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Abstract 

In this paper, we present an empirical 
study on adapting Conditional Random 
Fields (CRF) models to conduct semantic 
analysis on biomedical articles using ac-
tive learning. We explore uncertainty-
based active learning with the CRF model 
to dynamically select the most informa-
tive training examples. This abridges the 
power of the supervised methods and ex-
pensive human annotation cost. 

1 Introduction 
Researchers have experienced an increasing need 
for automated/semi-automated knowledge acquisi-
tion from the research literature. This situation is 
especially serious in the biomedical domain where 
the number of individual facts that need to be 
memorized is very high. 

Many successful information extraction (IE) 
systems, work in a supervised fashion, requiring 
human annotations for training. However, human 
annotations are either too expensive or not always 
available and this has become a bottleneck to de-
veloping supervised IE methods to new domains. 

Fortunately, active learning systems design 
strategies to select the most informative training 
examples. This process can achieve certain levels 
of performance faster and reduce human annota-
tion (e.g., Thompson et al., 1999; Shen et al., 2004). 

In this paper, we present an empirical study on 
adapting CRF model to conduct semantic analysis 
on biomedical research literature. We integrate an 
uncertainty-based active learning framework with 
the CRF model to dynamically select the most in-
formative training examples and reduce human 
annotation cost. A systematic study with exhaus-
tive experimental evaluations shows that it can 

achieve satisfactory performance on biomedical 
data while requiring less human annotation. 

Unlike direct estimation on target individuals in 
traditional active learning, we use two heuristic 
certainty scores, peer comparison certainty and set 
comparison certainty, to indirectly estimate se-
quences labeling quality in CRF models. 

We partition biomedical research literature by 
experimental types. In this paper, our goal is to 
analyze various aspects of useful knowledge about 
tract-tracing experiments (TTE). This type of ex-
periments has prompted the development of sev-
eral curated databases but they have only partial 
coverage of the available literature (e.g., Stephan et 
al., 2001). 

2 Related Work 
Knowledge Base Management Systems allow 
individual users to construct personalized 
repositories of knowledge statements based on 
their own interaction with the research literature 
(Stephan et al., 2001; Burns and Cheng, 2006). But 
this process of data entry and curation is manual. 
Current approaches on biomedical text mining (e.g., 
Srinivas et al., 2005; OKanohara et al., 2006) tend 
to address the tasks of named entity recognition or 
relation extraction, and our goal is more complex: 
to extract computational representations of the 
minimum information in a given experiment type. 

Pattern-based IE approaches employ seed data 
to learn useful patterns to pinpoint required fields 
values (e.g. Ravichandran and Hovy, 2002; Mann 
and Yarowsky, 2005; Feng et al., 2006). However, 
this only works if the data corpus is rich enough to 
learn variant surface patterns and does not neces-
sarily generalize to more complex situations, such 
as our domain problem. Within biomedical articles, 
sentences tend to be long and the prose structure 
tends to be more complex than newsprint. 
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The CRF model (Lafferty et al., 2001) provides 
a compact way to integrate different types of fea-
tures for sequential labeling problems. Reported 
work includes improved model variants (e.g., Jiao 
et al., 2006) and applications such as web data ex-
traction (Pinto et al., 2003), scientific citation ex-
traction (Peng and McCallum, 2004), word align-
ment (Blunsom and Cohn, 2006), and discourse-
level chunking (Feng et al., 2007). 

Pool-based active learning was first successfully 
applied to language processing on text classifica-
tion (Lewis and Gale, 1994; McCallum and Nigam, 
1998; Tong and Koller, 2000). It was also gradu-
ally applied to NLP tasks, such as information ex-
traction (Thompson et al., 1999); semantic parsing 
(Thompson et al., 1999); statistical parsing (Tang 
et al., 2002); NER (Shen et al., 2004); and Word 
Sense Disambiguation (Chen et al., 2006). In this 
paper, we use CRF models to perform a more com-
plex task on the primary TTE experimental results 
and adapt it to process new biomedical data. 

3 Semantic Analysis with CRF Model 

3.1 What knowledge is of interest? 

The goal of TTE is to chart the interconnectivity of 
the brain by injecting tracer chemicals into a region 
of the brain and then identifying corresponding 
labeled regions where the tracer is transported to. 
A typical TTE paper may report experiments about 
one or many labeled regions.  

Name Description 

injectionLocation the named brain region where 
the injection was made. 

tracerChemical the tracer chemical used. 

labelingLocation the region/location where the 
labeling was found. 

labelingDescription a description of labeling, den-
sity or label type. 

Table 1. Minimum knowledge schema for a TTE. 
 
 
 
 
 
 
 
 
 
 

Figure 1. An extraction example of TTE description. 

In order to construct the minimum information 
required to interpret a TTE, we consider a set of 
specific components as shown in Table 1. 

Figure 1 gives an example of description of a 
complete TTE in a single sentence. In the research 
articles, this information is usually spread over 
many such sentences.  

3.2 CRF Labeling 
We use a plain text sentence for input and attempt 
to label each token with a field label. In addition to 
the four pre-defined fields, a default label, “O”, is 
used to denote tokens beyond our concern.  

In this task, we consider five types of features 
based on language analysis as shown in Table 2. 

Name Feature Description 
TOPOGRAPHY Is word topog-

raphic? 
BRAIN_REGION Is word a region 

name? 
TRACER Is word a tracer 

chemical? 
DENSITY Is word a density 

term? 

Lexical 
Knowledge 

LABELING_TYPE Does word denote 
a labeling type? 

Surface Word Word Current word 

Context    
Window 

CONT_INJ If current word if 
within a window 
of injection con-
text 

Prev-word Previous word Window 
Words Next-word Next word 

Root-form Root form of the 
word if different 

Gov-verb The governing 
verb 

Subj The sentence 
subject  

Dependency 
Features 

Obj The sentence 
object 

Table 2. The features for system labeling. 
Lexical Knowledge. We define lexical items rep-
resenting different aspects of prior knowledge. To 
this end we use names of brain structures taken 
from brain atlases, standard terms to denote neuro-
anatomical topographical spatial relationships, and 
common sense words for labeling descriptions. We 
collect five separate lexicons as shown in Table 3. 

Lexicons # of terms # of words 
BRAIN_REGION 1123 5536 
DENSITY 8 10 
LABELING_TYPE 9 13 
TRACER 30 30 
TOPOGRAPHY 9 36 
Total 1179 5625 

Table 3. The five lexicons. 

The NY injection ( Fig . 9B ) encompassed  
 
tracerChemical 
most of the pons and was very dense in  
 
injectionLocation 
the region of the MLF. 
 
labelingLocation 
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Surface word. The word token is an important 
indicator of the probable label for itself.  
Context Window. The TTE is a description of the 
inject-label-findings context. Whenever we find a 
word with a root form of “injection” or “deposit”, 
we generate a context window around this word 
and all the words falling into this window are as-
signed a feature of “CON_INJ”. This means when 
labeling these words the system should consider 
the very current context. 
Window Words. We also use all the words occur-
ring in the window around the current word. We 
set the window size to only include the previous 
and following words (window size = 1).  
Dependency Features. To untangle word relation-
ships within each sentence, we apply the depend-
ency parser MiniPar (Lin, 1998) to parse each sen-
tence, and then derive four types of features. These 
features are (a) root form of word, (b) the subject 
in the sentence, (c) the object in the sentence, and 
(d) the governing verb for each word. 

4 Uncertainty-based Active Learning 
Active learning was initially introduced for 
classification tasks. The intuition is to always add 
the most informative examples to the training set to 
improve the system as much as possible.  

We apply an uncertainty/certainty score-based 
approach. Unlike traditional classification tasks, 
where disagreement or uncertainty is easy to obtain 
on target individuals, information extraction tasks 
in our problem take a whole sequence of tokens 
that might include several slots as processing units. 
We therefore need to make decisions on whether a 
full sequence should be returned for labeling. 

Estimations on confidence for single segments 
in the CRF model have been proposed by (Culotta 
and McCallum, 2004; Kristjannson et al., 2004). 
However as every processing unit in the data set is 
at the sentence level and we make decisions at the 
sentence level to train better sequential labeling 
models, we define heuristic scores at the sentence 
level.  

Symons et al. (2006) presents multi-criterion for 
active learning with CRF models, but our motiva-
tion is from a different perspective. The labeling 
result for every sentence corresponds to a decoding 
path in the state transition network. Inspired by the 
decoding and re-ranking approaches in statistical 
machine translation, we use two heuristic scores to 
measure the degree of correctness of the top label-

ing path, namely, peer comparison certainty and 
set comparison certainty. 

Suppose a sentence S includes n words/tokens 
and a labeling path at position m in the ranked N-
best list is represented by ),...,,( 110 −= n

m lllL . Then 
the probability of this labeling path is represented 
by )( mLP , and we have the following two equa-
tions to define the peer comparison certainty 
score, )(SScore peer  and set comparison certainty 
score, )(SScoreset : 
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For peer comparison certainty (Eq. 1), we calcu-
late the ratio of the top-scoring labeling path prob-
ability to the second labeling path probability. A 
high ratio means there is a big jump from the top 
labeling path to the second one. The higher the ra-
tio score, the higher the relative degree of correct-
ness for the top labeling path, giving system higher 
confidence for those with higher peer comparison 
certainty scores. Sentences with lowest certainty 
score will be sent to the oracle for manual labeling. 

In the labeling path space, if a labeling path is 
strong enough, its probability score should domi-
nate all the other path scores. In Equation 2, we 
compute the set comparison certainty score by con-
sidering the portion of the probability of the path in 
the overall N-best labeling path space. A large 
value means the top path dominates all the other 
labeling paths together giving the system a higher 
confidence on the current path over others. 

We start with a seed training set including k la-
beled sentences. We then train a CRF model with 
the training data and use it to label unlabeled data. 
The results are compared based on the certainty 
scores and those sentences with the lowest cer-
tainty scores are sent to an oracle for human label-
ing. The new labeled sentences are then added to 
the training set for next iteration.  

5 Experimental Results 
We first investigated how the active learning steps 
could help for the task. Second, we evaluated how 
the CRF labeling system worked with different sets 
of features. We finally applied the model to new 
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biomedical articles and examined its performance 
on one of its subsets. 

5.1 Experimental Setup 

We have obtained 9474 Journal of Comparative 
Neurology (JCN)1 articles from 1982 to 2005. For 
sentence labeling, we collected 21 TTE articles 
from the JCN corpus. They were converted from 
PDF files to XML files, and all of the article sec-
tions were identified using a simple rule-based ap-
proach. As most of the meaningful descriptions of 
TTEs appear in the Results section, we only proc-
essed the Results section. The 21 files in total in-
clude 2009 sentences, in which 1029 sentences are 
meaningful descriptions for TTEs and 980 sen-
tences are not related to TTEs.  

We randomly split the sentences into a training 
pool and a testing pool, under a ratio 2:1. The 
training pool includes 1338 sentences, with 685 of 
them related to TTEs, while 653 not. Testing was 
based on meaningful sentences in the testing pool. 
Table 4 gives the configurations in the data pools. 

 # of        
Related 

Sentences  

# of        
Unrelated 
Sentences 

Sum 

Training Pool 685 653 1338 
Testing Pool 344 327 671 
Sum 1029 980 2009 
Table 4. Training and testing pool configurations. 

5.2 Evaluation Metrics 

As the label “O” dominates the data set (70% out 
of all tokens), a simple accuracy score would pro-
vide an inappropriate high score for a baseline sys-
tem that always chooses “O”. We used Precision, 
Recall, and F_Score to evaluate only meaningful 
labels. 

5.3 How well does active learning work? 

For the active learning procedure, we initially se-
lected a set of seed sentences related to TTEs from 
the training pool. At every step we trained a CRF 
model and labeled sentences in the rest of the train-
ing pool. As described in section 4, those with the 
lowest rank on certainty scores were selected. If 
they are related to a TTE, human annotation will 
be added to the training set. Otherwise, the system 
will keep on selecting sentences until it finds 
enough related sentences. 

                                                 
1 http://www3.interscience.wiley.com/cgi-bin/jhome/31248 

People have found active learning in batch mode 
is more efficient, as in some cases a single addi-
tional training example will not improve a classi-
fier/system that much. In our task, we chose the 
bottom k related sentences with the lowest cer-
tainty scores. We conducted various experiments 
for k = 2, 5, and 10. We also compared experi-
ments with passive learning, where at every step 
the new k related sentences were randomly se-
lected from the corpus. Figures 2, 3, and 4 give the 
learning curves for precision, recall, and F_Scores 
when k = 10. 

 
Figure 2. Learning curve for Precision. 

 
Figure 3. Learning curve for Recall. 

 
Figure 4. Learning curve for F_Score. 

From these figures, we can see active learning 
approaches required fewer training examples to 
achieve the same level of performance. As we it-
eratively added new labeled sentences into the 
training set, the precision scores of active learning 
were steadily better than that of passive learning as 
the uncertain examples were added to strengthen 
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existing labels. However, the recall curve is 
slightly different. Before some point, the recall 
score of passive learning was a little better than 
active learning. The reason is that examples se-
lected by active learning are mainly used to foster 
existing labels but have relatively weaker im-
provements for new labels, while passive learning 
has the freedom to add new knowledge for new 
labels and improve recall scores faster. As we keep 
on using more examples, the active learning 
catches up with and overtakes passive learning on 
recall score. 

These experiments demonstrate that under the 
framework of active learning, examples needed to 
train a CRF model can be greatly reduced and 
therefore make it feasible to adapt to other domains. 

5.4 How well does CRF labeling work? 
As we added selected annotated sentences, the sys-
tem performance kept improving. We investigated 
system performance at the final step when all the 
related sentences in the training pool are selected 
into the training set. The testing set also only in-
cludes the related sentences. This results in 685 
training sentences and 344 testing sentences. 

To establish a baseline for our labeling task, we 
simply scanned every sentence for words or 
phrases from each lexicon. If the term was present, 
then we labeled the word based on the lexicon in 
which it appeared. If words appeared in multiple 
lexicons, we assigned labels randomly. 

System Features Prec. Recall F_Score 
Baseline 0.4067 0.1761 0.2458 
Lexicon 0.5998 0.3734 0.4602 
Lexicon                   
+ Surface Words 

0.7663 0.7302 0.7478 

Lexicon                   
+ Surface Words     
+ Context Window 

0.7717 0.7279 0.7491 

Lexicon + Surface 
Words + Context 
Window + Window 
Words 

0.8076 0.7451 0.7751 

Lexicon + Surface 
Words + Context 
Window + Window 
Words + Depend-
ency Features  

0.7991 0.7828 0.7909 

Table 5. Precision, Recall, and F_Score for labeling. 
We tried exhaustive feature combinations. Table 

5 shows system performance with different feature 
combinations. All systems performed significantly 
higher than the baseline. The sole use of lexicon 

knowledge produced poor performance, and the 
inclusion of surface words produced significant 
improvement. The use of window words boosted 
precision and recall. The performance with all the 
features generated an F_score of 0.7909. 

We explored how system performance reflects 
different labels. Figure 5 and 6 depict the detailed 
distribution of system labeling from the perspec-
tive of precision and recall respectively for the sys-
tem with the best performance. Most errors oc-
curred in the confusion of injectionLocation and 
labelingLocation, or of the meaningful labels and 
“O”. 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

injLoc labelDesp labelLoc tracer

O
injLoc
labelDesp
labelLoc
tracer

 
Figure 5. Precision confusion matrix distribution. 
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Figure 6. Recall confusion matrix distribution. 

The worst performance occurred for files that 
distinguish themselves from others by using fairly 
different writing styles. We believe given more 
training data with different writing styles, the sys-
tem could achieve a better overall performance. 

5.5 On New Biomedical Data 
Under this active learning framework, we have 
shown a CRF model can be trained with less anno-
tation cost than using traditional passive learning. 
We adapted the trained CRF model to new bio-
medical research articles. 

Out of the 9474 collected JCN articles, more 
than 230 research articles are on TTEs. The whole 
processing time for each document varies from 20 
seconds to 90 seconds. We sent the new system-
labeled files back to a biomedical knowledge ex-
pert for manual annotation. The time to correct one 
automatically labeled document is dramatically 
reduced, around 1/3 of that spent on raw text. 

We processed 214 new research articles and ex-
amined a subset including 16 articles. We evalu-
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ated it in two aspects: the overall performance and 
the performance averaged at the document level. 

Table 6 gives the performance on the whole new 
subset and that averaged on 16 documents. The 
performance is a little bit lower than reported in 
the previous section as the new document set might 
include different styles of documents. We exam-
ined system performance at each document. Figure 
7 gives the detailed evaluation for each of the 16 
documents. The average F_Score of the document 
level is around 74%. For those documents with 
reasonable TTE description, the system can 
achieve an F_Score of 87%. The bad documents 
had a different description style and usually mixed 
the TTE descriptions with general discussion.  

 Prec. Recall F_Score 
Overall 0.7683 0.7155 0.7410 

Averaged per Doc. 0.7686 0.7209 0.7418 
Table 6. Performance on the whole new subset and                 

the averaged performance per document. 
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Figure 7. System performance per document. 

6 Conclusions and Future Work 
In this paper, we explored adapting a supervised 
CRF model for semantic analysis on biomedical 
articles using an active learning framework. It 
abridges the power of the supervised approach and 
expensive human costs. We are also investigating 
the use of other certainty measures, such as aver-
aged field confidence scores over each sentence. 

In the long run we wish to generalize the frame-
work to be able to mine other types of experiments 
within the biomedical research literature and im-
pact research in those domains. 
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