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Abstract

We show that transductive (cross-domain)
learning is an important consideration in
building a general-purpose language iden-
tification system, and develop a feature
selection method that generalizes across
domains. Our results demonstrate that
our method provides improvements in
transductive transfer learning for language
identification. We provide an implementa-
tion of the method and show that our sys-
tem is faster than popular standalone lan-
guage identification systems, while main-
taining competitive accuracy.

1 Introduction

Language identification (LangID) is the task of
determining the language(s) that a text is written
in. It is considered by some researchers to be
a solved task, because previous research has re-
ported near-perfect accuracy (Cavnar and Trenkle,
1994). Hughes et al. (2006) elaborated a number
of simplifying assumptions that have made this the
case, and Baldwin and Lui (2010a) showed that
when some of these assumptions are relaxed to
make the task closer to the actuality of open-web
LangID, it becomes considerably harder. In this
paper, we demonstrate that the style of evaluation
used by Baldwin and Lui (2010a) performs well
in-domain but badly cross-domain, and develop a
novel method for preserving high in-domain ac-
curacy, while significantly boosting cross-domain
accuracy. Similarly to Baldwin and Lui (2010a),
we make the simplifying assumption that all doc-
uments are monolingual, despite recent work on
multilingual LangID (Baldwin and Lui, 2010b).

LangID is usually formulated as a supervised
machine learning problem and evaluated in an of-
fline setting (Cavnar and Trenkle, 1994; Baldwin
and Lui, 2010a). However, its primary use is

online without any additional configuration, op-
timized for maximal cross-domain accuracy. A
number of such standalone LangID systems are
available, notable among which is TextCat (van
Noord, 1997). TextCat has been the LangID
solution of choice in research, and is the basis of
language identification/filtering in the ClueWeb09
Dataset (Callan and Hoy, 2009) and Corpus-
Builder (Ghani et al., 2004). Elsewhere, Google
provides LangID as a web service via its Google
Language Detect API (GoogleAPI). While it has
much higher accuracy than TextCat (as we show
in Section 6.1), research applications contravene
the service’s terms of use, and moreover the ser-
vice is rate-limited.

Our ideal system should offer the same ad-
vantages as TextCat in terms of licensing and
run-time speed, while matching the open-domain
accuracy and ease-of-use of an API such as
GoogleAPI. To this end, we release the op-
timized final LangID system described in this
paper, and benchmark it against TextCat and
GoogleAPI. Our major contributions are: (1) we
show that negative transfer occurs when training a
classifier over a combined set of LangID datasets;
(2) we show that language models learned in a par-
ticular domain do not always generalize to other
domains; (3) we develop a method for extracting
features for LangID that are not tied to a particular
domain, and show that our method mitigates neg-
ative transfer and provides improvements in cross-
domain LangID; (4) we show that our method can
incorporate additional languages without a penalty
in performance on existing languages; and (5) we
provide an implementation of our method that is
faster than state-of-the-art LangID systems while
maintaining competitive accuracy.

2 Background

LangID as a computational task is usually at-
tributed to Gold (1967), who sought to investigate
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language learnability from a language theory per-
spective. However, its current form is much more
recognizable in the work of Cavnar and Trenkle
(1994), where the authors classified documents ac-
cording to rank order statistics over byte n-grams
between a document and a global language pro-
file. Since the 1990s, LangID has been formu-
lated as a supervised machine learning task, and
has been greatly influenced by text categorization
in general. Monolingual LangID of a test docu-
ment Di takes the form of a mapping onto a unique
language from a closed set of languages C, i.e.
I : Di → ci ∈ C.

Statistical approaches applied to LangID in-
clude the use of Markov models over n-gram fre-
quencies (Dunning, 1994) and dot products of
word frequency vectors (Darnashek, 1995). Ker-
nel methods have also been applied to the task of
LangID (Kruengkrai et al., 2005). Linguistically
motivated models for LangID have also been pro-
posed, such as stop word list overlap (Johnson,
1993), where a document is classified according to
its overlap with lists for different languages. There
has also been work on word and part of speech cor-
relation (Grefenstette, 1995), cross-language to-
kenisation (Giguet, 1995) and grammatical-class
models (Dueire Lins and Gonçalves, 2004).

LangID has been applied in a variety of do-
mains, including USENET messages (Cavnar and
Trenkle, 1994), web pages (Kikui, 1996; Mar-
tins and Silva, 2005; Liu and Liang, 2008), and
web search queries (Hammarstrom, 2007; Ceylan
and Kim, 2009). It has been shown to improve
performance of other tasks such as parsing (Alex
et al., 2007) and multilingual text retrieval (Mc-
Namee and Mayfield, 2004). It has also been used
for gathering data for linguistic corpus creation
(Ghani et al., 2004; Baldwin et al., 2006; Xia et
al., 2009; Xia and Lewis, 2009), and is an im-
portant area of research for supporting low-density
languages (Hughes et al., 2006; Abney and Bird,
2010).

Transfer learning refers to the use of data from
external domains to improve task performance on
a target domain. Pan and Yang (2010) provide a
survey, in which they define transductive transfer
learning, where labels are available in source do-
main(s) but not in the target domain. This corre-
sponds exactly to our task, where we wish to train
a classifier using language-labelled data from a va-
riety of sources, and apply this classifier to target

Dataset Docs Langs Doc Length (bytes)
JRC-ACQUIS 20000 22 18478.5±60836.8
CLUEWEB09 20000 10 36909.0±20735.2
DEBIAN 21735 89 12329.8±30902.7
RCV2 20000 13 3382.7±1671.8
WIKIPEDIA 20000 68 7531.3±16522.2
N-EUROGOV 1500 10 17460.5±39353.4
N-TCL 3174 60 2623.2±3751.9
N-WIKIPEDIA 4963 67 1480.8±4063.9

Table 1: Summary of the LangID datasets

data without making any assumptions about its do-
main. Pan and Yang (2010) also discuss the phe-
nomenon of negative transfer, whereby including
data from the source domain(s) results in reduced
performance in the target domain.

Other work has used the term domain adapta-
tion to refer to inductive transfer learning, where
labels are available in both the source and target
domains, and the goal is to improve the perfor-
mance in the target domain (Daumé III and Marcu,
2006; Daumé III, 2007). Daumé III and Marcu
(2006) tackle this problem by using a mixture
model, where data in a specific domain is mod-
elled as coming from a mixture of domain-specific
and general components, and the linkage between
domains is achieved by sharing a single general
component. In our task, we have no labels in the
target domain, and thus know nothing about the
domain-specific component. Thus, our challenge
is to build a suitable model of the general com-
ponent, which we do by eliminating features that
make minimal contribution to the general com-
ponent. This approach makes the conversion of
documents to a standardized representation much
simpler than a model that decomposes individual
features into general and domain-specific compo-
nents.

3 Data Sources

For this work, we collected language-labelled de-
velopment data from five sources of diverse ori-
gin, and use these as the basis of our examination
of in-domain, inductive (all-domain) and transduc-
tive (cross-domain) learning. We additionally use
three independent test data sets to validate the ef-
fectiveness of the final methodology. Statistics of
all datasets are provided in Table 1.

3.1 Development data sets

JRC-ACQUIS: JRC-ACQUIS is an aligned
multilingual parallel corpus (Steinberger et al.,
2006) totalling 463792 documents in 22 lan-
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guages. From the corpus, we randomly selected
20000 documents without replacement, maintaing
the relative skew of languages. For each docu-
ment, only the text enclosed in the <body> tags
was retained.

CLUEWEB09: The ClueWeb09 dataset (Callan
and Hoy, 2009) consists of about 1 billion
web pages in 10 languages.1 The language of
each document was automatically detected using
TextCat, an implementation of the algorithm of
Cavnar and Trenkle (1994). We sampled 20000
instances from the dataset by selecting the first in-
stance in each of 20000 files selected without re-
placement. Because the language labels are auto-
matically assigned, they do not constitute a true
gold-standard, and we thus use CLUEWEB09 ex-
clusively as a training dataset in Section 6.

WIKIPEDIA: Wikimedia provides dumps of the
complete contents of all Wikipedia wikis.2 Indi-
vidual languages have their own wiki, usually un-
der the corresponding ISO 639-1 code. We ob-
tained XML dumps of the wikis with valid ISO
639-1 codes. From these dumps, we selected
20000 pages in a skew-preserving fashion. In
order to ensure that each language contained at
least 20 documents, we limited selection to the 68
largest wikis by page count. The data we used was
obtained from July–August 2010.

RCV2: Reuters RCV23 consists of over 487000
Reuters News stories in 13 languages. We ran-
domly selected 20000 documents in a skew-
preserving fashion.

DEBIAN: The Debian Project maintains manual
translations of the content strings of a large
number of software packages.4 We obtained
all translations with codes corresponding to
valid ISO 639-1 codes. This resulted in 21735
language-package pairs in 89 languages.

For each dataset, we randomly divided the doc-
uments into two equal-sized partitions. One parti-
tion was used for selecting language features and
for training, and the other was used for testing.

1http://boston.lti.cs.cmu.edu/
clueweb09/

2http://dumps.wikimedia.org/backup-
index.html

3http://trec.nist.gov/data/reuters/
reuters.html

4http://i18n.debian.net/material/po/
unstable/main/

To distinguish between them, we label the parti-
tions A and B, respectively. For example, DE-
BIANA is the partition of the DEBIAN dataset used
to compute feature weights and language models,
and DEBIANB is the partition used for testing. We
also make frequent use of the union of the A par-
titions across all datasets, and will refer to this as
UNIONA.

3.2 Test data sets
In order to evaluate accuracy in the transductive
learning setting, we make use of N-EUROGOV,
N-TCL and N-WIKIPEDIA, the three datasets de-
scribed in detail by Baldwin and Lui (2010a). N-
EUROGOV was sourced from the EuroGOV col-
lection used in the 2005 Web-CLEF task, N-TCL
was manually sourced by the Thai Computational
Linguistics Laboratory (TCL) in 2005 from online
news sources, and N-WIKIPEDIA is drawn from a
2008 dump of Wikipedia, with normalization.

4 Learning Algorithms

In this work, we use a multinomial naive Bayes
learner. For brevity, we only give a short sketch
of the technique; it is described in much more de-
tail by McCallum and Nigam (1998). The crux of
the method is to compute the probability that an
instance belongs to a class Ci from a given closed
set C, and hence assign the most probable class to
a document D, consisting of a vector of n features
x1...xn:

c = argmaxCi∈CP (Ci|D)

Bayes’ theorem allows us to re-express this as:

c = argmaxCi∈C
P (D|Ci)P (Ci)

P (D)

where P (D) is a normalizing constant indepen-
dent of Ci. Thus for classification, we only need
to estimate P (D|Ci) and P (Ci). C is modelled
as a categorical distribution over classes, and so
P (Ci) is obtained via a maximum likelihood esti-
mate. In order to estimate P (D|Ci), we make the
naive assumption that each term is conditionally
independent, hence:

P (D|Cj) =
n∏

i=1

P (ti|Cj)
ND,ti

ND,ti !

where ND,ti is the frequency with which term ti
occurs in D.
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Figure 1: Scatter plot of IG for language vs. IG for
domain (byte trigrams)

The reason we select multinomial naive Bayes
is that it is relatively lightweight and has been
shown to be highly accurate when combined with
feature selection (McCallum and Nigam, 1998;
Manning et al., 2008). To establish the general-
izability of our results, we also experimented with
a nearest prototype classifier based on skew diver-
gence (Lee, 2001), based on the findings of Bald-
win and Lui (2010a). However, when combined
with feature selection, we found it was consis-
tently outperformed by the naive Bayes classifier,
and thus omit results from this paper. We also ex-
perimented with a linear-kernel SVM learner, but
once again omit results as we found it to be compa-
rable in accuracy to naive Bayes when combined
with feature selection, but much slower to retrain.

5 Feature Selection

The document representation that we use is a mix-
ture of byte n-grams (Cavnar and Trenkle, 1994;
Baldwin and Lui, 2010a), as it is language-neutral
in that it does not make any assumptions about the
language or language type of each document. In
particular, we make no assumptions about word
delimitation (e.g. via white space) in each lan-
guage. Results from Baldwin and Lui (2010a) ad-
ditionally suggest that explicit encoding detection
is not necessary in LangID, and that the simple
byte tokenization strategy also used in this work
is superior to encoding-aware codepoint-based to-
kenization. Where we have data in more than one
encoding, we do not transcode it; instead we sim-
ply extract byte features across all the encodings.
In practice this is not an issue as the data that we
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Figure 2: Scatter plot of DF vs. LD (byte tri-
grams)

use is mostly UTF8-encoded, with small quanti-
ties of other encodings (esp. in N-TCL). We make
no further mention of encoding as it is not the fo-
cus of this work.

Cavnar and Trenkle (1994) perform feature se-
lection over such a mixture of n-grams, where 1 ≤
n ≤ 5. Their feature selection method is based on
the frequency of terms, where the N most frequent
terms for each language are retained in the global
feature set. Related to term frequency is document
frequency, where rather than counting individual
terms in a class, we count the number of docu-
ments that a particular term appears in. Feature
selection based on document frequency has been
shown to be inferior to other methods. Generally it
has been found that Information Gain (IG : Quin-
lan (1986)) is particularly suited to feature selec-
tion in multiclass problem settings such as LangID
(Yang and Pedersen, 1997; Forman, 2003).

The novel aspect of our research is that we con-
sider IG of particular n-gram features along mul-
tiple dimensions: (1) with respect to the set of all
languages; (2) with respect to a given language;
and (3) with respect to the domain the data was ob-
tained from. We are interested in identifying fea-
tures that have high IG with respect to language
but low IG with respect to domain.

For each of 1-grams, 2-grams and 3-grams we
computed the IG of each feature with respect
to the set of all languages in our development
datasets (97 languages), as well as with respect
to the set of 5 domains. A scatter plot of IG for
language vs. domain for 3-grams is presented in
Figure 1. From this analysis, it is clearly visible
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that there are two distinct groups of features: one
where the IG for language is strongly correlated
with that for domain, and one where the IG for
language is largely independent of that for domain.
We are interested in identifying features in the sec-
ond group, and so for each feature we compute a
LD (Language-Domain) score, defined as:

LDall(t) = IGall
lang(t) − IGdomain(t)

The number of features to consider grows ex-
ponentially with n-gram order. This makes cal-
culating the IG for higher token n-gram orders
computationally infeasible. Yang and Pedersen
(1997) found that document frequency (DF ) and
IG were strongly correlated. Thus, we studied the
relationship between LD and DF in our data, and
found that low DF is a good predictor of low LD
score, but not vice versa, as seen in Figure 2. As
DF is much cheaper to compute than IG , we first
identify the 15000 features with highest DF for a
given n-gram order, and assign a LD score of 0 to
all features outside this set.

We also consider an alternative formulation of
LD. Due to skews between the quantities of data
for each language, the highest-ranked features by
LD tend to be biased towards the more common
languages. In order to mitigate this, we also con-
sider a formulation whereby we compute a LDbin

score for each feature conditioned on each lan-
guage l:

LDbin(t|l) = IGbin
language(t|l) − IGdomain(t)

In order to give better representaiton to less-
frequent languages, we then select the top-scoring
features from each language, and define the LDbin

feature set as the union of these features.
The number of features N is a parameter in

both methods that we will investigate empirically
in Section 6.

6 Experimental Setup and Results

The results presented in Baldwin and Lui (2010a)
are based on cross-validation within datasets,
without considering the applicabiliy of a model
learned in one domain to LangID in another do-
main. Baldwin and Lui (2010a) also presented
preliminary results with regards to feature selec-
tion, based on the Cavnar and Trenkle (1994)
method. We first compare results with and without
feature selection using our LDbin and LDall met-
rics, as well as IGall

lang—where we select the top

features according to their information gain with
the set of all languages—and finally IGbin

lang—
where we select a fixed number of features per lan-
guage, according to their information gain with the
language.

Baldwin and Lui (2010a) found that byte bi-
grams performed well as a feature set for LangID,
so we use them for this initial experiment. Tok-
enizing across all of our datasets results in 57160
unique bigrams. For IGall

lang and LDall , we con-
sider the top 2000 to 10000 features, in increments
of 1000. For the per-language metrics, we exper-
iment with selecting 100 to 800 features per lan-
gauge, in increments of 100.

We perform this experiment in two settings:
(1) the supervised learning setting, where we use
training and test data from the same domain; and
(2) the inductive transfer learning setting, where
we train a single classifier on UNIONA—the union
of the A partitions across the five domains—and
use this to classify partition B from each of the five
domains in turn. We found that for IGall

lang , 10000
features produced the best results; for IGbin

lang , it
was 100 features per class, corresponding to 4078
features; for LDall , it was 3000 features; and for
LDbin it was 200 features per class, correspond-
ing to 3086 features. We report the results for the
best parametrization of each feature selection met-
ric in Tables 2 and 3. In each case, we present
the classification accuracy for the full feature set
(“Full”), followed by the classification accuracy
for feature selection over the same combination of
training and test dataset, as the ∆ over Full. In
all our experiments, the language skew present in
each domain is preserved in both the training and
the test partitions.

In the supervised case, the accuracy attained is
similar when using the full feature set as for the
respective reduced feature sets. This shows that
utilizing the reduced feature sets does not harm in-
domain classification accuracy, implying that we
are able to preserve the key features required for
classifying the data.

In the case of inductive transfer learning, we
observe negative transfer: the greater amount of
training data causes the accuracy to drop. This is
particularly evident over RCV2, where adding in
data from the other four domains results in a drop
in accuracy from 0.973 to 0.576. We find that the
LD features are generally able to better mitigate
this than the IGlang features. LDbin features pro-
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Train Eval Full IGall
lang IGbin

lang LDall LDbin

JRC-ACQUISA JRC-ACQUISB 0.985 +0.000 +0.007 +0.007 +0.005
DEBIANA DEBIANB 0.963 +0.003 +0.002 −0.001 −0.016
RCV2A RCV2B 0.973 −0.017 −0.016 −0.003 +0.026
WIKIPEDIAA WIKIPEDIAB 0.935 +0.017 +0.020 +0.030 +0.001

Table 2: In-domain supervised learning accuracy, relative to all features (“Full”)

Train Eval Full IGall
lang IGbin

lang LDall LDbin

UNIONA

JRC-ACQUIS 0.931 −0.001 +0.039 +0.060 +0.062
DEBIAN 0.817 −0.031 +0.049 +0.122 +0.127
RCV2 0.576 −0.048 +0.129 +0.347 +0.410
WIKIPEDIA 0.739 −0.150 −0.070 +0.179 +0.179

Table 3: Inductive Transfer Learning (all-domain) accuracy, relative to all features (“Full”)

vide the best accuracy over each dataset in the in-
ductive transfer learning setting, increasing accu-
racy over RCV2 to 0.986, exceeding the accuracy
of the in-domain classification on the full feature
set. We find that LDbin features can also improve
accuracy for in-domain classification, increasing
accuracy on RCV2 to a near-perfect 0.999. These
results validate the choice of LDbin as a suitable
metric for selecting general features for LangID.

Since our aim is to build a classifier in a trans-
ductive transfer learning setting, we examined the
behaviour of the LDbin features in such a setting
over our 5 datasets. For each dataset, we trained
a classifier on the A partitions, and evaluated the
classifier on the B partition of each of the other
datasets. Since each dataset covers a different set
of languages, there may be languages in the eval-
uation dataset that are not present in the training
dataset. It makes no sense to attempt to clas-
sify documents in these languages since we will
by definition misclassify them, so the results re-
sported in Table 4 are only over languages in the
evaluation set that are also present in the train-
ing set. As a result, caution must be exercised in
naively comparing accuracy figures across differ-
ent combinations of training and test datasets.

In Table 4, we see several examples of language
models not generalizing to other domains. For ex-
ample, we see that when using all features, the lan-
guage models learned from RCV2 classify data
from the RCV2 domain with accuracy 0.973, but
this drops to 0.838, 0.889 and 0.796 in other do-
mains. We also find that language models from
other domains have reduced accuracy when classi-
fying RCV2 data. We find that in all these cases,
using the LDbin features mitigates this loss in ac-
curacy. On RCV2 in particular, use of the LDbin

features results in over 0.95 accuracy when train-
ing with any of the 5 domains.

There is a number of domains where the use
of the LDbin features results in a loss in accu-
racy relative to the full feature set. This contrasts
with our results in the inductive learning setting.
We hypothesize that this is due to the LDbin fea-
tures having been selected from the union of all 5
datasets. While this feature set represents a gen-
eral model across these 5 domains, for a specific
pair of domains there will be some additional fea-
tures that are strong predictors of language.

Preliminary work by Baldwin and Lui (2010a)
suggested that feature selection over a mixture of
n-grams yielded promising results. This is also
supported by Cavnar and Trenkle (1994), who use
a mixture of 1- to 5-grams. We thus investigated
the interaction between the range of n-gram orders
used for feature selection, the number of features
selected per language and classification accuracy.
Based on the results in Tables 2, 3 and 4, we used
the LDbin metric exclusively.

We conducted a parameter search for maximum
token order M (e.g. M = 3 would mean all 1-,
2- and 3-grams) and number of features per lan-
guage N . We considered 1 ≤ M ≤ 9 and
100 ≤ N ≤ 800 in increments of 100 features.
We tested all combinations exhaustively in a su-
pervised learning task across the union of all 5
datasets. We found that the best results are ob-
tained for M ≥ 4 and N ≥ 300. In order to max-
imize classification rate we need to minimize the
number of features used, so we chose M = 4 and
N = 300, producing a feature set consisting of
7480 features.

In building a universal LangID tool, we need
to quantify the effect of training on languages ex-
traneous to the target domain. To investigate this,
we perform experiments over the datasets of Bald-
win and Lui (2010a) using two different classi-
fiers: a reference classifier trained on all languages
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Training
Test Dataset

JRC-ACQUIS DEBIAN RCV2 WIKIPEDIA

Full LDbin Full LDbin Full LDbin Full LDbin

JRC-ACQUIS 0.985 +0.005 0.979 −0.055 0.812 +0.174 0.977 −0.026
CLUEWEB09 0.981 −0.005 0.989 −0.010 0.925 +0.069 0.927 −0.039
DEBIAN 0.983 −0.003 0.963 −0.016 0.689 +0.261 0.937 −0.058
RCV2 0.838 +0.148 0.889 −0.003 0.973 +0.026 0.796 +0.154
WIKIPEDIA 0.837 +0.141 0.863 +0.011 0.561 +0.407 0.935 +0.001

Table 4: Transductive transfer learning (cross-domain) accuracy relative to all features (“Full”)

Test Dataset langid.py TextCat TextCat (retrained) GoogleAPI
Accuracy docs/s ∆Acc Slowdown ∆Acc Slowdown ∆Acc Slowdown

JRC-ACQUIS 0.991 69.8 −0.164 18.5× −0.075 11.1× +0.004 7.0×
DEBIAN 0.969 94.1 −0.305 25.1× −0.129 14.2× −0.043 9.4×
RCV2 0.992 146.6 −0.642 34.9× −0.922 19.1× +0.005 14.6×
WIKIPEDIA 0.959 102.7 −0.210 26.2× −0.365 14.9× −0.012 10.3×
N-EUROGOV 0.987 68.5 −0.046 18.1× −0.083 11.1× +0.006 6.9×
N-TCL 0.904 172.1 −0.299 38.8× −0.232 22.5× +0.018 17.2×
N-WIKIPEDIA 0.913 209.2 −0.207 45.9× −0.227 25.7× −0.010 20.9×

Table 5: Comparison of standalone classification tools, in terms of accuracy and speed (docu-
ments/second), relative to langid.py

present in the training set, and a domain-specific
classifier trained only on languages in the test set.
The reference classifier is trained on 1–4-grams,
selecting 300 features per language on the full
97 languages, whereas each domain-specific clas-
sifier is trained only on the subset of languages
present in the target domain.

Figure 3 shows a scatter plot of the per-language
accuracy over the different datasets. Rather than
harming performance, we find that adding lan-
guges extraneous to the target domain generally
has no impact on accuracy over the languages in
the dataset. In fact, it occasionally positively im-
pacts on accuracy (points to the left of the diago-
nal), and for the rare instances where it hurts accu-
racy (points to the right of the diagonal), the dif-
ference is relatively modest.

6.1 Comparison to existing tools

Our ultimate interest is in building a standalone
classifier that is fast and accurate. For comparison
to existing tools, we implemented our method as
a Python module (langid.py), in the form of a
single Python file with pre-trained models for 97
languages. It can act as a standalone LangID sys-
tem, an embedded Python module, or a web ser-
vice with an AJAX API.5

We compared the speed and accuracy of our
system to TextCat, as well as GoogleAPI.
GoogleAPI is constrained to: (1) limit the classi-

5The code is available for public download from
http://www.csse.unimelb.edu.au/research/
lt/resources/langid/

fication rate to 10 documents/second, and (2) base
the classification only on the first 500 bytes of the
document. These constraints are imposed by the
service’s terms of use. For TextCat, we test
it: (1) off-the-shelf using the pre-trained language
models, and (2) after retraining it over the same
training data as langid.py.

Table 5 shows the accuracy of each system
across 7 test datasets, as well as the speed in
documents per second. We present absolute ac-
curacy and speed for langid.py, and relative
accuracy and slowdown for the other classifiers.
The machine used to perform this experiment was
a commodity desktop-class machine, with an In-
tel Q9400 4-Core CPU, 4GB of RAM and a
7200RPM SATA II hard drive. The slowdown for
GoogleAPI is reported based on a classification
rate of 10 documents per second.

We find that in general, langid.py is faster
and more accurate than TextCat (both off-the-
shelf and re-trained). The difference is small-
est over a “traditional” LangID dataset like N-
EUROGOV which contains only 10 languages,
and is much more pronounced over a dataset
like N-TCL which has a much larger vari-
ety of languages. Comparing langid.py and
GoogleAPI, the two systems are evenly matched
in accuracy, but again, langid.py is signifi-
cantly faster. All differences in accuracy are sta-
tistically significant (McNemar’s test, p < 0.01).

We note that the accuracy of langid.py is
slightly lower on N-TCL than on other datasets.
N-TCL has a high proportion of non-UTF8 doc-
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Figure 3: Per-language accuracy of a classifier
trained only on languages present in the evaluation
domain (x-axis) vs. all languages (y-axis)

Test dataset Feature selection
TextCat CT LDbin

N-EUROGOV 0.904 +0.067 +0.083
N-TCL 0.672 +0.016 +0.227
N-WIKIPEDIA 0.686 +0.084 +0.223

Table 6: Comparison of TextCat to a NB classi-
fier using CT and LDbin for feature selection, us-
ing UNIONA as the training data

uments (57%). To quantify the effect of this, we
transcoded all the documents in N-TCL to UTF8
and repeated the experiment. We found that af-
ter transcoding, the accuracy of langid.py in-
creased from 0.904 to 0.947. This indicates that
unsupported encodings have a small impact on ac-
curacy, though it is relatively minor considering
that the majority of the data is not UTF8-encoded.

The are two key conceptual differences between
TextCat and langid.py: feature selection
and learning algorithm. TextCat (CT ) selects
features per language by term frequency, whereas
langid.py uses LDbin (the focus of this work).
On the other hand, the learning algorithm used
by TextCat is a nearest-prototype method us-
ing the token rank difference metric of Cavnar
and Trenkle (1994), whereas langid.py uses
multinomial naive Bayes. In order to consider
these differences independently, we combine the
CT feature selection with the multinomial naive
Bayes learner, selecting the union of the top-300
features per language by document frequency over
1- to 5-grams, yielding 10846 features. For com-

parison, we also selected the top 300 features by
LDbin over 1- to 5-grams, yielding 8166 fea-
tures. We then trained a naive Bayes classifier
over UNIONA using the respective feature sets,
and used it to classify each of N-EUROGOV, N-
TCL and N-WIKIPEDIA. In Table 6, we com-
pare the accuracy of these two classifiers to (re-
trained) TextCat. Across all datasets, LDbin

is superior to CT . Additionally, NB with CT is
superior to TextCat (which uses the same fea-
ture selection strategy, with the nearest prototype
learner), although the difference here is much
smaller. This suggests that the bulk of the im-
provement of langid.py over TextCat is due
to the use of LDbin , as developed in this research.

7 Conclusion

We demonstrated the problem of negative trans-
fer in training a LangID system using language-
labelled data from a variety of domains. We de-
veloped a method for identifying features that are
strongly predictive of language across multiple do-
mains by examining the difference in information
gain of each feature with language and with the
source domain. We used this method to compile
a feature set from 50,000 documents in 97 lan-
guages across 5 datasets, and implemented this as
a standalone LangID system using a naive Bayes
classifier. We empirically compared our system
to state-of-the-art LangID systems, and found our
system to be faster whilst maintaining competitive
accuracy.
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