
Probabilistic Prediction and Picky Chart Parsing* 
David M. Magerman 
Stanford University 

magerman@cs.stanford.edu 

Carl Weir 
Paramax Systems 

weir@prc.unisys.com 

ABSTRACT 
This paper describes Picky, a probabilistic agenda-based 
chart parsing algorithm which uses a technique called prob- 
abilistic prediction to predict which grammar rules are likely 
to lead to an acceptable parse of the input. In tests on ran- 
domly selected test data, "Picky generates fewer edges on av- 
erage than other CKY-like algorithms, while achieving 89~ 
first parse accuracy and also enabling the parser to process 
sentences with false starts and other minor disfluencies. Fur- 
ther, sentences which are parsed completely by the proba- 
bilistic prediction technique have a 97~0 first parse accuracy. 

1. Introduction 
Two important  concerns in natural language parsing 
which encourage the use of probabilistic analysis are ef- 
ficiency and accuracy. An accurate parser which has a 
domain or language model so detailed that  it takes hours 
to process a single sentence, while perhaps interesting, is 
no more useful than a simple instantaneous parser which 
is always wrong. Probabilistic modelling of the grammar 
of a language has been proposed as a potential solution 
to the accuracy problem, disambiguating grammatical 
parses generated by an ambiguous grammar. However, 
little attention has been paid to the repercussions of 
probabilistic parsing on the computational complexity 
and average-case performance of existing parsing algo- 
rithms. Effective probabilistic models of grammar which 
take into account contextual information (e. g. [10] [2]) 
cannot take advantage of the O(n 3) behavior of CKY-like 
parsing algorithms. If they are to use existing grammat-  
ical formalisms, these models must use algorithms that  
are worst-case exponential. 

When natural language parsers are incorporated into 
natural language understanding systems, another sig- 
nificant issue arises: robustness. As a component of a 
language processing system, a parser's task is to an- 
alyze correctly all inputs which can be understood by 
the system, not just those which are precisely grammat-  
ical. Or, one might say, the grammar of natural lan- 

*Special thanks  to Jerry Hobbs and  Bob Moore at  SRI for 
providing access to their  computers ,  and  to Salim Roukos,  Pe-  
ter  Brown, and  Vincent  and  Steven Della P ie t r a  at  IBM for the i r  
instruct ive lessons on probabil lst ic  model l ing of na tu ra l  language.  

guage includes fragments, run-ons, split infinitives, and 
other disfluencies which would receive red marks on a 
high school English paper. At the same time, meaning- 
less sequences of words and other uninterpretable inputs 
should nol be analyzed as though they are acceptable. 
Robust processing of natural  language is an ideal appli- 
cation of probabilistic methods, since probabili ty theory 
provides a well-behaved measure of expectation within a 
given language. 

This paper proposes an agenda-based probabilistic chart 
parsing algorithm which is both robust and efficient. The  
algorithm, Picky 1, is considered robust because it will 
potentially generate all constituents produced by a pure 
bot tom-up parser and rank these constituents by likeli- 
hood. The efficiency of the algorithm is achieved through 
a technique called probabilistic prediction, which helps 
the algorithm avoid worst-case behavior. Probabilistic 
prediction is a trainable technique for modelling where 
edges are likely to occur in the chart-parsing process. 2 
Once predicted edges are added to the chart using prob- 
abilistic prediction, they are processed in a style similar 
to agenda-based chart parsing algorithms. By limiting 
the edges in the chart to those which are predicted by 
this model, the parser can process a sentence while gen- 
erating only the most likely constituents given the input. 

The Picky parsing algorithm is divided into three phases, 
where the goal of each phase is to minimize the set of rule 
predictions in the chart to only those necessary to gen- 
erate an analysis of the input sentence. When a phase 
completes without producing an analysis of the input, 
the next phase expands the set of rules which it can 
use and applies these new rules to the chart from the 
previous phase. The proposed algorithm is still expo- 
nential in the worst-case, but only exhibits worst-case 
behavior on sentences which are completely outside the 
domain of the training material (i. e. contain multiple 
occurrences of grammatical structures rarely seen or un- 
seen in training). In this work, the efficiency of various 

1Pear l  ~ probabi l is t ic  Ear ley-s tyle  parse r  (P -Ear l ) .  7:'icky _= 
probabi l is t ic  CKY-like parse r  ( P - C K Y ) .  

2Some familiari ty wi th  char t  pa rs ing  terminology is assumed in 
this  paper .  For terminological  definit ions,  see [7], [8], [9], or [14]. 
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algorithms and effectiveness of models is determined by 
a comparison of the number of rule predicts, rule advanc- 
ing operations (the basic operation in chart parsing), and 
complete constituents detected by the parser. 

The results of experiments using this parsing algorithm 
are quite promising. On a corpus of 300 randomly se- 
lected test sentences, Picky parses these sentences with 
89% first parse accuracy, and up to 92% accuracy within 
the first three parses. Further, sentences which are 
parsed completely by the probabilistic prediction tech- 
nique, in phases I and II, have a 97% first parse accu- 
racy. The algorithm is extremely efficient, with less than 
a 1.6:1 ratio of constituents recognized to constituents 

i n  the final parse for sentences parsed by phases I and 
II. The performance decreases for sentence outside the 
training corpus that are parsed in phase III. 

This paper will present the Picky parsing algorithm, de- 
scribing the both the original features of the parser and 
those adapted from previous work. Then, along with ac- 
curacy and efficiency results, the paper will report an 
analysis of the interaction between the phases of the 
parsing algorithm and the probabilistic models of pars- 
ing and prediction. 

2. P r o b a b i l i s t i c  M o d e l s  

The probabilistic models used in the implementation of 
Picky are independent of the algorithm. To facilitate the 
comparison between the performance of Picky and its 
predecessor, Pearl, the probabilistie model implemented 
for 'Picky is similar to Pearl's scoring model, the context- 
free grammar with context-sensitive probability (CFG 
with CSP) model. This probabilistic model estimates 
the probability of each parse T given the words in the 
sentence S, P(TIS), by assuming that each non-terminal 
and its immediate children are dependent on the non- 
terminal's siblings and parent and on the part-of-speech 
trigram centered at the beginning of that rule: 

P(TIS) -~ ~ I  P(A ~ alC ~ /3A7, aoala2) (1) 
AET 

where C is the non-terminal node which immediately 
dominates A, al is the part-of-speech associated with the 
leftmost word of constituent A, and a0 and a2 are the 
parts-of-speech of the words to the left and to the right 
of al, respectively. See Magerman and Marcus 1991 [10] 
for a more detailed description of the CFG with CSP 
model. 

3. T h e  P a r s i n g  A l g o r i t h m  

A probabilistic language model, such as the aforemen- 
tioned CFG with CSP model, provides a metric for eval- 
uating the likelihood of a parse tree. However, while it 

may suggest a method for evaluating partial parse trees, 
a language model alone does not dictate the search strat- 
egy for determining the most likely analysis of an input. 
Since exhaustive search of the space of parse trees pro- 
duced by a natural language grammar is generally not 
feasible, a parsing model can best take advantage of a 
probabilistic language model by incorporating it into a 
parser which probabilistically models the parsing pro- 
cess. Picky attempts to model the chart parsing process 
for context-free grammars using probabilistic prediction. 

Picky parses sentences in three phases: covered left- 
corner phase (I), covered bidirectional phase (II), and 
tree completion phase (III). Each phase uses a differ- 
ent method for proposing edges to be introduced to the 
parse chart. The first phase, covered left-corner, uses 
probabilistic prediction based on the left-corner word of 
the left-most daughter of a constituent to propose edges. 
The covered bidirectional phase also uses probabilistic 
prediction, but it allows prediction to occur from the 
left-corner word of any daughter of a constituent, and 
parses that constituent outward (bidirectionally) from 
that daughter. These phases are referred to as "cov- 
ered" because, during these phases, the parsing mech- 
anism proposes only edges that have non-zero proba- 
bility according to the prediction model, i.e. that have 
been covered by the training process. The final phase, 
tree completion, is essentially an exhaustive search of all 
interpretations of the input according to the grammar. 
However, the search proceeds in best-first order, accord- 
ing to the measures provided by the language model. 
This phase is used only when the probabilistic prediction 
model fails to propose the edges necessary to complete 
a parse of the sentence. 

The following sections will present and motivate the pre- 
diction techniques used by the algorithm, and will then 
describe how they are implemented in each phase. 

3 .1 .  P r o b a b i l i s t i c  P r e d i c t i o n  

Probabilistic prediction is a general method for using 
probabilistic information extracted from a parsed corpus 
to estimate the likelihood that predicting an edge at a 
certain point in the chart will lead to a correct analysis 
of the sentence. The Picky algorithm is not dependent 
on the specific probabilistic prediction model used. The 
model used in the implementation, which is similar to 
the probabilistic language model, will be described. 3 

The prediction model used in the implementation of 

3It is not  necessary for the predict ion model  to be the same as 
the language model  used to evaluate complete analyses.  However, 
it is helpfnl if this is the case, so tha t  the probabil i ty es t imates  of 
incomplete edges will be consistent with the probabi l i ty  est imates 
of completed consti tuents.  
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Picky estimates the probability that  an edge proposed 
at a point in the chart will lead to a correct parse to be: 

79(A ~ aB~]aoala2), (2) 

where al is the part-of-speech of the left-corner word of 
B, a0 is the part-of-speech of the word to the left of al ,  
and a2 is the part-of-speech of the word to the right of 
a l .  

To illustrate how this model is used, consider the sen- 
tence 

The cow raced past the barn. (3) 

The word "cow" in the word sequence "the cow raced" 
predicts N P  ~ de t  It, but not N P  ~ de t  n P P ,  
since PP is unlikely to generate a verb, based on train- 
ing material. 4 Assuming the prediction model is well 
trained, it will propose the interpretation of "raced" 
as the beginning of a participial phrase modifying "the 
cow," as in 

The cow raced past the barn mooed. (4) 

However, the interpretation of "raced" as a past par- 
ticiple will receive a low probability estimate relative to 
the verb interpretation, since the prediction model only 
considers local context. 

The process of probabilistic prediction is analogous to 
that  of a human parser recognizing predictive lexical 
items or sequences in a sentence and using these hints to 
restrict the search for the correct analysis of the sentence. 
For instance, a sentence beginning with a wh-word and 
auxiliary inversion is very likely to be a question, and try- 
ing to interpret it as an assertion is wasteful. If a verb is 
generally ditransitive, one should look for two objects to 
that  verb instead of one or none. Using probabilistic pre- 
diction, sentences whose interpretations are highly pre- 
dictable based on the trained parsing model can be ana- 
lyzed with little wasted effort, generating sometimes no 
more than ten spurious constituents for sentences which 
contain between 30 and 40 constituents! Also, in some 
of these cases every predicted rule results in a completed 
constituent, indicating that the model made no incorrect 
predictions and was led astray only by genuine ambigu- 
ities in parts of the sentence. 

3 . 2 .  E x h a u s t i v e  P r e d i c t i o n  

When probabilistic prediction fails to generate the edges 
necessary to complete a parse of the sentence, exhaus- 
tive prediction uses the edges which have been generated 

4 T h r o u g h o u t  this  discussion,  we will descr ibe the  p red ic t ion  
process  us ing  words as the  pred ic tors  of  edges.  In  the  i m p l e m e n t a -  
t ion,  due  to sparse  d a t a  concerns ,  only  par t s -of -speech  are used  to 
predic t  edges.  Given  more  r o b u s t  e s t i ma t i on  techniques ,  a prob-  
abil ist ic p red ic t ion  m o d e l  condi t ioned  on word sequences  is likely 
to pe r fo rm  as well or  be t t e r .  

in earlier phases to predict new edges which might com- 
bine with them to produce a complete parse. Exhaus- 
tive prediction is a combination of two existing types of 
prediction, "over-the-top" prediction [9] and top-down 
filtering. 

Over-the-top prediction is applied to complete edges. A 
completed edge A ---~ o~ will predict all edges of the form 
B --~ flAT .~ 

Top-down filtering is used to predict edges in order to 
complete incomplete edges. An edge of the form A ---~ 
c~BoB1B2fl, where a B1 has been recognized, will predict 
edges of the form B0 ~ 7 before B1 and edges of the 
form B2 ~ 8 after B1. 

3 . 3 .  B i d i r e c t i o n a l  P a r s i n g  

The only difference between phases I and II is that  phase 
II allows bidirectional parsing. Bidirectional parsing is 
a technique for initiating the parsing of a constituent 
from any point in that  constituent. Chart  parsing algo- 
rithms generally process constituents from left-to-right. 
For instance, given a grammar rule 

A ~ B1 B2 . - .B~ ,  (5) 

a parser generally would a t tempt  to recognize a B1, then 
search for a B2 following it, and so on. Bidirectional 
parsing recognizes an A by looking for any Bi. Once a 
Bi has been parsed, a bidirectional parser looks for a 
Bi-1 to the left of the Bi, a Bi+l to the right, and so 
o n .  

Bidirectional parsing is generally an inefficient tech- 
nique, since it allows duplicate edges to be introduced 
into the chart. As an example, consider a context-free 
rule NP ~ DET N, and assume that  there is a deter- 
miner followed by a noun in the sentence being parsed. 
Using bidirectional parsing, this NP rule can be pre- 
dicted both by the determiner and by the noun. The 
edge predicted by the determiner will look to the right 
for a noun, find one, and introduce a new edge consisting 
of a.completed NP. The edge predicted by the noun will 
look to the left for a determiner, find one, and also intro- 
duce a new edge consisting of a completed NP. Both of 
these NPs represent identical parse trees, and are thus 
redundant. If the algorithm permits both edges to be 
inserted into the chart, then an edge XP ~ o~ NP fl will 
be advanced by both NPs, creating two copies of every 
XP edge. These duplicate XP edges can themselves be 
used in other rules, and so on. 

5In the  i m p l e m e n t a t i o n  of 'Picky, ove r - the - top  p red ic t ion  for 
A ~ o~ will only p red ic t  edges  of the  fo rm B ~ AT. T h i s  l im i t a t i o n  
on  over - the- top  pred ic t ion  is due  to t he  expens ive  bookkeep ing  
involved in b id i rec t ional  pa rs ing .  See the  sec t ion  on  b id i rec t ional  
p a r s i n g  for more  detai ls .  
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To avoid this propagation of redundant edges, the parser 
must ensure that no duplicate edges are introduced into 
the chart. 'Picky does this simply by verifying every time 
an edge is added that the edge is not already in the chart. 

Although eliminating redundant edges prevents exces- 
sive inefficiency, bidirectional parsing may still perform 
more work than traditional left-to-right parsing. In the 
previous example, three edges are introduced into the 
chart to parse the NP ~ DET N edge. A left-to-right 
parser would only introduce two edges, one when the 
determiner is recognized, and another when the noun is 
recognized. 

The benefit of bidirectional parsing can be seen when 
probabilistic prediction is introduced into the parser. 
Frequently, the syntactic structure of a constituent is 
not determined by its left-corner word. For instance, 
in the sequence V NP PP, the prepositional phrase PP 
can modify either the noun phrase NP or the entire verb 
phrase V NP. These two interpretations require different 
VP rules to be predicted, but the decision about which 
rule to use depends on more than just the verb. The cor- 
rect rule may best be predicted by knowing the preposi- 
tion used in the PP. Using probabilistic prediction, the 
decision is made by pursuing the rule which has the high- 
est probability according to the prediction model. This 
rule is then parsed bidirectionally. If this rule is in fact 
the correct rule to analyze the constituent, then no other 
predictions will be made for that constituent, and there 
will be no more edges produced than in left-to-right pars- 
ing. Thus, the only case where bidirectional parsing is 
less efficient than left-to-right parsing is when the pre- 
diction model fails to capture the elements of context of 
the sentence which determine its correct interpretation. 

3 .4 .  T h e  T h r e e  P h a s e s  o f  P i c k y  

Covered Lef t -Corner  The first phase uses probabilis- 
tic prediction based ,'n the part-of-speech sequences from 
the input sentence to predict all grammar rules which 
have a non-zero probability of being dominated by that 
trigram (based on the training corpus), i.e. 

P ( A  ~ BSlaoala2) > 0 (6) 

where al is the part-of-speech of the left-corner word of 
B. In this phase, the only exception to the probabilis- 
tic prediction is that any rule which can immediately 
dominate the preterminal category of any word in the 
sentence is also predicted, regardless of its probability. 
This type of prediction is referred to as exhaustive pre- 
diction. All of the predicted rules are processed using a 
standard best-first agenda processing algorithm, where 
the highest scoring edge in the chart is advanced. 

Covered Bidi rec t ional  If an S spanning the entire 
word string is not recognized by the end of the first 
phase, the covered bidirectional phase continues the 
parsing process. Using the chart generated by the first 
phase, rules are predicted not only by the trigram cen- 
tered at the left-corner word of the rule, but by the 
trigram centered at the left-corner word of any of the 
children of that rule, i.e. 

79(A ~ aBSIboblb2 ) > O. (7) 

where bl is the part-of-speech associated with the left- 
most word of constituent B. This phase introduces in- 
complete theories into the chart which need to be ex- 
panded to the left and to the right, as described in the 
bidirectional parsing section above. 

Tree Comple t ion  If the bidirectional processing fails 
to produce a successful parse, then it is assumed that 
there is some part of the input sentence which is not 
covered well by the training material. In the final phase, 
exhaustive prediction is performed on all complete the- 
ories which were introduced in the previous phases but 
which are not predicted by the trigrams beneath them 
(i.e. P(rule [ trigram) = 0). 

In this phase, edges are only predicted by their left- 
corner word. As mentioned previously, bidirectional 
parsing can be inefficient when the prediction model is 
inaccurate. Since all edges which the prediction model 
assigns non-zero probability have already been predicted, 
the model can no longer provide any information for 
future predictions. Thus, bidirectional parsing in this 
phase is very likely to be inefficient. Edges already in 
the chart will be parsed bidirectionally, since they were 
predicted by the model, but all new edges will be pre- 
dicted by the left-corner word only. 

Since it is already known that the prediction model will 
assign a zero probability to these rules, these predictions 
are instead scored based on the number of words spanned 
by the subtree which predicted them. Thus, this phase 
processes longer theories by introducing rules which can 
advance them. Each new theory which is proposed by 
the parsing process is exhaustively predicted for, using 
the length-based scoring model. 

The final phase is used only when a sentence is so far 
outside of the scope of the training material that none 
of the previous phases are able to process it. This phase 
of the algorithm exhibits the worst-case exponential be- 
havior that is found in chart parsers which do not use 
node packing. Since the probabilistic model is no longer 
useful in this phase, the parser is forced to propose an 
enormous number of theories. The expectation (or hope) 
is that one of the theories which spans most of the sen- 
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tence will be completed by this final process. Depending 
on the size of the grammar used, it may be unfeasible 
to allow the parser to exhaust all possible predicts be- 
fore deciding an input is ungrammatical. The question 
of when the parser should give up is an empirical issue 
which will not be explored here. 

Post-processing:  Pa r t i a l  Pars ing  Once the final 
phase has exhausted all predictions made by the gram- 
mar, or more likely, once the probability of all edges 
in the chart falls below a certain threshold, Picky deter- 
mines the sentence to be ungrammatical. However, since 
the chart produced by Picky contains all recognized con- 
stituents, sorted by probability, the chart can be used to 
extract partial parses. As implemented, Picky prints ou t  
the most probable completed S constituent. 

4. Resul ts  of Experiments 
The Picky parser was tested on 3 sets of 100 sentences 
which were held out from the rest of the corpus during 
training. The training corpus consisted of 982 sentences 
which were parsed using the same grammar that Picky 
used. The training and test corpora are samples from the 
MIT's Voyager direction-finding system. 6 Our experi- 
ments explored the accuracy, efficiency, and robustness 
of the "Picky algorithm. 

However, we do not anticipate a significant improvement 
in accuracy, since the two parsers use similar language 
models. On the other hand, "Picky should outperform 
Pearl in terms of robustness and efficiency. 

4 .1 .  R o b u s t n e s s  

Since our test sets did not contain many ungrammatical 
sentences, it was difficult to analyze Ticky's robustness. 
It is undeniable that Picky will produce a fuller chart 
than will "Pearl, making partial parsing of ungrammati- 
cal sentences possible. We leave it to future experiments 
to explore empirically the effectiveness of semantic in- 
terpretation using Picky's probabilistic well-formed sub- 
string table. 

One interesting example did occur in one test set. The 
sentence "How do I how do I get to MITT' is a ungram- 
matical but interpretable sentence which begins with a 
restart. Pearl would have generated no analysis for the 
latter part of the sentence and the corresponding sections 
of the chart would be empty. Using bidirectional prob- 
abilistic prediction, Picky produced a correct partial in- 
terpretation of the last 6 words of the sentence, "how do 
I get to MIT?" One sentence does not make for conclu- 
sive evidence, but it represents the type of improvements 

6SpeciM t h a n k s  to Victor  Zue a t  M I T  for t he  use  of the  speech 
d a t a  f r om M I T ' s  Voyager s y s t e m .  

which are expected from the Picky algorithm. 

4.2. Accuracy 

Phase No. Accuracy 
I + II 238 97% 
III 62 60% 
Overall 300 89.3% 

Figure 1: Picky's parsing accuracy, categorized by the 
phase which the parser reached in processing the test 
sentences. 

As we expected, Picky's parsing accuracy compares fa- 
vorably to Pearl's performance. As shown in Figure 1, 
"Picky parsed the test sentences with an 89.3% accuracy 
rate. This is a slight improvement over "Pearl's 87.5% 
accuracy rate reported in [10]. 

But note the accuracy results for phases I and II. These 
phases include sentences which are parsed successfully 
by the probabilistic prediction mechanism. Almost 80% 
of the test sentences fall into this category, and 97% of 
these sentences are parsed correctly. This result is very 
significant because it provides a reliable measure of the 
confidence the parser has in it's interpretation. If incor- 
rect interpretations are worse than no interpretation at 
all, a natural language system might consider only parses 
which are generated in phases I and II. This would limit 
coverage, but would allow the system to have a high de- 
gree of confidence in the parser output. 

4.3. Efficiency 

Phase Parse 
I 37 
II 41 
III 44 
Overall 38 

Predicts Completes 
57 58 
89 98 
315 430 
111 135 

Figure 2: Average number of edges generated by Picky, 
categorized by the phase which the parser reached in 
processing the test sentences. 

The effectiveness of the prediction model also leads to 
increased efficiency. Figure 2 shows the average number 
of edges predicted and completed by sentences, again 
partitioned by phase of parse completion. Also included 
in the table is the average number of constituents in the 
"correct" parse. 

A measure of the efficiency provided by the probabilistic 
prediction mechanism is the parser's prediction ratio, the 
ratio of edges predicted to edges necessary for a correct 
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parse. A perfect prediction ratio is 1:1, i.e. every edge 
predicted is used in the eventual parse. However, since 
there is ambiguity in the input sentences, a 1:1 prediction 
ratio is not likely to be achieved. Picky's  prediction 
ratio is less than 3:1, and its ratio of predicted edges 
to completed edges is nearly 1:1. Thus, although the 
prediction ratio is not perfect, on average for every edge 
that  is predicted one completed constituent results. 

Note that  the prediction ratio is much lower in phase 
I (1.5:1) and phase II (2.2:1) than in phase III (7:1). 
This is due to the accuracy of the probabilistic predic- 
tion model used in the first two phases, and the deficien- 
cies of the heuristic model used in final phase. Further 
efficiency can be gained either by limiting the amount of 
search which is performed in phase III before a sentence 
is deemed ungrammatical or by improving the heuristic 
prediction model. 

Since Picky has the power of a pure bottom-up parser, 
it would be useful to compare it's performance and effi- 
ciency to that  of a probabilistic bottom-up parser. How- 
ever, an implementation of a probabilistic bottom-up 
parser using the same grammar produces on average 
over 1000 constituents for each sentence, generating over 
15,000 edges without generating a parse at all! This 
supports our claim that  exhaustive CKY-like parsing al- 
gorithms are not feasible when probabilistic models are 
applied to them. 

5. C o n c l u s i o n s  

One of the goals of the development of the Picky algo- 
r i thm is to demonstrate the need to model the parsing 
process as well as modelling language. The exponential 
behavior of statistical methods applied to standard pars- 
ing algorithms limits the types of stochastic grammars 
which can feasibly be used in natural language under- 
standing systems. As the statisticM models of natural 
language become richer and more expensive to compute, 
it is vital that  we have efficient probabilistic parsing algo- 
rithms which avoid spurious generation of constituents 
and partial constituents, since each edge produced by 
the parsing process must be evaluated by the statistical 
language model. Picky successfully employs probabilis- 
tic prediction to minimize the number of constituents to 
which the language model must be applied, making com- 
plicated language models which use fine-grained statis- 
tics more feasible for natural language applications. 
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