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Abstract 

This paper proposes a semi-supervised learn-
ing method for relation extraction. Given a 
small amount of labeled data and a large 
amount of unlabeled data, it first bootstraps a 
moderate number of weighted support vectors 
via SVM through a co-training procedure with 
random feature projection and then applies a 
label propagation (LP) algorithm via the boot-
strapped support vectors. Evaluation on the 
ACE RDC 2003 corpus shows that our method 
outperforms the normal LP algorithm via all 
the available labeled data without SVM boot-
strapping. Moreover, our method can largely 
reduce the computational burden. This sug-
gests that our proposed method can integrate 
the advantages of both SVM bootstrapping 
and label propagation.  

1 Introduction 

Relation extraction is to detect and classify various 
predefined semantic relations between two entities 
from text and can be very useful in many NLP ap-
plications such as question answering, e.g. to an-
swer the query “Who is the president of the United 
States?”, and information retrieval, e.g. to expand 
the query “George W. Bush” with “the president of 
the United States” via his relationship with “the 
United States”. 

During the last decade, many methods have 
been proposed in relation extraction, such as su-
pervised learning (Miller et al 2000; Zelenko et al 
2003; Culota and Sorensen 2004; Zhao and Grish-
man 2005; Zhang et al 2006; Zhou et al 2005, 
2006), semi-supervised learning (Brin 1998; 
Agichtein and Gravano 2000; Zhang 2004; Chen et 
al 2006), and unsupervised learning (Hasegawa et 
al 2004; Zhang et al 2005). Among these methods, 
supervised learning-based methods perform much 

better than the other two alternatives. However, 
their performance much depends on the availability 
of a large amount of manually labeled data and it is 
normally difficult to adapt an existing system to 
other applications and domains. On the other hand, 
unsupervised learning-based methods do not need 
the definition of relation types and the availability 
of manually labeled data. However, they fail to 
classify exact relation types between two entities 
and their performance is normally very low. To 
achieve better portability and balance between hu-
man efforts and performance, semi-supervised 
learning has drawn more and more attention re-
cently in relation extraction and other NLP appli-
cations. 

This paper proposes a semi-supervised learning 
method for relation extraction. Given a small 
amount of labeled data and a large amount of unla-
beled data, our proposed method first bootstraps a 
moderate number of weighted support vectors from 
all the available data via SVM using a co-training 
procedure with random feature projection and then 
applies a label propagation (LP) algorithm to cap-
ture the manifold structure in both the labeled and 
unlabeled data via the bootstrapped support vectors. 
Compared with previous methods, our method can 
integrate the advantages of both SVM bootstrap-
ping in learning critical instances for the labeling 
function and label propagation in capturing the 
manifold structure in both the labeled and unla-
beled data to smooth the labeling function. 

The rest of this paper is as follows. In Section 2, 
we review related semi-supervised learning work 
in relation extraction. Then, the LP algorithm via 
bootstrapped support vectors is proposed in Sec-
tion 3 while Section 4 shows the experimental re-
sults. Finally, we conclude our work in Section 5.  

2 Related Work 

Generally, supervised learning is preferable to un-
supervised learning due to prior knowledge in the 
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annotated training data and better performance. 
However, the annotated data is usually expensive 
to obtain. Hence, there has been growing interest in 
semi-supervised learning, aiming at inducing clas-
sifiers by leveraging a small amount of labeled 
data and a large amount of unlabeled data. Related 
work in relation extraction using semi-supervised 
learning can be classified into two categories: 
bootstrapping-based (Brin 1998; Agichtein and 
Gravano 2000; Zhang 2004) and label propaga-
tion(LP)-based (Chen et al 2006).  

Currently, bootstrapping-based methods domi-
nate semi-supervised learning in relation extraction. 
Bootstrapping works by iteratively classifying 
unlabeled instances and adding confidently classi-
fied ones into labeled data using a model learned 
from augmented labeled data in previous iteration. 
Brin (1998) proposed a bootstrapping-based 
method on the top of a self-developed pattern 
matching-based classifier to exploit the duality 
between patterns and relations. Agichtein and Gra-
vano (2000) shared much in common with Brin 
(1998). They employed an existing pattern match-
ing-based classifier (i.e. SNoW) instead. Zhang 
(2004) approached the much simpler relation clas-
sification sub-task by bootstrapping on the top of 
SVM. Although bootstrapping-based methods have 
achieved certain success, one problem is that they 
may not be able to well capture the manifold struc-
ture among unlabeled data. 

As an alternative to the bootstrapping-based 
methods, Chen et al (2006) employed a LP-based 
method in relation extraction. Compared with 
bootstrapping, the LP algorithm can effectively 
combine labeled data with unlabeled data in the 
learning process by exploiting the manifold struc-
ture (e.g. the natural clustering structure) in both 
the labeled and unlabeled data. The rationale be-
hind this algorithm is that the instances in high-
density areas tend to carry the same labels. The LP 
algorithm has also been successfully applied in 
other NLP applications, such as word sense disam-
biguation (Niu et al 2005), text classification 
(Szummer and Jaakkola 2001; Blum and Chawla 
2001; Belkin and Niyogi 2002; Zhu and Ghahra-
mani 2002; Zhu et al 2003; Blum et al 2004), and 
information retrieval (Yang et al 2006). However, 
one problem is its computational burden, espe-
cially when a large amount of labeled and unla-
beled data is taken into consideration. 

In order to take the advantages of both boot-
strapping and label propagation, our proposed 
method propagates labels via bootstrapped support 
vectors. On the one hand, our method can well 
capture the manifold structure in both the labeled 
and unlabeled data. On the other hand, our method 
can largely reduce the computational burden in the 
normal LP algorithm via all the available data. 

3 Label Propagation via Bootstrapped 
Support Vectors 

The idea behind our LP algorithm via bootstrapped 
support vectors is that, instead of propagating la-
bels through all the available labeled data, our 
method propagates labels through critical instances 
in both the labeled and unlabeled data. In this pa-
per, we use SVM as the underlying classifier to 
bootstrap a moderate number of weighted support 
vectors for this purpose. This is based on an as-
sumption that the manifold structure in both the 
labeled and unlabeled data can be well preserved 
through the critical instances (i.e. the weighted 
support vectors bootstrapped from all the available 
labeled and unlabeled data). The reason why we 
choose SVM is that it represents the state-of-the-
art in machine learning research and there are good 
implementations of the algorithm available. In par-
ticular, SVMLight (Joachims 1998) is selected as 
our classifier. For efficiency, we apply the one vs. 
others strategy, which builds K classifiers so as to 
separate one class from all others. Another reason 
is that we can adopt the weighted support vectors 
returned by the bootstrapped SVMs as the critical 
instances, via which label propagation is done.  

3.1 Bootstrapping Support Vectors 

This paper modifies the SVM bootstrapping algo-
rithm BootProject(Zhang 2004) to bootstrap sup-
port vectors. Given a small amount of labeled data 
and a large amount of unlabeled data, the modified 
BootProject algorithm bootstraps on the top of  
SVM by iteratively classifying  unlabeled  in-
stances  and moving   confidently  classified  ones  
into  labeled data using a model learned from the 
augmented labeled data in previous  iteration,  until 
not enough unlabeled instances can be classified 
confidently. Figure 1 shows the modified BootPro-
ject algorithm for bootstrapping support vectors.  
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_________________________________________ 
Assume: 

L :  the labeled data; 
U :  the unlabeled data; 
S :  the batch size (100 in our experiments); 
P :  the number of views(feature projections); 
r :   the number of classes (including all the rela-

tion (sub)types and the non-relation)  
 

BEGIN 

REPEAT 
FOR i = 1 to P DO 

Generate projected feature space iF  from 
the original feature space F ; 

Project both L  and U  onto iF , thus gener-
ate iL  and iU ; 

Train SVM classifier ijSVM  on iL  for each 

class )1( rjr j K= ; 

Run ijSVM  on iU  for each class 

)1( rjr j K=  
END FOR 
Find (at most) S instances in U  with the 

highest agreement (with threshold 70% in 
our experiments) and the highest average 
SVM-returned confidence value (with 
threshold 1.0 in our experiments); 

Move them from U to L; 
UNTIL not enough unlabeled instances (less 

than 10 in our experiments) can be confidently 
classified; 

Return all the (positive and negative) support 
vectors  included in all the latest SVM classifi-
ers ijSVM  with their collective weight (abso-
lute alpha*y) information as the set of 
bootstrapped support vectors to act as the la-
beled data in the LP algorithm; 

Return U (those hard cases which can not be 
confidently classified) to act as the unlabeled 
data in the LP algorithm; 

END 
_________________________________________ 

Figure 1: The algorithm  
for bootstrapping support vectors 

 

In particular, this algorithm generates multiple 
overlapping “views” by projecting from the origi-
nal feature space. In this paper, feature views with 
random feature projection, as proposed in Zhang 
(2004), are explored. Section 4 will discuss this 
issue in more details. During the iterative training 
process, classifiers trained on the augmented la-
beled data using the projected views are then asked 
to vote on the remaining unlabeled instances and 
those with the highest probability of being cor-
rectly labeled are chosen to augment the labeled 
data.  

During the bootstrapping process, the support 
vectors included in all the trained SVM classifiers 
(for all the relation (sub)types and the non-relation) 
are bootstrapped (i.e. updated) at each iteration. 
When the bootstrapping process stops, all the 
(positive and negative) support vectors included in 
the SVM classifiers are returned as bootstrapped 
support vectors with their collective weights (abso-
lute a*y) to act as the labeled data in the LP algo-
rithm and all the remaining unlabeled instances (i.e. 
those hard cases which can not be confidently clas-
sified in the bootstrapping process) in the unla-
beled data are returned to act as the unlabeled data 
in the LP algorithm. Through SVM bootstrapping, 
our LP algorithm will only depend on the critical 
instances (i.e. support vectors with their weight 
information bootstrapped from all the available 
labeled and unlabeled data) and those hard in-
stances, instead of all the available labeled and 
unlabeled data.  

3.2 Label Propagation 

In the LP algorithm (Zhu and Ghahramani 2002), 
the manifold structure in data is represented as a 
connected graph. Given the labeled data (the above 
bootstrapped support vectors with their weights) 
and unlabeled data (the remaining hard instances in 
the unlabeled data after bootstrapping, including 
all the test instances for evaluation), the LP algo-
rithm first represents labeled and unlabeled in-
stances as vertices in a connected graph, then 
propagates the label information from any vertex 
to nearby vertex through weighted edges and fi-
nally infers the labels of unlabeled instances until a 
global stable stage is achieved. Figure 2 presents 
the label propagation algorithm on bootstrapped 
support vectors in details. 
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_________________________________________
Assume:  

Y : the rn * labeling matrix, where ijy  repre-

sents the probability of vertex )1( nixi K=  
with label )1( rjr j K=  (including the non-
relation label); 

LY : the top l  rows of 0Y . LY corresponds to the 
l  labeled instances; 

UY : the bottom u  rows of 0Y . UY corresponds 
to the u  unlabeled instances; 

T : a nn *  matrix, with ijt  is the probability 
jumping from vertex ix to vertex jx ; 

 
BEGIN (the algorithm) 

Initialization:  
1) Set the iteration index 0=t ;  
2) Let 0Y  be the initial soft labels attached to 

each vertex;  
3) Let 0

LY  be consistent with the labeling in 
the labeled (including all the relation 
(sub)types and the non-relation) data, where 

0
ijy = the weight of the bootstrapped support 

vector if ix  has label jr  (Please note that 

jr  can be the non-relation label) and 0 oth-
erwise;  

4) Initialize 0
UY ; 

REPEAT 
Propagate the labels of any vertex to nearby 

vertices by tt YTY =+1 ; 
Clamp the labeled data, that is, replace 1+t

LY  
with 0

LY ; 
UNTIL Y converges(e.g. 1+t

LY  converges to 0
LY ); 

Assign each unlabeled instance with a label: for 
)( nilxi ≤p , find its label with 

j
ijymaxarg ; 

END (the algorithm) 
_________________________________________ 

Figure 2: The LP algorithm 
 
 

Here, each vertex corresponds to an instance, 
and the edge between any two instances ix  and jx  

is weighted by ijw  to measure their similarity. In 
principle, larger edge weights allow labels to travel 
through easier. Thus the closer the instances are, 
the more likely they have similar labels. The algo-
rithm first calculates the weight ijw  using a kernel, 

then transforms it to ∑
=

=→=
n

k
kjijij wwijpt

1

/)( , 

which measures the probability of propagating a 
label from instance jx to instance ix , and finally 

normalizes ijt row by row using ∑
=

=
n

k
ikijij ttt

1
/  to 

maintain the class probability interpretation of the 
labeling matrix Y .  

During the label propagation process, the label 
distribution of the labeled data is clamped in each 
loop using the weights of the bootstrapped support 
vectors and acts like forces to push out labels 
through the unlabeled data. With this push origi-
nates from the labeled data, the label boundaries 
will be pushed much faster along edges with larger 
weights and settle in gaps along those with lower 
weights. Ideally, we can expect that ijw  across 
different classes should be as small as possible and 

ijw  within the same class as big as possible. In this 
way, label propagation happens within the same 
class most likely. 

This algorithm has been shown to converge to 
a unique solution (Zhu and Ghahramani 2002), 
which can be obtained without iteration in theory, 
and the initialization of YU

0 (the unlabeled data) is 
not important since YU

0 does not affect its estima-
tion. However, proper initialization of YU

0 actually 
helps the algorithm converge more rapidly in prac-
tice. In this paper, each row in YU

0 is initialized to 
the average similarity with the labeled instances. 

4 Experimentation 

This paper uses the ACE RDC 2003 corpus pro-
vided by LDC for evaluation. This corpus is gath-
ered from various newspapers, newswires and 
broadcasts.  
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Method LP via bootstrapped 
(weighted) SVs 

LP via bootstrapped  
(un-weighted) SVs 

LP w/o SVM  
bootstrapping SVM (BootProject) SVM  

Bootstrapping 
5% 46.5 (+1.4) 44.5 (+1.7) 43.1 (+1.0) 35.4 (-) 40.6 (+0.9) 

10% 48.6 (+1.7) 46.5 (+2.1) 45.2 (+1.5) 38.6 (-) 43.1 (+1.4) 
25% 51.7 (+1.9) 50.4 (+2.3) 49.6 (+1.8) 43.9 (-) 47.8 (+1.7) 
50% 53.6 (+1.8) 52.6 (+2.2) 52.1 (+1.7) 47.2 (-) 50.5 (+1.6) 
75% 55.2 (+1.3) 54.5 (+1.8) 54.2 (+1.2) 53.1 (-) 53.9 (+1.2) 
100% 56.2 (+1.0) 55.8 (+1.3) 55.6 (+0.8) 55.5 (-) 55.8 (+0.7) 

Table 1: Comparison of different methods using a state-of-the-art linear kernel on the ACE RDC 2003 
corpus (The numbers inside the parentheses indicate the increases in F-measure if we add the ACE RDC 

2004 corpus as the unlabeled data) 

4.1 Experimental Setting 

In the ACE RDC 2003 corpus, the training data 
consists of 674 annotated text documents (~300k 
words) and 9683 instances of relations. During 
development, 155 of 674 documents in the training 
set are set aside for fine-tuning. The test set is held 
out only for final evaluation. It consists of 97 
documents (~50k words) and 1386 instances of 
relations. The ACE RDC 2003 task defines 5 rela-
tion types and 24 subtypes between 5 entity types, 
i.e. person, organization, location, facility and GPE. 
All the evaluations are measured on the 24 sub-
types including relation identification and classifi-
cation. 

In all our experiments, we iterate over all pairs 
of entity mentions occurring in the same sentence 
to generate potential relation instances1. For better 
evaluation, we have adopted a state-of-the-art lin-
ear kernel as similarity measurements. In our linear 
kernel, we apply the same feature set as described 
in a state-of-the-art feature-based system (Zhou et 
al 2005): word, entity type, mention level, overlap, 
base phrase chunking, dependency tree, parse tree 
and semantic information. Given above various 
lexical, syntactic and semantic features, multiple 
overlapping feature views are generated in the 
bootstrapping process using random feature projec-
tion (Zhang 2004). For each feature projection in 
bootstrapping support vectors, a feature is ran-
domly selected with probability p and therefore the 
eventually projected feature space has p*F features 
                                                           
1  In this paper, we only measure the performance of 

relation extraction on “true” mentions with “true” 
chaining of co-reference (i.e. as annotated by the cor-
pus annotators) in the ACE corpora. We also explic-
itly model the argument order of the two mentions 
involved and only model explicit relations because of 
poor inter-annotator agreement in the annotation of 
implicit relations and their limited number. 

on average, where F is the size of the original fea-
ture space. In this paper, p and the number of dif-
ferent views are fine-tuned to 0.5 and 10 2 
respectively using 5-fold cross validation on the 
training data of the ACE RDC 2003 corpus. 

4.2 Experimental Results 

Table 1 presents the F-measures 3  (the numbers 
outside the parentheses) of our algorithm using the 
state-of-the-art linear kernel on different sizes of 
the ACE RDC training data with all the remaining 
training data and the test data4  as the unlabeled 
data on the ACE RDC 2003 corpus. In this paper, 
we only report the performance (averaged over 5 
trials) with the percentages of 5%, 10%, 25%, 50%, 
75% and 100%5. For example, our LP algorithm 
via bootstrapped (weighted) support vectors 
achieves the F-measure of 46.5 if using only 5% of 
the ACE RDC 2003 training data as the labeled 
data and the remaining training data and the test 
data in this corpus as the unlabeled data. Table 1 

                                                           
2 This suggests that the modified BootProject algorithm 

in the bootstrapping phase outperforms the SelfBoot 
algorithm (with p=1.0 and m=1) which uses all the 
features as the only view. In the related NLP literature, 
co-training has also shown to typically outperform 
self-bootstrapping. 

3 Our experimentation also shows that most of perform-
ance improvement with either bootstrapping or label 
propagation comes from gain in recall. Due to space 
limitation, this paper only reports the overall F-
measure. 

4  In our label propagation algorithm via bootstrapped 
support vectors, the test data is only included in the 
second phase (i.e. the label propagation phase) and not 
used in the first phase (i.e. bootstrapping support vec-
tors). This is to fairly compare different semi-
supervised learning methods. 

5 We have tried less percentage than 5%. However, our 
experiments show that using much less data will suffer 
from performance un-stability. Therefore, we only re-
port the performance with percentage not less than 5%. 
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also compares our method with SVM and the 
original SVM bootstrapping algorithm BootPro-
ject(i.e. bootstrapping on the top of SVM with fea-
ture projection, as proposed in Zhang (2004)). 
Finally, Table 1 compares our LP algorithm via 
bootstrapped (weighted by default) support vectors 
with other possibilities, such as the scheme via 
bootstrapped (un-weighted, i.e. the importance of 
support vectors is not differentiated) support vec-
tors and the scheme via all the available labeled 
data (i.e. without SVM bootstrapping). Table 1 
shows that: 
1) Inclusion of unlabeled data using semi-

supervised learning, including the SVM boot-
strapping algorithm BootProject, the normal 
LP algorithm via all the available labeled and 
unlabeled data without SVM bootstrapping, 
and our LP algorithms via bootstrapped (either 
weighted or un-weighted) support vectors, 
consistently improves the performance, al-
though semi-supervised learning has shown to 
typically decrease the performance when a lot 
of (enough) labeled data is available (Nigam 
2001).  This may be due to the insufficiency of 
labeled data in the ACE RDC 2003 corpus. 
Actually, most of relation subtypes in the two 
corpora much suffer from the data sparseness 
problem (Zhou et al 2006).  

2) All the three LP algorithms outperform the 
state-of-the-art SVM classifier and the SVM 
bootstrapping algorithm BootProject. Espe-
cially, when a small amount of labeled data is 
available, the performance improvements by 
the LP algorithms are significant. This indi-
cates the usefulness of the manifold structure 
in both labeled and unlabeled data and the 
powerfulness of the LP algorithm in modeling 
such information.  

3) Our LP algorithms via bootstrapped (either 
weighted or un-weighted) support vectors out-
performs the normal LP algorithm via all the 
available labeled data w/o SVM bootstrapping. 
For example, our LP algorithm via boot-
strapped (weighted) support vectors outper-
forms the normal LP algorithm from 0.6 to 3.4 
in F-measure on the ACE RDC 2003 corpus 
respectively when the labeled data ranges from 
100% to 5%. This suggests that the manifold 
structure in both the labeled and unlabeled data 
can be well preserved via bootstrapped support 

vectors, especially when only a small amount 
of labeled data is available. This implies that 
weighted support vectors may represent the 
manifold structure (e.g. the decision boundary 
from where label propagation is done) better 
than the full set of data – an interesting result 
worthy more quantitative and qualitative justi-
fication in the future work.   

4) Our LP algorithms via bootstrapped (weighted) 
support vectors perform better than LP algo-
rithms via bootstrapped (un-weighted) support 
vectors by ~1.0 in F-measure on average. This 
suggests that bootstrapped support vectors with 
their weights can better represent the manifold 
structure in all the available labeled and unla-
beled data than bootstrapped support vectors 
without their weights. 

5) Comparison of SVM, SVM bootstrapping and 
label propagation with bootstrapped (weighted) 
support vectors shows that both bootstrapping 
and label propagation contribute much to the 
performance improvement. 
Table 1 also shows the increases in F-measure 

(the numbers inside the parentheses) if we add all 
the instances in the ACE RDC 20046 corpus into 
the ACE RDC 2003 corpus in consideration as 
unlabeled data in all the four semi-supervised 
learning methods. It shows that adding more unla-
beled data can consistently improve the perform-
ance. For example, compared with using only 5% 
of the ACE RDC 2003 training data as the labeled 
data and the remaining training data and the test 
data in this corpus as the unlabeled data, including 
the ACE RDC 2004 corpus as the unlabeled data 
increases the F-measures of 1.4 and 1.0 in our LP 
algorithm and the normal LP algorithm respec-
tively. Table 1 shows that the contribution grows 
first when the labeled data begins to increase and 
reaches a maximum of ~2.0 in F-measure at a cer-
tain point. 

Finally, it is found in our experiments that 
critical and hard instances normally occupy only 
15~20% (~18% on average) of all the available 
labeled and unlabeled data. This suggests that, 
through bootstrapped support vectors, our LP algo-
                                                           
6  Compared with the ACE RDC 2003 task, the ACE 

RDC 2004 task defines two more entity types, i.e. 
weapon and vehicle, much more entity subtypes, and 
different 7 relation types and 23 subtypes between 7 
entity types. The ACE RDC 2004 corpus from LDC 
contains 451 documents and 5702 relation instances. 
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rithm can largely reduce the computational burden 
since it only depends on the critical instances (i.e. 
bootstrapped support vectors with their weights) 
and those hard instances.   

5 Conclusion 

This paper proposes a new effective and efficient 
semi-supervised learning method in relation ex-
traction. First, a moderate number of weighted 
support vectors are bootstrapped from all the avail-
able labeled and unlabeled data via SVM through a 
co-training procedure with feature projection. Here, 
a random feature projection technique is used to 
generate multiple overlapping feature views in 
bootstrapping using a state-of-the-art linear kernel. 
Then, a LP algorithm is applied to propagate labels 
via the bootstrapped support vectors, which, to-
gether with those hard unlabeled instances and the 
test instances, are represented as vertices in a con-
nected graph. During the classification process, the 
label information is propagated from any vertex to 
nearby vertex through weighted edges and finally 
the labels of unlabeled instances are inferred until a 
global stable stage is achieved.  In this way, the 
manifold structure in both the labeled and unla-
beled data can be well captured by label propaga-
tion via bootstrapped support vectors. Evaluation 
on the ACE RDC 2004 corpus suggests that our LP 
algorithm via bootstrapped support vectors can 
take the advantages of both SVM bootstrapping 
and label propagation.  

For the future work, we will systematically 
evaluate our proposed method on more corpora 
and explore better metrics of measuring the simi-
larity between two instances. 
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