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To achieve reasonable accuracy in large vocabulary speech 
recognition systems, it is important to use detailed acous- 
tic models together with good long span language models. 
For example, in the Wall Street Journal (WSJ) task both 
cross-word triphones and a trigram language model are neces- 
sary to achieve state-of-the-art performance. However, when 
using these models, the size of a pre-compiled recognition 
network can make a standard Viterbi search infeasible and 
hence, either multiple-pass or asynchronous stack decoding 
schemes are typically used. In tl:fis paper, we show that time- 
synchronous one-pass decoding using cross-word triphones 
and a trigram language model can be implemented using a 
dynamically built tree-structured network. This approach 
avoids the compromises inherent in using fast-matches or pre- 
liminary passes and is relatively efficient in implementation. 
It was included in the HTK large vocabulary speech recog- 
nition system used for the 1993 ARPA WSJ evaluation and 
experimental results are presented for that task. 

1. I N T R O D U C T I O N  

Hidden Markov Models (HMMs) have been used suc- 
cessfully in a wide variety of recognition tasks ranging 
from small isolated word systems assisted by heavily 
constrained grammars to very large vocabulary uncon- 
strained continuous speech systems. Part  of the success 
of HMMs is due to the existence of computationally ef- 
ficient algorithms for both the training of the models 
(the Baum-Welch algorithm) and for the decoding of un- 
known utterances (the Viterbi algorithm). However, as 
recognition tasks have become more complex, the decod- 
ing process has become more difficult due to the increas- 
ing size of network needed in a conventional Viterbi de- 
coder. In particular, using cross-word triphones or long 
span language models can lead to order of magnitude 
increases in the size of a static network. 

A variety of schemes have been proposed to reduce the 
computation required for recognition [2,7]. Most make 
use of fast-matches or preliminary passes using simpli- 
fied acoustic or linguistic models to constrain the search 
space for a final pass that  uses the most detailed and 
accurate models available. Unfortunately, these pre- 
liminary matches can introduce errors that  subsequent 

passes are unable to correct. If  the first pass could use 
the best acoustic and language models available it would 
allow greater constraints to be placed on the search space 
without increasing the error rate. This paper describes 
a scheme which allows this through the use of a dy- 
namically built tree-structured network. This approach 
avoids the compromises inherent in using fast-matches 
or preliminary passes and is both simple and efficient to 
implement. 

The remainder of this paper is organised as follows. Sec- 
tion 2 discusses the main features of conventional time- 
synchronous Viterbi decoding and some of the ways in 
which it can be improved. In section 3, a one-pass de- 
coder that  implements a beam-pruned Viterbi search 
through a tree-structured dynamic network is then de- 
scribed. Section 4 presents some experimental results 
on the Wall Street Journal task and, finally, section 5 
presents our conclusions on this work. 

2. V I T E R B I  D E C O D I N G  

2 .1 .  T h e  S t a n d a r d  V i t e r b i  S e a r c h  

The standard method of implementing a Viterbi search 
for decoding speech into words is to build a re-entrant 
network of HMM phone instances. An instance of each 
word in the vocabulary is then made from a concatenated 
sequence of phone instances and the end of each word in- 
stance is linked, according to a language model or gram- 
mar, back to the start  of the word instances. Decoding 
uses a time-synchronous Viterbi search through this net- 
work in which partial s ta te/frame alignment paths are 
maintained and extended in parallel using the Viterbi 
criterion (i.e. the principle of dynamic programming). 
In our work, each path is denoted by a token so that 
path extension can be represented simply by propagat- 
ing tokens through the network [12]. 

A complete Viterbi search is admissible and will not 
make any search errors whereby the decoder fails to cor- 
rectly find the most likely sequence of models for a given 
utterance. Unfortunately, because of the size of these 
networks, a complete search is not computationally fea- 
sible even for moderately sized tasks. Consequently it is 
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Figure 1: A Static Network for Viterbi Decoding with a 
Back-off Bigram Language Model 

necessary to reduce (or prune) the search space to speed- 
up the search. A common strategy for doing this is to 
use a beam search in which only paths whose likelihood 
falls within a fixed beam width of the mostly likely path 
are considered for extension. As an example of this kind 
of approach, Fig. 1 shows a typical static network struc- 
ture for word recognition using monophone models and 
a bigram-backoff language model [4]. 

2 . 2 .  T h e  L i m i t a t i o n s  o f  S t a t i c  N e t w o r k s  

Recent uses of HMMs in very large vocabulary tasks have 
begun to show the deficiencies of the static network ar- 
chitecture. Such systems typically have a large number 
of context-dependent models and they use unconstrained 
long span statistical language models. As is clear from 
Fig. 1, the number of individual phone instances scales 
linearly with the size of the vocabulary whilst the num- 
ber of possible cross links, for the bigram case, scales 
with the square of the number of words. For the trigram 
case, matters are even worse and each word pair that  
has trigram language model probabilities for subsequent 
words must be explicitly represented in the network. De- 
pending on the size of the language model, this could 
result in a dramatic increase in the size of the network. 

Similarly, increasing the number of phone models used 
can lead to correspondingly large increases in the size of 
network needed to decode them. For example, if cross- 
word context dependent triphone models are used during 
recognition, the size of the recognition network increases 
substantially. Rather than having a single model tran- 
script for each word, the initial (and final) phone must 
be replaced by one of a set of models. The size of the 
set depends on which phones may occur at the end of 
the preceding (or start  of the following) word. Normally 
this is around the same size as the phone set and so an 
average word will require almost 100 model instances. 

To give a specific example, the Dragon Wall Street Jour- 
nal Pronunciation Lexicon Version 2.0 dictionary con- 
tains 19979 words with 21875 pronunciations. Using a 
set of 44 distinct phone models, this leads to a total of air- 
proximately 150,000 phone instances. If cross-word tri- 
phones are used, the number of required phone instances 
rises to around 1,800,000. Finally, the standard WSJ 
20k trigram language model has approximately 740,000 
word-pairs with trigram probabilities. If this is used in 
a static network structure, the number of needed phone 
instances rises to around 24,000,000. 

2 . 3 .  S t a c k  D e c o d e r s  

Many of the pressures leading to increased network size 
result directly from the breadth-first nature of the time- 
synchronous Viterbi search. An obvious alternative is 
therefore to use a depth-first scheme. For example, stack 
decoders have been used with some success [5,9]. In a 
stack decoder, hypotheses are advanced one word at a 
time and hence long span language models and context 
dependency can be supported without the need for large 
networks. However, the indeterminacy of word bound- 
aries in continuous speech and the variety of possible 
right contexts at the ends of words means that,  in prac- 
tice, a stack decoder must use a preliminary fast-match 
to reduce the number of path extensions considered. 
This is a major drawback since fast-matches can be a 
serious source of search errors. 

2 . 4 .  R e d u c i n g  C o m p u t a t i o n  

If a time-synchronous beam search is to be used, then 
the pruning strategy needs to be as effective as possible. 
In practical systems, variable width and multiple beam 
schemes are more effective than using a single fixed beam 
width[I,6]. For example, a higher degree of uncertainty 
exists at the start  of words than at the end. Hence, using 
an additional word-end beam can result in substantially 
fewer active models without significantly increasing the 
error rate. 

The use of such an additional beam can also be justified 
on the basis of the language models employed. Although 
the probabilities in a language model may vary by sev- 
eral orders of magnitude, the probability of a particular 
word actually varies much less. For example, in the stan- 
dard 5k closed vocabulary bigram WSJ language model, 
the highest and the lowest probabilities vary by a factor 
of 107 . However, on average over 99.5% of the proba- 
bilities for a particular word lie within a factor of 100 
of each other. This is due to the very heavy reliance on 
the back-off component of the language model. It means 
that  few search errors will be introduced by only propa- 
gating word-end tokens for which the likelihood is within 
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a factor of 100 or so of the most  likely word-end token. 
This implies that  the word-end beam width can be much 
narrower than the width of the normal beam. 

2 . 5 .  T r e e  S t r u c t u r i n g  

Since the uncertainty in decoding speech is much higher 
at the s tar t  of words than at the ends, it follows that  the 
majori ty  of the computat ion is expended on the first few 
phones of  each word [8]. For very large vocabularies, a 
tree structured network in which the words tha t  share 
common initial phonesequences share model instances, 
achieves the dual aim of reducing the size of the network 
as well as the computat ion required to decode it. Hence, 
a tree-structured organisation is highly desirable. 

When using a tree-structured organisation, it is impor- 
tant  to ensure that ,  although word identity is not ex- 
plicitly known until the end of the word is reached, the 
application of the language model is not delayed until 
then. If this is not done, the relaxation of the constraints 
on the search can offset the computational savings and 
will require the use of larger beam widths to avoid search 
errors [3]. 

3. A O N E - P A S S  D E C O D E R  

From the discussion in the previous section, it is clear 
that  the key features of a successful single-pass decod- 
ing scheme are the ability to incorporate cross-word tri- 
phones and long span language models whilst keeping 
both the computational t ime and space requirements 
within acceptable bounds. To do this, it is clearly nec- 
essary to tree-structure the recognition network and to 
apply tight and efficient pruning. To make this possi- 
ble, the concept of a static re-entrant network must be 
abandoned. Instead, a non re-entrant tree-structured 
network must be used with a new copy of the tree being 
replicated at every word end. To make this fit in avail- 
able memory, the network must be grown dynamically 
on-the-fly and once phone instances fall outside of the 
beam, the corresponding nodes must be reclaimed. 

This section describes such a decoder. I t  uses the token 
passing paradigm to implement a beam pruned Viterbi 
search through a dynamic tree structured network of 
HMM instances. 

3 . 1 .  N e t w o r k  S t r u c t u r e  

Due to the tree-structured nature of the network and the 
possibility that  two words may have exactly the same 
phonetic realisation (and will therefore share all their 
models) it is necessary to have some point at which the 
identity of a word becomes unique. Consequently the 
recognition network consists of two types of nodes. 

• HMM instances. These represent an actual phone 
from the dictionary and are linked to a physical 
HMM (the identity of which may  depend on the con- 
text). The HMM is used to calculate the acoustic 
likelihood of tha t  phone instance and the network 
node holds the tokens tha t  store the associated like- 
lihoods and paths.  

• Word-ends. These are linked to a particular word 
and are the points where the language model likeli- 
hoods are added to the acoustic likelihoods. 

The HMM instances are connected in a simple tree struc- 
tured network in which each model has a specific prede- 
cessor but may have many followers. Word-end nodes 
are also linked to each other when token recombination 
or domination can occur(see below). Fig 2 shows a frag- 
ment of a typical network configuration. 

Each node in the network has an associated language 
model probability. This is added to the token likelihood 
to give the combined likelihood that  is used for pruning 
purposes. At word-ends, the language model can pro- 
vide the exact probabli t iy for the word given its history. 
However, HMM phone instances can be shared by many 
words and hence only an approximation for the language 
model probability can be used within a word. Therefore, 
until the word identity is uniquely defined, the highest 
language model probability of all words that  share the 
instance is used. This guarantees that  the probability 
used is always an exact upper bound on the actual prob- 
ability and this helps to minimise search since it can 
never increase through a word. Using the exact upper 
bound allows the tightest beam widths to be used with- 
out introducing search errors. The overhead for dynam- 
ically constructing the network and for using the exact 
language model for calculating the upper bound on like- 
lihoods is relatively small and rarely exceeds 20% of the 
total computational load. 

3 . 2 .  R e c o m b i n a t i o n  a n d  D o m i n a n c e  

When a static network is used for recognition, tokens re- 
combine at the s tar t  of each word and only one survives 
and is propagated into the word. These recombination 
points are where the Viterbi criterion is applied to decide 
which of the set of tokens is par t  of the maximum likeli- 
hood path. In general, three conditions must be fulfilled 
to allow tokens to recombine 

• The following network must be identical in struc- 
ture. 

• Corresponding network nodes must have the same 
acoustic likelihoods. 
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Figure 2: A Fragment of a Tree Structured Network 

• Corresponding network nodes must  have the same 
language model likelihoods. 

As word-ends are created, they are linked to any existing 
word-ends that  meet these conditions to form dominance 
chains. The Viterbi criterion means that  only the most 
likely token in the word-end nodes on one of these chains 
will form par t  of the most  likely path. Due to the fact 
that  the network is dynamically constructed, there are 
two ways in which this can be applied. 

• Recombination. The word-end nodes on a domi- 
nance chain share a single set of successor nodes. 
The most likely token on the dominance chain is 
then propagated into the following models as in a 
standard Viterbi search. Note that  this implies that  
the token itself must contain traceback information 
since it may have come from one of a number of 
paths. 

• Dominance. Each word-end on the dominance chain 
can have its own set of successor nodes. However 
only the most  likely word-end on the chain is allowed 
to create any successor nodes. Thus, each network 
node will have a unique history and so traceback 
information can be held at the network level rather 
than at token level. 

At first it may seem that  token recombination is the 
most sensible course since domination can lead to the 
creation of multiple copies of network structure when a 
single one would suffice. In practice, however, this hap- 
pens very rarely and holding the traceback information 
at the network level rather  than in each token means 
that  each HMM instance can be more compact. There 
is thus a trade-off between memory  usage and compu- 
tat ion required. In practice, using domination rather 

than recombination leads to around 5-10% more active 
models (and hence computation) but  results in a 10-20% 
reduction in the memory required to hold the network. 

The token recombination method does have one distinct 
advantage. As explained later in this paper, it is possible 
to produce a lattice of word hypotheses rather  than the 
single best sentence for very little extra computational 
effort if each token contains traceback information. 

3.3. Network  Cons t ruc t ion  

The network is constructed dynamically and nodes are 
only created when they will fall into the beam and 
are destroyed as soon as they leave the beam. In this 
case, pruning becomes doubly important  since it con- 
trols not only the amount of computat ion used but  also 
the amount of memory  required. 

Network growth occurs during model-external token 
propagation. The network is extended if the combined 
likelihood of a token has no following node and falls 
within the beam. Since the combined likelihood of the 
token after propagation into the newly created node will 
depend on the language model likelihood of that  node, 
this combined likelihood is calculated in advance to pre- 
vent network nodes being created unnecessarily. The 
additional computat ion involved in doing this is much 
less than the memory  creation/disposal overhead would 
otherwise be. 

When nodes are constructed, the identity of the phone 
and the word in which it occurs, together with its context 
(at both the phone and the word level), the position 
of surrounding word boundaries and the gender of the 
speaker may all be used to select which HMM will be 
used for that  node. This allows the use of function word 
specific, position dependent, gender dependent and long 
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distance context dependent phonetic models. 

Pruning is at the model level and occurs in several ways. 

• Blocking. Tokens tha t  fall outside of the beam 
are blocked to prevent network growth from occur- 
ring. Word-end nodes have their own separate beam 
which is also checked before network growth from a 
word-end node occurs. 

• Erasure. A node that  falls outside the beam and 
which has no predecessors is erased. The space allo- 
cated to the node is freed, the node is removed from 
the network and will never be re-created. 

• Deletion. A node tha t  falls outside of the beam 
and which has no followers is deleted. This involves 
freeing the node in such a way that  it may be re- 
created if it comes back into the beam. 

• Halting. A node that  falls outside the beam which 
has predecessors and followers is halted. The node 
is not removed from the network (since it would 
be difficult to re-create and link back into the cor- 
rect place) but  is marked as inactive. Internal token 
propagation does not occur for inactive nodes and 
so, although it is using memory, it requires little 
computation. 

All other nodes fall within the beam and are active. Both 
internal and external token propagation will occur for 
these models. The computational load varies approxi- 
mately linearly with the number of active models. 

3 . 4 .  N - B e s t  L a t t i c e s  

During decoding there are multiple copies of each word 
active and it is therefore possible to generate multiple 
sentence hypotheses with little additional computation. 
This is implemented by linking the tokens that  occur 
in chained word-end nodes and propagating the most 
likely token (which is the head of this list) into following 
nodes exactly as before. The multiple hypotheses can 
be recovered by descending the list at each boundary at 
the end of the utterance. This will not generate exact 
solutions for any but  the best path  since it implicitly 
assumes that  the s tar t  t ime of each word is independent 
of all words before its immediate predecessor. However, 
it has been shown that  this is a reasonable assumption 
and has little effect on overall lattice accuracy [10]. 

3 . 5 .  O n e - P a s s  A l g o r i t h m  

The above one-pass decoder strategy has been imple- 
mented in a simple three step algorithm:- 

• Create a single sentence_start node for each gender- 
dependent model set. 

• For each frame of input 

- Prune from the network all models for which 
the combined acoustic and language model 
likelihood falls outside of the beam. 

- Perform token propagation within each HMM 
instance and find the top of the beam for the 
next t ime step. 

- Perform token propagation between nodes ex- 
tending the network when this is necessary. 

• Find the most  likely sentence_end node and trace- 
back to find the resulting word sequence. 

4 .  E X P E R I M E N T A L  R E S U L T S  

Experiments have been performed on both 5k and 20k 
Wall Street Journal tasks. The WSJ systems used train- 
ing data from the SI-84 and SI-284 test sets, and the pro- 
nunciations from the Dragon Wall Street Journal Pro- 
nunciation Lexicon Version 2.0 together with the stan- 
dard bigram and tr igram language models supplied by 
MIT Lincoln Labs. Some locally generated additions and 
corrections to the dictionary were used and the stress 
markings were ignored resulting in 44 phones plus si- 
lence. Data  preparation used the HTK Hidden Markov 
Model Toolkit [13]. All speech models had three emitting 
states and a left-to-right topology and used continuous 
density mixture Gaussian output  probability distribu- 
tions tied at the state level using phonetic decision trees 
[14]. The decoder enforced silence at the s tar t  and end 
of sentences and allowed optional silence between words. 
These systems achieved the lowest error rates reported 
for the November 1993 WSJ evaluations on the H1-C2, 
H2-C1 and H2-P0 and the second lowest error rate on 
H1-P0. Further details about  these systems can be found 
in [11]. 

Table 1 gives details of decoder performance for the var- 
ious tasks. All figures quoted are for the beam widths 
used in the evaluation tests. The required computation 
scales with the number of active models per frame (and 
the number of frames in the test set) and on an HP735 
decoding the 5k gender dependent cross-word systems 
required approximately 10 minutes per sentence whilst 
the 20k systems took about  15 minutes per sentence (on 
average). As the table shows, the computation required 
does not depend on the potential network size since the 
load for the tr igram case is generally less than the corre- 
sponding bigram case. This shows that  the early appli- 
cation of knowledge can be used to constrain the search 
in order to offset the computational costs of using the 
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System 
Type 

Word Internal GI 
Cross Word GD 

Training 
Data 

SI84 
SI84 

Task 

5k Bigram 
5k Bigram 

Number of States, 
Models & Triphones 

per gender 
3701 / 8087 / 14344 
3820 / 15303 / 35633 

Potential 
Network Size 

per gender 

20k Bigram 

40,000 
400,000 

Average Number 
of Active Models 

per frame 
9600 

21900 
Cross Word GD SI284 5k Bigram 7558 / 22978 / 35633 400,000 23400 
Cross Word GD SI284 5k Trigram 7558 / 22978 / 35633 5,000,000 19800 
Cross Word GD SI284 i 30700 
Cross Word CD 

1,800,000 
24,000,000 

7558 / 22978/54457  
7558 / 22978 / 54457 20k Trigram SI284 29300 

Word 
Error 
Rate 
12.5 
8.7 
6.8 
4.9 
14.4 
12.7 

Table 1: System characteristics for various WSJ tasks. 

knowledge. In the bigram case, no reliance is made on 
the back-off nature of the language model and the com- 
putational load will not therefore change when the size 
of the language model is increased. 

5. C O N C L U S I O N S  
One-pass decoding has many advantages over multi-pass 
decoding if it can be accomplished with a similar amount 
of computation. This paper has described a method 
of decoding continuous speech using context-dependent 
hidden Markov models and long span language models 
in a single pass. The decoder is relatively simple and ef- 
ficient and should scale well with increasing size of both 
the vocabulary and the language models. 
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