
while the roles associated with lower target edi-
tor success (the Moderator, Architect, and Policy
Wonk) are more conceptual organizational roles.
Note that it is not necessarily the case that editors
that edit more frequently have higher scores. We

find frequent editors across all roles.
Additionally, we find that configurations with

multiple conceptual organizational roles lead to di-
minished outcomes for individual editors, suggest-
ing that individual conceptual editors are unlikely
to have their edits universally accepted. This could
mean that talk page conversations that have multi-
ple conceptual voices (which could be a measure
of interesting discussion) are more likely to result
in compromises or failure for a target editor. It
is important to recognize that we are focusing on
strategies and configurations of roles always in re-
lation to the success of one editor; this editor score
does not necessarily refer to a good, well-rounded
discussion.

8 Conclusion and Future Work

The nature of collaboration on Wikipedia is still
not fully understood, and we present a compu-
tational approach that models roles of talk page
users with relation to success on article pages.
We contribute both a new task with corresponding
public dataset and a lightly-supervised graphical
model for inducing role-based behavior profiles to
predict the success of Wikipedia editors.

The proposed probabilistic graphical role model
is unique in its structure of roles in relation to the
outcome of one particular participant instead of
group performance, and allows flexible mappings
between roles and participants, assigning each par-
ticipant a distribution over roles. The model we
present retains one limitation of the RIM model,
the assumption that editors in one conversation ex-
ist independently from those same editors in other
conversations. Future work should address this.
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Our model lends interpretability to combina-
tions of talk page discussion roles. We find that
detail-oriented roles are associated with success
in combination with organizational roles, but that
multiple participants taking organizational roles
can lessen individual editing success.

We hope that this exploration into role-based
discourse analysis will further enable systems to
understand group interaction in text.
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