
Proceedings of the 5th International Joint Conference on Natural Language Processing, pages 1198–1206,
Chiang Mai, Thailand, November 8 – 13, 2011. c©2011 AFNLP

Functional Elements and POS Categories

Qiuye Zhao Mitch Marcus
Dept. of Computer & Information Science

University of Pennsylvania
qiuye, mitch@cis.upenn.edu

Abstract

We propose a bootstrapping algorithm
which successfully resolves two funda-
mental tasks: morphology acquisition and
the acquisition of a subset of functional
words. Given the outputs of these funda-
mental tasks, we build a nearly state-of-art
morphology analyzer performing with a
F1-score of 80.94%; also, we can improve
the baseline model for acquiring func-
tional words by an absolute error reduction
of 26%. Furthermore, with these acquisi-
tion outputs, a minimally supervised tag-
ging system proposed before can be turned
into a totally unsupervised one, achieving
a tagging accuracy of 85.26% for open-
class words.

1 Introduction

Studies of child language acquisition have shown
that functional elements as distinctive categories
are available to the child from very early on. These
include both functional words (closed class items)
such as determiners (Valian et al., 2009), and func-
tional bound morphemes such as verbal inflec-
tions (Yang, 2002). Motivated by such studies,
we propose that functional categories, including
both functional words and functional morphemes,
should be identified first in the process of acquir-
ing syntactic categories automatically from lan-
guage input. Further motivation comes from the
experimental results of the minimally supervised
tagging system in (Zhao and Marcus, 2009)1,
which, given only seven functional features, in-
cluding four contextual features, whether modal

1The tagging system in (Zhao and Marcus, 2009) was re-
ferred to as ’unsupervised’ in their paper, because back then,
a lexicon was a common input to so-called unsupervised POS
tagging systems. We classify their system as minimally su-
pervised here, so as to differentiate it from this work which
requires only raw text as input.

verbs or determiners are left or right neighbours,
and three specific morphological features, whether
’-ing’, ’-ed’, or ’-s’ are observed as endings, per-
forms clustering in order to generate the two fun-
damental open class categories, verbal vs. nomi-
nal. This work suggests that functional elements
are highly useful in further classification of open
class items.

This is quite different from most other POS in-
duction systems in the Natural Language Process-
ing (NLP) field for inducing Part-of-Speech (POS)
tags, which, instead of generating clusters com-
plying with the common understanding of ’syn-
tactic’ categories, such as distinct clusters of de-
terminers, nouns or inflections of verbs, tend to
output scattered clusters consisting words of inter-
esting similarities on many different dimensions
(Christodoulopoulos et al., 2010). This is because,
in these clustering-based systems, a vector space
over the words is spanned by lexical features and
suffix/prefix features, so that the generated clus-
ters mix semantic and syntactic similarities (Clark,
2000).

In this work, we explore an alternative ’top-
down’ view of deriving categories, as opposed to
the ’bottom-up’ view adopted by these earlier dis-
tributional clustering methods. Here, we report
on experiments which acquire functional elements
first and integrate the acquisition output into a full
unsupervised POS tagging system later. Since we
are not aware of previous work to acquire func-
tional elements, we approach the problem by seek-
ing answers for the following two questions: 1)
What are the special properties of the distribu-
tion of functional elements that enables the child
to distinguish them easily from other categories at
a very early stage of acquisition? 2) What might
the acquisition processes of the two forms of func-
tional elements (bound vs. free) have in common,
reflecting some deeper distributional property of
functional elements in general?

1198

We believe that answers to these questions be-
gins to emerge from the success of a single boot-
strapping algorithm proposed here to the acquisi-
tion of both bound and free functional elements,
i.e. closed class words and bound morphemes.
This bootstrapping algorithm explores a particular
simple contextual property of functional elements,
which we call the diversity property, and resolves
both fundamental acquisition tasks without any in-
put beyond raw written text:

1) Bound morphemes Separating func-
tional elements in the form of bound
morphemes from contentful elements.
As for English, the two output sets are a
list of productive endings such as ’-ed’,
and ’-s’, and a list of base stems such as
’consist-’ and ’bootstrapp-’.

2) Free morphemes Separating ’first-
order’ functional elements in form of
free morphemes (words) from content-
ful elements. As for English, the two
output sets are a list of modal verbs and
determiners (in a general sense2), and a
list of nominal elements as well as verbs
in bare forms.

The bootstrapping algorithm we propose here
operates by iteratively generating two complemen-
tary sets, (e.g. base stems and productive end-
ings for the bound morpheme task); in these way,
it reflects the intuition behind co-training (Abney,
2004), but in a greatly reduced form and requiring
no seeds for initialization. For both tasks, the boot-
strapping algorithm generates highly reliable out-
puts, with barely any errors and requires no task-
specific parameter settings. For example, it dis-
covers 26 modal verbs and determiners (in a gen-
eral sense) from raw text of WSJ Treebank (Mar-
cus et al., 1993) with only a single noisy term.

We validate these outputs on a range of use-
ful applications. Given the two sets output by
the bound morpheme task, we can straightfor-
wardly build an unsupervised morphology ana-
lyzer which achieves an F1-score of 80.94 eval-
uated on the CELEX corpus, comparable to a
state-of-art morph analyzer (Lignos, 2010) which
achieves 82.21 F1 on the same task. Next, given
this new morphology analyzer and the two out-
put sets from the free morpheme task, we give

2In this paper, we refer to determiners in a general
sense which includes determiners, possessive determiners
and demonstratives.

a new very simple algorithm for acquiring the
full set of functional/closed class words, improv-
ing on a reasonable baseline model for acquiring
functional/closed-class words by an absolute error
reduction of 26%, from 63% to 89% type accu-
racy as evaluated on the WSJ Treebank3. Finally,
we plug this newly acquired closed-class lexicon
into a minimally supervised tagging system, (Zhao
and Marcus, 2009), which requires as input ex-
actly such a lexicon. The resulting system, now
completely unsupervised, achieves a tagging ac-
curacy of 85.26% for tagging open-class words
as evaluated on the whole WSJ Treebank. Al-
though the evaluation is done over 6 open-class
tags only, and thus is not directly comparable to
related works, the tagging performance reported
here is still satisfying given that recently reported
unsupervised tagging accuracy vary among 50%-
70% e.g. (Abend et al., 2010), (Reichart et al.,
2010) and (Moon et al., 2010).

2 Acquiring Functional Elements

Functional elements are those elements that pro-
vide structural clues in expressions, which form
a complementary set to the contentful elements
that provide semantic content of the expressions.
Two forms of elements in languages come into
our attention, bound morphemes and free mor-
phemes (words). As for English, functional ele-
ments of bound morphemes are inflectional end-
ings or derivational endings/prefixes, for exam-
ple, in a word ’runs’ the contentful part ’run-
’ provides us with some contentful information,
whereas, the functional part ’-s’ provide us with
some grammatical specification which are spe-
cially important when the word is used in con-
text. On the other hand, functional elements of
free morphemes, generally refer to those closed-
class words that don’t fall into lexical categories,
i.e. those words that are not nouns, verbs, ad-
jectives or adverbs; however, the functional roles
these closed-class words play in context are more
complicated.

The algorithm described in section 2.2 solves
two tasks on acquiring functional elements: 1)
identifying productive endings/prefixes vs. base
stems (the contentful parts of words), and 2) iden-
tifying determiners (possessive determiners and

3Given the lack of previously reported results, the base-
line model we compare against is to select the most frequent
words in the corpus as closed-class items.

1199

demonstratives as well) and modal verbs vs. nouns
and verbs. Given these acquisition outputs, we can
acquire a full set of closed-class words, falling in
all functional categories, with a simple extra step.
The subset of functional words that are acquirable
by the bootstrapping algorithm is referred as ’first-
order’ functional words in this work, since they
include determiners and modal verbs only which
don’t project to other functional words.

Before introducing the bootstrapping algorithm
in section 2.2, we discuss the diversity property of
functional elements first, in section 2.1, which is
an important concept to be explored in the algo-
rithm.

2.1 Diversity Property
Our algorithm is built upon a distributional prop-
erty of functional elements well-known to lin-
guists: they occur in diverse contexts. For exam-
ple, determiner ’the’ in English is observed every-
where in text and inflectional ending ’-ed’ can be
concatenated to most verbs to derive past forms.
As discussed above, functional elements provide
structural clues to compose expressions and are
basically independent to the meanings conveyed
by the expressions; therefore, they are not bound
to co-occur with specific contentful elements and
are natively expected to occur in diverse contexts.

In the NLP field, a more popular property
known for distinguishing functional elements is
that they occur more often. Although frequency
can be used to approximate ’diversity’, the high
frequency of functional elements is only a reflec-
tion of their high degree of contextual diversity,
which, following the definition, is more accurately
approximated by the types of contexts that an ele-
ment occurs in.

There are few previous works that quantitatively
demonstrate that ’contextual’ diversity is a better
diversity measurement than frequency regarding
experimental results. In this work, we are going to
explicitly compare these two options for measur-
ing diversity within the bootstrapping algorithm.
As shown in all applications (section 3), measur-
ing contextual diversity for diversity brought in a
consistent improvement as compared to measuring
frequency.

Proper Contexts
We haven’t define in what occurrences two el-
ements may form a contextual relationship, and
let’s consider the case for bound morphemes first.

Given a type of word, e.g. ’laughing’, several
ways of dividing it can yield a pair of possible
morphemes with either one being as/in-context of
the other morpheme: for the division ’laugh-ing’,
’laugh-’ can be considered in-context of ’-ing’ and
’-ing’ considered as-context of ’laugh-’ or vice
verse; or for the division ’laughin-g’, ’laughin-’
in-context of ’-g’ and ’-g’ as-context of ’laughin-
’, or vice verse.

For words, ideal scopes to define contextual
relationships should be phrases/phases, from a
linguistic point of view, such as N(ominal)P,
V(erbal)P and so on. However, it is not easy
to detect boundaries of phases in unannotated in-
put; therefore, we only consider contextual rela-
tionships between two words in adjacency. For
the sake of coherence, we consider the preceding
word as-context of the following word and the fol-
lowing word in-context of the preceding one, how-
ever, it could also be vice verse, though with worse
experimental results.

As one may have noticed, without any further
constraints on the concept of contexts, the top 3
bound morphemes with the highest contextual di-
versity will be ’-d’, ’-e’ and ’-t’, which do not
comply with our understanding of functional mor-
phemes in English. In other words, for acquir-
ing inflectional or derivational suffix/prefixes, we
want to compute contextual diversity of bound
morphemes according to properly justified contex-
tual relations only, instead of from all arbitrary di-
visions of words. The most simple way of justify-
ing one element as proper contexts for other ele-
ments is to check whether it can serve as-context
of more than one type of element, by which cri-
teria ’laughin-’ is not justified, since it cannot be
concatenated by other suffixes than ’-g’ to form
a legal word. It is first noticed in (Chan, 2008)
that morphological transformations should be dis-
covered with respect to ’base forms’, i.e. prop-
erly justified contentful stems; and we generalize
this idea for a better measurement of diversity to
acquire both forms of functional elements in this
work.

Suppose that we are given a set of properly
justified contexts of bound morphemes including
’laugh-’ but not ’b-’, the diversity measurement of
’-ing’ will increase by one given the existence of
word ’laughing’ but not given word ’bing’. For
the case of words, if only nouns are justified to
be proper contexts, then the top words of highest

1200

diversity should be determiners. More formally,
given a set B of justified contexts, we can de-
fine two measurements of diversity for an element
e, frequency or contextual diversity as discussed
above:

tokenC(e,B) =
X
e′∈B

occur. of e′ in-context of e

typeC(e,B) =
X
e′∈B

occur. of e′ in-context of e > 0

2.2 The Bootstrapping Algorithm

The proposed bootstrapping algorithm in Algo-
rithm 1 generates two complementary sets during
the bootstrapping process, both of which justify
proper contexts for each other. As the two sets up-
dated during bootstrapping, the diversity measure-
ment of the other set is expected to be more and
more accurate. This strategy reflects the intuition
behind co-training (Abney, 2004), but in a greatly
reduced form and requiring no seeds for initializa-
tion.

Given a specific form of elements (bound or
free morphemes), inputs to this algorithm are a
dataset S4 containing all the elements of this form
in some corpus and a choice of diversity measure-
ment, tokenC or typeC as defined in section 2.1.

Assuming that functional elements can be dis-
tinguished by higher diversity degree, as discussed
in section 2.1, we explicitly let a set F contain the
most diverse elements as computed by the diver-
sity measurement function with respect to its com-
plementary set B; and at each bootstrapping itera-
tion, we increase the size of F by one.

On the other hand, set B, which is generated to
provide proper contexts for F, contain those ele-
ments of a diversity degree greater than one with
respect to F, implementing our understanding of
properly justified contexts in section 2.1. Since the
order of diversity ranking of elements in S varies
over iterations with respect to B, which is also up-
dated at each iteration according to current F, an
element classified into F at some iteration is not
guaranteed to show up in F in the following itera-
tions.

In addition to the update of F and B, we also
introduce a special ’filtering’ step to prevent those
elements that are ever seen as/in-context of ele-
ments in F from being classified into F. This fil-
tering idea is implemented through a set R con-
taining elements to be excluded from F, which is

4For each element e in S, the number of its occurrences
in/as-context of other elements are also provided.

also updated at each iteration after the update of
F. This filtering step guarantees that there is no
element in F ever occurring as/in-context of any
other element in F. We will explain more about
the linguistic motivation behind this filtering step
in section 4.

2.3 The Acquisition Output

We run the bootstrapping algorithm introduced in
Section 2.2 for two acquisition tasks: acquiring
functional morphemes and acquiring ’first-order’
functional words. The outputs of both tasks, which
are done separately, are depicted in Table 1 and 2
respectively. For each task, we experiment with
two options of diversity measurement: tokenC or
typeC as defined in section 2.1. If any element
classified to be functional is of a diversity degree
lower than a threshold, the bootstrapping process
stops.

First of all, as clearly shown by the quality of
acquisition outputs, this algorithm is sensitive to
the choice of diversity measurement, and typeC,
which measures the contextual diversity of an el-
ement in proper contexts, is always a better op-
tion compared to tokenC, which measures the fre-
quency of an element in proper contexts. tokenC
produces better outputs in the sense that fewer
noisy elements are acquired and if acquired, they
are acquired later in the bootstrapping process.

In both Table 1 and 2, functional elements are
shown ordered by diversity in the second column,
which order varies over the bootstrapping itera-
tions, corresponding to the update of its comple-
mentary set, which is shown at the last column.

For the case of acquiring words, it is worth
wondering about why, at the first few iterations,
there were only determiners generated as func-
tional, but at later iterations, modal verbs also
show up. This fact seems to contradict our in-
tuition that modal verbs are not of high diversity
with respect to a complementary set containing
nominal words only, which are generated accord-
ing to determiners. However, we know that, at
least in English, words are of ambiguous cate-
gories; therefore, those words of both nominal and
verbal senses, such as ’consider’ and ’help’, are
classified to the complementary set by determin-
ers according to their nominal sense, but their ex-
istence in the complementary set also enlarges the
diversity of modal verbs due to their verbal sense.

While measuring the diversity by typeC, the

1201

Algorithm 1 The bootstrapping algorithm for acquiring functional elements
Require: a data set S to be classified and a diversity measurement function C

initialize set F and set R to be empty and initialize set B to be S
for k iterations do

let F be the top k most diverse elements with respect to C(e,B), for e in S− R
let B be those elements with a diversity greater than one, i.e. C(e,F) > 0, for e in S
let R be those elements ever as/in-context of any element in F

end for
return F and B

Measure the diversity by typeC
kth iter. the smaller set the bigger set

5th the a its their his [2697] protest, code, hats...
10th the a its their his some this any no an [3203] emerging, results, seemed...
15th the a its their his some this an any no will these our another those [3525] help, consider, follow...

26th the a its their his some will an any would can could these those our [3653] all, settlements, just,
another may her several york my might each whose your every four, help, dollar, teaching, soon...

Measure the diversity by tokenC
16th the a its will an would their ... could may any york these according [4228] concept, consider, all...

Table 1: The acquisition outputs at each iteration of the bootstrapping algorithm running for words.

Measure the diversity by typeC
kth iter. the smaller set the bigger set

5th -$, -s, -ing, -ed, -e [2616] degree-, cook-, topp-, excit-...
10th -$, -s, -ing, -ed, -e, -er, -es, -ion, -ers, -ly [3343] comply-, drink-, opt-, devot-, ...
15th -$, -s, -ing, -ed, -e, -er, -ly, -ion, -es, -ers, -al, -y, -or, -ive, -ity [3496] poor-, recept-, arriv-, mot- ...

26th -$, -s, -ing, -ed, -e, -er, -ly, -ion, -es, -y, -ers, -al, -ies, -or, [3772] shell-, deliver-, comparabl-, juni-
-ive, -ity, -ist, -man, -ic, -est, -on, -en, -ism, -ors, -ant, -ial produc-, buri-, specifi-, impress-, good-...

Measure the diversity by tokenC
15th -$, -s, -e, -ed, -t, -ing, -ion, -y, -er, -al, -n, -ly, -ic, -or, -th [9576] diploma-, conduc-, begin-, leg-...

Table 2: The acquisition outputs at each iteration of the bootstrapping algorithm running for morphemes.

notable noisy item for acquiring functional words
is ’york’, which is classified as functional because
1) we lowercase all texts and 2) in WSJ articles,
there are a lot complex NPs composed of ’York’,
i.e ’York’ is seen in many occurrences followed by
nominal elements that may have already been clas-
sified as contentful during the bootstrapping pro-
cess. On the other hand, with the diversity mea-
surement tokenC, ’York’ has showed up as noisy
much earlier in the bootstrapping process, as well
as other noisy items.

It is even clearer in table 2 that the contex-
tual diversity is a better measurement to distin-
guish functional elements than frequency. While
measuring the diversity by tokenC, there are two
noisy items show up as early as 15th iteration, ’-
t’ and ’-n’, which are successfully excluded from
the output with diversity measurement typeC.
While measuring the diversity by typeC, a possi-
bly noisy item is ’-ers’, which can be decomposed
into ’-er’ and ’-s’.

3 Applications

As shown above, the proposed bootstrapping algo-
rithm generates outputs of high accuracy for both
acquisition tasks: acquiring productive endings
and acquiring ’first-order’ functional words. In ad-
dition to the functional elements, this algorithm
also generates complementary sets of contentful
elements, which are base stems of words when
acquiring morphemes and nouns plus verbs when
acquiring words. Given these acquisition outputs,
we can immediately accomplish the following two
tasks, using very straightforward strategies only:
1) building a morph analyzer (section 3.1) ; and
2) acquiring the full set of functional categories,
not just the first-order ones (section 3.2). Finally,
we can plug the acquired list of closed-class words
into a minimally supervised tagging system, (Zhao
and Marcus, 2009), which requires the input of
such a lexicon only. The resulting tagging sys-
tem is then totally unsupervised and performs with
satisfying accuracy as a totally unsupervised POS

1202

tagger for open-class words (section 3.3). The
bootstrapping algorithm runs over the WSJ Tree-
bank, which contains 1173766 words, with raw
text input only for both tasks. And all experiments
described below are trained over the same corpus.

3.1 Morphological Analysis

Those syntactic related morphological features,
such as ’ended with -ed’ or ’ended with -ing’ have
already been proven useful in syntactic related
tasks such as POS tagging, parsing and so on;
therefore, accomplishing such a morph analysis in
an unsupervised way is meaningful for related un-
supervised works.

Given an acquired set B of base stems, e.g.
B = { ’laugh-’, ’analyz-’ and ’-define’}, and a
set F of functional morphemes , e.g. F = {’-ed’,
’-s’ and ’pre-’}, we can divide a word w into mor-
phemes b- and -e where b+e == w, if b- in B and
-e in F; or if vice verse, i.e. b- in F and -e in B. If
such a division b+e can be successfully performed
on the word w with -e in F, we specify that w has a
morph feature ’ended with -e’. For instance, given
the above examples of B and F, ’laughed’ has an
ending ’-ed’ but not ending ’-ing’, and ’analyzed’
has an ending ’-ed’, but ’red’ doesn’t have such an
ending ’-ed’ as its morph feature. Overall, given
two lists of morphemes, we can build a morph
analyzer implementing this constrained stemming
strategy for detecting morph features of interest.

For evaluating the morph analyzer composed by
our acquisition outputs from WSJ Treebank, we
use the CELEX corpus (Baayen et al., 1996) pro-
viding gold annotations of 6 syntactic related mor-
phological features: {’-s’, ’-es’, ’-ed’, ’-ing’, ’-er’,
and ’-est’}. Among the 20058 types of words seen
in both WSJ and CELEX corpus, 8789 types are
annotated with these features. The precision num-
ber reported in Table 3 is the percentage of cor-
rect predictions out of all predictions the analyzer
makes about the 6 morph features; and the recall is
calculated by the percentage of correctly-predicted
featured words out of all types of words with these
features (8789).

We report the performance of two morph ana-
lyzers: one is composed by the acquired outputs
with the diversity measurement tokenC; and the
other one acquired with typeC. We also compare
our results against a state-of-art morphology ana-
lyzer, (Lignos, 2010), which is adapted for this ex-
periment. As shown in Table 3, our general boot-

Algorithm Precision Recall F-score
bootstrap-tokenC 77.89 82.38 80.07
bootstrap-typeC 78.71 83.31 80.94
(Lignos, 2010) 80.16 84.37 82.21

Table 3: The performance of morph analyzers
evaluated for syntactic related morphological fea-
tures.

strapping algorithm, which is designed for various
applications, is able to generate useful outputs for
building a morph analyzer that performs compara-
bly well as the stat-of-art achievements.

3.2 Acquiring Closed-class Words

The bootstrapping algorithm is not designed to
generate closed-class words falling in all func-
tional categories, instead, it acquires those ’first-
order’ functional words, including only determin-
ers and modal verbs. Given this acquired subset of
closed-class words and the morph analyzer built in
section 3.1, it is only a step away from acquiring
all closed-class words falling in various functional
categories.

We are not aware of previous work that acquires
closed-class words in an automatic process, and
in the NLP field, they are often approximated by
the most frequent words. In other words, as a
baseline model, we can acquire closed-class words
by selecting k top words of the highest diversity
measured by tokenC. Given discussion of diver-
sity measurement in section 2.1, we also experi-
ment with another baseline model, which acquires
closed-class words by selecting k top words of the
highest diversity measured by typeC. As shown
in Table 4, with a better approximation of diver-
sity, the type accuracy of predicting closed-class
words is improved by an absolute error reduction
of 11%, from 63% to 74% (k=100).

Moreover, as discussed in section 2, we know
that those ’first-order’ functional words, which
can be generated by the bootstrapping algorithm
with high accuracy, don’t project onto other func-
tional words. Therefore, after running the boot-
strapping algorithm for words, we have already
obtained a list of words that can be used for fil-
tering the output of the baseline models. More
specifically, given a set of ’first-order’ functional
words, those words that occur relatively often in-
context of them should not be output as closed-
class words. For example, two common noisy

1203

top k words 20 40 80 100
baseline-tokenC 90.00 80.00 68.75 63.00
baseline-typeC 100.0 90.00 76.25 74.00

bootstrap-tokenC 95.00 95.00 90.00 86.00
bootstrap-typeC 100.0 97.50 93.75 89.00

Table 4: The percentage of correctly predicted
closed-class word types out of k predictions

items in the output of the baseline models, ’bil-
lion’ and ’say’, can be successfully filtered by the
output set shown in Table 1.

In addition, since we have already built an un-
supervised morph analyzer as described in section
3.1, which is acquired by the same bootstrapping
algorithm, we would like to make use of them as
well, in a straightforward way: as long as a word
can be analyzed by the acquired morph analyzer,
it should not be output as closed-class items.

Models ’bootstrap-tokenC’ and ’bootstrap-
typeC’ implement the above idea using diversity
measurement tokenC and typeC respectively.
For example, the model ’bootstrap-typeC’ uses
the diversity measurement typeC to both acquire
the morph analyzer and to acquire the set of ’first-
order’ functional words, and it uses these acqui-
sition outputs to filter the baseline model that uses
typeC as diversity measurement as well. The gold
lexicon we use to evaluate the acquired list con-
tains 288 closed-class words as described in (Zhao
and Marcus, 2009).

With the help of acquisition outputs by a single
algorithm running for different tasks, we can sig-
nificantly improve the baseline model for acquir-
ing closed-class words. As shown in Table 4, the
performance of the baseline models drops rapidly
as the size k grows; however, by taking acquired
categories as constraints, we achieve quite reli-
able models. For example, ’bootstrap-typeC’ im-
proves ’baseline-tokenC’ by an absolute error re-
duction of 26% (k=100), from 63% to 89%. So as
to show how the models perform as k keeps grow-
ing, we provide more results in Figure 1, which
plots the percentage of correctly predicted closed-
class word types out of k predictions.

3.3 Unsupervised POS Tagging

Finally, to demonstrate the value of such a highly
pure list of closed-class words, which previously
could not be acquired through unsupervised learn-
ing, we plug the acquired list into a previously ex-
isting minimally supervised tagging system, (Zhao

Figure 1: The percentage of correctly predicted
closed-class word types out of k predictions

and Marcus, 2009), which only requires a closed-
class lexicon for tagging all words. The resulting
system now provides a totally unsupervised sys-
tem for tagging open-class words, inducing both
the categorical information itself and also the dis-
ambiguation rules for tagging open-class words.

Following (Zhao and Marcus, 2009), the six
open-class POS categories to be predicted are
verbs, nouns, past participles, present participles
and numbers. The tagging predictions for open-
class words (any word not in the closed-class list)
are evaluated by the percentage of correct predic-
tions on all tokens in the open-class set. Although
all tagging experiments are done over the whole
WSJ Treebank, the total number of tagging predic-
tions may vary according to different input closed-
class lists.

We experiment with four lists of closed-class
words of the top 200 words acquired by the
’baseline-typeC’, ’baseline-tokenC’, ’bootstrap-
typeC’ and ’bootstrap-tokenC’ respectively, as
introduced in section 3.2. We evaluate against a
gold-standard closed-class lexicon containing 288
words, also used for evaluation in section 3.2.

closed-class input accuracy totally tagged
baseline-tokenC 81.68 536535
baseline-typeC 75.51 554012

bootstrap-tokenC 77.30 627803
bootstrap-typeC 85.26 612997

gold lexicon 91.03 611028

Table 5: The percentage of correctly tagged tokens
out of all predictions. The system tags open-class
words only and distinguishes 6 POS categories.

As shown in Table 5, the tagging system using
the closed-class set acquired by ’bootstrap-typeC’
tags 612997 open-class tokens, which accounts for

1204

more than half of all the tokens in the WSJ Tree-
bank, with an accuracy of 85.26%. In recent work
on unsupervised tagging, tagging accuracys are re-
ported in the range of 50-70%, e.g. (Abend et al.,
2010), (Reichart et al., 2010), (Moon et al., 2010)
and so on. Compared to these results, the tag-
ging performance reported here, even though only
on open-class words for six categories, is quite
promising.

Because most previous work distinguishes be-
tween more categories than we do here, our results
may be misleading, in that we appear to be report-
ing on a simpler task. However, these previous
systems operate by clustering over a vector space
of lexical features and suffix/prefix features, re-
sulting in a large number of scattered clusters with
similarities on different semantic and syntactic di-
mensions. As a result, it has proven difficult for
them to use further agglomerative processing to
induce simple distinct syntactic categories which
map to POS tags naturally (Christodoulopoulos et
al., 2010), and thus operating in a mode which
achieves a higher tagging accuracy with coarser
categories is not available to those systems at all.
Therefore, achieving high accuracy with a smaller
tag set is the harder, not easier, task for those sys-
tems.

4 Discussion

We propose a bootstrapping algorithm which suc-
cessfully resolves two fundamental acquisition
tasks: acquiring functional morphemes and ac-
quiring ’first-order’ functional words. We have
shown that the outputs of these two fundamental
acquisition tasks are very useful for more gener-
alized tasks: they can be directly used to built a
nearly state-of-art morph analyzer and they can
be used to acquire a full set of closed-class words
with high accuracy. Furthermore, the acquired list
of closed-class words allows us to turn a mini-
mally supervised tagging system into a totally un-
supervised tagger for tagging open-class words.
As a completely unsupervised tagger, the resulting
system performs at a satisfying tagging accuracy
above 85%.

The bootstrapping algorithm proposed here also
gives us cause to think about the connection be-
tween functional categories in two forms: bound
morphemes and words. As shown in this work,
identically the same computational process that
acquires functional morphemes also can be used

to acquire the subset of functional words that in-
cludes modal verbs and determiners. All these
elements share the property that, from the point
of view of modern generative grammar, they only
project locally, in other words, the elements that
are acquired by this algorithm project to content-
ful elements directly most of the time but not
through any other functional elements. Since all
productive bound morphemes project mainly lo-
cally, they can all be acquired by the algorithm;
in contrast, those functional words that project in
larger scopes quite often, rather than in local con-
texts (i.e. not determiners and modal verbs), will
not be acquired by this algorithm directly. This un-
derstanding of viewing local contexts as first-order
functional projections motivates the filtering step
in the bootstrapping algorithm. This overall un-
derstanding was motivated for us by the strict lo-
cality constraints assumed in phase theory (Chom-
sky, 2006).

References
Omri Abend, Roi Reichart, and Ari Rappoport. 2010.

Improved unsupervised pos induction through pro-
totype discovery. In ACL.

S. Abney. 2004. Understanding the yarowsky algo-
rithm. Computational Linguistics, 30(3):365–395.

R.H. Baayen, R. Piepenbrock, and L. Gulikers. 1996.
Celex2. Linguistic Data Consortium, Philadelphia.

E. Chan. 2008. Structures and distributions in mor-
phology learning. Ph.D. thesis, University of Penn-
sylvania.

N. Chomsky. 2006. Approaching UG from below.

C. Christodoulopoulos, S. Goldwater, and M. Steed-
man. 2010. Two decades of unsupervised pos in-
duction: How far have we come? In EMNLP.

A. Clark. 2000. Inducing syntactic categories by
context distribution clustering. In Proceedings of
the Computational Natural Language Learning and
the Second Learning Language in Logic Workshop
(CoNLL-LLL).

C. Lignos. 2010. Learning from Unseen Data. In Pro-
ceedings of Morpho Challenge 2010, pages 35–38,
Helsinki, Finland, September 2–3. Aalto School of
Technology.

Mitch Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional linguistics, 19(2):313–330.

1205

T. Moon, K.Erk, and J. Baldridge. 2010. Crouch-
ing dirichlet, hidden markov model: unsupervised
pos tagging with context local tag generation. In
EMNLP.

R. Reichart, R. Fattal, and A.Rappoport. 2010. Im-
proved unsupervised pos induction using intrin-
sic clustering quality and a zipfian constraint. In
CoNLL.

V. Valian, S. Solt, and J. Stewart. 2009. Abstract
categories or limited scope formulae: The case of
children’s determiners. Journal of Child Language,
36:743–778.

C. Yang. 2002. ”Knowledge and Learning in Natural
Language”. Oxford University Press.

Q. Zhao and M. Marcus. 2009. A simple unsupervised
learner for pos disambiguation rules given only a
minimal lexicon. In EMNLP.

1206

