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A B S T R A C T  

In this paper we describe and compare the performance of a series 
of cepstrum-based procedures that enable the CMU SPHINX-II 
speech recognition system to maintain a high level of recognition 
accuracy over a wide variety of acoustical environments. We 
describe the MFCDCN algorithm, an environment-independent 
extension of the efficient SDCN and FCDCN algorithms devel- 
oped previously. We compare the performance of these algorithms 
with the very simple RASTA and cepstral mean normalization 
procedures, describing the performance of these algorithms in the 
context of the 1992 DARPA CSR evaluation using secondary 
microphones, and in the DARPA stress-test evaluation. 

1. I N T R O D U C T I O N  

The need for speech recognition systems and spoken lan- 
guage systems to be robust with respect to their acoustical 
environment has become more widely appreciated in recent 
years (e.g. [1]). Results of many studies have demonstrated 
that even automatic speech recognition systems that are 
designed to be speaker independent can perform very 
poorly when they are tested using a different type of micro- 
phone or acoustical environment from the one with which 
they were trained (e.g. [2,3]), even in a relatively quiet 
office environment. Applications such as speech recogni- 
tion over telephones, in automobiles, on a factory floor, or 
outdoors demand an even greater degree of environmental 
robusmess. 

Many approaches have been considered in the development 
of robust speech recognition systems including techniques 
based on autoregressive analysis, the use of special distor- 
tion measures, the use of auditory models, and the use of 
microphone arrays, among many other approaches (as 
reviewed in [1,4]). 

In this paper we describe and compare the performance of a 
series of cepstrum-based procedures that enable the CMU 
SPHINX-II speech recognition system to maintain a high 
level of recognition accuracy over a wide variety of acousti- 
cal environments. The most recently-developed algorithm 
is multiple fixed codeword-dependent cepstral normaliza- 
tion (MFCDCN). MFCDCN is an extension of a similar 

algorithm, FCDCN, which provides an additive environ- 
mental compensation to cepstral vectors, but in an environ- 
men t - spec i f i c  f a sh ion  [5]. M F C D C N  is less 
computationally complex than the earlier CDCN algorithm, 
and more accurate than the related SDCN and BSDCN 
algorithms [6], and it does not require domain-specific 
paining to new acoustical environments. In this paper we 
describe the performance of MFCDCN and related algo- 
rithms, and we compare it to the popular RASTA approach 
to robustness. 

2. E F F I C I E N T  C E P S T R U M - B A S E D  
C O M P E N S A T I O N  T E C H N I Q U E S  

In this section we describe several of the cepstral normal- 
ization techniques we have developed to compensate 
simultaneously for additive noise and linear filtering. Most 
of these algorithms are completely data-driven, as the com- 
pensation parameters are determined by comparisons 
between the testing environment and simultaneously- 
recorded speech samples using the DARPA standard clos- 
etalking Sennheiser HMD-414 microphone (referred to as 
the CLSTLK microphone in this paper). The remaining 
algorithm, codeword-dependent cepstral normalization 
(CDCN), is model-based, as the speech that is input to the 
recognition system is characterized as speech from the 
CLSTLK microphone that undergoes unknown linear filter- 
ing and corruption by unknown additive noise. 

In addition, we discuss two other procedures, the RASTA 
method, and cepstral mean normalization, that may be 
referred to as cepstral-filtedng techniques. These proce- 
dures do not provide as much improvement as CDCN, 
MFCDCN and related algorithms, but they can be imple- 
mented with virtually no computational cost. 

2.1. Cepstral Normalization Techniques 

SDCN. The simplest compensation algorithm, SNR- 
Dependent Cepstral Normalization (SDCN) [2,4], applies 
an additive corr~tion in the cepstral domain that depends 
exclusively on the instantaneous SNR of the signal. This 
correction vector equals the average difference in cepstra 
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between simultaneous "stereo" recordings of speech sam- 
pies from both the training and testing environments at each 
SNR of speech in the testing environment. At high SNRs, 
this conection vector primarily compensates for differences 
in speclzal tilt between the training and testing environ- 
ments (in a manner similar to the blind deconvolufion pro- 
cedure tirst proposed by Stockham et al. [7]), while at low 
SNRs the vector provides a form of noise subtraction (in a 
manner similar to the spectral subtraction algorithm first 
proposed by Boll [8]). The SDCN algorithm is simple and 
effective, but it requires environment-specific training. 

FCDCN. Fixed  codeword-dependen t  cepstral  normal iza-  
tion (FCDCN) [4,6] was developed to provide a form of 
compensation that provides greater recognition accuracy 
than SDCN but in a more computationally-efticient fashion 
than the CDCN algorithm which is summarized below. 

The FCDCN algorithm applies an additive correction that 
depends on the instantaneous SNR of the input (like 
SDCN), but that can also vary from codeword to codeword 
(like CDCN) 

= z + r [ k , l ]  

where for each frame $ represents the estimated cepstral 
vector of the compensated speech, z is the cepstral vector of 
the incoming speech in the target environment, k is an index 
identifying the VQ codeword, I is an index identifying the 
SNR, and r [k, !] is the correction vector. 

The selection of the appropriate codeword is done at the 
VQ stage, so that the label k is chosen to minimize 

Ilz+ r [ k ,  l] - c [k] II 2 

where the c [k] are the VQ codewords of the speech in the 
training database. The new correction vectors are estimated 
with an EM algorithm that maximizes the likelihood of the 
data. 

The probability density function of x is assumed to be a 
mixture of Gaussian densities as in [2,4]. 

K - I  
p(x)  = ~ P[k] (NxC[k],Xk) 

k=0 

The cepstra of the corrupted speech are modeled as Gauss- 
ian random vectors, whose variance depends also on the 
instantaneous SNR, l, of the input. 

p (zl ~ r, 1 f f ~ [ / ]  exp /] - c [k] II 2 
k 20" 

In [4] it is shown that the solution to the EM algorithm is 
the following iterative algorithm. In practice, convergence 
is reached after 2 or 3 iterations if we choose the initial val- 
ues of the correction vectors to be the ones specified by lhe 
SDCN algorithm. 

1. Assume initial values for r' [k, l] and 02 [l] . 

2. Estimate f i  [k], the aposteriori probabilities of the mix- 
ture components given the correction vectors r' [k, li], vari- 

ances 02 [li], and codebook vectors c [k] 

exp I" 1 
202 [ l i] 

~[k]  = r - ~  

exp(- 1 
p = 0 202 [li] 

- - - I l z i +  r' [k,/] - c [ k ]  I12) 
- - - I I  zi + ,' tp, li] - c [p] II 2) 

where I i is the instantaneous SNR of the i th frame. 

3. Maximize the likelihood of the complete data by obtaining 
new estimates for the correction vectors r' [k, l] and cor- 

responding o [ l] : 

N-1 

(x i- zi)f i [k] ~ i t -  til 
i=0 r[k, l] = N - I  

E f i  [ k] ~i [ l - li] 
i=0 

N - I K - I  

E E Ilxi-zi-'t~OllZfitk]Stl-ll ] 
o2[l] = i = 0 k = 0  

N - I K - I  
E E J~[k]S[t-li] 

i = O k = O  

4. Stop if convergence has been reached, otherwise go to Step 
2. 

In the current version of FCDCN the SNR is varied over a 
range of 30 dB in 1-dB steps, with the lowest SNR set equal 
to the estimated noise level. At each SNR compensation vec- 
tors are computed for each of 8 separate VQ clusters. 

Figure 1 illustrates some typical compensation vectors 
obtained with the FCDCN algorithm, computed using the 
standard closetalking Sennheiser HMD-414 microphone and 
the unidirectional desktop PCC-160 microphone used as the 
target environment. The vectors are computed at the extreme 
SNRs of 0 and 29 dB, as well as at 5 dB. These curves are 
obtained by calculating the cosine transform of the cepstral 
compensation vectors, so they provide an estimate of the 
effective spectral profile of the compensation vectors. The 
horizontal axis represents frequency, warped nonlinearly 
according to the mel scale [9]. The maximum frequency cor- 
responds to the Nyquist frequency, 8000 Hz. We note that the 
spectral profile of the compensation vector varies with SNR, 
and that especially for the intermediate SNRs the various VQ 
clusters require compensation vectors of different spectral 
shapes. The compensation curves for 0-dB SNR average to 
zero dB at low frequencies by design. 
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Figure 1: Comparison of compensation vectors using the 
FCDCN method with the PCC-160 unidirectional desktop 
microphone, at three different signal-to-noise ratios. The 
maximum SNR used by the FCDCN algorithm is 29 dB. 

The computational complexity of the FCDCN algorithm is 
very low because the correction vectors are precomputed. 
However, FCDCN does require simultaneously-recorded 
data from the training and testing environments. In previous 
studies [6] we found that the FCDCN algorithm provided a 
level of recognition accuracy that exceeded what was 
obtained with all other algorithms, including CDCN. 

MFCDCN. Multiple fixed codeword-dependent cepstral 
normalization (MFCDCN) is a simple extension to the 
FCDCN algorithm, with the goal of exploiting the simplic- 
ity and effectiveness of FCDCN but without the need for 
environment-specific training. 

In MFCDCN, compensation vectors are precomputed in 
parallel for a set of target envkonments, using the FCDCN 

procedure as described above. When an utterance from an 
unknown environment is input to the recognition system, 
compensation vectors computed using each of the possible 
target environments are applied successively, and the envi- 
ronment is chosen that minimizes the average residual VQ 
distortion over the entire utterance, 

llz + r[k, l,m] -c [k] II z 

where k refers to the VQ codeword, I to the SNR, and m to 
the target environment used to train the ensemble of com- 
pensation vectors. This general approach is similar in spirit 
to that used by the BBN speech system [13], which per- 
forms a classification among six groups of secondary 
microphones and the CLSTLK microphone to determine 
which of seven sets of phonetic models should be used to 
process speech from unknown environments. 

The success of MFCDCN depends on the availability of 
training data with stereo pairs of speech recorded from the 
training environment and from a variety of possible target 
environments, and on the extent to which the environments 
in the training data are representative of what is actually 
encountered in testing. 

IMFCDCN. While environment selection for the compen- 
sation vectors of MFCDCN is generally performed on an 
utterance-by-utterance basis, the probability of a correct 
selection can be improved by allowing the classification 
process to make use of cepstral vectors from previous utter- 
ances in a given session as well. We refer to this type of 
unsupervised incremental adaptation as Incremental Multi- 
ple Fixed Codeword-Dependent Cepstral Normalization 
OMFCDCN). 

CDCN. One of the best known compensation algorithms 
developed at CMU is Codeword-Dependent Cepstral Nor- 
malization (CDCN) [2,4]. CDCN uses EM techniques to 
compute ML estimates of the parameters characterizing the 
contributions of additive noise and linear filtering that when 
applied in inverse fashion to the cepstra of an incoming 
utterance produce an ensemble of cepstral coefficients that 
best match (in the ML sense) the cepstral coefficients of the 
incoming speech in the testing environment to the locations 
of VQ codewords in the training environment. 

The CDCN algorithm has the advantage that it does not 
require a priori knowledge of the testing environment (in 
the form of any sort of simultaneously-recorded "stereo" 
training data in the training and testing environments). 
However, it has the disadvantage of a somewhat more com- 
putationally demanding compensation process than 
MFCDCN and the other algorithms described above. Com- 
pared to MFCDCN and similar algorithms, CDCN uses a 
greater amount of structural knowledge about the nat~e of 
the degradations to the speech signal in order to improve 
recognition accuracy. Liu et al. [5] have shown that the 
structural knowledge embodied in the CDCN algorithm 
enables it to adapt to new envkonments much more rapidly 
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than an algorithm closely related to SDCN, but this experi- 
ment has not yet been repeated for FCDCN. 

2.2. Cepstral Filtering Techniques 

In this :section we describe two extremely simple tech- 
niques, RASTA and cepstral mean normalization, which 
can achieve a considerable amount of environmental 
robusmess at almost negligible cost. 

RASTA. In RASTA filtering [10], a high-pass filter is 
applied to a log-spectral representation of speech such as 
the cepstral coefficients. The SRI DECIPHER TM system, 
for example, uses the highpass filter described by the differ- 
ence equation 

y[n] = x[n] - x [ n -  1] + 0 . 9 7 y [ n -  1] 

where x [n] and y [n] are the time-varying cepstral vectors 
of the utterance before and after RASTA filtering, and the 
index n refers to the analysis frames [11]. 

Cepstral mean normalization. Cepstral mean normaliza- 
tion (CMN) is an alternate way to high-pass filter cepstral 
coefficients. In cepstral mean normalization the mean of the 
cepstral vectors is subtracted from the cepstral coefficients 
of that utterance on a sentence-by-sentence basis: 

y [n] 
N 

1 
= x In] - ~ 2 . ,  x [n] 

1 

n = l  

where N is the total number frames in an utterance. 

Figure 2 shows the low-frequency portions of the transfer 
functions of the RASTA and CMN filters. Both curves 
exhibit a deep notch at zero frequency. The shape of the 
CMN curve depends on the duration of the utterance, and is 
plotted in Figure 2 for the average duration in the DARPA 
Wall Street Journal task, 7 seconds. The Nyquist frequency 
for the time-varying cepstral vectors is 50 frames per sec- 
ond. 

Algorithms like RASTA and CMN compensate for the 
effects of unknown linear filtering because linear filters pro- 
duce a static compensation vector in the cepstral domain 
that is the average difference between the cepstra of speech 
in the training and testing environments. Because the 
RASTA and CMN filters are highpass, they force the aver- 
age values of cepstral coefficients to be zero in both the 
training and testing domains. Nevertheless, neither CMN 
nor RASTA can compensate directly for the combined 
effects of additive noise and linear filtering. It is seen in 
Figure 1 that the compensation vectors that maximize the 
likelihood of the data vary as a function of the SNR of indi- 
vidual frames of the utterance. Hence we expect compensa- 
tion algorithms like MFCDCN (which incorporate this 
knowledge) to be more effective than RASTA or CMN 
(which do not). 
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Figure 2: Comparison of the frequency response of the 
highpass cepstral filters implemented by the RASTA algo- 
rithm as used by SRI (dotted curve), and as implied by 
CMN (solid curve). The CMN curve assumes an utterance 
duration of 7 seconds. 

3. E X P E R I M E N T A L  R E S U L T S  

In this section we describe the ability of the various envi- 
ronmental compensation algorithms to improve the recogni- 
tion accuracy obtained with speech from unknown or 
degraded microphones. 

The environmental compensation algorithms were evalu- 
ated using the SPHINX-II recognition system [12] in the 
context of the November, 1992, evaluations of continuous 
speech recognition systems using a 5000-word closed- 
vocabulary task consisting of dictation of sentences from 
the Wall Street Journal. A component of that evaluation 
involved utterances from a set of unknown "secondary" 
microphones, including desktop microphones, telephone 
handsets and speakerphones, stand-mounted microphones, 
and lapel-mounted microphones. 

3.1. Results from November CSR Evaluations 

We describe in this section results of evaluations of the 
MFCDCN and CDCN algorithms using speech from sec- 
ondary microphones in the November, 1992, CSR evalua- 
tions. 

Because of the desire to benchmark multiple algorithms 
under several conditions in this evaluation combined with 
limited resources and the severe time constraints imposed 
by the evaluation protocol, this evaluation was performed 
using a version of SPHINX-II that was slightly reduced in 
performance, but that could process the test data more rap- 
idly than the system described in [12]. Specifically, the 
selection of phonetic models (across genders) was per- 
formed by minimizing mean VQ distortion of the cepstral 
vectors before recognition was attempted, rather than on the 
basis of a posteriori probability after classification. In addi- 
tion, neither the unified stochastic engine (USE) described 
in [12] nor the cepstral mean normalization algorithms were 
applied. Finally, the CDCN evaluations were conducted 
without making use of the CART decision tree or alternate 
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pronunciations in the recognition dictionary. The effect of 
these computational shortcuts was to increase the baseline 
error rate for the 5000-word task from 6.9% as reported in 
[12] to 8.1% for the MFCDCN evaluation, and to 8.4% for 
the CDCN evaluation. 
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Figure 3: Performance of the MFCDCN algorithm (upper 
panel) and the CDCN algorithm (lower panel) on the offi- 
cial DARPA CSR evaluations of November, 1992 

Figure 3 summarizes the results obtained in the official 
November, 1992, evaluations. For these experiments, the 
MFCDCN algorithm was trained using the 15 environments 
in the training set and developmental test set for this evalua- 
tion. It is seen that both the CDCN and MFCDCN algo- 
rithms significantly improve the recognition accuracy 
obtained with the secondary microphones, with little or no 
loss in performance when applied to speech from the clos- 
etalking Sennheiser HMD-414 (CLSTLK) microphone. 
The small degradation in recognition accuracy observed for 
speech from the CLSTLK microphone using the MFCDCN 
algorithm may be at least in part a consequence of errors in 
selecting the environment for the compensation vectors. 
Environment-classification errors occurred on 48.8% of the 
CLSTLK utterances and on 28.5% of the utterances from 
secondary microphone. In the case of the secondary micro- 
phones, however, recognition accuracy was no better using 
the FCDCN algorithm which presumes knowledge of the 
correct environment, so confusions appear to have taken 
place primarily between acoustically-similar environments. 

In a later study we repeated the evaluation using MFCDCN 
compensation vectors obtained using only the seven catego- 

ries of microphones suggested by BBN rather than the orig- 
inal 15 environments. This simplification produced only a 
modest increase in error rate for speech from secondary 
microphones (from 17.7% to 18.9%) and actually improved 
the error rate for speech from the CLSTLK microphone 
(from 9.4% to 8.3%). 

Figure 4 summarizes the results of a series of (unofficial) 
experiments run on the same data that explore the interac- 
tion between MFCDCN and the various cepstral filtering 
techniques. The vertical dotted line identifies the system 
described in [12]. 
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Figure 4: Comparison of the effects of MFCDCN, 
IMFCDCN, cepstral mean normalization (CMN), and the 
RASTA algorithm on recognition accuracy of the Sen- 
nbeiser HMD-414 microphone (solid curve) and the second 
ary microphones (dashed curve), from the November 1992 
DARPA CSR evaluation data. 

It can be seen in Figure 4 that RASTA filtering provides 
only a modest improvement in errors using secondary 
microphones, and degrades speech from the CLSTLK 
microphone. CMN, on the other hand, provides almost as 
much improvement in recognition accuracy as MFCDCN, 
without degrading speech from the CLSTLK microphone. 
We do not yet know why our results using CMN are so 
much better than the results obtained using RASTA. In con- 
trast, Schwartz et al. obtained approximately comparable 
results using these two procedures [13]. 

Finally, adding MFCDCN to CMN improves the error rate 
from 21.4% to 16.2%, and the use of IMFCDCN provides a 
further reduction in error rate to 16.0% for this task. 

3.2. Results from the "Stress Test" Evaluation 

In addition to the evaluation described above, a second 
unofficial "stress-test" evaluation was conducted in Decem- 
ber, 1992, which included spontaneous speech, utterances 
containing out-of-vocabulary words, and speech from 
unknown microphones and environments, all related to the 
Wall Street Journal domain. 
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The version of SPHINX-II used for this evaluation was con- 
figured to maximize the robustness of the recognition pro- 
cess. It was t rained on 13,000 speaker- independent  
utterances from the Wall Street Journal task and 14,000 
utterances of spontaneous speech from the ATIS travel 
planning domain. The trigram grammar for the system was 
derived from 70.0 million words of text without verbalized 
punctuation and 11.6 million words with verbalized punctu- 
ation. Two parallel versions of the SPHINX-II system were 
run, with and without IMFCDCN. Results obtained are 
summarized in the Table I below. 

In Out of  STRESS BASE 
Vocab Vocab TOTAL CSR 

b'K CLSTLK 9.4% - 9.4% 5.3% 

5K other mie 13.4% - 13.4% 17.7% 

20K CLSTLK 16.8% 22.8% 18.1% 12.4% 

20K other mic 23.7% 24.8% 24.0% - 

Spontaneous [11.9% 27.2% 22.4% - 

Table 1: Error rates obtained by SPHINX-II in the 
December, 1992, "Stress-Test" Evaluation. The baseline 
CSR results are provided fox comparison only, and were not 
obtained using a comparably-configured system. 

We also compared these results with the performance of the 
baseline SPHINX-H system on the same data. The baseline 
system achieved a word error rate of 22.9% using only the 
bigram language model. Adding IMFCDCN reduced the 
error rate only to 22.7%, compared to 20.8% for the stress- 
tes t  sys tem using IMFCDCN.  We be l i eve  that  the 
IMFCDCN algoxithm provided only a small benefit because 
only a small percentage of  data in this test was from sec- 
ondary microphones. 

In general, we are very encouraged by these results, which 
are as good or better than the best results obtained only one 
year ago under highly controlled conditions. We believe 
that the stress-test protocol is a good paradigm for future 
evaluations. 
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