
An Analogical Parser for Restr icted Domains
Donald Hindle

AT&T Bell Labs
600 Mountain Ave.

Murray Hill, NJ 07974

A B S T R A C T
This note describes the current development of an approach
to parsing designed to overcome some of the problems of ex-
isting parsers, particularly with respect to their util ity a~
language models. The parser combines lexical and grammat-
ical constraints into a uniform grammatical representation, is
readily trainable (since the parser output is indistinguishable
from the grammar input), and uses analogy to guess about
the likelihood of constructions outside the grammar.

1. T H E P R O B L E M W I T H P A R S E R S

A parser is a device that provides a description of the
syntactic phrases that make up a sentence. For a speech
understanding task such as ATIS, the parser has two
roles. First, it should provide a description of the phrases
in a sentence so these phrases can be interpreted by a
subsequent semantic processor. The second function is
to provide a language model - a model of the likelihood
of a sentence - to constrain the speech recognition task.
It is unfortunately the case that existing parsers devel-
oped for text fulfill neither of these roles very well.

It is useful to begin by reviewing some of the reasons
for this failure. We can describe the situation in terms
of three general problems that parsers face: the Lexi-
cality Problem, the Tail Problem, and the Interpolation
Problem.

The Lexicality Problem

The most familiar way to think of a parser is as a de-
vice that provides a description of a sentence given some
grammar. Consider for example a context free gram-
mar, where nonterminal categories are rewritten as ter-
minals or nonterminals, and terminals are rewritten as
words. There typically is no way to express the con-
straints among individual words.

Yet it is clear that much of our knowledge of language has
to do with what words go together.[2] Merely knowing
the grammatical rules of the language is not enough to
predict which words can go together. So for example,
general English grammatical rules admit premodification
of a noun by another noun or by an adjective. It is

possible to describe broad semantic constraints on such
modification; so for example, early morning is a case of
a time-adjective modifying a time-period, and morning
flight is a time-period modifying an event. Already we
are have an explosion of categories in the grammar, since
we are talking not about nouns and adjectives, but about
a fairly detailed subclassification of semantic types of
nouns and adjectives.

But the problem is worse than this. As Table 1 shows,
even this rough characterization of semantic constraints
on modification is insufficient, since the adjective-noun
combination early night does not occur. This depen-
dency of syntactic combinability on particular lexicM
items is repeated across the grammar and lexicon.

The lexicality problem has two aspects. One is represent-
ing the information and the other is acquiring it. There
has recently been increasing work on both aspects of the
problem. The approach described in this paper is but
one of many possible approaches, designed with an em-
phasis on facilitating efficient parsing.

The Tail Problem

Most combinations of words never occur in a corpus,
but many of these combinations are possible, but simply
have not been observed yet. For a grammar (lexicalized
or not) the problem presented by this tail of rare events
is unavoidable. The grammar will always undercover
the language. The solution to the tail problem involves
training from text.

The Interpolation Problem

While it is always useful to push a grammar out the tail,
it is inevitable that a grammar will not cover everything
encounted, and that a parser will have to deal with un-
foreseen constructions. This is of course the typical prob-
lem in language modeling, and it raises the problem of
estimating the probabilities of structures that have not
been seen - the Interpolation Problem. The rules of the
grammar must be extendible to new constructions. In
this parser the approach is through analogy, or memory-
based reasoning.[8]

150

_flight(s)
morning 143
afternoon 146
evening 51
night 27

e a s y _ N
33 597
25 504
12 215
0 121

Table 1: Pre- and post- modifiers for time nominals in a
266k word ATIS sample.

2. T H E P A R S E R

The basic parser data structure is a pointer to a node,
the parser's focus of attention. The basic operation is to
combine the focus of attention with either the preceding
or following element to create a new node, updating pre-
ceding and following pointers and updating the focus of
attention and then repeat. If no combination is possible,
the focus is moved forward, and thus parsing proceeds
from the beginning of the sentence to the end.

Some consequences of this model: no non-contiguous de-
pendencies are picked up by this stage of the parser. The
idea is that the parser is a reactive component. Its out-
put is not the complete analysis of a sentence, but rather
consists of a set of fragments that subsequent processing
will glue together. (cf. [1, 3, 4]).

2 . 1 . T h e G r a m m a r

Trees in the grammar are either terminal or non-
terminal. Terminal trees are a pair of a syntactic feature
specification and a word. Non-terminals are a pair of
trees, with a specification of which tree is head - thus,
this is a binary dependency grammar.

t ~ t e r m i n a l I (1 t t) I (2 t t)

t e r m i n a l ~ (f e a t u r e s word)

The category of a non-terminal is the category of its
head.

The grammar for the parser is expressed as a set of trees
that have lexically specified terminals, each with a fre-
quency count. For example, in the ATIS grammar, the
tree corresponding to the phrase book a flight is

(1 (V "book") (2 (XI "a")(N "flight")))

It occurs 6 times. The grammar consists of a large set of
such partial trees, which encode both the grammatical
and the lexical constraints of the language.

Following are examples of two trees that might be in the
grammar for the parser.

(V 1
(V 1

(V 0 aIVZ)
(XPII_O 0 NE))

(N 1
(N 2

(Xl o A)
(N 0 LIST))

(P 1
(P o OF)
(N2 2

(XQ 0 ALL)
(N2 0 AIRFARES)))))

(P 1
(P 0 FOR)
(~2 2

(N 0 ROUND-TRIP)
(N2 0 TICKETS)))

2 . 2 . P a r s i n g

The basic parser operation is to combine subtrees by
matching existing trees in the grammar. Consider, for
example, parsing the fragment give me a list.

Initially, the parser focuses on the first word in the sen-
tence, and tries to combine it with preceding and follow-
ing nodes. Since give exists in the grammar as head of a
tree with me as second element, the match is straightfor-
ward, and the node give me is built, directly copying the
grammar. Nothing in the grammar leads to combining
give me and a, so the parser attention moves forward,
and a list is built, again, directly from the grammar.

At this point, the parser will is looking at the fragments
give me (with head give) and a list (with head list), and
is faced again with the question: can these pieces be
combined. Here the answer is not so obvious.

2 .3 . S m o o t h i n g b y a n a l o g y .

If we could guarantee that all trees that the parser must
construct will exist in its grammar of trees, then the
parsing procedure would be as described in the preced-
ing section. Of course, we don't predict in advance all
trees the parser might see. Rather, the parser has a
grammar representing a subset of the trees it might see
along with a measure of similarity between trees. When
the parser finds no exact way to combine two nodes to
match a tree that exists in the grammar, it looks for sim-
ilar trees that combine. In particular, it looks at each
of the two potential combined nodes in turn and tries to
find a similar tree that does combine with the observed
tree.

So in our example, although give me a list does not occur,

151

give me occurs with a number of similar trees, including:

a list of ground transportation
a list of the cities serve

a list of flights from philadelphia
a list of all the flights
a list of all flights
a list of all aircraft type

One of these trees is selected to be the analog of a list,
thus allowing give me to be combined as head with a list.

The parser uses a heuristically defined measure of sim-
ilarity that depends on: category, root, type , specifier,
and distribution. Obviously, much depends on the sim-
ilarity metric used. The aim here is to combine our
knowledge of language, to determine what in general con-
tributes to the similarity of words, with patterns trained
from the text. The details of the current similarity met-
ric are largely arbitrary, and ways of training it are being
investigated.

Notice that this approach finds the closest exemplar, not
average of behavior. (cf. [7, 81)

2 . 4 . D i s a m b i g u a t i o n

For words which are ambiguous among more than one
possible terminal (e.g. to can be a preposition or an
infinitival marker), the parser must assign a terminal
tree. In this parser, the disambiguation process is part of
the parsing process. That is, when the parser is focusing
on the word to it selects the tree which best combines
to with a neighboring node. If that tree has to as, for
example, head of a prepositional phrase, then to is a
preposition, and similarly if to is an infinitival marker.

Of course, if a word is not attached to any other con-
stituent in the course of parsing, this method will not
apply. Disambiguation is still necessary, to allow subse-
quent processing. In such cases, the parser reverts to its
bigram model to make the best guess about the proper
tree for a word.

3. D E V E L O P I N G A G R A M M A R

Developing a grammar for this parser means collecting
a set of trees. There are 4 distinct sources of grammar
trees.

G e n e r a l Eng l i sh . The base set of trees for the parser
is a set of general trees for the language as a whole, inde-
pendent of the domain. These include standard sentence
patterns as well as trees for the regular expressions of
time, place, quantity, etc. For the current parser, these

trees were written by hand (though in this set will over
time be developed partly by hand and partly from text).
This set of trees is independent of the domain, and avail-
able for any application. It forms part of a general model
for English.

The remaining three parts of the tree database are all
specific to the particular restricted domain.

D o m a i n D a t a b a s e Specific. Trees specific to the sub-
domain, derived semi-automatically from the underlying
database. Included are airline names, flight names and
codes, aircraft names, etc. This can also include a set
of typical sentences for the domain. In a sense, this set
of trees provides information about the content of the
messages in the domain, the things one is likely to talk
about.

P a r s e d T r a i n i n g Sen tences . hand parsed text from
the training sentences. These trees are fairly easy to
produce through an incremental process of: a) parse a
set of sentences, b) hand correct them, c) remake the
parser, and d) repeat. About a thousand words an hour
can be analyzed this way. (Thus for the ATIS task, it is
easy to hand parse the entire training set, though this
was not done for the experiment reported here.)

U n s u p e r v i s e d Parsed Text . also from the training
sentences, but parsed by the existing parser and left un-
corrected. (Note: given an existing database of parsed
sentences, these could transformed into trees for the
parser grammar.)

Obviously, one aim of this design is to make acquisi-
tion of the grammar easy. Indeed, the parser design is
not English-specific, and in fact a Spanish version of the
parser (under an earlier but related design) is currently
being updated.

4. T H E A T I S E X P E R I M E N T

For The ATIS task, a vocabulary was defined consist-
ing of 1842 distinct terminal symbols (a superset of the
February 91 vocabulary, enhanced by adding words to
regularize the grammar, and by distinguishing words
with features; e.g. "travel" as a verb is a different termi-
nal from "travel" as a noun). A grammar was derived,
based on 1) a relatively small general English model in-
cluding trees for general sentence structure as well as
trees for dates, times, numbers, money, and cities, and
2) an ATIS specific set of trees covering types of objects
in the database (aircraft, airports, airlines, flight info,
ground transportation) and 3) sentences in the training
set. In this experiment, approximately 10% of the gram-
mar are language general, 10~ are database specific, 50%
are supervised parsed trees and 30~ are unsupervised.

152

The weighting of the various sources of grammar trees
has not arisen here - all trees are weighted equally. But
in the general case, where there is a pre-existing large
general grammar, and a large corpus for unsupervised
training, the weighting of grammar trees will become an
issue.

Given this grammar consisting of 14,000 trees, derived
as described above, the grammar perplexity is 15.9 on
the 138 February 91 test sentences. This compares to a
perplexity of 18.9 for the bigram model (where bigrams
are terminals). The grammar trees derived from the un-
supervised parsing of the training sentences improve the
model slightly (from 16.4 to 15.9 perplexity).

5. S E N T E N C E P R O B A B I L I T Y

The parse of a sentence consists of a sequence of N nodes.
By convention, the first and last nodes in the sequence
(nl and nN) are instances of the distinguished sentence
boundary node. If all the words in a sentence are incor-
porated by the parser under a single root node, then the
output will consist of a sequence of three nodes, of which
the middle one covers the words of the sentence. But re-
member, the parser may emit a sequence of fragments;
in the limiting case, the parser will emit one node for
each word.

5.1. The t ree g r a m m a r

The tree grammar, consists of a set of tree specifications.

For each tree ti, the specification records:

t h e s h a p e o f t i -

for terminals - the root and category

for non-terminals - whether the head is
on the left or right what the left and
right subtrees are.

e o u n t (t i) - number of times that tl appears

l e f t_coun t (ti) - number of times ti appears on the left
in a larger tree

r i g h t _ c o u n t (t i) -number of times ti appears on the
right in a larger tree

l subs_for(t l , t~) - for tree tj in which ti is the left sub-
tree, sum of count(tk) where tk could realize
ti in tj

rsubs._for(ti,tj) - for tree tj in which ti is the right
subtree, sum of count(re) where tk could re-
alize ti in tj

l subs(t l) - sum of count of trees tj such that ti could
realize the left subtree of tj

5.2. probabi l i ty calculat ion

In the following, rd, ld, re, and lc mean right daughter,
left daughter, right corner and left corner respectively.
The probability of a sentence s consisting of a sequence
of n nodes (starting with the sentence boundary node,
which we call n l) is:

.N-1

P r (,) =
i=1

Pr(bigram(re(n,), Ic(ni+ l)))

• Pr(not_attached(ni))
• P r (n i + l Ire(hi+l))

In this formula, the bigram probabilities are calculated
on the terminals (word plus grammatical features), in-
terpolating using feature similarity.

Pr(not_attaehed(ni)) means the probability that ni is
not attached as the ld of any node. It is estimated from
count(n) and left_count(n).

Pr(ni+l [le(ni+l)), the probability of a node given that
we have seen its left corner, is derived recursively:

Pr(n I lc(n)) = 1.0, if n is a terminal node, since the lc
of a terminal node is the node itself; otherwise,

, Pr(n lie(n)) = Pr(ld(n) l le(ld(n)))
• 1 . 0 - Pr(not_attaehed(ld(n)))
• Pr(tree(n) lld(n))
• Pr(rd(n) ltree(n), td(n))

In this formula, the first term is the recursion, which
descends the left edge of the node to the left corner.

At each step in the descent, the second term in the for-
mula takes account of the probability that the left daugh-
ter will be attached to something.

The third term is the probability that the tree tree(n)
will be the parent given that node le(n) is the left daugh-
ter of a node.

The fourth term is the probability that node rd(n) will
be the right daughter given that ld(n) is the left daughter
and tree(n) is the parent tree corresponding to node n.

p r o b a b i l i t y o f tree(n) g i v e n ld(n) To find the
Pr(tree(n)[ld(n)) , we consider the two cases, depend-

153

ing on whether there is a substitution for the left_tree of
n :

Case: n o l e f t _ s u b s t l t u t i o n . If the left_tree(tree(n))
is equal to the tree(ld(n)) (i.e. if there is no substitu-
tion), then

Pr(tree(n) l ld(n)) =
(1.0 - prob_left_substitution(id(n)))
Pr(tree(n) I ld(n), no.left_substitution)

The prob_left_substitution(ld(n)) is the probability that
given the node ld(n) whose tree is tt, that node will be
the left daughter in a node whose left_tree is is not the
same as tt. Tha t is, tt will realize the left_tree(n). We
estimate this probability on the basis of the count(t 0
and the left_count(tt).

When there is no left_substitution, the probability of the
parent tree is estimated directly from the counts of the
trees that tree(id(n)) can be left_tree of:

Pr(tree(n) I Id(n), no_left_substitution) =
eount(tree(n)) /le ft_count(tree(ld(n)))

Case: l e f t _ s u b s t i t u t i o n . If there is a substitution,
then

Pr(tree(n) l ld(n)) =
prob_le ft_substitution(ld(n))
Pr(tree(n) I tree(td(n)), left_substitution)

To estimate the Pr(tree(n)] tree(id(n))) in case
2 (where we know there is a substitution for the
left_ptree(n), we reason as follows. For each tree txs,l,
that might substitute for tree(ld(n)), it will substitute
only if tXlelt is observed as a left member of a tree
that tree(leftdaughter(n)) is not observed with, and for
txright, tXleyt is the best substitution. The total of such
trees is called lsubs(t).

By this account,

Pr(tree(n)] tree(id(n)), left_substitution) =
eount(tree(n)) / lsubs(tree(ld(n))).

The probability of the right daughter, given the left
daughter and the tree similarly takes into account the
probabilities of substitution.

6. F U R T H E R W O R K
While current results for this parsing model look promis-
ing, there are several directions of further exploration.

I n t e g r a t i o n in S p e e c h R e c o g n i t i o n . There are two
obvious ways of incorporating this parser into the speech
recognition task. First, it can be used to select among
a set of candidate sentences proposed by a recognizer.
The second, more interesting, approach is to embed the
parser in the recognition process. Given the parser's lo-
calization of information and its deterministic beginning-
to-end processing, it can naturally be used to find a lo-
cally (where the domain of locality is adjacent trees) op-
timal path through an (appropriately sparse) lattice.

D e v e l o p m e n t o f F u r t h e r P r o c e s s i n g . This parser
rests on the assumption, shared in a variety of recent
work from quite different perspectives [1, 3, 4], that a
level of underspeeified syntactic description is efficiently
obtainable and is useful. The current work supports a
particular view of what partial syntactic descriptions are
obtainable. It remains to show that the further process-
ing components can be constructed to make these pieces
useful.

I m p l e m e n t a t i o n D e t a i l s . A number of decisions in
the implementation of the current parser are arbitrary,
and further development demands exploring the opti-
mal design. For example, we need to explore what the
similarity function should look like, and what function
should be used for comparing potential attachments.

7. R E F E R E N C E S
1. Abney, Steven P. Rapid incremental parsing with repair.

Paper presented at Waterloo conference on Electronic
Text Research.

2. Church, Kenneth W., William A. Gale, Patrick Hanks,
and Donald Hindle. (to appear). Using statistics in lex-
ical analysis, in Zernik (ed.) Lexical acquisition: using
on-line resources to build a lexicon.

3. Jacobs, Paul. 1990. To parse or not to parse: relation-
driven text skimming. In COLING 90, 194-198, Helsinki,
Finland.

4. Marcus, Mitchell P. and Donald Hindle. 1990. Descrip-
tion Theory and Intonation Boundaries. In Gerald Alt-
mann (ed.), Computational and Cognitive Models of
Speech. MIT Press.

5. Sadler, Victor. 1989. Working with analogicalsemantics.
Foris: Dordrecht.

6. Parsing strategies with 'lexicalized' grammars: applica-
tion to tree adjoining grammars. In Proceedings fo the
12th International Conference on Computational Lin-
guistics, COLING88, Budapest, Hungary.

7. Skousen, Royal. 1989. Analogical modeling of language.
Kluwer:Dordrecht.

8. Stanfill, Craig and David Waltz. 1986. Toward memory-
based reasoning. Communications of the ACM 29.12.

154

