
A T e x t u a l p r o c e s s o r t o h a n d l e A T I S q u e r i e s

Douglas O'Shaughnessy

INRS-Telecommunications
University of Quebec
3 Place du Commerce

Nuns Island, Quebec, Canada H3E 1H6

A B S T R A C T
This paper describes the initial development of a natural language

text processor, as the first step in an INRS dialogue-by-voice system.
The eventual system will accept natural, spontaneous speech from users
and produce responses from the databases in the form of synthetic
speech. This paper reports results in processing the textual version
of ATIS (Air Travel Information System) queries. The current system
(programmed in C) accepts as input the cleaned-up text (SNOR) ver-
sion of the spoken queries, and produces the desired Official Airline
Guide (OAG) information as output. It uses only the words in the in-
put text, and not any punctuation marks, on the assumption that such
marks are difficult to obtain directly from speech input. Based on the
training text data, the system correctly interprets a large majority of
the textual queries.

I N T R O D U C T I O N
Speech recognition systems have made significant progress

in recent years toward the goal of correctly interpreting
continuously-spoken utterances. However, substantial restric-
tions are usually imposed upon the speaker, to guarantee success.
Typically, one must either pause after each word, restrict one's
choice of words to a small vocabulary, and/or train the system
to adapt to one's voice. In many systems, it is not feasible to
insist on vocabulary restrictions, nor can the system always be
trained ahead of time to a user's voice. Many applications over
the telephone to serve the general public will be of this latter
type~ Furthermore, most users do not like altering their speak-
ing style, and especially not speaking in isolated-word formant.
Thus most practical applications of the future will have to be
speaker-independent (i.e., trained ahead of time by other speak-
ers), without major restrictions in vocabulary, and be able to
accept normal, spontaneous speech.

In particular, one major application is allowing the general
public to do transactions directly with computer databases (in-
cluding over the telephone). As an example of this type of interac-
tion, we are currently examining a system to permit direct access
for a user to air travel information. A user can pose natural ques-
tions to the database and receive answers just as a travel agent
does. The database is that of the Official Airline Guide (OAG).
To simplify the task slightly, we use a subset of the flights in the
OAG: only those for airports at nine major US cities (Atlanta,
Boston, Baltimore, Denver, Dallas, Oakland, Philadelphia, Pitts-
burgh, and San Francisco). Otherwise, the entire OAG database
is used.

In the future, we will investigate actual voice dialogues be-
tween a user and the database, but for now the subject of this
study is limited to the analysis of individual queries by users. We
wish to design an automatic system to correctly respond to the
user with the desired OAG information. As a first step toward
this goal, the current study is further limited to the analysis of
textual versions of the user's utterances, rather than the speech
itself. Thus we assume perfect operation of an initial speech rec-
ognizer, which would accept the spontaneous queries of a user and
output the word sequence corresponding to the speech. Such word
sequences can have grammatical mistakes and repeated words, as
often occur in natural speech. Our textual processor must han-
dle such deviations from normal written text that occur with
spontaneous speech. In particular, this means that one cannot
rely directly on standard English text processors, which presume
grammatical input text.

T E X T P R O C E S S I N G FOR OAG
QUERIES

The task of natural language processing (including deviations
as found in spontaneous speech) is difficult (e.g., witness the dif-
ficulty of automatic machine translation of natural languages).
However, we have simplified the task here by assuming that the
user is querying the OAG database. Thus we have a good idea of
the type of questions that will usually be asked, and of the typ-
ical subjects of those questions. We do not, however, know the
format that any individual user may employ. Furthermore, each
user is free to use one's own style of speaking and one's own choice
of words. We staxt out with a vocabulary that includes all the
words (including names) in the OAG database, and extend that
vocabulary to include words discovered during training sessions
with trial users. While one could theoretically access a dictionary
of over 100,000 words (as might be found in a large English dic-
tionary, augmented by the names found in the OAG database),
such an approach is probably inefficient for this OAG application
(especially if such a large vocabulary had to be searched in a full
speech recognition task). Thus we have chosen to limit ourselves
to a dictionary of about 700 words (with separate entries for parts
of contractions, e.g., 're, 'll). We also employ a list of 47 common
word suffixes (e.g., -s, -ed); unrecognized words with such endings
have corresponding final letters removed before trying the dictio-
nary again. For example, the word ~cities' is not in the dictionary;
so the final -s is removed (and the 'ie' changed to 'y') to locate
'ci ty ' in the lexicon (the plural nature of the located noun is also

116

noted).

When a word outside this vocabulary is employed, it does not
directly affect the text analysis. (From context, we can usually
determine the syntactic category of such a word, but not its se-
mantic content.) We assume that such words are not critical for
the OAG queries here (empirically this has been generally true; al-
though future training data will likely discover some words which
belong in the vocabulary because their presence affects the query
response).

A standard parser for English (if one can be said to exist to
handle all of natural English) was not used for this OAG applica-
tion for two reasons: 1) a significant number (perhaps 10-15 %)
of the sentences are not grammatical (which would cause ordinary
parsers to have errors), and 2) the limited nature of the task does
not require a full English parser. In particular, the query system
needs only to extract certain critical information from the text
queries, and can largely ignore other extraneous information in
the text input. For example, the most common query in the train-
ing data appears to be asking about flights (e.g., the user specifies
departure and destination cities, with optional timing constraints
and/or factors dealing with meals and service class, and wishes
to receive details about flights that meet these requirements). In
such a scenario, the system must determine the identities of the
departure and destination cities and properly extract other infor-
mation relevant to selecting the desired flights from among the
hundreds in the database.

Extraneous information in such sentences can be in many
forms. Idioms, for example, are common in spontaneous speech,
but contain little information relevant to help the system to give
the correct answer (e.g., "hello," "all right," "excuse me," "thank
you"). One could list all known idioms in the dictionary (to be
recognized and ignored when found); however, our approach was
to use a relatively constrained dictionary of 700 words and simply
ignore words that were not found in the dictionary.

D I S C O V E R I N G T H E N A T U R E O F T H E D E S I R E D
I N F O R M A T I O N

One key aspect of the system's task is to identify what type of
information the user wants. For example, does the user indicate a
desire for a listing of flights, fares, available meals, stopover cities,
explanations, etc.? Is the user's request in the form of a question
or a statement? Does the user want a list of information, or a sim-
ple yes-or-no answer? We follow the convention that appears to
be the case in the training examples, in that we give a list of infor-
mation in virtually all cases. The assumption is that, even when
asking a yes/no question, the user will be better informed if he
receives more information than actually requested. For example,
in response to "Are there any flights to Pittsburgh?," instead of
simply responding "yes," we list the appropriate flights. When a
person says "Can you show me...?," "Do you know...?," or "Don't
you have a ...?," he really does not want only a yes-or-no answer.
Thus our system identifies the desired information and lists it,
rather than giving a yes/no answer. This also avoids the problem
of necessarily determining whether the query is a question or a
statement. Usually this latter fact can be discovered by the ex-
istence of a reversal of the initial words in the utterance (for a
yes-no question), or the presence of a Wh-word (e.g., what, when,
how) at the start. We cannot simply look at the sentence-final
punctuation, because the query text has no punctuation marks

(only words).

We employ heuristics to determine the subject of the request
(i.e., the desired information). Keywords are used to discover
the subject, and the first such keyword in each query is usually
assumed to be the one asked about (ensuing keywords are then
assumed to be used to qualify the request). The major keywords
include: flight, fare, time, airport, city, class, code, cost, capacity,
distance, reservation, book, ground, date, day, restriction, define,
describe, explain, abbreviation. For example, keywords such as
mean(ing), explain, abbreviation, represent, and stand for signal
that an explanation is desired.

In sentences starting with "What is X...?" or "Show me X...,"
the choice of subject arrives early in the sentence and is obvious.
In other sentences, the topic can arrive late (e.g., "All right now,
can you please show me all the available flights...?"). Sentences
starting with "Which X..." or "How (long, far, big, much,...)..."
also lead to an obvious topic choice. Those beginning directly
with a noun (e.g., "Cost of...") are interpreted as having an im-
plied "Show me the" preceding. Sentences starting with a prepo-
sition, on the other hand, are more difficult to analyze as to topic
(e.g., "On the flights to Atlanta are meals served?" requests meal
information, not a general flight listing); in such cases, the noun
in the prepositional phrase is treated as qualifying information.

F I L L I N G S L O T S I N T H E Q U A L I F Y I N G I N F O R -
M A T I O N

Most tables in the OAG database contain columns of infor-
mation organized by type (e.g., codes, flight numbers, company
names, days, classes, etc.), and each row is an entry relating typ-
ically a code (number or letter sequence) to relevant information
describing a flight, a fare, an aircraft, etc. Most requests are
filled by listing information from lines in a table in the database.
The subject of the request specifies which table to use. To select
which lines to list, we must extract relevant qualifying informa-
tion from the input text (e.g., if 'flights' is the subject, qualifying
data may be the departure and/or destination cities and may con-
cern time of travel). After the query subject is established early
in each query sentence, ensuing words form phrases and clauses
that fill slots in the qualifying information. These ensuing words
may form prepositional phrases or relative clauses; no major dis-
tinction or classification as to phrase or clause function is needed
here, only identification as to what information is contained in
the phrases and clauses.

F l i g h t t a b l e

It is a simple task to identify city names in a textual query,
but more difficult to determine whether a city is the departure,
stopover, or destination point. Many requests are straightfor-
ward, however (e.g., "...from X to Y..."). Keywords preced-
ing a city or airport name usually identify a city's role: de-
parture (from, out of, leav(ing), depart(ing)), destination (to,
land(ing), arriv(ing)), or stopover (connecting at, stop(ping) at,
via, through). Lacking such keywords (e.g., "the Atlanta Boston
flight"), we assume that the first city is the departing one and
the second is the landing one. If only one city is named with-
out keywords, its role must be gleaned from other parts of the
query text. (Repeated information is ignored; e.g., "..from Dal-
las to Baltimore leaving Dallas..") The keywords above set flags
to look for a matching city (e.g., when "to" is encountered, the

117

destination flag is set; upon finding an ensuing city name, that
flag is turned off and the destination city slot is filled). Interven-
ing words such as "the airport at" do not affect the flag. If the
sentence ends without a match and the query subject is a city or
airport (e.g., "what cities does United fly to?"), the system will
look under the corresponding column in the flight table.

When the user specifies an airline name, it is easily identi-
fied, with the possible exception of companies whose names are
uttered as a sequence of letters (e.g. US, TWA). The latter case
can cause confusion because user requests often contain letter se-
quences that refer to other tables or to items other than airline
companies. For example, the user may be spelling out the code
name for a column in a table, the code name of an aircraft or
airport, or the code for a service class.

A i r c r a f t t a b l e

As a second table example, the aircraft table is usually ac-
cessed via a query about an aircraft model number (e.g., "what
is a 737," "describe a D8S"), but it may also be queried in terms
of its column entries (e.g., "what airplane is the fastest," "which
plane has the longest range"). Each column is labeled with a
noun heading, to which relevant adjectives are associated (e.g.,
the weight column is associated in the system to the descriptors
heavy and light), which allows comparative requests between air-
craft. Where the OAG model number differs from the company's
public model number (e.g., a DC10 is officially a 'D10'), the sys-
tem notes this as a special case.

SEQUENCES OF LETTERS
A two-letter code followed immediately by a digit sequence is

tested to be a possible airline name + flight number, by looking for
that entry in the flight table. A three-letter code invokes a search
of the airport table, for a possible airport code name; a four-
letter sequence calls for a possible city code. A letter sequence
containing a slash (' / ') invokes a look at the restriction table.

Since the input text is all in capital letters, the distinction
between the letter 'A' (as part of a code name) and the article 'a '
can lead to ambiguities. For example, 'WHAT IS A D EIGHT
S?' requests an entry in the aircraft table corresponding to the
code 'D8S.' However, there conceivably could be a code elsewhere
in the OAG database of the form 'AD8S.' The system looks first
to match the longer letter (and digit) sequence; if no match is
located, it strips off the initial 'A' and tries again.

Users may utter a code name of two or more letters as a single
word. Such pronounceable code names are included in the system
dictionary. Confusions can arise when such words also have other
meanings. For example, in "WHAT DOES AS MEAN (IN THE
AIRLINE TABLE)?," if the user does not specify the airline ta-
ble (where "AS" means Alaska Airlines), the system might not
understand that "AS" is a code (and not a conjunction). Given
the frequency of ungrammatical queries in the training data, this
is not unreasonable. However, the system looks for the subject
of the query when it sees the word "mean(ing)" in the context
"what does X mean" or "what is the meaning of (the) X."

N U M B E R S
Numbers in the input text can refer to dates, times, prices,

groups of people, flight numbers, flight codes, fare codes, aircraft

codes, etc. The system uses context to correctly interpret digit
sequences as numbers. For example, ordinal numbers (except for
'first' - which is often associated with 'first class') are usually
associated with dates (similarly for cardinal numbers adjacent to
a month name); a number followed by 'a m ' or ' p m ' is also easy to
interpret as a time. Numbers preceded by an article (e.g., 'a 737')
are tested to see if they match a model number for an aircraft.
More interesting are cases of numbers run together; e.g., "Is the
departure time for two thirteen four twenty?" (flight 213 leaving
at 4:20?).

The system assumes that numbers are spoken following cer-
tain syntactic rules. In particular, people say times as hour +
minutes (e.g., 11:40 is 'eleven forty', and not 'one thousand one
hundred forty' or any other possibility). Digits are converted into
a full number form (e.g., 'sixteen eight twenty' =16820), including
time of day (e.g., 'seven o'clock' = 700); thus someone using mili-
tary time (e.g., 'eighteen hundred hours' = 1800) will be properly
interpreted.

Faced with a number of several digits (e.g., a flight number
or code), people usually pronounce it digit-by-digit. For 3- or 4-
digit numbers, however, the pronunciation is often grouped into
digit pairs (e.g., 'flight twenty three forty two' = 2342). Lastly,
there is the question of interpeting times as AM or PM; when
not explicitly specified, the system assumes flights at reasonable
hours (i.e., no departures or landings between 11 pm and 6 am)
(e.g., 'twelve o'clock' means 12:00 and not midnight).

If a digit sequence is preceded by the words 'flight (code)' or
'fare (code),' the identification of the sequence is obvious. Oth-
erwise, a six-digit sequence starting with '1' is assumed to be a
flight code, and a seven-digit one starting with '7' to be a fare
code. The sequence 'nineteen ninety-X' after a word sequence
containing a month is interpreted as a year.

The preferred times of flights can be specified as: 1) 'after
X' and/or 'before Y,' 2) 'between X and Y,' or 3) 'around Z.'
Alternatively, the user may specify vague times with terms such
as morning, evening, and night.

A number between about 80 and 1000 is assumed to be a fare
if followed by the word 'dollars,' adjacent to the word(s) 'fare
(of),' or even followed by the word 'flight.'

SPECIAL REQUESTS
Occasionally, the user wishes to view the desired information

in a specific fashion, e.g., flights ordered by departure time, or
fares in order of increasing price. This is determined by the key-
words 'sort(ed)' or '(in) order(ed)' plus 'by X' or 'de/increasing
X' (where X is price, weight, etc.), or 'alphabetically.'

Mathematical operations are sometimes requested: "the dif-
ference between fares class Y and F," "the difference in time be-
tween Atlanta and Dallas." The keywords difference, sum, and
average invoke the corresponding mathematical operations using
values extracted from the tables for the coordinated items men-
tioned immediately after the keywords (e.g., "the average fare for
classes Y and F ') .

118

C O O R D I N A T I O N
Coordination in general is a difficult computational linguistic

problem. The system attempts to group words and phrases on
as local as basis as possible. Thus, the word and (or or) will link
adjacent words to form a single unit if the words are from the
same syntactic class (e.g., "between Dallas and Baltimore", "fares
for taxis and limousines"). If necessary, larger units are grouped
next (e.g., "Delta 402 and United 567"); finally the conjunction
is treated as separating clauses if foUowed by a verb (e.g., "... and
list the..."). A local coordination is verified, if possible, through
the appearance of a plural classifying word just before or after
the coordinated units (e.g., "flights thirty four and ninety three,"
"the Y and F classes").

The coordination routine normally links at the most local level
(e.g., "flights from Oakland or Dallas to Atlanta" will group the
first two cities as departure sites). However, if an inconsistency
arrives immediately afterward (e.g., an attempt to fill a slot al-
ready filled), the routine will attempt to link larger units (e.g.,
"flights from Boston to Pittsburgh and Dallas to Atlanta" would
normally link Pittsburgh and Dallas as destination cities, but the
"to Atlanta" words are inconsistent with that interpretation; so
the coordination routine will group the first two cities together
and the last two cities together, giving two listings as output.

The conjunctions and and but invoke a logical 'and ' (intersec-
tion) when linking separate qualifying information (e.g., "leaving
Boston and landing at Atlanta"), whereas or invokes a logical 'or'
(union) (e.g., "arriving at or before five o'clock"). On the other
hand, when the words immediately following an and relate to a
subject topic (e.g., "show the flights and fares..."), then the topic
is augmented to deal with both items (e.g., list both flight and
fare information). Similarly, when the words after an and attempt
to fill qualifying information slots already filled, the system pro-
duces an output using the information up to the and, and then
continues further using the new qualifying information (e.g., in
the 4-city example above, flights would be listed first for the first
two cities, then for the next two).

C O M P A R I S O N
Some of the queries request a comparison of numbers (e.g.,

"list flights under three hundred dollars," "which airline has the
most flights"). When a comparison keyword is located (e.g., un-
der, more, less, last, earliest, next), the direction of the compar-
ison (more vs. less) is noted, and the ensuing noun describes the
item being measured (e.g., cost, number of flights, time of flight,
etc.). In the case of more or less, the noun after the ensuing than
is used for comparison to the subject of the query.

W O R D S TO I G N O R E
Many words are effectively ignored during the processing. For

example, some and all (as in "show me some/all . . . ') have no
relevance, since the system shows all possibilities in any case.
Similarly, expressions such as "please, OK," and "I'm sorry"
(while useful in a polite, user-friendly interface) are ignored here.
Also, some users have a habit of saying letters followed by "as
in X" (e.g., "class Q as in queen"). This brings words (e.g.,
'queen') into the dialogue that are invariably outside the system
vocabulary. When the system sees LETTER + "as in", it ignores
the "as in X"-phrase.

Since the system does not attempt to make a complete parse
for the text input, it can handle word repetitions by speakers (as
found with interruptions and hesitation pauses). While immedi-
ate word repetitions are ignored (on the assumption of possible
hesitations), when the repetition is a digit, the full resulting num-
ber is first tried in the table look-up. For example, in "twelve
twelve ninety," the number is assumed to be 121290; if no match
is found in the tables, then the number 1290 is assumed.

D I S C U S S I O N OF R E S U L T S
The system was officially tested on February 6, 1991, with the

results that 54 queries were correctly answered and 94 were not.
At the time, the system was not set up to give a "no answer" for
cases that it did not feel confident. The relatively poor perfor-
mance can be largely explained by the fact that the system was
prematurely tested, without having been properly debugged. As
of March 6, most of the bugs had been removed and the system
was tested again on the same sentence queries, with the results
that 110 were answered correctly, with 19 false responses and
two "no answers." This second testing was done with the benefit
of having examined the test data, to correct the program, both
from the point of view of system bugs and inadequate coverage.
The majority of the improvement was simply due to eliminating
system bugs. A large majority of the remaining incorrect per-
formance can also be readily eliminated with a little more effort.
Thus, the approach described in this paper is certainly capable of
handling queries typical of the ATIS data in the range exceeding
90%.

We examine now where the revised (debugged) system does
well and not so well, and point out where the recent improve-
ment is due to rule modification (to better cover more types of
queries, as revealed by certain queries in the February 1991 test
set) as opposed to simple system debugging. Since the system
ignores words that it does not recognize, it continues to make
a mistake on sentence cj0011sx, where "from Dallas Love Field"
is interpreted as simply "from Dallas." Sentences ci00hlsx and
ci00clsx (noting December 14th as "121490") are now covered,
due to a rule addition permitting dates in pure digit form (this
type of date representation was new in the test data). Sentence
cp00plsx ("..earliest wide-body flight...") is now easily handled,
with the addition of a rule testing for the first flight of the day
(if "earliest" or "first" appears just before the word "flight"), as
well as the last one (keywords = "last," "latest").

Looking at sentences which caused the most problems in the
official February 1991 results (e.g., those for which at most two
of the eight sites who submitted results were correct), we can
see examples of where our system can correctly handle difficult
queries. It is our system's ability to ignore irrelevant words and
not require a full parse that allows it to accept syntactic and
semantic structures that have not been seen in the training data.
In sentence ci00klsx ("Can you please tell me what time zone
Dallas would be on thank you"), both the initial five words and
final five words are irrelevant to the message and are ignored by
our system, which seizes upon the initial, subject keywords time
zone and ensuing location name Dallas to produce the correct
answer. The preposition on at the end of the sentence can cause
problems for parsers that insist on accounting for every word and
which involve a semantic module (for which a city should not be
"on" a time zone). Similar comments hold for the final preposition

119

to in sentence cl00wlsx ("Please show all cities that Delta airlines
flies to"), whereas our system sees cities as the subject keyword
and Delta as the only other relevant information.

In sentence ce00plsx ("How long does it take to drive from the
airport to downtown Atlanta"), the subject keyword is how long,
does it take to is ignored, drive specifies ground transportation,
and the remaining words fill in the to - from slots. By ignoring
distracting words such as menu and seat (in sentence ch00klsx
- "...menu of departures..."; in sentence cl00dlsx - "how many
persons does a 757 seat"), our system avoids mistaking the subject
of some queries. Similar comments hold for the word major in
sentence cj00ilsx ("closest major airport to San Francisco").

Our system correctly handles even most cases of mentioning
of locations outside of the 11 cities of the database (although the
case of "Love Field" above shows its limitations). In sentence
cj0081sx ("...with a stop in Las Vegas"), the system looks for a
stopover location after the keywords stop in; finding words there
which are not in the dictionary, the system assumes a location
outside the database.

In sentence cp0021sx ("Does American flight 1010 leaving at
1303 have any stops enroute"), the initial keyword does cues a
yes-no question; flight is not taken as the subject because number
and digits ensue immediately; instead, stops is taken as crucial
information and the potentially confusing word enroute (which
may not have appeared in earlier training data) is ignored. In the
stilted sentence cp00flsx ("How many engines does a D 10 equip-
ment have"), the subject is identified by the first three words,
the let ter /number sequence D10 is noted as a model number, and
equipment is treated as superfluous data.

There are cases of ATIS queries in which a full parser can be
useful, but there are many other cases such as these above where
not performing a full parse and ignoring superfluous words can
accomplish the task as well with less effort.

D I F F E R E N C E S B E T W E E N T E X T A N D
S P E E C H P A R S E R S

In recent years, there has been considerable work on parsing
of general text in the context of natural language analysis [1].
A parser in a speech recognition context, however, encounters
problems that a text parser does not have [2]. For example, in
determining syntactic structure, a text parser has access to punc-
tuation (e.g., quotation marks, parentheses), capitalization, and
other phrase-offsetting devices (e.g., italics, underlining). Major
punctuation marks (periods, exclamation and question marks)
denote the ends of sentences, and others (colons and semicolons)
mark the ends of major clauses; a text parser can thus easily de-
termine major syntax boundaries and need only operate on sets
of words between such markers to parse each set into a logical
clause or sentence. For a speech parser, on the other hand, gross
segmentation cues may take the (unreliable) form of pauses (e.g.,
speakers often pause at major syntactic boundaries - but not con-
sistently - and hesitation pauses can cause significant difficulties).
Swings in vocal fundamental frequency which are often correlated
with syntactic boundaries [3] also furnish (at best) unreliable in-
dicators for a parser to use. In text, the appearance of capital
letters (except, of course, at the start of a sentence) indicates a
proper name (and thus usually a noun); such a fact can help a text

parser distinguish such words which may alternatively (without
capitalization) be used as other parts-of-speech. A speech parser
has no access to such information found readily in texts.

In the context of data entry via voice, one could envision re-
quiring a user to pronounce aloud markers such as capitalization
and punctuation. However, this forces a departure from natu-
ral speaking style (and slows the rate of data entry) and so is
not preferred in most applications. In the application explored
in this paper - an isolated-word system - only the actual words
were pronounced (as in speaking naturally, except of course for
the brief pause required after each word). In isolated-word sys-
tems, no durational information (i.e., from pauses or from word
lengths), however unreliable, can be exploited to determine the
syntactic function of individual words.

A C K N O W L E D G M E N T S
This work was supported by the Networks of Centers of Ex-

cellence program of the Canadian government.

R E F E R E N C E S
[1] Dowty, Kattunen, & Zwicky, eds. Natural Language Parsing (Cam-

bridge University Press, Cambridge, UK), 1985.

[2] Bates, M. "The Use of Syntax in a Speech Understanding System,"
IEEE Transactions ASSP, vol. ASSP-23:lI2-117, 1975.

[3] O'Shaughnessy, D. "Linguistic Features in Fundamental Frequency
Patterns," Journal of Phonetics, vol. 7:119-145, 1979.

120

