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A B S T R A C T  
Prosodic patterns provide important cues for resolving syn- 
tactic ambiguity, and might he used to improve the accu- 
racy of automatic speech understanding. With this goal, we 
propose a method of scoring syntactic parses in terms of ob- 
served prosodic cues, which can be used in ranking sentence 
hypotheses and associated parses. Specifically, the score is 
the probability of acoustic features of a hypothesized word 
sequence given an associated syntactic parse, based on acous- 
tic and "language" (prosody/syntax) models that represent 
probabilities in terms of abstract prosodic labeis. This work 
reports initial efforts aimed at extending the algorithm to 
spontaneous speech, specifically the ATIS task, where the 
prosody/parse score is shown to improve the average rank of 
the correct sentence hypothesis. 

1. I N T R O D U C T I O N  
Human listeners bring several sources of information 
to bear in interpreting an utterance, including syn- 
tax, semantics, discourse, pragmatics and prosodic cues. 
Prosody, in particular, provides information about syn- 
tactic structure (via prosodic constituent structure) and 
information focus (via phrasal prominence), and is en- 
coded in the acoustic signal in terms of timing, energy 
and intonation patterns. Since computer knowledge rep- 
resentations are not as sophisticated as human knowl- 
edge, utterances that are straightforward for a human to 
interpret may be "ambiguous" to an automatic speech 
understanding system. For this reason, it is useful to 
include as many knowledge sources as possible in auto- 
matic speech understanding, and prosody is currently an 
untapped resource. In fact, some syntactic ambiguities 
can be resolved by listeners from prosody alone [1]. 

One way to incorporate prosody in speech understand- 
ing is to score the expected prosodic structure for each 
candidate sentence hypothesis and syntactic parse in re- 
lation to the observed prosodic structure. In a speech 
understanding system where multiple sentence hypothe- 
ses are passed from recognition to natural language pro- 
cessing, the prosody/parse score could be used to rank 
hypotheses and associated parses, directly or in combina- 
tion with other scores. The parse scoring approach was 
proposed in previous work [2], where automatically de- 

tected prosodic phrase breaks were scored either in terms 
of their correlation with prosodic structure predicted 
from parse information or in terms of their likelihood 
according to a probabilistic prosody/syntax model. Re- 
cently, the parse scoring approach was reformulated [3] 
to avoid explicit recognition of prosodic patterns, which 
is a sub-optimal intermediate decision. Specifically, the 
new score is the probability of a hypothesized word se- 
quence and associated syntactic parse given acoustic fea- 
tures, where both an acoustic model and a "language" 
(prosody/syntax) model are used to represent the proba- 
bility of utterance, analogous to speech recognition tech- 
niques. The parse scoring formalism was also extended 
to incorporate phrasal prominence information, in ad- 
dition to phrase breaks. In previous work, we demon- 
strated the feasibility of using parse scoring to find the 
correct interpretation in a corpus of professionally read 
ambiguous sentences. In this work, we use the parse scor- 
ing approach to rerank a speech understanding system's 
N-best output, specifically in the ATIS task domain, in 
order to improve sentence understanding accuracy. 

In the following section, we describe the parse 
scoring system and the probabilistic acoustic and 
prosody/syntax models. Next, we discuss issues that 
arose in extending the parse scoring algorithm to 
the ATIS task, including several modifications needed 
to handle new problems associated with spontaneous 
speech and the new parser and recognizer. We then 
present experimental results for the task of reranking 
the top N recognizer hypotheses and associated parses 
using prosody/parse scores. Finally, we discuss the im- 
plications of the results for future work. 

2. P A R S E  S C O R I N G  

2.1.  G e n e r a l  F o r m a l i s m  

The goal of this work is to reorder the set of N-best recog- 
nizer hypotheses by ranking each hypothesis and associ- 
ated parse in terms of a prosody score. More specifically, 
the prosody-parse score is the probability of a sequence 
of acoustic observations x = { z l , . . . ,  zn} given the hy- 
pothesized parse, p(x[parse), where x is a sequence of 
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duration and fO measurements associated with the rec- 
ognizer output. We compute this probability using an 
intermediate phonological representation of a sequence 
of abstract prosodic labels a = {al . . . .  , an}: 

p(xlparse) = ~ p(x[a)p(alparse). (1) 
a 

This representation implies the development of two prob- 
abillstic models: an acoustic model of prosodic patterns, 
p(x[a), and a model of the relationship between prosody 
and syntax p(alpaxse), analogous to a language model in 
speech recognition. 

The general formalism can accommodate many types 
of abstract labels in the prosodic pattern sequence a. 
Here, the prosodic labeling scheme is an extension of 
that proposed in [1] and includes integer break indices, 
one for each word to indicate prosodic constituent struc- 
ture, and a binary indicator of presence vs. absence of 
prominence on every syllable. Thus, the prosodic la- 
bel sequence is given by a = (b, p), where b represents 
the break sequence and p represents the prominence se- 
quence. To simplify the current implementation, we as- 
sume b and p are independent. This assumption implies 
the use of two acoustic models, p(xlb) and p(xlp), and 
two prosody/syntax models, p(blparse ) and p(plparse). 
(Relaxation of the independence assumption is discussed 
in Section 5.) 

Both the acoustic and prosody/syntax models make use 
of (different) binary decision trees. A binary decision 
tree [4] is an ordered sequence of binary questions that 
successively split the data, ultimately into sets associ- 
ated with the tree's terminal nodes or leaves. Decision 
trees are particularly useful for prosody applications be- 
cause they can easily model feature sets with both cat- 
egorical and continuous variables without requiring in- 
dependence assumptions. During training, the sequence 
of questions is selected from a specified set to minimize 
some impurity criterion on the sample distribution of 
classes in the training data. For typical classification 
problems, a leaf would then be associated with a class 
label. In this work, however, leaves are associated with 
the posterior distribution of the classes given the leaf 
node, and the tree can be thought of as "quantizing" 
the feature vectors. Here, the classes are either the dif- 
ferent levels of breaks, one after each word, or the binary 
prominence labels, one for each syllable. 

2.2. Acoust ic  Mode l  

The acoustic models, one for breaks and one for promi- 
nences, are based on decision trees originally developed 
for automatic prosodic labeling [5, 6]. The form of the 
two models is essentially the same. The break model, for 

example, represents the probability distribution of the 
different breaks at a word boundary p(blTAb(Z)), where 
TAb(z) is the terminal node of the acoustic break tree 
corresponding to observation z. Assuming the observa- 
tions are conditionally independent given the breaks, the 
probability of the observation sequence is given by 

p(x[b) = ~ I p ( z ,  lb,) = p(b, lTAb(Z,))p(zl) 
i=1 i=I p(bi) 

using the decision tree acoustic model. The probability 
p(x]p) is computed using a similar formula with a sepa- 
rate acoustic tree TAp(x) trained to model prominence. 

The key differences between the two acoustic models are 
in the labels represented and the acoustic features used. 
The break model represents several different levels of 
breaks, while the prominence model represents =k promi- 
nence. Breaks are associated with words and prominence 
markers are associated with syllables, so the observa- 
tion sequences for the two models are at the word level 
and syllable level, respectively. Both models rely on fea- 
tures computed from speech annotated with phone and 
word boundary markers found during speech recognition. 
Phonetic segmentations facilitate the use of timing cues, 
that in this work are based on segment duration normal- 
ized according to phone-dependent means and variances 
adapted for estimated speaking rate. The observation 
vectors used in the break model TAb [5] include features 
associated with normalized phone duration and pause 
duration. The observation vectors used to model promi- 
nence TAp [6] include similar features, as well as F0 and 
energy measurements. 

2.3. P r o s o d y / S y n t a x  Mode l  

The break and prominence prosody/syntax models are 
also based on decision trees, in this case originally de- 
signed for synthesis applications. Hirschberg and col- 
leagues have proposed the use of decision trees to predict 
presence vs. absence of prosodic breaks [7] and of pitch 
accents [8], with very good results. Our use of trees 
for prosody/syntax models differs from this work, in the 
number of prosodic labels represented, in the use of trees 
to provide probability distributions rather than classifi- 
cation labels, and in the use of trees for parse scoring 
rather than prediction. Again, the break and promi- 
nence models share the same basic form. The leaves 
of the prosody/syntax break tree Tab, for example, are 
associated with a probability distribution of the breaks 
given the syntactic feature vector zi, p(blTsb(Zi)). These 
probabilities are used directly in computing p(blparse ), 
assuming the breaks are conditionally independent given 
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the quantized features Tsb(zi): 
n 

p(b[parse) = H p(bi[Tsb(Zi)). 
i = 1  

Again, the probability p(plpar'~) can be computed using 
the same approach but with a separate prosody/syntax 
prominence tree Tsp. 

For all prosody/syntax models, the feature vectors used 
in the tree are based on part-of-speech tags and syn- 
tactic bracketing associated with the hypothesized word 
sequence. For the break model Tsb, the feature vec- 
tors (one for each word) include content/function word 
labels, syntactic constituent labels at different levels of 
bracketing, measures of distance in branches from the 
top and the bottom of the syntactic tree, and location 
in the sentence in terms of numbers of words. For the 
prominence model Tsp [9], the feature vectors (one for 
each syllable) include part-of-speech labels, lexical stress 
assignment and syllable position within the word. 

2.4. Joint Probability Score 

Using the acoustic and prosody/syntax models and the 
independence assumptions described above, the proba- 
bility of the acoustic observations x = (x(b), x(p)) given 
an hypothesized parse is: 

p(xlparse) = p(x (b) [parse)p(x(P)Iparse) 

where the break models contribute to the term 
t'lw 

P(x(b)[parse) = H p(zi) E p(blTAb(zi))p(blTsb(zi)) 
i=1 b p(b) 

and the prominence models contribute a similar term. If 
the problem is to rank different hypothesized parses for 
the same word sequence, i.e., the same observation se- 
quence x, then the term 1-Ii p(zi) can be neglected. How- 
ever, if different observation sequences are being com- 
pared, as is the case for different recognition hypothe- 
ses, then an explicit model of the observations is needed. 
Since the acoustic model readily available to this effort 
does not provide the p(zi) information, we simply nor- 
malize for differences in the length of the word sequence 
(nu,) and of the syllable sequence (n,): 

n ~  
Sj = ~ E l o g E  p(blTAb(Z,))P(blTsb(zi)) 

nw i=l b p(b) 

1 n .  + - -  ~ log ~ P(pITAp(zi))P(PITsp(zi)) (2) 
n, i=1 p P(P) " 

The score given by Equation 2 differs from the proba- 
bilistic score reported in previous work [2] primarily in 

that it uses the probability of breaks at each word bound- 
ary rather than a single detected break, but also in that 
it incorporates information about phrasal prominence. 

3. A P P L I C A T I O N  T O  A T I S  

The speech corpus is spontaneous speech from the ATIS 
(Air Travel Information Service) domain, collected by 
several different sites whose efforts were coordinated by 
the MADCOW group [10]. The ATIS corpus includes 
speech from human subjects who were given a set of 
air travel planning "scenarios" to solve via spoken lan- 
guage communication with a computer. Queries made 
by the subjects are classified differently according to 
whether they are evaluable in isolation (class A), require 
contextual information (class D) or having no canonical 
database answer (class X), but these distinctions are ig- 
nored in our work. In the ATIS task domain, speech 
understanding performance is measured in terms of re- 
sponse accuracy with a penalty for incorrect responses, 
as described in [11]. Our experiments will not assess 
understanding accuracy, which is a function of the com- 
plete speech understanding system, but rather the rank 
of the correct answer after prosody/parse scoring. 

A subset of the ATIS corpus was hand-labeled with 
prosodic breaks and prominences for training the acous- 
tic and prosody/syntax models. Since the spoken lan- 
guage systems at the various data collection sites differ 
in their degree of automation, mode of communication, 
and display, the training subset was selected to represent 
a balanced sample from each of four sites (BBN, CMU, 
MIT and SRI) and from males and females. The Octo- 
ber 1991 test set is used in the experiments reported in 
Section 4. 

The prosody/parse scoring mechanism was evaluated in 
the context of the MIT ATIS system [12], which com- 
municates the top N recognition hypotheses to the nat- 
ural language component for further processing. The 
speech recognition component, the SUMMIT system, 
was used to provide phone alignments for the acoustic 
model. The SUMMIT system uses segment-based acous- 
tic phone models, a bigram stochastic language model 
and a probabilistic left-right parser to provide further 
linguistic constraints [12]. TINA, MIT's natural lan- 
guage component [13], interleaves syntactic and task- 
specific semantic constraints to parse an utterance. As 
a result, the parse structure captures both syntactic and 
semantic constituents. For example, parse tree nodes 
may be labeled as CITY-NAME or FLIGHT-EVENT 
rather than with general syntactic labels. In addition, 
TINA falls back on a robust parsing mechanism when 
a complete parse is not found, using a combination of 
the basic parser and discourse processing mechanism ap- 
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plied within the utterance [14]. The robust parser en- 
ables TINA to handle many more queries, which may be 
difficult to parse because they contain complex and/or 
incomplete syntactic structures, disfluencies, or simply 
recognition errors. The robust parser assigns constituent 
structure to as much of the utterance as possible and 
leaves the unassigned terminals in the word string, and 
therefore generates bracketings with a flatter syntactic 
structure than that for a complete parse. 

In order to port our models and scoring algorithm to the 
ATIS task, the first change needed was a revision to the 
prosodic labeling system to handle spontaneous speech 
phenomena. The changes included the addition of two 
markers introduced in the TOBI prosodic labeling sys- 
tem [15]. First, the diacritic "p" was added to break 
indices where needed to indicate that an exceptionally 
long pause or lengthening occurs due to hesitation [15]. 
As in our previous work, we used a seven level break 
index system to represent levels in a constituent hierar- 
chy, a superset of the TOBI breaks. (The binary accent 
labels represent a simplification or core subset of the 
TOBI system.) The "p" diacritic is used fairly often: on 
5% of the total breaks, on 14% of the breaks at levels 
2 and 3, and somewhat more often in utterances that 
required a robust parse. In addition, a new intonational 
marker, %r, was added to indicate the beginning of an 
intonational phrase when the previous phrase did not 
have a well-formed terminus, e.g. in the case of repairs 
and restarts. The %r marker was rarely used and there- 
fore not incorporated in the models. Two other prosodic 
"break" labels were added to handle problems that arose 
in the ATIS corpus: "L" for linking was added for mark- 
ing the boundaries within a lexical item (e.g. San L 
Francisco) and "X" for cases where the labelers did not 
want to mark a word boundary between items (e.g. af- 
ter an interrupted word such as fli.). The different break 
markers were grouped in the following classes for robust 
probability estimates in acoustic modeling: (0,1,L), 2, 3, 
4-5, 6, (2p,3p), and (4p,5p). In these experiments, the 
relatively few sentences with an "X" break were simply 
left out of the training set. 

Another new problem introduced by the ATIS task was 
the definition of a "word", an important issue because 
prosodic break indices are labeled at each word bound- 
ary. The human labelers, the SUMMIT recognition sys- 
tem and the TINA natural language processing system 
all used different lexicons, differing on the definition of 
a "compound word" (e.g. air-fare, what-is-the). These 
differences were handled in training by: defining word 
boundaries according to the smallest unit marked in any 
of the three systems, using the MIT lexicons to associate 
the parse and recognition word boundaries, and assign- 

ing any hand-labeled "L" breaks to "1" where the rec- 
ognizer or parser indicated a word boundary. In testing, 
only the mapping between the recognition and natural 
language components is needed, and again the smallest 
word units are chosen. 

The main changes to the acoustic model in moving to 
the ATIS task were associated with the particular phone 
inventory used by the SUMMIT system. The differences 
in the phone inventory resulted in some minor changes 
to the syllabification algorithm (syllable boundaries are 
needed for acoustic feature extraction). In addition, the 
phone label set was grouped into classes for estimating 
robust duration means and variances. We also revised 
the pause duration feature to measure the total duration 
of all interword symbols. 

The changes to the prosody/syntax model simply in- 
volved defining new questions for the decision tree de- 
sign. The first change involved introducing new cate- 
gories of parse tree bracketing labels, in part to handle 
the different naming conventions used in TINA and in 
part to take advantage of the semantic information pro- 
vided by TINA. In addition, new types of questions were 
added to handle cases that included non-branching non- 
terminals, specifically, questions about the full level of 
bracketing and the bracketing defined only by binary 
branching non-terminals (i.e., using two definitions of 
the "bottom" of the syntactic tree) and questions about 
the non-terminal labels at multiple levels. Because of the 
differences in syntactic structure for word strings associ- 
ated with a robust parse as opposed to a complete parse, 
we chose to model the prosody of breaks given a robust 
parse separately, which is equivalent to forcing the first 
branch of the tree to test for the use of the robust parser. 

In summary, many changes were necessary in porting the 
algorithm to ATIS, some of which were required by the 
task of understanding spontaneous speech while others 
were specific to the particular recognizer and parser used 
here. 

4. E X P E R I M E N T S  

In the experimental evaluation of the 
prosody/parse scoring algorithm on ATIS, the acoustic 
and prosody/syntax models were trained on the subset 
of ATIS utterances that were hand-labeled with prosodic 
markers. The acoustic model was trained from phonetic 
alignments provided by the MIT recognizer, where the 
recognizer output was constrained to match the tran- 
scribed word sequence. The prosody/syntax model was 
trained from TINA parses of the transcribed word se- 
quence. 

For the parse scoring experiments, MIT provided the N 
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best recognition hypotheses and one parse per hypothe- 
sis for each utterance in the October 1991 test set. The 
sentence accuracy rate of the top recognition hypothe- 
sis, before any prosodic or natural language processing, 
was 32%. We restored the top 10 hypotheses, choos- 
ing the same number used by the current version of the 
MIT ATIS system. 185 of 383 utterances (48%) included 
the correct word string in the top 10. Excluding a few 
other sentences because of processing difficulties, a total 
of 179 utterances were used in evaluating improvements 
in rank due to prosody. For each sentence hypothesis, 
we extracted a sequence of acoustic features from the 
phone alignments and F0 contours and a sequence of 
syntactic features from the associated parse. Thus, every 
utterance yielded ten sequences of acoustic observation 
vectors and ten associated sequences of parse features, 
one pair for each of the ten-best hypothesized word se- 
quences. Each observation sequence was then scored ac- 
cording to the syntactic structure of the corresponding 
parse, yielding p(xilparsei), i = 1 . . . .  ,10 for each ut- 
terance. 

The prosody/parse score was used as one component 
in a linear combination of scores, also including the 
MIT SUMMIT acoustic score and language model score, 
which was used to rerank the sentence hypotheses. We 
investigated the use of a combined prosody score and 
separate break and prominence scores, and separating 
the scores gave slightly better performance. The weights 
in the linear combination are estimated on the October 
1991 data, using the method reported in [16]. (Although 
this is not a fair test in the sense that we are train- 
ing the three weights on the test set, our experiments 
in recognition indicate that performance improvements 
obtained typically translate to improvements on inde- 
pendent test sets.) The acoustic scores were normalized 
by utterance length in frames, and the other scores by 
utterance length in words. We compared the rankings 
of the correct word string for the score combination us- 
ing only the MIT acoustic and language scores with the 
rankings according to the score combination that also 
used the prosody/parse probability. The average rank 
of the correct utterance, for those in the top 10 to be- 
gin with, moved from 1.87 without the prosody score to 
1.67 with the prosody score, a gain of about 23% given 
that the best rank is 1.0. A paired difference test in- 
dicates that the difference in performance is significant 
(t~ = 2.47, ~/2 < .005). In addition, we noticed that 
incorporation of the prosody score rarely dropped the 
rank of the correct sentence by more than one, whereas 
it often improved the rank by more than one. 

5. D I S C U S S I O N  

In summary, we have described a prosody/parse scor- 
ing criterion based on the probability of acoustic obser- 
vations given a candidate parse. The model is general 
enough to handle a variety of prosodic labels, though we 
have focused here on prosodic breaks and prominences. 
Motivated by the good results in previous experiments 
with this algorithm on professionally read speech, the 
goal of this work was to extend the model to spontaneous 
speech and evaluate its usefulness in the context of an 
actual speech understanding system, i.e. the MIT ATIS 
system. Experimental results indicate that prosody can 
be used to improve the ranking of the correct sentence 
among the top N. We expect the improved ranking will 
translate to improved understanding accuracy, though 
clearly this needs to be confirmed in experiments with a 
spoken language system. 

There are several alternatives for improving both the 
acoustic and prosody/syntax models. In particular, the 
current score uses a heuristic to account for differences 
in observation sequences, which could be better handled 
by explicitly representing p(xla) rather than the pos- 
terior probability p(alx ) in the acoustic model. Other 
possible extensions include relaxation of independence 
assumptions, in particular the independence of breaks 
and prominences, since other work [9] has shown that 
breaks are useful for predicting prominence. Of course, 
this would require increased amounts of training data 
and somewhat more complex algorithms for computing 
the parse score. Finally, these experiments represent 
initial efforts in working with the MIT recognizer and 
parser, and new acoustic and syntactic features might 
take better advantage of the MIT system. 

The parse scoring algorithm is trained automatically and 
is in principal easily extensible to other tasks and other 
speech understanding systems. However, our effort to 
evaluate the algorithm in the ATIS domain raised some 
issues associated with portability. New prosodic labels 
were added to accommodate hesitation and disfluency 
phenomena observed in spontaneous speech, a problem 
that we expect will diminish as prosodic labeling conven- 
tions converge. Problems arose due to the differences in 
the definition of a "word" among component modules in 
the system, which might be addressed by standardization 
of lexical representation and/or by additional changes to 
prosodic labeling conventions. Finally, the specific choice 
of questions used in the decision trees was determined in 
part by hand to accommodate the output "vocabulary" 
of the particular recognizer and parser used. Though 
this aspect could be completely automated by creating 
standards for parse trees and recognizer "phone" labels, 
the use of some hand-tuning of questions allows us to op- 
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timize performance by taking advantage of the features 
of different systems and knowledge of the task domain. 

Clearly, performance in different spoken language sys- 
tents will be affected by several factors, including the 
reliability and level of detail of the parser, the accu- 
racy of the recognizer, the types of ambiguities in the 
task domain and the sophistication of other knowledge 
sources (e.g. semantic, discourse) in the system. We plan 
to explore these issues further by assessing performance 
of the algorithm in the SRI ATIS system. (Of course, 
it may be that the constrained semantics of the ATIS 
task make it difficult to assess the potential benefits of 
prosodic information.) Implementation and evaluation 
of prosody/parse scoring in the two systems should have 
implications for spoken language system design, and our 
initial work already raises some issues. In particular, 
there are cases where prosody could benefit speech un- 
derstanding, but is not useful unless the natural lan- 
guage component provides more than one parse for a 
hypothesized word string, e.g. for lists of numbers and 
for utterances with possible disfluencies. In addition, it 
might be useful to have explicit filled pause models used 
in recognition (a capability available in some versions of 
the MIT system that was not used in this experiment), 
to help distinguish hesitations (marked by the "p" dia- 
critic) from well-formed prosodic boundaries. 

In conclusion, we emphasize that these experiments rep- 
resent initial efforts at integrating prosody in speech un- 
derstanding and there is clearly much more work to be 
done in this area. In addition to improving the basic 
components of the model and evaluating more parse hy- 
potheses, there are many other possible architectures 
that might be investigated for integrating prosody in 
speech understanding. 
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