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ABSTRACT 

There is a mismatch between the distribution of information in text, 
and a variety of grammatical formalisms for describing it, including 
ngrams, context-free grammars, and dependency grammars. Rather 
than adding probabilities to existing grammars, it is proposed to 
collect the distributions of flexibly sized partial trees. These can be 
used to enhance an ngram model, and in analogical parsing. 

1. THE PROBLEM WITH PROBABILIZED 
GRAMMARS 

For a variety of language processing tasks, it is useful to have 
a predictive language model, a fact which has recently led to 
the development probabilistic versions of diverse grammars, 
including ngram models, context free grammars, various de- 
pendency grammars, and lexicalized tree grammars. These 
enterprises share a common problem: there is a mismatch be- 
tween the distribution of information in text and the grammar 
model. 

The problem arises because each grammar formalism is nat- 
ural for the expression of only some linguistic relationships, 
but predictive relationships in text are not so restricted. For 
example, context-free grammars naturally express relations 
among sisters in a tree, but are less natural for expressing 
relations between elements deeper the tree. In this paper, first 
we discuss the distribution of information in text, and its re- 
lationship to various grammars. Then we show how a more 
flexible grammatical description of text can be extracted from 
a corpus, and how such description can enhance a language 
model. 

Ngram Models The problem can be seen most simply in 
ngram models, where the basic operation is to guess the prob- 
ability of a word given n - 1 previous words. Obviously, 
there is a deeper structure in text than an n-gram model ad- 
mits, though thus far, efforts to exploit this information have 
been only marginally successful. Yet even on its own terms, 
ngram models typically fail to take into account predictive 
information. 

One way that ngram models ignore predictive information is 
in their strategy for backing off. Consider, for example, a 
trigram model where the basic function is to predict a word 

(wo) given the two previous words (W_l and w-2). In our 
Wall Street Journal test corpus, the three word sequence give 
kittens to appears once, but not at all in the training corpus. 
Thus, a trigram model will have have difficulty predicting to 
given the words give kittens. 

In this case, the standard move of backing off to a bigram 
model is not very informative. It is more useful to predict 
to using the word give than the word kittens, because we 
know little about what can follow kittens, but much about 
what typically follows give. We would expect for cases where 
the bigram (w_ 1,w0) does not exist, the alternative bigram 
(w_2,wo) will be a better predictor (if it exists) than the simple 
unigram. 

Obviously, in this example, the fact that complementation in 
English is not expressed purely by adjacency explains some 
of the power of the w_ 1 predictor. 

A second problem with ngram models arises because different 
word sequences call for a greater or smaller n. For example, 
while many 6-grams are unique and uninformative, some are 
powerful predictors. 

Table 1 shows the frequencies of the top few words following 
the words New York Stock Exchange in the 60 million word 
Wall Street Journal corpus. More than half the time, the word 
that followsNew York Stock Exchange is composite. However, 
in the 355 cases where New York Stock Exchange is preceded 
by the word composite (Table 1), composite never occurs as 
the following word, and the overwhelming probable choice 
for the following word is trading. 

If  we had settled for a 5-gram model here, we would have 
failed miserably compared with a 6-gram model. But of 
course, this raises the sparse data problem; predicting the 
parameters of a 6-gram model is daunting. 

Context Free Grammars  It is easy to see that a simple- 
minded probabilizing of a CFG - that is, taking an existing 
CFG and assigning probabilities to the rules - is not a very 
good predictor. There several problems. First, CFG's typi- 
cally don't include enough lexical information. Indeed, the 
natural use of non-terminal categories is to abstract away from 
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New York Stock Exchange 

composite New York Stock Exchange 

composite 6597 
1556 

yesterday 862 
824 

trading 480 
, ,  

TOTAL 12305 

trading 349 
yesterday 4 
Trading 2 
composite 0 

TOTAL 355 

Table 1: Ngrams with New York Stock Exchange 

lexical considerations. Lexical associations are however crit- 
ical to guessing word probabilities, not only for verb subcat- 
egorization and selection, but across the vocabulary (see e.g. 
Church et al. 1991). A context free grammar with a rule 
N 2 -  > A D J ,  N is not able to naturally express selectional 
restrictions between adjectives and nouns, e.g. the fact that 
strong tea is probable but powerful tea is not. 

A second problem is that CFG's naturally abstract away from 
syntactic function: for example, in a CFG, a noun phrase is 
described by the same set of rules whether it occurs as sub- 
ject, object, object of preposition or whatever. While this 
ability to generalize across contexts is a strength of CFG's, it 
is disastrous for guessing whether a noun phrase will be a pro- 
noun or not. Table 2 shows the probabilities of a noun phrase 
being realized as a pronoun in various contexts, in a sample 
of spoken and written texts produced by college students and 
matched for content (Hindle 1978). Clearly, ignoring whether 
a noun phrase is subject or not reduces the effectiveness of 
a predictive model. (Note too that the differences between 
spoken and written English are not to be ignored. 

There are of course ways to admit lexical and functional infor- 
mation into a CFG. But except for carefully restricted domains 
(e.g semantic grammars), these typically lead to an explosion 
of nonterminals and rules, making parameter estimation dif- 
ficult. 

spoken 

written 

function p(PRO) 
subject .71 (N=2077) 
non-subject .16 (N=1477) 
subject .44 (N=1195) 
non-subject .09 (N=i088) 

Table 2: Subject and non-subject noun phrases 

Dependency Grammars Dependency grammars naturally 
address part of the mismatch between CFG's and predictive 
associations, since they are expressed in terms of relations 
between words (Melcuk 1988), Nevertheless, in dependency 
grammars as well, certain syntactic relationships are problem- 
atic. 

In dependency grammar, there are two competing analyses 
both for noun phrases and for verb phrases. For noun phrases, 
the head may be taken to be either 1) the head noun (e.g. 
man in the men) or 2) the determiner (e.g the in the men); 
analogously, for verb phrases, the head may be taken to be 
either 1) the mail verb (e.g. see in had seen) or 2) the tensed 
verb of the verb group (e.g have in had seen). Each anal- 
ysis has its virtues, and different dependency theorists have 
preferred one analysis or the other. It is not our purpose 
here to choose a dependency analysis, but to point out that 
whatever the choice, there are consequences for our predic- 
tive language models. The two models imply different natural 
generalizations for estimating probabilities, and thus will lead 
to different predictions about the language probabilities. If 
the determiner is taken to be the head of the noun phrase, then 
in guessing the probability of a verb-det-noun structure, the 
association between the verb and the determiner will predom- 
inate, since when we don't have enough information about a 
verb-det-noun triple, we can back off to pairs. Conversely, if 
the noun is taken to be the head of the noun phrase, then the 
predominant association will be between verb and noun. (Of 
course, a more complex relationship between the grammar 
and the associated predictive language model may be defined, 
overriding the natural interpretation.) 

A ten million word sample of Wall Street Journal text was 
parsed, and a set of verb-det-noun triples extracted. Specif- 
ically, object noun phrases consisting of a noun preceded by 
a single determiner preceded by a verb were tabulated. That 
is, we consider only verbs with an object, where the object 
consists of a determiner and a noun. The five most common 
such triples (preceded by their counts) were: 

213 have 
176 be 
165 be 
140 raise 
127 reach 

a loss 

the first 
its stake 
an agreement 

Three different probability models for predicting the specific 
verb, determiner, and noun were investigated, and their en- 
tropies calculated. Model 0 is the baseline trigram model, 
assuming no independence among the three terms. Model 1, 
the natural model for the determiner=head dependency model, 
predicts the determiner from the verb and the noun from the 
determiner (and thus is equivalent to an adjacent word bigram 
model). Model 2 is the converse, the natural model for the 
noun=head dependency model. Both Model 1 and Model 2 
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Model for [V P V [N P d n ]] Entropy 
0 Pr(vdn) = Pr(v)Pr(dn[v) 15.08 
1 Pr(vdn) = Pr(v)Pr(dlv)Pr(nld  ) 20.48 
2 Pr(vdn) = Pr(v)Pr(n lv)Pr(d ln  ) 17.62 

Table 3: Three predictive models for verb-det-noun triples in 
Wall Street Journal text 

ignore predictive information, assuming in the first case that 
the choice of noun is independent of the verb, and in the sec- 
ond case, that the choice of determiner is independent of the 
verb. Neither assumption is warranted, as Table 3 shows (both 
have higher entropy than the trigram model), but Model 1, the 
determiner=head model, is considerably inferior. Model 1 is 
for this case like a bigram model, and Table 3 makes it clear 
that this is not a particularly good way to model dependen- 
cies between verb and object: the dominant dependency is 
between verb and noun. 

In terms of using the distributional information available in 
text, neither choice is correct, since the answer is lexicaUy 
specific. For example, in predicting the object of verbs, an- 
swer is a better predictor of its object noun (call, question), 
while alter is better a predicting its determiner (the, its). 

In contrast to dependency grammars and context free gram- 
mars, lexicalized tree adjoining grammars have considerable 
flexibility in what relations are represented, since the tree is 
an arbitrary-sized unit (Shabes 1988). In practice however, 
lexicalized TAGs have typically been written to reduce the 
number of rules, and thus to assume independence like other 
grammars. In general, for any grammar that is written with- 
out regard to the distribution of forms in text, simply attaching 
probabilities to the grammar will always ignore useful infor- 
mation. This does not imply any claim about the descriptive 
power of various grammar formalisms; with sufficient inge- 
nuity, just about any recurrent relation that appears in a corpus 
can be encoded in any formalism. However, different gram- 
mar formalisms do differ in what they can naturally express. 

There is a clear linguistic reason for the mismatch between 
received grammars and the distribution of structures in text: 
language provides several cross cutting ways of organizing 
information (including various kinds of dependencies, paral- 
lel structures, listing, name-making templates, etc.), and no 
single model is good for all of these. 

2. U S I N G  P A R T I A L  S T R U C T U R E S  

The preceding section has given evidence that adding proba- 
bilities to existing grammars in several formalisms is less than 
optimal since significant predictive relationships are necessar- 
ily ignored. The obvious solution is to enrich the grammars 

to include more information. To do this, we need variable 
sized units in our database, with varying terms of description, 
including adjacency relationships and dependency relation- 
ships. That is, given the unpredictable distribution of infor- 
mation in text, we would like to have a more flexible approach 
to representing the recurrent relations in a corpus. To address 
this need, we have been collecting a database of partial struc- 
tures extracted from the Wall Street Journal corpus, in a way 
designed to record recurrent information over a wide range of 
size and terms of the description. 

Extract ing  Partial Structures The database of partial 
structures is built up from the words in the corpus, by succes- 
sively adding larger structures, after augmenting the corpus 
with the analysis provided by an unsupervised parser. The 
larger structures found in this way are then entered into the 
permanent database of structures only if a relation recurs with 
a frequency above a given threshold. When a structure does 
not meet the frequency threshold, it is generalized until it 
does. 

The descriptive relationships admitted include: 

• basic lexical features 

- spelling 

- part-of-speech 

- lemma 

- major category (maximal projection) 

• dependency relations - depends on 

• adjacency relations - precedes 

Consider an example from the following sentence from the a 
training corpus of 20 million words of the Wall Street Journal. 

(1) Reserve board rules have put banks between a 
rock and a hard place 

The first order description of a word consists of its basic lexical 
features, i.e. the word spelling, its part of speech, its lemma, 
and its major category. Looking at the word banks, we have 
as description 

TERMINAL 
banks,NN,bank/N,NP 

At the first level we add adjacency and dependency informa- 
tion, specifically 

ADDED STRUCTURE 
(precedes (put,VB,put/V, VG) (banks,NN,bank/N,NG)) 
(precedes (banks,NN,bank/N,NG) (between,IN,between/I,PG)) 
(depends (put,VB,put/V, VG) (banks,NN,bank/N,NG)) 
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Assuming that we require at least two instances for a partial 
description to be entered into the database, none of these three 
descriptions qualify for the database. Therefore we must 
abstract away, using an arbitrarily defined abstraction path. 
First we abstract from the spelling to the lemma. This move 
admits two relations (since they are now frequent enough) 

PRUNED STRUCTURES 
(precedes (put, VB,put/V, VG) (,NN,bank/N,NG)) 
(depends (put,VB,put/V, VG) (,NN,bank/N,NG)) 

units are selected in using language depends on a variety of 
factors, including meaning, subject matter, speaking situation, 
style, interlocutor and so on. Of course, demonstrating that 
this intuition is valid remains for future work. 

The set of partial trees can be used directly in an analogical 
parser, as described in Hindle 1992. In the parser, we are 
not concerned with estimating probabilities, but rather with 
finding the structure which best matches the current parser 
state, where a match is better the more specific its description 
is. 

The third relation is still too infrequent, so we further gener- 
alize to 

(precedes (,NN,,NG) (between,IN,between/I,PG)) 

a relation which is amply represented (3802 occurrences). 

The process is iterated, using the current abstracted descrip- 
tion of each word, adding a level of description, then gen- 
eralizing when below the frequency threshold. Since each 
level in elaborating the description adds information to each 
word, it can only reduce the counts, but never increase them. 
This process finds a number of recurrent partial structures, 
including between a rock and a hard place (3 occurrences in 
20 million words), and [vpput [NP distance] [pp between]] (4 
occurrences). 

General Caveats There is of course considerable noise in- 
troduced by the errors in analysis that the parser makes. 

There are several arbitrary decisions made in collecting the 
database. The level of the threshold is arbitrarily set at 3 for 
all structures. The sequence of generalization is arbitrarily 
determined before the training. And the predicates in the 
description are arbitrarily selected. We would like to have 
better motivation for all these decisions. 

It should be emphasized that while the set of descriptive terms 
used in the collection of the partial structure database allows 
a more flexible description of the corpus than simple ngrams, 
CFG's or some dependency descriptions, it nevertheless is 
also restrictive. There are many predictive relationships that 
can not be described. For example, parallelism, reference, 
topic-based or speaker-based variation, and so on. 

Motivation The underlying reason for developing a 
database of partial trees is not primarily for the language 
modeling task of predicting the next word. Rather the partial- 
tree database is motivated by the intuition that partial trees 
are are the locus of other sorts of linguistic information, for 
example, semantic or usage information. Our use of language 
seems to involve the composition of variably sized partially 
described units expressed in terms of a variety of predicates 
(only some of which are included in our database). Which 

3. ENHANCING A TRIGRAM MODEL 
The partial structure database provides more information than 
an ngram description, and thus can be used to enhance an 
ngram model. To explore how to use the best available in- 
formation in a language model, we turn to a trigram model 
of Wall Street Journal text. The problem is put into relief by 
focusing on those cases where the trigram model fails, that 
is, where the observed trigram condition (w-2, w_l) does not 
occur in the training corpus. 

In the current test, we randomly assigned each sentence from 
a 2 million word sample of WSJ text to either the test or 
training set. This unrealistically minimizes the rate of unseen 
conditions, since typically the training and test are selected 
from disjoint documents (see Church and Gale 1991). On 
the other hand, since the training is only a million words, 
the trigrams are undertrained. In general, the rate of unseen 
conditions will vary with the domain to be modeled and the 
size of training corpus, but it will not (in realistic languages) be 
eliminated. In this test, 26% (258665/997811) of the bigrams 
did not appear in the test, and thus it is necessary to backoff 
from the trigram model. 

We will assume that a trigram model is sufficiently effective 
at preediction in those cases where the conditioning bigram has 
been observed in training, and will focus on the problem of 
what to do when the conditioning bigram has not appeared 
in the training. In a standard backoff model, we would look 
to estimate Pr(wolw_l). Here we want to consider a sec- 
ond predictor derived from our database of partial structures. 
The particular predictor we use is the lemma of the word that 
w-1 depends on, which we will call G(W_l). In the example 
discussed above, the first (standard) predictor for the word 
between is the preceding word banks and the second predic- 
tor for the word between is G(banks), which in this case is 
put/v. 

We want to choose among two predictors, w - i  and G(w_l). 
In general, if we have two conditions, Ca and CCb and we want 
to find the probability of the next word given these conditions. 
Intuitively, we would like to choose the predictor C'i for which 
the predicted distribution of w differs most from the unigram 
distribution. Various measures are possible; here we con- 
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model logprob 
unigram 
backoff w_ l 
backoff G(w_ l) 
backoff w - t  then G(w_ t) 
backoff (MAX IS o f w _ l  and G(w_l) )  

9.55 
8.06 
8.20 
7.97 
7.99 

Table 4: Backoff for unknown trigrams in WSJ text. 

sider one, which Resnik (1993) calls selectional preference, 
namely the relative entropy between the posterior distribution 
Pr(w]C) and the prior distribution Pr (w) .  We'll label this 
measure IS, where 

IS(w; C) = E Pr(wlC)loa Pr(wlC) 
w P (w) 

In the course of processing sentence (1), we need an estimate 
of Pr(between]put banks). Our training corpus does not 
include the collocation put banks, so no help is available from 
trigrams, therefore we backoff to a bigram model, choosing 
the bigram predictor with maximum IS. The maximum IS 
is for put/V (G(w_x)) rather than for w-1 (banks) itself, so 
G(w_l) is used as predictor, giving a logprob estimate of 
-10.2 rather than -13.1. 

The choice of G(w_ 1) as predictor here seems to make sense, 
since we are willing to believe that there is a complementation 
relation between put/V and its second complement between. 
Of course, the choice is not always so intuitively appealing. 
When we go on to predict the next word, we need an estimate 
of Pr(albanks between). Again, our training corpus does not 
include the collocation banks between, so no help is available 
from trigrams. In this case, the maximum IS is for banks 
rather than between, so we use banks to predict a rather than 
between, giving a logprob estimate of-5.6 rather than -7.10. 

Overall, however, the two predictors can be combined to im- 
prove the language model, by always choosing the predictor 
with higher IS score. 

As shown in Table 4, this slightly improves the logprob for our 
test set over either predictor independently. However, Table 
4 also shows that a simple strategy of chosing the raw bigram 
first and the G(w_l) bigram when there is no information 
available is slightly better. In a more general situation, where 
we have a set of different descriptions of the same condition, 
the IS score provides a way to choose the best predictor. 

4. CONCLUSION 
Recurrent structures in text vary widely both in size and in 
the terms in which they are described. Existing grammars are 
too restrictive both in the size of structure they admit and in 
their terms of description to adequately capture the variation 
in text. A method has been described for collecting a database 
of partial structures from text. Methods of fully exploiting the 
database for language modeling are currently being explored. 
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