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A B S T R A C T  
Stochastic language models are more useful than non- 

stochastic models because they contribute more information 
than a simple acceptance or rejection of a word sequence. 
Back-off N-gram language models [ I l l  are an effective class 
of word based stochastic language model. The first part  
of this paper describes our experiences using the back-off 
language models in our time-synchronous decoder CSR. A 
bigram back-off language model was chosen for the language 
model to be used in the informal ATIS CSR baseline eval- 
uation test[13, 21]. 

The stack decoder[2, 8, 24] is a promising control struc- 
ture for a speech understanding system because i t  can com- 
bine constraints from both the acoustic model and a long 
span language model (such as a natural  language processor 
(NLP)) into a single integrated search[17], h copy of the 
Lincoln time-synchronous HMM CSR has been converted 
to a stack decoder controlled search with stochastic lan- 
guage models. The second par t  of this paper describes our 
experiences with our prototype stack decoder CSR using 
no grammar,  the word-pair grammar,  and N-gram back-off 
language models. 

N - G R A M  B A C K - O F F  L A N G U A G E  
M O D E L S  

N-gram language models[2, 10] are an at tract ive method 
for est imating the probabil i ty of the sentence W by succes- 
sively est imating the probabil i ty of the next word in the 
sentence: 

p(w) = Hp(wd~_N,..., w~_,) 
i 

where N is the order of the model. They are easily com- 
puted, highly effective in reducing the perplexity of the 
recognition task, and the probabili t ies can be est imated 
from observed text. They also have the advantage that  
they are purely data-driven and therefore can be trained on 
databases which are too large for human inspection. The 

1This work was sponsored by the Defense Advanced Research 
Projects Agency. 

maximum likelihood (ML) est imate of the conditional prob- 
abilities is: 

C(w~-N .... , wi) 
p(wd~,-N . . . . .  ~ ,-1)  = c (w~-N+l , . . . ,  ~ )  

where C is the number of times the gram was observed 
in the training data.  However, the number of parameters 
which must be est imated is V N where V is the number of 
words in the vocabulary. This l imits  the N-gram models to 
tr igram (N = 3) or lower order models due to the difficulty 
in estimating these probabili t ies from obtainable amounts of 
training data.  There are a number of methods for smooth- 
ing the counts or probabili t ies to ensure non-zero probabil- 
ities for unobserved grams and to smooth the est imates of 
the observed grams[lO]. One such method of smoothing is 
the N-gram back-off models[I l l :  

p(wilw,-N .... , wi-1) = 
C(tei_ N . . . . . .  i) if  O(Wi--N, ,Wl) > coast  

C(t.~i_N,...,wi_ I) " . • __ 

c'(~,~-N ...... ,) if 0 < C ( w i - N , . .  ,wi)  < coas t  C(~i__N,...,Wi__l) 
b a c k _ o f f  if C ( W i - - N , . . . ,  Wi) = 0 

where 

b a c k _ o f f  = ol( wi--N . . . . .  wi--l  ) p ( w i l w i - N +  l . . . .  , wi--1), 

o~ is a back-off normalization weight, C ° is the Good-Turing 
corrected[6] est imate of U, and cons t  is some constant on 
the order of five. (The Good-Turing correction generally 
yields a reduced effective count.) The  method can back off 
recursively until the "zero-gram" is reached. The detailed 
mathematics  of the Good-Turing correction and computing 
the c~s may be found in reference [11] and will not be re- 
peated here. This model is intuit ively appealing because it 
uses the most detailed model when it  can and backs off to 
a less detailed model when it has insufficient training data.  
In addition, the Good-Turing correction both improves the 
probabil i ty est imates for low probabil i ty grams and "frees 
up" some "probabili ty space" to allow backing off to the 
next lower order model. In particular,  some probabil i ty 
space is obtained from the unigrams for the zero-grams or 
unknown words, and therefore it can est imate the probabil- 
i ty of an unknown word class. However, the method is not 
without difficulties. 
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• In essence, part  of the gram space is covered by the N- 
gram pdf  and the remainder is covered by the (back-off) N-1 
gram pdf. (Thus the need for the back-off weight- - the  pdf 
over all of the gram space must sum to one.) Therefore if the 
sum of the N-gram pdf  for a part icular  left context is one, no 
"space" is left for the back-off. Such a case might occur with 
a word pair such as "San Francisco" if i t  occurred more than 
const t imes and ~San" did not occur in any other context. 
The heuristic applied in the Lincoln implementation was to 
increment the count on the context to break this deadlock. 

A similar difficulty occurs if one wishes to assign prob- 
abilities to known but  unobserved (C = 0) words. The 
heuristic solution applied here is motivated by a comment 
by Katz [ l l ]  to the effect that  the probabil i ty of an unob- 
served word is similar to the probabil i ty of a word with a 
count of one. Thus, any known, but  unobserved words were 
artificially given a unigram count of one. 

This, then, was how the bigram back-off model for the 
informal ATIS CSR baseline evaluation test[13, 21] was de- 
rived. The basic theory with the above heuristics produced 
a language model with a non-zero probabili ty for an un- 
known word class and non-zero probabili t ies for known but 
unobserved words. To distr ibute this language model, a 
machine-independent text  file format was designed for spec- 
ifying back-off models which simply lists the grams, their 
probabilities, and, for the lower order grams, their back-off 
weights. 

Text Modeling Performance 
The N-gram back-off language models were initially tested 

and compared to some padded ML 2 (PML) models on sev- 
eral text databases as shown in Table 1. These perplexities 
show the effectiveness of this method when trained on lim- 
ited amounts of data.  Comparison between the back-off and 
PML models shows the back-off model never produced a 
higher perplexity than the PML model, but  sometimes pro- 
duced dramatical ly lower perplexities than the PML model. 
In one case (WSJ small, t r igram),  the back-off model pro- 
duced more than an order-of-magnitude lower perplexity 
than did the PML model. 

Recognition Performance 
Bigram back-off language models were installed in the 

time-synchronous (TS) decoder[21]. The model order was 
l imited to bigram due to the structure of the TS decoder. 
(The previous language models, such as the RM word-pair 
grammar (WPG),  were simply yes-no finite s tate grammars.) 
Recognition results for the RM database are shown in Ta- 
ble 2. (The results in Table 2 are speaker-dependent (SD) 
only, but  SRI has confirmed several of the relations for 
SI models[15].) The fair back-off model, compared to the 
WPG,  produced a doubled error rate in spite of i ts much 
lower perplexity. To probe this effect, a cheating RM back- 

2The PML models are just  ML models where each N-gram count 
is initialized with a small "count." The appropriate bins are then 
summed to produce the N-1 gram counts and the equation for ML 
probabilit ies is used to compute the probability. The method is sim- 
ple but can yield very poor probabili ty est imates for low probability 
words. 

off model, which was guaranteed not to assign an excessively 
low probabili ty to the test data,  was generated. (This is 
demonstrated by the large decrease in the perplexity for 
only a small increase in the amount of training data.)  Its 
recognition performance was very similar to that  of the 
W P G  system. BBN also observed that  a classed bigram 
model of perplexity similar to that  of the fair back-off model 
produced similar results to the WPG[23]. A pat tern bigram 
model generated from the sentence pat terns  used to gener- 
ate the RM language[22] showed a perplexity of about 20 
and consistently produced lower error rates than the W P G  
in tests at CMU[12]. 

Table 2 shows the W P G  and pat tern bigram models 
to produce bet ter  recognition results and the fair back-off 
model to produce poorer recognition results than would 
be expected from the perplexity alone. This occurred for 
two reasons: (1) the da ta  trained models are full-branching 
while the pat tern trained models can disallow 94% of the 
transitions without the possibility of error, and (2) the prob- 
ability estimates of the fair back-off model are "noisy" due 
to the l imited training da ta  (8K sentences, from Table 1). 
The RM task sentence patterns[22] made liberal use of classes 
(e.g. ship-name) in the pat terns  and therefore grouping the 
words into similar classes in the language model is a sig- 
nificant source of additional information and significantly 
smoothes the probabil i ty estimates. (The back-off models 
were word based and knew nothing about the word classes. 
One could, of course, generate a classed back-off model.) 
BBN observed a half bit  reduction in the variance of the 
probabil i ty estimates in a class-based model compared to 
a word-based model[23]. I t  is relatively simple to manually 
generate word classes for simple tasks such as RM and ATIS 
but  automatic  methods using probabilistic classes [8, 9] are 
probably required for more realistic natural  tasks. 

Why then, did the class-based and the word-based bi- 
gram language models of the same perplexity exhibit signif- 
icantly different error rates? A "noisy" model would over- 
est imate some probabili t ies and underest imate some others. 
Since the perplexity is a weighted geometric mean and the 
noisiest components have the least weight, the noise level 
would generally have only a small effect on the perplexity. 
In contrast,  recognition occurs on a word-by-word level and 
the noisy probabilit ies would be expected to occasionally 
cause recognition errors. In the context of a CSR which 
otherwise shows a low error rate,  these "occasional" ad- 
ditional errors could result in a significant increase in the 
overall error rate. The class smoothed (less noisy) model, if 
the classes are appropriately chosen, would produce fewer 
of these additional errors. 

The use of classes or other language model smoothing 
techniques is another example of a trade-off that  occurs 
throughout the design of speech recognizers-- that  of match- 
ing the complexity of the model to the amount of available 
training data.  A prespecified-class classed model requires 
less training da ta  because i t  has fewer parameters,  but  be- 
cause i t  combines the words into groups, can never model 
as much detail  as the word-based models. As the amount 
of training da ta  is increased, there will be a point beyond 
which the word-based models will achieve a bet ter  perfor- 
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mance on natural  tasks than the classed models. (Of course, 
the word-based modeling can at best equal the performance 
of a correctly-classed model if the language is truly classed. 
In general, one would expect only artificial languages to be 
truly classed.) 

T H E  STACK D E C O D E R  
A copy of the Lincoln t ime synchronous (TS) decoder 

HMM CSR[18, 20, 21] has been converted to a stack decoder[2, 
8, 24] using the optimal A* search[19]. The current pro- 
totype supports  most of the features of the current TS 
recognizer[20, 21]. I t  uses multiple observation streams, has 
adaptive background model estimation, optional interword 
silences, and context dependent phone modeling. The cur- 
rent implementat ion can be used with or without a language 
model. The language models are integrated using the CSR- 
NL interface[17]. Language model modules have been built  
for word-pair and b igram/ t r ig ram back-off language mod- 
els. Unlike the TS decoder implementation which is l imited 
to output t ing the single best sentence theory, the stack de- 
coder implementat ion can output  a top-N sentence theory 
list. 

The current prototype does not yet use tied mixtures[4, 
7] (TM). For simplicity, i t  uses Top-1 observation pruning 
mode, which is equivalent to a discrete observation recog- 
nizer using observation pdfs generated by a TM trainer. 
(This was done to delay dealing with the issue of caching 
the mixture sums. The changes required to convert to an 
inefficient TM system are trivial.)  I t  also does not yet use 
cross-word phone modeling pending solution of several im- 
plementation issues. 

The system includes a tree-structured fast match[l ,  3] 
to reduce the computat ion required by the detailed acous- 
tic match. This fast match uses a beam-pruned TS search 
of a phonetic tree built  from HMM phone models to lo- 
cate the the possible one word extensions to the current 
theory (part ial  sentence). To reduce computation,  only the 
observation pdfs are used- - the  transit ion probabilit ies are 
ignored. The current fast match reduces the number of pos- 
sible next words to about 15% of the vocabulary for the SD 
(RM) task using triphone models. 

The system has been tested in no-grammar (NG) mode 
using SD triphone models on the RM task. In some re- 
spects, the stack decoder does a bet ter  job than does the 
TS decoder. I t  sometimes locates a higher probabil i ty path 
through the recognition network than does the TS decoder 
with a reasonable pruning threshold. (Unfortunately, these 
paths usually contain a recognition error.) The fixed prun- 
ing threshold of the TS decoder terminates these paths, 
while the stack decoder continues to extend them. If the 
pruning threshold of the TS system is increased to a value 
that  would ordinarily be considered excessive, the TS sys- 
tem will also find these paths.  The stack decoder automat-  
ically finds these paths  because i t  has, in effect, adaptive 
pruning which does not require any fixed thresholds. 

The system has also been tested using W P G  and N-gram 
back-off language models through the CSR-NL interface. 
The potential  search errors due to an interaction between 
the acoustic and language models described and verified by 

simulation in [19] have been observed on real speech data. In 
fact, this search error can be caused by the word insertion 
penalty alone. (This appears to be rather infrequent-- i t  
was forced experimentally by using a relatively large inser- 
tion penalty.) Initial  checks for the search error, which used 
the W P G  without probabilities, indicated that  the inter- 
action was a minor problem. (The W P G  without proba- 
bilities gave bet ter  recognition results than the W P G  with 

1 probabili t ies in the TS recognizer.) branchino-]actor 
In contrast  to NG and the WPG,  the interaction be- 

comes a major  problem when one of the stochastic (bigram 
or t r igram back-off) language models is used. A simple, but 
inefficient solution is to increase the t ie-breaking factor in 
the equation for the stack ordering criterion[19]: 

S tSc ,  =mtax L,( t )  - l~bL(t)  - et 

where Li( t )  is the likelihood of theory i and lubL(t)  is the 
least-upper-bound-so-far on the theory likelihoods and e is 
the tie-breaking factor which favors shorter over longer the- 
ories. (For the NG case, • need only be a very small number 
greater than zero.) This is a poor solution because a large 
value of • will also greatly increase the computation.  When 
a sufficiently large value of • is used, the stack decoder func- 
tions as expected with either the t r igram or bigram back-off 
language models. Another  possible solution is to run the de- 
coder in top-N mode and select the best sentence after some 
number of sentences has been output .  This approach also 
significantly increases the computation.  

It appears likely that  the interaction problem is due to 
combining two fundamental ly different types of score (log- 
probabilit ies) together. The HMM observation and transi- 
tion probabilit ies (i.e. the acoustic scores) are accumulated 
as a function of t ime and the language model probabilit ies 
are accumulated as a function of the number of states tra- 
versed. The mixture of these dissimilar scores appears to 
be damaging the est imation of the least upper bound used 
to perform the A* search[16] in the stack decoder. 

On the average, the current prototype stack decoder 
runs significantly faster than does the TS decoder on a SD 
no-grammar task. This is probably due to the adaptive- 
pruning-threshold like behavior of the stack decoder which 
allows i t  to pursue the minimum number of theories required 
to decode the sentences--a  small number on the "easy" 
sentences and a larger number on the "harder" sentences, 
whereas the TS decoder must always use a worst-case prun- 
ing threshold. Wi th  the word-pair grammar,  the two sys- 
tems run at similar speeds. The strategies proposed above 
for combating the interaction problem with the stochastic 
language models slow the stack decoder sufficiently to cause 
it to run to significantly slower than the TS decoder. The 
strategies also increase the number of theories which must 
be held on the stack. 

C O N C L U S I O N  
Stochastic language models will be an important  com- 

ponent in future speech recognition and understanding sys- 
tems. The N-gram language models are a class of model 
which is easily trained from observed da ta  and provides 
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significant constraints to the recognition process and were 
therefore chosen for use in the informal ATIS CSR base- 
line evaluation test. The required number of parameters, 
however, is too large to be trained from practical amounts 
of data. Backing off to lower order models to estimate the 
probability of unobserved N-grams is an effective method 
for dealing with finite training data. The fact that these 
models are purely data driven is both an advantage and 
a disadvantage--they are free from often erroneous human 
bias, but also cannot incorporate human knowledge. One 
method of incorporating human knowledge in limited tasks 
is to smooth the probability estimates by grouping the words 
into human-defined classes and estimating the language model 
on the classes. 

The stack decoder is an attractive control strategy for 
a speech understanding system because it can combine in- 
formation from the acoustic matching and any of a variety 
of language models/natural language systems into a sin- 
gle integrated search. The current prototype is not mature 
enough to use in a practical recognition/understanding sys- 
tem, but is showing promise. The no-grammar recognition 
works fairly well--but no-grammar recognition is not the 
goal. The goal of the effective integration of the language 
model and the acoustic modeling has not yet been achieved 
due to the interaction between the two knowledge sources 
preventing estimation of the proper least upper bound of 
the theory likelihoods. Once this problem is overcome, the 
stack decoder should become a practical structure for speech 
recognition. 
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T a b l e  1: Perplexities of N-gram Back-off (BO) and PML Language Models 
Perplexity 

I 1-gram 2-gram 3-gram Training 
Database i BO [ PML* BO ] PML* BO PML* Words 

ATIS, June 90 I 114 122 24 28 18 35 8600 
ATIS, baseline 125 18 - 13 45K 
RM, fair I 258 258 26 27 14 25 71K 
RM, cheat 254 16 - 6 89K 
WSJ,  small 715 1608 365 1512 274 3926 130K 
WSJ,  large 1215 1334 287 492 172 1541 4.8M 

Training 
Vocab. 

Unknown 
Test Words 

552 1.3% 
1065 .2% 
991 0% 
991 0% 
13K 6.9% 
64K .8% 

* pad chosen to minimize test set perplexity 
June 90 = June 90 ATIS training da ta  

baseline = "baseline" ATIS training data, see below 
RM, fair = trained on RM1 + RM2 training da ta  

RM, cheat = trained on "fair" + test da ta  
WSJ = Wall Street Journal sampler[14] 

T a b l e  2: RM SD Bigram Language Model Recognition Results 
I Trained i Modeling Test Set 

Grammar  type ] from 

W P G  (cheat) 
back-off fair I 
back-off cheat da ta  
class bigram[5] fair da ta  
pat tern  bigram (cheat) i pat terns 

Unit Perplexity Word Err 

patterns[22] word 60 1.7% 
da ta  word 26 3.0% 

word 16 
24 class 

1.5% 
~WPG[23]  

patterns[22] word 20112] ~.7*WPG[12] 

Note: A "fair" language model is not trained on the test data,  a "cheating" model is trained on the test data.  Therefore, the 
pat tern  trained models must be classed as cheating because they were trained on the entire RM language--which includes 
the test data.  
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