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A B S T R A C T  

The word-spotting task is analogous to text-based infor- 
marion retrieval tasks and message-understanding tasks in that an 
exhaustive accounting of the input is not required: only a useful 
subset of the full information need be extracted in the task. Tradi- 
tional approaches have focussed on the keywords involved. We 
have shown that accounting for more of the data, by using a 
large-vocabulary recognizer for the wordspotting task, can lead 
to dramatic improvements relative to traditional approaches. 
This result may well be generalizable to the analogous text-based 
tasks. 

The approach described makes several novel contribu- 
tions, including: (1) a method for dramatic improvement in the 
FOM (figure of merit) for word-spotting results compared to 
more traditional approaches; (2) a demonstration of the benefit of 
language modeling in keyword spotting systems; and (3) a 
method that provides rapid porting of to new keyword vocabular- 
ies. 

1. I N T R O D U C T I O N  

Although both continuous speech recognition and key- 
word-spotting tasks use the very similar underlying technology, 
there are typically significant differences in the way in which the 
technology is developed and used for the two applications (e.g. 
acoustic model training, model topology and language modeling, 
filler models, search, and scoring). A number of HMM-based 
systems have previously been developed for keyword-spotting 
[1-5]. One of the most significant differences between these key- 
word-spotting systems and a CSR system is the type of non-key- 
word model that is used. It is generally thought that very simple 
non-keyword models (such as a single 10-state model [2], or the 
set of monophone models [1]) can perform as well as more com- 
plicated non-keyword models which include words or triphones. 

We describe how we have applied CSR techniques to the 
keyword-spotting task by using a speech recognition system to 
generate a transcription of the incoming spontaneous speech 
which is searched for the keywords. For this task we have used 
SR.I's DECIPI-IER TM system, a state-of-the-art large-vocabulary 
speaker-independent continuous-speech recognition system [6- 
10]. The method is evaluated on two domains: (1) the Air Travel 
Information System (ATIS) domain [13], and (2) the "credit card 
topic" subset of the Switchboard Corpus [11], a telephone speech 

corpus consisting of spontaneous conversation on a number of 
different topics. 

In the ATIS domain, for 78 keywords in a vocabulary of 
1200, we show that the CSR approach significantly outperforms 
the traditional wordspotting approach for all false alarm rates per 
hour per word: the figure of merit (FOM) for the CSR recognizer 
is 75.9 compared to only 48.8 for the spotting recognizer. In the 
Credit Card task, the sporing of 20 keywords and their 58 vari- 
ants on a subset of the Switchboard corpus, the system's perfor- 
mance levels off at a 66% detection rate, limited by the system's 
ability to increase the false alarm rate. Additional experiments 
show that varying the vocabulary size from medium- to large- 
vocabulary recognition systems (700 to 7000) does not affect the 
FOM performance. 

A set of experiments compares two topologies: (1) a 
topology for a fixed vocabulary for the keywords and the N most 
common words in that task (N varies from Zero to Vocabulary 
Size), forcing the recognition hypothesis to choose among the 
allowable words (traditional CSR), and (2) a second topology in 
which a background word model is added to the word list, 
thereby allowing the recognition system to transcribe parts of the 
incoming speech signal as background. While including the 
background word model does increase the overall likelihood of 
the recognized transcription, the probability of using the back- 
ground model is highly likely (due to the language model proba- 
bilities of out of vocabulary words) and tended to replace a 
number of keywords that had poor acoustic matches. 

Finally, we introduce an algorithm for smoothing lan- 
guage model probabilities. This algorithm combines small task- 
specific language model training data with large task-indepen- 
dent language training data, and provided a 14% reduction in test 
set perplexity. 

2. T R A I N I N G  . 

2.1. A c o u s t i c  M o d e l i n g  

DECIPHER TM uses a hierarchy of phonetic context- 
dependent models, including word-specific, triphone, general- 
ized-triphone, biphone, generalized-biphone, and context inde- 
pendent models. Six spectral features are used to model the 
speech signal: the eepstral vector (C1-CN) and its first and sec- 
ond derivatives, and cepstral energy (CO) and its first and second 
derivatives. These features are computed from an FFT filterbank 
and subsequent high-pass RASTA filtering of the filterbank log 
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energies, and are modeled either with VQ and scalar codebooks 
or with tied-mixture Gaussian models. The acoustic models used 
for the Switchboard task use no cross word acoustic constraints. 

2.2. Language Modeling 

The DECIPI-IER m system uses a probabilistie finite state 
grammar (PFSG) to constrain allowable word sequences. In the 
ATIS, WSL and Credit Card tasks, we use a word-based bigram 
grammar, with the language model probabilities estimated using 
Katz's back-off bigrarn algorithm [12]. All words that are not in 
the specified vocabulary that are in the language model training 
data are mapped to the background word model. The background 
word model is treated like all the other words in the recognizer, 
with bigram language model probabilities on the grammar transi- T 
tions between words. 

Two topologies are used for the experiments described in 
this paper. One topology is to use a fixed vocabulary with the 
keywords and the N most common words in that task (N varies 
from Zero to VocabSize), forcing the reeoguition hypothesis to 
ehoose among the allowable words. A second topology is to add 
the background word model to the above word list, thereby 
allowing the recoguition system to transcribe parts of the incom- 
ing speech signal as background. A sample background word 
with 60 context-independent phones is shown below in Figure 1. 

Grammar ( ~  Grammar 
Transition Transition 

60 Context-Independent Phones 

Figure 1: A sample topology for the background word model. 
The minimum duration is 2 phones and the self loop allows for 
an infinite duration. 

2.3. Task-Specific Language Model Estimation 

The Switchboard Corpus [11] is a telephone database 
consisting of spontaneous conversation on a number of different 
topics. The Credit Card task is to spot 20 keywords and their 
variants where both the keywords and the test set focus on a sub- 
set of the Switchboard conversations pertaining to credit cards. 
To estimate the language model for this task, we could (1) use a 
small amount of task-specific training data that focuses only on 
the credit card topic, (2) use a large amount of task-independent 
training data, or (3) combine the task-specific training with the 
task-indepondent training data. 

For combining a small amount of task-specific (TS) 
training with a very large amount of task-independent (TI) train- 
ing data, we modified the Katz back-off bigram estimation algo- 
rithm [12]. A weight was added to reduce the effective size of the 
task-independent training database as shown in Equation 1: 

C(w2, wl)  - Crs(w2, wl)  +Y*CTt(W2, wl)  

where C (w2,  wl )  is the counts of the nurnher of occurrences 
of word wl  followed by w2, CTS (w2,  wl)  are the counts from 

the task-specific database and Crt (w2,  wl)  are the counts 
from the task-independent database. The weight 3, reduces the 
effective size of the task-independent database so that these 
counts don't overwhelm the counts of the task-specific database. 

Table 1 shows both the training set and test set perplexity 
for the credit card task as a function of T. The task-specific train- 
ing consisted of 18 credit card conversations (59 K words) while 
the task-independent training consisted of 1123 general conver- 
satious (17 M words). 

Table 1: Perplexity of Credit Card Task as a Function of Task 
Independent-Specific Smoothing 
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Effective Task Training Test Set 
Indep. Training Set 

Size Perplexity Perplexity 

17,611,159 174.7 380.0 

8,805,579 154.5 358.3 

3,352,223 131.0 332.0 

1,761,116 117.5 321.8 

880,558 109.7 328.8 

352,223 102.6 360.4 

176,111 98.8 396.9 

88,055 96.2 443.4 

35,222 94.5 521.5 

17,611 94.0 592.3 

3. S E A R C H  

The DECIPHER a~ system uses a time-synchronous 
beam search. A partial Viterbi baektrace [6] is used to locate the 
most-likely Viterbi path in a continuous running utterance. The 
Viterbi backtrace contains both language model information 
(grammar transition probabilities into and out of the keyword), 
acoustic log likelihood probabilities for the keyword, and the 
duration of the keyword hypothesis. 

A duration-normalized likelihood score for each key- 
word is computed using the following Equation 2: 

AP + GP + Constant 
KeyScore = Duration 

where AP is the acoustic log-likelihood score for the keyword, 
and GP is the log probability of the grammar transition into the 
keyword, and Constant is a constant added to the score to penal- 
ize keyword hypotheses that have a short duration. None of the 
earlier HMM keyword systems used a bigram language in either 
the decoding or the scoring. Many previous systems did use 
weights on the keywords to adjust the operating location on the 
ROC curve. 
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A hypothesized keyword is scored as correct if its mid- 
point falls within the endpoints of the correct keyword. The key- 
word scores are used to sort the occurrences of each keyword for 
computing the probability of detection at different false-alarm 
levels. The overall figure-of-merit is computed as the average 
detection rate over all words and over all false alarm rates up to 
ten false alarms per word per hour. 

4. EXPERIMENTS 

4.1. ATIS Task 

The ATIS task [13] was chosen for keyword-spotting 
experiments because (1) the template-based system that inter- 
prets the queries of the airline database focuses on certain key- 
words that convey the meaning of the query, and ignores many of 
the other filler words (e.g. "I would like...", "Can you please ...'), 
(2) the task uses spontaneous speech, and (3) we have worked 
extensively on this recognition task over the last two years. 
Sixty-six keywords and their variants were selected as keywords 
based on the importance of each of the words to the SRI tem- 
plate-mateher which interprets the queries. 

SRI applied two different recognition systems to the 
ATIS keyword spotting task. The first system was SRI's large- 
vocabulary speaker-independent speech recognition system that 
we have used for the ATIS speech-recognition task [3]. The 
vocabulary used in this system is about 1200 words, and a back- 
off bigram language model was trained using the ATIS MAD- 
COW training data [13]. Many of the words in the vocabulary 
use word-specific or triphone acoustic models, with biphone and 
context-independent models used for those words that occur 
infrequently. 

The second system is a more traditional word-spotting 
system. There are 66 keywords plus 12 variants of those key- 
words for a total of 78 keyword models. There is a background 
model (see Figure 1) that tries to account for the rest of the 
observed acoustics, making a total of 79 words in this second 
system. This second system also uses a back-off bigram gram- 
mar, but all non-keywords are replaced with the background 
word when computing language model probabilities. 

The acoustic models for the keywords and their variants 
were identical in the two systems. The only difference between 
the two systems is that the first system uses ~1100 additional 
words for the background model, while the second system uses 
one background model with 60 context-independent phones. The 
resulting FOM and ROC curves are show in Figure 2 for the two 
systems. 

Table 2: ATIS Keyword Spotting Results 

Number of 
System Description Filler Models 

ATIS Recognizer 1100 

1 Spotting Recognizer 

FOM 

75.9 

48.8 
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Figure 2: Probability of  detection as a function of  the false alarm 
rate for the above two CSR systems on the ATIS Task. 

There are two possible explanations for the experimental 
results in Figure 2 and Table 2. The first explanation is that the 
ATIS recognizer has a much larger vocabulary, and this larger 
vocabulary is potentially better able at matching the non-key- 
word acoustics than the simple background model The second 
explanation is that for the larger vocabulary ATIS system, the 
back-off bigram grammar can provide more interword con- 
straints to eliminate false alarms than the back-off bigram gram- 
mar that maps aU non-keywords to the filler model Additional 
experiments are planned to determine the extent of these effects. 

4.2. Credit Card Task 

The Credit Card task is to spot 20 keywords and their 58 
variants on a subset of the Switchboard database. The keywords 
were selected to be content words relevant to the credit card topic 
and based on adequate frequency of occurrence of each keyword 
for training and testing. 

Acoustic models were trained on an 11,290 hand-tran- 
scribed utterances subset of the Switchboard database. A back- 
off bigram language model was trained as described in Section 
2.3, using the text transcriptions from 1123 non-credit-card con- 
versations and 35 credit card conversations. The most common 
5,000 words in the non-credit-card conversations were combined 
with the words in the credit card conversations, the keywords, 
and their variants to bring the recognition vocabulary size to 
6914 words (including the background word model). 

The resulting CSR system was tested on 10 credit-card 
conversations from the Switchboard database. Each conversation 
consisted of two stereo recordings (each talker was recorded sep- 
arately) and was approximately 5 minutes long. Each of the two 
channels is processed independently. The resulting ROC curve is 
shown in Figure 3. The ROC curve levels out at 66% because the 
CSR system hypothesized 431 keywords out of a total of 498 
true keyword locations. Our current CSR approach, which uses 
the Viterbi backtracee, does not allow us to increase the keyword 
false alarm rate. 
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Figure 3: Probability of detection as a function fo the false alarm 
rate for the 6914 word CSR system on the Credit Card Task. 

The effect of using different scoring formulas is shown 
in Table 3. If  only the duration-normalized acoustic log-likeli- 
hoods are used, an average probability of detection (FOM) of 
54% is achieved. When the grammar transition log-probability 
into this keyword is added to the score (Eqn 2), the FOM 
ihereases to 59.9%. In addition, if a constant is added to the 
score before normalization, the FOM increases for both cases. 
This has the effect of reducing the false-alarm rate for shorter- 
duration keyword hypotheses. We have not had a chance to 
experiment with the grammar transition leaving the keyword, nor 
with any weighting of grammar scores relative to acoustic 
ScoreS. 

Table 3: Credit Card FOM Scoring 

Acoustic Likelihood + Acoustic 
Grammar Transition Likelihood 

Keyword Score 59.9 54.0 

Optimized Score 60.5 57.1 

We then varied the recognition vocabulary size and 
determined its effect on the keyword-spotting performance. 
These experiments show that varying the vocabulary size from 
medium- to large-vocabulary recognition systems (700 to 7000) 
does not affect the FOM performance. 

Table 4: Credit Card FOM as a Function of CSR Vocabulary Size 

VoeabularySize FOM 

725 59.3 

1423 59.5 

6914 59.9 

Finally, we experimented with including or excluding the 
background word model in the CSR lexicon. While including the 
background word model does increase the overall likelihood of 

the recognized transcription, the probability of using the back- 
ground model is highly likely (due to the language model proba- 
bilities of OOV words) and tended to replace a number of 
keywords that had poor acoustic matches. Table 5 shows that a 
slight improvement can be gained by eliminating this back- 
ground word model. 

Table 5: FOM With and Without Background Model for Large 
Vocabulary CSR System 

Vocabulary Size FOM 

6914 59.9 

6913 (No Background) 61.6 

5. S U M M A R Y  

This paper describes how SRI has applied our speaker- 
independent large-vocabulary CSR system (DECIPHER TM) to 
the keyword-spotting task. A transcription is generated for the 
incoming spontaneous speech by using a CSR system, and any 
keywords that occur in the transcription are hypothesized. We 
show that the use of improved models of non-keyword speech 
with a CSR system can yield significantly improved keyword 
spotting performance. 

The algorithm for computing the score of a keyword 
combine information from acoustic, language, and duration. One 
key limitation of this approach is that keywords are only hypoth- 
esized if they are included in the Viterbi baektrace. This does not 
allow the system builder to operate effectively at high false alarm 
levels if desired. We are eousidering other algorithms for hypoth- 
esizing "good score" keywords that are on high scoring paths. 

We introduced an algorithm for smoothing language 
model probabilities. This algorithm combines small task-specific 
language model training data with large task-independent lan- 
guage training data, and provided a 14% reduction in test set per- 
plexity. 

The use of a large-vocabulary continuous-speech recog- 
nition system allows the system designer a great dealof flexibil- 
ity in choosing the keywords that they would like to select for the 
particular application. If the desired keyword is already in the 
lexicon, then searching for the keyword can be achieved by look- 
ing for the word in the transcription generated by the recognizer. 
If the word is not in the lexicon, the word can be easily added to 
the system since triphone models have already been trained. 

The ability to transerihe spontaneous speech and search 
for relevant keywords will play an important role in the future 
development of simple spoken language applications. Such sys- 
tems will be easily portable to new domains. Since the operating 
point for our speech recognizer is typically one which has a low 
insertion rate, there is little chance for a keyword false alarm. 
Future experimentation will determine the effectiveness of such 
understanding systems for human-computer interaction. 
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