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ABSTRACT 
Phonetic baseforms are the basic recognition units in most 
large vocabulary speech recognition systems. These base- 
forms are usually determined by hand once a vocabulary is 
chosen and not modified thereafter. However, many applica- 
tions of speech recognition, such as dictation transcription, are 
hampered by a fixed vocabulary and require the user be able to 
add new words to the vocabulary. At least one phonetic base- 
form must be assigned to each new word to properly integrate 
the word into the recognition system. Dictionary lookup is of- 
ten unsuccessful in determining a phonetic baseform because 
new words are often names or task-specific jargon; also, talk- 
ers tend to have idiosyncratic pronunciations for a substantial 
fraction of words. This paper describes a series of experiments 
in which the phonetic baseform is deduced automatically for 
new words by utilizing actual utterances of the new word in 
conjunction with a set of automatically derived spelling-to- 
sound rules. We evaluated recognition performance on new 
words spoken by two different talkers when the phonetic base- 
forms were extracted via the above approach. The error rates 
on these new words were found to be comparable to or better 
than when the phonetic baseforms were derived by hand, thus 
validating the basic approach. 

1 Introduction 
Phonetic baseforms are the basic recognition units in most 
large vocabulary speech recognition systems. These base- 
forms are usually determined by hand once a vocabulary is 
chosen and not modified thereafter. However, many applica- 
tions of speech recognition, such as dictation transcription, are 
hampered by a fixed vocabulary and require the user be able to 
add new words to the vocabulary. At least one phonetic base- 
form must be assigned to each new word to properly integrate 
the word into the recognition system 1. This paper describes 
a seres of experiments in which the phonetic baseform is 
deduced automatically for a new word given its spelling by 
utilizing actual utterances of the new word in conjunction with 
a set of automatically derived spelling-to-sound rules. 

Most previous attempts to construct a phonetic baseform for 
a new word have been in the area of speech synthesis. Klatt 

t One does not necessarily require a phonetic baseform to add a new word 
to a recognition system [ I, 2], but if the system is odginaUy based on phonetic 
baseforms, the system structure is complicated by having more than one type 
of recognition model present. 

[3] reviews various approaches to this problem; most solu- 
tions involve some set of human-derived rules combined with 
a dictionary lookup procedure for exceptions. The best sys- 
tems seem to produce correct baseforms for 95%-98% of the 
words in running text. We believe that such systems are inad- 
equate to handle the baseform construction problem in speech 
recognition for several reasons. First, many new words in 
speech recognition systems are either names or task-specific 
jargon (see discussion in section 4). Pronunciation of such 
items tend to be highly irregular and present substantial dif- 
ficulties for text-to-speech systems [3]. Second, talkers tend 
to develop idiosyncratic pronunciations of many words, espe- 
cially proper names. For example, the name Picheny is often 
pronounced Pitch'-uh-nee rather than Pitch-eh'-nee even by 
people familiar with the individual, and the word asymptotic 
can be pronounced with an initial EI rather than with an AE 
by people not terribly familiar with the word. Thirdly, the 
spelling of a word sometimes has very little correlation with 
its pronunciation - the orthography AAA is often pronounced 
Triple-A. Finally, human-derived rule-based systems are very 
labor intensive to create and often very hard to transfer from 
the original development site to other institutions that wish to 
utilize it. 

It seems obvious from the above examples that proper de- 
duction of a phonetic baseform for a new word requires both 
knowledge of the spelling of the word and at least one acous- 
tic example of its pronunciation. While in theory it should 
be possible to deduce a baseform from the utterance alone, 
current speech recognition systems do not yet produce pho- 
netic transcriptions with a high enough accuracy for this to 
be feasible. We follow the basic approach as described in 
Lucassen [4]. In particular, our goal is to find the phone string 
T' to maximize 

P('P I £,/ ' /)  ~ argmaxP(Lt I 7~)p(7 ~ I £). (1) 

where H represents the utterance(s) and £ represents the word 
spelling. This is a standard speech recognition problem in 
which p(H I ~ )  is computed with an acoustic model, usually 
a Hidden Markov Model [5], and p (P  I £)  is computed with 
a language model. In Lucassen's work, this language model 
was constructed automatically from pairs of word spellings 
and pronunciations with the aid of a decision tree. 

We have advanced Lucassen's original work in the follow- 
ing directions. First, the construction of decision trees has 
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been studied in much more detail [6, 7, 8] since the origi- 
nal work was performed; this allows us to construct better 
trees. Second, Lucassen only had the data in Webster's 7th 
Dictionary avaliable in incomplete form for training the de- 
cision trees; we now have access to other sources of data; 
e.g., the 20000 baseforms used in the Tangora [9]. We have 
also substantially improved our techniques for aligning phone 
strings agianst letter strings, a crucial component of decision 
tree construction (Section 2.2). Third, Lucassen used a single 
utterance of a word to construct a baseform; we have since 
found that multiple utterances of a word can be utilized to 
construct a more consistent baseform. Finally, in the original 
study, the evaluation of all baseforms was done via visual in- 
spection and recognition performance was not measured; we 
will describe a series of experiments in which we attempt to 
evaluate the performance of the baseforms for recognition. 

The structure of the paper is as follows. Section 2 de- 
scribes the construction of decision trees for spelling to sound 
rules. Section 3 describes how a phonetic baseform is de- 
coded using one or more utterances in conjunction with the 
spelling-to-soundrules. Section 4 describes a series of exper- 
iments in which the recognition performance of the baseforms 
is measured. Finally, Section 5 discusses the recognition per- 
formance and has suggestions for future work. 

2 Decision Trees for Spelling-to-Sound 
Rules 

Our goal is to construct a model forp(7 ~ I £), the probability of 
the phone string given the letter string. More specifically, let 
£ = l l , . . . ,  In = l~ be a string of letters and 7 ~ = P l , . . . ,  Pm= 
p~ be the string of phones corresponding to £.  We assume 
corresponding to each letter li is a string of phones which 
can be interpreted as the pronunciation of the letter. The 
pronunciation of letter li, denoted as ri, may correspond to a 
single phone, a string of phones, or the null phone (i.e., it has 
no corresponding pronunciation in the original phone string 
7 ~. For example, Table 1 indicates the pronunciations of the 
letters in the word humane. 

Ihl u Iml a Inl° l  
h j u u l  m eil n 0 

Table 1: Pronunciations of letters in the word humane. 

Note that the e is silent, so we assign it a null pronunciation. 
Note also that the j might have be assigned to the letter h 
just as well as the letter u; such decisions are arbitrary but 
consistency across words should be enforced. Details of how 
a set of pronunciations may be determined for a set of words 
can be found in Section 2.2; for now, we will assume that 
we have an inventory of such pronunciations in which each 
pronunciation consists of a string of phones. 

We now may write the probability of pronunciation string 
7~as 

n 

p(7~1£ ) = I I p ( r i l r ~  -a,l~) (2) 
i=l 
Pl 

~-- 1 li+5 IXp(rl  l i-5,,i-sJ (3) 
i=I 

(4) 

We assume that the probability of the pronunciation rz only 
depends on the current letter, the five previous letters, the five 
following letters, and the five previous pronunciations. We 
define this to be the context of the current pronunciation. 

Estimatingp(7~ [ £)  in a straightforward fashion by count- 
ing the number of times ri occurs in a particular context is 
an impossible task - there are just too many contexts. In- 
stead, we will map contexts onto a relatively small number 
of equivalence classes with the aid of a decision tree. The 
decision tree will partition the contexts into classes by ask- 
ing binary questions about the context elements; e.g., "Is the 
next letter a vowel?", "Is the previous pronunciation a plo- 
sive?", etc. The leaves of the decision tree will represent the 
equivalence classes. At each leaf is a probability distribution 
on the allowable pronunciations. Lucassen [4] describes in 
substantial detail techniques for constructing decsision trees 
to model p(7~ [ £); we will limit ourselves to briefly out- 
lining the technique and also discuss some modifications to 
Lucassen's original procedure. 

2.1 D e c i s i o n  T r e e  C o n s t r u c t i o n  
Assume we have for each letter a collection of data. Each 
data item consists of the pronunciation of the letter in a partic- 
ular context, r, and a set of context elements: the five letters 
preceeding the current letter in this context the five letters fol- 
lowing the current letter, and the the five previous pronuncia- 
tions, We assume we have an inventory of B binary questions 
(Lucassen [4] describes how such a set of questions may be 
developed). Each binary question by partitions the letters or 
pronunciations into two subsets. Each bj may be applied at 
each context element of each data item. Therefore, for each 
combination of binary question and context element, the data 
will be partitioned into two sub-collections; corresponding to 
each sub-collection is a probability distribution over the pro- 
nunciations r. We select the question by and context element 
k that minimizes the average entropy of the two distributions 
corresponding to the two sub-collections. We now repeat the 
above procedure for each of the sub-collections individually. 
The data is thus successively split into smaller and smaller 
collections until some termination criterion is met; the result 
is a tree of binary questions about different context elements. 
The leaves of the tree consist of probability distributionsp(r) 
which can be used in equation 2, above. 

There are various termination criteria that can be used to 
avoid overtraining trees by growing them too deeply. Lu- 
cassen used a combination of seven different termination cri- 
teria at a node; Breiman [7] recommends growing the tree 
quite deeply and then pruning it back to minimize the entropy 
on held-out data. We use the following two techniques, which 
are quite simple to implement. First, a threshold is placed on 
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the product of the number of samples at a node and the entropy 
ofp(r) .  Second, the data is divided into two parts, A and B. 
The data in part .,4 is first used to construct the tree. When a 
question b i and context position k is selected using data from 
part -4 at a particular node in the tree, data from part B is 
also propagated to this node and the average cross entropy 
between the .,4 and B data is calculated. If  the reduction in 
cross entropy is below a threshold, the node is not expanded, 
otherwise the B data is split as the ,4 data and used at the next 
level of tree construction. This way, spurious questions that 
result from a lack of training data may be eliminated. After a 
tree using -4 is constructed, the roles of -4  and B are reversed 
and a second tree is grown. The predictions from both trees 
are then averaged to compute p(TZ I £).  

In order to be robust with respect to new data, it is usu- 
ally important to smooth the distributions at the leaves of the 
tree. This is typically done via deleted estimation [5]: one 
tries to maximize the probability of some held-out data with 
the model by adjusting a set of smoothing coefficients. The 
most powerful technique is to smooth the distribution at a leaf 
with a linear combination of the distributions leading up to 
the root of the tree from the leaf. The main disadvantage of 
this scheme is that it requires that each leaf be represented in 
the held-out data. There are various solutions to this problem 
[4, 6] but they require very careful manipulation of the train- 
ing and held-out data. Instead, we have developed a simple 
recursive smoothing scheme that operates in the following 
fashion. Held-out data is poured down the tree from the root. 
Each node is assigned a class that is a function of the number 
of held-out data samples that appear. Each node n in the tree 
is smoothed according to: 

p'~ = Al(cn)p.  + A2(cn)p}cn~ + A3(C.)U (5) 

wherep'  denotes the smoothed distribution,p, the unsmoothed 
distribution on held-out data, f (n), the father node of n, c(n), 
the count class of node n, and u, the uniform distribution. The 
As are computed via deleted estimation [5]; the p 's  may be 
computed recursively from the root down for each iteration 
of deleted estimation. The main disadvantage of this scheme 
is that it strongly favors node distributions close to the leaf in 
question for smoothing; for trees with many levels, this may 
be disadvantageous. 

2.2 Data Preparation 
The main task in data preparation for decision tree construc- 
tion lies in determining a series of pronunciations for the 
letters and in extracting the data items for each letter. It is 
assumed that there exists a source of words matched against 
phone strings. Our primary source of such material was an 
online version of Webster's 7th Collegiate Dictionary. To 
this we added the phonetic baseforms from our 20K word 
recognition system, yielding a total of roughly 80K word- 
phone string pairs. A substantial amount of time was spent 
"completing" the entries in Webster's - inflections and variant 
pronunciations were indicated by a shorthand notation that 
was not trivial to unravel. In addition, the notation the dictio- 
nary used to indicate pronunciation was not consistent with 
the notation in our recognition system; notation in Webster's 

had to be converted to match our 'style' of writing baseforms. 
For example, Webster's makes many more distinctions be- 
tween vowels than we do; certain endings are consistently 
transcribed differently; e.g., we typically represent -ment as 
'm eh0 n t '  while in Webster's it is found as 'm uh0 n t ' ,  
etc.. Converting pronunciation formats to be consistent with 
local conventions is a generic problem in trying to utilize on- 
line dictionaries and often can take more time to solve that to 
employ the dam. 

Given such a set of data, the next step is to determine a 
set of pronunciations for each letter. First, an initial guess is 
made and a set of pronunciations is selected for each letter. 
A hidden markov model is generated for each letter whose 
outputs represent the allowable pronunciations for the letter. 
An HMM for the letter d is shown in Figure 1. 

Figure 1: Hidden Markov Model for Pronunciations of the 
letter d. 

There are five permissible pronunciations of d: D as in 
'dog' ,  T as in 'passed',  D EEl  as in 'PhD' ,  D ZH as in 
'graduate', and ~ as in the second 'd '  in 'ladder'.  The HMM 
for a word may be constructed by concatenating the HMMs 
for the letters; the models are now trained using the phone 
strings as output data. Once the models are trained, a Viterbi 
alignment is made of all the phone strings against the letter 
strings for each word. A certain number of the alignments will 
fail, either because the original pronunciation set was deficient 
or because there was an error in the original phone string for 
the word. Based on observing the misalignments, one may 
augment the original pronunciation set or correct an incorrect 
baseform, and repeat the procedure as many times as might 
be necessary. One may then simply obtain the data items for 
each letter from a combination of the Viterbi alignment and 
the pronunciation inventory; however, we find that there is 
often complete arbitrariness the way certain letter strings are 
aligned against phones; for example, sometimes the phone 
T will be aligned against the first t in the letter string "tt" 
and other times, the second. To enforce homogeneity, it is 
sometimes useful to post-process the Viterbi alignment. The 
baseforms are written using a set of  50 phones; we typically 
develop an inventory of 130 pronunciations. Typical letters 
average 5 pronunciations; some vowels, such as 'u ' ,  have up 
to 13 different pronunciations. 
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3 Decoding New Baseforms 
To determine the best phonetic baseform using the concept of 
pronunciations, we can rewrite equation 1 in terms of pronun- 
ciation strings to find 7~ such that: 

a r g m a x p ( l . l  17~)p('E 1£) (6) 

In the above equation, p(/,/I 7~) may be identified with the 
acoustic model component of a standard Hidden Markov 
Model based speech recognition system, and p(7~ I z)  with 
the language model component. The task of determining a 
phonetic baseform by combining acoustic information with 
spelling-to-sound rules is substantially simpler than the typi- 
cal speech recognition problem. First, the 'vocabulary' is not 
large, typically 130 pronunciations. Second, the number of 
'words' in each 'sentence' is determined by the length of the 
letter string. However, the number of language model states, 
determined by the number of tree leaves, can be quite large 
(on the order of several thousand) thus making a Viterbi-type 
decoder somewhat unwieldy. Instead, a simple stack decoder 
[5] was implemented to determine the phonetic baseforms. 
For the n 'h letter of the word in question, we define the score 
za tobe  

z~(l~, r~) a logp(u I r .)  + 
l o g p ( r ,  [ r~_-~, l"+S x ~ 

z~(l~- i, r~ -I ) 

where subscripts and superscripts refer to strings of letters or 
pronunciations. The first term on the right just represents the 
the acoustic model score in a typical HMM-based system for 
the pronunciation of the n th letter, and the second term can be 
computed from the speUing-to-soundrules. Note that z~ may 
be computed recursively by proceeding left to right through 
the letters of the word. Since each letter in the word can 
have many different pronunciations, we only examine for the 
n th letter the pronunciation strings associated with the top m 
values of za from the (n - 1) 'h letter; we have observed that 
m = 16 or m = 32 is usually satisfactory. We have also foundit 
necessary to premultiply logp(u [ r,) by a factor a between. 1 
and .5 to obtain better baseforms. This crudely compensates 
for poor modelling of time correlation in the Hidden Markov 
Models. 

The above algorithm is only suitable for producing a base- 
form when there is a single utterance of each word. When 
there are multiple utterances, we must modify the algorithm 
slightly. For each utterance of a particular word, we use the 
above algorithm to produce the top m-scoring pronunciations 
rather than a single pronunciation, and separately keep track 
of the score due to the acoustic component and the spelling-to- 
sound rules. We form the union of all pronunciations across 
all utterances for each word, and from those pronunciations, 
find the pronunciation 7~ to maximize 

p 

13 logp(b/i I "R.) + logp('R. I £)  
i=1 

where Hi is the i th utterance, and/3, a weighting factor similar 
to a above, is set to approximately .3. 

4 Baseform Determination Perfor- 
mance 

Our goal was to use the above technique to determine phonetic 
baseforms for words not in the current speech recognition sys- 
tem's vocabulary of 20000 words. To examine performance, 
we found the most frequently occurring words not in our 
20000 vocabulary from a corpus of one million words of re- 
cent internal electronic mail. We selected a random subset of 
500 words from this list, and had two talkers each read the list 
of words on two different days. Each word was read four times 
each in a single sentence on both days; e.g., "hello hello hello 
hello". Baseforms were produced using the above techniques 
under several conditions; in all cases, the baseforms produced 
were used in conjunction with the 20000 baseforms already in 
the recognition systems' vocabulary to recognize the second 
four repetitions recorded from each talker. All recognition 
took place with a language model that predicted each word 
uniformly. Talkers recorded our 100 standard training sen- 
tences [10] to train the parameters of the Hidden Markov 
Models. Endpoints of words were located automatically by 
obtaining a Viterbi alignment of the VQ output against the 
top baseform produced by the spelling to sound rules. This 
introduced some errors into the results (see below). 

The conditions examined were 

(7) 1. Spelling-to-sound rules alone used to create baseforms. 
Weight for acoustic component (o0 set to zero. 

2. Baseforms made from a single utterance. 

3. Baseforms made from all four utterances. 

4. Baseforms made from a single utterance; spelling-to 
sound rules score contribution set to zero. 

5. Baseforms made from all four utterances; spelling-to- 
sound rules score contribution set to zero. 

Note that the fourth and fifth conditions are n o t  identical to 
completely ignoring the spelling of the word; the number of 
letters in the word will determine the length of the pronuncia- 
tion string (though letters can be given the null pronunciation). 

Only 31% of the 500 words were covered by the 80000 
words used to determine the spelling-to-sound rules. For that 
matter, we found that even a much larger word list, gener- 
ated by combining a list of 40000 common acronyms with 
the 20000 words in our vocabulary and 250000 words in the 
Shoup dictionary [11], only covered 60% of these 500 words. 
Most of the missing words consist of names, acronyms, and 
specialized jargon, once again illustrating that straightforward 
dictionary lookup procedures are not adequate for adding 
words to a vocabulary. 

Recognition results for each of the two talkers across all 
five conditions are shown in Table 2, and compared to results 
on handwritten baseforms. It can be seen that neither the 

(8) spelling-to-soundrules nor the acoustics alone seem to be ad- 
equate to generate baseforms for recognition, when compared 
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Word Baseform 
to handwritten baseforms. Spelling-to-soundrules whencom- 
bined with four utterances of  the word produce baseforms 
that perform quite competitively with handwritten baseforms; 
spelling-to-sound rules with a single utterance, or acoustics 
alone with four utterances yield slightly worse recognition 
results. Note that the level of recognition performance would 
be substantially higher in actual recognition applications; nat- 
ural sentences would be dictated and a strong language model 
could be used. 

Condition T1 T2 
Handwritten baseforms 29% 32% 
Spelling-to-soundrules alone 53% 58% 
Single utterance 33% 36% 
Four utterances 28% 32% 
Single utterance, acoustics alone 42% 43% 
Four utterances, acoustics alone 33% 36% 

Table 2: Recognition performance as a function of baseform 
construction techniques. 

Visual inspection of the baseforms generated by spelling- 
to-sound rules alone indicated that approximately one-third 
of the baseforms had errors in them, where errors are defined 
as substantial discrepancies between the artificially generated 
baseforms and handwritten ones that had a fair chance of 
resulting in recognition errors. Visual inspection of the base- 
forms generated by combining spelling-to-sound rules with 
four utterances of each word for Talker 1 indicated approxi- 
mately one-tenth of the baseforms contained some error (as 
defined above). Approximately one-half the errors occurred 
on names, one-quarter on acronyms, and one-quarter on ac- 
tual words. For comparison, the list of 500 words contained 
60% words or jargon, 35 % names, and 5% acronyms. An 
acronym is considered to be not only strings of letters but com- 
binations of strings of letters and words; e.g. 'PCSTORE' is 
pronounced 'pee-see-store'. One error ( 'AAA',  pronounced 
'triple-A') resulted from the word's pronunciation having es- 
sentially nothing to do with its spelling. Table 3 lists 10 of the 
sample errors (chosen at random among the 50). 

Some of the above errors, as for "dingles", "Gonzales", 
"megapels . . . .  Stefanos" and "cepstrum", never resulted in 
recognition errors, in spite of what subjectively seemed to 
be substantial errors in the baseforms. The acronym errors 
were traced a flaw in the endpoint detection algorithm. End- 
points were detected via Viterbi alignment against baseforms 
produced by the spelling-to-sound rules alone; the baseforms 
are so terrible for acronyms that substantial misalignment oc- 
curred during endpoint detection, generating faulty input to 
the baseform generator. Very few acronyms were present in 
the data used to generate the spelling-to-sound rule trees; in- 
clusion of such data might have generated better baseforms. 
Finally, it should be pointed out that both talkers were not 
always consistent across recording sessions in their pronun- 
ciations of words. For example, the name "Kanevsky", pro- 
nounced "kq uh0 n ehl v s k ee0", was mispronounced in the 
first recording session as "kq eil n v eel s k all", and the word 
"cations" was initially pronounced "kq ael t a i l  uh0 n z" and 

dingles 

Gonzales 

Irwin 

megapels 

NBS 
ODAS 

Stefanos 

Yong 
BC 
cepstrum 

d i l  n g g l z  

g u h 0 n z a a l l z  

uh0 er0 w i l  n 

m eh 1 g uh0 p pq 
uh01 z 

Comment 
Missing uh0 
before 'T '  
Missing eh0 
before "z" 
Inserted uh0; 
er0 should be erl 
Last uh0 should be 
be ehl 

ehl s Acronym 
Acronym; no 
baseform produced 

s t tq eh I f uh0 n aul should be oul 
au 1 ug z 
j aal n n should be ng 
b k kq Acronym 
tqsh ehl p p q s  t tq sh should be kq 
tqr  uhl m 

Table 3: Sample errors in automatic baseform generation. 

then "k eil sh uh0 n z". Therefore, even "correct" baseforms 
never guarantee success in speech recognition! 

5 Discussion and Conclusions 
Insofar as the automatically generated baseforms produce re- 
suits at least as good as handwritten ones if the user is willing 
to say each word multiple times, we view this technique as 
successful. However, the spelling-to-sound rules obviously 
have more problems with names and acronyms than actual 
words; we attribute this at least in part to the fact that there 
were relatively few names and acronyms in the data used to 
construct the spelling-to-sound rule trees. We feel that in- 
cluding such information would give the spelling-to-sound 
rules substantially more power, and are currently working on 
obtaining data from such sources to improve the quality of 
baseform construction. 

It is hard to compare the performance of this technique with 
techniques that try to deduce the baseform from the spelling 
alone. Typical figures quoted are between a 3% and 5% error 
rate in running text. Crudely speaking, we have observed 
that a fixed 20000 word vocabulary covers about 93% of 
completely new text across a variety of sources, implying 7% 
of the words encountered will be new and must be added to 
the vocabulary. From the previous section, we calculated a 
10% error rate on such new words in constructing baseforms, 
which would imply we would generate incorrect baseforms 
for less than 1% of words in running text. It is clear that this 
hardly impacts the 5% recognition error we obtain in the the 
laboratory. 

In conclusion, we believe we have a viable technique for 
generating good phonetic baseforms for new words in speech 
recognition systems. Work is currently progressing to incor- 
porate more data in the above algorithms, and to employ this 
technique in other components of the speech recognizer to 
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supply us with the ability to adapt the phonetic baseforms for 
words already in the vocabulary of the recognizer. 
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