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Abstract. This paper proposes an approach to improve statistical word align-
ment with ensemble methods. Two ensemble methods are investigated: bagging 
and cross-validation committees. On these two methods, both weighted voting 
and unweighted voting are compared under the word alignment task. In addi-
tion, we analyze the effect of different sizes of training sets on the bagging 
method. Experimental results indicate that both bagging and cross-validation 
committees improve the word alignment results regardless of weighted voting 
or unweighted voting. Weighted voting performs consistently better than un-
weighted voting on different sizes of training sets. 

1   Introduction 

Bilingual word alignment is first introduced as an intermediate result in statistical 
machine translation (SMT) [3]. Besides being used in SMT, it is also used in transla-
tion lexicon building [9], transfer rule learning [10], example-based machine transla-
tion [14], etc. In previous alignment methods, some researchers employed statistical 
word alignment models to build alignment links [3], [4], [8], [11], [16]. Some re-
searchers used similarity and association measures to build alignment links [1], [15].  

One issue about word alignment is how to improve the performance of a word 
aligner when the training data are fixed. One possible solution is to use ensemble 
methods [5], [6]. The ensemble methods were proposed to improve the performance 
of classifiers. An ensemble of classifiers is a set of classifiers whose individual deci-
sions are combined in some way (weighted or unweighted voting) to classify new 
examples. Many methods for constructing ensembles have been developed [5]. One 
kind of methods is to resample the training examples. These methods include bagging 
[2], cross-validation committees [12] and boosting [7]. The two former methods gen-
erate the classifiers in parallel while boosting generates the classifiers sequentially. In 
addition, boosting changes the weights of the training instance that is provided as 
input to each inducer based on the previously built classifiers. 

In this paper, we propose an approach to improve word alignment with ensemble 
methods. Although word alignment is not a classification problem, we can still build 
different word aligners by resampling the training data. If these aligners perform  
accurately and diversely on the corpus [6], they can be employed to improve the word 
alignment results. Here, we investigate two ensemble methods: bagging and  
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cross-validation committees. For both of the ensemble methods, we employ weighted 
and unweighted voting to build different ensembles. Experimental results indicate that 
both bagging and cross-validation committees improve the word alignment results. 
The weighted ensembles perform much better than the unweighted ensembles accord-
ing to our word alignment results. In addition, we analyze the effect of different sizes 
of training data on the bagging algorithm. Experimental results also show that the 
weighted bagging ensembles perform consistently better than the unweighted bagging 
ensembles on different sizes of training sets. 

The remainder of the paper is organized as follows. Section 2 describes statistical 
word alignment. Section 3 describes the bagging algorithm. Section 4 describes the 
cross-validation committees. Section 5 describes how to calculate the weights used 
for voting. Section 6 presents the evaluation results. Section 7 discusses why the en-
semble methods used in this paper are effective for the word alignment task. The last 
section concludes this paper and presents the future work. 

2   Statistical Word Alignment 

In this paper, we use the IBM model 4 as our statistical word alignment model [3]. 
This model only allows word to word and multi-word to word alignments. Thus, some 
multi-word units cannot be correctly aligned. In order to tackle this problem, we per-
form word alignment in two directions (source to target and target to source) as de-
scribed in [11]. In this paper, we call these two aligners bi-directional aligners.1 Thus, 
for each sentence pair, we can get two alignment results. We use 1S  and 2S  to repre-

sent the bi-directional alignment sets. For alignment links in both sets, we use i for 
source words and j for target words. 

}}0  ,|{|),{(1 ≥=== jjjj aaiiAjAS  (1) 
}}0  ,|{|),{(2 ≥=== jjii aiajAAiS  (2) 

Where, aj represents the index position of the source word aligned to the target word 
in position j. For example, if a target word in position j is connected to a source word 
in position i, then aj=i. If a target word in position j is connected to source words in 
positions i1 and i2, then Aj={i1,i2}. We name an element in the alignment set an 
alignment link.2 

3   Bagging 

The bagging algorithm (derived from bootstrap aggregating) votes classifiers gener-
ated by different bootstrap replicates [2]. A bootstrap replicate is generated by uni-
formly sampling m instances from the training set with replacement. In general, T  
                                                           
1
  The GIZA++ toolkit is used to perform statistical alignment. It is located at 
http://www.fjoch.com/GIZA++.html. 

2  Our definition of alignment link is different from that in [11]. In [11], alignment links are 
classified into possible links and sure links. In our paper, both one-to-one and non one-to-one 
links are taken as sure links.   
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bootstrap replicates are built in the sampling process. And T  different classifiers are 
built based on the bootstrap replicates. A final classifier is built from these T  sub-
classifiers using weighted voting or unweighted voting. The original unweighted 
bagging algorithm is shown in Figure 1. 

Input:  a training set }} ..., ,1{),,{( mixyS ii ∈=  

an induction algorithm Ψ  

(1) For Tj    to1=  { 
(2) jS = bootstrap replicate of S  by sampling m  items from S  with replace-

ment 
(3) )( jj SC Ψ=  

(4) } 
(5) Create a final classifier with majority voting: 

∑
∈

=
j

j
Yy

yxCxC )),((maxarg)(* δ  

Where, 1),( =yxδ if yx = ; else 0),( =yxδ . 

Output: Classifier *C  

Fig. 1. The Unweighted Bagging Algorithm 

3.1   Bagging the Statistical Word Aligner 

In this section, we apply the technique of bagging to word alignment, the detailed 
algorithm is shown in Figure 2. In the algorithm, we first resample the training data 
to train the word aligners. We choose to resample the training set in the same 
way as the original bagging algorithm. With these different bootstrap repli-
cates, we build the different word aligners. As described in Section 2, we per-
form word alignment in two directions to improve multiword alignment. Thus, on 
each bootstrap replicate, we train a word aligner in the source to target direction and 
another word aligner in the target to source direction, which is described in b) of 
step (1). 

After building the different word aligners, we combine or aggregate the align-
ments generated by the individual alignment models to create the final alignments for 
each sentence pair. In this paper, the final alignment link for each word is chosen by 
performing a majority voting on the alignments provided by each instance of the 
model. The majority voting can be weighted or unweighted. For weighted voting, the 
weights of word alignment links produced by the bi-directional word aligners are 
trained from the training data, which will be further described in section 5. For un-
weighted voting, the best alignment link for a specific word or unit is voted by more 
than half of the word aligners in the ensemble. For those words that have no majority 
choice, the system simply does not align them. 



 Improving Statistical Word Alignment with Ensemble Methods 465 

Input: a training set }}...1{),,{( mixyS ii ∈=   

a word alignment model M  

(1) For Tj    to1=   
a) jS = bootstrap replicate of S  by sampling m  items from S  with re-

placement 

b) Train the bi-directional alignment models st
jM  and ts

jM  with the 

bootstrap replicate jS  

(2) For Nk    to1=  (N is the number of sentence pairs) 
For each word s : 

a) For weighted voting 

    ∑ +=
j

ts
j

st
jj

t
tksMtksMtsWksM ))),,(()),,(((*),(maxarg),(* δδ  

 t is the word or phrase in the target sentence; 
    ),( tsW j is the weight for the alignment link )  ,( ts  produced by the 

aligner st
jM  or ts

jM ; 

1),( =yxδ if yx = ; else 0),( =yxδ . 

b) For unweighted voting 

∑
=>

+=
T

j

ts
j

st
j

T
tnt

tksMtksMksM
1

2
)(:

* ))),,(()),,(((maxarg),( δδ  

where, n(t)= ∑
=

+
T

j

ts
j

st
j tksMtksM

1

))),,(()),,((( δδ  

Output: The final word alignment results 

Fig. 2. The Bagging Algorithm for Word Alignment 

4   Cross-Validation Committee 

The difference between bagging and cross-validation committees lies in the way to 
resample the training set. The cross-validation committees construct the training sets 
by leaving out disjoint subsets of the training data. For example, the training set can 
be randomly and evenly divided into N disjoint subsets. Then N overlapping training 
sets can be constructed by dropping out a different one of these N subsets. This pro-
cedure is the same as the one to construct training sets for N-fold cross-validation. 
Thus, ensembles constructed in this way are called cross-validation committees. 

For word alignment, we also divide the training set into N even parts and build N 
overlapping training sets. With the N sets, we build N alignment models as described 
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above. Since the training sets are different, the word alignment results may be differ-
ent for individual words. Using the same majority voting as described in Figure 2, we 
get the final word alignment results. 

5   Weight Calculation 

In this paper, we compare both weighted voting and unweighted voting under our 
word alignment task. The algorithm in Figure 2 shows that the weights are related 
with the specific word alignment links and the specific word aligner. We calculate the 
weights based on the word alignment results on the training data. 

As described in Section 3.1, on each bootstrap replicate j, we train a word aligner 
st
jM  in the source to target direction and a word aligner ts

jM  in the target to source 

direction. That is to say, we obtain two different word alignment sets  st
jS  and ts

jS  for 

each of the bootstrap replicate. For each word alignment link )  ,( ts  produced by st
jM  

or ts
jM ,  we calculate its weight as shown in (3). This weight measures the association 

of the source part and the target part in an alignment link.  This measure is like the 
Dice Coefficient. Smadja et al. [13] showed that the Dice Coefficient is a good indica-
tor of translation association. 

∑∑ +
=

''

),'()',(

),(*2
),(

st

i
tscounttscount

tscount
tsW  

(3) 

Where, ),( tscount  is the occurring frequency of the alignment link ts
j

st
j SSts ∪∈)  ,( .  

6   Experiments 

6.1   Training and Testing Set 

We perform experiments on a sentence aligned English-Chinese bilingual corpus in 
general domain. There are about 320,000 bilingual sentence pairs in the corpus, from 
which, we randomly select 1,000 sentence pairs as testing data. The remainder is used 
as training data. In the sentence pairs, the average length of the English sentences is 
13.6 words while the average length of the Chinese sentences is 14.2 words.  

The Chinese sentences in both the training set and the testing set are automatically 
segmented into words. The segmentation errors in the testing set are post-corrected. 
The testing set is manually annotated. It has totally 8,651 alignment links. Among 
them, 866 alignment links include multiword units, which accounts for about 10% of 
the total links.  

6.2   Evaluation Metrics 

We use the same evaluation metrics as in [17]. If we use GS  to represent the set of 

alignment links identified by the proposed methods and RS  to denote the reference 
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alignment set, the methods to calculate the precision, recall, f-measure, and alignment 
error rate (AER) are shown in Equation (4), (5), (6), and (7). In addition, t-test is used 
for testing statistical significance. From the evaluation metrics, it can be seen that the 
higher the f-measure is, the lower the alignment error rate is. Thus, we will only show 
precision, recall and AER scores in the experimental results. 

|S|

|SS|

G

RG ∩
=precision        (4) 

|S|

 |SS|

R

RG ∩
=recall          (5) 

||||

||*2

RG

RG

SS

SS
fmeasure

+
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=  (6) 

fmeasure
SS

SS
AER

RG

RG −=
+
∩

−= 1
||||

||*2
1  (7) 

6.3   Evaluation Results for Bagging 

For the bagging method, we use ten word aligners trained on five different bootstrap 
replicates. Among them, five aligners are trained in the source to target direction. The 
other five aligners are trained in the target to source direction. The bagging method 
will be compared with a baseline method using the entire training data. For this base-
line method, we also train bi-directional models. Based on the alignment results on 
the entire training data, we calculate the alignment weights for the two word aligners 
as described in Section 5.  

The results using weighted voting are shown in Table 1. The number in brackets of 
the first column describes the number of word aligners used in the ensembles. For 
example, in the ensemble “bagging (4)”, two word aligners are trained in the source to 
target direction and the other two are trained in the target to source direction. 

From the results, it can be seen that the bagging methods obtain significantly better 
results than the baseline. The best ensemble achieves an error rate reduction of 7.34% 
as compared with the baseline. The results show that increasing the number of word 
aligner does not greatly reduce the word alignment error rate. The reduction is even 
smaller when the number increases from 8 to 10.  

Table 1. Weighted Bagging Results 

Method Precision Recall AER 
Bagging (4) 0.8035 0.7898 0.2034 
Bagging (6) 0.8048 0.7922 0.2015 
Bagging (8) 0.8061 0.7948 0.1996 
Bagging (10) 0.8064 0.7948 0.1994 
Baseline  0.7870 0.7826 0.2152 



468 H. Wu and H. Wang 

In order to further analyze the effect of the weights on the word alignment results, 
we also use unweighted voting in the ensembles. The results are shown in Table 2. 
The baseline method also trains bi-directional aligners with the entire training data. 
The final word alignment results are obtained by taking an unweighted voting on the 
two alignment results produced by the bi-directional aligners. That is the same as that 
by taking the intersection of the two word alignment results. 

Table 2. Unweighted Bagging Results 

Method Precision Recall AER 
Bagging (4) 0.9230 0.6073 0.2674 
Bagging (6) 0.9181 0.6200 0.2598 
Bagging (8) 0.9167 0.6307 0.2527 
Bagging (10) 0.9132 0.6347 0.2511 
Baseline  0.9294 0.5756 0.2810 

Increasing the number of word aligners in the ensembles, the unweighted bagging 
method does not greatly reduce AER. However, the ensembles obtain much lower 
error rate as compared with the baseline. The best ensemble achieves a relative error 
rate reduction of 10.64%, indicating a significant improvement. From the experimen-
tal results, we find that there are no multiword alignment links selected in the ensem-
bles. This is because unweighted voting in this paper requires more than half of the 
word aligners in the ensembles to vote for the same link. Thus, there should be bi-
directional word aligners voting for the target alignment link. The intersection of bi-
directional word alignment results produced by the IBM models only creates single 
word alignments. It can also be seen from the Equations (1) and (2) in Section 2.  

Comparing the results obtained using weighted voting in Table 1 and those ob-
tained using unweighted voting in Table 2, we find that (1) the weighted bagging 
methods are much better than the unweighted bagging methods; (2) the ensembles 
using unweighted voting obtain higher precision but lower recall than those using 
weighted voting. For example, the weighted voting “bagging (10)” achieves a relative 
error rate reduction of 20.59% as compared with the corresponding unweighted vot-
ing. This indicates that the method used to calculate voting weights described in sec-
tion 5 is very effective.  

6.4   Evaluation Results for Cross-Validation Committees 

For the cross-validation committees, we divide the entire training data into five dis-
joint subsets. For each bootstrap replicate, we leave one out. Thus, each replicate 
includes 80% sentence pairs of the full training data. For each replicate, we train bi-
directional word alignment models. Thus, we totally obtain ten individual word align-
ers. The baseline is the same as shown in Table 1. The results obtained using 
weighted voting are shown in Table 3.  The number in the brackets of the first column 
describes the number of word aligners used in the ensembles. 
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Table 3. Evaluation Results for Weighted Cross-Validation Committees 

Method Precision Recall AER 
Validation (4) 0.8059 0.7913 0.2015 
Validation (6) 0.8070 0.7928 0.2002 
Validation (8) 0.8063 0.7933 0.2002 
Validation (10) 0.8068 0.7947 0.1993 
Baseline  0.7870 0.7826 0.2152 

From the results, it can be seen that the cross-validation committees perform better 
than the baseline. The best ensemble “validation (10)” achieves an error rate reduction 
of 7.39% as compared with the baseline, indicating a significant improvement. The 
results also show that increasing the number of word aligner does not greatly reduce 
the word alignment error rate.  

As described in section 6.3, we also use unweighted voting for the cross-validation 
committees. The results are shown in Table 4. The baseline is the same as described 
in Table 2.  

Table 4. Evaluation Results for Unweighted Cross-Validation Committees 

Method Precision Recall AER 
Validation (4) 0.9199 0.5943 0.2779 
Validation (6) 0.9174 0.6124 0.2655 
Validation (8) 0.9154 0.6196 0.2610 
Validation (10) 0.9127 0.6245 0.2584 
Baseline  0.9294 0.5756 0.2810 

From the results, it can be seen that increasing the number of word aligners in the 
ensembles, the alignment error rate is reduced. The best ensemble achieves a relative 
error rate reduction of 8.04% as compared with the baseline, indicating a significant 
improvement. Comparing the results in Table 3 and Table 4, we find that the 
weighted methods are also much better than the unweighted ones. For example, the 
weighted method “Validation (10)” achieves an error rate reduction of 22.87% as 
compared with the corresponding unweighted method. 

6.5   Bagging vs. Cross-Validation Committees 

According to the evaluation results, bagging and cross-validation committees achieve 
comparable results. In order to further compare bagging and cross-validation commit-
tees, we classify the alignment links in the weighted ensembles into two classes: sin-
gle word alignment links (SWA) and multiword alignment links (MWA). SWA links 
only include one-to-one alignments. MWA links refer to those including multiword 
units in the source language or/and in the target language. The SWA and MWA for 
the bagging ensembles are shown in Table 5 and Table 6. The SWA and MWA for 
the cross-validation committees are shown in Table 7 and Table 8. The AERs of the 
baselines for SWA and MWA are 0.1531 and 0.8469, respectively. 
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Table 5. Single Word Alignment Results for the Weighted Bagging Methods 

Method Precision Recall AER 
Bagging (4) 0.8263 0.8829 0.1463 
Bagging (6) 0.8270 0.8845 0.1452 
Bagging (8) 0.8270 0.8877 0.1437 
Bagging (10) 0.8265 0.8876 0.1440 

Table 6. Multiword Alignment Results for the Weighted Bagging Methods 

Method Precision Recall AER 
Bagging (4) 0.4278 0.1815 0.7451 
Bagging (6) 0.4432 0.1896 0.7344 
Bagging (8) 0.4540 0.1884 0.7336 
Bagging (10) 0.4620 0.1896 0.7311 

Table 7. Single Word Alignment Results for Weighted Cross-Validation Committees 

Method Precision Recall AER 
Validation (4) 0.8282 0.8833 0.1452 
Validation (6) 0.8285 0.8847 0.1443 
Validation (8) 0.8275 0.8851 0.1447 
Validation (10) 0.8277 0.8867 0.1438 

Table 8. Multiword Alignment Results for Weighted Cross-Validation Committees 

Method Precision Recall AER 
Validation (4) 0.4447 0.1908 0.7330 
Validation (6) 0.4538 0.1931 0.7291 
Validation (8) 0.4578 0.1942 0.7273 
Validation (10) 0.4603 0.1942 0.7268 

From the results, it can be seen that the single word alignment results are much bet-
ter than the multiword alignment results for both of the two methods. This indicates 
that it is more difficult to align the multiword units than to align single words. 

Comparing the bagging methods and validation committees, we find that these two 
methods obtain comparable results on both the single word alignment links and mul-
tiword alignment links. This indicates that the different resampling methods in these 
two ensemble methods do not much affect the results on our word alignment task. 

6.6   Different Sizes of Training Data 

In this section, we investigate the effect of the size of training data on the ensemble 
methods. Since the difference between bagging and cross-validation committees is 
very small, we only investigate the effect on the bagging ensembles.  
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We randomly select training data from the original training set described in Section 
6.1 to construct different training sets. We construct three training sets, which include 
1/4, 1/2 and 3/4 of sentence pairs of the original training set, respectively.    

For each of the training set, we obtain five bootstrap replicates and train ten word 
aligners. The results of ensembles consisting of ten word aligners are shown in Table 
9 and Table 10. Table 9 and Table 10 show the weighted and unweighted bagging 
results, respectively. The methods to construct the baselines for different training sets 
in Table 9 and Table 10 are the same as those in Table 1 and Table 2, respectively. 
For convenience, we also list the results using the original training set in the tables. 
The first column describes the size of the training sets used for the ensembles. The 
last column presents the relative error rate reduction (RERR) of the ensembles as 
compared with the corresponding baselines. From the results, it can be seen that both 
weighted and unweighted bagging ensembles are effective to improve word alignment 
results. The weighted ensembles perform consistently better than the unweigted en-
sembles on different sizes of training sets. 

Table 9. Weighted Bagging Results on Different Sizes of Training Sets 

Data Precision Recall AER 
Baseline 
(AER) 

RERR 

1/4 0.7684 0.7517 0.2316 0.2464 6.00% 
1/2 0.7977 0.7775 0.2125 0.2293 7.33% 
3/4 0.8023 0.7869 0.2055 0.2184 5.89% 
All 0.8064 0.7948 0.1994 0.2152 7.34% 

Table 10. Unweighted Bagging Results on Different Sizes of Training Sets 

Data Precision Recall AER 
Baseline 
(AER) 

RERR 

1/4 0.8960 0.6033 0.2789 0.3310 15.72% 
1/2 0.9077 0.6158 0.2662 0.3050 12.72% 
3/4 0.9140 0.6270 0.2562 0.2943 12.95% 
All 0.9132 0.6347 0.2511 0.2810 10.64% 

7   Discussion 

Both bagging and cross-validation committees utilize multiple classifiers to make 
different assumptions about the learning system. Bagging requires that the learning 
system should not be stable, so that small changes to the training set would lead to 
different classifiers. Breiman [2] also noted that poor predicators could be trans-
formed into worse ones by bagging.  

In this paper, the learning system is the word alignment model described in Section 
2. The classifiers refer to the different word aligners trained on different bootstrap 
replicates. In our experiments, although word alignment models do not belong to 
unstable learning systems, bagging obtains better results on all of the datasets. This is 
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because the training data is insufficient or subject to data sparseness problem. Thus, 
changing the training data or resampling the training data causes the alternation of the 
trained parameters of the alignment model. The word aligners trained on a different 
bootstrap replicate produce different word alignment links for individual words. Us-
ing majority voting, the ensembles can improve the alignment precision and recall, 
resulting in lower alignment error rates. 

The experiments also show that weighted voting is better than unweighted voting. 
The advantage of weighted voting is that it can select the good word alignment link 
even if only one aligner votes for it in the ensembles. This is because the selected 
alignment link gets much higher weight than the other links. 

8   Conclusion and Future Work 

Two ensemble methods are employed in this paper to improve word alignment re-
sults: bagging and cross-validation committees. Both of these two methods obtain 
better results than the original word aligner without increasing any training data. In 
this paper, we use two different voting methods: weighted voting and unweighted 
voting. Experimental results show that the weighted bagging method and weighted 
cross-validation committees achieve an error rate reduction of 7.34% and 7.39% re-
spectively, as compared with the original word aligner. Results also show that 
weighted voting is much better than unweighted voting on the word alignment task. 
Unweighted voting obtains higher precision but lower recall than weighted voting. In 
addition, the weighted voting used in this paper obtains multiword alignment links 
while the unweighted voting cannot. 

We also compare the two ensemble methods on the same training data and testing 
data. Bagging and cross-validation committees obtain comparable results on both 
single word alignment links and multiword alignment links. This indicates that the 
different resampling methods in these two ensemble methods do not much affect the 
results under our word alignment task. 

We also investigate the bagging method on different sizes of training sets. The re-
sults show that both weighted voting and unweighted voting are effective to improve 
word alignment results. Weighted voting performs consistently better than unweigted 
voting on different sizes of training sets.  

In future work, we will investigate more ensemble methods on the word alignment 
task such as the boosting algorithm. In addition, we will do more research on the 
weighting schemes in voting. 

References 

1. Ahrenberg, L., Merkel, M., Andersson, M.: A Simple Hybrid Aligner for Generating Lexi-
cal Correspondences in Parallel Texts. In Proc. of the 36th Annual Meeting of the Associa-
tion for Computational Linguistics and the 17th Int. Conf. on Computational Linguistics 
(ACL/COLING-1998), 29-35 

2. Breiman, L.: Bagging Predicators. Machine Learning (1996), 24(1): 123-140 
3. Brown, P. F., Pietra, S. D., Pietra, V. D., Mercer, R.: The Mathematics of Statistical Ma-

chine Translation: Parameter Estimation. Computational Linguistics (1993), 19(2): 263-311 



 Improving Statistical Word Alignment with Ensemble Methods 473 

4. Cherry, C., Lin, D.: A Probability Model to Improve Word Alignment. In Proc. of the 41st 
Annual Meeting of the Association for Computational Linguistics (ACL-2003), pp. 88-95 

5. Dietterich, T.: Machine Learning Research: Four Current Directions. AI Magazine (1997), 
18 (4): 97-136 

6. Dietterich, T.: Ensemble Methods in Machine Learning. In Proc. of the First Int. Work-
shop on Multiple Classifier Systems (2000), 1-15 

7. Freund, Y., Schapire, R.: Experiments with a new boosting algorithm. In Machine Learn-
ing: Proc. of the Thirteenth International Conference (1996), 148-156 

8. Matusov, E., Zens, R., Ney H.: Symmetric Word Alignments for Statistical Machine 
Translation. In Proc. of the 20th Int. Conf. on Computational Linguistics (COLING-2004), 
219-225  

9. Melamed, I. D.: Automatic Construction of Clean Broad-Coverage Translation Lexicons. 
In Proc. of the 2nd Conf. of the Association for Machine Translation in the Americas 
(AMTA-1996), 125-134 

10. Menezes, A., Richardson, S.D.: A Best-first Alignment Algorithm for Automatic Extrac-
tion of Transfer Mappings from Bilingual Corpora. In Proc. of the ACL 2001 Workshop 
on Data-Driven Methods in Machine Translation (2001), 39-46 

11. Och, F. J., Ney, H.: Improved Statistical Alignment Models. In Proc. of the 38th Annual 
Meeting of the Association for Computational Linguistics (ACL-2000), 440-447 

12. Parmanto, B., Munro, P., Doyle, H.: Improving Committee Diagnosis with Resampling 
Techniques. In Touretzky, D., Mozer, M., Hasselmo, M. (Ed..): Advances in Neural In-
formation Processing Systems (1996), Vol. 8,  882-888 

13. Smadja, F. A., McKeown, K. R., Hatzivassiloglou, V.: Translating Collocations 
for Bilingual Lexicons: a Statistical Approach. Computational Linguistics (1996), 
22 (1):1-38 

14. Somers, H.: Review Article: Example-Based Machine Translation. Machine Translation 
(1999), 14: 113-157 

15. Tufis, D., Barbu, M.: Lexical Token Alignment: Experiments, Results and Application. In 
Proc. of the 3rd Int. Conf. on Language Resources and Evaluation (LREC-2002), 458-465 

16. Wu, D.: Stochastic Inversion Transduction Grammars and Bilingual Parsing of Parallel 
Corpora. Computational Linguistics (1997), 23(3): 377-403 

17. Wu, H., Wang, H.: Improving Domain-Specific Word Alignment with a General Bilingual 
Corpus. In Frederking R., Taylor, K. (Eds.): Machine Translation: From Real Users to Re-
search: 6th Conf. of the Association for Machine Translation in the Americas (AMTA-
2004), 262-271 


	Introduction
	Statistical Word Alignment
	Bagging
	Bagging the Statistical Word Aligner

	Cross-Validation Committee
	Weight Calculation
	Experiments
	Training and Testing Set
	Evaluation Metrics
	Evaluation Results for Bagging
	Evaluation Results for Cross-Validation Committees
	Bagging vs. Cross-Validation Committees
	Different Sizes of Training Data

	Discussion
	Conclusion and Future Work
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


