
The Companion Volume of the Proceedings of IJCNLP 2013: System Demonstrations, pages 25–28,
Nagoya, Japan, 14-18 October 2013.

MaltDiver: A Transition-Based Parser Visualizer

Miguel Ballesteros Roberto Carlini
Natural Language Processing Group

Pompeu Fabra University
Barcelona, Spain

{miguel.ballesteros, roberto.carlini}@upf.edu

Abstract

Transition-based dependency parsers
are widely used in the Natural Lan-
guage Processing community but they
are normally treated as black boxes, as-
suming that they provide the depen-
dency parsing of a set of examples. We
present MaltDiver, a tool developed to
visualize the transitions performed by
the transition-based parsers included
in MaltParser and to show how the
parsers interact with the sentences and
the data structures within. During the
demo session, we will run MaltDiver on
several sentences and we will explain
the potentialities of such a system.1

1 Introduction

Natural language processing researchers ap-
ply transition-based parsers frequently, these
parsers are implemented in MaltParser (Nivre
and Hall, 2005; Nivre et al., 2007b). Most
of the application developers make use of the
parsers without knowing how these parsers ac-
tually work, treating them as black boxes.

In order to have a system that could help
to understand how a transition-based parser
works, we present MaltDiver. MaltDiver is
a tool developed to visualize the transitions
performed by the transition-based parsers in-
cluded in MaltParser and to show how they
traverse the transition-system. We believe
that there are mainly two different target re-
searchers, that belong to different knowledge
levels: (i) expert users who are willing to see
how the parser behaves with a new set of fea-
tures or with a different parsing constraint,

1The system is available for download at http:
//taln.upf.edu/pages/MaltDiver/. It includes ex-
amples and a complete readme file that explains how
to use the tool.

and (ii) non-expert users who are willing to
understand how the parsers work with the sen-
tences that they are interested to parse, help-
ing them to find out errors during the parsing
process or inconsistencies in the annotation.

In the rest of the paper, we explain how a
transition-based parser works (Section 2), we
describe how we have implemented MaltDiver
(Section 3), we present related work (Section
4), we show some ideas for further work (Sec-
tion 5) and we conclude (Section 6).

2 Transition-based parsing -
MaltParser

A transition-based parser learns parsing mod-
els that are trained to predict the next state
of a state machine. To this end, it uses fea-
tures that are annotated in the input sentence
and dependency structure features that are
dynamically generated. A typical transition-
based parser state, see Figure 1, consists in
two data structures (a stack and a buffer), and
the partially built dependency structure. The
parser starts in an initial state and produces
transitions in order to reach new states by us-
ing the predictions of the trained model. This
kind of parsing is very efficient, normally lin-
ear, O(n), in the sentence length and it pro-
vides the possibility of using features based
on the partially built dependency structure.
However, in a transition-based parsing strat-
egy, in which there is a lack of backtracking, it
is difficult to avoid an error propagation when
it occurs (McDonald and Nivre, 2007). This
may serve also as an evidence about why we
are interested in the existence of a system as
the one that we are presenting in this paper.

MaltParser (Nivre and Hall, 2005; Nivre
et al., 2007b) is a transition-based depen-
dency parser generator that provides high re-
sults. In the CoNLL Shared Tasks in 2006

25

Nivre’s transition system:

Initial configuration → Terminal configuration:

Transitions:

Shift: 〈Σ, i|B, H, D〉 ⇒ 〈Σ|i, B, H, D〉

Reduce: 〈Σ|i, B, H, D〉 ⇒ 〈Σ, B, H, D〉

Left-Arc (r): 〈Σ|i, j|B, H, D〉 ⇒ 〈Σ, j|B, H[i → j], D[i →r]}〉

if h(i) 6= 0.

Right-Arc (r): 〈Σ|i, j|B, H, D〉 ⇒ 〈Σ|i|j, B, H[j → i], D[j →r]}〉

if h(j) = 0.

Figure 1: Transition System for arc-eager al-
gorithm.

and 2007 (Buchholz and Marsi, 2006; Nivre
et al., 2007a), it was one of the best parsers.
MaltParser contains four different families of
transition-based parsers, the current version of
MaltDiver only handles arc-eager parsing al-
gorithm. These parsers mainly differ in the
attachment of right-dependents, being the arc-
eager greedier when right attachments have to
be generated (Ballesteros and Nivre, 2013).

Figure 1 shows the parsing transitions for
Nivre arc-eager with reduce transition: (i)
Shift, (ii) Reduce, (iii) Left-Arc and (iv)
Right-Arc. Nivre’s arc-eager parsing algo-
rithm makes use of two data structures in or-
der to handle the input words: a buffer, which
keeps the words that have to be read, and a
stack, containing words that have already been
processed but they are still available to pro-
ducing a dependency arc. The Shift transi-
tion removes the first word in the buffer, and
puts it on the top of the stack. The Reduce
transition removes the word that is on the top
of the stack because there are no more arcs
that have this word as a dependent or as a
head. The Left-Arc and Right-Arc tran-
sitions create either and arc from right to left
or left to right, and stores the new arc in the
dependency structure H and list D of depen-
dency labels for each word.

3 MaltDiver

MaltDiver is a system implemented in Java
that dives into the transition-based system
with the intention of showing the states that
the parser performs for a given sentence. At
this writing, our MaltDiver implementation
only allows the visualization of the arc-eager

parsing algorithm (Nivre, 2003) – but it would
not be difficult to include new transition sys-
tems (Nivre, 2008) as we also mention in Sec-
tion 5.

MaltDiver processes the outcome of the di-
agnostic feature of MaltParser,2 which prints
the transition sequence for each sentence of the
test corpus. It basically shows the list of tran-
sitions and the dependency label selected (if
available). Besides that, MaltDiver also makes
use of the dependency tree produced in order
to ensure the reliability of the transition se-
quences inferred in the MaltDiver processes.

We included an extra option in MaltDiver
which is the one that corresponds with the
allow root option in MaltParser.3 This option
decides whether there is a dummy root node
included in the first parsing state on the stack.
As in MaltParser, the allow root option is set
to true in default settings.

Therefore, MaltDiver takes the following in-
puts: (i) input sentence, (ii) a sequence of
transitions provided by the MaltParser diag-
nostic feature and (iii) a dependency tree pro-
duced by MaltParser for the input sentence.
After that, it processes the list of transitions
from left to right and it reconstructs the parser
configurations off line.

MaltDiver includes a console version of the
system, that prints the parsing states and the
dependency structure that is being produced
in each state in a pretty-print way. In order to
ensure the usefulness of the system, MaltDiver
produces a pdf file for each state of the parsing
process by using the TikZ-dependency tool,4

which provides a LATEX interface that we use
for the production of the different states and
partially built dependency structures. There-
fore, the pdf file allows to go backward and
forward and save the current state in a sep-
arate pdf file. Besides the pdf file, the user
could also access the LATEX format file. Fig-
ure 2 shows an intermediate state of the pdf
file generated within MaltDiver transitions by
processing a sentence written in Spanish. The
structure to the left of the picture is the stack,

2This can be achieved by using the following setting
in MaltParser: -di true -dif filename.log

3See www.maltparser.org/userguide.html
4TikZ-dependency tool is available for download-

ing through https://sourceforge.net/projects/
tikz-dependency/

26

Figure 2: A print-screen of the system for the following sentence written in Spanish: Este, a sus
cuarenta años de edad, sufre una terrible e imparable degeneración nerviosa. The structure to
the left of the picture is the stack, and the one to the right is the buffer.

and the one to the right is the buffer.

4 Related Work

The importance of visualization systems has
been evidenced during the last years in the
NLP community. In the parsing and genera-
tion area we can find systems, such as MaltE-
val (Nilsson and Nivre, 2008), the Mate Tools
(Bohnet et al., 2000), XLDD (Culy et al.,
2011) or more recently, TreeExplorer (Thiele
et al., 2013), which are, among other things,
systems that visualize parse trees for evalu-
ation and to provide the option of exploring
dependency structures.

We also consider relevant and motivated in
a similar way the work developed by Christo-
pher Collins et al. about visualization of lin-
guistic data in the Computer Graphics area
(Collins et al., 2009a; Collins et al., 2009b),
in which they present interactive visualization
systems for NLP in discourse analysis, doc-
ument content and even machine translation
parse trees.

5 Future Work

A tool like MaltDiver provides several future
directions and applications in different scenar-
ios. The first idea would be to include other
parsers in the system, such as the ones in-
cluded in MaltParser that are not treated with
MaltDiver. Some of them would be very easy
to include, because they share with Nivre’s
parsers the transition system. However, there
are some parsers that are a challenge, be-
cause we would have to include additional data
structures in the visualization.

We could also provide an implementation of
the pseudo-projective transformation of Nivre
and Nilsson (2005) in the system process. We
believe that the implementation of this step
is rather straightforward, because we would
only have to trace the projective parsing pro-
cess –as we have already done– resulting in the
pseudo-projective tree before post-processing.
By comparing this to the final tree output by
the system, we can then infer which arcs were
moved due to pseudo-projective parsing. In
fact, this is something that an user could do
manually in the current version of MaltDiver.

A great idea would be to integrate Malt-
Diver with MaltOptimizer (Ballesteros and
Nivre, 2012) in order to understand how the
parser changes its behavior by updating the
features selected.

6 Conclusions

We have presented MaltDiver, a tool that may
serve as support for people interested in pars-
ing research. This kind of tool would allow to
understand the parsing processing by prepar-
ing resources about transition-based parsing
in short time; researchers with deep knowl-
edge about transition-based parsing could find
it useful in order to understand the outcomes
that the parsers may produce for a given sen-
tence. For instance, a possible MaltDiver
use could be an automatic comparison be-
tween different parsing behaviors for exper-
iments about parsing root positions (Balles-
teros and Nivre, 2013) or parsing directions
modifications (Attardi and Dell’Orletta, 2009)
and (Hall et al., 2007).

27

Acknowledgments

Thanks to Joakim Nivre, Johan Hall and Leo
Wanner for their kind support and useful com-
ments.

References

Giuseppe Attardi and Felice Dell’Orletta. 2009.
Reverse revision and linear tree combination
for dependency parsing. In Proceedings of Hu-
man Language Technologies: The 2009 Annual
Conference of the North American Chapter of
the Association for Computational Linguistics
(NAACL HLT), pages 261–264.

Miguel Ballesteros and Joakim Nivre. 2012. Mal-
tOptimizer: A System for MaltParser Optimiza-
tion. In Proceedings of the Eighth International
Conference on Language Resources and Evalua-
tion (LREC).

Miguel Ballesteros and Joakim Nivre. 2013. Going
to the roots of dependency parsing. Computa-
tional Linguistics, 39(1):5–13.

Bernd Bohnet, Andreas Langjahr, and Leo Wan-
ner. 2000. A development environment for an
mtt-based sentence generator. In Proceedings of
the First International Natural Language Gen-
eration Conference.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-
X shared task on multilingual dependency pars-
ing. In Proceedings of the 10th Conference
on Computational Natural Language Learning
(CoNLL), pages 149–164.

Christopher Collins, M. Sheelagh T. Carpendale,
and Gerald Penn. 2009a. Docuburst: Visualiz-
ing document content using language structure.
Comput. Graph. Forum, 28(3):1039–1046.

Christopher Collins, Gerald Penn, and M. Shee-
lagh T. Carpendale. 2009b. Bubble sets: Re-
vealing set relations with isocontours over exist-
ing visualizations. IEEE Trans. Vis. Comput.
Graph., 15(6):1009–1016.

Chris Culy, Verena Lyding, and Henrik Dittmann.
2011. xldd: Extended linguistic dependency dia-
grams. In Proceedings of the 2011 15th Interna-
tional Conference on Information Visualisation,
IV ’11, pages 164–169, Washington, DC, USA.
IEEE Computer Society.

Johan Hall, Jens Nilsson, Joakim Nivre, Gülsen
Eryiğit, Beáta Megyesi, Mattias Nilsson, and
Markus Saers. 2007. Single malt or blended?
A study in multilingual parser optimization.
In Proceedings of the CoNLL Shared Task of
EMNLP-CoNLL 2007, pages 933–939.

Ryan McDonald and Joakim Nivre. 2007. Char-
acterizing the errors of data-driven dependency
parsing models. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural
Language Processing and Computational Natu-
ral Language Learning (EMNLP-CoNLL), pages
122–131.

Jens Nilsson and Joakim Nivre. 2008. Malteval:
an evaluation and visualization tool for depen-
dency parsing. In Proceedings of the Sixth Inter-
national Conference on Language Resources and
Evaluation (LREC’08), Marrakech, Morocco,
may. European Language Resources Association
(ELRA).

Joakim Nivre and Johan Hall. 2005. MaltParser:
A language-independent system for data-driven
dependency parsing. In Proceedings of the 4th
Workshop on Treebanks and Linguistic Theories
(TLT), pages 137–148.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-
projective dependency parsing. In Proceedings
of the 43rd Annual Meeting of the Association
for Computational Linguistics (ACL), pages 99–
106.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan
McDonald, Jens Nilsson, Sebastian Riedel, and
Deniz Yuret. 2007a. The CoNLL 2007 shared
task on dependency parsing. In Proceedings
of the CoNLL Shared Task of EMNLP-CoNLL
2007, pages 915–932.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas
Chanev, Gülşen Eryiǧit, Sandra Kübler, Sve-
toslav Marinov, and Erwin Marsi. 2007b.
Maltparser: A language-independent system for
data-driven dependency parsing. Natural Lan-
guage Engineering, 13:95–135.

Joakim Nivre. 2003. An efficient algorithm for
projective dependency parsing. In Proceedings
of the 8th International Workshop on Parsing
Technologies (IWPT), pages 149–160.

Joakim Nivre. 2008. Algorithms for determinis-
tic incremental dependency parsing. Computa-
tional Linguistics, 34:513–553.

Gregor Thiele, Markus Gärtner, Wolfgang Seeker,
Anders Björkelund, and Jonas Kuhn. 2013.
Treeexplorer – an extensible graphical search
tool for dependency treebanks. In Proceedings
of the Demonstrations of the 51st Annual Meet-
ing of the Association for Computational Lin-
guistics (ACL 2013).

28

