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Abstract 

Abstract Stub This paper talks about a new 
approach to     recognize named entities for 
Indian languages. Phonetic matching tech-
nique is used to match the strings of differ-
ent languages on the basis of their similar 
sounding property. We have tested our sys-
tem with a comparable corpus of English 
and Hindi language data. This approach is 
language independent and requires only a 
set of rules appropriate for a language. 

1 Introduction 

Named Entity Recognition (NER) is a subtask of 
machine translation and information retrieval. 
Named entities are words which belong to certain 
categories like persons, places, organizations, nu-
merical quantities, expressions of times etc. A 
large number of techniques have been developed to 
recognize named entities for different languages. 
Some of them are Rule based and others are Statis-
tical techniques. The rule based approach uses the 
morphological and contextual evidence (Kim and 
Woodland, 2000) of a natural language and conse-
quently determines the named entities. This even-
tually leads to formation of some language specific 
rules for identifying named entities. The statistical 
techniques use large annotated data to train a 
model (Malouf, 2002) (like Hidden Markov 
Model) and subsequently examine it with the test 
data. Both the methods mentioned above require 
the efforts of a language expert. An appropriately 
large set of annotated data is yet to be made avail-
able for the Indian Languages. Consequently, the 

application of the statistical technique for Indian 
Languages is not very feasible.  

This paper deals with a new technique to recog-
nize named entities of different languages. Our 
approach does not use the previously mentioned 
techniques. Instead, we use an approach that not 
only reduces the burden of collecting and annotat-
ing data, but is language independent as well. We 
use this method to build a multilingual named en-
tity list that can be used by the named entity recog-
nizer. Our method recognizes and finds the actual 
representation of the named entities in the target 
language from an untagged corpus. Our idea was 
to match the two representations of the same 
named entity in two different languages using a 
phonetic matching algorithm. This comes from the 
property of named entities that they sound similar 
when written in native script or any other script. 
However this cross-lingual matching is not a trivial 
task. First of all, the two strings to be matched 
have to be represented in a common script. So we 
face two choices here. Either we should convert 
the two strings into some common intermediate 
representation (ex. Phonemic representation) or 
transliterate the name written in Indian language to 
English and then look for phonetic equivalence. 
Our engine has been tested for Hindi. After making 
transliteration rules for Hindi, we used a variation 
of the Editex algorithm to match the transliterated 
string with entries in English named entity data-
base to find a match. Here it is worthwhile to men-
tion that certain class of name entities which are 
not similar sounding (mostly phrases) cannot be 
extracted through this cross-lingual matching. E.g. 
“United Nations”, “Government of India” etc. Ab-
breviations which are spelled character by charac-
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ter in both the languages can however be extracted. 
E.g. BBC ( ), LTTE ( ) etc.  

In the next section we have given the system ar-
chitecture. The logical flow and overall description 
of the system are discussed here. Our own set of 
transliteration rules in Hindi are given in the third 
section. In the fourth section we define our base-
line task. Our system has been tested with a paral-
lel corpus which consisted of both English and 
Hindi language data. The results obtained using 
our system is described in the fifth section together 
with an analysis. Conclusions are presented in the 
last section together with directions for future im-
provements. 

2 System Architecture: Logical Flow and 
overall description of the System 

The system architecture is shown in Figure 1. It 
consists of the following modules: 
        

 
Figure 1: System Architecture 

 

2.1 Crawler 

The crawler is a web-bot or spider which browses 
the web in an automated manner. It starts with a 
list of Uniform Resource Locators (URL) that it is 
to visit, called the seeds. As the crawler visits these 
URL’s it collects all the hyperlinks and adds them 
to a queue. URL’s from the queue are crawled fur-
ther. Since the crawler collects the data from web, 
the data collection is fully automated. The crawler 
gathers data for both English and other Indian lan-
guages. The data collected for English is used to 
populate the English named entity database which 
is significantly accurate. We have used the freely 

available Stanford Named Entity Recognizer 
(Finkel, Grenager, and Manning, 2005) in our en-
gine. The data collected for Indian languages will 
be used to build a database of named entities for 
the given language. 

2.2 Parser 

The crawler saves the content in an html form  
onto the system. The parser parses these html files. 
Additionally the parser can also parse the PDF as 
well as RTF files. The output of the parser is 
passed to the corresponding modules for the two 
different languages. 

2.3 Phonetic Matcher 

Phonetic matching is the task of matching two rep-
resentations of the same name. A name may have 
more than one representation in its native script 
itself. If the name is represented in a script other 
than its native script, there may be large number of 
potential variants for its representation. Phonetic 
matching is a fuzzy string matching technique in 
which we match strings on the basis of their simi-
lar sounding property and not identity. Most com-
mon phonetic matching techniques are Soundex 
and Editex. These techniques are used to match 
two representations of the same name in English. 
We survey the techniques in the following subsec-
tions.  
 
2.3.1 Soundex 
 
Soundex algorithm was designed by Odell and 
Russell in 1918 to find spelling variation of names. 
It represents classes of sounds which can be 
lumped together. The classes for the algorithm are 
shown in Appendix A. These classes are placed for 
phonetic matching according to the following algo-
rithm: 

1. Replace all but the first letter of the string 
by its phonetic code. 

2. Eliminate any adjacent representation of 
codes. 

3. Eliminate all occurrences of code 0 i.e. 
eliminate all vowels. 

4. Return the first four characters of the re-
sulting string. 

5. Examples: Dickson = d25, Dikson = d25.  
Two names match if they have the same soun-

dex representation. This method does not account 
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for vowels and hence is not accurate for cross-
lingual matching. 

 
2.3.2 Editex 
 
The Editex algorithm was designed by Zobel and 
Dart (Zobel and Dart,1996).  It is an enhancement 
of the Levenshtein (Levenshtein, 1966) edit dis-
tance algorithm. The Levenshtein algorithm meas-
ures the edit distance between two strings where 
edit distance is defined as the minimum number of 
basic operations required to match one string to the 
other where the basic operations are insertion, de-
letion and substitution. Insertion and deletion costs 
are 1 and substitution cost is given by a function 
subst_cost (Xi, Yj) which returns 0 if the two char-
acters Xi and Yj are same and 1, if they are differ-
ent. The score dist [m, n] is returned as the edit 
distance between two strings. A score of zero im-
plies a perfect match. 

The algorithm has O (mn) time and space com-
plexity where m and n are the lengths of the two 
strings respectively. The pseudo code for the 
Levenshtein edit distance algorithm is described in 
Appendix B. Editex groups similar sounding pho-
nemes into equivalence classes. The substitution 
cost is determined by a function S (Xi, Yj) that 
returns 0 if the two characters Xi and Yj are same, 
1 if they lie in the same equivalence class and 2 
otherwise. The insertion and substitution costs are 
determined by a function D (Xi-1, Xi) which is 
almost same as S (Xi, Yj) except for the difference 
that it compares letters of the same string and it 
returns 1 if Xi-1 is ‘h’ or ‘w’ and Xi-1 is not equal 
to Xi. The editex equivalence classes and the ed-
itex pseudo-code are given in Appendix C. 

Editex performs fairly better than Soundex and 
Leveinshtein edit distance algorithms. However 
further enhancements in Editex are also possible. 
“Tapering” is one enhancement in which we weigh 
mismatches at the beginning of the string with 
higher score than mismatches towards the end 
(Zobel and Dart, 1996). Other enhancements are 
those in which input strings are mapped to their 
phonemic representation, called phonometric 
methods (Zobel and Dart, 1996).  

3 Transliteration rules 

To perform phonetic matching of two different 
representations of a named entity, we need both of 

them in a common script. We choose to transliter-
ate the named entity in Indian language to English. 
The transliteration rules for a language must be 
written for the same. We have written our own set 
of transliteration rules for Hindi. These can be de-
scribed briefly as under 
The entity to be transliterated is scanned character by 
character from left to right. Each character of Hindi is 
mapped to an equivalent character/set of character in 
English according to a mapping function. The charac-
ter set generated by the function is appended into a 
string as per the rules. E.g.  का = क् + अ   is a single 

character representation in Unicode (‘क’) and maps to 
‘Ka’. 

1. Start with an empty string. When a conso-
nant or singleton vowel (not as ‘matra’) is 
encountered append the set of characters 
returned by mapping function. 

2. When a consonant is followed by a vowel 
the preceding ‘a’ should be removed and 
the character set for the vowel should be 
appended. E.g. के consists of two charac-

ters क + . Once we encounter क we 

append ‘ka’ and when is encountered 
next we remove the ‘a’ and append the 

mapping for i.e. ‘e’. This rule applies in 
general to all the vowels. 

3. If the transliterated string has ‘a’ as its last 
character while it doesn’t have the vowel 

 as last character of Hindi string, re-
move this occurrence of ‘a’. The last 
vowel in Hindi is very important as two al-
together different words may have the only 
difference in the last vowel. E.g.   “कमल” 
and “कमला” are proper nouns having dif-
ferent genders. Their English representa-
tions are “Kamal” and “Kamla” respec-
tively.  

 
The transliteration always performs a one to one 

mapping of a character in Hindi to a set of charac-
ters in English. However the English representa-
tion may have different character sets for the same 
Hindi character in different names. E.g.  “कमल” is 
“Kamal” while “िबकेट” is “Cricket”.  ‘क’ is often 
represented by ‘K’ for Hindi names, by ‘C’ for 
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English names and by ‘Q’ for Urdu names. The 
Editex algorithm groups these letters in the same 
equivalence class.  

4 Baseline Task 

At the core of our method lies the phonetic match-
ing algorithm. We have modified the Editex algo-
rithm as mentioned in Appendix C. Editex can be 
modified to take into account that there can be 
more than three (0, 1, 2) levels of acceptability for 
substitutions due to the inherent properties of par-
ticular languages. For example, say “ckq” is one 
equivalence class in Editex. ‘c’ and ‘k’ have a sub-
stitution cost of 1. We may reduce this substitution 
cost to 0.5 for a language in which it is highly 
probable that the same character maps to ‘c’ and 
‘k’ in the English representation of its names.  
Thus the equivalence classes and the substitution 
costs in Editex can be modified for cross-lingual 
phonetic matching. There can also be further lan-
guage specific enhancements. The following algo-
rithm along with some language specific enhance-
ments was implemented for Hindi. 

4.1 Abbreviation Check 

Abbreviations form an important class of named 
entities. So, we first check whether the Hindi string 
is an abbreviation in which the English characters 
are spelled individually. For each English alphabet 
we have some unique Hindi representation. The 
function performs accurately most of the time and 
extracts such named entities. If we are able to find 
out that the string is an abbreviation, the corre-
sponding English representation can be returned by 
the function itself, hence there is no need of further 
matching. If the string is not an abbreviation, we 
proceed to the actual matching algorithm. 

4.2 4.2. First letter matching 

The first letters of the two strings must either be 
the same or should belong to the same equivalence 
class. The equivalence classes for first character 
matching are: 
 
      "ckq", "wbv", "iy”,"jz", "aeiou"  

 
The English named entity database must be in-

dexed according to the first letter of the named en-
tity so that we only search for matches in those 
indexes which fall into the same equivalence class. 

This is very important for the computational effi-
ciency of the engine as it reduces the search space. 

4.3 Preprocessing 

Often the phonetic inconsistencies in English lead 
to low matching score for two representation of the 
same name. To take this into account, before 
matching the two strings the named entity retrieved 
from English Named entity database is preproc-
essed to form a new string. We have used the fa-
mous “Mark Twain’s plan for the improvement of 
English spelling” (http://grammar.ccc.commnet.edu/ 
grammar/twain.htm) added with some more rules. 
This way we tackle the problem of more than one 
possible character sets for some vowels since only 
one of them can be chosen during transliteration. 
We also tackle some other problems like silent-
alphabets and repeated alphabets so that the prob-
ability of generating high matching score in-
creases. The following set of rules for preprocess-
ing was used. 

1. Change all occurrences of “oo” to “u”. 
(both character sets are for the vowel  ) 

2. Change all occurrences of “ee” to “i”   
(both character sets are for the vowel   ) 

3. Change all occurrences of “f” to ph” 
4. Change all occurrences of “au” to “o” 
5. If a word starts with "x", replace the "x" 

with a "z".  Change all the remaining "x"s 
to "ks"s. 

6. If a "c" is directly followed by an "e" or 
"i", change the "c" to an "s" 

7. If a "c" is directly followed by a "k", re-
move the "c". Keep applying this rule as 
necessary    (Example: "cck" becomes 
"k".) 

8. If a word starts with "sch", change the 
"sch" to a "sk". 

9. If a "ch" is directly followed by an "r", 
change the "ch" to a "k". 

10. After applying the above rules, change all 
"c"s that are not directly followed by an 
"h", to a "k". (This includes all "c"s that 
are last letter of a word)  

11. If a word starts with "kn" change "kn" 
to“n”  

12. Change all double consonants of the same 
letter to a single consonant. A consonant is 
any letter that is not one of "a, e, i, o, u." 
(Example: "apple" becomes "aple"). Keep 
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applying this rule as necessary (Example: 
"zzz" becomes "z".) 

4.4 Editex Score 

Now the transliterated string and the preprocessed 
string are compared to generate an editex score. 
The equivalence classes we used were similar to as 
proposed in the original editex algorithm except 
for some language specific changes for Hindi.  
Length of the two strings has to be considered 
while deciding the threshold score for a match oth-
erwise there can be greater number of mismatches 
for small strings. So we normalize  editex score as  
d = [1- {editex(X, Y) / (length(X) + length(Y)}] 

The decided threshold for match was 0.86.  A 
score above threshold guarantees equivalence of 
the two representations. The results are shown in 
Table-1. 
 
 
Hindi 
NE 

English 
NE 

Transliteration 
Output 

Editex  
Score 

िहन्दी Hindi  Hindi 1.0 

फ़लःतीनी Philistini Phalastini 0.9 

बांगलादेश Bangladesh      Bangladesh 1.0 

झारखण्ड Jharkhand Jharakhand     0.894 

पिश्चम Pashchim Pashchim 1.0 

बंगाल Bengal Bangal 0.916 

भारत Bharat Bharat 1.0 

िबकेट Cricket Kriket 0.923 

मेग Greg Greg 1.0 

चैपल Chappel Chaipal 0.857 

महेंि Mahendra Mahendr 0.933 

राहलु  Rahul Rahul 1.0 

ििवड Dravid Dravid 1.0 

छत्तीसगढ Chattisgarh Chattisagadh 0.866 

 
 

Table-1: Hindi named entities with transliteration 
output and normalized Editex scores 

 
 

5 Results and Analysis 

We have tested our system with a parallel corpus 
which consisted of both English and Hindi lan-
guage data. Further we used the web crawler to 
populate our NE list of both the languages thus 
embedding the concept of comparable corpus. The 
results for English obtained using parallel corpus 
are:  

Precision: 81.40% and Recall: 81.39%  
 

This corpus carried named entities from the do-
main of travel, tourism and culture. Further for 
classifying the results for Hindi we used the defini-
tion of named entities as given by Chinchor (Chin-
chor, 1997) as for entity names organizations (OE), 
person names (PE) and location names (LE). The 
results for numeric expressions (monetary values 
and percentages) and temporal expressions (dates 
and times) were not considered for results because 
it is a trivial task to build grammar rules for such 
entities which appear quite regularly.  

We have focused on OE, PE and LE named enti-
ties for Hindi so that we can analyze the perform-
ance on new and hitherto undiscovered entities 
which come into existence with the passage of 
time. This premise provides the real basis for chal-
lenging the performance of any NER technique for 
Indian Languages. 

The testing on the corpus of around 1000 sen-
tences revealed the following results for Hindi: 

• Precision for all named entities 
(PE+OE+LE): 80.2% 

• Recall for PE (person entity names): 
47.4% 

• Recall for OE (organization entity names): 
42.9% 

• Recall for LE (location entity names): 
74.6%  

It is important to observe here that the engine 
shows good recall for location entity names (LE) 
which were more abundant in the corpus. Besides 
this, the corpus had a heterogeneous mix of named 
entities with tourism-related information not only 
from India but also from the continents of South 
America and Antarctica. A good recall percentage 
for Hindi location entity names is encouraging as 
the named entities related to South America and 
Antarctica did not have phonetic similarity with 
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the native entities available from tourism informa-
tion from India. This gives good credence to the 
phonetic matching approach used above. Causes 
for the comparatively lower recall percentage 
among person entity names and organization entity 
names are under further investigation. 

6 Conclusions 

We have used the phonetic matching technique to 
match the strings of different languages on the ba-
sis of their similar sounding property. As the Pho-
netic Matcher module is tested for more data, more 
generic rules can be made to improve its accuracy. 
The Engine should be improved so that it may rec-
ognize phrasal named entities and abbreviations. 
The engine will work for any language if the pho-
netic matching rules are written for that language. 
We can also develop a crawler which will be fo-
cused upon a certain domain of interest. Focused 
crawlers are very important for generating re-
sources for natural language processing. A focused 
crawler application is an intelligent agent that 
crawls the web for content related to a specific 
domain. This kind of crawler could be used in the 
future for purposes of data collection for a particu-
lar domain. 
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Appendix A: Soundex classes 
 

Code Letters Code Letters 
0 aeiouyhw 4 l 
1 bpfv 5 mn 
2 cgjkqsxz 6 R 
3 dt   

 
Appendix B: Pseudo code for Leveinshtein edit dis-
tance: 
 

Input: Two strings, X and Y 
Output: The minimum edit dis-
tance between X and Y 
 
m ← length(X) 
n ← length(Y) 
 
for i =0 to m do 
dist[i, 0] ← i 
 
for j = 0 to n do 
dist[0, j] ← j 
 
for i = 1 to m do 
for j = 1 to n do 
 
dist[i, j] =  
min{ 

dist[i-1, j]+inser_cost, 
   dist[i-1, j-1] 
   + subst_cost[Xi, Yj], 
   dist[i, j-1] + delet_cost      
} 
end 

 
Appendix C: Editex Equivalence Classes: 
 
 
aeiouy       bp       ckq       dt       lr        mn 
gj              fpy       sxz      csz 
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Pseudo code for Editex Algorithm 
 

Input: Two strings, X and Y 
Output: The editex distance 
between X and Y 
 m = length(X) 
 n = length(Y) 
 
editex_dist[0, 0] = 0 
 
for i = 1 to m do 
  
editex_dist[i, 0] 
  = editex_dist[i-1, 0] 
  + D(Xi-1, Xi) 
 
for j = 0 to n do 
 
editex_dist[0, j] 
  = editex_dist[0, j-1]   
  + D(Yj-1, Yj) 
 
for i = 1 to m do 
for j = 1 to n do 
 
editex_dist[i, j] =  
  min { editex_dist[i-1, j] 
  + D(Xi-1, Xi), 
  editex_dist[i-1, j-1] 
  + S(X, Yj), 
  editex_dist[i, j-1] 
  + D(Yj-1, Yj) 
 
end 
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