
SPEECH RECOGNITION IN SRI'S RESOURCE MANAGEMENT 

AND ATIS SYSTEMS 
Hy Murveit, John Butzberger, Mitch Weintraub 

S R I  In t e rna t i ona l ,  M e n l o  Pa rk ,  C A  94025  

O V E R V I E W  

This paper describes improvements to DECIPHER, the speech recog- 
nition component in SKI's Air Travel Information Systems (ATIS) and 
Resource Management systems. DECIPHER is a speaker-independent con- 
tinuous speech recognition system based on hidden Markov model (HMM) 
technology. We show significant performance improvements in DECIPHER 
due to (I) the addition of tied-mixture I-IMM modeling (2) rejection of out- 
of-vocabulary speech and background noise while continuing to recognize 
speech (3) adapting to the current speaker (4) the implementation of N-gram 
statistical grammars with DECIPHER. Finally we describe our performance 
in the February 1991 DARPA Resource Management evaluation (4.8 per- 
cent word error) and in the February 1991 DARPA-ATIS speech and SLS 
evaluations (95 sentences correct, 15 wrong of 140). We show that, for the 
ATIS evaluation, a well-conceived system integration can be relatively 
robust to speech recognition errors and to linguistic variability and errors. 

Introduction 

The DARPA ATIS Spoken Language System (SLS) task 
represents significant new challenges for speech and natural 
language technologies. For speech recognition, the S I S  task is 
more difficult than our previous task, DARPA Resource 
Management, along several dimensions: it is recorded in a noisier 
environment, the vocabulary is not fixed, and, most important, it is 
spontaneous speech, which differs significantly from read speech. 
Spontaneous speech is a significant challenge to speech 
recognition, since it contains false starts, and non-words, and 
because it tends to be more casual than read speech. It is also a 
major challenge to natural language technologies because the 
structure of spontaneous language differs dramatically from the 
structure of written language, and almost all natural language 
research has been focused on written language. 

S L S  A r c h i t e c t u r e  

SRI has developed a spoken language system (SLS) for 
DARPA's ATIS benchmark task [1]. This system can be broken up 
into two distinct components, the speech recognition and natural 
language components. DECIPHER, the speech recognition 
component, accepts the speech waveform as input and produces a 
word list. The word list is processed by the natural language (NL) 
component, which generates a data base query (or no response). 
This simple serial integration of speech and natural language 
processing works well because the speech recognition system uses 
a statistical language model to improve recognition performance, 
and because the natural language processing uses a template 
matching approach that makes it somewhat insensitive to 
recognition errors. SRI's SLS achieves relatively high performance 
because the SLS-level system integration acknowledges the 
imperfect performance of the speech and natural language 
technologies. Our natural language component is described in 
another paper in this volume [2]. This paper focuses on the speech 

recognition system and the evaluation of the speech recognition and 
overall ATIS SLS systems. 

Resource Management Architecture 

SRI has also evaluated DECIPHER using DARPA's Resource 
Management task [3,4]. The system architecture for this task is 
simply the speech recognition system with no NL postprocessing. 
There are two language models used in the evaluation: a perplexity 
60 word-pair grammar, and a perplexity 1000 all-word grammar. 
The output is simply an attempted transcription of the input speech. 

D E C I P H E R  

This section reviews the structure of the DECIPHER system 
[5]. The following sections describe changes to DECIPHER. 

F r o n t  E n d  A n a l y s i s  

DECIPHER uses an FFT-based Mel-cepstra front end. Twenty- 
five FFT-Mel filters spanning 100 to 6400 Hz are used to derive 12 
Mel-cepslxa coefficients every 10-ms frame. Four features are 
derived every frame from this cepstra sequence. They are 

• Energy-normalized Mel-cepstra 

• Smoothed 40-ms time derivatives of the Mel-cepstra 

• Energy 

• Smoothed 40-ms energy differences. 

We use 256-word speaker-independent codebooks to vector- 
quantize the Mel-cepstra and the Mel-cepstral differences. The 
resulting four-feature-per-frame vector is used as input to the 
DECIPHER HMM-based speech recognition system. 

P r o n u n c i a t i o n  M o d e l s  

DECIPHER uses pronunciation models generated by applying 
a phonological rule set to word baseforms. The techniques used to 
generate the rules are described in [6] and [5], These generate 
approximately 40 pronunciations per word as measured on the 
DARPA Resource Management vocabulary and 75 per word on the 
ATIS vocabulary. Speaker-independent pronunciation probabilities 
are then estimated using these bushy word networks and the 
forward-backward algorithm in DECIPHER. The networks are then 
pruned so that only the likely pronunciations remain--typically 
about 4 per word for the resource management task and 2.6 per 
word on the ATIS task. This modeling of pronunciation is one of 
the ways that DECIPHER is distinguished from other HMM-based 
systems. We have shown in [6] that this modeling reduces error 
rate. 
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A c o u s t i c  M o d e l i n g  

DECIPHER builds and trains word models by using context- 
dependent phone models arranged according to the pronunciation 
networks for the word being modeled. Models used inelode unique- 
phone-in-word, phone-in-word, triphone, biphone, and generalized 
biphones and Wiphones, as well as context-independent models. 
Similar contexts are automatically smoothed together, if they do not 
adequately model the training data, according to a deleted- 
estimation interpolation algorithm similar to [7]. The acoustic 
models reflect both inter-word and across-word eoarticulatory 
effects. Training proceeds as follows: 

• Initially, context-independent boot models are estimated 
from hand-labels in the TIMIT training database. 

• The boot models are used as input for a two-iteration con- 
text-independent model training run, where context-inde- 
pendent models are refined and pronunciation probabilities 
are calculated using the full word networks. These large 
networks are then pruned by eliminating low probability 
pronunciations. 

• Context-dependent models are then estimated from a see- 
ond two-iteration forward-backward run, which uses the 
context-independent models and the pruned networks from 
the previous iterations as input. 

A C O U S T I C  M O D E L I N G  I M P R O V E M E N T S  

Tied M i x t u r e s  

We have implemented tied-mixture HMMs (TM-HMMs) in the 
DECIPHER system. Tied mixtures were first described by 
Huang[9] and more recently in by Bellegarda and Nahamoo[8]. 
TM-HMMs use Gaussian mixtures as HMM output probabilities. 
The mixture weights are unique to each phonetic model used, but 
the set of Gaussians is shared among the states. The tied Ganssians 
could be viewed as forming a Gaussian-based VQ codebook that is 
reestimated by the HMM forward -backward algorithm. 

Our implementation of TM-HMMs has the following 
characteristics: 

• We used 12-dimensional diagonal-eovariance Gaussians. 
The variances were estimated and then smoothed with 
grand variances. 

• Computation can be significantly reduced in TM-HMMs by 
pruning either the mixture weights or the Gaussians them- 
selves. We found that shortfall threshold Gaussian pruning- 
--discarding all Gaussians whose probability density of 
input at a frame is less than a constant times the best proba- 
bility density for that flame--works as well for us as stan- 
dard top-N pruning (keeping the N best Gaussians) and 
requires less computation. 

• We use two separate sets of Gaussian mixtures for our TM- 
HMMs; one for Mel cepstra and one for Mel-cepstral deriv- 
atives. We retained our discrete distribution models for our 
energy features. 

Corrective training [5,10,11] was used to update the mixture 
weights for the TM-HMMs. The algorithm is identical to that 
used for discrete HMMs. That is, the mixture weights are 
updated as ff they were discrete output probabilities. No mix- 
ture means or variances were corrected. 

We evaluated TM-HMMs on the RM task using the perplexity 60 
word-pair grammar. Our training corpus was the standard 3990 
sentence training set. We used the combined DARPA 1988, February 
1989, and October 1989 test sets for our development set. This 
contains 900 sentences from 32 speakers. We achieved a 6.8 percent 
word error rate using our discrete HMM system on this test set. The 
TM-HMM approach achieved an error rate of 5.5 percent. Thus, the 
TM-HMMs improved word recognition error rate by 20 percent 
compared to discrete HMMs. 

W o r d  E r r o r  
Sys tem Type  (percent )  

Discrete DECIPHER 6.8 
Discrete+sex separation 6.3 

TM-HMM for recognition only 6.4 
TM-HMM 5.5 
TM-HMM + sex separation 4.9 
TM-HMM + corrective training 4.7 
TM-HMM +sex +corrective 4.5 

TABLE 1. Error rate improvements with TM-HMMs with our 
900-sentence RM development set 

M a l e - F e m a l e  S e p a r a t i o n  

In the June 1990 DARPA Speech and Natural Language meeting 
[5], we reported a 20 percent reduction in RM word-error rate by 
training separate male and female recognizers, decoding using 
recognizers from both sexes, and then choosing the sex according to 
the recognizer with the highest probability hypothesis. This 
improvement was achieved using a recognizer trained on 11,190 
sentences. We did not achieve a significant improvement using male- 
female separation on the smaller 3990 sentence training set. We set 
out to see, as has been claimed in [8], whether TM-HMMs can take 
advantage of male-female separation with smaller (3990 sentence) 
training sets. Our results were mixed. Although performance did 
improve from 5.5 percent word error with combined models, to 4.9 
percent word error with separate male-female models (a 10 percent 
improvement) we note that 2/3 of the overall improvement was due to 
the dramatic improvement for speaker HXS. Aside from this one 
speaker, the performance gain was not significant. Based on our last 
study, however, we are confident that male-female separation does 
improve performance with sufficient training data. The table below 
shows performance for tied-mixture HMMs using combined and sex- 
separated models. 
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S t a n d a r d  Models  M a l e - F e m a l e M o d e l s  
Name E r r s  W d s  % E r r  E r r s  W d s  % E r r  

ESG 2 241 0.83 4 241 1.66 
TAB 4 178 2.25 3 178 1.69 
CEW 11 241 4.56 5 241 2.07 
AJC 10 253 3.95 6 253 2.37 
HXS 36 222 16.22 6 222 2.70 
DMS 6 179 3.35 5 179 2.79 
GMB 3 246 1.22 7 246 2.85 
HLM 11 296 3.72 9 296 3.04 
BEF 5 226 2.21 7 226 3.10 
TJS 9 265 3.40 9 265 3.40 
DAS 14 203 6.90 7 203 3.45 
JDH 12 246 4.88 9 246 3.66 
EWM 12 272 4.41 10 272 3.68 
KLS 8 244 3.28 9 244 3.69 
DTD 10 233 4.29 10 233 4.29 
tLEO 9 229 3.93 10 229 4.37 
DML 18 272 6.62 12 272 4.41 
PGH 13 204 6.37 9 204 4.41 
ERS 11 212 5.19 10 212 4.72 
GAW 15 244 6.15 12 244 4.92 
AEM 8 302 2.65 17 302 5.63 
DTB 7 227 3.08 13 227 5.73 
CTW 17 253 6.72 15 253 5.93 
CMH 18 230 7.83 15 230 6.52 
CRZ 23 302 7.62 20 302 6.62 
DWA 19 270 7.04 19 270 7.04 
CMR 19 231 8.23 17 231 7.36 
.IDM 16 271 5.90 21 271 7.75 
LNS 21 272 7.72 22 272 8.09 
GAG 22 296 7.43 24 296 8.11 
JWS 16 222 7.21 21 222 9.46 
RKM 22 209 10.53 21 209 10.05 

AVG 427 7791 5.48 384 7791 4.93 

TABLE 2. Performance with and without sex-separation 

There was no significant additional gain from using corrective 
training in addition to male-female separation. Performance 
improved from 4.9 percent error (male-female only) or 4.7 percent 
error (corrective training only) to 4.5 percent error (both methods). 
This lack of further improvement is due to the reduction in training 
data. 

S p e a k e r  Adaptation 
We have begun experiments into speaker-adaptation, 

converting speaker-independent models into speaker-dependent 
ones. Our experiment involved using VQ codebook adaptation via 
tied-mixture HMMs as proposed by Rtischev [13]. That is, we 
adjusted VQ codeword locations based on forward-backward 
alignments of adaptation sentences. However, since we are using a 
tied-mixture recognition system, we adapted the Gaussian means 
instead of the codebook. 

We selected 21 of the speakers in our development test set for 
use in an adaptation experiment. We had either 25 or 30 Resource 
Management sentences recorded for each of these speakers. We 
chose to use their first 20 sentences for adaptation, and the other 5 
or 10 sentences for adaptation testing. 

Using our original TM-HMM models, we achieved an error 
rate of 7.4 percent (114 errors in 1541 reference words) on this 
adaptation test set. After adjusting means for each speaker using the 
20 adaptation sentences, we achieved an error rate of 6.1 percent 
(94 errors in 1541 reference words) on the adaptation test 
sentences. 

This improvement with adaptation leads to performance that is 
still quite short of speaker-dependent accuracy (the ultimate goal of 
adaptation). Thus, it does not seem worth the added inconvenience of 
obtaining 20 known sentences from a potential system user, though it 
is promising for on-line adaptation. We plan to look into several areas 
for further improvement. For example: 

1. Rtischev et al. [14] have shown that adapting mixture weights is at 
least as important as adapting means. 

2. Kubala [15] et al. have shown that adapting speaker-dependent 
models can be superior to adapting from speaker-independent 
models. 

3. It is possible that the adaptation sentences need not be supervised 
given the relatively good (7.4 percent error) initial performance. 

R e j e c t i o n  o f  O u t - o f - V o c a b u l a r y  I n p u t  

We implemented a version of DECIPHER that rejects false input 
as well as recognizing legal input (our standard recognizer attempts to 
classify all the inpu0. In addition to standard word models, it uses an 
out-of-vocabulary word model to recognize the extraneous input. The 
word model has the following pronunciation network similar to [17]. 

Q All context 
independent 

phones 

a h . _  , d l h  

All context All context 
independent independent 

phones phones 

FIGURE 1. Out-of-vocabulary word model 

There are 67 phonetic models on each of the arcs in the above 
word network. All phonetic transition probabilities in this word 
network are equal, and are scaled by a parameter that adjusts the 
amount of false rejection vs. false acceptance. 

Thus far, we have performed a pilot study that shows this method 
to be promising. We gathered a database of 58 sentences total from six 
people. About half of the sentences are digit strings and the other half 
are digits mixed with other things. There are a total of 426 digits in the 
database, and 176 additional non-digit words. Example sentences are 
outlined in Table 3. 

We considered correct recognition for these sentences to be the 
digits in the string without the rest of the words (i.e. 2138767287, 
3876541104, 33589170429 are the correct answers for the top three 
sentences in Table 3). 

We trained a digit recognizer with rejection from the Resource 
Management training set and achieved a word error rate of 5.3 percent 
for the 27 sentences that contained only digits (13 errors = 1 insert 3 
delete 9 subs in 243 reference words), which is within one error of the 
system without rejection. Thus, in this pilot study, using rejection 
didn't hurt performance for "clean" input. The overall error rate was 
11.7 percent (26 inserts 15 deletes 9 subs in 426 reference words). 
That is, 402 of 426 digits were detected, and at least 141 of the 176 
extraneous words were rejected. 
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my parents number is 2 1 3 urn 8 7 6 ok 7 2 8 7 

if you have questions please dial extension 3 8 7 6 at5 4 1 1 oh 4 
please call3 3 5 89  1 urn 7oh4  2 9 

hmm let's see what's this 1 2 3 4 5 uh that's not right 2 3 4 5 
1 2 3 oh no that's wrong 2 4 5 8 9 yeah i think that's it 

this is a test I 2 3 4 5 8 7 this was only a test 
<grunt> 1 2 <cough> 3 4 5 <sneeze> 8 7 <mic-noise> 

4 1 dollars and 3 1 8 cents 

what's this oh 4 1 0 8 
well let's see 3 1 4 7 8 ok 

TABLE 3. Sample sentences for the rejection study 

L A N G U A G E  M O D E L I N G  

B i g r a m  L a n g u a g e  Modeling 

We used a bigram language model to constrain the speech 
recognition system for the ATIS evaluation. A back-off estimation 
algorithm [16] was used for estimation of the bigram parameters. 
The training data for the grammar consisted of 5,050 sentences of 
spontaneous speech from various sites--l ,606 from MIT's ATIS 
data collection project, 774 from NIST CD-ROM releases, 538 
from SRI's ATIS data collection project, and 2,132 from various 
other sites. 

Robust estimates for many of the bigram probabilities cannot 
be achieved since the vast majority of them are seen very 
infrequently (because of the lack of sufficient training data). 
Furthermore, frequencies of words such as months and cities were 
biased by the data collection scenarios and the time of year the data 
was collected. To reduce these effects, words with effectively 
similar usage were assigned to groups, and instead of collecting 
counts for the individual words, counts were collected for the 
groups. After estimation of the bigram probabilities, the 
probabilities of transitioning to individual words were assigned the 
group probability divided by the number of words in the group. 
This scheme not only reduced some of the problems due to the 
sparse training data, but also allowed some unseen words (other 
city names, restriction codes, etc.) to be easily added to the 
grammar. The table below contains the groups of words tied 
together. 

months, days, digits, teens, decades, date-ordinals, cities, airports, 

states, airlines, class-codes, restriction-codes, fare-codes, airline- 

codes, aircraft-codes, airport-codes, other-codes 

TABLE 4. Tied Groups 

Using our back-off bigram on our ATIS development set (most 
of the June 1990 DARPA-ATIS test set), we achieved a 14.1 
percent word error rate with a test-set perplexity of 19 (not counting 
6 words not covered by the grammar). When we applied this 
grammar to the February 1991 ATIS evaluation test set (200 
sentences) the perplexity was 43, excluding 26 instances of words 
not covered in our vocabulary. For the 148 Class A sentences, the 
recognition word error rate was 17.8 percent. 

We also explored various class-grammar implementations. 

These grammars were generated by interpolating word-based bigrams 
with class-based bigrams. We were able to vary the grammars and 
their perplexities by varying the interpolation coefficients. However, 
recognition performance never improved over that for the back-off 
bigram. In fact, accuracy remained relatively constant throughout a 
large range of perplexities. 

Table 5 illustrates recognition accuracy using bigrams with 
different perplexities on our ATIS development test set. A preliminary 
set of models was used for recognition (with 442 words in the 
vocabulary) and the grammars were estimated using 2,909 sentences. 

Backed-off Bigram 

Interpolated Bigrams 

W o r d  Error 
Perplexity (percent) 

19 14.1 

20 14.5 
24 15.3 
71 14.9 
89 14.7 
91 14.5 

113 14.9 
442 29.2 

TABLE 5. Perplexity vs. word error on the ATIS 
development set 

These tables also illustrate that recognition performance did not 
depend strongly on the test-set perplexity. Clearly, other factors are 
dominating performance. We believe that one of our most pressing 
needs in this research is to understand what this bottleneck is, and to 
develop ways that express it better than perplexity. 

Multi-Word Lexieal Units 

Many words occur with sufficient frequency and with significant 
cross-word coarticulation that a better acoustic model might be made 
by training these word combinations as a single word model. These 
words include "what-are-the," "give-me," etc., which can have a 
variety of pronunciations best modeled with a network of phones 
representing the phonetic and phonological variation of the whole 
sequence ("what're-the," "gimme," etc.) instead of each word 
separately. 

Also, when considering class grammars, multiple word sequences 
allow classes which could not be constructed by considering every 
word separately. For instance, having distinct models of all the 
restriction codes (e.g. "v-u-slash-one") might be more appropriate 
than modeling alpha->alpha->slash->number in the bigram. The 
latter form would allow all the alphabet letters to transition to all the 
alphabet letters, with probabilities as prescribed by the bigram, and 
would incorrectly increase the probability for invalid restriction 
codes. 

This multi-word technique allows all the probabilities of all the 
restriction codes to be tied together, so that all are equally covered at 
the appropriate place in the grammar, instead of depending completely 
on the individual words' statistics estimated from sparse training data. 
The multi-word approach resulted in only a slight performance 
improvement compared to a system where non-coarticulatory multi- 
words were left separated. That is, for the "separate words" system, 
words like "a p slash eighty" were separate words, but coarticulatory 
word models like "what-are-the" and "list-the" were retained. On a 
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ll9-sentence subset of the June 90 evaluation set, the results were 
as shown in Table 6. 

Deve lo pme nt  Set Pe r fo rmance  

Perplexi ty  W o r d  E r r o r  

(percent) 
Multi-Word 26 9.6 
Separate Words 20 10.7 

F e b r u a r y  1991 Class-A Eva lua t ion  Pe r fo rmance  
W o r d  E r r o r  

Perplexi ty  (percent)  
Multi-Word 43 17.8 
Separate Words 34 18.3 

TABLE 6. Effectiveness of multi-word modeling 

Note that the higher perplexity of the multi-word system is 
deceiving since high probability grammar transitions are now 
hidden within the multi-word models, and are not seen by the 
grammar. Tables 7 and 8 list the various multi-word units. 

flights-from, what-is-the, show-me-the, show-me-all, show-me, 
how-many, one-way, what-are-the, give-me, what-is, i-would-like, 

i'd-like-to, what-does 

TABLE 7. Coarticulatory Multi-Words 

CITIES: 
AIRLINES: 
AIRCRAFT: 
AIRPORTS: 
CLASS CODES: 
RESTRICT CODES: 
COLUMN HEADS: 

san-francisco, washington-de .... 
a-l, c-o, t-w-a, u-s-air, ... 
d-e-ten, seven-forty-seven .... 
a-t-l, b-o-s, s-f-o, d-f-w, ... 
q-x, f-y-b-m-q, k-y, y-n .... 
a-p-eighty, a-p-slash-eighty,... 
d-u-r-a, e-q-p, r-t-n-max .... 

TABLE 8. Semantic Multi-Words 

E V A L U A T I O N  

R M  E v a l u a t i o n  

SRI evaluated the DECIPHER system on DARPA's February 
1991 speaker-independent test set. The characteristics of the 
evaluated system were: 

• Speaker-independent recognition 

• 3990 sentence DARPA-RM training 

• 3 state, left-to-right, context-dependent hidden Marker 
model using deleted-interpolation estimation of parameters 

• Input features were 12 Mel-cepstra and delta-Mel-cepstra 
and scalar quantized energy and delta-energy 

• Tied-mixture modeling for Mel cepstra and delta-Mel-cep- 
stra 

• 256 diagonal covariance Gaussians for each 

• Independent discrete density HMM models for energy and 
delta energy 

• Multiple pronunciation trained phonological modeling, about 
4 pronunciations per word on average 

• Cross-word acoustic and phonological modeling 

• Sex-consistent modeling 

• Corrective training on mixture weights 

• Resource Management all-word and word-pair grammars 
used with 992-word Resource Management vocabulary. 

We achieved the performance shown in Table 9. 
Speaker  P=60 P=1000  

ALK03 9.7 20.8 
CALl5 2.5 11.9 
CAU07 2.6 14.7 
EAC02 10.2 22.0 
JLS04 1.6 11.1 
JWG05 7.5 19.5 
MEB03 2.9 17.6 
SAS05 2.2 10.4 
STK01 4.1 21.2 
TBR01 5.2 27.8 
Average 4.8 17.6 

TABLE 9. DARPA-RM February 1991 speaker-independent 
evaluation 

Our performance is severely limited by training data[S], and many 
further improvements for the RM task may only be ways to work 
around RM's artificial limit on training data. Thus, we expect to 
develop and evaluate our system in the future with the ATIS task 
which both has more training data available and uses more realistic 
(spontaneous) speech. 

S L S  E v a l u a t i o n  

We evaluated on DARPA's February 1991 ATIS test set using a 
system similar to the one described above except: 

• The system was trained on 17,042 sentences (3990 RM-SI, 
4200 TIM1T, 7932 read ATIS, 920 spontaneous ATIS). 

• 1,139 word vocabulary (the test set vocabulary was not 
revealed in advance) using multi-word units. 

• Discrete distribution HMM modeling was used for all fea- 
tures. 

• A back-off bigram language model [16] with tied word- 
groups was used, with a test set perplexity of 43 (not counting 
26 words out of vocabulary). 

• A template-matcher natural language component [2] was used 
to generate ATIS database queries based on the speech recog- 
nition output. 

We achieved the performance shown in Table 10. 
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S P K R  Corr Sub Del In s  Err Sent Err 

CL 93.6 5.1 1.3 1.7 8.1 42.3 
CJ 92.0 6.9 1.0 0.7 8.7 46.2 
CO 92.0 3.7 4.3 1.2 9.3 56.2 
CP 90.7 7.5 1.8 2.5 11.8 59.3 
CK 83.3 8.8 7.8 1.0 17.6 58.3 
CH 84.2 5.3 10.5 5.3 21.1 100.0 
CE 81.5 12.0 6.5 3.2 21.8 70.0 
CI 73.1 24.0 2.9 5.8 32.7 90.0 
CM 75.0 23.5 1.5 26.5 51.5 100.0 
Average 86.5 10.3 3.1 4.3 17.8 60.1 

All-word (Perplexity 1139) 
Average 86.5 23.9 3.7 8.0 35.5 

speech TABLE 10. DARPA-ATIS February 1991 
148 Class A Sentences 

91.2 

evaluation 

S P K R  C o r r  Sub Del  In s  E r r  Sent Err 

CJ 91.9 6.5 1.6 0.8 8.9 54.5 
CP 91.7 6.6 1.7 1.7 10.0 55.2 
CL 91.4 6.7 1.9 1.9 10.4 44.8 
CK 85.0 8.7 6.3 0.5 15.5 64.0 
CE 83.0 11.8 5.2 2.6 19.6 73.9 
CO 79.4 13.7 6.9 1.4 22.0 75.9 
CH 78.6 13.1 8.3 3.6 25.0 100.0 
CI 67.1 27.3 5.6 5.6 38.6 92.9 
CM 72.5 25.2 2.3 23.9 51.4 100.0 
Average 83.5 12.6 3.9 4.2 20.7 66.5 

DARPA-ATIS February 
All sentences 

TABLE 11. 1991 speech evaluation 

As can be seen, speakers CI and CM contributed significantly 
to the overall error rate. Furthermore, many of the errors occurred 
despite their relatively small bigram probabilities, indicating that 
the grammar is still not completely effective in overriding poor 
acoustic matches. 

Table 12 
performance. 

System 

N L  Only 
SLS 

describes overall spoken language system 

Right  W r o n g  N A  1 W E r r  2 Score 3 

109 9 27 31.0 69.0 
96 11 38 41.4 58.6 

TABLE 12. DARPA-ATIS February 1991 SLS evaluation 
148 Class A sentences 

D i s c u s s i o n  

The most interesting result of this evaluation (see the paper by 
PaUett in this proceedings) was that, though SRI along with BBN 
achieved the best speech recognition accuracy, and SRI along with 
CMU had the best natural-language-only performance, the 
accuracy of SRI's combined speech and natural language systems 

1. NA is no answer 

2. WErr or weighted error is percent no answer plus two times the 
percent wrong. 

3. Score = 100 - Werr 

was far better than that for the other sites. We attribute this to the error 
tolerant nature of our speech/natural-language interface. For instance, 
note that performance using spoken language is not much worse than 
the performance of the NL component given transcribed input (i.e. 
given a perfect speech recognition component) even though the SLS 
speech recognition component had a 60 percent sentence error rate (at 
least one word was wrong in 60 percent of the sentences). 

The above results indicate to us that steady progress in the speech 
recognition and natural language technologies, together with error- 
tolerant speech/natural-language interfaces can lead to practical 
spoken language systems in the near future. 
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