
Automatic Phonetic Baseform Determination

L. R. Bahl, S. Das, P. V. deSouza, M. Epstein, R. L. Mercer,
B. Merialdo, D. Nahamoo, M. A. Picheny, J. Powell

Continuous Speech Recognition Group,
Computer Sciences Department

IBM Research Division,
Thomas J. Watson Research Center

P. O. Box 704, Yorktown Heights, NY 10598

ABSTRACT
Phonetic baseforms are the basic recognition units in most
large vocabulary speech recognition systems. These base-
forms are usually determined by hand once a vocabulary is
chosen and not modified thereafter. However, many applica-
tions of speech recognition, such as dictation transcription, are
hampered by a fixed vocabulary and require the user be able to
add new words to the vocabulary. At least one phonetic base-
form must be assigned to each new word to properly integrate
the word into the recognition system. Dictionary lookup is of-
ten unsuccessful in determining a phonetic baseform because
new words are often names or task-specific jargon; also, talk-
ers tend to have idiosyncratic pronunciations for a substantial
fraction of words. This paper describes a series of experiments
in which the phonetic baseform is deduced automatically for
new words by utilizing actual utterances of the new word in
conjunction with a set of automatically derived spelling-to-
sound rules. We evaluated recognition performance on new
words spoken by two different talkers when the phonetic base-
forms were extracted via the above approach. The error rates
on these new words were found to be comparable to or better
than when the phonetic baseforms were derived by hand, thus
validating the basic approach.

1 Introduction
Phonetic baseforms are the basic recognition units in most
large vocabulary speech recognition systems. These base-
forms are usually determined by hand once a vocabulary is
chosen and not modified thereafter. However, many applica-
tions of speech recognition, such as dictation transcription, are
hampered by a fixed vocabulary and require the user be able to
add new words to the vocabulary. At least one phonetic base-
form must be assigned to each new word to properly integrate
the word into the recognition system 1. This paper describes
a seres of experiments in which the phonetic baseform is
deduced automatically for a new word given its spelling by
utilizing actual utterances of the new word in conjunction with
a set of automatically derived spelling-to-sound rules.

Most previous attempts to construct a phonetic baseform for
a new word have been in the area of speech synthesis. Klatt

t One does not necessarily require a phonetic baseform to add a new word
to a recognition system [I, 2], but if the system is odginaUy based on phonetic
baseforms, the system structure is complicated by having more than one type
of recognition model present.

[3] reviews various approaches to this problem; most solu-
tions involve some set of human-derived rules combined with
a dictionary lookup procedure for exceptions. The best sys-
tems seem to produce correct baseforms for 95%-98% of the
words in running text. We believe that such systems are inad-
equate to handle the baseform construction problem in speech
recognition for several reasons. First, many new words in
speech recognition systems are either names or task-specific
jargon (see discussion in section 4). Pronunciation of such
items tend to be highly irregular and present substantial dif-
ficulties for text-to-speech systems [3]. Second, talkers tend
to develop idiosyncratic pronunciations of many words, espe-
cially proper names. For example, the name Picheny is often
pronounced Pitch'-uh-nee rather than Pitch-eh'-nee even by
people familiar with the individual, and the word asymptotic
can be pronounced with an initial EI rather than with an AE
by people not terribly familiar with the word. Thirdly, the
spelling of a word sometimes has very little correlation with
its pronunciation - the orthography AAA is often pronounced
Triple-A. Finally, human-derived rule-based systems are very
labor intensive to create and often very hard to transfer from
the original development site to other institutions that wish to
utilize it.

It seems obvious from the above examples that proper de-
duction of a phonetic baseform for a new word requires both
knowledge of the spelling of the word and at least one acous-
tic example of its pronunciation. While in theory it should
be possible to deduce a baseform from the utterance alone,
current speech recognition systems do not yet produce pho-
netic transcriptions with a high enough accuracy for this to
be feasible. We follow the basic approach as described in
Lucassen [4]. In particular, our goal is to find the phone string
T' to maximize

P('P I £,/ ' /) ~ argmaxP(Lt I 7~)p(7 ~ I £). (1)

where H represents the utterance(s) and £ represents the word
spelling. This is a standard speech recognition problem in
which p(H I ~) is computed with an acoustic model, usually
a Hidden Markov Model [5], and p (P I £) is computed with
a language model. In Lucassen's work, this language model
was constructed automatically from pairs of word spellings
and pronunciations with the aid of a decision tree.

We have advanced Lucassen's original work in the follow-
ing directions. First, the construction of decision trees has

179

been studied in much more detail [6, 7, 8] since the origi-
nal work was performed; this allows us to construct better
trees. Second, Lucassen only had the data in Webster's 7th
Dictionary avaliable in incomplete form for training the de-
cision trees; we now have access to other sources of data;
e.g., the 20000 baseforms used in the Tangora [9]. We have
also substantially improved our techniques for aligning phone
strings agianst letter strings, a crucial component of decision
tree construction (Section 2.2). Third, Lucassen used a single
utterance of a word to construct a baseform; we have since
found that multiple utterances of a word can be utilized to
construct a more consistent baseform. Finally, in the original
study, the evaluation of all baseforms was done via visual in-
spection and recognition performance was not measured; we
will describe a series of experiments in which we attempt to
evaluate the performance of the baseforms for recognition.

The structure of the paper is as follows. Section 2 de-
scribes the construction of decision trees for spelling to sound
rules. Section 3 describes how a phonetic baseform is de-
coded using one or more utterances in conjunction with the
spelling-to-soundrules. Section 4 describes a series of exper-
iments in which the recognition performance of the baseforms
is measured. Finally, Section 5 discusses the recognition per-
formance and has suggestions for future work.

2 Decision Trees for Spelling-to-Sound
Rules

Our goal is to construct a model forp(7 ~ I £), the probability of
the phone string given the letter string. More specifically, let
£ = l l , . . . , In = l~ be a string of letters and 7 ~ = P l , . . . , Pm=
p~ be the string of phones corresponding to £. We assume
corresponding to each letter li is a string of phones which
can be interpreted as the pronunciation of the letter. The
pronunciation of letter li, denoted as ri, may correspond to a
single phone, a string of phones, or the null phone (i.e., it has
no corresponding pronunciation in the original phone string
7 ~. For example, Table 1 indicates the pronunciations of the
letters in the word humane.

Ihl u Iml a Inl° l
h j u u l m eil n 0

Table 1: Pronunciations of letters in the word humane.

Note that the e is silent, so we assign it a null pronunciation.
Note also that the j might have be assigned to the letter h
just as well as the letter u; such decisions are arbitrary but
consistency across words should be enforced. Details of how
a set of pronunciations may be determined for a set of words
can be found in Section 2.2; for now, we will assume that
we have an inventory of such pronunciations in which each
pronunciation consists of a string of phones.

We now may write the probability of pronunciation string
7~as

n

p(7~1£) = I I p (r i l r ~ -a,l~) (2)
i=l
Pl

~-- 1 li+5 IXp(rl l i-5,,i-sJ (3)
i=I

(4)

We assume that the probability of the pronunciation rz only
depends on the current letter, the five previous letters, the five
following letters, and the five previous pronunciations. We
define this to be the context of the current pronunciation.

Estimatingp(7~ [£) in a straightforward fashion by count-
ing the number of times ri occurs in a particular context is
an impossible task - there are just too many contexts. In-
stead, we will map contexts onto a relatively small number
of equivalence classes with the aid of a decision tree. The
decision tree will partition the contexts into classes by ask-
ing binary questions about the context elements; e.g., "Is the
next letter a vowel?", "Is the previous pronunciation a plo-
sive?", etc. The leaves of the decision tree will represent the
equivalence classes. At each leaf is a probability distribution
on the allowable pronunciations. Lucassen [4] describes in
substantial detail techniques for constructing decsision trees
to model p(7~ [£); we will limit ourselves to briefly out-
lining the technique and also discuss some modifications to
Lucassen's original procedure.

2.1 D e c i s i o n T r e e C o n s t r u c t i o n
Assume we have for each letter a collection of data. Each
data item consists of the pronunciation of the letter in a partic-
ular context, r, and a set of context elements: the five letters
preceeding the current letter in this context the five letters fol-
lowing the current letter, and the the five previous pronuncia-
tions, We assume we have an inventory of B binary questions
(Lucassen [4] describes how such a set of questions may be
developed). Each binary question by partitions the letters or
pronunciations into two subsets. Each bj may be applied at
each context element of each data item. Therefore, for each
combination of binary question and context element, the data
will be partitioned into two sub-collections; corresponding to
each sub-collection is a probability distribution over the pro-
nunciations r. We select the question by and context element
k that minimizes the average entropy of the two distributions
corresponding to the two sub-collections. We now repeat the
above procedure for each of the sub-collections individually.
The data is thus successively split into smaller and smaller
collections until some termination criterion is met; the result
is a tree of binary questions about different context elements.
The leaves of the tree consist of probability distributionsp(r)
which can be used in equation 2, above.

There are various termination criteria that can be used to
avoid overtraining trees by growing them too deeply. Lu-
cassen used a combination of seven different termination cri-
teria at a node; Breiman [7] recommends growing the tree
quite deeply and then pruning it back to minimize the entropy
on held-out data. We use the following two techniques, which
are quite simple to implement. First, a threshold is placed on

180

the product of the number of samples at a node and the entropy
ofp(r) . Second, the data is divided into two parts, A and B.
The data in part .,4 is first used to construct the tree. When a
question b i and context position k is selected using data from
part -4 at a particular node in the tree, data from part B is
also propagated to this node and the average cross entropy
between the .,4 and B data is calculated. If the reduction in
cross entropy is below a threshold, the node is not expanded,
otherwise the B data is split as the ,4 data and used at the next
level of tree construction. This way, spurious questions that
result from a lack of training data may be eliminated. After a
tree using -4 is constructed, the roles of -4 and B are reversed
and a second tree is grown. The predictions from both trees
are then averaged to compute p(TZ I £).

In order to be robust with respect to new data, it is usu-
ally important to smooth the distributions at the leaves of the
tree. This is typically done via deleted estimation [5]: one
tries to maximize the probability of some held-out data with
the model by adjusting a set of smoothing coefficients. The
most powerful technique is to smooth the distribution at a leaf
with a linear combination of the distributions leading up to
the root of the tree from the leaf. The main disadvantage of
this scheme is that it requires that each leaf be represented in
the held-out data. There are various solutions to this problem
[4, 6] but they require very careful manipulation of the train-
ing and held-out data. Instead, we have developed a simple
recursive smoothing scheme that operates in the following
fashion. Held-out data is poured down the tree from the root.
Each node is assigned a class that is a function of the number
of held-out data samples that appear. Each node n in the tree
is smoothed according to:

p'~ = Al(cn)p. + A2(cn)p}cn~ + A3(C.)U (5)

wherep' denotes the smoothed distribution,p, the unsmoothed
distribution on held-out data, f (n), the father node of n, c(n),
the count class of node n, and u, the uniform distribution. The
As are computed via deleted estimation [5]; the p 's may be
computed recursively from the root down for each iteration
of deleted estimation. The main disadvantage of this scheme
is that it strongly favors node distributions close to the leaf in
question for smoothing; for trees with many levels, this may
be disadvantageous.

2.2 Data Preparation
The main task in data preparation for decision tree construc-
tion lies in determining a series of pronunciations for the
letters and in extracting the data items for each letter. It is
assumed that there exists a source of words matched against
phone strings. Our primary source of such material was an
online version of Webster's 7th Collegiate Dictionary. To
this we added the phonetic baseforms from our 20K word
recognition system, yielding a total of roughly 80K word-
phone string pairs. A substantial amount of time was spent
"completing" the entries in Webster's - inflections and variant
pronunciations were indicated by a shorthand notation that
was not trivial to unravel. In addition, the notation the dictio-
nary used to indicate pronunciation was not consistent with
the notation in our recognition system; notation in Webster's

had to be converted to match our 'style' of writing baseforms.
For example, Webster's makes many more distinctions be-
tween vowels than we do; certain endings are consistently
transcribed differently; e.g., we typically represent -ment as
'm eh0 n t ' while in Webster's it is found as 'm uh0 n t ' ,
etc.. Converting pronunciation formats to be consistent with
local conventions is a generic problem in trying to utilize on-
line dictionaries and often can take more time to solve that to
employ the dam.

Given such a set of data, the next step is to determine a
set of pronunciations for each letter. First, an initial guess is
made and a set of pronunciations is selected for each letter.
A hidden markov model is generated for each letter whose
outputs represent the allowable pronunciations for the letter.
An HMM for the letter d is shown in Figure 1.

Figure 1: Hidden Markov Model for Pronunciations of the
letter d.

There are five permissible pronunciations of d: D as in
'dog' , T as in 'passed', D EEl as in 'PhD' , D ZH as in
'graduate', and ~ as in the second 'd ' in 'ladder'. The HMM
for a word may be constructed by concatenating the HMMs
for the letters; the models are now trained using the phone
strings as output data. Once the models are trained, a Viterbi
alignment is made of all the phone strings against the letter
strings for each word. A certain number of the alignments will
fail, either because the original pronunciation set was deficient
or because there was an error in the original phone string for
the word. Based on observing the misalignments, one may
augment the original pronunciation set or correct an incorrect
baseform, and repeat the procedure as many times as might
be necessary. One may then simply obtain the data items for
each letter from a combination of the Viterbi alignment and
the pronunciation inventory; however, we find that there is
often complete arbitrariness the way certain letter strings are
aligned against phones; for example, sometimes the phone
T will be aligned against the first t in the letter string "tt"
and other times, the second. To enforce homogeneity, it is
sometimes useful to post-process the Viterbi alignment. The
baseforms are written using a set of 50 phones; we typically
develop an inventory of 130 pronunciations. Typical letters
average 5 pronunciations; some vowels, such as 'u ' , have up
to 13 different pronunciations.

181

3 Decoding New Baseforms
To determine the best phonetic baseform using the concept of
pronunciations, we can rewrite equation 1 in terms of pronun-
ciation strings to find 7~ such that:

a r g m a x p (l . l 17~)p('E 1£) (6)

In the above equation, p(/,/I 7~) may be identified with the
acoustic model component of a standard Hidden Markov
Model based speech recognition system, and p(7~ I z) with
the language model component. The task of determining a
phonetic baseform by combining acoustic information with
spelling-to-sound rules is substantially simpler than the typi-
cal speech recognition problem. First, the 'vocabulary' is not
large, typically 130 pronunciations. Second, the number of
'words' in each 'sentence' is determined by the length of the
letter string. However, the number of language model states,
determined by the number of tree leaves, can be quite large
(on the order of several thousand) thus making a Viterbi-type
decoder somewhat unwieldy. Instead, a simple stack decoder
[5] was implemented to determine the phonetic baseforms.
For the n 'h letter of the word in question, we define the score
za tobe

z~(l~, r~) a logp(u I r .) +
l o g p (r , [r~_-~, l"+S x ~

z~(l~- i, r~ -I)

where subscripts and superscripts refer to strings of letters or
pronunciations. The first term on the right just represents the
the acoustic model score in a typical HMM-based system for
the pronunciation of the n th letter, and the second term can be
computed from the speUing-to-soundrules. Note that z~ may
be computed recursively by proceeding left to right through
the letters of the word. Since each letter in the word can
have many different pronunciations, we only examine for the
n th letter the pronunciation strings associated with the top m
values of za from the (n - 1) 'h letter; we have observed that
m = 16 or m = 32 is usually satisfactory. We have also foundit
necessary to premultiply logp(u [r,) by a factor a between. 1
and .5 to obtain better baseforms. This crudely compensates
for poor modelling of time correlation in the Hidden Markov
Models.

The above algorithm is only suitable for producing a base-
form when there is a single utterance of each word. When
there are multiple utterances, we must modify the algorithm
slightly. For each utterance of a particular word, we use the
above algorithm to produce the top m-scoring pronunciations
rather than a single pronunciation, and separately keep track
of the score due to the acoustic component and the spelling-to-
sound rules. We form the union of all pronunciations across
all utterances for each word, and from those pronunciations,
find the pronunciation 7~ to maximize

p

13 logp(b/i I "R.) + logp('R. I £)
i=1

where Hi is the i th utterance, and/3, a weighting factor similar
to a above, is set to approximately .3.

4 Baseform Determination Perfor-
mance

Our goal was to use the above technique to determine phonetic
baseforms for words not in the current speech recognition sys-
tem's vocabulary of 20000 words. To examine performance,
we found the most frequently occurring words not in our
20000 vocabulary from a corpus of one million words of re-
cent internal electronic mail. We selected a random subset of
500 words from this list, and had two talkers each read the list
of words on two different days. Each word was read four times
each in a single sentence on both days; e.g., "hello hello hello
hello". Baseforms were produced using the above techniques
under several conditions; in all cases, the baseforms produced
were used in conjunction with the 20000 baseforms already in
the recognition systems' vocabulary to recognize the second
four repetitions recorded from each talker. All recognition
took place with a language model that predicted each word
uniformly. Talkers recorded our 100 standard training sen-
tences [10] to train the parameters of the Hidden Markov
Models. Endpoints of words were located automatically by
obtaining a Viterbi alignment of the VQ output against the
top baseform produced by the spelling to sound rules. This
introduced some errors into the results (see below).

The conditions examined were

(7) 1. Spelling-to-sound rules alone used to create baseforms.
Weight for acoustic component (o0 set to zero.

2. Baseforms made from a single utterance.

3. Baseforms made from all four utterances.

4. Baseforms made from a single utterance; spelling-to
sound rules score contribution set to zero.

5. Baseforms made from all four utterances; spelling-to-
sound rules score contribution set to zero.

Note that the fourth and fifth conditions are n o t identical to
completely ignoring the spelling of the word; the number of
letters in the word will determine the length of the pronuncia-
tion string (though letters can be given the null pronunciation).

Only 31% of the 500 words were covered by the 80000
words used to determine the spelling-to-sound rules. For that
matter, we found that even a much larger word list, gener-
ated by combining a list of 40000 common acronyms with
the 20000 words in our vocabulary and 250000 words in the
Shoup dictionary [11], only covered 60% of these 500 words.
Most of the missing words consist of names, acronyms, and
specialized jargon, once again illustrating that straightforward
dictionary lookup procedures are not adequate for adding
words to a vocabulary.

Recognition results for each of the two talkers across all
five conditions are shown in Table 2, and compared to results
on handwritten baseforms. It can be seen that neither the

(8) spelling-to-soundrules nor the acoustics alone seem to be ad-
equate to generate baseforms for recognition, when compared

182

Word Baseform
to handwritten baseforms. Spelling-to-soundrules whencom-
bined with four utterances of the word produce baseforms
that perform quite competitively with handwritten baseforms;
spelling-to-sound rules with a single utterance, or acoustics
alone with four utterances yield slightly worse recognition
results. Note that the level of recognition performance would
be substantially higher in actual recognition applications; nat-
ural sentences would be dictated and a strong language model
could be used.

Condition T1 T2
Handwritten baseforms 29% 32%
Spelling-to-soundrules alone 53% 58%
Single utterance 33% 36%
Four utterances 28% 32%
Single utterance, acoustics alone 42% 43%
Four utterances, acoustics alone 33% 36%

Table 2: Recognition performance as a function of baseform
construction techniques.

Visual inspection of the baseforms generated by spelling-
to-sound rules alone indicated that approximately one-third
of the baseforms had errors in them, where errors are defined
as substantial discrepancies between the artificially generated
baseforms and handwritten ones that had a fair chance of
resulting in recognition errors. Visual inspection of the base-
forms generated by combining spelling-to-sound rules with
four utterances of each word for Talker 1 indicated approxi-
mately one-tenth of the baseforms contained some error (as
defined above). Approximately one-half the errors occurred
on names, one-quarter on acronyms, and one-quarter on ac-
tual words. For comparison, the list of 500 words contained
60% words or jargon, 35 % names, and 5% acronyms. An
acronym is considered to be not only strings of letters but com-
binations of strings of letters and words; e.g. 'PCSTORE' is
pronounced 'pee-see-store'. One error ('AAA', pronounced
'triple-A') resulted from the word's pronunciation having es-
sentially nothing to do with its spelling. Table 3 lists 10 of the
sample errors (chosen at random among the 50).

Some of the above errors, as for "dingles", "Gonzales",
"megapels Stefanos" and "cepstrum", never resulted in
recognition errors, in spite of what subjectively seemed to
be substantial errors in the baseforms. The acronym errors
were traced a flaw in the endpoint detection algorithm. End-
points were detected via Viterbi alignment against baseforms
produced by the spelling-to-sound rules alone; the baseforms
are so terrible for acronyms that substantial misalignment oc-
curred during endpoint detection, generating faulty input to
the baseform generator. Very few acronyms were present in
the data used to generate the spelling-to-sound rule trees; in-
clusion of such data might have generated better baseforms.
Finally, it should be pointed out that both talkers were not
always consistent across recording sessions in their pronun-
ciations of words. For example, the name "Kanevsky", pro-
nounced "kq uh0 n ehl v s k ee0", was mispronounced in the
first recording session as "kq eil n v eel s k all", and the word
"cations" was initially pronounced "kq ael t a i l uh0 n z" and

dingles

Gonzales

Irwin

megapels

NBS
ODAS

Stefanos

Yong
BC
cepstrum

d i l n g g l z

g u h 0 n z a a l l z

uh0 er0 w i l n

m eh 1 g uh0 p pq
uh01 z

Comment
Missing uh0
before 'T '
Missing eh0
before "z"
Inserted uh0;
er0 should be erl
Last uh0 should be
be ehl

ehl s Acronym
Acronym; no
baseform produced

s t tq eh I f uh0 n aul should be oul
au 1 ug z
j aal n n should be ng
b k kq Acronym
tqsh ehl p p q s t tq sh should be kq
tqr uhl m

Table 3: Sample errors in automatic baseform generation.

then "k eil sh uh0 n z". Therefore, even "correct" baseforms
never guarantee success in speech recognition!

5 Discussion and Conclusions
Insofar as the automatically generated baseforms produce re-
suits at least as good as handwritten ones if the user is willing
to say each word multiple times, we view this technique as
successful. However, the spelling-to-sound rules obviously
have more problems with names and acronyms than actual
words; we attribute this at least in part to the fact that there
were relatively few names and acronyms in the data used to
construct the spelling-to-sound rule trees. We feel that in-
cluding such information would give the spelling-to-sound
rules substantially more power, and are currently working on
obtaining data from such sources to improve the quality of
baseform construction.

It is hard to compare the performance of this technique with
techniques that try to deduce the baseform from the spelling
alone. Typical figures quoted are between a 3% and 5% error
rate in running text. Crudely speaking, we have observed
that a fixed 20000 word vocabulary covers about 93% of
completely new text across a variety of sources, implying 7%
of the words encountered will be new and must be added to
the vocabulary. From the previous section, we calculated a
10% error rate on such new words in constructing baseforms,
which would imply we would generate incorrect baseforms
for less than 1% of words in running text. It is clear that this
hardly impacts the 5% recognition error we obtain in the the
laboratory.

In conclusion, we believe we have a viable technique for
generating good phonetic baseforms for new words in speech
recognition systems. Work is currently progressing to incor-
porate more data in the above algorithms, and to employ this
technique in other components of the speech recognizer to

183

supply us with the ability to adapt the phonetic baseforms for
words already in the vocabulary of the recognizer.

References
[1] L. R. Bahl, P. F. Brown, E V. deSouza, R. L. Mercer,

and M. A. Picheny, "Acoustic Markov models used in
the tangora speech recognition system,"

[2] L. R. Bahl, R. Bakis, P. V. deSouza, and R. L. Mercer,
"Obtaining candidate words by polling in a large vo-
cabulary speech recognition system," in Proceedings of
the IEEE International Conference on Acoustics, Speech
and Signal Processing, (New York City), pp. 489--492,
April 1988.

[3] D. H. Klatt, "Review of text-to-speech conversion for
english," Journal of the Acoustical Society of America,
vol. 82, pp. 737-793, September 1987.

[4] J. M. Lucassen and R. L. Mercer, "An information-
theoretic approach to the automatic determination of
phonemic baseforms," in Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing, pp. 42.5.1--42.5.4, 1984.

[5] L. R. Bahl, F. Jelinek, and R. L. Mercer, "A maximum
likelihood approach to continuous speech recognition,"
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. PAMI-5, pp. 179-190, March 1983.

[6] L. R. Bahl, P. F. Brown, P. V. deSouza, and R. L. Mer-
cer, "A tree-based statistical language model for natu-
ral language speech recognition," IEEE Transactions on
Acoustics, Speech and Signal Processing, vol. AS SP-37,
pp. 1001-1008, July 1989.

[7] L. Breiman, J. H. Freidman, R. A. Olshen, and C. J.
Stone, Classification and Regression Trees. California:
Wadsworth International Group, 1984.

[8] P. A. Chou, Applications of Information Theory to Pat-
tern Recognition and the Design of Decision Trees and
Trellises. PhD thesis, Stanford University, June 1988.

[9] A. Averbuch et al., "An IBM-PC based large-vocabulary
isolated-utterance speech recgnizer," in Proceedings of
the IEEE International Conference on Acoustics, Speech
and Signal Processing, (Tokyo, Japan), pp. 53-56, April
1986.

[10] A. Averbuch et al., "Experiments with the tangora
20,000 word speech recognizer," in Proceedings of the
IEEE International Conference on Acoustics, Speech
and Signal Processing, (Dallas, Texas), pp. 701-704,
April 1987.

[11] J.E. Shoup, "American English orthographic-phonemic
dictionary," Air Force Office of Sponsored Research
Report AD-763 784, Speech Communications Reserach
Laboratory, Inc., 1973.

184

