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A B S T R A C T  
This note describes the current development of an approach 
to parsing designed to overcome some of the problems of  ex- 
isting parsers, particularly with respect to their util ity a~ 
language models. The parser combines lexical and grammat- 
ical constraints into a uniform grammatical representation, is 
readily trainable (since the parser output is indistinguishable 
from the grammar input), and uses analogy to guess about 
the likelihood of constructions outside the grammar. 

1. T H E  P R O B L E M  W I T H  P A R S E R S  

A parser is a device that  provides a description of the 
syntactic phrases that  make up a sentence. For a speech 
understanding task such as ATIS, the parser has two 
roles. First, it should provide a description of the phrases 
in a sentence so these phrases can be interpreted by a 
subsequent semantic processor. The second function is 
to provide a language model - a model of the likelihood 
of a sentence - to constrain the speech recognition task. 
It is unfortunately the case that  existing parsers devel- 
oped for text fulfill neither of these roles very well. 

It is useful to begin by reviewing some of the reasons 
for this failure. We can describe the situation in terms 
of three general problems that  parsers face: the Lexi- 
cality Problem, the Tail Problem, and the Interpolation 
Problem. 

The Lexicality Problem 

The most familiar way to think of a parser is as a de- 
vice that  provides a description of a sentence given some 
grammar.  Consider for example a context free gram- 
mar, where nonterminal categories are rewritten as ter- 
minals or nonterminals, and terminals are rewritten as 
words. There typically is no way to express the con- 
straints among individual words. 

Yet it is clear that  much of our knowledge of language has 
to do with what words go together.[2] Merely knowing 
the grammatical  rules of the language is not enough to 
predict which words can go together. So for example, 
general English grammatical  rules admit  premodification 
of a noun by another noun or by an adjective. It is 

possible to describe broad semantic constraints on such 
modification; so for example, early morning is a case of 
a time-adjective modifying a time-period, and morning 
flight is a time-period modifying an event. Already we 
are have an explosion of categories in the grammar,  since 
we are talking not about  nouns and adjectives, but  about 
a fairly detailed subclassification of semantic types of 
nouns and adjectives. 

But the problem is worse than this. As Table 1 shows, 
even this rough characterization of semantic constraints 
on modification is insufficient, since the adjective-noun 
combination early night does not occur. This depen- 
dency of syntactic combinability on particular lexicM 
items is repeated across the grammar and lexicon. 

The lexicality problem has two aspects. One is represent- 
ing the information and the other is acquiring it. There 
has recently been increasing work on both aspects of the 
problem. The approach described in this paper is but 
one of many possible approaches, designed with an em- 
phasis on facilitating efficient parsing. 

The Tail Problem 

Most combinations of words never occur in a corpus, 
but many of these combinations are possible, but  simply 
have not been observed yet. For a grammar  (lexicalized 
or not) the problem presented by this tail of  rare events 
is unavoidable. The grammar will always undercover 
the language. The solution to the tail problem involves 
training from text. 

The Interpolation Problem 

While it is always useful to push a grammar out the tail, 
it is inevitable that  a grammar  will not cover everything 
encounted, and that  a parser will have to deal with un- 
foreseen constructions. This is of course the typical prob- 
lem in language modeling, and it raises the problem of 
estimating the probabilities of structures that  have not 
been seen - the Interpolation Problem. The rules of the 
grammar must be extendible to new constructions. In 
this parser the approach is through analogy, or memory- 
based reasoning.[8] 
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_flight(s) 
morning 143 
afternoon 146 
evening 51 
night 27 

e a s y _  N 
33 597 
25 504 
12 215 
0 121 

Table 1: Pre- and post- modifiers for time nominals in a 
266k word ATIS sample. 

2.  T H E  P A R S E R  

The basic parser data  structure is a pointer to a node, 
the parser's focus of  attention. The basic operation is to 
combine the focus of attention with either the preceding 
or following element to create a new node, updating pre- 
ceding and following pointers and updating the focus of 
attention and then repeat. If no combination is possible, 
the focus is moved forward, and thus parsing proceeds 
from the beginning of the sentence to the end. 

Some consequences of this model: no non-contiguous de- 
pendencies are picked up by this stage of the parser. The 
idea is that  the parser is a reactive component. Its out- 
put is not the complete analysis of a sentence, but rather 
consists of a set of fragments that  subsequent processing 
will glue together. (cf. [1, 3, 4]). 

2 . 1 .  T h e  G r a m m a r  

Trees in the grammar are either terminal or non- 
terminal. Terminal trees are a pair of a syntactic feature 
specification and a word. Non-terminals are a pair of 
trees, with a specification of which tree is head - thus, 
this is a binary dependency grammar. 

t ~ t e r m i n a l  I (1 t t) I (2 t t) 

t e r m i n a l  ~ ( f e a t u r e s  word)  

The category of a non-terminal is the category of its 
head. 

The grammar for the parser is expressed as a set of trees 
that  have lexically specified terminals, each with a fre- 
quency count. For example, in the ATIS grammar, the 
tree corresponding to the phrase book a flight is 

(1 (V "book") (2 (XI "a")(N "flight"))) 

It occurs 6 times. The grammar consists of a large set of 
such partial trees, which encode both the grammatical 
and the lexical constraints of the language. 

Following are examples of two trees that  might be in the 
grammar for the parser. 

(V 1 
(V 1 

(V 0 aIVZ) 
(XPII_O 0 NE)) 

(N 1 
(N 2 

(Xl o A) 
(N 0 LIST)) 

(P 1 
(P o OF) 
(N2 2 

(XQ 0 ALL) 
(N2 0 AIRFARES))))) 

(P 1 
(P 0 FOR) 
(~2 2 

(N 0 ROUND-TRIP) 
(N2 0 TICKETS))) 

2 . 2 .  P a r s i n g  

The basic parser operation is to combine subtrees by 
matching existing trees in the grammar. Consider, for 
example, parsing the fragment give me a list. 

Initially, the parser focuses on the first word in the sen- 
tence, and tries to combine it with preceding and follow- 
ing nodes. Since give exists in the grammar as head of a 
tree with me as second element, the match is straightfor- 
ward, and the node give me is built, directly copying the 
grammar. Nothing in the grammar leads to combining 
give me and a, so the parser attention moves forward, 
and a list is built, again, directly from the grammar. 

At this point, the parser will is looking at the fragments 
give me (with head give) and a list (with head list), and 
is faced again with the question: can these pieces be 
combined. Here the answer is not so obvious. 

2 .3 .  S m o o t h i n g  b y  a n a l o g y .  

If we could guarantee that  all trees that  the parser must 
construct will exist in its grammar of trees, then the 
parsing procedure would be as described in the preced- 
ing section. Of course, we don't  predict in advance all 
trees the parser might see. Rather, the parser has a 
grammar representing a subset of the trees it might see 
along with a measure of similarity between trees. When 
the parser finds no exact way to combine two nodes to 
match a tree that  exists in the grammar, it looks for sim- 
ilar trees that  combine. In particular, it looks at each 
of the two potential combined nodes in turn and tries to 
find a similar tree that  does combine with the observed 
tree. 

So in our example, although give me a list does not occur, 
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give me  occurs with a number of similar trees, including: 

a list of ground transportation 
a list of the cities serve 

a list of flights from philadelphia 
a list of all the flights 
a list of all flights 
a list of all aircraft type 

One of these trees is selected to be the analog of a list, 
thus allowing give me  to be combined as head with a list. 

The parser uses a heuristically defined measure of sim- 
ilarity that  depends on: category, root, type , specifier, 
and distribution. Obviously, much depends on the sim- 
ilarity metric used. The aim here is to combine our 
knowledge of language, to determine what in general con- 
tributes to the similarity of words, with patterns trained 
from the text. The details of the current similarity met- 
ric are largely arbitrary, and ways of training it are being 
investigated. 

Notice that  this approach finds the closest exemplar, not 
average of behavior. (cf. [7, 81) 

2 . 4 .  D i s a m b i g u a t i o n  

For words which are ambiguous among more than one 
possible terminal (e.g. to can be a preposition or an 
infinitival marker), the parser must assign a terminal 
tree. In this parser, the disambiguation process is part of 
the parsing process. That  is, when the parser is focusing 
on the word to it selects the tree which best combines 
to with a neighboring node. If that  tree has to as, for 
example, head of a prepositional phrase, then to is a 
preposition, and similarly if to is an infinitival marker. 

Of course, if a word is not attached to any other con- 
stituent in the course of parsing, this method will not 
apply. Disambiguation is still necessary, to allow subse- 
quent processing. In such cases, the parser reverts to its 
bigram model to make the best guess about the proper 
tree for a word. 

3.  D E V E L O P I N G  A G R A M M A R  

Developing a grammar for this parser means collecting 
a set of trees. There are 4 distinct sources of grammar 
trees. 

G e n e r a l  Eng l i sh .  The base set of trees for the parser 
is a set of general trees for the language as a whole, inde- 
pendent of the domain. These include standard sentence 
patterns as well as trees for the regular expressions of 
time, place, quantity, etc. For the current parser, these 

trees were written by hand (though in this set will over 
time be developed partly by hand and partly from text). 
This set of trees is independent of the domain, and avail- 
able for any application. It forms part of a general model 
for English. 

The remaining three parts of the tree database are all 
specific to the particular restricted domain. 

D o m a i n  D a t a b a s e  Specific.  Trees specific to the sub- 
domain, derived semi-automatically from the underlying 
database. Included are airline names, flight names and 
codes, aircraft names, etc. This can also include a set 
of typical sentences for the domain. In a sense, this set 
of trees provides information about the content of the 
messages in the domain, the things one is likely to talk 
about. 

P a r s e d  T r a i n i n g  Sen tences .  hand parsed text from 
the training sentences. These trees are fairly easy to 
produce through an incremental process of: a) parse a 
set of sentences, b) hand correct them, c) remake the 
parser, and d) repeat. About a thousand words an hour 
can be analyzed this way. (Thus for the ATIS task, it is 
easy to hand parse the entire training set, though this 
was not done for the experiment reported here.) 

U n s u p e r v i s e d  Parsed  Text .  also from the training 
sentences, but parsed by the existing parser and left un- 
corrected. (Note: given an existing database of parsed 
sentences, these could transformed into trees for the 
parser grammar.) 

Obviously, one aim of this design is to make acquisi- 
tion of the grammar easy. Indeed, the parser design is 
not English-specific, and in fact a Spanish version of the 
parser (under an earlier but related design) is currently 
being updated. 

4.  T H E  A T I S  E X P E R I M E N T  

For The ATIS task, a vocabulary was defined consist- 
ing of 1842 distinct terminal symbols (a superset of the 
February 91 vocabulary, enhanced by adding words to 
regularize the grammar, and by distinguishing words 
with features; e.g. "travel" as a verb is a different termi- 
nal from "travel" as a noun). A grammar was derived, 
based on 1) a relatively small general English model in- 
cluding trees for general sentence structure as well as 
trees for dates, times, numbers, money, and cities, and 
2) an ATIS specific set of trees covering types of objects 
in the database (aircraft, airports, airlines, flight info, 
ground transportation) and 3) sentences in the training 
set. In this experiment, approximately 10% of the gram- 
mar are language general, 10~ are database specific, 50% 
are supervised parsed trees and 30~ are unsupervised. 
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The weighting of the various sources of grammar trees 
has not arisen here - all trees are weighted equally. But 
in the general case, where there is a pre-existing large 
general grammar,  and a large corpus for unsupervised 
training, the weighting of grammar trees will become an 
issue. 

Given this grammar consisting of 14,000 trees, derived 
as described above, the grammar perplexity is 15.9 on 
the 138 February 91 test sentences. This compares to a 
perplexity of 18.9 for the bigram model (where bigrams 
are terminals). The grammar trees derived from the un- 
supervised parsing of the training sentences improve the 
model slightly (from 16.4 to 15.9 perplexity). 

5. S E N T E N C E  P R O B A B I L I T Y  

The parse of a sentence consists of a sequence of N nodes. 
By convention, the first and last nodes in the sequence 
(nl and nN) are instances of the distinguished sentence 
boundary node. If all the words in a sentence are incor- 
porated by the parser under a single root node, then the 
output  will consist of a sequence of three nodes, of which 
the middle one covers the words of the sentence. But re- 
member, the parser may emit a sequence of fragments; 
in the limiting case, the parser will emit one node for 
each word. 

5.1. The t ree  g r a m m a r  

The tree grammar,  consists of a set of tree specifications. 

For each tree ti, the specification records: 

t h e  s h a p e  o f t i  - 

for terminals - the root and category 

for non-terminals - whether the head is 
on the left or right what the left and 
right subtrees are. 

e o u n t ( t i )  - number of times that  tl appears 

l e f t_coun t  (ti) - number of times ti appears on the left 
in a larger tree 

r i g h t _ c o u n t ( t i )  -number  of times ti appears on the 
right in a larger tree 

l subs_for( t l ,  t~) - for tree tj in which ti is the left sub- 
tree, sum of count(tk) where tk could realize 
ti in tj 

rsubs._for(ti,tj) - for tree tj in which ti is the right 
subtree, sum of count(re) where tk could re- 
alize ti in tj 

l subs( t l )  - sum of count of trees tj such that  ti could 
realize the left subtree of tj  

5.2. probabi l i ty  calculat ion 

In the following, rd, ld, re, and lc mean right daughter, 
left daughter, right corner and left corner respectively. 
The probability of a sentence s consisting of a sequence 
of n nodes (starting with the sentence boundary node, 
which we call n l )  is: 

.N-1 

P r ( , )  = 
i=1  

Pr(  bigram( re( n, ), Ic( ni+ l ) ) ) 

• Pr(not_attached(ni)) 
• P r ( n i + l  Ire(hi+l)) 

In this formula, the bigram probabilities are calculated 
on the terminals (word plus grammatical features), in- 
terpolating using feature similarity. 

Pr(not_attaehed(ni)) means the probability that  ni is 
not attached as the ld of any node. It is estimated from 
count(n) and left_count(n). 

Pr(ni+l [ le(ni+l)), the probability of a node given that 
we have seen its left corner, is derived recursively: 

Pr(n  I lc(n)) = 1.0,  if n is a terminal node, since the lc 
of a terminal node is the node itself; otherwise, 

, Pr(n lie(n)) = Pr(ld(n) l le(ld(n))) 
• 1 . 0  - Pr(not_attaehed(ld(n))) 
• Pr(tree(n) lld(n)) 
• Pr(rd(n) ltree(n), td(n)) 

In this formula, the first term is the recursion, which 
descends the left edge of the node to the left corner. 

At each step in the descent, the second term in the for- 
mula takes account of the probability that  the left daugh- 
ter will be attached to something. 

The third term is the probability that  the tree tree(n) 
will be the parent given that  node le(n) is the left daugh- 
ter of a node. 

The fourth term is the probability that  node rd(n) will 
be the right daughter given that  ld(n) is the left daughter 
and tree(n) is the parent tree corresponding to node n. 

p r o b a b i l i t y  o f  tree(n) g i v e n  ld(n) To find the 
Pr( tree(n)[ ld(n) ) ,  we consider the two cases, depend- 
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ing on whether there is a substitution for the left_tree of 
n :  

Case:  n o  l e f t _ s u b s t l t u t i o n .  If the left_tree(tree(n)) 
is equal to the tree(ld(n)) (i.e. if there is no substitu- 
tion), then 

Pr(tree(n) l ld(n)) = 
(1.0 - prob_left_substitution(id(n))) 
Pr(tree(n) I ld(n), no.left_substitution) 

The prob_left_substitution(ld(n)) is the probability that  
given the node ld(n) whose tree is tt, that  node will be 
the left daughter in a node whose left_tree is is not the 
same as tt. Tha t  is, tt will realize the left_tree(n). We 
estimate this probability on the basis of the count(t 0 
and the left_count(tt). 

When there is no left_substitution, the probability of the 
parent tree is estimated directly from the counts of the 
trees that  tree(id(n)) can be left_tree of: 

Pr(tree(n) I Id(n), no_left_substitution) = 
eount( tree( n ) ) /le ft_count( tree( ld( n ) ) ) 

Case:  l e f t _ s u b s t i t u t i o n .  If there is a substitution, 
then 

Pr(tree(n) l ld(n)) = 
prob_le ft_substitution( ld(n ) ) 
Pr(tree(n) I tree(td(n) ), left_substitution) 

To estimate the Pr(tree(n) ] tree(id(n))) in case 
2 (where we know there is a substitution for the 
left_ptree(n), we reason as follows. For each tree txs,l, 
that  might substitute for tree(ld(n)), it will substitute 
only if tXlelt is observed as a left member of a tree 
that  tree(leftdaughter(n)) is not observed with, and for 
txright, tXleyt is the best substitution. The total of such 
trees is called lsubs(t). 

By this account, 

Pr(tree(n) ] tree(id(n) ), left_substitution) = 
eount( tree( n ) ) / lsubs( tree( ld( n ) ) ). 

The probability of the right daughter, given the left 
daughter and the tree similarly takes into account the 
probabilities of substitution. 

6. F U R T H E R  W O R K  
While current results for this parsing model look promis- 
ing, there are several directions of further exploration. 

I n t e g r a t i o n  in  S p e e c h  R e c o g n i t i o n .  There are two 
obvious ways of incorporating this parser into the speech 
recognition task. First, it can be used to select among 
a set of candidate sentences proposed by a recognizer. 
The second, more interesting, approach is to embed the 
parser in the recognition process. Given the parser's lo- 
calization of information and its deterministic beginning- 
to-end processing, it can naturally be used to find a lo- 
cally (where the domain of locality is adjacent trees) op- 
timal path through an (appropriately sparse) lattice. 

D e v e l o p m e n t  o f  F u r t h e r  P r o c e s s i n g .  This parser 
rests on the assumption, shared in a variety of recent 
work from quite different perspectives [1, 3, 4], that  a 
level of underspeeified syntactic description is efficiently 
obtainable and is useful. The current work supports a 
particular view of what partial syntactic descriptions are 
obtainable. It remains to show that  the further process- 
ing components can be constructed to make these pieces 
useful. 

I m p l e m e n t a t i o n  D e t a i l s .  A number of decisions in 
the implementation of the current parser are arbitrary, 
and further development demands exploring the opti- 
mal design. For example, we need to explore what the 
similarity function should look like, and what function 
should be used for comparing potential attachments. 
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