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Abstract

This paper presents an HMM-based
chunk tagger for Hindi. Various tagging
schemes for marking chunk boundaries
are discussed along with their results.
Contextual information is incorporated
into the chunk tags in the form of part-
of-speech (POS) information. This in-
formation is also added to the tokens
themselves to achieve better precision.
Error analysis is carried out to reduce
the number of common errors. It is
found that for certain classes of words,
using the POS information is more ef-
fective than using a combination of
word and POS tag as the token. Fi-
nally, chunk labels are also marked on
the chunks.

1 Introduction
1.1 Motivation and Problem Statement
A robust chunker or shallow parser has emerged
as an important component in a variety of NLP
applications. It is employed in information ex-
traction, named entity identification, search, and
even in machine translation. While chunkers may
be built using handcrafted linguistic rules, these
tend to be fragile, need a relatively long time to
develop because of many special cases, and sat-
urate quickly. The task of chunking is ideally
suited for machine learning because of robustness
and relatively easy training.

A chunker or shallow parser identifies simple
or non-recursive noun phrases, verb groups and

simple adjectival and adverbial phrases in running
text. In this work, the shallow parsing task has
been broken up into two subtasks: first, identi-
fying the chunk boundaries and second, labelling
the chunks with their syntactic categories.

The first sub-problem is to build a chunker that
takes a text in which words are tagged with part
of speech (POS) tags as its input, and marks the
chunk boundaries in its output. Moreover, the
chunker is to be built by using machine learn-
ing techniques requiring only modest amount of
training data. The second sub-problem is to label
the chunks with their syntactic categories.

The presented work aims at building a chun-
ker for Hindi. Hindi is spoken by approximately
half a billion people in India. It is a relatively free
word order language with simple morphology (al-
beit a little more complex than that of English).
At present, no POS taggers or chunkers are avail-
able for Hindi.

1.2 Survey of Related Work
Chunking has been studied for English and other
languages, though not very extensively. The earli-
est work on chunking based on machine learning
goes to (Church K, 1988) for English. (Ramshaw
and Marcus, 1995) used transformation based
learning using a large annotated corpus for En-
glish. (Skut and Brants, 1998) modified Church’s
approach, and used standard HMM based tagging
methods to model the chunking process. (Zhou,et
al., 2000) continued using the same methods, and
achieved an accuracy of 91.99% precision and
92.25% recall using a contextual lexicon.

(Kudo and Matsumoto, 2001) use support vec-
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tor machines for chunking with 93.48% accuracy
for English. (Veenstra and Bosch, 2000) use
memory based phrase chunking with accuracy of
91.05% precision and 92.03% recall for English.
(Osborne, 2000) experimented with various sets
of features for the purpose of shallow parsing.

In this work, we have used HMM based chunk-
ing. We report on a number of experiments show-
ing the effect of different encoding methods on
accuracy. Different encodings of the input show
the effect of including either words only, POS tags
only, or a combination thereof, in training. Their
effect on transition probabilities is also studied.
We do not use any externally supplied lexicon.
Analogous to (Zhou,et al., 2000), we found that
for certain POS categories, a combination of word
and the POS category must be used in order to
obtain good results. We report on detailed ex-
periments which show the effect of each of these
combinations on the accuracy. This experience
can also be used to build chunkers for other lan-
guages. The overall accuracy reached for Hindi
is 92.63% precision with 100% recall for chunk
boundaries.

The rest of the paper is structured as follows.
Section 2 discusses the problem formulation and
reports the results of some initial experiments. In
Section 3, we present a different representation of
chunks which significantly increased the accuracy
of chunking. In Section 4, we present a detailed
error analysis, based on which changes in chunk
tags are carried out. These changes increased the
accuracy. Section 5 describes experiments on la-
belling of chunks using rule-based and statistical
methods.

2 Initial Experiments
Given a sequence of words W n =
(w1, w2, · · · , wn), wi ∈ W , where W is the word
set and the sequence of corresponding part of
speech (POS) tags T n = (t1, t2, · · · , tn), ti ∈ T

where T is the POS tag set, the aim is to create
most probable chunks of the sequence W n. The
chunks are marked with chunk tag sequence
Cn = (c1, c2, · · · , cn) where ci stands for the
chunk tag corresponding to each word wi, ci ∈ C.
C here is the chunk tag set which may consist
of symbols such as STRT and CNT for each
word marking it as the start or continuation of

a chunk. In our experiment, we combine the
corresponding words and POS tags to get a
sequence of new tokens V n = (v1, v2, · · · , vn)
where vi = (wi, ti) ∈ V . Thus the problem is
to find the sequence Cn given the sequence of
tokens V nwhich maximizes the probability
P (Cn

|V n) = P (c1, c2, · · · , cn|v1, v2, · · · , vn),
(1)

which is equivalent to maximizing
P (V n

|Cn)P (Cn).
We assume that given the chunk tags, the to-

kens are statistically independent of each other
and that each chunk tag is probabilistically depen-
dent on the previous k chunk tags ((k + 1)-gram
model). Using chain-rule, the problem reduces to
that of Hidden Markov Model (HMM) given by

maxci∈C

n∏

i=1

P (vi|ci)P (ci+k|ci, · · · , ci+k−1)

(2)
where the probabilities in the first term are emis-
sion probabilities and in the second term are tran-
sition probabilities. The optimal sequence of
chunk tags can be found using the Viterbi algo-
rithm. For training and testing of HMM we have
used the TnT system (Brants, 2000). Since TnT
is implemented up to a tri-gram model, we use a
second order HMM (k = 2) in our study.

Before discussing the possible chunk sets and
the token sets, we consider an example below.
(( sher )) (( hiraN ke pIche ))

lion deer of behind
NN NN PREP PREP
STRT STRT CNT CNT

(( jangal meM )) (( bhAgA . ))
forest in ran .
NN PREP VB SYM
STRT CNT STRT CNT

In this example, the chunk tags considered are
STRT and CNT where STRT indicates that the
new chunk starts at the token which is assigned
this tag and CNT indicated that the token which
is assigned this tag is inside the chunk. We re-
fer to this as 2-tag scheme. Under second-order
HMM, the prediction of chunk tag at ith token is
conditional on the only two previous chunk tags.
Thus in the example, the fact that the chunk termi-
nates at the word pIche (behind) with the POS
tag PREP is not captured in tagging the token
jangal (forest). Thus, the assumptions that the
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tokens given the chunk tags are independent re-
stricts the prediction of subsequent chunk tags. To
overcome this limitation in using TnT, we experi-
mented with additional chunk tags.

We first considered a 3-tag scheme by includ-
ing an additional chunk tag STP which indicates
end of chunk. It was further extended to a 4-
tag scheme by including one more chunk tag
STRT STP to mark the chunks which consist of
a single word. A summary of the different tag
schemes and the tag description is given below.

1. 2-tag Scheme: {STRT, CNT}
2. 3-tag Scheme: {STRT, CNT, STP}
3. 4-tag Scheme: {STRT, CNT, STP,

STRT STP}
where tags stand for:

• STRT: A chunk starts at this token
• CNT: This token lies in the middle of a

chunk
• STP: This token lies at the end of a chunk
• STRT STP: This token lies in a chunk of its

own
We illustrate the three tag schemes using part of
the earlier example sentence.

(( sher )) (( hiraN ke pIche))...
lion deer of behind ...
NN NN PREP PREP ...

2-tag: STRT STRT CNT CNT ...
3-tag: STRT STRT CNT STP ...
4-tag: STRT_ST STRT CNT STP ...

We further discuss the different types of input
tokens used in the experiment. Since the tokens
are obtained by combining the words and POS
tags we considered 4 types of tokens given by

1. Word only
2. POS tag only: Only the part of speech tag of

the word was used
3. Word POStag: A combination of the word

followed by POS tag
4. POStag Word: A combination of POS tag

followed by word.
Note that the order of Word and POS tag in the
token might be important as the TnT module uses
suffix information while carrying out smoothing
of transition and emission probabilities for sparse
data. An example of the Word POStag type of
tokens is given below.

((sher ))((hiraN ke pIche))...
lion deer of behind...
NN NN PREP PREP...

Token:sher_NN hiran_NN ke_PREP pIche_PREP
2-tag:STRT STRT CNT CNT ...

The annotated data set contains Hindi texts of
200,000 words. These are annotated with POS
tags, and chunks are marked and labelled (NP,
VG, JJP, RBP, etc). This annotated corpus was
prepared at IIIT Hyderabad from funds provided
by HP Labs. The POS tags used in the corpus
are based on the Penn tag set. Hewever, there
are a few additional tags for compound nouns and
verbs etc.

Out of the total annotated data, 50,000 tokens
were kept aside as unseen data. A set of 150,000
tokens was used for training the different HMM
representations. This set converted into the ap-
propriate format based on the representation be-
ing used. 20,000 tokens of the unseen data were
used for development testing.

Table 1: Initial Results of Chunking (% Precision)
Word POS POS Word

Word POS
2 Tags 79.21 80.32 81.42 81.85
3 Tags 75.30 71.99 77.05 77.80
4 Tags 70.41 68.25 72.59 73.64

3 Tags 75.30 71.99 77.05 77.80
4→3 Tags 76.95 74.65 78.78 79.56

2 Tags 79.21 80.32 81.42 81.85
3→2 Tags 81.14 79.66 82.58 83.30
4→2 Tags 83.37 82.41 84.89 85.60

The initial results using various tag sets and
token sets are presented in Table 1. The first
three rows show the raw scores of different tag-
ging schemes. To compare across the different
schemes, the output were converted to the re-
duced chunk tag sets which are denoted by 4→3,
4→2 and 3→2 in the table. This ensures that the
measurement metric is the same no matter which
tagging scheme is used, thus allowing us to com-
pare across the tagging schemes. The last three
rows show the result of using

It should be noted that converting from the 4
tag set to 3 or 2 tags results in no loss in infor-
mation. This is because it is trivial to convert
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fromt the 2-tag set to the corresponding 4-tag set
and vice-versa. Even though the information con-
tent in the 3 different chunk tag representations
is the same, using higher tag scheme for training
and then later converting back to 2-tags results in
a significant improvement in the precision of the
tagger. For example, in the case where we took
’Word POSTag’ as the token, using 4-tag set the
original precision was 73.64%. When precision
was measured by reducing the tag set to 3 tags,
we obtained a precision of 79.56%. Four tags re-
duced to two gave the highest precision of 85.6%.
However, these differences may be interpreted as
the result of changing the measurement metric.
This figure of 85.6% may be compared with a pre-
cision of 81.85% obtained when the 2-tag set was
used. Recall in all the cases was 100%.

3 Incorporating POS Context in Output
Tags

We attempted modification of chunk tags us-
ing contextual information. The new output
tags considered were a combination of POS tags
and chunk tags using any one of the chunk
tag schemes discussed in the earlier section.
The new format of chunk tags considered was
POS:ChunkTag, which is illustrated for 2-tag
scheme in the example below.

(( sher )) (( hiraN ke ...
lion deer of ...
NN NN PREP ...

Token: sher_NN hiran_NN ke_PREP...
2-tag: NN:STRT NN:STRT PREP:CNT...

The tokens (V) were left unchanged. Our in-
tention in doing this was to bring in a finer degree
of learning. By having part of speech informa-
tion in the chunk tag, the information about the
POS-tag of the previous word gets incorporated
in the transition probabilities. In the earlier chunk
schemes, this information was lost due to the as-
sumption of independence of tokens given chunk
tags. In other words, part of speech information
would now influence both the transition and emis-
sion probabilities of the model instead of just the
emission probabilities.

We carried out the experiment with these mod-
ified tags. Based on the results in Table 1 for var-
ious tokens, we restricted our choice of tokens to
Word POStags only. Also, while combining POS

tags with chunk tags, the 4-tag scheme was used.
The accuracy with 4-tag scheme was 78.80% and
for 4 → 2 scheme, it turned out to be 88.63%.
This was a significant improvement.

4 Error Analysis and Further
Enhancements

We next carried out the error analysis on the re-
sults of the last experiment. We looked at which
type of words were resulting in the maximum er-
rors, that is, we looked at the frequencies of er-
rors corresponding to the various part of speech.
These figures are given in Table 2. On doing this
analysis we found that a large number of errors
were associated with NN (nouns), VFM (finite
verbs) and JJ (adjectives). Most of these errors
were coming in possibly because of sparsity of
the data. Hence we removed the word information
from these types of input tokens and left only the
POS tag. This gave us an improved precision of
91.04%. Further experiments were carried out on

Table 2: Error Analysis I - With Word POSTag as
the Token and POSTag:ChunkTag as Output Tag

POS Tag Total Total % Error
Errors Tokens

NN 1207 4063 29.71 %
VFM 459 2108 21.77 %
SYM 420 2483 16.92 %
PRP 402 1528 26.31 %
JJ 260 911 28.54 %
PREP 237 2526 9.38 %
NNP 142 389 36.50 %
RP 129 589 21.90 %

the other POS tags. Experiments were done to see
what performed better - a combination of word
and POS tag or the POS tag alone. It was found
that seven groups of words - PRP, QF (quanti-
fiers), QW, RB (adverbs), VRB, VAUX (auxillary
verbs) and RP (particles) performed better with a
combination of word and POS tag as the token.
All the other words were replaced with their POS
tags.

An analysis of the errors associated with punc-
tuations was also done. It was found that the set
of punctuations { ! : ? , ’ } was better at mark-
ing chunks than other symbols. Therefore, these
punctuations were kept in the tokens while the
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other symbols were reduced to a common marker
(SYM).

After performing these steps, the chunker was
tested on the same testing corpus of 20,000 to-
kens. The precision achieved was 92.03% with a
recall of 100% for the development testing data.
Table 3 gives the stepwise summary of results of
this experiment. The first coloumn of the table
gives different token sets described above. Error

Table 3: Stepwise Summary of Results for Iden-
tifying Chunk Boundaries

Method Precision Precision
(4 Tags) (4 → 2)

Adding POS Context
info

78.80 88.63

Reducing NN, JJ, RP
to POS only

83.14 91.04

Limiting word info. to
7 POS groups

84.02 91.79

Limiting punctuation
marks to {! , : ? ’}

84.03 92.03

analysis of this experiment is given in Table 4.
On comparing with Table 2, it may be seen that
the number of errors associated with almost all
the POS types has reduced significantly, thereby
resulting in the improved precision.

Table 4: Error Analysis II
POS Tag Total Total % Error

Errors Tokens
NN 557 4063 13.71%
VFM 200 2108 9.49%
JJ 99 911 10.87%
PRP 84 1528 5.50%
SYM 79 2483 3.18%
RP 64 589 10.87%
CC 61 748 8.16%
QFN 59 310 19.03%

5 Chunk Labels
Once the chunk boundaries are marked, the next
task is to classify the chunk. In our scheme there
are 5 types of chunks - NP (noun phrase), VG
(verb group), JJP (adjectival phrase) RBP (ad-
verbial phrase) and BLK (others). We tried two
methods for deciding chunk labels. One was

based on machine learning while the other was
based on rules.

5.1 HMM Based Chunk Labelling
In this method, the chunk boundary tags are aug-
mented with the chunk labels while learning. For
example, the tags for the last token in a chunk
could have additional information in the form of
the chunk label.

(( sher )) (( hiraN ke
lion deer of
NN NN PREP

Token: sher_NN hiran_NN ke_PREP
2-tag: NN:STRT#NP NN:STRT PREP:CNT

pIche )) (( jangal meM )) ...
behind forest in
PREP NN PREP

Token: pIche_PREP jangal_NN meM_PREP
2-tag: PREP:CNT#NP NN:STRT PREP:CNT#NP

Three schemes for putting chunk labels in the
tags were tried.

• Scheme 1: The token at the start of the chunk
was marked with the chunk label.

• Scheme 2: All the tokens were marked with
the chunk labels.

• Scheme 3: The token at the end of the chunk
was marked with the chunk label. (See ex-
ample above. )

The best results were obtained with scheme 3,
which when reduced to the common metric of 2-
tags only gave a precision of 92.15% (for chunk
boundaries only) which exceeded the result for
chunk boundaries alone (92.03%). The accu-
racy for scheme 3 with the chunk boundaries and
chunk labels together was 90.16%. The corre-
sponding figures for scheme 1 were 91.70% and
90.00%, while for scheme 2 they were 92.02%
and 88.05%.

5.2 Rules Based Chunk Labels
Since there are only five types of chunks, it turns
out that the application of rules to find out the
chunk-type is very effective and gives good re-
sults. An outline of the algorithm used for the
purpose is given below.

• For each chunk, find the last token ti whose
POS does not belong to the set {SYM, RP,
CC, PREP, QF}. (Such tags do not help in
classifying the chunks.)
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• If ti is a noun/pronoun, verb, adjective or ad-
verb, then label the chunk as NP, VG, JJP or
RBP respectively.

• Otherwise, label the chunk as BLK.

In our experiments, we found that over 99% of
the chunks identified were given the correct chunk
labels. Thus, the best method for doing chunk
boundary identification is to train the HMM with
both boundary and syntactic label information to-
gether (as given in Section 6.1). Now given a test
sample, the trained HMM can identify both the
chunk boundaries and labels. The chunk labels
are then dropped to obain data marked with chunk
boundaries only. Now rule based labelling is ap-
plied ( with an accuracy of over 99%) yielding a
precision of 91.70% (test set) for the composite
task.

Table 5: Summary of Chunk Labelling
Method Prec-1 Prec-2
HMM with label at the
start of the chunk

91.70 90.00

HMM with chunk la-
bels for all the tokens

92.02 88.05

HMM with label at the
end of the chunk

92.15 90.16

HMM with label at the
end of the chunk (test
set)

92.63 91.70

Prec-1 - Precision for Chunk Boundaries
Prec-2 - Precision for Chunk Boundaries and
Chunk Labels

6 Conclusions

In this paper, we have studied HMM based chunk-
ing for Hindi. We tried out several schemes for
chunk labels and input tokens. We found that for
a certain type of words (function words), word in-
formation along with POS information gave bet-
ter precision. A similar differentiation was done
for punctuations. We tried several methods to
classify the chunks and found that a simple rule-
based approach gave the best results. The final
precision we got was 92.63% for chunk boundary
identification task and 91.70% for the composite
task of chunk labelling with a recall of 100%.

This paper raises the issue that if there are two
tag sets T1 and a more finely differentiated set T2,
then T2 might give better accuracy than T1, pro-
vided the errors are measured using the same met-
ric (say, using the T1 set). This, we believe, is
likely to happen, when T2 is more finely and ap-
propriately differentiated. The most striking ex-
ample was where T1 consisted of chunk bound-
aries and T2 consisted of boundaries and labels.
Training with T2 outperformed T1 for the bound-
ary task, even though it did not perform very well
in the labelling task.
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