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Abstract
Unsupervised Relation Extraction (URE)
methods automatically discover semantic
relations in text corpora of unknown con-
tent and extract for each discovered rela-
tion a set of relation instances. Due to
the sparsity of the feature space, URE is
vulnerable to ambiguities and underspeci-
fication in patterns. In this paper, we pro-
pose to increase the discriminative power
of patterns in URE using selectional re-
strictions (SR). We propose a method that
utilizes a Web-derived soft clustering of
n-grams to model selectional restrictions
in the open domain. We comparatively
evaluate our method against a baseline
without SR, a setup in which standard 7-
class Named Entity types are used as SR
and a setup that models SR using a fine-
grained entity type system. Our results in-
dicate that modeling SR into patterns sig-
nificantly improves the ability of URE to
discover relations and enables the discov-
ery of more fine-granular relations.

1 Introduction

In traditional approaches for Relation Extrac-
tion (RE), all target relations (such as BORNIN

or HASWONPRIZE) need to be specified in ad-
vance. For each relation, an extractor is trained
or manually created that finds relation instances
in text (Jiang and Zhai, 2007). This process is
expensive and usually involves manually labeling
large amounts of training data, making it difficult
to scale RE to large sets of relations. Worse, be-
cause target relations must be manually defined in
advance, the usefulness of RE in corpora of un-
known content is limited (Akbik et al., 2012). This
limits their applicability to the open domain where
a potentially unbounded number of relations may
be expressed in text.

In contrast, Unsupervised Relation Extraction
(URE) approaches do not require target relations
to be pre-specified, and require no labeled train-
ing data (Rosenfeld and Feldman, 2007). Instead,
they automatically discover prominent relations in
a given text corpus and extract for each identi-
fied relation a list of relation instances. Current
methods (Akbik et al., 2012; Yao et al., 2012) uti-
lize a vector space model of semantics in which
they group co-occurring pairs of entities (referred
to as entity pairs) into clusters based on distribu-
tional evidence over observed patterns. Each clus-
ter is interpreted as one discovered semantic re-
lation and the entity pairs in each cluster as the
instances of this relation.

Pattern ambiguities. However, a problem for
such approaches is that patterns may be ambigu-
ous in the sense that they point to more than one
relation. The pattern “[X] GET [Y]”1 for exam-
ple may be observed for a person and a product
(“Jim got a new VW Beetle.”), a person and a dis-
ease (“Jim got H1N1.”) or (colloquially) between
a person and a difficult-to-understand topic (“Jim
finally got Game Theory.”). Such ambiguous pat-
terns can cause entity pairs that belong to different
relations (such as <Jim, VW Beetle> and <Jim,
H1N1>) to be falsely grouped into the same se-
mantic relation. See Table 1 for a structured illus-
tration of this example.

This is especially problematic because the num-
ber of observed patterns for each individual entity
pair is usually disproportionally small compared
to the space of all possible patterns. In such a
sparse feature space, false evidence caused by am-
biguities can potentially have a negative impact on

1Patterns are denoted with the placeholders [X] for the
subject entity, and [Y] for the object entity of the entity pair
they are observed with. In this paper, we use lexico-syntactic
patterns extracted from dependency trees. For readability rea-
sons, we omit information on dependency links. [X] in this
pattern is either a subject or an apposition to the word GET.
Likewise, [Y] is its object.
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Sentence Entity pair Pattern Restricted Pattern
Yesterday, Jim got a new VW Beetle. <Jim, VW Beetle> [X] GET [Y] [X:PERSON] GET [Y:PRODUCT]

Jim got H1N1. <Jim, H1N1> [X] GET [Y] [X:PERSON] GET [Y:DISEASE]
Jim finally got Game Theory. <Jim, Game Theory> [X] GET [Y] [X:PERSON] GET [Y:THEORY]

Table 1: Example of pattern generation from three sentences. Three entity pairs are observed that belong
to different relations. For example <Jim, VW Beetle> may belong to a PERSONACQUIREPRODUCT

relation and <Jim, H1N1> to a PERSONINFECTEDWITHDISEASE relation. Without selectional restric-
tions, however, the same pattern is observed for all entity pairs, giving false evidence that they share the
same relation. With selectional restrictions, different patterns are correctly observed.

the overall relation extraction quality of a URE ap-
proach.

Selectional restrictions in patterns. One ap-
proach to this problem is to include information
on selectional restrictions (SR) to the patterns
to increase their discriminative power (Resnik,
1996). We could restrict the patterns to ap-
ply only to entities of certain semantic classes
or types. So, instead of the pattern “[X] GET

[Y]” for the above mentioned examples we might
generate “[X:PERSON] GET [Y:PRODUCT]” for
“Jim got a new VW Beetle.”, “[X:PERSON] GET

[Y:DISEASE]” for “Jim got H1N1.” and so forth
(see Table 1).

However, modeling selectional restrictions in
URE is not trivial, as it is unclear what type sys-
tem and what granularity of types are required.
For example, the types of a standard NER tagger
(PERSON, LOCATION, ORGANIZATION etc.) may
be too coarse grained for the above example, not
being able to distinguish between DISEASE and
PRODUCT.

While more fine-grained NER taggers have re-
cently been researched (Ling and Weld, 2012),
it is unclear whether they can be applied to the
open domain. Here, we may encounter a poten-
tially unrestricted set of entities of arbitrary types
and granularity that varies from corpus to corpus.
Also, each entity may have different types depend-
ing on how the type hierarchy is modeled; the
string “VW Beetle” for instance may refer to a car,
a product or a brand.

Contributions. In this paper, we address these
challenges and study effective and viable methods
for modeling selectional restrictions for URE in
the open domain. We evaluate and discuss model-
ing SR using Named Entity types from the Stan-
ford NER tagger (Finkel et al., 2005) as well as
fine-grained Named Entity classes derived from
the YAGO knowledge base (Hoffart et al., 2011).
In addition, we propose a novel method that over-

comes shortcomings of existing methods by lever-
aging a Web-derived clustering of n-grams to
model restrictions in an unsupervised fashion. We
evaluate all setups against an informed baseline
(based on previous work by (Akbik et al., 2012;
Rosenfeld and Feldman, 2007)) in which patterns
are not restricted.

We observe in all experiments that selectional
restrictions significantly improve URE. The best
performing setups use fine-grained Named Entity
classes and our proposed open domain method,
yielding f -measure improvements of 28% and
15% respectively over the baseline. We inspect
the clustering results and find that the choice of SR
influences the granularity of discovered relations.
Based on our findings, we identify limitations of
SR and outline challenges for URE.

2 Previous Work

We review previous work in URE with regards to
selectional restrictions, and introduce the phrasal
clustering dataset we use in our proposed method.

URE. There are a number of canonical works
that relate to URE; (Lin and Pantel, 2001) first
used distributional evidence to measure the sim-
ilarity of patterns to find paraphrases of patterns.
(Turney, 2006) instead computed the similarity of
pairs of nouns using patterns as features. Their
goal was finding analogies in text. (Rosenfeld and
Feldman, 2007) then used a clustering method on
a similar vector space model to group pairs of enti-
ties into clusters that represent semantic relations.

More recent work has addressed the problem
of ambiguous patterns in URE in different ways.
Notably, (Akbik et al., 2012) have evaluated pat-
tern generation methods using lexical, shallow and
deep syntactic features. They found that the use
of deep syntactic features reduces pattern ambigu-
ity and dramatically increases overall relation ex-
traction f -measure by 65%. However, they do not
model selectional restrictions in their pattern gen-
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eration step.
Selectional Restrictions. Other recent work

has incorporated information from NER taggers
into their feature set. (Mesquita et al., 2010) use
a standard 4-class NER tagger, but do not indi-
vidually evaluate its impact. (Yao et al., 2012)
use a very rich feature set, including fine-grained
Named Entity types and document topics, to first
disambiguate each pattern individually and in a
second step perform URE using disambiguated
patterns. This approach is problematic for many
corpora because it requires a massive redundancy
of pattern observations for disambiguation. In
their experiments, they handled only patterns that
are seen more than 200 times in their corpus. For
comparison, in the large data set that we use in
this paper, only 9 out of over 36.000 patterns are
observed more than 200 times.

Phrasal Clustering. Contrary to previous work
we do not propose using a manually established
type system for selectional restrictions. Rather, we
use a clustering of more than 10 million distinct
one-to-five-word-grams from the Google n-gram
data set (Lin and Wu, 2009) computed by (Lin et
al., 2010). Previous work has leveraged the la-
tent semantic information given by phrasal cluster
memberships of n-grams to solve tasks other than
URE. For example, (Zhou et al., 2011) increase
the performance of deep syntactic parsers with re-
gard to long-range dependencies, and (Täckström
et al., 2012) transfer linguistic structure using
cross-lingual word clusters.

In this work, we interpret each phrasal cluster as
an entity type and all n-grams assigned to a cluster
as belonging to this type. We incorporate this into
the pattern generation step of our URE method and
use this information to model selectional restric-
tions. Thus, the type system is not manually spec-
ified, but rather induced without supervision from
a large Web corpus, making it a natural fit for the
open domain and URE.

3 Pattern Generation

Pattern generation is the phase in URE in which
patterns are generated for each co-occurring entity
pair in the observed corpus. Current techniques go
through each sentence in the corpus individually
and generate <entity pair, pattern, count> tuples.
In the following, we present the architecture of our
URE system (Section 3.1) and illustrate how we
integrate different options for modeling SR into

the pattern generation process. We present options
that use types from an NER tagger (Section 3.2),
fine-grained entity types from the YAGO knowl-
edge base (Section 3.3), as well as the proposed
phrasal clustering method (Section 3.4).

3.1 Baseline System

In our system, we use a pattern generation method
that makes use of dependency parses. We im-
plement the algorithm described in (Akbik et al.,
2012). Here, patterns are generated as a sequence
of typed dependencies and lemmas of tokens on
the shortest path between two entities in a parse. In
addition to the tokens on the shortest path (referred
to as core tokens), additional tokens are collected
from their vicinity in the dependency tree. The po-
sition of the entities are denoted by the placehold-
ers “[X]” and “[Y]”. We further prune patterns us-
ing linguistically-informed filters, e.g. removing
patterns that consist only of direct dependencies
between subject and object. We give an example
of pattern generation applied to a sentence in Fig-
ure 1.

Similarity of entity pairs. Using this tech-
nique, we generate a list of pattern-entity pair ob-
servation tuples, which we use to construct a pair
pattern frequency matrix. Each row vector repre-
sents one distinct entity pair ei and each column
one distinct pattern pj . The value of the matrix
cell cij is the number of times that ei occurs in the
pattern pj . This representation allows us to com-
pute the similarity of two entity pairs by comput-
ing the cosine distance between their correspond-
ing rows in the pair pattern matrix (Bullinaria and
Levy, 2007). We compute the pairwise similarity
for all entity pairs to generate a dissimilarity ma-
trix and execute a clustering method on this ma-
trix.

Clustering. In line with most previous work in
URE (Rosenfeld and Feldman, 2007; Wang et al.,
2011), we use a Hierarchical Agglomerative Clus-
tering (HAC) approach with the average linkage
scheme (Han et al., 2011). This approach itera-
tively merges the two closest entity pairs to com-
pute a dendrogram of cluster merges.

The dendrogram is cut at a point given by the
cutting threshold parameter, yielding a set of clus-
ters. This parameter is usually estimated or de-
termined through experimentation. A common
method is to execute an exhaustive search over
a subset of the parameter space (referred to as
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[X] get [Y] <Jim, VW Beetle>
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Figure 1: Illustration of the pattern generation process for one example sentence with the entities “Jim”
and “VW Beetle”. Part-of-speech and Named Entity class tags are given below the tokens in the sentence.
The shortest path between the two entities is highlighted bold in the dependency tree. The word “got”
lies along this path, which is lemmatized to produce the pattern [X] GET [Y]. As an option, the Named
Entity classes of the entities are included as selectional restrictions into the pattern, yielding the pattern
[X:PERSON] GET [Y:MISC].

grid search), guided by cross-validation on a train-
ing set (Bergstra and Bengio, 2012). Through
such experimentation, we determine that the cut-
ting threshold must be set at a high value (for ex-
ample around 0.999) to produce good clustering
results2.

Clustering result. The clustering produces a
set of clusters, which each consist of a set of en-
tity pairs. Each resulting cluster is interpreted as
one discovered relation, and all entity pairs in the
cluster as the instances of this relation. The clus-
tering result is then passed to an evaluation step
discussed in detail in Section 4.

3.2 Named Entity Type Restrictions

We first extend the system with an option to use
standard Named Entity types as selectional re-
strictions, in a similar fashion as a previous URE
system (Mesquita et al., 2010). We incorporate
the Stanford NER 7-class tagger into the sentence
parsing pipeline and determine the type of each
entity. These types are used to restrict the generic
placeholders [X] and [Y] in generated patterns
with the types of the subject and object entities.

For the example sentence illustrated in Figure 1,
the tagger determines the class PERSON for “Jim”,
and MISC for “VW Beetle”. The latter class is
used for all entities that cannot be assigned any
of the named classes. We therefore generate the
pattern “[X:PERSON] GET [Y:MISC]” in this ex-
ample. Because we model entity type restrictions
directly into the patterns, we increase the space of
all possible patterns and make individual patterns

2We determine different values for other linkage schemes.
For example, when using the single-link linkage scheme in
HAC, we find a good estimation for the cutting threshold to
be 0.9.

more discriminative.
However, as shown in the example in Section 1,

the Named Entity classes given by a 7-class tagger
are coarse grained and may not include the types
necessary to disambiguate all patterns. Also, there
is a risk that Named Entity taggers may determine
the wrong type for an entity3. This could lead to
false evidence that negatively impacts URE.

3.3 Fine-grained Entity Type Restrictions
Because classes from a standard 7-class NER tag-
ger may be too coarse grained for URE, we next
extend the system with the option of modeling
fine-grained Named Entity classes. We choose
an approach that requires entities to be disam-
biguated and linked to Wikipedia URIs. The
YAGO knowledge base then enables us to retrieve
fine-grained entity classes for disambiguated enti-
ties, such as their Wikipedia categories (of which
we use only the head nouns as restrictions). Be-
cause many YAGO entities belong to more than
one class, this method returns a set of classes for
each entity. For example, the Wikipedia categories
for “VW Beetle” are “TAXICAB VEHICLES”,
“AUSTRIAN INVENTIONS”, “INDUSTRIAL DE-
SIGNS”, “SUBCOMPACT CARS” and others.

For each entity pair, we retrieve two sets of en-
tity classes (one for the subject and one for the
object). We determine the Cartesian product over
these two sets and create one distinct pattern with
selectional restrictions for each combination. For
the example sentence, this means that we gener-
ate a list of patterns, including “[X:PERSON] GET

[Y:CAR]”, “[X:PERSON] GET [Y:VEHICLE]”
and “[X:PERSON] GET [Y:INVENTION]”, each of

3(Finkel et al., 2005) report an overall f -measure of 87%
on the CoNLL 2003 Named Entity Recognition dataset.
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Cluster WeightN-gram lookup Other n-grams in cluster1) Lookup phrasal clusters for subject 
and object entity

2) Add cluster IDs as selectional
restrictions to patterns. 

VW Beetle

Jim

[X] get [Y] <Jim, VW Beetle>
Pattern Entity pair 805

269 0.4

0.17

VW Beetle 825 0.3 Chrysler Voyager, Toyota Highlander

Computer Parts, Office Supplies

Becky, Doug, Eileen, Frances

Pattern Entity pair Weight

[X:269] get [Y:825] 0.12

[X:269] get [Y:805] 0.04

[X:283] get [Y:269] 0.18

<Jim, VW Beetle>

<Jim, VW Beetle>

<Jim, VW Beetle>

Figure 2: Illustration of the proposed pattern generation process that uses phrasal cluster memberships
as selectional restrictions. In 1), phrasal clusters are retrieved for the subject and object of the entity pair.
“VW Beetle” for example is in cluster 825, which contains many other car names. In 2) the Cartesian
product over the phrasal clusters for subject and object is built and used as selectional restrictions for
the pattern generated with the baseline method. This yields a set of patterns with different selectional
restrictions.

which is used as a feature. While this method in-
creases the overall number of observed patterns by
about one order of magnitude, individual patterns
are much more discriminative than without selec-
tional restrictions.

Limitations. Two things must be noted re-
garding this method of determining fine-grained
Named Entity classes. Firstly, it does not nec-
essarily produce patterns at the desired granu-
larity. In Section 1 we discussed the pattern
“[X:PERSON] GET [Y:PRODUCT]” to be most ap-
propriate, which is not generated by this method.
More importantly though, the method is limited to
entities that can be disambiguated to the appropri-
ate Wikipedia page. While this is possible on the
dataset we use for the evaluation, it is much more
difficult to determine fine-grained Named Entity
classes in the open domain with this method. We
therefore implement this option mainly for evalua-
tion purposes, in order to determine URE capabil-
ities given a fine-grained, high quality type system
for selectional restrictions.

3.4 Phrasal Clusters as Restrictions

To address the limitations of the methods de-
scribed in 3.3, we propose a method for modeling
SR that does not require an existing type system or
the disambiguation of entities.

We extend the system with the option of us-
ing selectional restrictions derived from a phrasal

clustering computed by (Lin and Wu, 2009) over
a dataset of more than 10 million distinct one-
to-five-word-grams from the Google n-gram data
set (Lin and Wu, 2009). In this dataset, each n-
gram is assigned to ten different phrasal clusters
with different association values, also referred to
as weights. Weights are between 0 and 1, with a
higher value indicating a stronger assignment con-
fidence. Because the clustering is based on lexical
context, n-grams in a cluster often share semantic
properties. For example, the dataset contains clus-
ters of entities like cities, cars, movies, etc (Lin
and Wu, 2009).

During pattern generation, we look up the
phrasal cluster IDs for the lexical representation of
an entity and use this ID as selectional restriction.
For example, the string “VW Beetle” belongs to
phrasal cluster number 825 with weight 0.3. Se-
mantically similar strings, such as “Chrysler Voy-
ager” and “Toyota Highlander” are also part of this
cluster. We can use this information to restrict the
subject of the pattern only to strings that belong to
cluster 825. Another phrasal cluster for “VW Bee-
tle” is cluster 805 (with a lower weight of 0.17),
which consists of more general product terms such
as “Computer Parts” and “Office Supplies”. “Jim”
is found in cluster 269, which contains many per-
son first names. See Figure 2 for an illustration of
this example.

We build the Cartesian product over the two
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sets of phrasal clusters retrieved for the subject
and object of an entity pair. Because each entity
(e.g. its lexical representation) has 10 soft clus-
ter memberships, the Cartesian product of phrasal
clusters for both entities of an entity pair yields a
total of 100 distinct weighted phrasal cluster ID
combinations, hereafter referred to as restriction
pairs. The weight of each restriction pair is com-
puted by building the product of the confidence
weights of the respective entity-phrasal cluster as-
signments. Each restriction pair is encoded into its
pattern by adding to the entity placeholders “[X]”
and “[Y]” a qualifier indicating the phrasal clus-
ter ID. For each observation and restriction pair, a
distinct pattern is generated.

This option increases the overall number of dis-
tinct patterns by two orders of magnitude. Patterns
are also less humanly readable than their counter-
parts that use coarse- or fine-grained Named En-
tity types. We use this feature space to evaluate
the assumption that we can leverage distributional
evidence over a large Web corpus to model selec-
tional restrictions in URE without an existing type
system.

4 Evaluation

In this section, we perform experiments to mea-
sure the impact of different options of modeling
selectional restrictions in patterns for URE. We
also qualitatively inspect clusters and patterns.

4.1 Experimental Setup
Our experiments are performed on a silver stan-
dard dataset of 200.000 sentences crawled from
the Web and labeled using distant supervi-
sion (Mintz et al., 2009). The sentences contain
4500 distinct entity pairs that are part of the YAGO

knowledge base4. This allows us to compare the
results of URE against the YAGO knowledge base.
We compute BCubed (Amigó et al., 2009) preci-
sion, recall and f -measure values, which are com-
monly used to extrinsically evaluate clustering re-
sults. We perform this evaluation on the following
setups:

BASELINE In this setup, we establish the URE
quality of the baseline system (see Sec-
tion 3.1) without modeling selectional re-
strictions. The baseline is based on the sys-
tem described in (Akbik et al., 2012).

4In (Akbik et al., 2012) we illustrate and evaluate the
labeling procedure in detail.

NER-7CLASS This scenario simulates previous
work by (Mesquita et al., 2010). We evalu-
ate the impact of using a standard NER tag-
ger to model selectional restrictions (see Sec-
tion 3.2).

NER-YAGO In this setup, we evaluate the use of
a high quality, fine-grained type system to
model selectional restrictions. We retrieve
fine-grained entity classes from Wikipedia
categories as described in Section 3.3.

PROPOSED-OPEN-1 This setup is a modifica-
tion of the proposed method that makes use of
phrasal clusters to model selectional restric-
tions in the open domain. Here, we only use
the cluster with the top weight (instead of all
10) as restriction for an entity.

PROPOSED-OPEN-5 Like PROPOSED-OPEN-1
this is a modification of the proposed method.
Here, the top 5 clusters for each string are
used as restrictions. We use this setup to as-
sess the impact of using only the most likely
portion of the full phrasal clusters data set.

PROPOSED-OPEN-FULL The proposed method
making use of the full phrasal clusters data
set.

In addition to varying the pattern generation
method we also experiment with different cut-
ting thresholds in the Hierarchical Agglomerative
Clustering method. We use two cutting threshold
parameters that were determined through experi-
mentation (see Section 3.1), namely 0.9995 and
0.9999 (referred to as C0.9995 and C0.9999 respec-
tively). We also perform a grid search over the pa-
rameter space to determine the best cutting thresh-
old for each setup, which we refer to as Cbest.

4.2 Quantitative Evaluation
Table 2 shows the results of the quantitative eval-
uation. At all cutting thresholds, we observe
improvements in overall f -measure with all se-
tups (except PROPOSED-OPEN-1) over the base-
line. These results indicate the value of includ-
ing selectional restrictions in the pattern genera-
tion step of a URE method. When comparing
the different methods, we note that NER-YAGO

and PROPOSED-OPEN-FULL perform best, out-
performing the baseline at peak setting by 15%
and 28% respectively. PROPOSED-OPEN-1 per-
forms much worse than the baseline, especially
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C0.9995 C0.9999 Cbest

P R F1 P R F1 P R F1
BASELINE 0.34 0.59 0.43 0.21 0.74 0.33 0.46 0.45 0.46

NER-7CLASS 0.39 0.55 0.46 0.52 0.45 0.48 0.51 0.47 0.49
NER-YAGO 0.74 0.39 0.52 0.65 0.50 0.57 0.65 0.53 0.59

PROPOSED-OPEN-1 0.95 0.02 0.04 0.95 0.02 0.04 0.95 0.02 0.04
PROPOSED-OPEN-5 0.70 0.31 0.43 0.59 0.45 0.51 0.57 0.49 0.53

PROPOSED-OPEN-FULL 0.58 0.45 0.51 0.49 0.54 0.51 0.57 0.49 0.53

Table 2: Overview of the results of the comparative evaluation. At all cutting threshold settings, se-
tups NER-YAGO and PROPOSED-OPEN-FULL achieve significantly higher f -measure scores than the
baseline. We find that at peak performance, the PROPOSED-OPEN-5 setup reaches a similar quality as
PROPOSED-OPEN-FULL.

BASELINE
ID Example patterns Example entity pairs
1 [Y] OWNED BY [X], [X] BUY [Y], <SNCF, Systra>

[Y] PART OF [X], [Y] ACQUIRED BY [X] <Eskom, Arnet Power Station>

2 [X] WIN [Y], [X] RECEIVE [Y], <Cher, Emmy Award>
[Y] WINNING [X], [X] NOMINATED FOR [Y] <Chile, Chilean War for Independence>

3 [X] ’S SON [Y], [Y] BORN TO [X], <Zeus, Heracles>
[X] FATHER OF [Y] [X] DAUGHTER OF [Y] <Carus, Carinus>

4 [X] CREATE [Y] , [Y] BY [X], <Philipps, Compact Disc>
[Y] INVENTED BY [X], [Y] DEVELOPED BY [X] <Kent Beck, Extreme Programming>

NER-YAGO
ID Example patterns Example entity pairs
5 [X:FORMATIONS] FIGHT IN [X:WARS], <Red Army, Russian Civial War>

[X:ORGANIZATIONS] WIN [Y:WARS], <Rebel Alliance, Galactic Civil War>
[Y:CONFLICTS] BETWEEN [X:ORGANIZATIONS]

6 [Y:PEOPLE] STUDENT OF [X:PHILOSOPHERS], <Aristotle, Maimonides>
[Y:PEOPLE] INFLUENCED BY [X:PHILOSOPHERS], <Ayn Rand, Ron Paul>
[X:PHILOSOPHERS] TEACHER OF [Y:PEOPLE]

7 [Y:ALBUMS] BY [X:SINGERS], <Lou Reed, Coney Island Baby>
[Y:ALBUMS] ALBUM BY [X:MUSICIANS], <Bryan Adams, Reckless>
[Y:ALBUMS] PERFORMED BY [X:MUSICIANS]

8 [Y:VENUES] HOME OF [X:TEAMS], <Milwaukee Brewers, Miller Park>
[X:CLUBS] PLAY AT [Y:STADIUMS], <New York Yankees, Yankee Stadium>
[Y:CLUBS] AT [X:LOCATIONS]

PROPOSED-OPEN
ID Example patterns Example entity pairs
9 [X:204] IN [Y:809], [X:204] IN [Y:764], <Bob Gale, Back to the Future>

[X:809] IN [Y:764], [X:203] IN [Y:809] <Cher, Zookeeper (film)>
10 [X:18] [Y:452] CANDIDATE, [X:233] [Y:441] POLITICIAN, <Bob Allen, Republican Party>

[X:793] [Y:284] CANDIDATE, [X:259] [Y:441] POLITICIAN <Fob James, Democratic Party>

Table 3: 10 sample clusters found with setups BASELINE, NER-YAGO and PROPOSED-OPEN. Each
cluster is characterized by the top patterns in its centroid and represents one discovered relation. The en-
tity pairs that make up the cluster are instances of discovered relations. Cluster 3, for example, represents
the CHILDOF relation which holds between two persons.

with regards to recall. This is because this method
produces highly overspecified patterns that do not
allow for efficient grouping of entity pairs.

We also note that the cutting threshold setting
has a significant impact on recall, precision and
f -measure. At the PROPOSED-OPEN-5 setup, for
example, minor variations in the parameter (from
C0.9995 to C0.9999) cause an absolute f -measure
difference of 0.8 points. This observation strongly
indicates the importance of finding methods to ef-

fectively parameterize URE.

4.3 Qualitative Evaluation

We manually inspect a sample of the discovered
relations and patterns to gain insight into how the
different setups affect the relation discovery ca-
pabilities of our URE method. We illustrate our
observations with a number of clusters shown in
Table 3. We give examples of clusters for three
setups: BASELINE, NER-YAGO and PROPOSED.
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For each cluster, which represents one discovered
relation, we list a small set of representative pat-
terns and entity pairs.

Cluster 1, for example, is a cluster that repre-
sents company acquisitions, as is indicated by top
patterns such as “[Y] ACQUIRED BY [X]” and
“[Y] PART OF [X]”. Entity pairs in this cluster
are relation instances. This means that <Eskom,
Arnet Power Station> is an instance of the COM-
PANYACQUISION relation. We find that this clus-
ter corresponds most closely to the OWNS relation
from the YAGO knowledge base.

Readability. Generally, we note that using
named classes for selectional restrictions (NER-
7CLASS and especially NER-YAGO) result in
more human readable patterns than their counter-
parts in the baseline and proposed methods. Con-
siders clusters 6 and 9. Cluster 6 is easy to eval-
uate, as the top patterns are human readable. It
represents the INFLUENCEDBY relation that holds
between a person and a philosopher. Cluster 9,
on the other hand, is characterized by patterns that
consist only of prepositions and phrasal cluster
IDs. We must consult the entity pairs to determine
that this cluster represents the ACTEDIN relation
that holds between an actor and a film.

Granularity. In many cases, we find that se-
lectional restrictions lead to the discovery of more
fine-grained relations. An example of this is clus-
ter 7, which denotes a relationship between a
singer and the music album she created. All 46
instances in this cluster belong to the more gen-
eral CREATED relation from YAGO that holds be-
tween a person and something she created (such
as films, novels, albums etc.). This observation
has implications for the use of selectional restric-
tions in URE, namely that the granularity of dis-
covered relations can be influenced by the choice
of type system. This also points to difficulties for
the method of evaluating URE against an existing
knowledge base as discovered relations might dif-
fer in granularity from the KB schema. Both these
observations merit further investigation in future
work.

Ambiguities. We look into errors made by the
URE method and find that many errors are due
to pattern ambiguities. Cluster 2, for example,
mostly corresponds to the YAGO relation HAS-
WONPRIZE. However, the patterns “[X] WIN

[Y]” and “[Y] WINNING [X]” that hold between
correct instances such as <Cher, Emmy Award>

also hold between false positives such as <Chile,
Chilean War for Independence>. In more discrim-
inative setups, this error is not made. For example,
cluster 5 contains the more differentiated pattern
“[X:ORGANIZATIONS] WIN [Y:WARS]”.

5 Conclusion and Outlook

In this paper, we addressed the problem of pattern
ambiguities in URE by evaluating different meth-
ods of modeling selectional restrictions. We find
that SR generally have a positive impact on re-
lation discovery capabilities of our URE method.
Significantly, we find a fine-grained type system to
be the best setting, especially if URE is applied to
a closed domain where most types of interest can
be detected. For the open domain, we have pre-
sented a method that makes use of a Web-derived
phrasal clustering of n-grams. We find our pro-
posed method to be effective in reducing pattern
ambiguities, with the advantage of being indepen-
dent of a manually determined type system. Based
on our results, we believe that correctly restricted
deep syntactic patterns are the best features for
URE.

In a qualitative evaluation of clustering results,
we have determined two main issues that merit be-
ing addressed in future work in URE. First, auto-
matic evaluation of URE remains problematic, as
relations might be discovered that differ in granu-
larity or semantics from the knowledge base that
is evaluated against. Current evaluation meth-
ods penalize such divergence, even though discov-
ered relations might still be correct. Second, we
found that the parameterization of the clustering
approach used in URE greatly influences the re-
sult quality and granularity. We find that even mi-
nor variations on the cutting threshold parameter
for Hierarchical Agglomerative Clustering greatly
impact overall f -measure.

Future work will focus on closely investigating
clustering techniques and methods for effective
parametrization. In addition, we intend to inves-
tigate Active Learning (Sun and Grishman, 2012)
as a method to include minimal amounts of human
feedback to guide the relation discovery process
and improve overall URE results.
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