
Algorithms for an Optimal A* Search and
Linearizing the Search in the Stack Decoder.

Douglas B. Paul

Lincoln Laboratory, MIT
Lexington, Ma. 02173

Abstract
The stack decoder is an attractive algorithm for con-

trolling the acoustic and language model matching in a
continuous speech recognizer. It implements a best-first
tree search of the language to find the best match to
both the language model and the observed speech. This
paper describes a method for performing the optimal A*
search which guarantees to find the most likely path (rec-
ognized sentence) while extending the minimum number
of stack entries. A tree search, however, is exponential
in the number of words. A second algorithm is presented
which linearizes the search at the cost of approximating
some of the path likelihoods.

Introduction
Speech recognition may be treated as a tree network

search problem. As one proceeds from the root toward
the leaves, the branches leaving each junction represent
the set of words which may be appended to the cur-
rent partial sentence. Each of the branches leaving a
junction has a probability and each word has a likeli-
hood of being produced by the observed acoustic data.
The recognition problem is to identify the most likely
path (word sequence) from the root (beginning) to a leaf
(end) taking into account the junction probabilities (the
stochastic language model) and the optimum acoustic
match (including time alignment) given that path.

This paper is concerned with the network search prob-
lem and therefore correct recognition is defined as out-
putting the most likely sentence given the language
model, the acoustic models, and the observed acoustic
data. If the most likely sentence is not the one spoken,
that is a modeling error--not a search error. This pa-
per will assume for simplicity that an isolated sentence
is the object to be recognized. (The stack decoder can
be extended to recognize continuous sentences.)

The stack decoder [4], as used in speech, is an imple-
mentation of a best-first tree search. The basic operation
of a sentence decoder is as follows [1, 2]:

1. Initialize the stack with a null theory.

*Thi s work was sponso red by the Defense Advanced Resea rch
Pro jec t s Agency.

2. Pop the best (highest score) theory off the stack.

3. if(end-of-sentence) output sentence and terminate.

4. Perform acoustic and language-model fast matches
to obtain a short list of candidate word extensions
of the theory.

5. For each word on the candidate list:

(a) Perform acoustic and language-model detailed
matches and add the log-likelihoods to the the-
ory log-likelihood.

i. if(not end-of-sentence) insert into stack.
ii. if(end-of-sentence) insert into stack with

end-of-sentence flag = TRUE.

(note: end-of-sentence may be optional)

6. Go to 2.

The fast matches [2] are computationally cheap meth-
ods for reducing the number of word extensions which
must be checked by the more accurate, but computa-
tionally expensive detailed matches) (The fast matches
may also be considered a predictive component for the
detailed matches.) Top-N mode is achieved by delaying
termination until N sentences have been output.

The stack itself is just a sorted list which supports the
operations: pop the best entry, insert new entries ac-
cording to their scores, and (in some implementations)
discard the worst entry. The following must be con-
tained in each stack entry: the stack score used to or-
der the entries, the word history (path or theory iden-
tification), an output log-likelihood distribution, and an
end-of-sentence flag. Since the time of exiting the word
cannot be uniquely determined during a forward-decoder
pass, the output log-likelihood as a function of time must
be contained in each entry. This distribution is the in-
put to the next word model. The end-of-sentence flag
identifies the theories which are candidates to end the
sentence.

This exposition will assume discrete observation hid-
den Markov model (HMM) word models [9, 10] with the

1The following d iscuss ion concerns t he bas ic s t ack decoder a n d
therefore it will be a s s u m e d t h a t t he correct word will a lways be on
the fas t m a t c h l i s t . T h i s can be g u a r a n t e e d by the s chem e ou t l ined
in reference [2].

200

observation log-pdfs identified as the B = bj,k matrix,
where j identifies the arc (transition between states) and
k identifies the observation symbol. (This can be triv-
ially extended to continuous observation, mixture, and
tied-mixture HMM systems.) However, it should ap-
ply to any stochastic word model which outputs a log-
likelihood. Similarly, a stochastic language model which
outputs a partial sentence log-likelihood is assumed. An
accept-reject language model will also work--its output
is either zero or minus infinity.

The A* Stack Criter ion
A key issue in the stack decoder is the scoring crite-

rion. (All scores used here are log-likelihoods or log-
probabilities.) If one uses the raw log-likelihoods as
the stack score, a uniform search [7] will result. This
search will result in a prohibitive amount of computa-
tion and a very large stack for any large-vocabulary high-
perplexity speech recognition task because the score de-
creases rapidly with path length and thus short paths
will be "carried along". A better scoring criterion is
the A * criterion [7]. The A* criterion is the difference
between the actual log-likelihood of reaching a point in
time on a path and an upper bound on the log-likelihood
of any path reaching that point in time:

hi(t) = Li(t) - ubL(t) (1)

where Ai(t) is the scoring function, Li(t) is the output
log-likelihood, t denotes time, i denotes the path (tree
branch or left sentence fragment) and ubL(t) is an upper
bound on Li(t). The stack entry score is

StSci =max hi(t) . (2)
t

If ubn(t) >_ lubL(t), where lubL(t) is the least upper
bound on L, the stack search is guaranteed to be ad-
missible, i.e., the first output sentence will be the cor-
rect (highest log-likelihood) one [7] and, in addition,
the following sentences in top-N mode will be output
in log-likelihood order. In general, the closer ubL(t) is
to lubL(t), the less computation. If ubL(t) = lubL(t),
the search is guaranteed to be optimal [7], i.e., a mini-
mum number of stack entries will have to be popped and
extended. If ubL(t) becomes less than lubL(t), longer
paths will be favored excessively and the first output
sentence may not have the highest log-likelihood, i.e., a
search error may occur. (Note that ubL(t) is constant
for any t and therefore does not affect the relative scores
of the paths at any fixed t ime--i t only affects the com-
parison of paths of differing lengths and the resultant
order of path expansion.)

The basic problem is obtaining a good estimate of
ubL(t) in a time-asynchronous decoder. (Note that
lubL,tat~(t) over the states is easily computed in a time-
synchronous decoder and that Astate(t) is the value com-
pared to the pruning threshold in a beam search [6].)

One estimate of ubL(t) is

ubL(t) = - a t . (3)

where a is some constant greater than zero. This ap-
proach attempts to cancel out the average log-likelihood
per time step. If a is too large, it will underestimate
the bound and risk recognition errors. If a is small the
search will be admissible, but will require an excessive
amount of computation. (In fact, a = 0 is the uni-
form search mentioned above.) An intermediate value of
a will achieve a balance between the two extremes and
produce the winner with reduced computation. Unfortu-
nately no single value of a is optimum for all sentences or
all parts of a single sentence. Thus a conservative value
is generally chosen. One way of altering the tradeoff is
to run in top-N mode and sort the output sentences by
score. If a is slightly high, the sentences may be output
out of order, but the sort provides a recovery mechanism.
This scheme may also require additional computation to
produce the additional output sentences.

The criterion of equation 3 can be improved by nor-
malizing the observation probabilities by the A* crite-
rion:

t

ubL(t) = ~ n~ax bj,o r - at (4)
r = l

where ot is the observation at time t. This helps, but
basic problems of equation 3 still remain. Both of these
corrections can be precomputed by modifying the B ma-
trix:

Bj,k = Bj,k-- max bj,k + a. (5)
a

This stack criterion allows estimation of the most-
probable partial-path exit time. Ai(t) now exhibits a
peak whose location is the estimate of the exit time of
the word. (The stack decoder only implements the for-
ward decoder--finding the exact most-probable exit time
requires information from the decode of the remainder
of the sentence.) Therefore the estimated exit time is:

tmaz,i =argmax Ai(t). (6)
t

The Opt imal A* Stack Decoder
The upper bounds of equations 3 and 4 are fixed ap-

proximations to the least upper bound and therefore
force a tradeoff of computation and probability of search
error. It is, however, possible to compute the ezact least
upper bound and so perform an optimal A* search. The
primary difficulty is that only the "lub so far" can be
computed, i.e., only the upper bound of the currently
computed paths can be obtained. This creates two diffi-
culties:

1. Since the estimate of the lub (lub) is changing, the
stack order may change as a result of an update of
lubL(t).

2. A degeneracy in determining the best path may oc-
cur since the current bound may equal Li(t) for
more than one i (path).

Problem 1 is easily cured by reevaluating score S tSc
every time lubL(t) is updated and reorganizing the stack.

201

This is easily accomplished if the stack is stored as a
heapL The reorganization is accomplished by scanning
the heap in addressing order and, at each entry, reevalu-
ating the score, and if the score is greater than that of its
parent, successively swapping the entry with its parent
until the next parent has a higher score than the current
entry. Once the first sentence is output , lubL(t) will be
stable.

Problem 2 occurs because two or more theories may
dominate different parts of the current upper bound.
Thus all of these theories will have a score of zero. If
the longest theory is extended, its descendents will also
dominate the bound and will in turn be extended. This
will, of course, result in search errors because the shorter
theories will never have a chance to be extended. The
cure is to extend the shortest theory. One could choose
the shorter theory in the case of a tie or a simpler way
of doing this is to use a slightly modified criterion:

Ai(t) = Li (t) - lubL(t) - et (7)

where lt~bL(t) is the least upper bound so far and e is
a very small number greater than zero. (The value of
e need only be large enough to avoid being lost in the
system quantization error and therefore the loss of op-
timality of the search criterion can be ignored.) The et
term serves as a tie-breaker in favor of the shorter theory
in a manner which is compatible with equation 2. Note
that this criterion completely accounts for all factors:
the language model, the reduction of the log-likelihood
as paths grow, any B matr ix normalization (equation
5), and any effects due to the restrictions on the HMM
state sequences in the word models. (In fact, this cri-
terion makes Ai(t) invariant to any fixed normalizations
such as those of equation 5 - -a fact that will allow both
the A* search and the above definition of tm~, be used
in the search linearizing algorithm described below.)

Reorganizing the stack immediately preceding each
pop if the least upper bound has been updated, adding a
miniscule length dependent penalty, and using the max-
imum of the normalized log-likelihood as the stack score
for each theory results in a computationally-optimal ad-
missible implementation of the stack decoder. Further-
more, it guarantees that when the stack decoder is used
in top-N mode, the sentences will come out in decreasing
log-likelihood order.

What is the advantage of the A* stack decoder over
the time-synchronous beam search? Both, after all, end
up using a least upper bound to control the search. The
two lub's are different-- the time synchronous search gen-
erally computes its lub over all states and the pruning
will be affected by the location in the network in which
the language-model log-likelihoods are added (at the be-
ginning of the word, at the end, or spread out along

2 A h e a p is a row-wise l inear ly-addressed b inary- t ree d a t a s t ruc-
ture , whose tree r ep resen ta t ion resembles a py ramid . T h e score of
a pa ren t is g rea te r t h a n or equal to the scores of i ts chi ldren and
each pa r en t is loca ted in the row above i ts children. A pa ren t al-
ways ha s a lower address t h a n i ts child. T h e h ighes t scor ing en t ry
resides a t the roo t of the t ree (top of the py ramid) wh ich is s to red
in t he first loca t ion of t he a r r ay [5].

the word model). In contrast, the stack decoder only
computes its lub at the end of the words and all places
for adding the language-model log-likelihoods are equiv-
alent. The stack decoder lub can also be bet ter (but
never worse) than the time-synchronous lub because it
is computed only for the word ends. (On the other hand,
a time-synchronous decoder can prune parts of words- -
the stack decoder, as described here, treats words as in-
divisible units.) Finally, the effective pruning threshold
for the A* stack is continuously adapt ive-- i t only ex-
tends theories which have a chance of winning while the
pruning threshold for a time-synchronous decoder is de-
termined by the worst case (which may be rare). An
unbounded stack has been assumed--stack size will be
discussed later. (Note that typically only a relatively
small number of theories are actually popped from the
stack and ex tended-- the majori ty are abandoned when
decoder terminates.)

Linearizing the Search
The basic stack decoder is exponential in the length of

the input because it is a tree search with the consequence
that identical subtrees must be searched as many times
as there are distinct histories. (This section will initially
deal with the acoustic matching part of the decode and
will therefore assume no language model--adding lan-
guage models will be discussed once the acoustic issues
have been described.) There is, however, a method for
combining identical subtrees which depends only on the
last word of the theory to be extended and tm~ (equa-
tion 6). This limits the maximum number of theories to
V T where V is the number of vocabulary words and T is
the length of the input. Thus the search will be O (T) or
linear in the length of the input. This method involves a
minor approximation for the lower likelihood of the two
joined paths.

Given that:

1. the last word of the history for each of the two the-
ories is the same

2. and the trnax'S of equation 6 are the same

the lower likelihood theory can be pruned because it, as-
suming the approximation to be correct, can never beat
the higher likelihood path. (Entensions to top-N will be
given later.) This is true because probability as a func-
tion of time of transitioning between the the left word
(last word of the history for the theory) and the next
word is only a very weak function of words preceding
the left word. (Any two words having the same acous-
tic model are considered equal herc so if, for instance,
stress is being modeled, then the stressed and unstressed
word models are considered different.) The assumption
that the weak function is not a function of the words
preceding the left word is the approximation. Obviously,
this approximation is more accurate for longer left words
or can be made more accurate if left word groups are used
as the matching context.

202

This algorithm is easily implemented in the stack de-
coder. For any new theory about to be inserted onto the
stack (comparisons for a match are made by the above
two criteria):

1. If the new theory matches a theory on a list of past
theories popped from the stack, discard it. It, by
definition, has a lower likelihood than the theory on
the list.

2. If the new theory matches a theory currently on the
stack, save the more likely theory, discard the less
likely theory and, if necessary, reorganize the stack.

This algorithm saves both stack space and computation.
(It is the analog of a path join in a time-synchronous
decoder.)

To extend this theory to a top-N decoder, instead of
discarding the less likely theory, at tach a link from the
more likely theory to the less likely theory, record the
difference in the likelihoods, and store the less likely the-
ory off the stack. Whenever an end-of-sentence theory is
popped from the stack, follow the links and:

1. apply the likelihood differences to reconstruct the
likelihoods,

2. reconstruct the word sequences, and

3. place the word sequences on a secondary heap or-
dered by their likelihoods.

Once reconstructed theories have been placed on the sec-
ondary heap, the pop operation must check both the
stack and the secondary heap for the most likely theory
to pop. This algorithm will be exact for theories which
stay on the stack, but the likelihoods will be approxi-
mate for the reconstructed theories from the secondary
heap.

This algorithm can also be extended to include lan-
guage models. Unigram and bigram language models [1]
are t r ivial-- the unigram model is not a function of the
left context and the bigram model is a function of the
same word which was used in determining a match. Thus
both can be inserted directly into the linearizing algo-
r i thm without modification. A trigram language model
[1] would insert directly if the left matching context was
two words rather than one word.

Language models with left contexts too long to be
efficiently incorporated directly into the linearizing al-
gorithm could be handled by by caching the acoustic
matches according to the above path joining criterion.
Whenever a cache match is found, use the cached next
word output likelihoods to avoid recomputation. (Note
that the acoustic detailed match must use only the word
list from the acoustic fast match. Otherwise the cached
set of word extensions will be limited by the language-
model context in effect at the time of caching. The
language-model fast match can then be applied after the
acoustic detailed match.) This will make the acoustic
computation linear, but will not reduce the language-
model computation. (Some language-model algorithms

may also be able to use similar mechanisms to avoid re-
peating computations.) This approach extends trivially
to top-N mode without the use of the links or the sec-
ondary heap.

A final method of using language models with a long
left-context dependency is to simply operate the lin-
earized stack decoder with a bigram, unigram or no lan-
guage model, and output the top-N sentences to a de-
coupled language-model analyzer. This is the decoupled
mode of reference [8].

Limiting the Stack Size
One difficulty of the stack decoder is the stack size.

The A* search algorithm reduces the stack size, but it
can still grow exponentially. The first linearizing algo-
r i thm places an upper bound of VT (or V2T for the
tr igram language model) on the stack size, but the sec-
ondary heap can grow exponentially. To minimize these
problems, a pruning threshold can be applied to the
stack insertion operations and the secondary heap gener-
ation. Any theory whose StSc from equation 2 is below a
threshold is discarded. (Since lubn(t) can only increase
as the decoder operates, no discarded theory would be
accepted by a later value of StSc. Note also that the
stack reorganizing operation can also discard any entries
that fall below the threshold according the the new val-
ues of StSc.) While this pruning threshold may seem
similar to the time-synchronous decoder pruning thresh-
old, a conservative value only increases the stack size,
but not the computation in the basic stack decoder. A
conservative value would also increase the link tracing
computation and the secondary heap size, but the com-
putation is minor compared to the basic stack computa-
tion.

A second method of limiting the stack size is, a-priori
choosing some reasonable size and when it is about to
overflow, discard the worst theory. This, in effect, dy-
namically chooses a pruning threshold. (It can be viewed
as a fail-soft stack overflow.) The standard heap does
not support efficient location of the worst theory. (Lo-
cating the worst theory in a full heap requires searching
the bot tom row or about half the heap.) It is possible
to modify a heap from its usual pyramid shape to a di-
amond shape by attaching an upside down pyramid to
the bot tom of the first pyramid. This structure would
have the best theory at the top and the worst theory at
the bottom. This would complicate the stack operation
somewhat, but it would probably be as efficient as most
other data structures.

Conclusion
Two algorithms have been presented for accelerating

the operation of a stack decoder. The first is a method
for computing the true least upper bound so that an op-
timal admissible A* search can be performed. The sec-
ond is a set of methods for linearizing the computation
required by a stack decoder. The A* search has been

203

implemented in a continuous speech recognizer simula-
tor and has demonstrated a significant speedup. The
linearizing algorithm has been partially implemented in
the simulator and has also shown significant computa-
tional savings.

A d d e n d u m
Jim Baker conjectured that the optimal A* search as

described above might not be admissible when a lan-
guage model is used due to an interaction between the
acoustic and the language model likelihoods [3] which
can prevent lubL(t) from becoming the true lub. Such
a loss of admissibility can result in the sentences being
output out of likelihood order. This was tested by run-
ning the simulator in top-N mode with and without a
language model. The test used 600 sentences from the
DARPA Resource Management task and the word-pair
language model. No recognition errors (the most likely
sentence was not the first output) were observed for the
no language model case and two errors were observed in
the word-pair language model case. This verifies Baker's
conjecture, but suggests that the problem may be rela-
tively rare. It also offers empirical evidence that the no
language model case is admissible.

[9] D. B. Paul, "Speech Recognition using Hidden
Markov Models," Lincoln Laboratory Journal, Vol.
3, no. 1, Spring 1990.

[10] A. B. Poritz, "Hidden Markov Models: A Guided
Tour," Proc. ICASSP 88, April 1988.

References
[1] L. R. Bahl, F. 3elinek, and R. L. Mercer, "A Max-

imum Likelihood Approach to Continuous Speech
Recognition," IEEE Trans. Pattern Analysis and
Machine Intelligence, PAMI-5, March 1983.

[2] L. Bahl, P. S. Gopalakrishnam, D. Kanevsky, D.
Nahamoo, "Matrix Fast Match: A Fast Method for
Identifying a Short List of Candidate Words for De-
coding," ICASSP 89, Glasgow, May 1989.

[3] J. K. Baker, personal communication, 25 June 1990.

[4] F. Jelinek, "A Fast Sequential Decoding Algorithm
Using a Stack," IBM J. Res. Develop., vol. 13,
November 1969.

[5] D. E. Knuth, "The Art of Computer Programming:
Sorting and Searching,", Vol. 3., Addison-Wesly,
Menlo Park, California, 1973.

[6] B. T. Lowerre, "The HARPY Speech Recognition
System," PhD thesis, Computer Science Depart-
ment, Carnegie Mellon University, April 1976.

[7] N. 3. Nilsson, "Problem-Solving Methods of Artifi-
cial Intelligence," McGraw-Hill, New York, 1971.

[8] D. B. Paul, "A CSR-NL Interface Specification,"
Proceedings October, 1989 DARPA Speech and
Natural Language Workshop, Morgan Kaufmann
Publishers, October, 1989.

204

