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Abstract

Previous research has shown that syntactic
features are the most informative features
in automatic verb classification. We exper-
iment with a new, rich feature set, extracted
from a large automatically acquired subcate-
gorisation lexicon for English, which incor-
porates information about arguments as well
as adjuncts. We evaluate this feature set us-
ing a set of supervised classifiers, most of
which are new to the task. The best classi-
fier (based on Maximum Entropy) yields the
promising accuracy of 60.1% in classifying
204 verbs to 17 Levin (1993) classes. We
discuss the impact of this result on the state-
of-art, and propose avenues for future work.

1 Introduction

Recent research shows that it is possible, using cur-
rent natural language processing (NLP) and machine
learning technology, to automatically induce lex-
ical classes from corpus data with promising ac-
curacy (Merlo and Stevenson, 2001; Korhonen et
al., 2003; Schulte im Walde, 2006; Joanis et al.,
2007). This research is interesting, since lexi-
cal classifications, when tailored to the application
and domain in question, can provide an effective
means to deal with a number of important NLP

tasks (e.g. parsing, word sense disambiguation, se-
mantic role labeling), as well as enhance perfor-
mance in many applications (e.g. information ex-
traction, question-answering, machine translation)
(Dorr, 1997; Prescher et al., 2000; Swier and Steven-
son, 2004; Dang, 2004; Shi and Mihalcea, 2005).

Lexical classes are useful because they capture
generalizations over a range of (cross-)linguistic
properties. Being defined in terms of similar mean-
ing components and (morpho-)syntactic behaviour
of words (Jackendoff, 1990; Levin, 1993) they
generally incorporate a wider range of properties
than e.g. classes defined solely on semantic grounds
(Miller, 1990). They can be used to build a lexical
organization which effectively captures generaliza-
tions and predicts much of the syntax and semantics
of a new word by associating it with an appropriate
class. This can help compensate for lack of data for
individual words in NLP.

Large-scale exploitation of lexical classes in real-
world or domain-sensitive tasks has not been pos-
sible because existing manually built classifications
are incomprehensive. They are expensive to extend
and do not incorporate important statistical infor-
mation about the likelihood of different classes for
words. Automatic classification is a better alterna-
tive. It is cost-effective and gathers statistical infor-
mation as a side-effect of the acquisition process.

Most work on automatic classification has fo-
cussed on verbs which are typically the main pred-
icates in sentences. Syntactic features have proved
the most informative in verb classification. Exper-
iments have been reported using both (i) deep syn-
tactic features (e.g. subcategorization frames (SCFs))
extracted using parsers and subcategorisation acqui-
sition systems (Schulte im Walde, 2000; Korhonen
et al., 2003; Schulte im Walde, 2006) and (ii) shal-
low ones (e.g. NPs/PPs preceding/following verbs)
extracted using taggers and chunkers (Merlo and
Stevenson, 2001; Joanis et al., 2007).
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(i) correspond closely with features used for
manual classification (Levin, 1993). They have
proved successful in the classification of German
(Schulte im Walde, 2006) and English verbs (Ko-
rhonen et al., 2003). Yet promising results have also
been reported when using (ii) for English verb clas-
sification (Merlo and Stevenson, 2001; Joanis et al.,
2007). This may indicate that (i) are optimal for the
task when combined with additional syntactic infor-
mation from (ii).

We investigate this matter by experimenting with
a new, rich feature set which incorporates informa-
tion about SCFs (arguments) as well as adjuncts. It
was extracted from VALEX, a large automatically
acquired SCF lexicon for English (Korhonen et al.,
2006). We evaluate the feature set thoroughly us-
ing set of supervised classifiers, most of which are
new in verb classification. The best performing clas-
sifier (Maximum Entropy) yields the accuracy of
60.1% on classifying 204 verbs into 17 Levin (1993)
classes. This result is good, considering that we per-
formed no sophisticated feature engineering or se-
lection based on the properties of the target classi-
fication (Joanis et al., 2007). We propose various
avenues for future work.

We introduce our target classification in section 2
and syntactic features in section 3. The classifica-
tion techniques are presented in section 4. Details
of the experimental evaluation are supplied in sec-
tion 5. Section 6 provides discussion and concludes
with directions for future work.

2 Test Verbs and Classes

We adopt as a target classification Levin’s (1993)
well-known taxonomy where verbs taking similar
diathesis alternations are assumed to share meaning
components and are organized into a semantically
coherent class. For instance, the class of “Break
Verbs” (class 45.1) is partially characterized by its
participation in the following alternations:

1. Causative/inchoative alternation:
Tony broke the window ↔ The window broke

2. Middle alternation:
Tony broke the window ↔ The window broke easily

3. Instrument subject alternation:
Tony broke the window with the hammer ↔ The hammer
broke the window

LEVIN CLASS EXAMPLE VERBS
9.1 PUT bury, place, install, mount, put
10.1 REMOVE remove, abolish, eject, extract, deduct
11.1 SEND ship, post, send, mail, transmit
13.5.1 GET win, gain, earn, buy, get
18.1 HIT beat, slap, bang, knock, pound
22.2 AMALGAMATE contrast, match, overlap, unite, unify
29.2 CHARACTERIZE envisage, portray, regard, treat, enlist
30.3 PEER listen, stare, look, glance, gaze
31.1 AMUSE delight, scare, shock, confuse, upset
36.1 CORRESPOND cooperate, collide, concur, mate, flirt
37.3 MANNER OF shout, yell, moan, mutter, murmur

SPEAKING
37.7 SAY say, reply, mention, state, report
40.2 NONVERBAL smile, laugh, grin, sigh, gas

EXPRESSION
43.1 LIGHT EMISSION shine, flash, flare, glow, blaze
45.4 CHANGE OF STATE soften, weaken, melt, narrow, deepen
47.3 MODES OF BEING quake, falter, sway, swirl, teeter

WITH MOTION
51.3.2 RUN swim, fly, walk, slide, run

Table 1: Test classes and example verbs

Alternations are expressed as pairs of SCFs. Addi-
tional properties related to syntax, morphology and
extended meanings of member verbs are specified
with some classes. The taxonomy provides a classi-
fication of 4,186 verb senses into 48 broad and 192
fine-grained classes according to their participation
in 79 alternations involving NP and PP complements.

We selected 17 fine-grained classes and 12 mem-
ber verbs per class (table 2) for experimentation.
The small test set enabled us to evaluate our results
thoroughly. The classes were selected to (i) include
both syntactically and semantically similar and dif-
ferent classes (to vary the difficulty of the classifi-
cation task), and to (ii) have enough member verbs
whose predominant sense belongs to the class in
question (we verified this according to the method
described in (Korhonen et al., 2006)). As VALEX

was designed to maximise coverage most test verbs
had 1000-9000 occurrences in the lexicon.

3 Syntactic Features

We employed as features distributions of SCFs spe-
cific to given verbs. We extracted them from the re-
cent VALEX (Korhonen et al., 2006) lexicon which
provides SCF frequency information for 6,397 En-
glish verbs. VALEX was acquired automatically
from five large corpora and the Web (using up to
10,000 occurrences per verb) using the subcatego-
rization acquisition system of Briscoe and Carroll
(1997). The system incorporates RASP, a domain-
independent robust statistical parser (Briscoe and
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Carroll, 2002), and a SCF classifier which iden-
tifies 163 verbal SCFs. The basic SCFs abstract
over lexically-governed particles and prepositions
and predicate selectional preferences.

We used the noisy unfiltered version of VALEX

which includes 33 SCFs per verb on average1. Some
are genuine SCFs but some express adjuncts (e.g.
I sang in the party could be SCF PP). A lexical
entry for each verb and SCF combination provides
e.g. the frequency of the entry (in active and passive)
in corpora, the POS tags of verb tokens, the argument
heads in argument positions, and the prepositions in
PP slots. We experimented with three feature sets:

1. Feature set 1: SCFs and their frequencies

2. Feature set 2: Feature set 1 with two high frequency
PP frames parameterized for prepositions: the simple PP
(e.g. they apologized to him) and NP-PP (e.g. he removed
the shoes from the bag) frames.

3. Feature set 3: Feature set 2 with three additional high
frequency PP frames parameterized for prepositions: the
NP-FOR-NP (e.g. he bought a book for him), NP-TO-NP
(e.g. he gave a kiss to her), and OC-AP, EQUI, AS (e.g. he
condemned him as stupid) frames.

In feature sets 2 and 3, 2-5 PP SCFs were refined ac-
cording to the prepositions provided in the VALEX

SCF entries (e.g. PP at, PP on, PP in) because Levin
specifies prepositions with some SCFs / classes. The
scope was restricted to the 3-5 highest ranked PP

SCFs to reduce the effects of sparse data.

4 Classification

4.1 Preparing the Data
A feature vector was constructed for each verb.
VALEX includes 107, 287 and 305 SCF types for fea-
ture sets 1, 2, and 3, respectively. Each feature corre-
sponds to a SCF type, and its value is the relative fre-
quency of the SCF with the verb in question. Some
of the feature values are zero, because most verbs
take only a subset of the possible SCFs.

4.2 Machine Learning Methods
We implemented three methods for classification:
the K nearest neighbours (KNN), support vector ma-
chines (SVM), and maximum entropy (ME). To our
knowledge, only SVM has been previously used for

1The SCF accuracy of this lexicon is 23.7 F-measure, see
(Korhonen et al., 2006) for details.

verb classification. The free parameters were opti-
mised for each feature set by (i) defining the value
range (as explained below), and by (ii) searching for
the optimal value on the training data using 10 fold
cross validation (section 5.2).

4.2.1 K Nearest Neighbours
KNN is a memory-based classification method

based on the distances between verbs in the feature
space. For each verb in the test data, we measure
its distance to each verb in the training data. The
verb class label is the most frequent label in the
top K closest training verbs. We use the entropy-
based Jensen-Shannon (JS) divergence as the dis-
tance measure:

JS(P, Q) = 1
2

ˆ
D(P‖P+Q

2
) + D(Q‖P+Q

2
)
˜

The range of the parameter K is 2-20.

4.2.2 Support Vector Machines
SVM (Vapnik, 1995) tries to find a maximal mar-

gin hyperplane to separate between two groups of
verb feature vectors. In practice, a linear hyperplane
does not always exist. SVM uses a kernel function
to map the original feature vectors to higher dimen-
sion space. The ’maximal margin’ optimizes our
choice of dimensionality to avoid over-fitting. We
use Chang and Lin (2001) ’s LIBSVM library to im-
plement the SVM. Following Hsu et al. (2003), we
use the radial basis function as the kernel function:

K(xi, xj) = exp (−γ||xi − xj ||2), γ > 0

γ and the cost of the error term C (the penalty for
margin errors) are optimized. The search ranges of
Hsu et al. (2003) are used:

C = 2−5, 2−3, . . . , 215, 217 ; γ = 2−17, 2−15, . . . , 21, 23

4.2.3 Maximum Entropy
ME constructs a probabilistic model that maxi-

mizes entropy on test data subject to a set of feature
constraints. If verb x is in class 10.1 and takes the
SCF 49 (NP-PP) with the relative frequency of 0.6 in
feature function f , we have

f(x, y) = 0.6 if y = 10.1 and x = 49

The expected value of a feature f with respect to the
empirical distribution (training data) is

Ẽ(f) ≡Px,y p̃(x, y)f(x, y)

The expected value of the feature f (on test data)
with respect to the model p(y|x) is
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E(f) ≡Px,y p̃(x)p(y|x)f(x, y)

p̃(x) is the empirical distribution of x in the train-
ing data. We constrain E(f) to be the same as Ẽ(f)

E(f) = Ẽ(f)

The model must maximize the entropy H(Y |X)
H(Y |X) ≡ −Px,y p̃(x)p(y|x) log p(y|x)

The constraint-optimization problem is solved by
the Lagrange multiplier (Pietra et al., 1997). We
used Zhang (2004)’s maximum entropy toolkit for
implementation. The number of iterations i (5-50)
of the parameter estimation algorithm is optimised.

5 Experiments

5.1 Methodology
We split the data into training and test sets using two
methods. The first is ’leave one out’ cross-validation
where one verb in each class is held out as test data,
and the remaining N-1 (i.e. 11) verbs are used as
training data. The overall accuracy is the average
accuracy of N rounds. The second method is re-
sampling. For each class, 3 verbs are selected ran-
domly as test data, and 9 are used as training data.
The process is repeated 30 times, and the average
result is recorded.

5.2 Measures
The methods are evaluated using first accuracy – the
percentage of correct classifications out of all the
classifications:

Accuracy = truePositives
truePositives+falseNegatives

When evaluating the performance at class level, pre-
cision and recall are calculated as follows:

Precision = truePositives
truePositives+falsePositives

Recall = truePositives
truePositives+falseNegatives

F-score is the balance over recall and precision. We
report the average F-score over the 17 classes. Given
there are 17 classes in the data, the accuracy of ran-
domly assigning a verb into one of the 17 classes is
1/17 ≈ 5.8%.

5.3 Results from Quantitative Evaluation
Table 2 shows the average performance of each clas-
sifier and feature set according to ’leave one out’
cross-validation2. Each classifier performs consid-
erably better than the random baseline. The simple

2Recall is not shown as it is identical here with accuracy.

KNN method produces the lowest accuracy (44.1-
54.9) and SVM and ME the best (47.1-57.9 and 47.5-
59.3, respectively).

The performance of all methods improves sharply
when moving from the feature set 1 to the refined
feature set 2: both accuracy and F-measure improve
by over 10%. When moving from feature set 2 to
the sparser feature set 3 (which includes a higher
number of low frequency PP features) KNN worsens
clearly (c. 5% in accuracy and F-measure) while the
improvement in other methods is very small. This
suggests that KNN deals worse than other methods
with sparse data.

The resampling results in table 3 reveal that some
classifiers perform worse than others when less
training data is available3. KNN produces consid-
erably lower results, particularly with the sparse
feature set 3: 28.2 F-measure vs. 48.2 with cross-
validation. Also SVM performs worse with fea-
ture set 3: 54.6 F-measure vs. 58.2 with cross-
validation. ME thus appears the most robust method
with smaller training data, producing results compa-
rable with those in cross-validation.

Figure 1 shows the F-measure for 17 individual
classes when the methods are used with feature set
3. Levin classes 40.2, 29.2, and 37.3 (see table 2)
(the ones taking fewer prepositions with higher fre-
quency) have the best average performance (65% or
more), and classes 47.3, 45.4 and 18.1 the worst
(40% or less). ME outperforms SVM with 9 of the
17 classes.

5.4 Qualitative Evaluation
We did some qualitative analysis to trace the ori-
gin of error types produced by ME with feature set
3. Examination of the worst performing class 47.3
(MODES OF BEING INVOLVING MOTION verbs) il-
lustrates well the various error types. 10 of the 12
verbs in this class are classified incorrectly:

• 3 in class 43.1 (LIGHT EMISSION verbs): Verbs in 47.3
and 43.1 describe intrinsic properties of their subjects
(e.g. a jewel sparkles, a flag flutters). Their similar al-
ternations and PP SCFs make it difficult to separate them
on syntactic grounds.

• 2 in class 51.3.2 (RUN verbs): 47.3 and 51.3.2 share the
meaning component of motion. Their members take sim-
ilar alternations and SCFs, which causes the confusion.

3Recall that the amount of training data is smaller with re-
sampling evaluation, see section 5.2.
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Feature set 1 Feature set 2 Feature set 3
ACC P F ACC P F ACC P F

RAND 5.8 5.8 5.8
KNN 44.1 48.4 44.0 54.9 56.9 53.9 49.5 47.0 48.2
ME 47.5 49.4 47.6 59.3 61.4 59.9 59.3 61.9 60.0

SVM 47.1 50.4 47.8 57.8 59.4 57.9 57.8 60.1 58.2

Table 2: ’Leave one out’ cross-validation results for KNN, ME, and SVM

Feature set 1 Feature set 2 Feature set 3
ACC P F ACC P F ACC P F

RAND 5.8 5.8 5.8
KNN 37.3 39.9 36.5 42.7 47.2 42.6 27.1 34.2 28.2
ME 47.1 47.3 47.0 58.1 59.1 58.1 60.1 60.5 59.8

SVM 47.3 50.2 47.7 56.8 59.5 57.1 54.4 56.5 54.6

Table 3: Re-sampling results for KNN, ME, and SVM

• 2 in class 37.7 (SAY verbs) and 1 in class 37.3 (MANNER
OF SPEAKING verbs): 47.3 differs in semantics and syn-
tax from 37.7 and 37.3. The confusion is due to idiosyn-
cratic properties of individual verbs (e.g. quake, wiggle).

• 1 in class 36.1 (CORRESPOND verbs): 47.3 and 36.1 are
semantically very different, but their members take simi-
lar intransitive and PP SCFs with high frequency.

• 1 in class 45.4 (OTHER CHANGE OF STATE verbs):
Classes 47.3 and 45.3 are semantically different. Their
similar PP SCFs explains the misclassification.

Most errors concern classes which are in fact se-
mantically related. Unfortunately there is no gold
standard which would comprehensively capture the
semantic relatedness of Levin classes. Other er-
rors concern semantically unrelated but syntactically
similar classes – cases which we may be able to ad-
dress in the future with careful feature engineering.
Some errors relate to syntactic idiosyncracy. These
show the true limits of lexical classification - the fact
that the correspondence between the syntax and se-
mantics of verbs is not always perfect.

6 Discussion and Conclusion

Our best results (e.g. 60.1 accuracy and 59.8 F-
measure of ME) are good, considering that no so-
phisticated feature engineering / selection based on
the properties of the target classification was per-
formed in these experiments. The closest compari-
son point is the recent experiment reported by Joanis
et al. (2007) which involved classifying 835 English
verbs to 14 Levin classes using SVM. Features were
specifically selected via analysis of alternations that

are used to characterize Levin classes. Both shal-
low syntactic features (syntactic slots obtained us-
ing a chunker) and deep ones (SCFs extracted using
Briscoe and Carroll’s system) were used. The accu-
racy was 58% with the former and only 38% with
the latter. This experiment is not directly compa-
rable with ours as we classified a smaller number
of verbs (204) to a higher number of Levin classes
(17) (i.e. we had less training data) and did not se-
lect the optimal set of features using Levin’s alter-
nations. We nevertheless obtained better accuracy
with our best performing method, and better accu-
racy (47%) with the same method (SVM) when the
comparable feature set 1 was acquired using the very
same subcategorization acquisition system.

It is likely that using larger and noisier SCF data
explains the better result, suggesting that rich syn-
tactic features incorporating information about both
arguments and adjuncts are ideal for verb classifica-
tion. Further experiments are required to determine
the optimal set of features. In the future, we plan
to experiment with different (noisy and filtered) ver-
sions of VALEX and add to the comparison a shal-
lower set of features (e.g. NP and PP slots in VALEX

regardless of the specific SCFs). We will also im-
prove the features e.g. by enriching them with addi-
tional syntactic information available in VALEX lex-
ical entries.
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Figure 1: Class level F-score for feature set 3 (cross-validation)
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